
°: " -lj

COMPUTER AIDS FOR
MATHEMATICAL MODEL BUILDING

by

Jae Hyun Cho

February 1997

A thesis submitted for the degree of
Doctor of Philosophy

of the

University of London

and for the

Diploma of Membership of Imperial College

Department of Chemical Engineering and Chemical Technology,

Imperial College of Science, Technology and Medicine,

Prince Consort Road,

London SW7 2BY,

United Kingdom.

4184.
LpRDii.
MIA

2

Abstract

Mathematical models of processes are now widely used at all levels, from pro-

cess synthesis and design, through operations planning, to process control and monitoring.

With the increasing sophistication of applications and the resulting models, it has become

clear that the formulation of appropriate consistent models is a major, time-consuming

and error-prone task. A number of modelling and simulation packages have been devel-

oped in recent years to aid process modelling. In these systems the basic building blocks

are the equations representing the physico-chemical relations, however there has been

little work on aids for generating such equations.

This thesis is concerned with the development of a system for automatically

generating lumped-parameter models from a purely physical description of process sys-

tems, the majority of which routinely experience discontinuous physical behaviour such

as phase transitions (e. g. presence or absence of phases), flow regime transitions (between

laminar and turbulent) and discrete changes resulting from the geometry of individual

process units.

The approach described in this work is based on the conceptual view of pro-

cess systems as a set of inter-connected vessels containing interacting phases. A physical

modelling language supporting the description of process systems in a purely physical

manner has been designed, with a special emphasis on the hierarchical description of the

inter-connections between phases or vessels. A methodology for formulating mathemati-

cal models from the physical description represented in the language has been developed,

focusing on the mathematical description of discontinuous physico-chemical behaviour

as mentioned above. The current version of this package generates mathematical mod-

els in the format of the gPROMS (Barton, 1992) input language. The implementation

of this methodology (written in C) has led to a prototype of a new model generation

package. The ability of this package to automatically generate mathematical models is

demonstrated by several case studies.

3

Acknowledgements

I would like to express my sincere thanks to my supervisors, Professor Roger

Sargent and Professor John Perkins. Their intellectual supervision, guidance and encour-

agement during the whole period of my Ph. D research have been invaluable. I would

also like to thank Professor Costas Pantelides for his contributions to the design of the

physical modelling language during the early stages of the project and Dr. Steve Walsh

for his sincere and comforting advice.

I would especially like to thank Johnathan Heath, David Rowe, Erick Groep,

Ben Keeping, Vince White and Nefyn Jones for their friendship which gave me a great

deal in my life. I am greatly indebted to Edward Smith for his crucial help with the

computer implementation. Special thanks go to Jamie Barber for our useful discussions

and his sincere help in writing up the thesis. I must also thank my other friends and

colleages in the Centre for Process Systems Engineering for making my Ph. D period so

enjoyable.

There are not enough words to thank my wife Young Mee Lee and my son Gi

Chul Cho as well as my parents, brothers and sisters for their continuous love and support

without which it would have been impossible to finish my Ph. D succesfully.

4

Contents

Abstract 2

Acknowledgements 3

List of Figures 7

List of Tables 9

1 Introduction 10
1.1 Motivation and Objective

...................... 11
1.2 Important Aspects of Process Modelling 13

1.2.1 Multi-faceted Character of Models 13
1.2.2 Model Structuring Concept

.................
14

1.2.3 Process Discontinuity 17
1.3 Recent Computer-Aided Model Generation Techniques

..... 18
1.4 Thesis Outline 22

2 Process Representation 23
2.1 Summary

............................... 27

3 Physical Modelling Language 29
3.1 Vessel Entity 30

3.1.1 Phase attributes 31
3.1.2 Aggregation attributes

34
3.1.3 Transfer Law attributes

35
3.1.4 Port attributes 36
3.1.5 Geometry attributes 41

3.2 Reservoir Entity
...........................

44
3.2.1 Compound attributes

45
3.2.2 Reservoir Port attributes

46
3.3 Connection Entity

..........................
47

3.4 Physical Modelling Examples 48
3.4.1 Flash drum 49
3.4.2 Two Flash Drums with reversible flow 50
3.4.3 Decanter 53

3.5 Summary
...............................

55

CONTENTS 5

4 Mathematical Model Formulation 57
4.1 Basic Model Building Strategy 58
4.2 Generic Model Formalism 59
4.3 Model Generation Algorithms

................ 62
4.3.1 Vessel Sub-Model Generation 63
4.3.2 Reservoir Sub-Model Generation 79
4.3.3 Connection Sub-Model Generation 80

4.4 Notation used in Mathematical Models 82
4.5 Summary 84

5 Im plementation 85
5.1 Software Architecture

..................... 85
5.2 The Translator 86

5.2.1 The Scanner 86
5.2.2 The Parser 88
5.2.3 The Semantic Routines 88

5.3 The Model Generation Engine
................

89
5.3.1 The Mathematical Symbol Table 90

5.4 The Transfer Law Library
..................

91
5.5 The Code Generator 91
5.6 Summary

............................
93

6 Simulation Examples 95
6.1 Flash Drum

...................................
95

6.2 Two Flash Drums with reversible flow
....................

99
6.3 Decanter : Settling tank

102

7 Conclusions and Future Work 107
7.1 Conclusions 107
7.2 Future Work 109

7.2.1 Suggestions on "Phase" and "Aggregation" statement
109

7.2.2 Broadening the scope of the physical description
..........

109
7.2.3 System environment

110
7.2.4 Refinement of transfer law library

..................
110

7.2.5 Generation of distributed parameter models
110

References 112

A Lex Input Specification 118

B Yacc Input Specification 121

C Transfer Law Library 130
C. 1 Phase Equilibrium

130
C. 2 Bubble Rise

132
C. 3 Containing Phase Transfer

132
C. 4 Irreversible Laminar Flow

................
133

C. 5 Irreversible Turbulent Flow
...............

134
C. 6 Irreversible Pressure Driven Flow

...........
134

CONTENTS 6

C. 7 Pressure Driven Flow
............................. 136

C. 8 Weir Over Flow
................................ 137

C. 9 Static Pressure Driven Flow
......................... 138

D Simulation Input Files 139
D. 1 Flash Drum

................................... 139
D. 2 Two Flash Drums with reversible flow

.................... 155
D. 3 Decanter : Settling Tank

............................ 185

7

List of Figures

2.1 Conceptual diagram of simple process 25
2.2 Multiple possibilities in flash drum

...................... 26

3.1 Example the declaration of VESSEL entity 31
3.2 Vessel containing two immiscible liquids

.................. .
32

3.3 Example Phase section 34
3.4 Example Aggregation section 35
3.5 Example Transfer Law section

36
3.6 Example Port section 38
3.7 The Association of inlet aggregate stream by the aggregation type 39
3.8 The Association of inlet aggregate stream by the phase type 39
3.9 The Association of inlet single phase by the phase level 40
3.10 The Association of inlet single phase by the phase type 40
3.11 Example Shape section 42
3.12 Example Orientation section

42
3.13 Example Dimension section

43
3.14 Example Port Position section 44
3.15 Example the declaration of reservoir entity 45
3.16 Example Compound section 46
3.17 Example reservoir entity

46
3.18 Example connection entity 48
3.19 Conceptual diagram of Flash drum 49
3.20 Physical Modelling Example Flash Drum 50
3.21 Conceptual diagram of Flash drum 51
3.22 Physical Modelling Example Two Flash Drums with reversible flow

... . 52
3.23 Schematic Diagram of Decanter 53
3.24 Physical Modelling Example Decanter 54
3.25 Hierarchical structure of physical modelling elements 55

5.1 The Software Architecture of the Prototype Package 87
5.2 The Internal Hierarchical Structure of the Mathematical Symbol Table .. 92

6.1 Holdup variation in flash drum
........................

96
6.2 Level variation in flash drum

.........................
97

6.3 Driving force variation accross of connection C2 between flash drum and
the reservoir 98

6.4 Variation of total mass rate flowing through port Pol in the flash drum . 98

LIST OF FIGURES 8

6.5 Level variation in two flash drums 100
6.6 Holdup variation in flash druml

................ 101
6.7 Holdup variation in flash drum2 101
6.8 Flow reversibility between two flash drums 102
6.9 Level variation in decanter 104
6.10 Holdup variation in decanter 105
6.11 Flow over weir in decanter 106

9

List of Tables

4.1 Standard Notation Table 83
4.2 Non-Standard Notation Table 83

10

Chapter 1

Introduction

This thesis is concerned with the development of a software tool for automatically

generating a mathematical model from a purely physical description for a process unit or

system.

Models have been recognised as indispensable for describing and predicting the

behaviour of the real world. Many modelling methodologies have been applied to the ab-

straction of the real world for a long time. Among them, mathematical models expressed

in sets of differential, algebraic, integral equations etc., are most commonly used in the

wide range of science and engineering field.

Mathematical modelling essentially represents the translation of the real world

problems into mathematical problems. It is the art of devising a mathematical structure

that takes into account the essence of a given situation. A real world problem, in all

its generality, can seldom be translated into a mathematical domain, and even if it can

be so translated, it may not be possible to solve the mathematical equations. This fact

quite often necessitates the idealisation or approximation of an original problem to get it

translated and to obtain its solution.

In the area of process systems engineering mathematical models are essential in

tackling a variety of problems such as process synthesis and design, process simulation and

optimisation, planning and scheduling of process operation, and process control. They

provide the formal representation for describing the relevant physico-chemical dynamic

behaviour which is composed of the relationships between mathematical terms. Only

well formulated mathematical models enable us to successfully perform process systems

engineering tasks. If an incorrect mathematical model is applied, valid results of process

engineering work can not be expected. An important aspect of the modelling problem

is thus the identification of the significant features of the behaviour for the purpose in

CHAPTER 1. INTRODUCTION 11

hand, and the construction of a model which adequately reproduces those features without
irrelevant complexities (Sargent, 1983).

Recently the rapid development of computer hardware and software has led
to the emergence of more powerful computational modelling tools in a wide variety of
fields. This trend could be seen in the field of process systems engineering in such a way
that flowsheeting whose application range was limited to simple unit modules has been

extended to be able to deal with dynamic modelling and simulation for complex process

systems involving several hundreds of thousands of variables.
At the same time, as the complexities of process interactions increase due to the

tighter specification of plant performance, the strengthening of the legislation on envi-

ronment and safety, and flexible and just-in-time production systems to meet the rapid

changes of market demands, higher-fidelity process models are required to adequately

cope with them. Actually in the course of specific process engineering activities, the

cost of developing the requisite models represents a significant part of the overall budget

(Perkins and Barton, 1987).

Those general trends mentioned above have therefore been stimulating the de-

velopment of a number of dynamic modelling packages, most of which are based on an

equation-oriented flowsheeting architecture.
This chapter is composed of four sections. Section 1.1 describes the background

to this research involving the motivation and the objective. In the following two sections

the important aspects for process models and an overview on the current state of art of

computer aids for automatic model generation are illustrated. Finally the thesis outline

will be introduced.

1.1 Motivation and Objective

Considerable effort has been made in the development of modelling facilities

which allow the user to concentrate on the correct mathematical formulation of the pro-

cess model, as opposed to the numerical algorithms and coding required to solve it. From

the earliest days flowsheeting packages provided a means of building whole process models

from knowledge of the flowsheet and models for the individual units. SpeedUp (Sargent

and Westerberg, 1964; Perkins and Sargent, 1982; Pantelides, 1988) provides a system

which separates computation from the models enabling these to be provided essentially as

a set of equations, together with a simple macro facility for building complex models from

simpler ones. This has already been commercialised and being widely used in the pro-

CHAPTER 1. INTRODUCTION 12

cess industries. ASCEND (Piela, 1989; Piela et al., 1991) uses object-oriented program-

ming methodologies to provide a more general facility using combination and inheritance,

while DESIGN-KIT (Stephanopoulos et al., 1990a), and MODEL. LA (Stephanopoulos et

al., 1987; Stephanopoulos et al., 1990b) uses object-oriented programming both to build

models in this way, and to tailor them for different uses. Omola integrated with OmSim
(Andersson, 1990; Mattsson and Andersson, 1992; Nilsson, 1993; Andersson, 1994) and

gPROMS (Barton, 1992; Barton and Pantelides, 1994; Oh, 1995; Oh and Pantelides,

1996) provide similar general facilities to model both the process and the operations.
It is clear that current powerful modelling environments help modellers to alleviate the

time-consuming and error-prone task of formulating appropriate consistent mathematical

models for complex process systems.
Even so, in the majority of all these packages, the correct formulation of the

\ýF A

mathematical model is the responsibility of the user. That is, users are required to

mathematically formulate process models using the high-level modelling language which
has its own syntax and semantics, consequently the correct mathematical modelling is

the responsibility of the user. The formulation of correct, complete and non-redundant

mathematical models is not always an easy task. The difficulties result from a number

of situations such as the under-specification of the underlying system or vice versa, the

formulation of inconsistent equations, and the inconsistent formulation of boundary and

initial conditions. At this point, there is a crucial requirement for the development of

more advanced modelling tool to provide the extensive support for model construction

activities. In all the modelling packages mentioned above, the basic building blocks are

the equations representing physico-chemical relations, and there has been little work on

aids for generating such equations. The challenge in this area is to provide a modelling
facility which allows the user to describe his system purely in terms of the elementary

physico-chemical processes involved, with the-appropriate mathematical model generated

automatically by the package (Sargent, 1990).

There has been little work on exploring the possibility of computer-aided mathe-

matical model generation for a process system, for example, by defining it in a more purely

physical and elementary behaviour-oriented fashion. ; Meyssami and sbjornsen describe

a prototype expert system for modelling from first principles (Meyssami and Asbjornsen,

1989) while Preisig et. al have developed a computer-aided model generation tool for

physical-chemical-biological systems using object-oriented model representation (Preisig

et al., 1990; Preisig, 1995; Preisig, 1996) close to our approach in terms of the basic

concept for process representation.

CHAPTER 1. INTRODUCTION 13

With the above in mind, it is thought to be of considerable importance to develop

such an automatic model generation environment.
The major objective of this research, which is a continuation of earlier work

(Vazquez-Roman, 1992) resulting in a prototype computer program (written in the object-

oriented language SMALLTALK), as a vehicle for ideas, is to develop a computer software

package which generates a mathematical model from a purely physico-chemical descrip-

tion of process systems, focusing on possible situations likely to arise from discontinuous

behaviour.

1.2 Important Aspects of Process Modelling

This section describes several important aspects of process models and their

systematic formulation. This section has been organised as follows : §1.2.1 briefly de-

scribes the multi-faceted character of models with several applications of this nature,

§1.2.2 explains basic concepts required to represent process models which are essential

to systematic model-building and in §1.2.3 process discontinuities routinely arising in

process systems will be discussed.

1.2.1 Multi-faceted Character of Models

As stated earlier, the modelling activity represents the abstraction of a real world

problem by encapsulating the knowledge considered essential to the specific modelling

purpose. Models do not exist in isolation and though they may at times be considered in

their own terms, models are never fully understood except in relation to other members of

the model family to which they belong (Aris, 1978). Simple models are required early in a

process design but more complex ones are needed as the design process proceeds. We thus

often need very different kinds of models at different modelling stage, and an important

part of the modelling process is the tailoring of the model for the particular purpose in

hand (Sargent, 1990). There are different models in terms of their levels of detail for

the same process system depending on the modelling purpose at each modelling stages,

resulting in an hierarchy structured into the model family. This is termed multi facet of

process models and the facility for supporting it is provided in the majority of recently

developed modelling languages.

SpeedUp (Sargent and Westerberg, 1964; Perkins and Sargent, 1982; Pantelides.

1988) provides a fixed number of modelling levels comprising hierarchy for supporting top-

down or bottom-up modelling approach. Alternatively, Omola (Mattsson and Andersson,

CHAPTER 1. INTRODUCTION 14

1992; Nilsson, 1993), ASCEND (Piela, 1989) and gPROMS (Barton and Pantelides, 1994)

have adopted the concept of hierarchical sub-model decomposition (Elmqvist, 1978) which

enables to describe the formal definition of models in a recursive manner, thus permitting

an effectively unlimited number of hierarchical levels (Pantelides and Barton, 1992). In

MODEL. LA (Stephanopoulos et al., 1990b) multi-faceted modelling has been incorpo-

rated as a key feature, and a provision for supporting multi-level modelling of the same

process, to automate a hierarchical sub-model description.

1.2.2 Model Structuring Concept

The objective of all modelling languages is to eliminate the modelling bottleneck

of engineering applications by providing a computer-aided environment which can sup-

port: (a) expeditious construction of models by the human user, and/or (b) automatic

generation of models by another program (Stephanopoulos and Han, 1996). Recently

developed modelling languages, the majority of which have adopted the object-oriented

concept, in common provide the user with a high level declarative representation coupled

with highly structured formalism in order to support the construction of consistent math-

ematical models for complex process systems. To achieve these objectives the majority

of the modelling packages use a software architecture whereby the model description is

completely decoupled from the mathematical solution method. This feature has resulted

in a shift away from purely dynamic simulation packages towards more general-purpose

modelling environments, in which a common process model is used in a number of different

modes such as steady-state simulation and design, dynamic simulation, steady-state and

dynamic optimisation, data reconciliation etc. (Pantelides and Barton, 1992). The basic

conceptual point of view of process systems in order to support facilities for representing

the process models in a more structural way will be briefly reviewed on recently emerged

modelling languages in the following text.

The conceptual essence of Omola (Andersson, 1990; Mattsson and Andersson,

1992; Andersson, 1994) is based on object-oriented programming ideas. The key con-

cept in Omola is the class, a general data aggregation which is the basis for representing

different modelling concepts. Omola is structured into two separate layers: the data repre-

sentation layer and the model representation layer. The former represents the description

of the internal behaviour within a model. It defines a set of syntactic, semantic, and

pragmatic rules for representing general data such as model variables and equations as

well as the class. The model representation layer represents the interfaces of models for

communicating with its environment. It consists of a set of classes previously defined

CHAPTER 1. INTRODUCTION 15

in the data representation layer and structural components such as models, parameters.
terminals and connections. The connections represent topological linkages of involved

models through the terminals which may transfer a set of information about the media.
The parameters normally represent some kind of time-invariant design variables.

ASCEND (Piela, 1989; Piela et al., 1991) is a domain-independent object-

oriented computer environment for analysing and modelling complex process systems

in terms of large sets of simultaneous nonlinear algebraic equations. The basic concep-

tual elements of the ASCEND language are model, elementary and atom types. The

models are structured types built hierarchically from instances of other models, instances

of atoms, and relationships between instances. The elementary types are primitive data

types such as real, string, unit, etc. The atoms are primitive structured types for represent-

ing physical quantities. The atoms and models are organised into inheritance hierarchies

comprising networks of connected parts which are themselves instances of models.

gPROMS (Barton, 1992; Barton and Pantelides, 1994; Oh, 1995; Oh and Pan-

telides, 1996) is a general-purpose software package designed for modelling and simula-

tion of combined discrete and continuous processes, supporting combined lumped and

distributed parameter mathematical models. The conceptual framework of the gPROMS

language is based on three distinct categories of entities, models, tasks and processes.

Model entities encapsulate the description of the physico-chemical behaviour, while task

entities encapsulate the description of the external control actions or disturbances im-

posed on the system. A process entity is formed by the application of tasks to instances

of model entities in order to define a complete simulation of the process system. gPROMS

is discussed in more detail later since it is closely related to our work.

MODEL. LA (Stephanopoulos et al., 1990a; Stephanopoulos et al., 1990b) is a

high level and completely declarative language especially constructed for the interactive

and automatic definition of models of process systems, Based on the following fundamental

requirement of modelling language:

"A modeling language in process engineering should be fully declarative

and in no way its generality should be compromised by the specificity

of the methodologies of the process engineering tasks, themselves".

The language structure is based on six modelling elements: three for modelling

the "structural characteristics" of any processing system and three for describing the

"functional characteristics" as follows.

" Generic Unit (G U) : an isolated spatial region coupled with well defined system

CHAPTER 1. INTRODUCTION 16

boundary at any level of abstraction.

" Port : special purpose entities through which G Us transfer information among each

other.

" Stream : the connections between GUs in association with their ports.

" Modeling-Scope :a consistent set of declarative relationships, which apply to all the

components of a model including the variables and parameters of a single GU or a

network consisting of GUs, Ports and Streams.

" Constraint : unsolved relations among quantities such as variables and terms, also

containing the information on the scope of the relationship, its meaning and signif-

icance, and range of its applicability.

" Generic Variable : basic building block for constructing modelling relationships, en-

capsulating the information on physical significance, value, possible range of values,

units, trends, etc.

Based on the six modelling elements given above and eleven semantic relation-

ships obeying basic axioms of transitivity, monotonicity, commutativity and merging,

process models can be interactively or automatically generated from the process repre-

sentation. This representation is completely modularised using object-oriented formalism

at various levels of abstraction and gives complete documentation of the modelling con-

text (assumptions, simplifications, process engineering task) capturing qualitative, semi-

quantitative and quantitative knowledge. The structure of process models is depicted by

specific digraphs, which are symbolically constructed by algorithmic procedures driven

by the context of the modelling activity.

VEDA (Marquardt et al., 1993; Bogusch and Marquardt, 1995; Marquardt,

1996) is an application specific object-oriented data model especially designed for sup-

porting the object-oriented representation of chemical process systems in a structured

way. It is currently being implemented to be integrated with DIVA (Holl et al., 1988;

Kroner et al., 1990). It is the basic concept of VEDA that chemical process systems

are described in terms of two basic entities; structure and behaviour. The structures of

chemical processes are envisaged as sets of devices linked through connections which trans-

form a driving force determined by the known states of two adjacent devices into a flux.

VEDA supports hierarchical sub-model decomposition in a recursive fashion as devices

and connections entities are structured into hierarchical taxonomy. The elementary device

generalised phase is the key concept in the structural description of chemical processes.

CHAPTER 1. INTRODUCTION 17

It represents any delimitable - but not necessarily homogeneous - non-decomposable

material entity in a process. The structural description of a complex process system is

complemented by its behavioural description which characterises the system in terms of

process quantities and model equations consisting of balance equations, constitutive equa-

tions and constraints.

1.2.3 Process Discontinuity

Process systems cannot be considered to proceed in a completely continuous

way. Most continuous processes undergo appreciable discrete changes overlaid on their

mainly continuous behaviour. These discrete events result from, for example, the digital

process control, plant equipment maintenance, plant shut-down and start-up. In addition

to process operational discontinuities, other types of discontinuities may arise due to the

intrinsic process mechanisms such as phase appearance/disappearance, reverse flow and

the transition of flow regime between laminar and turbulent, etc. Of course, some process

systems are designed to exhibit discontinuous behaviour, such as batch or semi-continuous

processes.

In order to encompass such discontinuities, mathematical models of process

systems should switch between different structures in terms of equations and variables

whenever discrete events occur. Future simulation packages must support the analysis of

arbitrarily operated processes within a unified framework (Marquardt, 1991).

Considerable efforts have been made in the development of specific-purpose

simulation packages for batch and semi-continuous processes such as BOSS/BATCHES

(Joglekar and Reklatis, 1984), UNIBATCH (Czulek, 1988) and DYNSIM (Gani et al.,

1992; Perregaard et al., 1992).

However a few general-purpose modelling and simulation packages fully sup-

porting the application of process models to combined discrete and continuous processes

involving general discontinuities have emerged in academia in recent years.
Omola, for example, has been extended to provide facilities for modelling com-

bined discrete and continuous process systems, namely hybrid systems (Andersson, 1992;

Andersson, 1994). In order to deal with hybrid systems, a general mathematical and log-

ical framework to deal with the mechanisms of transitions between discrete states, called

OHM (Omola Hybrid Model) has been developed as an intermediate representation. The

formalism consists of sets of variables, parameters, equations, event conditions, and event

actions. The OHM representation can be automatically translated into more specialised

representation.

CHAPTER 1. INTRODUCTION 18

A key focus of gPROMS (Barton, 1992; Barton and Pantelides, 1994) was to sup-

port process modelling of hybrid systems with general discontinuities. These are classified
into two primitive categories; physico-chemical discontinuities and external actions. The

former represents those inherently embedded in physics of the process including thermo-

dynamic (e. g. appearance and absence of phase) and mechanical (e. g. flow regime change
between laminar and turbulent) transitions and those resulting from the geometry of an

individual process unit (e. g. the switch of the phase flowing through outlet pipe depend-

ing on its level and the location of the pipe). The description of intrinsic discontinuities

is incorporated into the model entity. The external actions represent those imposed on a

process by its environment such as disturbances or control actions, and are incorporated in

the task entity. Consequently, instead of decomposing a process model into a continuous

subsystem and a discrete subsystem, the description of a process model is decomposed

into the underlying combined discrete/ continuous physical behaviour of the plant and the

external actions. This has the consequence that all the knowledge concerning the physical

behaviour of a particular system is not only encapsulated in a single model entity but is

also completely decoupled from the external actions that are applied during a particular

operation. In order to provide a sufficiently general representation of the discontinuous

behaviour, physico-chemical discontinuities are classified into three categories according

to the mechanisms that result in transitions between the discrete states, namely reversible,

irreversible and asymmetric and reversible discontinuities. A general formalism to repre-

sent these mechanisms is provided. gPROMS deserves to receive attention on supporting

the modelling and simulation of arbitrarily operated processing systems within a unified

framework.

1.3 Recent Computer-Aided Model Generation Techniques

As illustrated, it is clear that the majority of recent modelling packages pro-

vide advanced modelling facilities such as highly structured and declarative represen-

tation of models, hierarchical sub-model decomposition for supporting the recursively

modularised representation, the reusability and inheritance of models, documentation for

specifying assumptions and the scope of models, user-friendly interfaces with modelling

environments and the combined lumped/distributed parameter modelling of combined dis-

crete/continuous processes within a single framework, where the physico-chemical process

behaviour is coupled with complex sequences of control actions.

It should be noted however that the current state-of-the-art of modelling pack-

CHAPTER 1. INTRODUCTION 19

ages is still in need to explore practically applicable computer aids for generating ap-

propriate mathematical equations describing physical process behaviour. The key reason
for this necessity is that the basic building blocks of most existing packages are a set

of equations representing the physico-chemical conservation principles and closure equa-

tions. The mathematical models built by the user using these packages are often badly

posed, thus causing structural, functional or numerical singularity during the simulation.
We note that the fundamental research on the automatic generation of correct, complete

and non-redundant mathematical models by a computer facility is of considerable impor-

tance in the area of the development of leading edge modelling packages. Little work has

been carried out in this direction. Recent research progress in the field of computer-aided

model generation are briefly discussed although not all are related directly.

Several research projects on automatic model generation from natural language

have recently been undertaken in the field of system simulation. Austin and Khoshnevis

(Austin and Khoshnevis, 1989) have developed an intelligent simulation environment for

automatically generating models of production-distribution systems from a description

written in natural language. Perhaps more interestingly, Beck and Fishwick (Beck and

Fishwick, 1989) have explored an approach to merge simulation and natural language.

This is achieved using a conceptual framework for representing mathematical equations,

the syntactical and semantical structure of sentences. Sentences are translated and trans-

formed into the knowledge representation language, CANDIDE. This step results in a

collection of CANDIDE objects whose structure represents the meaning of sentences.

Mathematical equations are then generated from the information encapsulated in the

structural description by using a language generation facility for differential equations.

These procedures are undertaken in a system environment called NATSIM which accepts

natural language descriptions of a model, generates equations, accepts questions about the

model and then solves the equations using simulation or analytical techniques to answer

these questions.

PROFIT (Telnes, 1992) is a knowledge-based modelling tool for generating

mathematical models from a menu-driven textual description of process systems based

on first principles. The basic building blocks for constructing mathematical equations
mow.

are a set of simple physical terms such as volume, surfaces, phases, chemical reactions

and transport phenomena and forces. The important classes defined in the system are

OMPR (Object Model for Process Representation) and OMMK (Object Model for Mod-

eling Knowledge). The former is employed for describing process systems, the latter for

constructing the structural knowledge base of the mathematical models. The procedure

CHAPTER 1. INTRODUCTION 20

of mapping the process description stored in OMPR into mathematical models structured

in the form of OMMK is driven by an inference engine where each term comprising the

process description is associated with a physical phenomenon by an appropriate rule. The

internal representation of the mathematical models is converted into a readable format

by a translator. The current version of the translator produces a LATEX (Lamport, 1986)

format.

The knowledge base in the current system consists of the following three parts:

"A dictionary containing features, global constants, approximating functions and

other objects representing modelling knowledge in various forms.

9A set of equations used to construct models.

" Several sets of rules designed for different purposes such as phase interaction iden-

tification and selection of conservation equations.

In addition to the modelling aids above, PROFIT provides useful modelling

facilities such as documentation of all relevant assumptions relating to the mathematical

models under consideration and the modification of mathematical models according to

changes in the process description. It should be noted that PROFIT supports a provision

allowing the detailed description of the process equipment geometry.
A computer-aided system for automatically generating problem specific process

models from the physical description for process systems has been developed, which is

intended to be integrated within the Integrated Computer Aided System (ICAS) (Jensen

and Gani, 1996). The model generation methodology is based on two basic concepts:

control shells representing a region of space delimited by its boundaries and a reference

model containing all the possible terms arising in a chemical process model. The former

is defined in such a way that within the boundaries the partial gradients (with respect

to temperature, pressure and fugacity) are negligible, or can be incorporated in an inter-

phase or overall flux model. The physical description of the underlying process system is

undertaken in the control shell involving a geometric description, balance and boundary

specifications and equilibrium specifications. A specific mathematical model is generated

by applying the model generation algorithm procedures which simplify a reference model

from the information given in the physical description of the control shells. One feature of

this approach is the ability to generate distributed parameter models, although the use-

fulness and practicality of using a distributed parameter control shell approach is open

to question.

CHAPTER 1. INTRODUCTION 21

MODELLER (Preisig et al., 1990; Preisig, 1995; Preisig, 1996) is a object-

oriented computer-aided modelling tool for generating mathematical models from a phys-
ical description of physical-chemical-biological process systems. Process systems are

viewed as being composed of a communicating network of simple thermodynamic systems.
Based on this general point of view two principal conceptual elements are identified to

support a physical description at any level of details in a hierarchically structured fashion,

namely: systems and connections. The former represents any spatial capacities containing

mass and is defined as consisting of a single phase or a pseudo-phase (an average of sev-

eral phases such that it appears as a single phase). The latter represents communication

paths between parts of the overall system and is employed for describing the transfer of

extensive quantities through boundaries assuming a pseudo-steady state for the physical

system associated with actual transfer. The transfer law is described as a function of

the state variables of the two connected systems with its directionality. Connections also
incorporate all effects associated with system surfaces (e. g. change of phase across the

boundary). The topological structures of process systems are described in a graphical

and textual manner and allows hierarchical decomposition of complex process systems

into physical subsystems. In order to deal with the distribution of species in the physical

topology of a given process, a set of species are specified including a set of species partic-

ipating in chemical or biological reactions and a set of species representing permeability

for allowing the passage through a connection. The final step in the physical descrip-

tion procedure is to incorporate mechanistic details such as transfer laws, kinetic laws for

chemical or biological reactions, physical property relations, geometrical properties, etc.

It is intended that all the information required to incorporate these mechanistic details

will be supplied from a knowledge base, although this has not yet been implemented

in the current version of MODELLER. Mathematical models are generated in a textual

output file containing both the list for the hierarchical structure of physical systems and

a set of equations involving the total mass balance, the species balances and the energy

balances. The development of information processing units to deal with control systems

has been recently undertaken. It could be noted that MODELLER fully supports physical

description in an easy-to-use graphical interface with the hierarchical decomposition of

the topology of physical systems in a recursive way.

CHAPTER 1. INTRODUCTION 22

1.4 Thesis Outline

This thesis is composed of 7 chapters. Chapter 1 describes the background to

this research including the motivation and objectives, several significant aspects of process

models and the current state-of-the-art in computer aids for generating mathematical

models. Chapter 2 introduces the basic concepts for the representation of process systems.
In chapter 3 the formal definition of the language for representing process systems in a

purely physical fashion in terms of its syntactical structure and semantics is presented.
Chapter 4 is mainly concerned with the development of the algorithms for formulating the

mathematical model of a given process system from the physical description represented
in the language defined in chapter 3. This includes the basic model building strategy, a

generic mathematical formalism to deal with combined discrete/continuous behaviour and

also gives the notation used in the mathematical models generated. Chapter 5 describes

the software architecture and the details of the internal data structure of the current

package. In chapter 6 The ability of the prototype of the package to automatically generate

mathematical models is tested through several simulations to which the mathematical

models generated by the package are applied. This thesis concludes in chapter 7 with

some suggestions for future works.

23

Chapter 2

Process Representation

In the previous chapter we discussed the motivation and the ultimate goal of

this work, which is the development of the package for automatically generating lumped-

parameter models from a purely physical description of process systems, focusing on

the incorporation of intrinsically physical discontinuous behaviour embedded in a given

process system into the mathematical model. In order to achieve this objective first we

need a conceptual framework for structuring process systems into basic elements. This

chapter describes the basic concept for representing a process system in a purely physical

fashion.

We start with the concept for process representation developed in earlier work
(Vazquez-Roman, 1992) followed by the argument with possible situations arising in a

given process system, namely physical discontinuities, then finally construct the concept

for process representation, which is general enough to deal with such discontinuities,

identifying basic conceptual elements and their meanings in physical representation of

process systems. It should be noted that the essence of the concept is still based on the

previous one.

Recently the formal description of the concept for process representation has

been made as follows (Perkins et al., 1996):

"A basic premise is that all material undergoing processing is instanta-

neously in a stable thermodynamic state, which implies that this state

is describable in terms of a finite set of state variables, for instance,

two independent variable properties plus the masses of each chemical

species (Feinberg, 1979). It further implies that all material is present

in well defined thermodynamic phases, and hence that any process can

ultimately be defined as a collection of interacting phases".

CHAPTER 2. PROCESS REPRESENTATION 24

These interactions may involve transfers of material and/or energy between pairs

of phases, which are described in terms of the state-variables of the two phases through

well defined physico-chemical transfer laws.

Other interactions arise from the fact that the phases are contained in vessels.
We assume uniform pressure throughout each phase and across any free surfaces between

phases. We note that a vessel is considered here simply as a containing surface; the mass

of the containing walls and other relevant parts of actual vessels can, if desired, be taken

into account by defining these as appropriate phases.
Using this concept, a process is a set of vessels linked through connections. These

are normally pipes through which material flows, but we extend the concept to cover trans-

fer through permeable membranes or transmission of energy through pistons in pumps,

compressors or engines. Again a connection is an idealised topological concept, merely

defining a link for transfer of material and/or energy, and itself containing no material

or energy holdup. These transfers are also described by physico-chemical transfer laws.

By use of an appropriate law it is thus possible to include idealised valves, pumps, com-

pressors etc., which merely provide flow-resistance, or cause pressure-changes, without

involving material holdup. Again if desired these additional elements can be modelled

more realistically by defining appropriate "vessels" and "phases" if desired.

Of course the plant does not exist in isolation, but receives feeds from elsewhere,

delivers products and also uses or generates utilities such as steam or cooling agents. There

may also be heat losses to the atmosphere. These interactions with the environment are

described in terms of exchanges with reservoirs of material or energy in appropriate states,

which are assumed to be of infinite extent so that their states are not affected by transfers

to or from them.

The states of the phases are affected not only by interactions with other phases

but also by chemical reactions occurring within them. Thus we need to define the chemical

components present, and the relevant stoichiometry and kinetic laws.

In figure 2.1 we give an example of the use of these concepts to describe part

of a simple process, consisting of three vessels: a flash-drum, an absorber and a reactor,

with feed, solvent, and cooling water provided from the "environment", a product to the

environment and other streams for further processing.

Thus far several key concepts for the representation of a process system have

been described, however these are insufficient to deal with potential situations routinely

arising in a given process system. For example, phases may appear and disappear even

in the presence of only finite-rate transfers, as illustrated by the flash-drum in figure 2.2.

CHAPTER 2. PROCESS REPRESENTATION 25

Figure 2.1: Conceptual diagram of simple process

CHAPTER 2. PROCESS REPRESENTATION 26

Case(a) is the normal situation in which a vapour-liquid feed is separated into vapour and

liquid streams. Case(b) shows that a third "bubble phase" will appear if the liquid level

is above the feed point, and with finite mass transfer rate its composition will differ from

the vapour phase. Case(c) shows that this may still occur if vapour bubbles in the feed

are entrained in the liquid, while case(d) illustrates the case when feed or flow conditions

cause the liquid to disappear. In this case the bottom connection may include a float-

valve which only allows liquid to pass, or vapour may flow through the connection. Similar

complications arise if the drum fills with liquid. Finally, a pressure-rise downstream may

cause a reverse flow (in the absence of a non-return valve) and, if this contains vapour,

there will again be a bubble-phase, as in case(e).

F

(a)

F

V

L

F

V

L

(b)

V

F

V

V

V+L

(c) (d) (e)

Figure 2.2: Multiple possibilities in flash drum

V

OO
-_ 0_

F 000-
000

L

CHAPTER 2. PROCESS REPRESENTATION 27

The tool for mathematical models generation should deal with all the possible

situations likely to arise in a given process system, providing a computer environment

which enables the user to describe these situations in a compact and easy manner. We

therefore need to provide a language for the user to describe the relevant assumptions

and provisions and hence introduce two more concepts.
First the phases in a vessel are assumed to be segregated into distinct layers in

an order determined by their relative densities, unless otherwise specified. For a lumped-

parameter system, the only other option is a uniform mixture of several phases, for exam-

ple a suspension of a solid in a liquid, or a dispersion of one fluid in another in the form of

bubbles, droplets, or an emulsion. We describe such a uniform mixture as an aggregation

of phases, and again its relative position in the vessel is determined by its mean density.

Normally connections to vessels are simply pipes, and what flows out through

the connection depends on what phase or aggregation of phases is covering the outlet. We

therefore define a port as the position of a connection to a vessel, which can be identified

with respect to the geometry of the vessel. We also allow flow through a port to be

restricted to one direction (implying, for example, the existence of a non-return valve).

As already noted, what flows through a connection depends on the phases in contact with

the upstream port, but to provide greater flexibility in process description, a phase or

aggregation of phases associated with the upstream can be independently specified as an

attribute of the entry port.

2.1 Summary

The process representation in terms of the concepts given above is sufficiently

general to describe the arbitrary complex nature of process systems. However it should

be noted that the arbitrary complexity above is within the scope of lumped-parameter

system since the generated model is limited to a lumped parameter system. As illustrated

earlier, these situations include phase appearance and disappearance, those resulting from

the geometry of vessels, the change of the direction for reversible flow and a vast variety

of other factors, for example, the change of flow regime in a pipe between laminar and

turbulent. The conceptual elements identified are as follows:

" vessels

" phases

" transfer laws

CHAPTER 2. PROCESS REPRESENTATION 28

" aggregation

" port

" connections

9 reservoirs

Over the following chapters we will illustrate how these arbitrary complex situ-

ations are incorporated into mathematical models, focusing on hierarchical descriptions

of the inter-connections between phases or vessels. In the next chapter the language re-

quired to represent process systems in purely physical fashion will be proposed in detail,

based on the newly refined process representation concept.

29

Chapter 3

Physical Modelling Language

In the preceding chapter, it was a basic point of view for process representation
that chemical process systems are envisaged as a set of inter-connected vessels in which

phases interact. Then basic process structuring elements were identified: (phase, vessel

and connection). Also it was argued through a simple flash drum example that process

systems routinely experience intrinsic discontinuities which arise typically from discon-

tinuous physical behaviour such as phase transitions (e. g. phase appearance or absence),
flow regime transitions (e. g. between laminar and turbulent), discrete changes from ge-

ometry of individual process units and other factors. In order to embody the basic process

representation concept, a formal provision which enables users to describe process systems

under investigation in a purely physical fashion is needed. A textual description in an

elegantly designed language, which is completely oriented toward physical behaviour, has

been chosen as the formal provision.

This chapter is concerned with the introduction to the conceptual design of a
language in terms of its syntax and semantics, in order to enable users to describe process

systems in question in a purely physical fashion with the relevant assumptions and pro-

visions. The proposed language therefore must not only possess syntactic structures and

semantics to keep description consistencies but also provide a purely physical behaviour-

oriented formalism. Furthermore, it must contain syntax and semantics by which process

discontinuities can be identified in order for generated mathematical models to encompass

physical discontinuities as noted above. In realising the basic concept with this language,

an attempt to let conceptual elements correspond to language syntax structures as well

as semantics has been made. As a consequence, the language structure has three basic

primitive physical process entities: vessel, reservoir and connection.

Drawing on these ideas, the elements of the proposed language and its structure

CHAPTER 3. PHYSICAL MODELLING LANGUAGE 30

that enable the detailed description of three primitive process entities are introduced and

several physical description examples written in the proposed language are presented,

which will be utilised as input files to simulations.

3.1 Vessel Entity

This section is concerned with the development of language structures for the

declaration of one of the three primitive physical process entities - vessel entity.
A vessel entity is defined as the surface enclosing one or more phases, which

must fill the volume of a vessel; the mass of the containing walls and other relevant parts

of actual vessels can if desired be taken into account by defining these as requisite phases.

For lumped parameter systems, uniform pressure throughout each phase and across any

free surfaces between phases can be assumed.

A vessel entity captures all the knowledge regarding the physical system of a ves-

sel, including all possible phases present, their aggregation status, their physico-chemical

interactions, and the things related to the vessel geometries. As a consequence, vessel

entity forms a complex data structure that encapsulates a declaration of the following

information regarding its structures and the physico-chemical behaviour likely to arise

within the vessel:

"A set of all possible existing phases within the vessel.

"A set of possible uniform mixtures (aggregations) of several phases.

"A set of phase interactions between pairs of phases, which are defined by physico-

chemical transfer laws.

"A set of terminals (ports) that represent the vessel's interface with its environment.

The terminals will subsequently be utilised in the construction of a topological

connection between vessels.

"A set of the vessel's geometries including its shape, dimension, orientation, and the

terminal (port) positions.

Each item of information in the list above is called an attribute of the vessel

entity. The identifier of an attribute must be unique, by which the attribute may be

referenced in the vessel entity. The set of attributes encapsulate all the information

about the physical representation of the vessel entity.

CHAPTER 3. PHYSICAL MODELLING LANGUAGE 31

The declaration of a vessel entity commences with the keyword VESSEL and
a colon followed by an identifier by which it may be referenced globally. The formalism

of the declaration of a vessel entity is shown below.

Formalism of the declaration of VESSEL entity

VESSEL : <name> 1

It is possible for users to declare more than one identifier in one vessel entity.
Each identifier is distinguished by a comma. An illustrative example of multiple decla-

rations of vessel identifiers is a series of CSTR (Continuous Stirred Tank Reactors), the

formal description of which is shown in figure 3.1.

VESSEL : CSTR1, CSTR2, CSTR3, CSTR4, CSTR5

Figure 3.1: Example the declaration of VESSEL entity

The remainder of the declaration of a vessel entity is decomposed into a set

of sections so that all the attributes belonging to a particular set of the declaration are

collected in the corresponding section, which makes it easy to document the physical

system under question. The details of how to declare each category of attributes will now
be introduced.

3.1.1 Phase attributes

Phase attributes represent thermodynamic phases the state of which is describ-

able in terms of a finite set of state variables, which implies that all material is present

in well defined thermodynamic phases, as discussed in the previous chapter.
A phase instance is defined by two attributes; its name and type. A phase must

be named uniquely within a vessel in the approach presented here. However, the name

of identical phase instances in different vessels need not be unique and hence users are

completely free to name phases arbitrarily. It is believed that this allows greater flexibility

to support the physical model development through hierarchical sub-model decomposition

(Barton, 1992).

'Language key-words are written in bold or italics and user-defined names are enclosed with angle
brackets

CHAPTER 3. PHYSICAL MODELLING LANGUAGE 32

In order to deal with inter-vessel connections, the phase attribute information is

required to associate the phases in each vessel with those in the inlet and outlet streams.
This association cannot be made by the phase name, since the implementation presented
here allows the user to define different phase names in each vessel for a particular phase

flowing between two or more connected vessels (through ports), as mentioned above.
Therefore, the association must be made by phase type.

Conceptually, the phase type could be defined in analogy with those that exist in

reality by its fundamental states, namely vapour, liquid and solid. However, this approach

is not sufficient to give an unambiguous phase association as illustrated by the following

example. Consider a vessel containing two immiscible liquids, A and B. The vessel has

an inlet flow of one of the two liquids (say A) from an upstream vessel, but where it was

named C by the user (see figure 3.2).

Figure 3.2: Vessel containing two immiscible liquids

Using the concept of only three phase types (vapour, liquid and solid) it is not

possible to associate phase C with phase A since the phase types of A, B and C are all

liquid. Additional information would be required to infer the correct phase association

based on this conceptual view of the phase type.

Instead, the phase association is made by extending the concept of phase type to

allow the user to declare more detailed instances than merely liquid or solid. In this way a

particular phase type (the state of which is liquid or solid) may be defined uniquely across

vessels, for example as liquidl, liquid2, solidi, solid2, etc so that the information about

the state of the phase can be encapsulated in the declaration of the phase type. This

allows the inter-vessel phase connections to be determined unambiguously. Using this

CHAPTER 3. PHYSICAL MODELLING LANGUAGE 33

extended concept phase A and C in the above example would be defined with the same
phase type (say liquidl) and this would be different from that of phase B (say liquid2).

It is the prerequisite for the use of this package that a user has enough knowledge

of the physical process system to be able to describe the system. This requirement for the

user includes the ability to declare all possible phases in vessels. For example, consider
the flash vessel with two outlets and one inlet through which a pressurised gas flows from

a container into the vessel. In the flash vessel, bubbles in the liquid must be created if

the current liquid level is higher than the inlet point. Hence the possible phases in the
flash vessel are separate vapour and bubbles in liquid. It is a user's responsibility in this

example to declare the three phases in the flash vessel. If the user declares merely the

separate vapour and the liquid containing no bubbles, the package will guide the user to

declare the bubbles dispersed uniformly in the liquid before generating the appropriate

mathematical model.

In order to deal with chemical reactions, we need to provide the language to

enable the user to specify a set of possible chemical reactions which could occur in each

phase in each vessel, similar to specifying a transfer law for interactions between phases
(which will be demonstrated in §3.1.3). Thus again we can envisage a library of chemical

reactions, which contains the stoichiometry and kinetics for each reaction. This could

easily be added to the Phase attributes. However, the provision of the language for

chemical reactions has not yet been implemented in the present package. Of course,

absence of declared reactions implies no reactions.
In addition, we need a provision in the language for what compounds are present

in the system. Since matter is present only in phases, this again implies a statement in

the Phase section, and again one could require the user to give a list of compounds which

could be present in each phase in each vessel. However this is clumsy, instead we note

that it suffices to provide a list of compounds present in each feed reservoir; then the

package can deduce from the flow type in connections (see §3.3), declared reactions and

transfer laws what compounds could be present in all phases and all vessels.

The Phase section is employed for the declaration of all the possible phase

attributes of a vessel entity. It must contain all the possible existing phase attributes.

Phase attributes must be declared as instances of a phase type. The formalism of the

phase section is presented below and an example phase section is shown in figure 3.3.

Formalism of Phase section

Phase : <name> : <type> : <a list of reactions>

CHAPTER 3. PHYSICAL MODELLING LANGUAGE 34

Again it should be noted that the provision of the language for chemical reactions
is not available in the present package. It is recommended that this language provision
be considered in association with the specification of the identity of the compounds in a
feed reservoir (see §3.2.1).

Phase : B, V: vapour

L1 : liquidl

L2 : liquid2

L3 : liquid3

L4 : liquid4

Si : solidi

S2 : solid2

Figure 3.3: Example Phase section

3.1.2 Aggregation attributes

As introduced in chapter 2, the phases in a vessel are assumed to be segregated
into distinct layers, in an order by their densities. For lumped systems, the other option
is a uniform mixture of several phases, for example a dispersion of one fluid in another
form of bubbles, droplets, or an emulsion. Such a uniform mixture is defined as an

aggregation of phases enclosed in square brackets, and again its relative position in the

vessel is determined by its mean density.

Aggregation attributes are used to describe a set of aggregations of phases listed

in an increasing order of relative density. Of course, it is unnecessary to declare an

aggregation attribute if a user assumed that there was only one single phase in a vessel.
As will be discussed in the port attributes section, in order to provide greater

flexibility in physical description an aggregation attribute can be independently specified

as an attribute of a port for an inlet stream associated with the aggregation in a vessel.
An Aggregation section is employed to declare aggregation attributes and uses

the phase instances declared already in the phase section. The formalism of the aggrega-

tion section is presented below. An example of an aggregation section is shown in figure

3.4. Assume that figure 3.3 is the description of the phase attributes for these aggregation

attributes.

CHAPTER 3. PHYSICAL MODELLING LANGUAGE 35

Formalism of Aggregation section

Aggregation : <a list of aggregations of phases>

Aggregation : V, [B, L1], [L2, L3], [S1, L4], S2

Figure 3.4: Example Aggregation section

3.1.3 Transfer Law attributes

Transfer laws represent the interactions of phases within a vessel. These interac-

tions may involve transfers of material and/or energy between pairs of phases, which are
described in terms of the state variables of the two phases through well defined physico-

chemical transfer laws. A transfer law attribute is composed of a pair of relevant phases

and the corresponding transfer law which must be already installed in a library.

Users are responsible for the requisite specification of transfer laws. Once a
transfer law is specified by a user, the appropriate set of equations corresponding to the

transfer law are invoked from a library where a set of equations for each transfer law have

already been installed. Some transfer laws may include a subset of physical discontinuity

equations depending on the nature of the transfer between the pair of phases. As will be

described in the connection entity section, transfer law attributes will also be used in the

transfer law declaration for transfers between vessels through their ports.

The Transfer Law section is employed for the declaration of transfer law at-

tributes. The specification of a transfer law attribute is optional. If no transfer law is

specified between a pair of phases, the phases do not interact. The first phase of a pair

of phases must be declared as a source of a transfer if the transfer was irreversible. The

formalism of the transfer law section is as follows.

Formalism of Transfer Law section

Transfer Law : <phase name> , <phase name> : transfer law

An example of a transfer law section is shown in figure 3.5, which represents a set

of phase interactions in the flash drum discussed in chapter 2. This transfer law section

contains two phase interactions: the physical thermodynamic equilibrium between the

CHAPTER 3. PHYSICAL MODELLING LANGUAGE 36

liquid (L) and bubbles (B) dispersed in it, and the bubbles rising to the separate vapour
(V) where the rising rate is determined by a BubbleRise transfer law. Note that there is

no direct interaction between L and V.

Transfer Law : B, L: PhaseEquilibrium

B, V: BubbleRise

Figure 3.5: Example Transfer Law section

3.1.4 Port attributes

Thus far there have been introductions of language syntax and semantics of three

sections such as Phase, Aggregation and Transfer Law section, all of which have

been centred around the intra-vessel physical description. This section is concerned with

a vessel's interface with its environment, by which it is useful to identify and elaborate

physical discontinuities. These intrinsic discontinuities may include phase transitions

due to their thermodynamic states as well as transient behaviour within the vessel, and

physical discontinuities resulting from the vessel's geometry.

As introduced in chapter 2, normally connections to vessels are simply pipes,

and what flows out through the connection depends on what phase or aggregation of

phases is covering the outlet. A port therefore is defined as the position of a connection to

a vessel, which can be identified with respect to the geometry of the vessel. We also allow

flow through a port to be restricted to one direction (implying for example the existence

of a non-return valve), which is termed irreversible. In addition, material can flow into or

out of a vessel through a port, depending on a flow driving potential (for example pipe

flow driven by pressure difference between vessels), so called reversible.

We have the convention that what flows out of a port is determined by the layer

covering the port, as mentioned above, though we can impose directionality (assuming

a non-return valve) and could provide for selectivity (e. g.. via a filter or membrane),

allowing passage of only specified phases or aggregations. For the latter, the language

could then require identity between port specifications at each end of a connection, though

it would be better for the package to deduce the logical intersection of the conditions.

All mass streams passing through ports as well as interphase transfers within

a vessel carry an accompanying energy flow. To allow users to describe heat transfer

CHAPTER 3. PHYSICAL MODELLING LANGUAGE 37

between vessels where there should be only energy transfer through ports of the vessels
without any material flow, we introduce a special kind of port, an "energy port" through

which only energy transfers.

A port attribute is composed of its name, type and optional specification of
stream association. The optional stream association allows the user to specify explicitly
the source and/or destination phase of material flowing through the port. For an energy
port, there is no need to declare its type and the specification of stream association, but

only its name. "Three port types are available in terms of flow directionality through the

port as follows;

9 in : entry port

0 out : exit port

" both :a port having reversible flow directionality

A port section is employed for the declarations of port attributes. A port name

must be declared as an instance of its port type (except energy port). The port section
begins with a keyword, Port, and has three options as defined in the formalisms as follow;

Formalism 1 of Mass Stream Port

Port : <name> : type

Formalism 2 of Mass Stream Port

Port : <name> : type : <specification of stream association>

Formalism of Energy Port

Port : <name>

An example of a port section is shown in figure 3.6 where there are six ports in

a vessel. The flow of P1 and P2 must be in, and the flow of P2 can only be associated

with the aggregate [B, L1]. The flow of P3 and P4 must be out, and only the phase L2

flows out of port P4. Finally P6 is an energy port, allowing only energy transfer.

For cases where the stream association is not specified, consistent rules for as-

sociating the inlet stream with a phase or aggregation in a vessel should be established.

CHAPTER 3. PHYSICAL MODELLING LANGUAGE 38

Port : P1 in

P2 : in [B, L1]

P3 : out

P4 : out : L2

P5 : both

P6

Figure 3.6: Example Port section

In principle the rules are classified into two categories depending on whether the inlet

stream is a mixed phase (an aggregation) or single phase.
When a stream forming the aggregation is entering a vessel, the inlet stream

association with a phase or an aggregation in the vessel depends on the availability of a

suitable target aggregation in the vessel. If a suitable target aggregation was declared in

the vessel, the inlet stream is associated with it regardless of the current levels of phases or

aggregates in the vessel. Otherwise, the phases entering are distributed to the appropriate
phases in the vessel. The formal description of this first category is as follows:

If there is a suitable target aggregation in the vessel,
r-

" Associate the inlet stream with the target aggregation in the vessel.

Else

" Associate the components of the inlet stream with the same phase types.

For example, consider a vessel containing a separate vapour, an aggregate (bub-

bles dispersed into a liquid) and a liquid, each of which is distributed into its own distinct

layer as shown in figure 3.7, an inlet aggregate (bubbles dispersed into a liquid) stream is

entering through an entry port. All possible situations arising from the relative positions

of the inlet port level and each level of phases or aggregate are given as cases (a), (b) and

(c) in figure 3.7. By the rule above (corresponding to the If statement), since the aggre-

gate in the vessel has been declared as a suitable target for the inlet stream association,

the inlet stream is associated with the aggregate in the vessel in all cases.

Now consider a vessel containing only two separate phases (a vapour and liquid)

without any aggregation and an aggregate stream (bubbles dispersed into a liquid) is

entering the vessel through the entry port. This example is illustrated in figure 3.8 . By

CHAPTER 3. PHYSICAL MODELLING LANGUAGE 39

(a) : [Vin, Lin]

(b) : [Vin, Lin]

(c) : [Vin, Lin]

For all cases, (a), (b) and (c),

Vin - VI

Lin - L1

Figure 3.7: The Association of inlet aggregate stream by the aggregation type

the rule above (corresponding to the Else statement), since there is no suitable target

aggregation in the vessel, the bubbles in the inlet stream are associated with the vapour

in the vessel, the type of which is the same as that of the bubble phase and the inlet

liquid phase is associated with the liquid in the vessel, in both cases (a) and (b). Note

that this association represents "instantaneous separation" of the phases comprising the

inlet aggregate stream.

(a) : [Vin, Lin]

(b) : [Vin, Lin]

For cases, both (a) and (b),

Vin -V

Lin -L

Figure 3.8: The Association of inlet aggregate stream by the phase type

When a stream entering a vessel is a single phase, the inlet stream association

with a phase in the vessel depends on whether or not more than one suitable target phase

(i. e. of the same phase type as the inlet stream) have been declared. In the former case

the association of the inlet stream with a phase in the vessel is determined by the levels

of the suitable target phases, whereas, in the latter case the association is determined by

the same phase type. The formal description of this second category is as follows:

If there is more than one suitable target phase in the vessel,
ý

. Associate the inlet stream with a target phase in the vessel, depending on the levels of

the target phases in the vessel.

CHAPTER 3. PHYSICAL MODELLING LANGUAGE 40

Else

" Associate the inlet stream with the same phase type.

For example, consider that a single vapour phase is entering the same vessel

as given in figure 3.7. All the possibilities of associating the inlet stream with a phase

in the vessel are given in figure 3.9, by applying the rule above (corresponding to the If

statement). In the absence of to suitable target phase covering the entry port the inlet

stream is associated with the nearest target phase to the entry port (case (c)). It should

be noted that this reflects the physical situation that when an inlet single vapour phase

is entering into a liquid covering an entry port, it creates the bubbles dispersed into the

liquid.

(a) : Vin

(b) : Vin

(c) : Vin

(a) : Vin -V

(b) : Vin - VI

(C) ; Vin - Vi

Figure 3.9: The Association of inlet single phase by the phase level

Again consider that a single liquid phase is entering the same vessel as given in

figure 3.8. The resulting inlet stream association with a phase in the vessel is shown in

figure 3.10 by applying the rule above (corresponding to the Else statement). The inlet

single liquid phase is associated with the same phase type in the vessel regardless of its

level. This represents an "instantaneous separation" of the inlet stream.

(a) : Lin

(b) : Lin

For cases, both (a) and (b),

Lin -L

Figure 3.10: The Association of inlet single phase by the phase type

CHAPTER 3. PHYSICAL MODELLING LANGUAGE 41

Thus far the rule for associating an inlet stream with a phase or an aggrega-
tion in a vessel has been presented with illustrative examples. It should be noted that
although these examples include a system consisting of a vapour, liquid and its aggrega-
tion, the same rule can be symmetrically applied to immiscible liquid systems forming an
aggregation (droplets dispersed into a containing phase).

In the early stages of design the vessel geometry will not be known, so the concept
of a port can be extended to be an entry/exit point to a phase(or aggregation of phases), a

vessel, or a process. This allows a top-down hierarchical approach to building up a model

of a process. For example, a process can be first decomposed into a reaction system,

separation systems etc. A separation system can in turn be decomposed successively into

several columns, then each column into plates, condenser, reboiler, etc. finishing eventu-

ally with phases. At each level of decomposition, ports and connections are introduced

to link the ports for the subprocess in question to the newly defined elements within it.

3.1.5 Geometry attributes

A geometry attribute is concerned with the physical description of a vessel geom-

etry itself. It encapsulates all the knowledge about a vessel's shape, orientation and the

relevant dimensions including the positions of ports already declared in the port section.

A geometry section is employed for the declaration of a geometry attribute and

commences with keyword Geometry. It has the following four subsections and each will

now be introduced in detail.

" Shape

" Orientation

" Dimension

" Port Position

3.1.5.1 Shape attributes

The shape of a vessel is described by a shape attribute. In reality there is a

vast variety of shape types, however for simplicity only three kinds of primitive shapes

are allowed in the present version of the language, which are cylinder, sphere and box. In

addition to the shape types, we need the information about whether the vessel is closed

or open. A Shape section is employed for the declaration of a shape attribute. The

formalism of the shape section is as follows:

CHAPTER 3. PHYSICAL MODELLING LANGUAGE 42

Formalism of Shane section

Shape : typel : type,

In the above formalism typel represents the type of the shape of a vessel and
types is the specification on whether the vessel is closed or open. The example of the
declaration of the shape section is shown in figure 3.11.

Shape : cylinder : closed

Figure 3.11: Example Shape section

3.1.5.2 Orientation attributes

A geometrical orientation of a vessel is described by its orientation attribute.
Only two primitive types of orientation have been considered; vertical and horizontal.

Since the "orientation" for a sphere has no geometrical meaning, it applies only to a

cylinder. In the present prototype package, only the vertical type is available due to

geometrical complexities resulting from the various types of orientation of a vessel and

also

An Orientation section is employed for the declaration of an orientation at-

tribute. The formalism of the orientation section is as follows and an example of this is

shown in figure 3.12.

Formalism of Orientation section

Orientation : type

Orientation : vertical

Figure 3.12: Example Orientation section

3.1.5.3 Dimension attributes

Dimension attributes are concerned with the declaration of relevant dimensions

of a vessel. Selection of an appropriate set of dimension attributes depends on its shape.

CHAPTER 3. PHYSICAL MODELLING LANGUAGE 43

Hence height and diameter are necessarily typical set of dimension attributes for a vertical
cylinder, diameter for sphere, and width, depth and height for box.

A dimension attribute is described by its type followed by its numeric value.
A Dimension section is used to describe dimension attributes and must contain all the

requisite dimension attributes according to the vessel shape. A formalism of the dimension

section is as follows;

Formalism of Dimension section

Dimension : type : numeric value

An example of the description of the Dimension section for a cylindrical vessel
is given in figure 3.13.

Dimension : diameter : 1.0

height : 5.0

Figure 3.13: Example Dimension section

3.1.5.4 Port Position attributes

Port position attributes are concerned with physical locations of ports already

declared in the port_�pection. For all ports including energy ports, their locations must

be declared in port position attributes. The vertical location of a port can be specified

with either a numeric value or one of the relevant dimension types of a vessel, which has

already been declared in the dimension section.

A Port Position section is employed for the declaration of port attributes and

must contain all the ports previously declared in the port section. The formalism of the

port position section is below, in which identifier represents the specification of the

location of a port as mentioned above and Z is a language key-word to denote the position

of a port.

Formalism of Port Position section

Port Position : Z(<name>) : identifier

CHAPTER 3. PHYSICAL MODELLING LANGUAGE 44

An example of the declaration of a port position section is shown in figure 3.14.
The vessel has three ports; P1 located at the bottom, P2 at 2.0 high from the bottom and
P3 at the top, namely height.

Port Positions : Z(P1) : 0.0

Z(P2) : 2.0

Z(P3) : height

Figure 3.14: Example Port Position section

3.2 Reservoir Entity

In the previous section one of the three primitive physical process entities (vessel

entity) has been demonstrated in terms of its syntax and semantics in detail. This section
is concerned with the development of language structure for the reservoir entity.

As already described in the preceding chapter, a plant does not exist in isolation,

but receives feeds from elsewhere and delivers products, and also uses or generates utilities

such as steam or cooling agents. A reservoir entity is defined as a source or sink of infinite

extent so that its state is not affected by transfer to or from it.

A sink reservoir should take whatever is delivered by the plant, and we need

nothing but a name. However, a source reservoir is to allow the user to specify a stream

from the environment to the plant, which in general is time-varying both qualitatively

(different phases or aggregations at different times) and quantitatively (different ratios of

phases, different state variables for each phase). We need language to enable the user to

make these specifications, in addition to Phase, Aggregation (and possibly Transfer

Law) sections, just as for a vessel - it is a vessel of infinite extent.

As illustrated in 3.1.1, in order to deal with the identities of the compounds

involved, we need to provide the language for users to specify a list of compounds present

in each source reservoir, then the package can deduce what compounds could be present

in all phases and all vessels, from the connection arrows (see §3.3) and a set of chemical

reactions declared in the phase section and transfer laws. However, a language provision

for specifying a list of compounds in each source reservoir has not yet been implemented

in the present package.
A reservoir entity begins with key-word, RESERVOIR followed by a unique

CHAPTER 3. PHYSICAL MODELLING LANGUAGE 45

identifier by which it may be referenced globally. It is possible for users to declare more
than one identifier in a reservoir entity, as shown in figure 3.15.

Formalism of the declaration of RESERVOIR enti

RESERVOIR : <name>

RESERVOIR : R1, R2, R3

Figure 3.15: Example the declaration of reservoir entity

A reservoir entity is composed of five optional sections as follows:

" Compound

" Phase

" Aggregation

" Transfer Law

" Port

Since the description of Phase, Aggregation and Transfer Law sections are iden-

tical to those of a vessel in terms of their syntax and semantics, Compound and Port

sections will now be discussed.

3.2.1 Compound attributes

As stated above, compounds attributes represent the specification of a list of

compounds present in each source reservoir. This information is also used for the package

to deduce the requisite compounds in all phases and all vessels, as demonstrated in §3.1.1.

So these attributes are limited to a source reservoir.
A Compound section is used for the specification of compound attributes and

must contain all the compounds present in a source reservoir. The formalism of the

compound section is as follows:

Formalism of the Compound section

Compound : <a list of compounds>

CHAPTER 3. PHYSICAL MODELLING LANGUAGE 46

An example of compound section is given in figure 3.16 where propane and
butane are specified as feeding chemical compounds.

Compound : C3H8, C4H10

Figure 3.16: Example Compound section

Again note that these attributes have not yet been implemented in the present

package. Further, the implementation for chemical reactions has not been made. As

discussed in §3.1.1 the provision of the language for compound attributes is recommended

to be implemented, taking account of the language for chemical reactions.

3.2.2 Reservoir Port attributes

It is sufficient to declare only the port name for the reservoir port attributes

(note that this is different from the port declaration for vessel ports where additional

information is required, such as port type and position). The state variables required to

define transfers between vessels and reservoirs are then automatically invoked from the

appropriate transfer law in the library.

A Port section is employed for the declaration of port attributes and must

contain all the ports needed to connect between reservoirs and vessels. The formalism of

the port section of a reservoir is given below.

Formalism of the Port section of reservoir entity

Port : <name>

The example of a reservoir entity is shown in figure 3.17 where steam is consumed

as a utility for a plant through the reservoir ports, P1, P2, P3.

RESERVOIR : steam

Port : P1, P2, P3

Figure 3.17: Example reservoir entity

CHAPTER 3. PHYSICAL MODELLING LANGUAGE 47

3.3 Connection Entity

In the previous section two of three primitive physical process entities; vessel and
reservoir entity have been demonstrated in terms of its syntax -and semantics in detail.
This section is concerned with the development of language structure for the connection

entity.

As introduced in chapter 2, a process system is a set of vessels linked through

connections which may include the transfer of material through pipes or permeable mem-
branes, or the transmission of energy by heat transfer or through pistons in pumps,
compressors or engines.

A connection entity is defined as an idealised topological link for inter-vessel

transfer of material and/or energy, and itself containing no material and/or energy. These

transfers are described by physico-chemical transfer laws. Such a topological link is

represented by the pair of ports of two mutually connected vessels. A completion of the

description of these connections results in a whole flowsheet for a given process.

A connection attribute consists of its name, the topological link and the transfer
law. A connection entity begins with key-word, CONNECTION followed by connection

attributes. It must contain all the connection attributes required to describe the inter-

vessel links (including a link between a reservoir and a vessel) for a given process. The

formalism of the connection entity is as follows:

Formalism of CONNECTION entity

CONNECTION

<name> : <vessell>. <portl> arrow <vessel2>. <port2> ; transfer law

In the formalism port 1 and port 2 are user-defined port names of the two vessels

mutually connected. The arrow in the formalism represents the types of flow through a

connection and two types are available as follows, depending on whether the flow type is

irreversible or reversible:

" an arrow with right end : -+

" an arrow with both ends :()

The arrow with right end (-+) represents irreversible flow through a connection

(for example flow through a pipe installed with some kind of non-return valve), where the

CHAPTER 3. PHYSICAL MODELLING LANGUAGE 48

type of portl and port2 must be the exit and entry, declared to be out and in, respectively.
The arrow with both ends (()) represents reversible flow through a connection where
the types of the two ports must be reversible. This arrow is also used for energy transfer
in which the types of the two ports must be those of energy port as previously introduced
in §3.1.4.

Note that the transfer law for reversible flow of a connection can contain a
pair of two different sets of equations, according to the flow directionality. This is termed

asymmetrically reversible. On the other hand, if the set of equations for forward directed-

flow are same as those for reverse flow, it is termed symmetrically reversible.
An example of a connection entity is shown in figure 3.18. The transfer law

IrreversiblePressureDrivenFlow in C1 describes pipe flow with non-return valve,

which contains flow regime transitions between laminar and turbulent depending on the

currently active Reynolds Number. the transfer law of C2 is symmetrically reversible since

the transfer law PressureDrivenFlow has the same set of equations for both directions

containing flow transitions between laminar and turbulent, determined by the pressure

difference between FlashDrum and Receiver. The details of the description of the library

will be demonstrated in appendix C.

CONNECTION :

Cl : Feeder. Pl ---> F1ashDrum. P1 ; IrreversiblePressureDrivenFlow

C2 : FlashDrum. P2 <--> Receiver. Pl ; PressureDrivenFlow

Figure 3.18: Example connection entity

As far as the physical description of "controllers" is concerned, the method

suggested in earlier work (Vazquez-Roman, 1992) can be used to provide a transfer law

through a connection, using "measurements" from "sensors" providing variables from

phases in vessels.

3.4 Physical Modelling Examples

In the previous section the details of the design of the proposed language for

describing purely physical behaviour were described in terms of syntax and semantics.

This section shows how process systems are described in the proposed language through

several examples, all of which will then be simulated.

CHAPTER 3. PHYSICAL MODELLING LANGUAGE 49

3.4.1 Flash drum

This example considers a flash drum where there exist three phases such as

vapour, bubbles and liquid, and aims at validating how multiple possibilities of physical
behaviour are encompassed.

Consider a simple process system composed of a cylindrical flash drum, one

reservoir (source) and two reservoirs (sink). The conceptual diagram of this example is

shown in figure 3.19. The dashed lines drawn in the flash drum represent all possible cases

in which one of three phases existing in the flash drum participates in the inter-vessel

connections through the ports. The two arrows linking phases B and L, and linking from

B to V represent transfer laws PhaseEquilibrium and BubbleRise respectively. The flash

drum named FlashDrum is fed by reservoir R1 through the connection C1 with transfer

law IrreversiblePressureDrivenFlow. The flash drum has two outlet pipes through

which one or more of three phases flows out depending on which phase covers the exit

points of the outlet pipes. Within the flash drum, bubbles dispersed into a liquid are in

equilibrium with the liquid and simultaneously rise to a vapour through the liquid. Note

that all connections(C1, C2, C3) are physically some sort of pipes installed with non-

return valves which do not allow reverse flow through the pipes. The physical description

of this example is represented in figure 3.20.

V

C3
Po2 R3

cl
R1 Pit . '`

C2

---Pol R2

BLJL)

FlashDrum

Figure 3.19: Conceptual diagram of Flash drum

VESSEL : FlashDrum

Phase : B, V: vapour

L: liquid

Aggregation : V, [B, L]

0 818.
LONDiB"
ORiti

CHAPTER 3. PHYSICAL MODELLING LANGUAGE 50

Transfer Law : B, V: BubbleRise

B, L: PhaseEquilibrium

Port . Pil : in

Pol : out

Po2 : out

Geometry : Shape

Orientation

Dimension

cylinder : closed

vertical

height :3

diameter :1

Port Position : Z(Pil)

Z(Pol)

Z(Po2)

RESERVOIR : R1, R2, R3

Port :P

CONNECTION :

. 1.5

. 0.5

. 2.5

Cl : Rl. P ---> FlashDrum. Pil ; IrreversiblePressureDrivenFlow

C2 : FlashDrum. Pol ---> R2. P ; IrreversiblePressureDrivenFlow

C3 : F1ashDrum. Po2 ---> R3. P ; IrreversiblePressureDrivenFlow

Figure 3.20: Physical Modelling Example Flash Drum

3.4.2 Two Flash Drums with reversible flow

As in the representative diagram (Figure 3.21), there are two flash drums linked

through a pipe allowing reversible flow, representing that there is no non-return valve

in it. The flow direction is determined by the sign (positive, negative) of the pressure

difference between the two flash drums. The Physical description of this example is

presented in Figure 3.22. The reversible flow through the pipe is described in connection

C2 through the two ports Pol of FlashDruml and Pi of FlashDrum2, with transfer law

PressureDrivenFlow. Note that the types of these two ports have been declared as both

CHAPTER 3. PHYSICAL MODELLING LANGUAGE 51

in each vessel and that the phase types declared in the two flashdrums must be the same

since the connection C2 is reversible flow between the two flash drums.

FlashDrum2

Figure 3.21: Conceptual diagram of Flash drum

VESSEL : FlashDruml

Phase : B, V: vapour

L: liquid

Aggregation : V, [B, L]

Transfer Law : B, V: BubbleRise

B, L: PhaseEquilibrium

Port : Pi : in

Pol : both

Po2 : out

Geometry : Shape : cylinder : closed

Orientation : vertical

Dimension : height :3

diameter :1

Port Position : Z(Pi) 1.5

CHAPTER 3. PHYSICAL MODELLING LANGUAGE

VESSEL : FlashDrum2

Phase : B, V: vapour

L: liquid

Aggregation : V, [B, L]

Z(Pol) : 0.5

Z(Po2) : 2.5

Transfer Law : B, V: BubbleRise

B, L: PhaseEquilibrium

Port : Pi : both

Pol, Po2 : out

Geometry : Shape cylinder : closed

Orientation : vertical

Dimension : height :3

diameter :1

Port Position : Z(Pi) : 1.5

Z(Pol) : 0.5

Z(Po2) : 2.5

RESERVOIR : R1, R2, R3, R4

Port :P

CONNECTION

Cl : Rl. P --> FlashDruml. Pi ; IrreversiblePressureDrivenFlow

C2 : FlashDruml. Pol <-> FlashDrum2. Pi ; PressureDrivenFlow

C3 : FlashDruml. Po2 --> R4. P ; IrreversiblePressureDrivenFlow

C4 : FlashDrum2. Pol --> R2. P ; IrreversiblePressureDrivenFlow

C5 FlashDrum2. Po2 --> R3. P ; IrreversiblePressureDrivenFlow

52

Figure 3.22: Physical Modelling Example Two Flash Drums with reversible flow

CHAPTER 3. PHYSICAL MODELLING LANGUAGE 53

3.4.3 Decanter

A decanter is a typical example of an open vessel. A schematic diagram of the

decanter is shown in Figure 3.23. There are two immiscible liquids such as butanol and

water in the decanter. Note that port Po2 represents the rim of the decanter over which

phases may flow out depending on their levels. The physical description of this example is

given in figure 3.24. The flow mechanisms are described as WeirOverFlow in connection

C3.

Figure 3.23: Schematic Diagram of Decanter

CHAPTER 3. PHYSICAL MODELLING LANGUAGE 54

VESSEL : Decanter

Phase : B, B1 : liquids

W, W1 : liquid2

Aggregation : B, [B1, W1] ,W

Transfer Law : B1, B : BubbleRise

W1, W : ContainingPhaseTransfer

Port : Pi1 : in : [B1, W1]

Pol : out

Po2 : out

Geometry : Shape : cylinder : open

Orientation : vertical

Dimension : diameter :1

height :5

Port Position : Z(Pil) : 1.5

Z(Pol) :0

Z(Po2) : height

RESERVOIR : R1, R2, R3

Port :P

CONNECTION :

Cl : Rl. P --> Decanter. Pil ; IrreversiblePressureDrivenFlow

C2 : Decanter. Pol --> R2. P ; StaticPressureDrivenFlow

C3 : Decanter. Po2 --> R3. P ; WeirOverFlow

Figure 3.24: Physical Modelling Example Decanter

CHAPTER 3. PHYSICAL MODELLING LANGUAGE 55

3.5 Summary

Based on the concept of the representation of process systems as already demon-

strated in chapter 2, the language which enables us to describe chemical processes in a

completely physical fashion has been designed and the details of its philosophy has been

introduced in terms of its syntax and semantics by which physical discontinuities can be

identified in the generated mathematical models. As a consequence, the three primitive

physical process entities have been identified and the language has been structured into

the hierarchy as shown in figure 3.25.

PROCESS SYSTEM

CONNECTION Entity

VESSEL Entity

Phase Section

Aggregation Section

Transfer Law Section

Port Section

Geometry Section

Shape Section

Orientation Section

Dimension Section

Port Position Section

RESERVOIR Entity

Compound Section

Phase Section

Aggregation Section

Transfer Law Section

Port Section

Figure 3.25: Hierarchical structure of physical modelling elements

Finally, three illustrative examples of physical description represented in the

language have been introduced, all of which will be simulated later.

CHAPTER 3. PHYSICAL MODELLING LANGUAGE 56

In the next chapter the methodology for generating the mathematical models

from the information of physical systems described in the language developed will be

demonstrated in terms of detailed algorithms for the model generation.

57

Chapter 4

Mathematical Model Formulation

In the preceding chapter, the design of the language for describing process sys-

tems in a purely physical manner has been demonstrated in terms of its syntactical struc-

ture and semantics, and several examples described in the language have been introduced.

This chapter demonstrates the methodology for formulating a lumped math-

ematical model from the information about a physical process system. Of course, as

previously stressed, the mathematical models should encompass a set of physical discon-

tinuities which process systems routinely experience in their dynamic behaviour. To deal

with these key requirements, firstly the basic strategy for building mathematical models

will be set up. Secondly the consistent and general formalism of the mathematical model

required to encapsulate a set of physical discontinuities likely to arise for a given process,

will be identified. Based on the model-building strategy and the generic model formal-

ism, the detailed algorithms for generating the mathematical model from the information

about physical description of a process system will be established as a final step of the

mathematical model formulation method.

In the remaining sections of this chapter we will deal with the convention of

making the notations used in the mathematical models and finally the construction of

transfer law libraries. The mathematical model consists of a large number of parameters

and equations expressed in variables and relevant mathematical operators. The consis-

tency in making notation of those parameters and variables comprising a mathematical

model must be maintained through the whole generation procedure. Thus the notation

used in the generated mathematical model will be introduced.

CHAPTER 4. MATHEMATICAL MODEL FORMULATION 58

4.1 Basic Model Building Strategy

This section describes the basic strategy for formulating mathematical models
from the physical process representation described in the proposed language.

As previously stated, we consider only lumped parameter models, for which each

phase has a uniform state throughout its extent, though of course distributed-parameter

systems can be modelled in these terms through the use of cell-type models.
For each phase the masses of each chemical component present, the internal

energy and pressure are taken as our basic state-variables. From the process description

it is then possible to write down conservation laws for the mass of each component and

the energy for each phase, containing typically an accumulation term, a rate of creation
due to chemical reaction, and a term for each defined transfer.

Using a library of transfer-laws, we can then write an equation for each transfer,

and we need to add means of computing relevant physical properties and relations between

other thermodynamic variables (such as temperature) and the basic state variables, finally

the volume and pressure relations for vessels.

This in general yields a dynamic model as a set of differential-algebraic equations
(DAEs), but there are a number of complications. First, if the transfer law between two

or more phases is equilibration, the relevant fluxes create a high-index DAE system;

moreover the number of phases present may depend on the state. For these reasons the

concept of "region" is introduced, the definition of which is a particular subdivision of the

system being modelled composed of a single phase or multiple phases in thermodynamic

equilibrium (Vazquez-Roman, 1992). Then the package automatically associates phases

defined to be in thermodynamic equilibrium in a single region and assumes the availability

of an appropriate thermodynamic subroutine to determine the number of phases and the

state of each from the basic state-variables for the region.

Now a complete strategy for formulating mathematical models in lumped-parameter

systems in the form of a set of DAEs has been set up. However, in the course of building

this strategy, the physical discontinuous behaviour that processes experience routinely in

normal operation has not been considered. Hence in the next section we will discuss the

method for dealing with these discontinuities and the generic formalism of mathematical

models required to describe the discontinuities.

CHAPTER 4. MATHEMATICAL MODEL FORMULATION 59

4.2 Generic Model Formalism

In the previous section a basic model building strategy has been demonstrated

without a consideration of physical discontinuities. As has been emphasised in the previ-

ous chapters, one of the key requirements of the generated mathematical model is to de-

scribe the physically discontinuous behaviour. This behaviour includes phase transitions
(e. g. the presence or absence of phases), flow regime transitions (e. g. between laminar

and turbulent flow), those resulting from the geometry of individual process units and a

variety of other factors. In order to deal with these physical discontinuities we need to

identify a sufficiently generalised and consistent mathematical modelling formalism cov-

ering these discontinuities. We can then establish the detailed algorithms for generating

mathematical models from a purely physical representation of process systems.

Recently the important modelling issues and special modelling requirements
for combined discrete/continuous process systems have been identified and used as the

conceptual basis of gPROMS (general-purpose PROcess Modelling System), which is

a general-purpose software package for the modelling and simulation of combined dis-

crete/continuous process systems (Barton, 1992). In fact we intend to generate mathe-

matical models in the form of gPROMS input language. Hence it is essential to discuss

the conceptual framework of gPROMS, and how it deals with physical discontinuities.

The fundamental model structuring concept in gPROMS is that process models

are decomposed into two main entities; a model entity (a combined discrete/ continuous

model of physical behaviour of a process) and a task entity (external actions imposed on

processes such as disturbances and control ac ions .
These two entities are completely

decoupled in order to aid the representation of process systems in a natural way. Again

all the information stored in the two entities is encapsulated in a single entity, namely

a process entity, which represents a dynamic simulation experiment. The process model

representation contained in the model entities may include any possible discontinuities

arising from the physico-chemical mechanisms governing the dynamic behaviour of pro-

cess systems. Thus we need to focus on the mathematical formalism, which enables us to

represent these discontinuities in a consistent manner.

In order to describe physical discontinuities their nature has been considered in

terms of the transition mechanisms between discrete states. Then any discontinuities are

categorised into the following three classes:

" reversible discontinuity : The condition for one state transition is the negation

of the condition for the other. Hence the two transitions are describable with one

CHAPTER 4. MATHEMATICAL MODEL FORMULATION 60

transition rule (IF), e. g. flow through a pipe.

" irreversible discontinuity : There is only one state transition which never returns to

the other state, e. g. a burst-out of pressurised gas in a vessel fitted with a bursting

disc.

9 asymmetric and reversible discontinuity : The transition between two states is

reversible but the transition conditions are not directly related. The CASE structure
is used to describe this transition mechanism, instead of IF structure, e. g. a gas

flow out of a tank controlled by a safety relief valve.

Mathematical modelling of dynamic physico-chemical behaviour of process sys-

tems in terms of lumped parameters yields a mixed set of differential and algebraic equa-

tions(DAEs), of which the natural mathematical formalism is expressed by a set of DAEs

of the form (Pantelides et al., 1988):

f (x, x, y, u, t) =0 (4.1)

u= U(t) (4.2)

where: xEXC am, yEYCRm, uEUCeil, tET=[t(o), t(f)] and

f: X XRnxYxUxTHRn+m.

The unknowns x and y are usually referred to as the differential variables and

algebraic variables respectively, u are the known system inputs, and t is the independent

variable time.

In general a process model involving physico-chemical discontinuities is repre-

sented in terms of several discrete states, each described by a potentially different set of

variables and/or equations. The general formalism of a process model for representing

these discontinuities in a consistent way has been suggested as follows (Barton, 1992):

"A set of variables x, x, y and u.

"A set of equations f (x, x, y, u, t) = 0.

"A set of transitions to other states (possibly empty).

A transition is described by:

" An initial state SI.

CHAPTER 4. MATHEMATICAL MODEL FORMULATION 61

"A terminal state Ste'.

"A scalar logical expression l (xI
, xI, yl, uI, t) to describe each possible transition

between states.

"A set of relationships allowing the determination of consistent initial values for the
variables in ST from the final values of the variables in S'.

However, the mere existence and completeness of a mathematical formulation
does not automatically guarantee that it will be an "easy" or "natural" means of modelling
process systems of realistic complexity due to the following items (Pantelides, 1995):

" The number of states in practical systems involving a number of discontinuous

phenomena can be quite large.

" Although practical systems are often described by tens of thousands of variables and

equations, the sets of such variables and equations describing different system states
typically differ only by a few elements. Having to specify the entire mathematical
description of each state separately could be unnecessarily tedious.

" The mathematical formulation makes no distinction between the description of the
intrinsic physics of the process, and that of the external actions, manipulations and
disturbances imposed on it.

A sophisticated modelling technique for dealing with the mechanisms of a large

number of the transitions of discontinuous states has been developed by Pantelides (Pan-

telides, 1995). The basic view of physical discontinuities is that the large number of states

arises because of the combination of several interacting discontinuous phenomena, the cur-

rent state of which can be defined independently. Thus the current state of a system with
discontinuous behaviour is described by the combination of a number of discontinuous

subsystems, each described by its own state-transition network. In the flash drum ex-

ample illustrated in chapter 2, these discontinuous subsystems include the equilibrium

relationship between bubbles and liquid, the transition between laminar and turbulent

flow regimes as well as the flow directionality resulting from the flow driving potential,

and the transition of exit phases flowing through the outlet pipe depending on the liq-

uid level. As a consequence, the mathematical description of process models including

physical discontinuities is composed of a set of case invariant and variant equations, each

characterised independently by its own discrete state and transition condition. We note

CHAPTER 4. MATHEMATICAL MODEL FORMULATION 62

that this modelling principle is vital to develop our strategy for generating a mathemati-
cal model encompassing a set of physical discontinuities, hence it will be used as a basis
for the development of the model generation algorithms. The detailed example as to how
these independent transitions are combined, forming a set of case invariant and variant
equations is given in the paper (Pantelides, 1995).

The algorithms for generating mathematical models will be illustrated in the

next section, based on the basic model building strategy and the generic mathematical
modelling formalism.

4.3 Model Generation Algorithms

Until now, we have introduced the basic model building strategy and identified

the mathematical formalism required to deal with physical discontinuities. This section
is concerned with the development of the complete algorithms for generating appropriate

mathematical models, based on the model building strategy and the generic mathematical
formalism demonstrated in the previous sections.

In the course of generating models the syntax analysis and semantic checking for

the physical representation described in the proposed language are carried out in advance

of the applications of the model generation algorithms. That is, the correct physical
description in terms of the language syntax and semantics of language is an essential

prerequisite for initiating the model generation algorithms.

The model generation algorithms are structured into the same hierarchy as that

of the conceptual elements for the purely physical representation of process systems as

shown in figure 3.25. As a consequence of the exact correspondence between physical

model structuring elements identified from the conceptualisation of process systems, and
the mathematical model generation algorithms with respect to the hierarchical structure,

the generated mathematical models also have the same hierarchical structure. It should
be recognised that this consistent hierarchical structure has been maintained during the

course of the entire model generation procedure, from the conceptualisation of physi-

cal process systems, through the establishment of model generation algorithms, to the

generation of appropriate mathematical models.
The method of describing the whole algorithm for generating a mathematical

model is based on hierarchical sub-algorithm decomposition (top-down description).

Algorithm 4 given below is the master algorithm for generating a mathematical

model from the physical representation of a given process system written in the proposed

CHAPTER 4. MATHEMATICAL MODEL FORMULATION 63

physical modelling language. It contains the fixed set of key sub-model generation tasks
at top level.

Algorithm 4 GENERATE PROCESS SYSTEM MODEL

1. GENERATE VESSEL SUB-MODEL. (see algorithm 4.1)

2. GENERATE RESERVOIR SUB-MODEL. (see algorithm 4.2)

3. GENERATE CONNECTION SUB-MODEL. (see algorithm 4.3)

Vessel, reservoir and connection sub-model terms used at each step of algorithm
4 represent the mathematical sub-models generated from the physical information encap-
sulated into the three basic entities of vessel, reservoir and connection. The background

and subsequent derivation of each procedure of algorithm 4 will now be discussed in detail.

4.3.1 Vessel Sub-Model Generation

A vessel sub-model is generated by applying a relevant model generation algo-

rithm to the physical information encapsulated into the vessel entity. To do this, for each

vessel, we need to initiate the tasks concerned with the generation of the mathemati-

cal sub-model from the information stored into the sections comprising the vessel entity
(phase, aggregation, transfer law, port and geometry sections). These tasks are therefore

composed of a subset of procedures of calling algorithms, each of which corresponds to

the algorithm for generating the mathematical sub-model from the physical information

stored in the corresponding section. The formal algorithm for generating vessel sub-model

is given algorithm 4.1 below.

Algorithm 4.1 GENERATE VESSEL SUB-MODEL

" For each vessel,

1. GENERATE PHASE SECTION SUB-MODEL. (see algorithm 4.1.1

2. GENERATE AGGREGATION SECTION SUB-MODEL. (see algorithm 4.1.2)

3. GENERATE TRANSFER LAW SECTION SUB-MODEL. (see algorithm 4.1.3)

CHAPTER 4. MATHEMATICAL MODEL FORMULATION 64

4. GENERATE PORT SECTION SUB-MODEL. (see algorithm 4.1.4)

5. GENERATE CONSERVATION EQUATIONS. (see algorithm 4.1.5)

6. SPECIFY DISCONTINUITIES IN A VESSEL. (see algorithm 4.1.6).

7. GENERATE GEOMETRY SECTION SUB-MODEL. (see algorithm 4.1.7)

From the implementational point of view, each step of algorithm 4.1 is completed
by formulating the physical information corresponding to each section of the vessel into

abstract data types made suitable for storing the information about the mathematical
model. As a consequence, once the application of the algorithm 4.1 is finished successfully,
the mathematical sub-model corresponding to the vessel entity is obtained, encapsulating
all the information about the model in an appropriate data structure. If more than one
vessel were declared in one vessel entity, all the information stored in the above data

structure for the one vessel are copied to others.
Subsequent derivation of the subset of algorithms comprising algorithm 4.1 will

now be presented in detail.

4.3.1.1 Phase Section Sub-Model

This section is concerned with the generation of the mathematical sub-model
from the physical information about the phase attributes declared in the phase section.

As mentioned in §3.1.1, the provision of the language for chemical reactions has

been suggested as a phase attribute, but has not yet been implemented in the present

package. Consequently there is no algorithm for dealing with chemical reactions.
Recall that the phase attributes described in the phase section includes the phase

types for a set of all possible existing phases within the vessel, and that the phase types

are employed for associating a stream passing through a port with a phase in a vessel. We

thus create the variables required to represent the types of all the phases specified to be

present in the vessel and declare all the phase types defined by the user. We also need to

formulate the required constitutive equations. Finally the requirement that the pressure

for all the phases present in a vessel is uniform is expressed in the form of equations. The

formal procedures are described in algorithm 4.1.1 below.

Algorithm 4.1.1 GENERATE PHASE SECTION SUB-MODEL

CHAPTER 4. MATHEMATICAL MODEL FORMULATION 65

1. Create phase type variables.

2. Declare user-defined phase types.

3. Generate the required constitutive equations.

4. Equate the pressure of the vessel to that of phases present.

At step 2 the phase type defined for each phase in the physical description is

declared as parameters in the mathematical model for later use to provide data for dealing

with a set of discontinuities resulting from the selection of a phase or an aggregate passing

through ports, the details of which will be described in §4.3.1.4.

The constitutive equations (step 3) involve those relating total mass with density

and volume as well as those relating mass of each component with total mass and mass

fraction.

As already stated, one of the basic assumptions for lumped systems is that

pressure is uniform through all phases present within a vessel. This is embodied at step

4 by equalising the pressure of the vessel to that of all phases present.

4.3.1.2 Aggregation Section Sub-Model

This section describes the procedures for generating the mathematical sub-model

from the physical description of the aggregation section.

By the similar rationale discussed in the previous section, for each aggregate, we

create the variables representing the aggregation type and declare the user-defined phase

type of the aggregate. Also total mass ratio of the dispersed phase should be defined for

each aggregate. Finally the required constitutive equations and the equations describing

the uniform pressure for each aggregate are then formulated.

As demonstrated in the previous chapter, the information about which phase in

a vessel is covering a port is required to determine the association of an entry stream with

a phase in the vessel as well as the selection of a phase flowing out of an exit port. To do

this, we need to create the variables for describing volume bounds of each element of the

aggregation list and then relate them to their level variables. The formal procedures for

the formulation of aggregation section sub-model is given in algorithm 4.1.2 below.

Algorithm 4.1.2 GENERATE AGGREGATION SECTION SUB-MODEL

CHAPTER 4. MATHEMATICAL MODEL FORMULATION 66

1. For each aggregation of phases,

(a) Create the variable representing the aggregation type.

(b) Declare the aggregation type.

(c) Define the total mass ratio of the dispersed phase.

(d) Generate the required constitutive equations.

(e) Equate the pressure of the vessel to that of the aggregate.

2. For each element of the aggregation list,

(a) Create variables representing lower and upper volume bounds.

(b) Create a variable representing level for the element.

(c) Equalise the upper volume bound to its level.

(d) Express inter-element boundaries by equalising the lower volume bound of one

element, to the upper volume bound of the element located below.

3. Specify numeric values starting with "0" at the bottom of the vessel, to the lower volume
bounds of each element.

The phase type variable for the aggregation is declared by combining the two

strings of the user-defined phase types for the set of the aggregated phases through

under-bar "_" (step 1. b). As an example of step 1. b, a phase type for an aggregation

phase is vapour-liquid where vapour and liquid are user-defined phase types for the

aggregation. Total mass ratio of the dispersed phase (step 1. c) is used to calculate the

physical properties of an aggregation from the physical properties of each phase in the

aggregation.

The constitutive equations (step 1. d) include the relation of total mass with
density and volume and that of each component mass with total mass and mass fraction as

well as the expression of the aggregation variables in terms of the corresponding variables

of the two aggregated phases with respect to mass, density, enthalpy, internal energy, etc.

Step 2 and 3 are concerned with the specification of the lower/upper volume

bounds for all the elements of the list of aggregation of phases. The notation of the

variables used in mathematical models are expressed as "Bot" and "Top" to denote the

lower and upper volume bound respectively.

CHAPTER 4. MATHEMATICAL MODEL FORMULATION 67

4.3.1.3 Transfer Law Section Sub-Model

This section presents the algorithmic procedures for generating the mathematical
sub-model from the physical description of the transfer law section. Recall that in the

transfer law section a possible set of the mechanisms of the transfer between phases

present in a vessel are described by specifying the relevant phases with the names of
transfer laws which have been already installed in the library. From this information

a set of appropriate equations belonging to transfer laws will then be invoked from the

library. Whence the set of equations the required additional properties are created. The

formal procedures for the generation of the transfer law section sub-model are given in

algorithm 4.1.3 below.

Algorithm 4.1.3 GENERATE TRANSFER LAW SECTION SUB-MODEL.

1. For each transfer law,

(a) Search the transfer law entry in the library.

(b) Transform the set of equations in the library into the appropriate form of equations
by taking account of the relevant phases.

From the implementational point of view once a transfer law is invoked, its

availability is checked by searching its entry in the library table with its name (step

1. a) and the set of equations comprising the transfer law are then transformed into the

appropriate form of equations by passing the pair of phases participating in the transfer

law as the parameters for the invoking function (step 1. b).

4.3.1.4 Port Section Sub-Model

This section describes the procedure for creating the variables for the streams

passing through ports from the information stored in the port section.

We note that it is reasonable that the information about the material flowing

out of a port is encapsulated into a mass stream instance containing a set of its attributes;

mass rate, enthalpy flow, dispersion ratio and phase type. In order to deal with energy

transfer with no mass flow, we build an energy stream instance, which contains only an

enthalpy flow as its attribute. The formal procedure for creating stream variables is given

in algorithm 4.1.4 below.

CHAPTER 4. MATHEMATICAL MODEL FORMULATION 68

Algorithm 4.1.4 GENERATE PORT SECTION SUB-MODEL

1. For each mass stream port,

(a) Create the set of variables as the mass stream attributes of the port; mass rate,
enthalpy flow, dispersion ratio and phase type.

(b) Build the MassStream instance containing the set of the above attributes.

2. For each energy port,

(a) Create the enthalpy flow variable as the energy stream attribute of the port.

(b) Build the EnergyStream instance of the port with the above attribute.

4.3.1.5 Conservation Equations

This section is concerned with the algorithm for detecting regions and for for-

mulating the conservation equations in terms of mass and energy.

Recall that the flux between the phases in thermodynamic equilibrium creates

a high index DAE system as incorporated into the conservation equations. To avoid this

problem a region has been defined as a particular subdivision of the system being modelled

consisting of a single phase or multiple phases in thermodynamic equilibrium (Vazquez-

Roman, 1992) and the pair of phases in thermodynamic equilibrium is then incorporated

into a single region. The appropriate set of conservation equations is formulated for each

region instead of each phase present in the vessel. Therefore, the procedure for detecting

regions are required in advance of formulating the conservation equations. The phases in

thermodynamic equilibrium are detected from the transfer law attributes specified in the

transfer law section.

The formal procedure for formulating conservation equations is given in algo-

rithm 4.1.5 below.

Algorithm 4.1.5 GENERATE CONSERVATION EQUATIONS

1. DETECT REGIONS. (see algorithm 4.1.5.1

2. For each element of regions,

CHAPTER 4. MATHEMATICAL MODEL FORMULATION 69

(a) GENERATE MASS CONSERVATION EQUATION. (see algorithm 4.1.5.2

(b) GENERATE ENERGY CONSERVATION EQUATION. (see algorithm 4.1.5.3)

As the task for detecting regions is completed by step 1, the information about

a fixed set of elements of regions will then be saved into the proper data structure for

later use to formulate conservation equations.
The regions are first taken to be the set of phases present in the vessel. The set

of phases in thermodynamic equilibrium are extracted from the regions and then included

into the regions as a single element. The formal procedure for detecting regions is given
in algorithm 4.1.5.1 below.

Algorithm 4.1.5.1 DETECT REGIONS

1. Define regions as a set of phases in the vessel.

2. For each pair in phase equilibrium,

(a) Remove the pair of phases from regions.

(b) Define a new element representing the pair of the phases.

(c) Incorporate the element into regions.

A set of mass and energy conservation equations are formulated for each region

having been already detected by the completion of algorithm 4.1.5.1. Recall that the phys-

ical discontinuities routinely arising in the vessel include appearance and disappearance

of phases present in the vessel, and those resulting from the selection of the phase passing

through the ports. To enable us to deal with these discontinuities later, the conservation

equations are formulated in such a way that each element of the regions has a potential

to pass through all the mass stream ports declared in the vessel. This has a consequence

that each conservation equation has a set of potential mass input/output rate terms for

the flows through all the mass stream ports.

In order to determine the appropriate sign for the transfer terms in the conser-

vation equations, we introduce the convention that the first of the two phases specified in

the transfer law section is taken as the source, and the other as the sink. For example, in

CHAPTER 4. MATHEMATICAL MODEL FORMULATION 70

fig 3.5 the B phase is taken as the source and the V phase as the sink in the BubbleRise
transfer law.

The formal procedure for generating a mass conservation equation is given in
algorithm 4.1.5.2 below.

Algorithm 4.1.5.2 GENERATE MASS CONSERVATION EQUATION

1. Write the differential term followed by equal sign.

2. For each mass stream port,

(a) Create the mass rate term.

If the port type is an entry then

(b) Add the mass rate term.

Else

(b) Subtract the mass rate term.

3. For each defined inter-phase transfer,

(a) Create the mass rate term.

If the current region is a sink for the transfer then

(b) Add the mass rate term.

Else

(b) Subtract the mass rate term.

A conservation equation for the mass of each component comprising a region

contains typically an accumulation term, the terms for the rates of inter-vessel mass flow,

the terms for each defined transfer between interacting phases, and the rates of creation

or consumption due to chemical reactions.
The accumulation term is expressed with a time derivative (denoted $) followed

by the mass holdup term of each component, for instance Mass_V represents the mass

holdup of components present in the region V (step 1) and $Mass_V its time derivative.

CHAPTER 4. MATHEMATICAL MODEL FORMULATION 71

As previously mentioned, each element of regions has a possibility of flowing

through the mass stream ports present in a vessel, though the selection of a phase or an

aggregation flowing through a mass stream port will be made in algorithm 4.1.6. We then

incorporate into the mass conservation law the mass rates of flow through all the mass

stream ports present in a vessel. The notation of a mass rate term is the combination of

mass rate (Rate), the name of the element of the region and the name of the port, for

instance Rate_V_P where V and P denote the name of element and the name of the port

respectively. The sign of a mass rate term for a port depends on the type of the port

specified by a user. By default, if a port type was declared as an entry, the sign becomes

positive, otherwise (including an exit and reversible port) it becomes negative (step 2. b)1.

The notation of a mass rate term for an intra-vessel defined transfer is made up

of the combination of the rate symbol (Rate) with the names of phases participating in

the transfer (e. g. Rate_B_L where B and L are phases of a transfer) (step 3. b).

Although the provision for dealing with chemical reactions has not been imple-

mented, the method for this will now be mentioned briefly. The reaction rate included in

component mass conservation equations is composed of the following three terms:

" stoichiometric coefficients

" molecular weights

" reaction kinetics

In order to keep the dimension of the reaction rate terms consistent in the mass

conservation equations, the dimension of the vector of stoichiometric coefficients is same

as that of molecular weight, which is the number of components of the system. The signs

of the corresponding stoichiometric coefficients of reactants and products are negative

or positive respectively, since the reactants and products are consumed and produced

during the chemical reaction. Of course, the reaction rate invoked by a user must have

been already installed in the library for chemical reactions.

As with a mass conservation law, an energy conservation law for a phase contains

typically an accumulation term, the terms for the inter-vessel energy flows and the terms

for the transfers specified between interacting phases. The procedures for formulating the

energy conservation law will now be illustrated in algorithm 4.1.5.3 below.

'In the case of reverse flow through a reversible port since the relevant inter-vessel transfer law contains

the appropriate sign representing the directionality of the flow, there is no inconsistency for the sign of

rate terms, for example, the sign of DrivingForce in appendix C. 7 (SGN(DrivingForce)) is negative in the

case of reverse flow.

CHAPTER 4. MATHEMATICAL MODEL FORMULATION 72

Algorithm 4.1.5.3 GENERATE ENERGY CONSERVATION EQUATION

1. Write a differential term followed by equal sign.

2. For each port,

(a) Create the enthalpy term.

If the port type is an entry then

(b) Add the enthalpy flow term.

Else

(b) Subtract the enthalpy flow term.

3. For each defined inter-phase transfer,

(a) Create the enthalpy flow term.

If the current region is a sink for the transfer then

(b) Add the enthalpy flow term.

Else

(b) Subtract the enthalpy flow term.

In principle the total energy of a phase should be defined as the summation of

its kinetic, potential and internal energy in the absence of electric and magnetic fields.

However we note that the kinetic and potential energy can be often neglected in process

systems. The accumulation (differential) term therefore represents the total internal en-

ergy of the current region. The total internal energy is described by the mass specific

internal energy multiplied by the total mass of components for the region (step 1).

It should be noted that an energy conservation law for a phase concerns the total

energy and total mass, as opposed to a mass conservation law where the mass of each

component within the phase is conserved. The reaction term therefore is included implic-

itly in the internal energy. This has a consequence that there is no need to incorporate a

term for a chemical reaction into the energy conservation law.

CHAPTER 4. MATHEMATICAL MODEL FORMULATION 73

All the mass streams as well as the mass transfer between interacting phases
carry an accompanying energy flow. The rates of energy flows required to formulate a
conservation equation for energy therefore involve not only all the declared energy flows
but also the energy flows associated with all the inter-vessel mass streams and by the
transfer between interacting phases within a vessel (step 2 and 3).

4.3.1.6 Phase Selection Rule

As stated earlier, in order for a mathematical model to encompass physical
discontinuities such as the appearance and absence of phases present in a vessel and the

discontinuities resulting from a vessel geometry as well as to associate the stream passing
through ports with a single phase or an aggregate, we introduce the rule for selecting a

relevant phase or an aggregate passing through a port. This rule will therefore be used

as a basis on formulating the algorithms for dealing with physical discontinuities. That

is, by this rule a fixed set of discrete transitions are identified and each state can then be

described.

The phase selection rule is categorised into two classes based on the type of port
(exit or entry). In fact the basic principle of this rule has been introduced in §3.1.4, how-

ever the complete formal statement will be made in this section. Firstly, we consider the

rule for exit port, which is concerned with the rule for selecting a phase or an aggregation

of phases flowing out of the port. Since what flows out of the port is determined by the

layer covering the outlet, the phase or aggregation of phases in contact with the port is

selected as the outlet stream. By applying this rule to each element of aggregation list

specified in the "Aggregation" statement, sets of all possible discrete transitions are iden-

tified and each state is then described. If a phase or an aggregation of phases associated

with the port is independently specified by a user for selectivity, allowing passage of only

the specified phase or aggregation through the port, it is selected as the outlet stream

passing through the port. The formal statement of the phase selection rule for an exit

port is given in rule 4.1 below.

Rule 4.1 PHASE SELECTION RULE FOR AN EXIT PORT

Select the phase or aggregate covering the exit port as the outlet

stream passing through the outlet unless specified differently in

"Port" statement.

CHAPTER 4. MATHEMATICAL MODEL FORMULATION 74

Now consider the phase selection rule for an entry port which allows association
of an inlet phase with a phase in a vessel. As introduced in §3.1.4, the inlet stream
association rule is classified into the two categories depending on whether the inlet stream
is an aggregation or a single phase. We can get this information about the upstream
from the application of the phase selection rule for the upstream port (exit port). This
information will be used as a basis for determining the association of an inlet stream

with a phase in a vessel. Of course, if a phase or an aggregate in a vessel is explicitly
specified by the user as the entry port attributes, it will be taken as the inlet stream
association without applying the inlet stream association rule introduced in §3.1.4. The
formal statement of the phase selection rule for an entry port is given in the rule 4.2.

Rule 4.2 PHASE SELECTION RULE FOR AN ENTRY PORT

What enters through the entry port is determined by the rule in

§3.1.4 unless specified differently in the "Port" statement.

4.3.1.7 Vessel Discontinuities

As stated in §4.2, in order to deal with the mechanisms of a large number of
discontinuous phenomena in a consistent and systematic manner, a sophisticated mathe-

matical modelling technique was adopted (Pantelides, 1995), decomposing a mathematical

model into two main groups: case invariant group and a set of physical discontinuities,

each characterised independently by its own state-transition. Based on this formalism,

the method for handling physical discontinuities will now be introduced in detail.

The required physical discontinuities are specified in such a way that based on

the phase selection rule defined in §4.3.1.6, a set of possible discrete states for a given

vessel are identified and each state is then described in terms of a set of relevant variables.
As emphasised at the beginning of §4.3, the hierarchy of the conceptual elements

of the physical modelling language, as shown in figure 3.25, will be maintained through-

out the whole model generation procedure. As a consequence the method of dealing with

physical discontinuities is based on this hierarchical structure. From this hierarchical

point of view physical discontinuities are categorised into two classes; a vessel and con-

nection class. In the vessel class the specification of a set of physical discontinuities is

concerned with the selection of the phase or aggregate passing through a port, including

CHAPTER 4. MATHEMATICAL MODEL FORMULATION 75

the appearance and disappearance of phases present in a vessel, on the other hand in the
connection class it is concerned with the selection of the relevant port of the two mutually
connected vessels. The latter is in fact carried out in the course of invoking appropriate
inter-vessel transfer law libraries, the details of which will be presented at §4.3.3. The
formal procedure for the specification of physical discontinuities in a vessel is given in
algorithm 4.1.6 below.

Algorithm 4.1.6 SPECIFY DISCONTINUITIES IN A VESSEL

If the port type is reversible then

1. Identify discrete cases in terms of flow directionality, each identified in accordance
with PHASE SELECTION RULE.

2. Specify discrete states in terms of relevant variables.

Else

I. Identify discrete cases in accordance with PHASE SELECTION RULE.

2. Specify discrete states in terms of relevant variables

Recall that a type of a mass stream port has the following three categories;

an entry, exit and reversible port, as demonstrated in §3.1.4. The above algorithm is

mainly decomposed into two cases depending on whether a port type is reversible or

not. In the case of the port allowing a reversible flow, firstly the pair of transitions

between flow directions (forward and reverse) are identified, and then each transition is

again decomposed into a subset of the transitions resulting from the identification of a

currently active phase or an aggregate passing through the reversible port. In the other

cases (an entry or exit port), a set of transitions are identified in terms of a phase or an

aggregate participating in the flow through the port. In order to identify these discrete

cases, we suggest the rule for both selecting a phase or an aggregate through an exit port

and associating an inlet stream with a phase or an aggregate in a vessel. The details of

this rule will be illustrated in rule 4.1. Let us assume that a fixed set of discrete cases for a

port have been identified by the application of rule 4.1. In accordance with the identified

discrete cases, an appropriate set of equations is generated corresponding to each discrete

state and if necessary, the condition for a set of transitions to the other states.

CHAPTER 4. MATHEMATICAL MODEL FORMULATION 76

The basic method for specifying discrete states in mathematical terms will now
be introduced. Once a set of states are identified by applying phase selection rule, the

specification of a phase or aggregate passing through a port is mathematically formulated

in such a way that a set of relevant variables is equated with the corresponding variables

of the port. In order to maintain the same set of the variables across a given set of discrete

cases, a set of the corresponding variables for a set of phases not passing through the port

should be made dummy by assigning numeric value, "0" to this set of the variables. Note

that relevant variables being able to be used here are categorised into the following three

classes:

" state-variables characterising the thermodynamic state of a phase or an aggregation

of phases (e. g. viscosity, density, enthalpy, mass fraction and etc.)

" some of the attributes of a mass stream (e. g. mass rate, enthalpy flow, dispersion

ratio and phase type of the port)

" port type variables in the case of a reversible port (e. g. outlet and inlet).

From the variables categorised in the above list those that are used to specify

discrete states depend on the type of a port. First, in the case of an exit port, (as stated

earlier) what flows out through the port depends on what phase or aggregate is covering

the port. We therefore need to specify the discrete states in terms of all the attributes

of the mass stream for the port as well as the appropriate set of state-variables. In the

course of invoking from a library a set of equations representing the inter-vessel transfer

law, these state-variables are determined by those contained in the library, which will be

demonstrated in §4.3.3.

In the case of an entry port, suppose that the discrete cases resulting from the

association of the inlet stream with a phase in a vessel has been identified by applying

the phase selection rule for the entry port. The set of variables required to specify each

discrete state are mass rate and enthalpy flow.

Finally in the case of a reversible port, as already noted, it is decomposed into

two cases in terms of the flow directionality, and each is then identified by applying

the appropriate phase selection rule. The flow directionality determines the type of the

reversible port (an exit or entry port). This enables us to apply the appropriate method

for specifying discrete states according to the flow directionality. That is, in the case of

forward flow we apply the method for specifying discrete states for an exit port, in the

other case (reverse flow) apply the method for an entry port. In the case of forward flow,

CHAPTER 4. MATHEMATICAL MODEL FORMULATION 77

as stated above, we need to specify discrete states in terms of all the attributes of the

mass stream for an exit port.
However, as far as the specification of discrete states in terms of the disper-

sion ratio and phase type of the reversible mass stream attributes is concerned, the two

vessel identifiers mutually connected are needed to describe the logical expression of the

condition for each state. This will be dealt with in §4.3.3.

As introduced in §3.1.4, a user could provide for selectivity (e. g. via a filter or

membrane) allowing passages of only specified phase or aggregate. In this case, instead of

specifying discrete states, we describe the fixed state in terms of a set of relevant variables

of the explicitly specified phase or aggregate.
Thus far we have demonstrated how to deal with a set of physical discontinuities

through ports in a vessel. By the completion of algorithm 4.1.6, it is possible to generate

an appropriate set of discontinuous equations through the explicit specifications of the

relevant variables. It should be recognised that all possible physical discontinuities likely

to arise through ports have been incorporated into a set of case variant equations in the

mathematical model. Consequently these discontinuities encompass transitions resulting

from vessel geometry (port positions). However, the discontinuities embedded intrinsically

in a transfer law itself are beyond the scope of algorithm 4.1.6. For instance, the rela-

tionship of phase equilibrium where the transitions among the states of only sub-cooled

liquid, only super-heated vapour and coexistence of two phases, and pipe flow containing

the transition between flow regimes (e. g. laminar and turbulent). The transfer law library

should be constructed for these discontinuities to be embedded in it, the details of which

will be illustrated in appendix C.

In the next section the procedures for generating mathematical equations from

the physical description of the geometry of a vessel will be introduced.

4.3.1.8 Geometry Section Sub-Model

This section is concerned with the generation of the mathematical sub- model

from the physical description of the geometry of a vessel. The generation procedure is

decomposed into the generation procedures for a set of subsections of the geometry such

as the section of shape, dimension and port position. Recall that as far as the orientation

section is concerned, only the "vertical" orientation is available in the present package

due to its simplicity. Consequently there is no generation procedure for the orientation

section. The master procedure for a geometry section model is given in algorithm 4.1.7

below.

CHAPTER 4. MATHEMATICAL MODEL FORMULATION 78

Algorithm 4.1.7 GENERATE GEOMETRY SECTION SUB-MODEL

1. For shape section,

(a) Apply vessel volume constraint.

(b) For each element of the aggregation list,

i. Generate an equation describing its volume.

2. For dimension section,

(a) Declare dimension variables as real type parameters.

(b) Set all numerically specified values to the dimension variables.

3. For port position section,

(a) Declare port position variables as real type parameters.

(b) Set all numerically specified values to the port position variables.

(c) If a port position is specified by a dimension attribute then

i. Equalise the port position variable to the dimension variable.

Recall the basic premise that all the phases present in a vessel must fill the

vessel. This is the case for a closed vessel the volume of which is fixed. The volume of a

closed vessel therefore is equal to the summation of the volumes of all phases present in

the vessel (step 1. a). Even the volume of an open vessel in fact cannot be varied. The

difference between open and closed vessels is the fact that since the volumes of phases

present in the open vessel may be varied and the remaining space is taken up by the

atmosphere, which is the part of the environment, the vessel content need not fill an open

vessel, but the vessel cannot be over-filled. We therefore assume that the remaining space
is taken up by the pseudo-volume, namely Vol-Empty in order to relate the vessel volume

to the volumes of the phases present in an open vessel, and then this volume is included

into the volume constraint of the vessel. That is, the open vessel volume is equal to the

summation of phases present plus the pseudo-volume (step 1. a).
The equations describing the volume occupied by each element of the aggregation

list are appropriately generated according to the shape of the vessel (step 1. b. i). For an

open vessel, the equation describing the pseudo-volume is generated additionally.

CHAPTER 4. MATHEMATICAL MODEL FORMULATION 79

The attributes of the geometrical dimension of a vessel are declared as the geo-
metrical design parameters which are time invariant quantities, as opposed to the variables
of equations governing dynamic behaviour (step 2).

Similar to dimension attributes, the attributes of port positions are declared

as time invariant design parameters if specified by numeric value (step 3. a and 3. b).
However, if the attribute of a port position was specified by a dimension attribute (e. g.
height, diameter for cylinder) instead of a numeric value, the equation equalising the port

position attribute and the dimension attribute is generated (step 3. c. i).

Thus far we have described the procedures for generating the mathematical
model of a vessel (algorithm 4.1). The remaining sections will be concerned with the

procedure for generating mathematical model from the information encapsulated into a
reservoir and connection entity.

4.3.2 Reservoir Sub-Model Generation

This section describes how to generate the mathematical model of a reservoir
from the physical information declared in a reservoir entity.

As illustrated in §3.2, the package can deduce which compounds may be present
in the phases within a vessel from the connection arrows and declared reactions and

transfer laws and the list of compounds specified in each source reservoir (described in

the reservoir entity). As the language provision for specifying a list of compounds in each

reservoir is not available in the present package, this section does not include dealing with

the identities of compounds involved.

Therefore only the port section in a reservoir entity is specified since all the

requisite state-variables in each reservoir are automatically detected from the information

about the inter-vessel transfer law in library whether it is a source or sink (see §4.3.3).

The procedure for the generation of the mathematical models of a reservoir is given in

algorithm 4.2 below.

Algorithm 4.2 GENERATE RESERVOIR SUB-MODEL

1. For each mass stream port,

(a) Create a set of the mass stream attributes; mass rate, enthalpy flow, dispersion

ratio and phase type.

(b) Build the mass stream instance composed of the set of the above attributes.

CHAPTER 4. MATHEMATICAL MODEL FORMULATION 80

2. For each energy port,

(a) Create the enthalpy flow attribute.

(b) Build an energy stream instance which has the above attribute.

This algorithm is mainly decomposed into two parts according to whether mass

or energy flows through a port of a reservoir, which the package automatically can deduce

from the information about the port of the vessel connected to the reservoir.
As already noted in algorithm 4.1.4, the currently active status of any material

flowing through a mass stream port is represented by a set of the mass stream attributes;
its mass rate, enthalpy flow, ratio and phase type (step 1).

Energy flow through an energy port is characterised by the enthalpy flow, since
this is its only attribute (step 2).

In the next section the detailed procedures for the generation of the mathemat-

ical model from the physical description of a connection entity is described.

4.3.3 Connection Sub-Model Generation

This section deals with the generation of the mathematical sub-model from

the information about physical description of a connection entity. The procedures for

generating the mathematical sub-model from a connection entity are given in algorithm

4.3 below.

Algorithm 4.3 GENERATE CONNECTION SUB-MODEL

1. Deduce the connectivities from the CONNECTION statement.

2. Invoke appropriate transfer laws from library.

3. If reversible mass flow then

(a) SPECIFY CONNECTION DISCONTINUITIES. (see algorithm 4.3.1

Recall that the physical description of an inter-vessel connection attribute con-

sists of a pair of ports from two vessels (one of the two vessels may be a reservoir), the

connection arrow to specify the flow directionality, and the inter-vessel transfer law.

CHAPTER 4. MATHEMATICAL MODEL FORMULATION 81

From the information about the pair of the ports, the topological inter-vessel

connections are deduced in terms of the relevant stream instances (step 1). The completion
of this step results in whole process flow-sheeting for a given process system.

As the inter-vessel transfer law is specified by a user, the set of transfer law

equations will be invoked from the library (step 2). This procedure in fact proceeds to

transform the set of the transfer law equations in the library table into an appropriate
form by considering the pair of the ports through which the transfer is occurring, after
having searched the specified transfer law to check whether or not it has been installed

in the library table (step 2). As mentioned in algorithm 4.1.6, in the course of invoking

a transfer law the set of state-variables embedded in the transfer law are identified and
then discrete states arising through the port of the source vessel in terms of the set of

state-variables.

As mentioned in §4.3.1.7, if the directionality of the inter-vessel flow is reversible,
it will be impossible to specify discrete states in terms of the dispersion ratio and phase
type of the attributes of the mass stream passing through the reversible port within

the scope of a vessel due to the impossibility of accessing vessels. These discrete states

therefore are specified at connection entity (step 3. a). The method for this specification

is that discrete cases are identified in terms of the flow directionality for a reversible

connection and each is identified by applying the phase selection rule described in §4.3.1.6

and then the state for each identified case is described in terms of the two attributes of

the mass stream flowing through the reversible connection; its dispersion ratio and phase

type. The formal procedure for specifying connection discontinuities is given in algorithm

4.3.1 below.

Algorithm 4.3.1 SPECIFY DISCONTINUITIES IN CONNECTION

1. Identify discrete cases in terms of flow directionality, each identified in accordance with
PHASE SELECTION RULE.

2. Specify discrete states in terms of the two mass stream attributes; dispersion ratio and

phase type.

Thus far the algorithms required to formulate mathematical models from physi-

cal description represented in the physical modelling language for a given process system

CHAPTER 4. MATHEMATICAL MODEL FORMULATION 82

have been presented in detail. In the end the automatically formulated mathematical
models encompass the discontinuous behaviour resulting from the discontinuities arising
routinely in process systems, which includes the appearance and disappearance of phases,
the flow regime transition, the discontinuities from vessel geometry and other factors.

This concludes the algorithms required to generate the mathematical models.
The remaining section describe the conventions for notation used in mathematical models.

4.4 Notation used in Mathematical Models

Before implementing the algorithms for generating mathematical models, a con-

sistent method of notation should be identified. This section describes the notation used
in the present implementation. The Notation described in this section is limited to that

of variables and parameters comprising equations in mathematical models. As gPROMS
language is the form of the generated mathematical models, the other symbols required

to formulate a set of equations are based on the syntax of the gPROMS input language,

which includes logical expressions, arithmetic operators and a set of built-in functions.

In order to ensure a consistent notation, we take account of the symbols com-

monly used in physical descriptions and for physical properties. There are several methods
for formulating the notation. We note that the most significant aspect of notation is the

legibility to users, prompting to adopt the names of physical properties and symbols in

physical description literally. On the other hand we must control the length of a notation

made in this way. Too long a notation may inhibit its legibility in itself and even the ease

of understanding. These aspects lead to a balance between the literal adoption and com-

pactness, depending on a specific notation. The standard notation used in this package

is given in table 4.1, the lower part of which represents parameters used in mathematical

models, and non-standard notation given in table 4.2.

As stated earlier, all variables and parameters used in mathematical models

should be unique within each vessel, reservoir and connection. To be so, a notation, in

most cases, is made from the symbol of physical property followed by a additional identifier

taken from a name of phase, aggregation, port, vessel, reservoir or connection as described

in the physical process description. In addition to these, an under-bar, "_" is inserted for

the ease of readability between the symbol of the physical property and the supplementary

identifier. Examples are Mass_V, Enth_Pol, Vol_FlashDrum and Velocity_Cl, where

V, Pol, FlashDrum and C1 denote identifiers of a phase, port, vessel and connection

respectively. The under-bar is also employed as a delimiter in various cases. It should

CHAPTER 4. MATHEMATICAL MODEL FORMULATION 83

standard items variables/parameters t
mass Mass Array(NoComp) of Mass
mole Mole Array(NoComp) of Mole
mass fraction MassFrac Array(NoComp) of Fraction
mole fraction MoleFrac Array(NoComp) of Fraction
mass flow rate Rate Array(NoComp) of Mass-Rate
velocity Velocity Array(NoComp) of Velocity
enthalpy Enth Enthalpy
internal energy IntEnergy Int_Energy
enthalpy flow EnthFlow Enthalpy. Flow
entropy Entropy Entropy

pressure Press Pressure
temperature Temp Temperature

volume Vol Volume
density Den Density

viscosity Viscosity Viscosity

ratio Ratio Array(NoComp) of Fraction
total ratio TotalRatio Fraction
phase type PhaseType Positive
molecular weight MoleWeight Array(NoComp) of Positive
equilibrium constant EquilConst Array(NoComp) of Positive

phase bounds Top, Bot Positive
level Level Positive
area area Positive

number of components NoComp INTEGER
port position z REAL
diameter diameter REAL
height height REAL
length length REAL

width width REAL

constant Const REAL

port type OUTLET, INLET INTEGER

Table 4.1: Standard Notation Table

non-standard items variables/parameters types
dew temperature DewTemp Temperature
bubble temperature BubTemp Temperature
driving force DrivingForce NoType

reynolds number ReynoldsNo Positive

reynolds constant ReynoldsConst Positive

Table 4.2: Non-Standard Notation Table

CHAPTER 4. MATHEMATICAL MODEL FORMULATION 84

be noted that users are banned from using an under-bar in the physical description of a

process system.

4.5 Summary

This chapter was concerned with the generation of mathematical models ex-
hibiting discontinuous behaviour potentially arising in a given system, from the purely

physical description represented by the proposed language.

The basic strategy for formulating mathematical models was established and
then the consistent and general mathematical formalism required to encompass the phys-

ical discontinuities in an "easy" and "natural" manner was identified on the basis of the

gPROMS model structuring concept. Based on this model generation strategy and generic

formalism, the complete algorithms for generating mathematical models from the physical

description written in the physical modelling language designed in the previous chapter

were developed. Finally, in the last section, the notation used in the mathematical models

was discussed in detail.

As the methodology for model generation has now been developed the computer

implementation of it will be discussed in the next chapter.

85

Chapter 5

Implementation

In the previous two chapters a language supporting the formal physical descrip-

tion of process systems and the methodology for formulating mathematical models from

this physical description have been presented.
This chapter is concerned with the implementation of the package for auto-

matically generating mathematical models, based on the model formulation methodology

presented in chapter 4. The current version of this package has been implemented in C

programming language (Kernighan and Richie, 1988) on UNIX system. It begins with

an overview of the model generation package in terms of the software architecture. The

implementation of each of architectural sub-systems will then be discussed in detail in the

subsequent sections, including the transfer law library and the two symbol tables for the

internal storage of information about the physical description and mathematical models.

5.1 Software Architecture

The model generation package is composed of three major sub-systems: the

translator, the model generation engine and the code generator. In addition there are

the library containing appropriate transfer laws and the two symbol tables for the in-

ternal dynamic storages of the physical description and mathematical models: physical

and mathematical symbol table. A schematic diagram of the software architecture of the

package is given in figure 5.1.

In order to store the information about physical description in an appropriate

data structure, we need to set up the physical symbol table, which is internally represented

in the same hierarchical structure as shown in that of figure 3.25. Prior to building the

physical symbol table, the translator takes an input file containing the physical description

CHAPTER 5. IMPLEMENTATION 86

and then checks the syntax and semantics of the language. If the input file is successfully
translated, the translator creates the physical symbol table, which is dynamically allocated
in memory, in which it stores all the information contained in the input file. The physical

symbol table is used by the model generation engine to formulate mathematical models.
based on the model generation algorithms developed in the previous chapter. In the

course of the model formulation process the model generation engine may invoke transfer

laws which have already been installed in the library. All the mathematical information

generated by the model generation engine is encapsulated in the mathematical symbol

table which uses the same structured hierarchy as shown in figure 3.25. Finally the

mathematical symbol table is employed by the code generator to convert the internal

mathematical representation into the form of a specific simulator input language.

5.2 The Translator

The translator performs two main tasks:

" checks whether or not the physical description coded in the physical modelling

language is correct in terms of its syntax and semantics.

" stores the information about the physical description into the physical symbol table

for later use by the model generation engine.

In order to complete these tasks the translator is decomposed into the three

structural sub-systems; the scanner, the parser and the semantic routines as shown 5.1.

These sub-systems and the physical symbol table are discussed in the following sections.

5.2.1 The Scanner

The scanner reads the input character stream and identifies the tokens which

include keywords, operators, identifiers, constants, literal strings and punctuation symbols

such as parenthesis, commas and semicolons. The tokens are passed to the parser for

syntax analysis.
Although the scanner is the simplest sub-system of the translator enough to

implement in any programming language, the scanner of this package has been easily

implemented by lex (Levine et al., 1995) (installed on the UNIX operating system) which

is a tool for automatically generating the scanner in C code from a specification based

on regular expressions. The lex specification consists of the declarations section (which

sets up the execution environments in terms of variables, manifest constants, and regular

CHAPTER 5. IMPLEMENTATION 87

Physical Model

Character Stream

TRANSLATOR

Tokens

PARSER

Syntactic Structure

SEMANTIC ROUTINES

4

Physical Symbol Table

MODEL GENERATION ENGINE

Mathematical Symbol Table

CODE GENERATOR

Mathematical Model

LIBRARY : Transfer Laws

Figure 5.1: The Software Architecture of the Prototype Package

CHAPTER 5. IMPLEMENTATION 88

definitions), the translation rules section, (which includes a list of regular expressions

composed of the patterns and actions) and C supporting-subroutines section (there is no

subroutine in the present package). The lex input file for the this package (appendix A) is

compiled by using the UNIX command lex with the option 11 to get the scanner coded
in C (namely lex . yy . c).

5.2.2 The Parser

The parser checks the syntactic structure of an input file representing the phys-
ical description of a process systems in the form of the physical modelling language.

Whenever the parser requires a new token, the scanner is invoked and returns the token

as the corresponding integer to the parser. The returned token is used by the parser to

check if it is correctly formed in terms of the syntax and the appropriate semantic routines

are then undertaken.

In addition to the lex utility, there is also an automatic parser generator yacc
(Levine et al., 1995) on the UNIX operating system. The adoption of yacc has led to the

rapid prototyping of the parser, otherwise, considerable efforts would have been required

to implement it. The parser is thus generated by yacc in this package. To do this we

need to specify the yacc input which is in the form of regular expressions. Similar to

the basic structure of lex, yacc specification is composed of the declarations section, the

translation rules section and C supporting-subroutines section. The declarations section

has three optional sub-sections which includes a literal C block code enclosed in %{ %}

lines, the declaration of the types of the stack used in the parser and the definition of a

list of tokens. The yacc input file in this package is given in appendix B, where the first

two options of the declarations section corresponds to the inclusion of the global header

file (#include "global. h") and the declaration of the yacc stack type (union{
...

}),

respectively. In the translation rules section consists of a list of the rules for the grammar

of the physical modelling language discussed in chapter 3. The C subroutine specified in

the last section is the function calling lex (lex
. yy . c). Once the yacc input specification

is completed, the yacc input file is compiled using the UNIX command yacc with the

option ly to get the parser (namely y. tab . c).

5.2.3 The Semantic Routines

Adoption of yacc has the consequence that coding of the semantic routines rep-

resents most of the effort required in the implementation of the translator. The semantic

routines undertake two main tasks as follows:

CHAPTER 5. IMPLEMENTATION 89

" checks that the semantics of the physical description contained in the input file are
valid.

" creates the physical symbol table, the appropriate internal data structure that will
store the information about this physical description.

The details of the semantics of the language for physical description have been

presented in the chapter 3 and the following section deals with the data structure of the

physical symbol table.

5.2.3.1 The Physical Symbol Table

As stated in chapter 3, there are three primitive physical process entities (vessel,

reservoir and connection). The physical symbol table is thus categorised into three classes

of tables corresponding to the three primitive physical process entities, i. e. the vessel,

reservoir and connection tables. The physical symbol table for each entity is structured

in the form of hash tables consisting of a fixed array, each element pointing to an entity

instance currently created in memory. Again a set of attributes declared in each section

belonging to an entity is structured into the corresponding hash table'. The hash table

structure enables to speed up a search of the table, which will be used for the model

generation engine to construct the mathematical symbol table.

The detailed procedure for constructing the physical symbol table involves the

following:

1. create the space available to each attribute in memory by use of the dynamic storage

allocation facilities of the programming language.

2. store the attribute information into the space in memory.

3. insert the entry into the table if it is not already present.

5.3 The Model Generation Engine

The model generation engine embodies the algorithms presented in chapter 4.

That is, the model generation engine transforms the information encapsulated in the

physical symbol table into a mathematical model by applying the generation algorithms

and then stores the new information into the mathematical symbol table. In the course

1 The structure of geometry attributes declared in geometry section of a vessel entity is not based on

the hash table but based on a linked list because there is only one geometry instance for the vessel entity.

CHAPTER 5. IMPLEMENTATION 90

of this process, transfer laws in the library are invoked as required and then converted
into an appropriate set of equations.

To do this, the first task of the model generation engine is to design the abstract
data type for the structure of the mathematical symbol table. The data type is basically

composed of a set of complex combinations between linked lists and binary trees. Recall

that the structure of a mathematical model is mainly decomposed into a case invariant

group and a set of physical discontinuities to encompass the combined discrete/ continuous
behaviour of a given process system. The linked list data type is employed for the case
invariant group, whilst, the data type composed of the combined linked lists and binary

trees is employed for storing mathematical sub-model representing the discontinuities.

Based on a well designed abstract data type for the mathematical symbol table,

all activities performed by the model generation engine, like those of the semantic routines,

are concerned with handling the data structure, which includes the dynamic creation of

an abstract data type, the intermediate storage of the information into the structure and

its insertion into the mathematical symbol table. This is then used by the code generator

to construct the mathematical model which is represented in a specific simulation input

language. The details of internal data structure for the mathematical symbol table will

now be presented.

5.3.1 The Mathematical Symbol Table

The internal representation of the mathematical symbol table is structured into

the hierarchy as shown figure 3.25, in terms of the three primitive physical entities. The

internal hierarchical structure of the mathematical symbol table is shown in figure 5.2.

The table is decomposed into the three hierarchical levels, each corresponding to the sub-

model (vessel, reservoir or connection sub-model) formulated from the corresponding

physical process entity. The two dotted lines in figure 5.2 delimit the hierarchical levels

of the three sub-models, each of which are composed of a set of abstract data sub-

structures based on combinations of the data types of linked lists and/or binary trees.

The declaration section in each sub-model represents a set containing the parameter,

variable, set and selector sections. It should be noted that, as stated in §4.2, the equation

section in the vessel and connection sub-model are decomposed into case invariant and

discontinuity sections.

Each sub-model is structured in the form of its own hash table. The following

set of attributes are also structured in the form of hash tables:

" parameter, variable and set attributes in each sub-model

CHAPTER 5. IMPLEMENTATION 91

" stream attributes in both the vessel sub-model and the reservoir sub-model stream

attributes

" unit attributes in the connection sub-model

The internal structure used to store the discontinuity section in the connection

and vessel sub-models are a set of abstract data types mainly built by the combination

of linked lists and/or binary trees. The internal structure for the other sections are based

on the derivatives of linked lists.

5.4 The Transfer Law Library

When a transfer law is invoked, its availability is checked by searching for it by

name in the transfer law library table. The set of equations comprising the transfer law

is then transformed into an appropriate form by passing the set of phases participating

in the transfer law as the parameters of this invoking procedure.

The data type required to represent a transfer law in the library is structured
into a set containing its name, the type of flow (mass or energy flow) and a fixed set of

equations providing a mathematical description of the transfer. As discussed in §4.3.1.7,

the set of equations comprising a transfer law are categorised into two main classes: case

invariant group and a set of physical discontinuities. The data types required to install

the equations representing a transfer law are thus based on combinations of linked lists

and/or binary trees. In order to improve the speed of searching for a transfer law in the

library table, the transfer law instances are installed into a hash table structure.

Also included in the library are a set of functions which manage the construction

and installation of relevant variables and equations required to represent a transfer law,

thus allowing easy maintenance and updating of the library. The task of installing a new

transfer law is thus comparatively simple.

5.5 The Code Generator

Once the task of the model generation engine is completed by storing all the

information about a mathematical model into the mathematical model symbol table, the

final model generation procedure is undertaken by the code generator, which converts the

information stored in the mathematical symbol table into a specific target language. In

the present package the target language is the gPROMS (Barton, 1992) input language.

CHAPTER 5. IMPLEMENTATION 92

ý

w

ä

a

M

ý H

ä

w

<
vwi

a

w

vwi

z 0 3
z 0 ,

U ä U ö

Gn H I
Ö

zý 3
°

Q
w

ti ti

Ö

a
`
Q

e
V

Ö

n

Ö

a n°.

T

ze

U

o
A

0

ri

0 O

ra

ý'

;

I
I

z

a

¢

° H

Q"

ä
°

ý" a
<

X
¢

ý' °

wý

a

d
ä
w

ä
w

x
a.

Z o

a w

w'
x
a

ö

U

a W

zw
c/' ä

ý
w
Ü

ý
V

q

z
o

ö ö
F

O w O ti

Z)
Q
Ü

¢ H
d

Ä W ö
p4

a
Ü

c
p;

r

ö
,

w
a O

d
ö

I
I

W

A o

Z)

o o

,ý

e5
w

U
W

z Q

Figure 5.2: The Internal Hierarchical Structure of the Mathematical Symbol Table

CHAPTER 5. IMPLEMENTATION 93

From the point of view of programming, the conversion procedures simply utilise
formatting functions to fit the output to the form of target language and hence the imple-

mentation is in itself not a complex job. The task of updating the package to formulate

a mathematical model in the form of a new target language therefore only requires the

additional implementation in the code generator, rather than upgrading the whole model
generation engine. This has a consequence that the model generation package provides the

potential of multi-functionalities for generating different forms of mathematical models
as required.

5.6 Summary

Based on the model generation algorithms presented in §4.3, the implementation

of the current version of the package has been discussed in this chapter. The software

architecture of the model generation package is similar to that of a compiler which is

a program that reads a program written in one language - the source language - and
translates it into an equivalent program in another language - the target language (which

is usually a machine code) (Aho et al., 1986). The process of translating a program writ-

ten in a source language (the physical description) into a target language (the simulation
input language) is decomposed into two stages; the intermediate storage of the informa-

tion about the mathematical models formulated by the model generation engine into the

mathematical symbol table (instead of direct generation of the mathematical models from

the information stored in the physical symbol table) and the conversion of the information

encapsulated in the mathematical symbol table into a specific target language.

The decoupling of the model generation process into the two stages provides a

potential for the versatility of the code generator in this package, that is, it is possible

to easily improve the code generator to generate mathematical models in the various

forms of simulator input language (e. g. gPROMS, Speed Up, etc.). Furthermore, it has a

potential of enhancing the compatibility of this package which means the ease with which

the package may be interfaced with other modelling and simulation environments.

Inevitably the language designed for the physical description and facilities evolve

as more complex processes and a wider range of applications are considered. Due to the

adoption of the automatic parser generator (yacc), changes to the syntax of the language

require only that the yacc input specification be updated. This process does not affect the

semantic routines since the process of generating the parser by use of yacc is completely

independent to the semantic routines. This has a consequence that the task of upgrading

CHAPTER 5. IMPLEMENTATION 94

the package resulting from the evolution of the language syntax is straightforward, which

means high extendibility of software products.

95

Chapter 6

Simulation Examples

This chapter describes the simulation results of the examples introduced in §3.4.

6.1 Flash Drum

Here we consider the flash drum described in §3.4.1. Each phase is composed of

two components; propane and butane. The operating and intial conditions used in this

simulation are as follows:

Operating Conditions

" source reservoir, R1

Pressure =

Density =

Mass Fraction =

Enthalpy =

Dispersion Ratio =

PhaseType =

Viscosity =

4x1.013E2 kPa

330 kg/m3

[0.4,0.6]

3.5E2 kJ/kg

0.001

3 (aggregation type)

5E-5 Pa. s

" sink reservoir, R2 and R3

Pressure = 1.013E2 kPa

Initial Conditions

Temperature of vapour = 300 K

Mass of each component in separate vapour = [1,1] kg

Mass of each component in aggregation = [15,15] kg

dispersion ratio = 0.001

CHAPTER 6. SIMULATION EXAMPLES 96

Figure 6.1 and 6.2 show the change with time of the total mass holdup of each
phase and the horizontal mixture level of the aggregate respectively.

140

130

120

110

100

90

80

70

60

50

40

30

20

10

0 10000 20000 30000

PLANT. FLASHDRUM. SUM_MASS_B
-- PLANT. FLASHDRUM. SUM_MASS_L
"" "' PLANT. FLASHDRUM. SUM MASS V

Figure 6.1: Holdup variation in flash drum

The connection between the flash drum and reservoir is defined to be irreversible

flow (i. e. through the use of a pipe installed with a non-return valve). Since the pressure

of the flash drum is initially lower that that of reservoir R2 there is no flow through the

connection and the pressure of the flash drum varies with time. When the driving force

(the pressure difference between the flash drum and reservoir) becomes positive (at t

56 sec.), the non-return valve opens and flow commences out of the flash drum through

port Pol. Figure 6.3 and 6.4 shows this discontinuous behaviour.

CHAPTER 6. SIMULATION EXAMPLES

2.4

2.2

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0
0 10000 20000 30000

PLANT. FLASHDRUM. LEVEL_B_L

97

Figure 6.2: Level variation in flash drum

CHAPTER 6. SIMULATION EXAMPLES

0

PLANT. DRIVINGFORCE C2

98

Figure 6.3: Driving force variation accross of connection C2 between flash drum and the

reservoir

0.1

0.1

0.1

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.00
0 100 200 300 400 Soo

ýý PLANT. FLASRDRUM. SUM_RATE_PO1

Figure 6.4: Variation of total mass rate flowing through port Pol in the flash drum

CHAPTER 6. SIMULATION EXAMPLES 99

6.2 Two Flash Drums with reversible flow

This example considers the two flash drums linked together via. a connection al-
lowing flow in either direction. The operating and initial conditions used in this simulation
are as follows:

Operating Conditions

9 source reservoir, R1

Pressure =

Density =

Mass Fraction =

Enthalpy =

Dispersion Ratio =

PhaseType =

Viscosity =

1.013E2 kPa

330 kg/m3

[0.4,0.6]

3.5E2 kJ/kg

0.01

3 (aggregation type)

5E-5 Pa. s

" sink reservoirs, R2, R3 and R4

Pressure = 1.013E2 kPa

Initial Conditions

" FlashDruml

Temperature of vapour = 300 K

Mass of each component in separate vapour = [1,1] kg

Mass of each component in aggregation = [15,15] kg

dispersion ratio = 0.001

" FlashDrum2

Temperature of vapour = 280 K

Mass of each component in separate vapour = [1,1] kg

Mass of each component in aggregation = [15,15] kg

dispersion ratio = 0.002

Figure 6.5,6.6 and 6.7 shows the change with time of the horizontal mixture

levels and the total mass holdup in each flash drum respectively.

This example illustrates the change in flow direction in the connection between

the two flash drums. This is shown in in figure 6.8 which represents the change in port

type with type. In this figure a port type of 1 represents an outlet flow whilst a port type

of 2 represents a flow into the vessel.

CHAPTER 6. SIMULATION EXAMPLES 100

1.9

1.8

1.7

1.6

1.5

1.4

1.3

1.2

1.1

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0-
0 1000000 2000000 3000000

PLANT. FLASHDRUMI. LEVEL B_L
"" "' PLANT. FLASHDRUM2. LEVEL BL

Figure 6.5: Level variation in two flash drums

CHAPTER 6. SIMULATION EXAMPLES 101

51

4

3

PLANT. FLASHDRUX1. SUM_MASS_V

"- PLANT. FLASHDRDMI. SUM_KKSS_B_L

2

1

Figure 6.6: Holdup variation in flash druml

70

60

50

40

PLANT. FLASHDRVM2. SUM_MASS_V

ý- PLANT. FLASHDRVM2. SUM_MASS_B_L

30

20

10

Figure 6.7: Holdup variation in flash drum2

0 1000 2000 3000 4000 5000

0
0 1000 2000 3000 4000 5000

-f

CHAPTER 6.

2.0

1.9

1.8

1.7

1.6

1.5

1.4

1.3

1.2

1.1

1.0

0.9
1360000

SIMULATION EXAMPLES

1370000 1380000

PLANT. PLASHDRUMI. PORTTYPB PO1

Figure 6.8: Flow reversibility between two flash drums

6.3 Decanter : Settling tank

102

We now consider the simulation of the decanter introduced in §3.4.3. In this

example we considered a single component multi-phase system. The operating and initial

conditions are as follows:

Operating Conditions

" source reservoir, R1

Pressure = 2*1.013E2 kPa

Density = 902.5 kg/m3

Mass Fraction = 1.0

Enthalpy = 0 kJ/kg

Dispersion Ratio = 0.3

PhaseType = 3 (aggregation type)

Viscosity = 0.00178 Pa. s

" sink reservoirs, R2, R3

Pressure = 1.013E2 kPa

CHAPTER 6. SIMULATION EXAMPLES

9 decanter

Enthalpy of Butanol =0 kJ/kg

Enthalpy of Butanol in aggregation =0

Enthalpy of Water in aggregation =0

Enthalpy of Water =0

Temperature of Butanol = 298 K

Temperature of Butanol in aggregation = 298

Temperature of Water in aggregation = 298

Temperature of Water = 298

Density of Butanol = 805 kg/m3

Density of Butanol in aggregation = 805

Density of Water in aggregation = 1000

Density of Water = 1000

Viscosity of Butanol = 2.65E-3 Pa. s

Viscosity of Butanol in aggregation = 2.65E-3

Viscosity of Water in aggregation = 9.0E-4

Viscosity of Water = 9.0E-4

Pressure in decanter = 1.013E2 kPa

Initial Conditions

" decanter

Mass of Butanol

Mass of Water

Mass of the aggregate
Mass of Water in aggregation

IntEnergy of Butanol

IntEnergy of Butanol in aggregation

IntEnergy of Water in aggregation

IntEnergy of Water

=0 kg

=0 kg

=0 kg

=0 kg

=0 kJ/kg

=0 kJ/kg

=0 kJ/kg

=0 kJ/kg

103

Figure 6.9 and 6.10 shows change with time of the butanol level and the mass

holdup of each phase respectively. Figure 6.11 illustrates the fact that there is no flow

over the weir until the butanol level as reached the top of the weir, at approximately 1200

sec.

CHAPTER 6. SIMULATION EXAMPLES 104

-%- PLANT. DECANTER. LEVEL_B

Figure 6.9: Level variation in decanter

0 1000 2000 3000

CHAPTER 6. SIMULATION EXAMPLES 105

2801

2601

2401

220,

200,

180

160

140

120

100

80

60

40

20

-f- PLANT. DECANTER. SUM-MUS-BI
PLANT. DECANTER. SDM_MASS_B
PLANT. DECANTER. SUM_MA. SS_Wl

f- PLANT. DECANTER. SUM MASS W

Figure 6.10: Holdup variation in decanter

0 1000 2000 3000

CHAPTER 6. SIMULATION EXAMPLES 106

2.45266

2.45265

2.45264

2.45263

2.45262

2.45261

2.45260

2.45259

2.45258

2.45257

2.45256

2.45255

2.45254 L

--Ar-- PLANT. DECANTER. SXY RATE P02

Figure 6.11: Flow over weir in decanter

0 1000 2000 3000

107

Chapter 7

Conclusions and Future Work

7.1 Conclusions

The software package implemented on the basis of the methodology described in

this thesis allows the automatic generation of lumped-parameter models taking account

of discontinuous behaviour routinely arising in process systems. The package has been

successfully tested through the simulation of several examples using the general-purpose

simulation package, gPROMS to prove the feasibility of the proposed model formulation

approach.

The starting point of this research was the construction of the concept for process

representation from the previous work (Vazquez-Roman, 1992), which has been extended

to encompass combined discrete/ continuous process systems, although the underlying

concept remains unchanged. The basic premise is well defined thermodynamic phases

where the state of all material present may be described in terms of a finite set of state

variables and hence any process system may be viewed as a set of inter-connected vessels

where the phases present interact. These interactions may involve transfers of material

and/or energy between pairs of phases or vessels through well defined physico-chemical

transfer laws.

The textual description in a high level language specific to process systems has

been chosen as a method for supporting the description of process systems in a purely

physical fashion based on the conceptual process representation. The formal language

for this purpose has been designed with a special emphasis on process representation for

phase distribution within a vessel and on the geometry of process equipment and their

connections. This has a consequence that the formalism of the language satisfies the key

requirements of our ultimate research objective:

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 108

" highly declarative description

" hierarchically structured formalism

" purely physical behaviour-oriented feature

" provisions enabling identification of the physical discontinuities routinely arising in

a given process system

The most important feature of the methodology for formulating mathematical
models presented in this thesis is the capability for dealing with the physical discontinuities

arising in a given process system. This discontinuous behaviour arises routinely due

to the phase appearance or disappearance, transitions between fluid flow regimes and
flow direction and those resulting from the geometry of individual process equipment.
No other computer-aided model generation package designed to automatically identify

these discontinuities and then to generate appropriate mathematical models from purely

physical fashion has yet been reported.

The current version of this package generates mathematical models in the form

of gPROMS input language, which makes it possible for the models to be directly simu-
lated within the gPROMS environment. The procedure of storing the information about

mathematical models in internal data structure is completely decoupled from that of gen-

erating its output format, instead of directly producing its output format without its

intermediate storage. From the point of view of a software development this suggests a

potential for high compatibility of a software product, producing multiple output formats

as desired within a unified software framework, thus making it possible to easily interface

with other modelling and simulation packages.

Research into the development of general-purpose modelling environments, which,

in this context, provide users with a facility for describing the underlying dynamic be-

haviour of process systems in terms of a set of variables and equations, may be thought

of as being somewhat in its maturity, though further work is required in some aspects, for

example, the modelling and simulation of combined lumped and distributed parameter

systems. In contrast, the research into automatically generating appropriate mathemat-

ical models, partly or totally, with the objective of ultimately freeing users from formu-

lating the consistent set of equations comprising the model for a desired process system,

from author's point of view, is still in its infancy. It is hoped that the work described

in this thesis will make some contribution towards enhancing the practical feasibility of

sophisticated computer-aided modelling tools.

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 109

7.2 Future Work

In this section a number of issues for future work from a both theoretical and
practical point of view will briefly be discussed.

7.2.1 Suggestions on "Phase" and "Aggregation" statement

The phase selection rule for entry ports in this research has been developed in
§4.3.1.6. However, further refinement of this rule is still required to deal with the wide

range of real situations relating to the behaviour of interacting phases in a vessel and
their inter-vessel connections.

The basic idea is to predict the ratios of the phases present as a function of
height, using simple mixing/separation laws (in general "dispersion law"), thus their

solution yields volume-fractions of phases present in a vessel as a function of height and

time. By this idea it is clear that what flows out of a port at a given height is the mixture of

phases at this height. Similarly, the injection of a given mixture of phases through a feed-

port will be dispersed according to these dispersion laws. These dispersion laws can take

account of the presence of stirrers, and are thus defined for each vessel (not for transfers

between phases), in principle to cover all possible phases which can be simultaneously

present in the vessel.

Strictly, this sweeps away the need for our "Aggregation" statement, since in

principle all phases involved may be simultaneously present, and mixed to different extents

at different heights. Instead the user is allowed to simply define the dispersion laws.

However it may be useful to retain the Aggregation statement so that the user

can override this general principle, restricting the possible combinations assumed to occur

and specifying perhaps different dispersion laws for different combinations.

7.2.2 Broadening the scope of the physical description

The model formulation methodology developed in this thesis has been proved

to be successful as shown through the simulation of several examples involving flash

drums and a decanter. However the current version of the proposed language and the

implemented software package based on this methodology requires some extensions to

deal with a wide range of applications such as membrane, packed beds, fluidised beds.

In addition to this requirement, a more general treatment for describing irregular

geometry of process equipments is needed. One possible way to cope with this is an

integration of the model generation package with a commercialised facility fully supporting

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 110

the geometrical description of individual process units in 3-dimensions.

7.2.3 System environment

This thesis has focussed on the core part of computer-aided process modelling,
the automatic mathematical model generation, rather than the design of a sophisticated

system environment (Stephanopoulos et al., 1987; Sorlie, 1990; Bar and Zeitz, 1990;
Westerberg et al., 1991; Andersson, 1994; Vazquez-Roman et al., 1996) which is an issue

of considerable importance in process engineering. The current version of the package
is thus designed to interface with those environments above. As far as the development

of such an environment is concerned, it is recommended that such development should
be undertaken within the scope of the development of an integrated process engineering

environment.

7.2.4 Refinement of transfer law library

As illustrated in §4.1, the transfers of material and/or energy between pairs of
interacting phases and inter-vessels are described in terms of the state-variables of the

two phases through well defined physico-chemical transfer laws. The set of equations

and variables comprising a given transfer law are invoked from the transfer law library.

In order for the library to hold a vast variety of transfer laws and to allow rapid access

to search for a given transfer law entry, it is desirable to construct the library whose

internal structure is designed by the technology employed for building efficient database

management systems.

7.2.5 Generation of distributed parameter models

At present the prototype package is limited to the generation of lumped-parameter

models. To broaden the range of application, the extension of this package to generate

distributed-parameter models (or combined with lumped-parameter models) as a long

term research project is recommended. Current contributions made in this direction are

(Dieterich and Eigenberger, 1995; Lohmann and Marquardt, 1996; Jensen and Gani,

1996; Barber, 1997). A number of issues of considerable importance remain unresolved,

these include facilities for handling complex geometries, the automatic generation of ap-

propriate boundary conditions and a consistent methodology for modelling multi-phase

systems.

As a continuation of this work the development of a computer package for the

automatic generation of combined lumped/distributed parameter mathematical models

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 111

is in progress at Imperial College (Barber, 1997). This work will include the design of

a conceptual framework for representing process systems based on a completely physical
description and the development of a mathematical modelling strategy to deal with, in

general, 3 dimensional multi-phase systems.

It is also worth noting that the second version of gPROMS (Oh, 1995) is the only

currently available modelling environment with facilities for modelling and simulation of

combined lumped and distributed parameter systems.

112

References

A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: principles, techniques, and tools.
Addison-Wesley Publishing Company, 1986.

M. Andersson. Omola - an object-oriented language for model representation. Licentiate
Thesis TFRT-3208, Department of Automatic Control, Lund Institute of Technology,

Lund, Sweden, 1990.

M. Andersson. Discrete event modelling and simulation in omola. In IEEE Symp.

Computer-Aided Control System Design, CACSD '92, California, March 17-19 1992.

M. Andersson. Object-oriented modelling and simulation of hybrid systems. Doctoral

dissertation, Department of Automatic Control, Lund Institute of Technology, Lund,

Sweden, 1994.

R. Aris. Mathematical Modelling Techniques. Pitmans, London, 1978.

W. M Austin and B. Khoshnevis. Automatic model generation for production-distribution

systems using natural language. SIMULATION, 52(5): 207-211,1989.

M. Bar and M. Zeitz. A knowledge-based flowsheet-oriented user interface for a dynamic

simulator. Computers & Chemical Engineering, 14: 1275-1283,1990.

J. A. Barber. Towards computer generation of combined lumped and distributed pa-

rameter process models. Second quarterly progress report, The Centre for Process

Systems Engineering, Imperial College, London, 1997.

P. I. Barton and C. C. Pantelides. The modelling of combined discrete/ continuous pro-

cesses. AIChE J, 40: 966-979,1994.

P. I. Barton. The modelling and simulation of combined discrete/continuous processes.

PhD thesis, Imperial College, University of London, 1992.

REFERENCES 113

H. W. Beck and P. A. Fishwick. Incorporating natural language descriptions into modeling
and simulation. SIMULATION, 52(3): 102-109,1989.

R. Bogusch and W. Marquardt. A formal representation of process model equations.
Computers & Chemical Engineering, 19, Suppl.: S211-S216,1995.

A. J. Czulek. An experimental simulator for batch chemical processes. Computers 4
Chemical Engineering, 12(2/3): 253-259,1988.

E. E. Dieterich and G. Eigenberger. Bimap -a tool for comuter aided modeling in

chemical reaction engineering. Computers 4 Chemical Engineering, 19, Suppl.: S773-
S778,1995.

H. Elmqvist. A structured model language for large continuous systems. PhD thesis,

Department of Automatic Control, Lund Institute of Technology, Lund, Sweden,

1978.

M. Feinberg. On Gibb's phase rule. Archives Rational Mechanics and Analysis, 70: 219-

234,1979.

R. Gani, E. L. Sorensen, and J. Perregaard. Design and analysis of chemical processes
through DYNSIM. Ind. Eng. Chem. Res., 31(1): 244-254,1992.

P. Holl, W. Marquardt, and E. D. Gilles. DIVA -a powerful tool for dynamic process

simulation. Computers 4 Chemical Engineering, 12(5): 421-426,1988.

A. K. Jensen and R. Gani. A computer aided system for generation of problem specific

process models. Computers E1 chemical Engineering, 20, Suppl.: S145-5150,1996.

G. S. Joglekar and G. V. Reklatis. A simulator for batch and semi-continuous processes.
Computers 81 Chemical Engineering, 8(6): 315-327,1984.

B. W. Kernighan and D. M. Richie. The C programming language. Prentice Hall, second

edition, 1988.

A Kroner, P. Holl, W. Marquardt, and E. D. Gilles. DIVA - an open architecture for

dynamic bimulation. Computers & Chemical Engineering, 14(11): 1289-1295,1990.

L. Lamport. Latex user's guide £ reference manual. Addison-Wesley Publishing Com-

pany, 1986.

J. R. Levine, T. Mason, and D. Brown. lex & yacc. O'Reilly & Associates, Inc., 1995.

REFERENCES 114

B. Lohmann and W. Marquardt. On the systematization of the process of model devel-

opment. Computers & Chemical Engineering, 20, Suppl.: S213-S218,1996.

W. Marquardt, A. Gerstlauer, and E. D. Gilles. Modeling and representation of complex
objects: chemical engineering perspective. In Proc. of 6th Int. Conf. on IEA/AIE,

pages 219-228, Edinbrugh, Scotland, June 1-4 1993.

W. Marquardt. Dynamic process simulation - recent progress and future challenges. In
Y. Arkun and W. H. Ray, editors, Chemical Process Control, pages 131-180. CACHE-
AICHE Publications, 1991.

W. Marquardt. Trends in computer-aided porcess modeling. Computers & Chemical

Engineering, 20(6/7): 591-609,1996.

S. E. Mattsson and M. Andersson. Omola - an object-oriented modeling language. In

M. Jamshidi and C. J. Herget, editors, Recent Advances in Computer-Aided Control

Engineering, pages 291-310, Amsterdam, 1992. Elsevier.

B Meyssami and 0. A. Asbjornsen. Process modelling from first principles-method and

automation. In Proc. 1989 Summer Computer Simulation Conference, pages 292-297,

Austin, TX, July 24-27 1989.

B. Nilsson. Object-oriented modeling of chemical processes. Phd thesis, Department of

Automatic Control, Lund Institute of Technology, Lund, Sweden, 1993.

M. Oh and C. C. Pantelides. A modelling and simulation language for combined

lumped and distributed parameter systems. Computers 4 Chemical Engineering,

20(6/7): 611-633,1996.

M. Oh. Modelling and simulation of combined lumped and distributed processes. PhD

thesis, Imperial College, University of London, 1995.

C. C. Pantelides and P. I. Barton. Equation-oriented dynamic simulation: current status

and future perspectives. Computers 4 Chemical Engineering, 17, Suppl.: S263-5285,

1992.

C. C. Pantelides, D. Gritsis, K. R. Morison, and R. W. H. Sargent. The mathematical

modeling of transient systems using differential-algebraic equations. Computers &

Chemical Engineering, 12: 745-755,1988.

C. C. Pantelides. SpeedUp - recent advances in process simulation. Computers 4 Chem-

ical Engineering, 12(7): 745-755,1988.

REFERENCES 115

C. C. Pantelides. Modelling, simulation and optimisation of hybrid processes. In Workshop

on Analysis and Design of Event-Driven Operations in Process Systems, London, 10-
11 April 1995. Centre for Process Systems Engineering, Imperial College.

C. C. Pantelides. Dynamic Behaviour of Process Systems: Lecture Note, chapter 8. Im-

perial College, London, March 1996.

J. D. Perkins and G. W. Barton. Modelling and simulation in process operation. In

G. V. Reklatis and H. D. Spriggs, editors, Computer Aided Process Operations, pages
287-316,1987.

J. D. Perkins and R. W. H. Sargent. SPEEDUP: a computer program for steady-state

and dynamic simulation and design of chemical processes. AIChE Symposium Series,

78(214): 1-11,1982.

J. D. Perkins, R. W. H. Sargent, R. Vazquez-Roman, and J. H. Cho. Computer generation

of process models. Computers 4 Chemical Engineering, 20(6/7): 635-639,1996.

J. Perregaard, B. S. Pedersen, and R. Gani. Steady state and dynamic simulation of

complex chemical processes. Trans IChemE, 70: 99-109, March 1992.

P. C. Piela, T. G. Epperly, K. M. Westerberg, and A. W. Westerberg. ASCEND : an

objected-oriented computer environment for modeling and analysis : the modeling

language. Computers & Chemical Engineering, 15(1): 53-72,1991.

P. Piela. ASCEND - an object-oriented environment for the development of quantitative

models. PhD thesis, Carnegie Mellon University, Pittsburgh, PA, 1989.

H. A. Preisig, T. Y. Lee, and F. Little. A prototype computer-aided modelling tool for

life-support system models. Technical Paper 901269, SAE International, July 9-12

1990.

H. A. Preisig. Modeller - an object-oriented computer-aided modelling tool. In L. T.

Biegler and M. F. Doherty, editors, Foundations of Computer-Aided Process Design,

volume 91 of AIChE Symp. Series No. 304, pages 328-331. CACHE and AIChE.

1995.

H. A. Preisig. Computer-aided modelling - two paradigms on control. Computers 4

Chemical Engineering, 20, Suppl.: S981-S986,1996.

W. F. Ramirez. Computational methods for process simulation. Butterworths Series in

Chemical Engineering, 1989.

REFERENCES 116

R. W. H. Sargent and A. W. Westerberg. SpeedUp in chemical engineering design. Trans.
Instn. Chem. Engrs., 42: T190-T197,1964.

R. W. H. Sargent. Advances in modelling and analysis of chemical process systems.
Computers & Chemical Engineering, 7(4): 219-237,1983.

R. W. H. Sargent. Process design - what next ? In J. J. Siirola, I. E. Grossmann, and
G. Stephanopoulos, editors, Foundations of Computer-Aided Process Design, pages
529-553, Amsterdam, 1990. Elsevier.

R. W. H. Sargent. Technical suggestion for future work, October 1996.

C. F. Sorlie. A computer environment for process modeling. Phd thesis, University of
Trondheim, Norway, 1990.

G. Stephanopoulos and C. Han. Intelligent systems in process engineering: a review.
Computers 4 Chemical Engineering, 20(6/7): 743-791,1996.

G. Stephanopoulos, J. Johnston, T. Kriticox, R. Lakshmanan, M. Mavrovouniotis, and
C. Siletti. Design-Kit : an object-oriented environment for process engineering.

Computers 4 Chemical Engineering, 11(6): 655-674,1987.

G. Stephanopoulos, G. Henning, and H. Leone. MODEL. LA A modeling language for

process engineering - I. the formal framework. Computers & Chemical Engineering,

14(8): 813-869,1990.

G. Stephanopoulos, G. Henning, and H. Leone. MODEL. LA A modeling language for

process engineering - II. multifaceted modeling of process systems. Computers &

Chemical Engineering, 14(8): 847-869,1990.

K. Telnes. Computer aided modeling of dynamic processes based on elementary physics.

PhD thesis, the Norwegian Institute of Technology, Trondheim University, Norway,

1992.

R. Vazquez-Roman, J. M. P. King, and R. Ba nares Alcäntara. KBMoSS: A process

engineering modelling support system. Computers & Chemical Engineering, 20,

Suppl.: S309-5314,1996.

R. Vazquez-Roman. Computer aids for process model-building. PhD thesis, Imperial

College, University of London, 1992.

REFERENCES 117

A. W. Westerberg, P. C. Piela, R. D. McKelvey, and T. G. Epperly. The ASCEND mod-
eling environment and its implications. In Proceedings 4th International Symposium

on Process Systems Engineering, volume I, 1991.

118

Appendix A

Lex Input Specification

/* Lex Input Specification */

#include <stdio. h>

#include <ctype. h>

/* regular definitions */

comment

delim

ws

letter

digit

irreversible-flow

reversible-flow

id

number

underline

{comment} {}

11#11. *

[\t\n\r]

{delim}+

[A-Za-z]

[0-9]
11-10+\>

11 <11 {irreversible_flow}

{letter}({letter}I{digit})*

{digit}+(\. {digit}+)? (E[+\-]? {digit}+)?

11

APPENDIX A. LEX INPUT SPECIFICATION 119

{ws} {}

{irreversible_flow} {return IRREVERSIBLE_FLOW; }

{reversible_f low} {return REVERSIBLE-FLOW; }

RESERVOIR {return RESERVOIR; }

VESSEL {return VESSEL; }

CONNECTION {return CONNECTION; }

Phase {return PHASE; }

vapour {return VAPOUR; }

Aggregation {return AGGREGATION; }

Transfer\ Law {return TRANSFER_LAW; }

Port {return PORT; }

in {return IN; }

out {return OUT; }

both {return BOTH; }

Geometry {return GEOMETRY; }

Port\ Position {return PORT_POSITION; }

Phase\ Position {return PHASE_POSITION; }

Shape {return SHAPE; }

cylinder {return CYLINDER; }

box {return BOX; }

sphere {return SPHERE; }

open {return OPENVESSEL; }

closed {return CLOSEDVESSEL; }

Dimension {return DIMENSION; }

height {return HEIGHT; }

length {return LENGTH; }

width {return WIDTH; }

depth {return DEPTH; }

diameter {return DIAMETER; }

area {return AREA; }

Orientation {return ORIENTATION; }

vertical {return VERTICAL; }

horizontal {return HORIZONTAL; }

\Z {return 'Z'; }

{id} {return Identifier; }

APPENDIX A. LEX INPUT SPECIFICATION

{number} {return Number; }

{return ', '; }

\; {return '; '; }

\({return '('; }

\) {return ')'; }

\: {return ': '; }

{return '. '; }

\[{return '[,; I

\] {return ']'; }

%%

120

121

Appendix B

Yacc Input Specification

/* === */
/* yacc_input. y : Yacc Input Specification for the Current */

/* Implemenatation of a model generator

/* === */

%ý

#include "global. h"

%I

/* data structure for YACC stack type

%uni on

{

VesselSymb *vessel_symb;

ReservoirSymb *reservoir_symb;

Symb *symb;

PhaseDec *phase_dec;

AggPair *agg_pair;

TransferLawDec *transfer_law_dec;

PortDec *port_dec;

PortPhaseSpec *port_phase_spec;

GeometrySec *geometry_sec;

APPENDIX B. YACC INPUT SPECIFICATION 122

PortPositionDec

Parameter

DimensionDec

ConnectionSection

Path

double

int

char

}

/* ====== */
/* Tokens */

%token

%token

%token

%token

%token

%token

%token

%token

%token

%token

%token

%token

%token

'/. token

%token

%token

'/. token

'/. token

'/. token

'/. token

%token

Identifier

Number

'Z'

RESERVOIR

VESSEL

PHASE

VAPOUR

AGGREGATION

TRANSFER-LAW

PORT

IN

OUT

BOTH

*port_position_dec;

*parameter;

*dimension_dec;

*connection_section;

*path;

fval;

ival;

*string;

APPENDIX B. YACC INPUT SPECIFICATION 123

'/°t oken GEOMETRY

%token PORT-POSITION

%token PHASE-POSITION

'/, token SHAPE

%token CYLINDER

%token BOX

%token SPHERE

%token OPENVESSEL

%token CLOSEDVESSEL

%token DIMENSION

%token HEIGHT

%token LENGTH

%token WIDTH

%token DEPTH

%token DIAMETER

%token AREA

'/, token ORIENTATION

%token VERTICAL

%token HORIZONTAL

%token CONNECTION

%token IRREVERSIBLE-FLOW

%token REVERSIBLE_FLOW

%%

/* Grammar Definition */

/* A Process System */

yyModelBlock : yyVesselBlock

yyReservoirBlock

yyConnectionBlock

i

APPENDIX B. YACC INPUT SPECIFICATION 124

/* Vessel Entities */

yyVesselBlock : yyVesselSection

I yyVesselBlock yyVesselSection
i

yyReservoirBlock : yyReservoirSection

I yyReservoirBlock yyReservoirSection
i

yyReservoirSection : RESERVOIR ': '

yyReservoirldentifierList

PORT ': '

yyIdentifierList

s

yyReservoirldentif ierList : Identifier

yyReservoirldentifierList ', ' Identifier

yyVesselSection : VESSEL ': ' yyVesselldentif ierList

yyPhaseSection

yyAggregationSection

yyTransferLawSection

yyPortSection

yyGeometrySection

yyVesselldentif ierList : Identifier

I yyVesselldentifierList ', ' Identifier

yyPhaseSection : PHASE ': ' yyPhaseList

s

yyPhaseList : yyPhaseDec

APPENDIX B. YACC INPUT SPECIFICATION 125

yyPhaseList yyPhaseDec

yyPhaseDec : yyIdentif ierList ': ' yyPhaseType
s

yyPhaseType : Identifier

yyAggregationSection : AGGREGATION ': ' yyAggregationList

i

yyAggregationList : yyAggregationDec

yyAggregationList ', ' yyAggregationDec

i

yyAggregationDec : Identifier

I yyAggIdentifier

�

yyAggIdentifier :' C' Identifier 1,1 Identifier ']'

i

yyTransf erLawSection : TRANSFER_LAW ': ' yyTransferLawList

yyTransferLawList : yyTransferLawDec

yyTransferLawList yyTransferLawDec

i

yyTransferLawDec : Identifier 1 ,1 Identifier ': ' Identifier

i

APPENDIX B. YACC INPUT SPECIFICATION 126

yyPortSection : PORT ': ' yyPortList

yyPortList : yyPortDec

I yyPortList yyPortDec
s

yyPortDec : yyIdentifierList

yyIdentif ierList ': ' yyPortType

yyIdentif ierList ': ' yyPortType ': ' yyPortPhaseSpecification

s

yyPortType : IN

OUT

BOTH

s

yyPortPhaseSpecification : Identifier

yyPortAggIdentifier

s

yyPortAggIdentif ier : I[' Identifier 1,1 Identifier I]'

yyGeometrySection : GEOMETRY ': '

yyShapeSection

yyOrientationSection

yyDimensionSection

yyPortPositionSection

s

yyPortPositionSection : PORT_POSITION ': ' yyPortPositionList

s

APPENDIX B. YACC INPUT SPECIFICATION 127

yyPortPositionList : yyPortPositionDec

yyPortPositionList yyPortPositionDec
s

yyPortPositionDec : 'Z' '(' Identifier ')' ': ' yyParameter
i

yyParameter : Number

HEIGHT

DIAMETER

Identifier

s

yyShapeSection : SHAPE ': ' yyShapeType ': ' yyOpenClosed

yyShapeType : CYLINDER

Box
SPHERE

s

yyOpenClosed : OPENVESSEL

CLOSEDVESSEL

i

yyDimensionSection : DIMENSION ': ' yyDimensionList

i

yyDimensionList : yyDimensionDec

yyDimensionList yyDimensionDec

yyDimensionDec : yyDimensionType ': ' Number

s

APPENDIX B. YACC INPUT SPECIFICATION 128

yyDimensionType : Identifier

HEIGHT

DEPTH

WIDTH

DIAMETER

yyOrientationSection : ORIENTATION ': ' yyOrientationType
s

yyürientationType : VERTICAL

I HORIZONTAL

s

yyConnectionBlock : CONNECTION ': ' yyConnectionList

�

yyConnectionList : yyConnectionSection

yyConnectionList yyConnectionSection
s

yyConnectionSection : Identifier ': '

yyPathName yyConnectionType yyPathName '; '

Identifier

i

yyPathName : Identifier '. ' Identifier

s

yyConnectionType : IRREVERSIBLE-FLOW

REVERSIBLE_FLOW

s

yyIdentifierList : Identifier

APPENDIX B. YACC INPUT SPECIFICATION 129

I yyIdentifierList 1,1 Identifier

'/. '/.

#include "lex. yy. c"

130

Appendix C

Transfer Law Library

As illustrated earlier, a transfer law is a set of equations describing the mech-
anism of the transfer between phases in a vessel or through a connection. Such a law

should be installed in the library table so that whenever invoked by the user, the pack-

age searches the library table and then proceeds to transform the set of equations in the

transfer law into an appropriate form by taking account of the relevant phases (intra-

vessel phase interaction) or ports (inter-vessel connection). In general the mathematical
formalism of transfer laws is the same as that discussed in §4.2 in terms of dealing with

physical discontinuities, which are decomposed into case invariant equations and variant

parts.

Illustrative transfer laws installed in the library table in order to deal with the

examples presented will now be introduced in detail.

C. 1 Phase Equilibrium

Recall that if the package detects a region where the pair of phases are in phase

equilibrium, a new element for the region will be created and incorporated into regions,

assuming the availability of an appropriate thermodynamic subroutine to determine the

number of phases and the state of each. However, as there is no utility for interfacing the

subroutine to a package for predicting physical properties in the present implementation

(and in the present version of gPROMS), we have constructed a library phase equilibrium

routine, the name of which is PhaseEquilibrium.

From this law, we obtain not only the relevant physical properties of two phases

in thermodynamic equilibrium, but also their distribution. This law is therefore de-

composed into three discontinuous states; sub-cooled liquid (the temperature below the

APPENDIX C. TRANSFER LAW LIBRARY 131

bubble point), super-heated vapour (the temperature above the dew point) and the equi-
librated two phases.

As the state transitions are reversible but the conditions of transitions are not
directly related (asymmetric and reversible, see §4.2), a set of equations for describing
this discontinuity should be expressed into the logical statement of CASE instead of IF.

A set of equations for this library are given below, where we assume that vapour A

and liquid B are declared to be in phase equilibrium if both are present and the mechanism
for this equilibration follows Raoult's law.

Temp
_A = Temp_B ; (c. 1)

Mass
_A_B = Mass_A + Mass

_B ; (c. 2)

Mass
_A_B = MoleWeight * Mole_A_B ; (c. 3)

Mass
_B = MoleWeight * Mole_B ; (c. 4)

Mole
_A_B = Mole_A + Mole

_B ; (c. 5)

Mole
_A = MoleFrac_A * SIGMA(Mole_A) ; (c. 6)

Mole
_B = MoleFrac_B * SIGMA(Mole_B) ; (c. 7)

CASE Phase_A_B OF

WHEN LPhase :

Mole_A =0; (c. 8)

EquilConst_A_B =0; (c. 9)

SWITCH TO TwoPhase IF Temp_B > BubTemp_A_B

WHEN TwoPhase :

VapPress_B * MoleFrac_B = MoleFrac_A * Press_A_B ; (c. 10)

MoleFrac_B = EquilConst_B_L * MoleFrac_L ; (c. 11)

SWITCH TO LPhase IF SIGMA(Mole_A) <= 0;

SWITCH TO VPhase IF SIGMA(Mole_B) <= 0;

WHEN VPhase :

Mole_B =0; (c. 12)

EquilConst_A_B =1; (c. 13)

SWITCH TO TwoPhase IF Temp_A < DewTemp_A_B

END

Note that the set of equations (c. 1 - c. 7) are categorised as a set of case invariant

equations and those within the CASE statement (c. 8 - c. 13) are categorised as a set of case

variant equations describing a set of three discrete states; sub-cooled liquid (c. 8 and c. 9),

APPENDIX C. TRANSFER LAW LIBRARY 132

equilibrium state (c. 10 - c. 11) and super-heated vapour (c. 12 and c. 13). Also note that
the same number of equations in the CASE statement are maintained through the discrete

states so as to make it possible to simulate the problem.

C. 2 Bubble Rise

This law (namely BubbleRise) concerns the transfer between the vapour phase
(dispersed into the liquid in the form of bubbles) and another vapour phase separated

from the aggregated mixture. The driving force for this transfer is the density difference

between the bubbles and the liquid. Several factors, in reality, have an effect on this trans-

fer; the size of the bubbles enlarge gradually and the rising rate is accelerated as it rises

through the liquid, wall effects, also bubble break-up, and coalescence. In other words,

the rising rate of bubbles is a function of several variables of both phases; mass holdups,

densities, etc. However, for simplicity we assume that the transfer rate is proportional

to the mass of the bubble phase. The set of library equations, where A and B denote the

bubble phase and liquid respectively, are given in equation c. 14 and c. 15 which describes

the energy flow accompanied by the bubble phase.

Rate_A_B = Const_A_B * Mass_B ; (c. 14)

EnthFlow_A_B = SIGMA(Rate_ A_B) * Enth_A ; (c. 15)

C. 3 Containing Phase Transfer

This transfer law (namely ContainingPhase Transfer) describes the natural pro-

duction of the separate phase from the containing phase in an aggregate as the dispersed

phase leaves the aggregate (for example, transfer law "BubbleRise").

Let's assume that uniform dispersion of Al in B1, containing phase and all bub-

bles (or droplets) of Al rise at the same rate.

Suppose the instantaneous volume of the aggregate is Vol-A1-B1, with volume

fractions VolFrac_A1 of Al and VolFrac_B1 of B1 (VolFrac_A1 + VolFrac_B1 = 1), and

the volume rate of rise of Al is VolRate_A1.

Since all bubbles rise at the same rate, over interval [t, t+dt] a volume VolRatei11*dt

of Al will leave the aggregate and join separate Al (namely A). The same volume of Al

will leave the bottom layer of the aggregate, leaving B1 to join clear B1 (namely B).

APPENDIX C. TRANSFER LAW LIBRARY 133

If the volume of this bottom layer is dVol_Al_B1, mass balance gives:

VolRate_A1*dt = VolFrac_A1*d(Vo1_A1_B1)

and the amount of B1 joining B is

VolFrac_B1*dVol_A1_B1 = (VolFrac_B1/VolFrac_A1)*VolRate_Al*dt

Note also that the volume fractions VolFrac_A1, VolFrac_B1 left in the aggre-
gate do not change with time. Thus the dynamic mass balances are :

dVol_A1/dt = VolRate_A1 =- VolFrac_A1*dVol_A1_B1/dt

dVol_B1/dt = (VolFrac_B1/VolFrac_A1)*VolRate_A1

=- VolFrac_B1*dVol_A1_B1/dt

If this relation is expressed in mass rate terms, the equation c. 16 is constructed.
This transfer law has not yet been implemented in the current package.

Rate_B1_B * Vol_A1 * Den_A1 = Rate_A1_A * Vol-B1 * Den-B1 ; (c. 16)

EnthFlow_A_B = SIGMA(Rate_A_B) * Enth_A ; (c. 17)

C. 4 Irreversible Laminar Flow

Consider that fluid flows through a pipe where a non-return valve has been

installed to prevent reverse flow. We assume that the transfer rate is slow enough so that

the flow regime should be laminar. In order to take the irreversible flow directionality into

account we need the fixed set of physical discontinuities described in terms of two discrete

states, corresponding to whether or not fluid flows through the pipe. The transition

between states depends on the sign of the value of the pressure difference between the

mutually connected vessels; we can set up the fixed set of discrete cases describing that

the fluid will flow if the sign is positive, otherwise there is no flow (reflecting the existence

of the non-return valve).

Since the conditions for the transitions of the two discrete states can be charac-

terised by a single logical expression, a set of equations structured into an IF statement

is suitable for dealing with this discontinuity.

APPENDIX C. TRANSFER LAW LIBRARY 134

The set of equations for this law (namely IrreversibleLaminarFlow) is given
in equation c. 18 - c. 21, where S1 and S2 denote the vessels connected with the pipe
respectively. The laminar flow mechanism is described in equation c. 19 (Ramirez, 1989).

DrivingForce = Press-S1 - Press_S2 ; (c. 18)

IF DrivingForce >0 THEN

Rate = Const * Den * MassFrac * DrivingForce ; (c. 19)

ELSE

Rate =0; (c. 20)

END

EnthFlow = SIGMA(Rate) * Enth ; (c. 21)

C. 5 Irreversible Turbulent Flow

The set of equations for this law (namely Irreversible TurbulentFlow) are essen-
tially the same as those of the previous law, except for the fact that the pipe-flow regime

is turbulent (Ramirez, 1989). The symbol SQRT in equation c. 23 denotes square root,

which is one of the built-in function in gPROMS. Note that the sign of the numeric value

of DrivingForce is guaranteed to be positive due to the condition of the IF expression

(DrivingForce > 0).

DrivingForce = Press-S1 - Press_S2 ;

IF DrivingForce >0 THEN

Rate = Const * Den * MassFrac * SQRT(DrivingForce) ;

ELSE

Rate =0;

END

EnthFlow = SIGMA(Rate) * Enth ;

C. 6 Irreversible Pressure Driven Flow

(c. 22)

(c. 23)

(c. 24)

(c. 25)

This law (namely IrreversiblePressureDrivenFlow) is concerned with the transfer

law for describing the flow mechanism of fluid through a pipe fitted with a non-return

APPENDIX C. TRANSFER LAW LIBRARY 135

valve, encompassing the two pipe-flow regimes; laminar and turbulent.
In order to allow transition between the two regimes, the conditions for the

transitions between the flow regimes are described by a logical expression in terms of
dimensionless Reynolds number defined in equation c. 27 where Const represents the di-

ameter of the pipe. The two transition conditions, in reality, are not directly related, so
the equations for dealing with this discontinuity are structured into a CASE statement.
The transition from turbulent to laminar regime is detected from the logical condition
(the value of current Reynolds number less than ReynoldsConstl) and the reverse tran-

sition detected from the other logical condition (the value of current Reynolds number

greater than ReynoldsConst2). For generality, these two constants may be specified by

users to take the reality of individual situation into account, rather than equations c. 28

and c. 29.

In addition to this, flow irreversibility should be taken into account. Conse-

quently, this law becomes a merged version of the two previous laws (§C. 4 and §C. 5).

The set of discontinuities in this law (case variant group) are organised in such a way that

the flow irreversibility is structured into an IF statement, which again embraces a CASE

statement to deal with the transitions between the flow regimes.

DrivingForce = Press-S1 - Press_S2 ; (c. 26)

(4/3.14) * SIGMA(Rate) = ReynoldsNo * Const * Viscosity (c. 27)

ReynoldsConstl = 2100 ; (c. 28)

ReynoldsConst2 = 4000 ; (c. 29)

EnthFlow = SIGMA(Rate) * Enth ; (c. 30)

IF DrivingForce >0 THEN

CASE FlowType OF

WHEN Turbulent :

Rate = Const2 * Den * MassFrac * SQRT(DrivingForce) ; (c. 31)

SWITCH TO Laminar IF ReynoldsNo < ReynoldsConstl ;

WHEN Laminar :

Rate = Const3 * Den * MassFrac * DrivingForce ; (c. 32)

SWITCH TO Turbulent IF ReynoldsNo > ReynoldsConst2

END

ELSE

Rate =0;
(c. 33)

END

APPENDIX C. TRANSFER LAW LIBRARY 136

C. 7 Pressure Driven Flow

This law (namely PressureDrivenFlow) concerns the same physical situation with
the previous library, except the reverse flow, considering the possibility of a pressure-rise
downstream through the pipe not fitted with a non-return valve. It is composed of three

main parts as follows:

"a set of case invariant equations: c. 34 - c. 36,

9a set of discontinuities for the transitions between flow regimes, structured into a
CASE statement: c. 37 and c. 38,

"a set of discontinuities for the selection of the relevant port of the mutually linked

vessels according to the flow directionality, structured into an IF statement: c. 39 -

c. 54.

In equation c. 37 the absolute quantity of DrivingForce within the square root
is taken to guarantee its positive value (SQRT(ABS(DrivingForce))) and then the flow

directionality is determined by the sign of DrivingForce (SGN(DrivingForce)).

The suffix P1 and P2 used in the IF statements denote the name of the ports of

the mutually connected vessels (denoted S1 and S2).

It should be recognised in third part of this library that the selection of the

relevant ports is embodied by specifying each discrete state in terms of port type, rele-

vant state variables (viscosity, density, mass fraction and enthalpy) and the mass stream

attributes (mass rate and enthalpy flow).

DrivingForce = Press-S1 Press_S2 ; (c. 34)

(4/3.14) * SIGMA(Rate) = ReynoldsNo * Const * Viscosity (c. 35)

EnthFlow = SGN(DrivingForce) * SIGMA(ABS(Rate)) * Enth ; (c. 36)

CASE FlowType OF

WHEN Turbulent

Rate = Const2 * Den * MassFrac * SGN(DrivingForce)

SQRT(ABS(DrivingForce)) ; (c. 37)

SWITCH TO Laminar IF ReynoldsNo < 2100

WHEN Laminar :

Rate = Const3 * Den * MassFrac * DrivingForce ; (c. 38)

SWITCH TO Turbulent IF ReynoldsNo > 4000 ;

APPENDIX C. TRANSFER LAW LIBRARY

END

IF DrivingForce

PortType_P1 =

PortType_P2 =

= Rate

EnthFlow =

>0 THEN

OUTLET

INLET

Rate-P1

EnthFlow_P1

Viscosity = Viscosity-P1 ;

Den

MassFrac

Enth

ELSE

= Den-P1 ;

= MassFrac_P1 ;

= Enth_P1 ;

PortType_P2 = OUTLET ;

PortType_P2 = INLET ;

Rate = Rate_P2

EnthFlow = EnthFlow_P2

Viscosity = Viscosity_P2 ;

Den

MassFrac

Enth

END

= Den_P2 ;

= MassFrac_P2

= Enth_P2 ;

C. 8 Weir Over Flow

137

(c. 39)

(c. 40)

(c. 41)

(c. 42)

(c. 43)

(c. 44)

(c. 45)

(c. 46)

(c. 47)

(c. 48)

(c. 49)

(c. 50)

(c. 51)

(c. 52)

(c. 53)

(c. 54)

This law (namely WeirOverFlow) describes the behaviour of the flow over a weir.

The mechanism of this law is based on the modified Francis formula (Pantelides, 1996).

The discontinuity for this behaviour can be specified in terms of two states, corresponding

to whether or not fluid flows over the weir. However, as the weir may be considered as a

type of port, this discontinuity has been already considered in the course of specifying a

set of discontinuities for a port (see §4.3.1.4). This law therefore only describes the flow

mechanism itself. The symbol Level and Z in equation c. 55 denote the level of the phase

flowing over the weir and the position of the port (weir).

Rate = Const * Den * ABS(Level - Z)-1.5 ;

EnthFlow = SIGMA(Rate) * Enth ;

(c. 55)

(c. 56)

APPENDIX C. TRANSFER LAW LIBRARY 138

C. 9 Static Pressure Driven Flow

This law (namely StaticPressureDrivenFlow) describes the flow mechanism driven

from static liquid head pressure. The velocity is 2gh where g is gravitational constant

and h represent the liquid level. This relation is expressed in terms of mass rate at

equation c. 57.

Rate = Const * Den * SQRT(2 * 9.8 * ABS(Level)) ; (c. 57)

EnthFlow = SIGMA(Rate) * Enth ; (c. 58)

139

Appendix D

Simulation Input Files

D. 1 Flash Drum
DECLARE

TYPE

Mass-rate = 50 -1E-1 1E4 UNIT = "kg/sec"

Temperature = 100 -1E-1 1E4 UNIT = "K"

Length = 15 -IE-1 1E2 UNIT = "m"

Enthalpy = 700 -1E7 1E4 UNIT = "kJ/kg"

Int_Energy = 600 -1E9 1E4 UNIT = "kJ/kg"

Volume = 0.5 -1E-1 . 1E1 UNIT = "m3"

Pressure = 43 -1E-1 1E4 UNIT = "kPa"

Enthalpy_Flov = 1E3 -1E9 . 1E7 UNIT = "kJ/sec"

Mass =5 -1E-1 1E9 UNIT = "kg"

Mole = 0.1 -1E-1 1E2 UNIT = "kmole"

Density = 100 -1E-1 . 1E5 UNIT = "kg/m3"

Viscosity = 5E-5 -1E-1 1E2 UNIT = "Pa. s"

Velocity = 1E1 -1E-1 1E4 UNIT =
Fraction = 0.5 . -1E-1 10

NoType = 200 -1E9 . 1E9

Positive =5 -1E-3 1E9

STREAM

MassStream IS Mass_Rate, Enthalpy_Flow, Fraction, Positive

EnergyStream IS Enthalpy_Flow

END

===========-=========------------================------------------------- -------- -----------------

BEGINNING of generated model #

MODEL m_R1

PARAMETER

NoComp AS INTEGER

VARIABLE

Ratio_P AS Fraction

Rate
-P

AS Array(NoComp) of Mass-Rate

Den
-P

AS Density

Press_P AS Pressure

APPENDIX D. SIMULATION INPUT FILES 140

EnthFlov_P AS Enthalpy_Flov

PhaseType P AS Positive

MassFrac_P AS Array(NoComp) of Fraction

Viscosity
-p

AS Viscosity

Enth_P AS Enthalpy

STREAM

P: Rate-P, EnthFlov_P, Ratio-P, PhaseType_P AS MassStream

END ft end of MODEL m_R1

MODEL m_R2

PARAMETER

NoComp AS INTEGER

VARIABLE

Ratio_P AS Fraction

Rate_P AS Array(NoComp) of Mass-Rate

Press_P AS Pressure

EnthFlov-P AS Enthalpy-Flow

PhaseType_P AS Positive

STREAM

P: Rate P, EnthFlov P, Ratio_P, PhaseType_P AS MassStream

END # end of MODEL m_R2

MODEL m_R3

PARAMETER

NoComp AS INTEGER

VARIABLE

Ratio
-P

AS Fraction

Rate_P AS Array(NoComp) of Mass Rate

Press
-P

AS Pressure

EnthFlow-P AS Enthalpy-Flow

PhaseType_P AS Positive

STREAM

P: Rate_P, EnthFlov_P, Ratio-P, PhaseType P AS MassStream

END # end of MODEL m_R3

MODEL m_F1ashDrum

PARAMETER

NoComp AS INTEGER

vapour AS INTEGER

vapour-liquid AS INTEGER

liquid AS INTEGER

Z_Pil AS REAL

Z_Pol AS REAL

Z Pot AS REAL

height AS REAL

Const_B_V AS Array(NoComp) of REAL

diameter AS REAL

VARIABLE

Mass_B_L AS Array(NoComp) of Mass

Mass
-B

AS Array(NoComp) of Mass

Mass
-V

AS Array(NoComp) of Mass

Mass_L AS Array(NoComp) of Mass

Rate_B_V AS Array(NoComp) of Mass_Rate

APPENDIX D. SIMULATION INPUT FILES

Rate_B L Pol AS Array(NoComp) Of Mass-Rate

Rate_B_L Po2 AS krray(NoComp) of Mass-Rate

Rats B L_Pil AS Array(NoComp) Of Mass-Rat,

Rate_V_Pil AS Array(NoComp) of Mass-Rate

Rate Pil AS Array(NoComp) of Mass-Rate

Rate_V_Pol AS Array(NoComp) of Mass-Rate

Rate_V_Po2 AS Array(NoComp) of Mass-Rate

Rate-Pol AS Array(NoComp) of Mass-Rate

Rate_Po2 AS Array(NoComp) Of Mass-Rate

Mole_B AS Array(NoComp) of mole

Mole_L AS Array(NoComp) of Mole

Mole B_L AS Array(NoComp) of Mole

Den_B_L AS Density

Den_B AS Density

Den_V AS Density

Den_L AS Density

Den_Pol AS Density

Den_Po2 AS Density

Viscosity_B_L AS Viscosity

Viscosity_V AS Viscosity

Viscosity_Po2 AS Viscosity

Viscosity-Pol AS Viscosity

Press_B AS Pressure

Press_V AS Pressure

Press_F1ashDrum AS Pressure

Press_L AS Pressure

Press_B_L AS Pressure

VapPress_L AS Array(NoComp) of Pressure

DewTemp_B L AS Temperature

Temp_B AS Temperature

Temp_V AS Temperature

Temp_L AS Temperature

BubTemp_B_L AS Temperature

Vol_B AS Volume

Vol_B_L AS Volume

Vol_V AS Volume

Vol_L AS Volume

Vol_F1ashDrum AS Volume

Enth_Pol AS Enthalpy

Enth_Po2 AS Enthalpy

Enth_B AS Enthalpy

Enth_V AS Enthalpy

Enth_L AS Enthalpy

Enth_B_L AS Enthalpy

IntEnergy_B_L AS Int Energy

IntEnergy_L AS Int_Energy

IntEnergy_V AS Int_Energy

IntEnergy_B AS Int_Energy

EnthFlov_B_V AS Enthalpy_Flov

EnthFlov_V_Po2 AS Enthalpy_Flov

EnthFlow_B_L_Po2 AS Enthalpy_Flov

EnthFlow-Po2 AS Enthalpy-Flow

EnthFlov-V-PoI AS Enthalpy-Flow

EnthFlow_B_L_Pol AS Enthalpy Flow

EnthFlow_Poi AS Enthalpy_Flov

EnthFlow-V-PiI AS Enthalpy-Flow

EnthFlov-B-L-Pil AS Enthalpy-Flow

EnthFlow_Pil AS Enthalpy-Flow

Ratio_B AS Fraction

Ratio_V AS Fraction

Ratio_Pil AS Fraction

Ratio_Po2 AS Fraction

Ratio_Pol AS Fraction

MoleFrac_L AS Array(NoComp) of Fraction

MassFrac_B_L AS Array(NoComp) of Fraction

MassFrac_L AS Array(NoComp) of Fraction

MassFrac_V AS Array(NoComp) of Fraction

141

APPENDIX D. SIMULATION INPUT FILES 142

MassFrac_Po2 AS Array(NoComp) of Fraction

MoleFrac_B AS Array(NoComp) of Fraction

MassFrac B AS Array(NoComp) of Fraction

MassFrac Pol AS Array(NoComp) of Fraction

Top_B_L AS Positive

Level
-V

AS Positive

Bot_V AS Positive

Level B_L AS Positive

PhaseType_B_L AS Positive

PhaseType L AS Positive

PhaseType V AS Positive

PhaseType_Po2 AS Positive

PhaseType_B AS Positive

PhaseType_Pol AS Positive

PhaseType_Pil AS Positive

Bot_B_L AS Positive

area AS Positive

Top
-V

AS Positive

EquilConst B_L AS Array(NoComp) of Positive

MoleWeight AS Array(NoComp) of Positive

=================_=============== #

Variables for Physical Properties #

Enth Vo AS ARRAY(NoComp) OF Enthalpy

Enth_Bo AS ARRAY(NoComp) OF Enthalpy

Enth_Lo AS ARRAY(NoComp) OF Enthalpy

Heat_Lo AS ARRAY(NoComp) OF Enthalpy

Temp_ro AS ARRAY (NoComp) OF Fraction

Den_Vo AS ARRAY(NoComp) OF Density

Den Bo AS ARRAY(NoComp) OF Density

Temp-co AS ARRAY(NoComp) OF Temperature

Viscosity
-B

As Viscosity

Viscosity_L As Viscosity

Viscosity_Vo As ARRAY(NoComp) OF Viscosity

Viscosity Bo As ARRAY(NoComp) OF Viscosity

Viscosity_Lo As ARRAY(NoComp) OF Viscosity

Av, By, Cv, Dv AS ARRAY(NoComp) OF NoType

Al, B1, Cl, Dl, El AS ARRAY(NoComp) OF NoType

Temp_r AS Fraction

Press_c AS Pressure

Press-co AS ARAAY(NoComp) OF Positive

Temp_c AS Temperature

M AS Positive

Z AS NoType

yo AS ARHAY(NoComp) OF NoType

a AS NoType

A, B, C. D, E AS ARRAY(NoComp) OF NoType

F, G AS ARRAY(NoComp) OF NoType

vapl, vap2, vap3, vap4, vap5 AS ARRAy(NoComp) OF NoType

Wo AS ARRAY(NoComp) OF NoType

°_: #

dummy variable for visualisation #

Sum-Mass-V,

Der_Intßnergy_V,

Sum_Mass_B_L,

Der_Mass_B_L,

Sum_Mass_B.

APPENDIX D. SIMULATION INPUT FILES 143

Sum_Mass_L,

Sum_Rate_B_V,

Sum_Rate_Pi1,

Sum_Rate_Pol,

Sum_Rate_Po2,

VapPress_1,

VapPress_2,

Equil_1,

Equil_2 AS NoType

STREAM

Pil : Rate_Pil, EnthFlov_Pi1, Ratio_Pil, PhaseType_Pil AS MassStream
Pol : Rate Pol, EnthFlov Pol, Ratio_Pol, PhaseType_Pol AS MassStream
Pot : Rate Po2, EnthFlov Po2, Ratio Po2, PhaseType_Po2 AS MassStream

SELECTOR

Phase B_L AS (LPhase, TwoPhase, VPhase)

SET

vapour =1
Z_Pil

.=1.500000
Z_Pol = 0.500000

Z_Po2
.=2.500000

height = 3.000000

vapour-liquid 3

liquid
.=2

diameter
.=1.000000

EQUATION

case invariant mass balance

$Mass_V = Rate_V_Pii - Rate_V-Pol - Rate_V_Po2 + Rate_B_V

Mass BL= Rate_B_L_Pii - Rate_B L_Pol - Rate B_L_Po2 - Rate_B V;

case invariant energy balance

$IntEnergy_V * SIGMA(Mass_V) + IntEnergy_V * SIGMA($Mass_V) _
EnthFlov_V_Pii - EnthFlov V Pol - EnthFlov V Pot + EnthFlov_B V

$IntEnergy_B_L * SIGMA(Mass_B_L) + IntEnergy_B_L * SIGMA($Mass_B_L) _
EnthFlow_B_L_Pil - EnthFlov_B_L_Pol - EnthFlov_B_L_Po2 - EnthFlow_B_V

ratio of dispersed phase

Ratio_V =1;

SIGMA(Mass_B) = Ratio_B * SIGMA(Mass_B_L)

Equilibrium :

Temp_B = Temp_L

Mass_B_L - Mass_B + Mass_L

Mass_B_L = MoleWeight * Mole_B_L

Mole_B_L = Mole
_B

+ Mole
-L ;

Mass_B = MoleWeight * Mole_B

Mole_B = MoleFrac_B * SIGMA(Mole_B)

Mole_L = MoleFrac_L * SIGMA(Mole_L)

CASE Phase B_L OF

WHEN LPhase

Mole_B =0

EquilConst_B_L =0

SWITCH TO TwoPhase IF Temp_L > BubTemp_B_L

WHEN TwoPhase :

VapPrsss_L " MoleFrac_L - MoleFrac B* Press_B_L

MoleFrac_B = EquilConst_B_L * MoleFrac_L

SWITCH TO LPhase IF SIGMA(Mole_B) <= 0

SWITCH TO VPhase IF SIGMA(Mole_L) <= 0

WHEN VPhass

Mole_L =0

APPENDIX D. SIMULATION INPUT FILES 144

EquilConst_B_L =1;

SWITCH TO TvoPhass IF Temp_B < DevTemp B_L

END

* BubbleRise :

Rate_B_V = Const BV* Mass_B

EnthFlov_B_V = SIGMA(Rate_B_V) * Enth_B

mass - mass fraction * total mass
Mass B_L = MassFrac_B L* SIGMA(Mass B L)

Mass_L = MassFrac_L * SIGMA(Mass_L)

Mass_B = MassFrac_B * SIGMA(Mass_B)

Mass
-V = MassFrac_V * SIGMA(Mass_V)

total mass = density * volume
SIGMA(Mass_B_L) = Den_B_L * Vol_B_L

SIGMA(Mass_L) = Den_L * Vol_L

SIGMA(Mass B) = Den
-B * Vol_B

SIGMA(Mass_V) = Den_V * Vol
-V

X phase type

PhaseType_B_L = vapour-liquid

PhaseType_L = liquid

PhaseType_B = vapour

PhaseType V= vapour

volume relationship

Vol_B_L = Vol_B + Vol_L

Vol_FlashDrum = Vol_V + Vol_B_L

uniform pressure within vessel
Press_F1ashDrum = Press B_L

Press_F1ashDrum = Press_L

Press_F1ashDrum = Press_B

Press_F1ashDrum = Press
-V

phase bound : upper/low bound of phase volume = level

Top
-V = Level_V ;

Top B_L = Level_B_L

Top_V = height

Bot B_L =0;

Bot_V = Top_B_L

phase volume : volume = area * (top - bottom)

area = (3.14/4) * diameter-2 ;

Vol_B_L = area * (Top B_L - Bot B_L)

Vol_V = area * (Top
-V - Bot V) ;

discontinuity on input port, "Pit"

IF PhaseType_Pii = vapour THEN

IF Bot_V < Z_Pil AND Z_Pii <= Top_V THEN

Rate_V_Pil - Rate_Pil ;

EnthFlov_V_Pi1 = EnthFlow Pil

Rate_B_L_Pii =0;

EnthFlov_B_L Pi1 =0

ELSE

Rate_B_L_Pil = Rate-Pit

EnthFlov_B_L_Pil = EnthFlow_Pil

Rate_V_Pil =0;

EnthFlov V_Pil -0

END

ELSE

Rate_B_L_Pi1 = Rate_Pil

EnthFlow_B_L_Pil = EnthFlow_Pi1

Rate_V_Pil =0;

EnthFlov_V_Pi1 =0

END

and of discontinuity on input port, "Pit"

APPENDIX D. SIMULATION INPUT FILES 145

* discontinuity on output port, "Pol"

IF Bot_V < Z_Pol AND Z_Pol <= Top_V TEEN

MassFrac_V MassFrac_Pol ;

viscosity
-V = Viscosity Pol

Den_V Den_Pol ;

Enth_V = Enth_Pol

Rate_V_Pol - Rate-Pol

EnthFlov_V_Pol = EnthFlov_Poi

Ratio
-V = Ratio Pol

PhaseType_V = PhaseType_Pol

Rate_B_L_Pol 0;

EnthFlov_B_L Pol =0

ELSE

MassFrac_B_L = MassFrac_Pol

Viscosity_B_L = Viscosity-Pol

Den_B_L = Den Pol ;
Enth_B_L = Enth Pol

Rate_B_L_Pol = Rate-Pol

EnthFlov_B_L_Po! = EnthFlov_Pol

Ratio_B = Ratio-Pol ;
PhaseType_B_L = PhaseType_Poi

Rate_V_Pol =0

EnthFlov_V_Pol =0

END

end of discontinuity on output port, "Pol"

discontinuity on output port, "Po2"

IF Bot_V < Z_Po2 AND Z_Po2 <= Top_V THEN

MassFrac_V = MassFrac_Po2 ;
Viscosity_V = Viscosity_Po2

Den_V = Den_Po2 ;
Enth_V = Enth_Po2

Rate_V_Po2 = Rate_Po2

EnthFlov_V_Po2 = EnthFlow_Po2

Ratio_V = Ratio_Po2

PhaseType_V = PhaseType_Po2

Rate_B_L Po2 =0;

EnthFlow_B_L_Po2 =0

ELSE

MassFrac_B_L = MassFrac_Po2

Viscosity_B_L = Viscosity_Po2

Den_B_L = Den_Po2 ;

Enth_B_L Enth_Po2

Rate_B_L_Po2 = Rate_Po2

EnthFlov B_L Po2 = EnthFlow Po2

Ratio
-B = Ratio_Po2

Phas. Type_B_L = PhaseType_Po2

Rate_V_Po2 =0

EnthFlov_V_Po2 0

END

* end of discontinuity on output port, "Po2"

Physical Properties

vapour pressure of L

VapPress_L * 0.145 = 10"(F - G/((1.8 * Temp_L - 459.4) + 382))

VapPress_L = IE-3 * EXP(vapl + vap2/Temp_L + vap3*LOG(Temp_L) +

vap4*Temp_L"vap5) ;

* Application Range :

S Propane 228K - 366K

8 Butane 228K - 421K

APPENDIX D. SIMULATION INPUT FILES 146

X pure enthalpies of V

Enth_Vo * 0.43 =A* ((Temp_V * 9/5)/100) +B* ((Temp_V * 9/5)/100)"2 +
C* IE-2 * ((Temp_V * 9/5)/100)'3 +D* (100/(Temp_V * 9/5)) +E;

enthalpy of V

Enth_V = SIGMA(MassFrac_V * Enth_Vo)

pure enthalpies of B

Enth_Bo * 0.43 =A* ((Temp_B * 9/5)/100) +B* ((Temp_B * 9/5)/100)"2 +
C* IE-2 * ((Temp_B * 9/5)/100)"3 +D* (100/(Temp_B * 9/5)) +E;

X enthalpy of B

Enth_B = SIGMA(MassPrae_B * Enth_Bo)

heats of vapourisation of pure L

Heat_Lo * MoleWeight = (R * Temp-co) * (7.08 * (1 - Temp_ro)-0.354 +
10.95 * Wo * (1-Temp_ro)-0.456) ;

Temp_ro * Temp-co = Temp
-L ;

pure enthapies of L

Enth_Lo = Enth Bo - Heat_Lo

enthalpy of L

Enth_L = SIGMA(MassFrac_L * Enth_Lo)

enthalpy of B_L

Enth_B_L = Ratio_B * Enth_B + (1 - Ratio_B) * Enth_L

internal energy of V

Enth_V * SIGMA(Mass V) = IntEnergy_V * SIGMA(Mass_V) +

SIGMA(Mass_V / MoleWeight) *R* Temp_V

internal energy of B_L

Enth BL= IntEnergy B_L + press BL/ Den_B_L ;

IntEnergy_B L= IntEnergy_B * Ratio
-B

+

(1 - Ratio_B) * IntEnergy_L

internal energy of B

Enth_B * SIGMA(Mass_B) = IntEnergy B* SIGMA(Mass_B) +

SIGMA(Mass_B / MoleWeight) *R* Temp_B

ü internal energy of L

Enth_L = IntEnergy_L + Press_L / Den_L

density of V

Den_Vo "R* Temp
-V = Press_V * MoleWeight # for pure component

Den_V " SIGMA(MassFrac_V / Den_Vo) =1; # for mixture

density of B

Den_Bo *R* Temp_L = Press_B * MoleWeight; * for pure component

Den_B * SIGMA(MassFrac_B / Den-Bo) = 1; # for mixture

density of L

Den_L *R* Temp_c * Z'(1 + (1 - Temp-r)-(2/7)) = Press_c *M

Press_c = SIGMA(MoleFrac_L * Press-co)

Temp_c = SIGMA(MoleFrac_L * Temp-co)

Z= SIGMA(MoleFrac_L * Zo)

Temp_r * Temp_c = Temp_L ;

M= SIGMA(MoleFrac_L * MoleWeight)

viscosity of V

Viscosity_Vo Av Temp_V"Bv / (1 + Cv / Temp_V + Dv / Temp-V-2)

Viscosity_V SIGMA(MassFrac_V " Viscosity_Vo) ;

viscosity of B_L

Viscosity-Bo - (Av * Temp B-Bv) / (1 + Cv / Temp_B + Dv / Temp-B-2)

Viscosity_B = SIGMA(MassFrac_V * Viscosity_Bo) ;

APPENDIX D. SIMULATION INPUT FILES 147

Viscosity_Lo EXP(A1 * (B1 / Temp_L) + Cl * LOG(Temp_L) +
Dl * Temp-L-E1) ;

Viscosity_L = SIGMA(MassFrac_L * Viscosity_Lo)

Viscosity_B_L = Ratio-B * Viscosity_B +
(1 - Ratio_B) * Viscosity_L

_________......... #
dummy variables for visualisation #
============================___== #

Sum_Mass_V = SIGMA(Mass_V)

Der_IntEnergy_V = $IntEnergy_V;

Sum_Mass_B_L = SIGMA(Mass B_L)

Der_Mass_B_L = SIGMA($Mass_B_L);

Sum_Mass_B - SIGMA(Mass B)

Sum_Mass_L = SIGMA(Mass_L)

Sum_Rate_B_V = SIGMA(Rate_B_V)

Sum_Rate_Pi1 = SIGMA(Rate_Pil);

Sum_Rate_Pol = SIGMA(Rate_Poi);

Sum_Rate_Po2 = SIGMA(Rate Po2);

VapPress_1 = VapPress L(1);

VapPress_2 = VapPress_L(2);

Equil_1 = EquilConst_B_L(1);

Equil_2 = EquilConst_B_L(2);

END # end of MODEL m_F1ashDrum

MODEL Flovsheet

PARAMETER

NoComp AS INTEGER

Const2_C3 AS REAL

Const2_C2 AS REAL

Const2_C1 AS REAL

Const3_C3 AS REAL

Const3_C2 AS REAL

Const3_C1 AS REAL

Const_C1 AS REAL

Const_C2 AS REAL

Const_C3 AS REAL

VARIABLE

DrivingForce_C3 AS NoType

ReynoldsNo_C3 AS Positive

ReynoldsConstl_C3 AS Positive

ReynoldsConst2_C3 AS Positive

DrivingForce_C2 AS NoType

ReynoldsNo_C2 AS Positive

ReynoldsConstl_C2 AS Positive

ReynoldsConst2_C2 AS Positive

DrivingForce_C1 AS NoType

ReynoldsNo_C1 AS Positive

ReynoldsConstl_C1 AS Positive

ReynoldsConst2_C1 AS Positive

UNIT

R1 AS m R1

R2 AS m_R2

R3 AS m_R3

F1ashDrum AS m_F1ashDrum

SELECTOR

F1owType_C1 AS (Turbulent, Laminar)

F1ovType_C2 AS (Turbulent, Laminar)

APPENDIX D. SIMULATION INPUT FILES 148

F1owType_C3 AS (Turbulent, Laminar)

EQUATION

stream connections through ports #

R1. P IS F1ashDrum. Pil

FlashDrum. Pol IS R2. P

FlashDrum. Po2 IS R3. P

transfer law of each connection #

"IrreversiblePressureDrivenFlov" in connection, Cl' "DrivingForce_C1

= R1. Press P- F1ashDrum. Press_F1ashDrum

(4/3.14) * SIGMA(R1. Rate_P) = ReynoldsNo_C1 * Const_C1 * R1. Viscosity_P
ReynoldsConstl_C1 = 2100

ReynoldsConst2_C1 = 4000

R1. EnthFlov P= SIGMA(R1. Rate_P) * R1. Enth P

IF DrivingForce_C1 >0 THEN

CASE F1ovType_C1 OF

WHEN Turbulent :

R1. Rate_P = Const2_C1 * R1. Den_P * R1. MassFrac_P

SQRT(DrivingForce_C1)

SWITCH TO Laminar IF ReynoldsNo_C1 < ReynoldsConstl_C1

WHEN Laminar :
R1. Rate_P = Const3_C1 * R1. Den_P * R1. MassFrac_P * DrivingForce_C1

SWITCH TO Turbulent IF ReynoldsNo_C1 > ReynoldsConst2_C1

END

ELSE

R1. Rate_P = 0;

END

"IrreversiblePressureDrivenFlov" in connection, "C2"

DrivingForce_C2 = F1ashDrum. Press_F1ashDrum - R2. Press_P

(4/3.14) * SIGMA(F1ashDrum. Rate_Poi) = ReynoldsNo_C2 * Const_C2

F1ashDrum. Viscosity_Pol

ReynoldsConstl_C2 = 2100

ReynoldsConst2_C2 = 4000

F1ashDrum. EnthFlow_Pol = SIGMA (F1ashDrum. Rate_Pol) * F1ashDrum. Enth_Pol

IF DrivingForce_C2 >0 THEN

CASE F1owType_C2 OF

WHEN Turbulent :

F1ashDrum. Rate_Pol = Const2_C2 * F1ashDrum. Den_Pol

F1ashDrum. MassFrac_Pol * SQRT(DrivingForce_C2)

SWITCH TO Laminar IF ReynoldsNo_C2 < ReynoldsConstl_C2

WHEN Laminar :

F1ashDrum. Rate_Pol = Const3_C2 * F1ashDrum. Den_Pol *

F1ashDrum. MassFrac_Pol * DrivingForce_C2

SWITCH TO Turbulent IF ReynoldsNo_C2 > ReynoldsConst2_C2 ;

END

ELSE

F1ashDrum. Rate_Pol = 0;

END

"IrreversiblePressureDrivenFlov" in connection, "C3"

DrivingForce_C3 - F1ashDrum. Press_F1ashDrum - R3. Press_P

(4/3.14) * SIGMA(F1ashDrum. Rate_Po2) = ReynoldsNo_C3 * Const_C3

F1ashDrum. Viscosity_Po2

ReynoldsConstl_C3 = 2100

ReynoldsConst2_C3 - 4000

F1ashDrum. EnthFlov_Po2 = SIGMA (F1ashDrum. Rate
_Po2) * FlashDrum. Enth_Po2

IF DrivingForce_C3 >0 THEN

CASE F1owType_C3 OF

APPENDIX D. SIMULATION INPUT FILES t 4q

WHEN Turbulent :

F1ashDrum. Rate
_Po2 - Const2_C3 * F1ashDrum. Den_Po2

F1ashDrum. MassFrac_Po2 * SQRT(DrivingForce_C3)

SWITCH TO Laminar IF ReynoldsNo_C3 < ReynoldeConstl_C3

WHEN Laminar :

F1ashDrum. Rate_Po2 = Const3_C3 * F1ashDrum. Den_Po2

F1ashDrum. Mass Frac_Po2 * DrivingForce_C3

SWITCH TO Turbulent IF ReynoldsNo_C3 > ReynoldsConst2_C3 ;
END

ELSE

F1ashDrum. Rate_Po2 - 0;

END

END # end of MODEL Flowsheet

##########################

END of generated model #

##########################

Process #

PROCESS test

UNIT

Plant AS Flowsheet

SET

WITHIN Plant DO

NoComp . =2

Const_C1 . = 0.05

Const_C2 . = 0.05

Const_C3 = 0.05

Const2-C1 . = 5E-5

Const2-C2 SE-4

Const2-C3 . = 1E-5

Const3-C1 = 5E-6

Const3-C2 = 1E-5

Const3-C3 . = 1E-6

WITHIN R1 DO

NoComp . =2

END

WITHIN R2 DO

NoComp =2

END

WITHIN R3 DO

NoComp . =2

END

WITHIN FlashDrum DO

NoComp 2

Const_B_V . = 3E-4

END

END

ASSIGN

WITHIN Plant DO

WITHIN R1 DO

Press
-P

Den
-P

Enth_P

MassFrac_P

Ratio_P

PhaseType_P

Viscosity_P

4*1.013E2

= 330 ;

= 3.5E2

[0.4,0.63

= 0.001

=3;

= 5E-5 ;

APPENDIX D. SIMULATION INPUT FILES 150

END " Rl

WITHIN R2 DO

Press_P = 1.013E2

END " R2

WITHIN R3 DO

Press_P = 1.013E2

END # R3

WITHIN F1ashDrum DO

BubTemp_B_L = 260

DewTemp_B_L .= 300

Temp-co(l) .= 369.82

Tamp-co(2) = 425.15

{

}

A(1) = 8.03820

A(2) 8.29348

B(1) 3.49075

B(2) = 3.46000

C(1) -3.96060
C(2) -4.02109
D(1) . = 27.52980

D(2) = 30.35096

E(1) 166.170

E(2) = 153.044

A: = 8.31433

Wo(1) . = 0.1454

Wo(2) = 0.1928

MoleWeight(1) 44.09

MoleWeight(2) : = 58.12

vapl(1) = 5.4276E1

vapl(2) 6.2570E1

vap2(1) -3.3680E3

vap2(2) -4.3220E3

vap3(1) -5.2610E0

vap3(2) -6.3640E0

vap4(1) .=8.6000E-6
vap4(2) .=6.8000E-6
vap5(1) .=2.0000EO
vap5(2) = 2.0000EO

F(1) .=4.843
F(2) = 5.273

G(1) = 1245.3

G(2) .= 1747.2

Av(1) = 2.2090E-6

Av(2) = 1.0310E-5

Bv(1) .=3.8240E-1
Bv(2) .=2.0770E-1
Cv(1) = 4.0500E2

Cv(2) .=1.0055E3
Dv(1) 0;

Dv(2) = 8.1000E3

A1(1) -1.2832E1

A1(2) .=7.5000E-1
B1(1) .=5.6634E2
B1(2) = 2.1870E2

C1(1) .=3.4688E-1
C1(2) -1.7882 ;

D1(1) -3.5111E-26

D1(2) -4.0000E-27

E1(1) = 1.0000E1

E1(2) 1.0000E1

[kJ/kmol K]

{
Den_L 600

APPENDIX D. SIMULATION INPUT FILES 151

Viscosity_V .=7.9E-6
Viscosity_B_L 5E-5 ;

}

Press-co(l) = 4248

Press-co(2) .= 3795

Zo(1) .=0.27664
Zo(2) .=0.27331

END # within P1ashDrum

END # within Plant

PRESET

PLANT. FLASHDRUM. ENTHFLOW_V_P02 :=0.00000E+00 : -1.000E+09 : 1.000E+07
PLANT. FLASHDRUM. ENTHFLOW_B_L PO1 0.00000E+00 -1.000E+09 : 1.000E+07
PLANT. FLASHDRUM. ENTHFLOW B_L P02 0.00000E+00 -1.000E+09 1.000E+07
PLANT. FLASHDRUM. VOL_B :=2.80947E-02 : -1.000E-01 : 1.000E+01
PLANT. FLASHDRUM. PHASETYPE_B 1.00000E+00 -1.000E-03 1.000E+09
PLANT. FLASHDRUM. RATE_PI1(1) 1.25494E-01 -1.000E-01 1.000E+04
PLANT. FLASHDRUM. RATE-PI1(2) 1.88241E-01 -1.000E-01 1.000E+04
PLANT. FLASHDRUM. ENTHFLOW_PI1 1.09807E+02 -1.000E+09 1.000E+07
PLANT. FLASHDRUM. RATIO_PI1 :=6.00000E-01 -1.000E-01 : 1.000E+01
PLANT. FLASHDRUM. PHASETYPE_PI1 :=3.00000E+00 -1.000E-03 : 1.000E+09

PLANT. FLASHDRUM. RATE_P01(1) 0.00000E+00 : -1.000E-01 : 1.000E+04

PLANT. FLASHDRUM. RATE_P01(2) 0.00000E+00 -1.000E-01 : 1.000E+04

PLANT. FLASHDRUM. MASSFRAC_B(1) 8.84494E-01 -1.000E-01 : 1.000E+01

PLANT. FLASHDRUM. MASSFRAC_B(2) 1.15506E-01 -1.000E-01 : 1.000E+01

PLANT. FLASHDRUM. ENTH_LO(1) 1.73454E+02 -1.000E+07 : 1.000E+04

PLANT. FLASHDRUM. ENTH_LO(2) 1.52137E+02 -1.000E+07 1.000E+04

PLANT. FLASHDRUM. RATE_P02(1) 0.00000E+00 -1.000E-01 : 1.000E+04

PLANT. FLASHDRUM. RATE_P02(2) 0.00000E+00 : -1.000E-01 : 1.000E+04

PLANT. FLASHDRUM. INTENERGY_B 5.58220E+02 -1.000E+09 1.000E+04

PLANT. FLASHDRUM. DEN-BO(1) 1.03804E+00 : -1.000E-01 1.000E+05

PLANT. FLASHDRUM. DEN_BO(2) 1.36836E+00 : -1.000E-01 : 1.000E+05

PLANT. FLASHDRUM. ENTH_PO1 7.07255E+02 -1.000E+07 : 1.000E+04

PLANT. FLASHDRUM. MOLEFRAC_L(1) :=5.68255E-01 : -1.000E-01 : 1.000E+01

PLANT. FLASHDRUM. MOLEFRAC_L(2) 4.31745E-01 -1.000E-01 : 1.000E+01

PLANT. FLASHDRUM. ENTH P02 :=7.07255E+02 : -1.000E+07 : 1.000E+04 ;
PLANT. FLASHDRUM. ENTHFLOW_B_V :=5.39479E-03 : -1.000E+09 : 1.000E+07

PLANT. FLASHDRUM. LEVEL_V :=3.00000E+00 -1.000E-03 : 1.000E+09

PLANT. FLASHDRUM. EQUILCONST_B_L(1) 1.60115E+00 -1.000E-03 : 1.000E+09

PLANT. FLASHDRUM. EQUILCONST-B_L(2) 2.08772E-01 -1.000E-03 1.000E+09

PLANT. FLASHDRUM. VISCOSITY_BO(1) 6.20289E-06 -1.000E-01 : 1.000E+02

PLANT. FLASHDRUM. VISCOSITY_BO(2) 5.58908E-06 -1.000E-01 : 1.000E+02

PLANT. FLASHDRUM. PRESS_B :=4.36584E+01 -1.000E-01 : 1.000E+04

PLANT. FLASHDRUM. LEVEL_B_L :=9.70524E-02 -1.000E-03 : 1.000E+09

PLANT. FLASHDRUM. ENTHFLOW_P01 :=0.00000E+00 : -1.000E+09 : 1.000E+07

PLANT. FLASHDRUM. RATIO_P01 :=1.00000E+00 : -1.000E-01 : 1.000E+01

PLANT. FLASHDRUM. PHASETYPE_PO1 :=1.00000E+00 -1.000E-03 : 1.000E+09

PLANT. FLASHDRUM. PRESS_C :=4.05242E+03 : -1.000E-01 : 1.000E+04

PLANT. FLASHDRUM. ENTHFLOW_P02 :=0.00000E+00 : -1.000E+09 : 1.000E+07

PLANT. FLASHDRUM. RATIO_P02 :=1.00000E+00 -1.000E-01 : 1.000E+01

PLANT. FLASHDRUM. PHASETYPE_P02 :=1.00000E+00 -1.000E-03 : 1.000E+09

PLANT. FLASHDRUM. BOT_V :=9.70524E-02 : -1.000E-03 : 1.000E+09 ;

PLANT. FLASHDRUM. BOT_B_L :=0.00000E+00 -1.000E-03 : 1.000E+09

PLANT. FLASHDRUM. MOLE_B(1) 6.01833E-04 : -1.000E-01 1.000E+02

PLANT. FLASHDRUM. MOLE_B(2) 5.96210E-05 : -1.000E-01 1.000E+02

PLANT. FLASHDRUM. VOL_L :=4.80914E-02 : -1.000E-OS : 1.000E+01 ;

PLANT. FLASHDRUM. PHASETYPE_L :=2.00000E+00 : -1.000E-03 : 1.000E+09

PLANT. FLASHDRUM. MASSFRAC_L(1) 4.99615E-01 -1.000E-01 : 1.000E+01

PLANT. FLASHDRUM. MASSFRAC_L(2) 5.00385E-01 : -1.000E-01 : 1.000E+01

PLANT. FLASHDRUM. ENTH_VO(1) 7.21461E+02 : -1.000E+07 1.000E+04

PLANT. FLASHDRUM. ENTH_VO(2) 6.93049E+02 : -1.000E+07 1.000E+04

PLANT. FLASHDRUM. VOL_FLASHDRUM :=2.35500E+00 : -1.000E-01 : 1.000E+01

PLANT. FLASHDRUM. ENTH_B :=5.99106E+02 : -1.000E+07 : 1.000E+04 ;

PLANT. FLASHDRUM. INTENERGY_L :=1.62717E+02 : -1.000E+09 : 1.000E+04

PLANT. FLASHDRUM. RATIO_V :=1.00000E+00 -1.000E-01 : 1.000E+01

APPENDIX D. SIMULATION INPUT FILES 152

PLANT. FLASHDRUM. TEMP RO(1) 6.03079E-01 : -1.000E-01 : 1.000E+01
PLANT. FLASHDRUM. TEMP_RO(2) 5.24593E-01 : -1.000E-01 : 1.000E+01
PLANT. FLASHDRUM. VISCOSITY_LO(1) 4.55853E-14 : -1.000E-01 : 1.000E+02
PLANT. FLASHDRUM. VISCOSITY_LO(2) 1.31680E-04 : -1.000E-01 : 1.000E+02
PLANT. FLASHDRUM. DEN_P01 8.77650E-01 : -1.000E-01 1.000E+05
PLANT. FLASHDRUM. PRESS_L 4.36584E+01 : -1.000E-01 1.000E+04

PLANT. FLASHDRUM. MASS B(1) 2.65348E-02 : -1.000E-01 : 1.000E+09
PLANT. FLASHDRUM. MASS B(2) 3.46517E-03 : -1.000E-01 1.000E+09
PLANT. FLASHDRUM. DEN_P02 :=8.77650E-01 : -1.000E-01 : 1.000E+05

PLANT. FLASHDRUM. VISCOSITY_PO1 :=9.40000E-06 -1.000E-01 1.000E+02
PLANT. FLASHDRUM. PRESS_FLASHDRUM :=4.36584E+01 : -1.000E-01 1.000E+04
PLANT. FLASHDRUM. VISCOSITY_P02 :=9.40000E-06 -1.000E-01 1.000E+02
PLANT. FLASHDRUM. TEMP_B :=2.23031E+02 : -1.000E-01 : 1.000E+04

PLANT. FLASHDRUM. MOLE_L(1) 3.39611E-01 -1.000E-01 : 1.000E+02

PLANT. FLASHDRUM. MOLE_L(2) 2.58027E-01 -1.000E-01 1.000E+02
PLANT. FLASHDRUM. VOL_V :=2.27881E+00 : -1.000E-01 : 1.000E+01

PLANT. FLASHDRUM. PHASETYPE_V :=1.00000E+00 -1.000E-03 : 1.000E+09

PLANT. FLASHDRUM. TEMP_C 3.93708E+02 : -1.000E-01 1.000E+04

PLANT. FLASHDRUM. VOL_B_L 7.61861E-02 : -1.000E-01 : 1.000E+01

PLANT. FLASHDRUM. MASSFRAC_V(1) 5.00000E-01 : -1.000E-01 : 1.000E+01

PLANT. FLASHDRUM. MASSFRAC_V(2) 5.00000E-O1 -1.000E-01 : 1.000E+01

PLANT. FLASHDRUM. PHASETYPE_B_L 3.00000E+00 -1.000E-03 1.000E+09

PLANT. FLASHDRUM. ENTH_L :=1.62787E+02 : -1.000E+07 : 1.000E+04

PLANT. FLASHDRUM. INTENERGY_V :=6.57510E+02 : -1.000E+09 : 1.000E+04

PLANT. FLASHDRUM. MASSFRAC_B_L(1) 5.00000E-01 : -1.000E-01 1.000E+01

PLANT. FLASHDRUM. MASSFRAC-B_L(2) 5.00000E-01 -1.000E-01 : 1.000E+01

PLANT. FLASHDRUM. TOP_V :=3.00000E+00 : -1.000E-03 : 1.000E+09

PLANT. FLASHDRUM. INTENERGY_B_L :=1.63113E+02 : -1.000E+09 : 1.000E+04

PLANT. FLASHDRUM. TOP_B_L 9.70524E-02 : -1.000E-03 : 1.000E+09

PLANT. FLASHDRUM. DEN VO(1) 7.71719E-01 : -1.000E-01 : 1.000E+05

PLANT. FLASHDRUM. DEN_VO(2) 1.01729E+00 : -1.000E-01 : 1.000E+05

PLANT. FLASHDRUM. DEN_B :=1.06782E+00 : -1.000E-01 : 1.000E+05

PLANT. FLASHDRUM. VISCOSITY_VO(1) 8.32490E-06 : -1.000E-01 1.000E+02

PLANT. FLASHDRUM. VISCOSITY_VO(2) 7.58946E-06 : -1.000E-01 1.000E+02

PLANT. FLASHDRUM. M :-5.01474E+01 -1.000E-03 1.000E+09

PLANT. FLASHDRUM. RATE_V_PI1(1) 0.00000E+00 : -1.000E-01 : 1.000E+04

PLANT. FLASHDRUM. RATE_V-PI1(2) 0.00000E+00 -1.000E-01 : 1.000E+04

PLANT. FLASHDRUM. PRESS_V :=4.36584E+01 : -1.000E-01 : 1.000E+04

PLANT. FLASHDRUM. VISCOSITY_B :=5.89599E-06 -1.000E-01 : 1.000E+02

PLANT. FLASHDRUM. MASS-L(1) 1.49735E+01 -1.000E-01 : 1.000E+09

PLANT. FLASHDRUM. MASS_L(2) 1.49965E+01 : -1.000E-01 1.000E+09

PLANT. FLASHDRUM. RATE_B_L_PI1(1) 1.25494E-01 : -1.000E-01 : 1.000E+04

PLANT. FLASHDRUM. RATE_B_L_PI1(2) 1.88241E-01 : -1.000E-01 : 1.000E+04

PLANT. FLASHDRUM. PRESS_B_L :=4.36584E+01 : -1.000E-01 : 1.000E+04

PLANT. FLASHDRUM. TEMP_L :-2.23031E+02 : -1.000E-01 : 1.000E+04

PLANT. FLASHDRUM. AREA :=7.85000E-01 : -1.000E-03 : 1.000E+09 ;

PLANT. FLASHDRUM. MOLE_B_L(1) 3.40213E-01 : -1.000E-01 1.000E+02

PLANT. FLASHDRUM. MOLE_B_L(2) 2.58087E-01 : -1.000E-OS 1.000E+02

PLANT. FLASHDRUM. RATE_V-P01(1) 0.00000E+00 -1.000E-01 : 1.000E+04

PLANT. FLASHDRUM. RATE_V_P01(2) 0.00000E+00 -1.000E-01 : 1.000E+04

PLANT. FLASHDRUM. ENTH_V :=7.07255E+02 : -1.000E+07 : 1.000E+04

PLANT. FLASHDRUM. RATE_B_L_P01(1) 0.00000E+00 -1.000E-01 : 1.000E+04

PLANT. FLASHDRUM. RATE_B_L_P01(2) 0.00000E+00 -1.000E-01 : 1.000E+04

PLANT. FLASHDRUM. RATE_V_P02(1) 0.00000E+00 : -1.000E-01 : 1.000E+04

PLANT. FLASHDRUM. RATE_V-P02(2) 0.00000E+00 : -1.000E-01 : 1.000E+04

PLANT. FLASHDRUM. ENTH_B_L :=1.63224E+02 : -1.000E+07 : 1.000E+04 ;

PLANT. FLASHDRUM. RATE_B_L_P02(1) 0.00000E+00 : -1.000E-01 : 1.000E+04

PLANT. FLASRDRUM. RATE_B_L_P02(2) 0.00000E+00 : -1.000E-01 : 1.000E+04

PLANT. FLASHDRUM. DEN_L 6.23188E+02 : -1.000E-01 : 1.000E+05

PLANT. FLASHDRUM. TEMP R 5.66487E-01 -1.000E-01 : 1.000E+01

PLANT. FLASHDRUM. VISCOSITY_L :=6.58909E-05 -1.000E-01 : 1.000E+02

PLANT. FLASHDRUM. MASS_V(1) 1.00000E+00 -1.000E-01 : 1.000E+09

PLANT. FLASHDRUM. MASS_V(2) 1.00000E+00 -1.000E-01 : 1.000E+09

PLANT. FLASHDRUM. MASS_B_L(1) 1.50000E+01 : -1.000E-01 : 1.000E+09

PLANT. FLASHDRUM. MASS_B_L(2) 1.50000E+01 : -1.000E-01 : 1.000E+09

PLANT. FLASHDRUM. HEAT_L0(1) 4.28858E+02 : -1.000E+07 : 1.000E+04

PLANT. FLASHDRUM. HEAT_LO(2) 4.22423E+02 : -1.000E+07 : 1.000E+04

PLANT. FLASHDRUM. Z :=2.75202E-01 : -1.000E+09 1.000E+09

APPENDIX D. SIMULATION INPUT FILES 153

PLANT. FLASHDRUM. TEMP V :=3.00000E+02 : -1.000E-01 : 1.000E+04
PLANT. FLASHDRUM. RATE B V(1) 7.95751E-06 -1.000E-01 : 1.000E+04
PLANT. FLASHDRUM. RATE_H_V(2) 1.04249E-06 -1.000E-01 : 1.000E+04
PLANT. FLASHDRUM. ENTHFLOW_V_PI1 :=0.00000E+00 : -1.000E+09 : 1.000E+07
PLANT. FLASHDRUM. ENTH_BO(1) 6.02311E+02 : -1.000E+07 : 1.000E+04
PLANT. FLASHDRUM. ENTH_BO(2) 5.74560E+02 -1.000E+07 : 1.000E+04
PLANT. FLASHDRUM. ENTHFLOW_B_L_PI1 :=1.09807E+02 : -1.000E+09 1.000E+07
PLANT. FLASHDRUM. RATIO_B :=1.0000E-03 : -1.000E-01 : 1.000E+01
PLANT. FLASHDRUM. MASSFRAC_P01(1) 5.00000E-01 : -1.000E-01 1.000E+01
PLANT. FLASHDRUM. MASSFRAC_P01(2) 5.00000E-01 : -1.000E-01 : 1.000E+01
PLANT. FLASHDRUM. DEN_V :=8.77650E-01 : -1.000E-01 : 1.000E+05 ;
PLANT. FLASHDRUM. MASSFRAC P02(1) 5.00000E-01 : -1.000E-01 1.000E+01
PLANT. FLASHDRUM. MASSFRAC_P02(2) 5.00000E-01 : -1.000E-01 : 1.000E+01
PLANT. FLASHDRUM. MOLEFRAC_B(1) 9.09864E-01 : -1.000E-01 : 1.000E+01
PLANT. FLASHDRUM. MOLEFRAC_B(2) 9.01362E-02 -1.000E-01 : 1.000E+01
PLANT. FLASHDRUM. DEN_B_L :=3.93772E+02 : -1.000E-01 : 1.000E+05

PLANT. FLASHDRUM. VISCOSITY_V :=7.95718E-06 : -1.000E-01 : 1.000E+02

PLANT. FLASHDRUM. VISCOSITY_B-L 6.58309E-05 : -1.000E-01 : 1.000E+02
PLANT. FLASHDRUM. VAPPRESS_L(1) 6.99037E+01 -1.000E-01 1.000E+04
PLANT. FLASHDRUM. VAPPRESS_L(2) 9.11464E+00 -1.000E-01 1.000E+04

PLANT. FLASHDRUM. ENTHFLOW_V_P01 0.00000E+00 : -1.000E+09 1.000E+07
PLANT. R3. RATIO_P :=1.00000E+00 -1.000E-01 : 1.000E+01 ;
PLANT. R3. PHASETYPE_P :=1.00000E+00 : -1.000E-03 : 1.000E+09

PLANT. R3. RATE_P(1) 0.00000E+00 -1.000E-01 : 1.000E+04

PLANT. R3. RATE_P(2) 0.00000E+00 : -1.000E-01 : 1.000E+04

PLANT. R3. ENTHFLOW_P 0.00000E+00 : -1.000E+09 1.000E+07

PLANT. R2. RATIO_P :=1.00000E+00 : -1.000E-01 : 1.000E+01 ;
PLANT. R2. PHASETYPE_P :=1.00000E+00 : -1.000E-03 : 1.000E+09

PLANT. R2. RATE_P(1) 0.00000E+00 : -1.000E-01 : 1.000E+04

PLANT. R2. RATE_P(2) 0.00000E+00 : -1.000E-01 1.000E+04

PLANT. R2. ENTHFLOW_P 0.00000E+00 : -1.000E+09 1.000E+07

PLANT. RI. RATE P(1) 1.25494E-01 -1.000E-01 : 1.000E+04

PLANT. RI. RATE_P(2) 1.88241E-01 : -1.000E-01 : 1.000E+04

PLANT. RI. ENTHFLOW_P 1.09807E+02 -1.000E+09 : 1.000E+07

PLANT. DRIVINGFORCE_C1 :=3.61542E+02 -1.000E+09 1.000E+09

PLANT. DRIVINGFORCE_C2 -5.76416E+01 : -1.000E+09 1.000E+09

PLANT. DRIVINGFORCE_C3 -5.76416E+01 : -1.000E+09 : 1.000E+09

PLANT. REYNOLDSCONSTI_C1 2.10000E+03 : -1.000E-03 1.000E+09

PLANT. REYNOLDSCONSTI_C2 2.10000E+03 : -1.000E-03 : 1.000E+09

PLANT. REYNOLDSCONST2_C1 :=4.50000E+03 -1.000E-03 1.000E+09

PLANT. REYNOLDSCONSTI_C3 2.10000E+03 : -1.000E-03 1.000E+09

PLANT. REYNOLDSCONST2_C2 :=4.50000E+03 : -1.000E-03 : 1.000E+09

PLANT. REYNOLDSCONST2_C3 4.50000E+03 : -1.000E-03 : 1.000E+09

PLANT. REYNOLDSNO_C1 8.30707E+03 -1.000E-03 1.000E+09

PLANT. REYNOLDSNO_C2 0.00000E+00 : -1.000E-03 : 1.000E+09

PLANT. REYNOLDSNO_C3 0.00000E+00 : -1.000E-03 : 1.000E+09

WITHIN Plant DO

ReynoldsNo_C2 5000

ReynoldsNo_C3 = 5000

WITHIN FlashDrum DO

PhaseType_V =1

PhaseType B

PhaseType_L .=2
PhaseType_B_L =3

PhaseType_Pol 3

PhaseType_Po2 =1

Top_V 3

Bot_V 0.0535

Top_B_L 0.0535

Bot_B_L 0

Level_H L .=0.0535
Level_V "= 3

VapPress_L(1) .= 311.379

VapPress_L(2) .= 11.018E-3

EquilConst_B_L(1) = 1.6

EquilConst_B_L(2) .=0.2

{

APPENDIX D. SIMULATION INPUT FILES 154

Vol_F1ashDrum .=2.356
Presa_F1ashDrum := 43

Temp_B 220

Temp_L 220

END

END

}

SELECTOR

WITHIN Plant DO

F1owType_C1 = Turbulent

F1ovType_C2 . = Turbulent

F1ovType_C3 . = Turbulent

WITHIN FlashDrum DO

Phase_B_L = TwoPhase

END

END

INITIAL

WITHIN Plant DO

WITHIN FlashDrum DO

Temp_V = 300

Mass_V =1

Mass_B_L = 15

Ratio_B = 0.001

END

END

SOLUTIONPARAMETERS

BLOCKDECOMPOSITION := OFF ;

OUTPUTLEVEL :=1;

SCHEDULE

SEQUENCE

CONTINUE FOR 10

RESET P1ant. R1. Press_P := 4*1.013E2 + (TIME-10)

END

CONTINUE UNTIL P1ant. Rl. Press_P > 500

RESET P1ant. R1. Press_P := 600 - TIME

END

CONTINUE UNTIL P1ant. R1. Press_P < 350

RESET P1ant. R1. Press_P := 4*1.013E2

END

CONTINUE UNTIL Plant. FlashDrum. Der_IntEnergy_V-2 < 1E-20

END

END # Process test

APPENDIX D. SIMULATION INPUT FILES

D. 2 Two Flash Drums with reversible flow
DECLARE

TYPE

Mass-rate - 50 -1E-1 . 1E4 UNIT = "kg/sec"

Temperature = 100 -1E-1 1E4 UNIT = "K"

Length = 15 -1E-1 1E2 UNIT =
Enthalpy = 700 -1E7 1E4 UNIT = "kJ/kg"

Int_Energy = 600 -1E9 1E4 UNIT = "kJ/kg"

Volume = 0.5 -1E-1 1E1 UNIT = "m3"

Pressure = 43 -1E-1 1E4 UNIT = "kPa"

Enthalpy_Flov = 1E3 -1E9 1E7 UNIT = "kJ/sec"

Mass =5 -1E-1 1E9 UNIT = "kg"

Mole = 0.1 -1E-1 1E2 UNIT = "kmole"

Density = 100 -1E-1 1E5 UNIT = "kg/m3"

Viscosity = 5E-5 -1E-1 1E2 UNIT = "Pa. s"
Velocity = 10 -1E-1 1E4 UNIT = "m/s"

Fraction = 0.5 -1E-1 . 10

NoType = 200 -1E9 . 1E9

Positive = 1E2 -IE-3 . 1E9

STREAM

MassStream IS Mass Rate, Enthalpy_Flov, Fraction, Positive

EnergyStream IS Enthalpy_Flov

END

BEGINNING of generated model #

MODEL m_R1

PARAMETER

NoComp AS INTEGER

VARIABLE

Ratio_P AS Fraction

Rate_P AS krray(NoComp) of Mass-Rate

Den_P AS Density

Press_P AS Pressure

EnthFlow-P AS Enthalpy-Flow

PhaseType P AS Positive

Viscosity_P AS Viscosity

MassFrac_P AS Array(NoComp) of Fraction

Enth_P AS Enthalpy

STREAM

P: Rate_P, EnthFlov P, Ratio_P, PhaseType P AS MassStream

END S end of MODEL m_R1

MODEL m_R2

PARAMETER

NoComp AS INTEGER

VARIABLE

Ratio_P AS Fraction

Rate_P AS krray(NoComp) of Mass-Rate

Press_P AS Pressure

155

APPENDIX D. SIMULATION INPUT FILES 156

EnthFlow-P AS Enthalpy-Flow

PhaseType_P AS Positive

STREAM

P: Rate_P, EnthFlov_P, Ratio-P, PhaseType P AS MassStream

END 0 end of MODEL m_R2

MODEL m_R3

PARAMETER

NoComp AS INTEGER

VARIABLE

Ratio
-P

AS Fraction

Rate_P AS Array(NoComp) of Mass Rate
Press

-P AS Pressure

EnthFlov_P AS Enthalpy Flow

PhaseType_P AS Positive

STREAM

P: Rate_P, EnthFlow_P, Ratio P, PhaseType_P AS MassStream

END # end of MODEL m_R3

MODEL m_R4

PARAMETER

NoComp AS INTEGER

VARIABLE

Ratio
-P

AS Fraction

Rate_P AS Array(NoComp) of Mass-Rate

Press_P AS Pressure

EnthFlow-P AS Enthalpy-Flow

PhaseType_P AS Positive

STREAM

P: Rate-P, EnthFlow_P, Ratio P, PhaseType_P AS MassStream

END ß end of MODEL m_R4

MODEL m_F1ashDruml

PARAMETER

vapour AS INTEGER

OUTLET AS INTEGER

INLET AS INTEGER

vapour-liquid AS INTEGER

NoComp AS INTEGER

liquid AS INTEGER

Z_Pol AS REAL

Z_Po2 AS REAL

height AS REAL

Const_B_V AS REAL

Z_Pi AS REAL

diameter AS REAL

VARIABLE

Mass_B L AS Array(NoComp) of Mass

Mass_B AS Array(NoComp) of Mass

Mass_V AS Array(NoComp) of Mass

Mass_L AS Array(NoComp) of Mass

Rate_B_V AS Array(NoComp) of Mass_Rate

APPENDIX D. SIMULATION INPUT FILES

Rate_V_Pi AS Array(NoComp) of Mass-Rate
Rate_B_L_Pol AS krray(NoComp) of Mass-Rate
Rate_B_L_Po2 AS Array(NoComp) of Mass_Rate
Rate_V_Pol AS Array(NoComp) of Mass-Rate
Rate_V_Po2 AS Array(NoComp) of Mass-Rate
Rate_Pi AS Array(NoComp) of Mass Rate
Rate_Pol AS Array(NoComp) of Mass Rate
Rate_Po2 AS Array(NoComp) of Mass-Rate
Rate_B_L_Pi AS Array(NoComp) of Mass Rate
Mole_B_L AS Array(NoComp) of Mole
Mole_B AS Array(NoComp) of Mole

Mole_L AS Array(NoComp) of Mole

Den_B L AS Density

Den_B AS Density

Den_V AS Density

Den_L AS Density

Den-Pot AS Density

Den Pot AS Density

Viscosity_B_L AS Viscosity

Viscosity
-V AS Viscosity

Viscosity Po2 AS Viscosity

Viscosity Pol AS Viscosity

Press_B AS Pressure

Press
-V

AS Pressure

Press
-L

AS Pressure

Press_FlashDruml AS Pressure

Press_B_L AS Pressure

VapPress_L AS Array(NoComp) of Pressure

DevTemp B_L AS Temperature

Temp
-B

AS Temperature

Temp
-V

AS Temperature

Temp_L AS Temperature

BubTemp B_L AS Temperature

Vol_B AS Volume

Vol_B_L AS Volume

Vol_V AS Volume

Vol_L AS Volume

Vol_FlashDruml AS Volume

Enth_Pol AS Enthalpy

Enth_Po2 AS Enthalpy

Enth_B AS Enthalpy

Enth_V AS Enthalpy

Enth_L AS Enthalpy

Enth_B_L AS Enthalpy

IntEnergy_B_L AS Int_Energy

IntEnergy_L AS Int_Energy

IntEnergy_V AS Int_Energy

IntEnergy_B AS Int_Energy

EnthFlow-V-Pi AS Enthalpy-Flow

EnthFlow-B-L-Pi AS Enthalpy-Flow

EnthFlov-Pi AS Enthalpy-Flow

EnthFlov-B-V AS Enthalpy-Flow

EnthFlov-V-Po2 AS Enthalpy-Flow

EnthFlov-B-L-Po2 AS Enthalpy-Flow

EnthFlow-Po2 AS Enthalpy-Flow

EnthFlov-V-Pol AS Enthalpy-Flow

EnthFlow-B-L-Pol AS Enthalpy-Flow

EnthFlov_Pol AS Enthalpy_Flov

Ratio-Pi AS Fraction

Ratio_B AS Fraction

Ratio_V AS Fraction

Ratio Po2 AS Fraction

Ratio_Pol AS Fraction

MoleFrac_L AS Array(NoComp) of Fraction

MassFrac_B_L AS Array(NoComp) of Fraction

MassFrac_L AS Array(NoComp) of Fraction

MassFrac_V AS Array(NoComp) of Fraction

MassFrac_Po2 AS Array(NoComp) of Fraction

157

APPENDIX D. SIMULATION INPUT FILES 158

MoleFrac_B AS Array(NoComp) of Fraction

MassFrac_B AS Array(NoComp) of Fraction

MaseFrac_Poi AS Array(NoComp) of Fraction

Top_B_L AS Positive

Level_V AS Positive

Bot_V AS Positive

Level_B_L AS Positive

PhaseType_B_L AS Positive

PhaseType_L AS Positive

PhaseType_Pi AS Positive

PhaseType_V AS Positive

PhaseType_Po2 AS Positive

PhaseType B AS Positive

PortType_Pol AS Positive

PhaseType_Pol AS Positive

Bot_B_L AS Positive

area AS Positive

Top_V AS Positive

EquilConst_B_L AS Array(NoComp) of Positive

MoleWeight AS Array(NoComp) of Positive

Variables for Physical Properties #

Enth_Vo AS ARRAY(NoComp) OF Enthalpy

Enth_Bo AS ARRAY(NoComp) OF Enthalpy

Enth_Lo AS ARRAY(NoComp) OF Enthalpy

Heat_Lo AS ARRAY(NoComp) OF Enthalpy

Temp_ro AS ARRAY(NoComp) OF Fraction

Den_Vo AS ARRAY(NoComp) OF Density

Den_Bo AS ARRAY(NoComp) OF Density

Temp-co AS ARRAY(NoComp) OF Temperature

Viscosity_B As Viscosity

Viscosity_L As Viscosity

Viscosity_Vo As ARRAY(NoComp) OF Viscosity

Viscosity_Bo As ARRAY(NoComp) OF Viscosity

Viscosity-Lo As ARRAY(NoComp) OF Viscosity

Av, By, Cv, Dv AS ARRAY(NoComp) OF NoType

Al, B1, Cl, Dl, El AS ARRAY(NoComp) OF NoType

Temp_r AS Fraction

Press_c AS Pressure

Press-co AS ARRAY(NoComp) OF Positive

Temp_c AS Temperature

M AS Positive

z AS NoType

Zo AS ARRAY(NoComp) OF NoType

R AS NoType

A, B, C, D, E AS ARRAY(NoComp) OF NoType

F, G AS ARRAY(NoComp) OF NoType

vapl, vap2, vap3, vap4, vap5 AS ARRAy(NoComp) OF NoType

Wo AS ARRAY(NoComp) OF NoType

dummy variable for visualisation #

==-============================= #

Sum-Mass-V,

Der_IntEnergy_V,

Sum_Mass_B_L,

Der_Mass_B_L,

APPENDIX D. SIMULATION INPUT FILES 159

Sum_Mass_B,

Sum_Mass_L,

Sum_Rate_B_V,

Sum_Rate Pi,

Sum Rate_Pol,

Sum_Rate_Po2,

VapPress_1,

VapPress_2,

Equil_1,

Equil_2 AS NoType

STREAM

Pi : Rate_Pi, EnthFlov_Pi, Ratio-Pi, PhaseType_Pi AS MassStream
Pol : Rate_Pol, EnthFlow_Pol, Ratio_Pol, PhaseType_Pol AS MassStream
Po2 : Rate_Po2, EnthFlow_Po2, Ratio_Po2, PhaseType_Po2 AS MassStream

SELECTOR

Phase B_L AS (LPhase, TwoPhase, VPhase)

SET

vapour 1

Z_Pol 0.500000

Z_Po2
.=2.500000

OUTLET =1
INLET 2

height = 3.000000

vapour-liquid 3

liquid =2
Z_Pi = 1.500000

diameter .=1.000000

EQUATION

case invariant mass balance

$Mass_V = Rate-V_Pi - Rate_V_Poi - Rate_V_Po2 + Rate B_V

$Mass_B_L = Rate_B_L_Pi - Rate_B_L_Pol - Rate_B_L_Po2 - Rate_B_V ;

case invariant energy balance

$IntEnergy_V * SIGMA(Mass_V) + IntEnergy V* SIGMA($Mass V) _

EnthFlov_V_Pi - EnthFlov_V_Poi - EnthFlov V_Po2 + EnthFlov BV

$IntEnergy_B_L * SIGMA(Mass_B_L) + IntEnergy_B_L * SIGMA($Mass_B_L) =

EnthFlow_B_L_Pi - EnthFlov_B_L_Po1 - EnthFlov_B_L_Po2 - EnthFlow_B_V

ratio of dispersed phase

Ratio_V =1;

SIGMA(Mass_B) = Ratio
-B * SIGMA(Mass B_L)

PhaseEquilibrium

Temp_B = Temp_L ;

Mass_B_L = Mass_B + Mass_L

Mass_B = MoleWeight * Mole_B

Mass_B_L = MoleWeight * Mole_B_L

Mole_B_L = Mole_B + Mole j;

Mole
-B = MoleFrac_B * SIGMA(Mole_B)

Mole_L = MoleFrac_L * SIGMA(Mole_L)

CASE Phase_B_L OF

WHEN LPhase

Mole_B -0

EquilConst_B_L =0

SWITCH TO TwoPhase IF Temp_L > BubTemp_B_L

WHEN TvoPhase :

VapPress_L " MoleFrac_L = MoleFrac_B * Press B_L

MoleFrac_B = EquilConst_B_L * MoleFrac_L ;

APPENDIX D. SIMULATION INPUT FILES 160

SWITCH TO LPhase IF SIGMA(Mole B) <= 0

SWITCH TO VPhaze IF SIGMA(Mole L) <= 0

WHEN VPhase :

EquilConst_B_L =0

Mole_L -0;

SWITCH TO TwoPhase IF Temp_B < DewTemp_B_L

END

BubbleRise :

Rate_B_V = Const_B_V * Mass_B

EnthFlov_B_V = SIGMA(Rate_B_V) * Enth_B

mass = mass fraction * total mass
Mass_B_L = MassFrac_B_L * SIGMA(Mass_B_L)

Mass_L = MassFrac_L * SIGMA(Mass_L)

Mass_B = MassFrac_B * SICMA(Mass_B)

Mass_V = MassFrac_V * SIGMA(Mass_V)

X total mass = density * volume
SIGMA(Mass_B_L) = Den_B_L * Vol_B_L

SIGMA(Mass_L) = Den_L * Vol
-L

SIGMA(Mass_B) = Den_B * Vol
-B

SIGMA(Mass_V) = Den
-V * Vol_V

phase type

PhaseType B_L = vapour-liquid
PhaseType_L = liquid

PhaseType B= vapour

PhaseType_V = vapour

volume relationship
Vol B_L = Vol

-B + Vol_L

Vol_FlashDruml = Vol
-V

+ Vol_B_L

uniform pressure within vessel

Press_FlashDruml - Press B_L

Press_FlashDruml = Press_L

Press_FlashDruml - Press_B

Press_FlashDruml = Press_V

phase bound : upper/lov bound of phase volume = level

Top_B_L = Level_B_L

Bot_B_L =0;

Top
-V = Level_V

Bot_V = Level_B_L

Top_V - height ;

phase volume : volume = area * (top - bottom)

area = (3.14/4) + diameter-2 ;

Vol_B_L = area + (Top B_L - Bot_B_L)

Vol_V = area * (Top_V - Bot_V) ;

discontinuity on input port, "Pi"

IF PhaseType_Pi = vapour THEN

IF Z_Pi > Bot_V AND Z_Pi <= Top_V THEN

Rate_V_Pi = Rate_Pi

EnthFlow_V_Pi = EnthFlow_Pi

Rate_B_L_Pi =0;

EnthFlow_B_L_Pi =0

ELSE

Rate_B_L_Pi = Rate-Pi

EnthFlow_B_L_Pi = EnthFlow_Pi

Rate_V_Pi =0;

EnthFlow_V_Pi =0

END

ELSE

Rate B_L_Pi - Rate_Pi

APPENDIX D. SIMULATION INPUT FILES 161

EnthFlov_B_L_Pi - EnthFlov_Pi

Rate_V_Pi -0;

EnthFlov_V Pi =0

END

* and of discontinuity on input port, "Pi"

discontinuity on both type port, "Pol"

IF PortType_Pol = OUTLET THEN

IF Z
-Pol

> Bot_V AND Z
-Pol <= Top_V THEN

viscosity
-V = viscosity-pol

Den_V = Den-Pol ;

MassFrac_V = MassFrac_Pol

Enth_V = Enth_Pol

Rate_V Pol = Rats Pol

EnthFlow_V_Pol = EnthFlow_Pol

Rate_B_L_Pol =0

EnthFlov B_L_Poi =0
ELSE

Viscosity B_L - Viscosity-Poi

Den_B_L = Den-Pol ;
MassFrac_B_L = MassFrac Pol

Enth_B_L = Enth_Pol

Rate_B_L Pol = Rate Pol

EnthFlow_B_L_Pol = EnthFlow_Poi

Rate_V_Pol =0
EnthFlov_V Poi =0

END

ELSE

IF PhaseType_Poi = vapour THEN

IF Z
-Pol

> Bot_V AND Z_Pol <= Top_V THEN

viscosity-pol 0

Den-Pot =0;

MassFrac_Pol =0

Enth Pol =0

Rate V_Pol = Rate Pol

EnthFlow_V_Poi = EnthFlow_Pol

Rate_B_L_Pol =0

EnthFlov_B_L_Poi =0

ELSE

viscosity-pol 0

Den_Pol =0;
MassFrac_Pol =0

Enth_Pol =0

Rate B_L Pol = Rate Poi

EnthFlov_B_L_Pol = EnthFlow_Po1

Rate_V_Pol =0

EnthFlov V_Poi =0

END

ELSE

viscosity-pol 0

Den_Pol =0;

MassFrac_Pol =0

Enth_Pol =0

Rate_B_L_Pol = Rate-Pol

EnthFlow_B_L_Pol = EnthFlov_Pol

Rate_V Pol =0

EnthFlow_V Pol =0

END

END

and of discontinuity on both type port, "Pol"

* discontinuity on output port, "Po2"

IF Z_Po2 > Bot_V AND Z_Po2 <= Top_V THEN

Viscosity j= Viscosity Pot

Enth_V - Enth_Po2 ;

MassFrac_V = MassFrac_Po2

APPENDIX D. SIMULATION INPUT FILES 162

Den_V = Den_Po2 ;

Ante V_Po2 = Rats Pot

EnthFlov V_Po2 = EnthPlov Po2

Ratio_V = Ratio_Po2

PhaseType_V = PhaseType_Po2

Rate_B_L Po2 =0;

EnthFlov_B_L_Po2 =0

ELSE

Viscosity_B_L = Viscosity_Po2

Enth_B_L - Enth_Po2

MassFrac BL= MassFrac_Po2

Den_B_L = Den_Po2 ;

Rate_B_L_Po2 = Rate_Po2

EnthFlov_B_L_Po2 = EnthFlov Po2

Ratio
-B = Ratio_Po2

PhaseType_B_L PhaseType_Po2

Rate_V_Po2 -0

EnthFlov_V Po2 =0

END

end of discontinuity on output port, "Po2"

Physical Properties #

vapour pressure of L

VapPress-L * 0.145 = 10-(F - G/((1.8 * Temp_L - 459.4) + 382))

VapPress_L = 1E-3 * EXP(vapl + vap2/Temp_L + vap3*LOG(Temp_L) +

vap4*Temp_L'vap5) ;

Application Range :
Propane : 228K - 366K

Butane 228K - 421K

pure enthalpies of V

Enth_Vo * 0.43 =A* ((Temp_V * 9/5)/100) +B* ((Temp_V * 9/5)/100)"2 +

C* 1E-2 * ((Temp
-V * 9/5)/100)'3 +D* (100/(Temp V* 9/5)) +E;

enthalpy of V

Enth_V = SIGMA(MassFrac_V * Enth_Vo)

ü pure enthalpies of B

Enth_Bo * 0.43 =A* ((Temp_B * 9/5)/100) +B* ((Temp_B * 9/5)/100)'2 +

C* 1E-2 * ((Temp_B * 9/5)/100)"3 +D* (100/(Temp_B * 9/5)) +E;

enthalpy of B

Enth_B = SIGMA(MassFrae_B * Enth_Bo)

heats of vapourisation of pure L

Heat_Lo * MoleWeight = (R * Temp-co) * (7.08 * (1 - Temp_ro)'0.354 +

10.95 * Wo * (1-Temp_ro)"0.456) ;

Temp_ro * Temp-co = Temp_L ;

pure enthapies of L

Enth_Lo = Enth Bo - Heat
_Lo

enthalpy of L

Enth L= SIGMA(MasBFrac_L * Enth_Lo)

enthalpy of B_L

Enth_B_L = Ratio_B * Enth_B + (1 - Ratio_B) * Enth_L

* internal energy of V

Enth_V * SIGMA(Mass V) = IntEnergy_V * SIGMA(Mass V) +

SIGMA(Mass_V / MoleWeight) *R* Temp_V

1

APPENDIX D. SIMULATION INPUT FILES 163

$ internal energy of B_L

Enth_B_L - IntEnergy_B_L + Press_B_L / Den_B_L

X IntEnergy B_L - IntEnergy B* Ratio
-B +

X (1 - Ratio_B) * IntEnergy_L

internal energy of B

Enth_B * SIGMA(Mase_B) = IntEnergy_B * SIGMA(Mass_B) +
SIGMA(Mass_B / MoleWeight) *R* Temp_B

8 internal energy of L

Enth_L = IntEnergy_L + Press_L / Den_L

density of V

Den_Vo *R* Temp_V = Press_V * MoleWeight ;# for pure component
Den_V * SIGMA(MassFrac_V / Den_Vo) =1; # for mixture

density of B

Den_Bo *R* Temp_L = Press
-B * MoleWeight; # for pure component

Den
-B * SIGMA(MassFrac B/ Den_Bo) = 1; # for mixture

density of L

Den_L *R* Temp_c * Z'(1 + (1 - Temp-r)-(2/7)) = Press_c *M
Press_c = SIGMA(MoleFrac_L * Press-co)

Temp_c = SIGMA(MoleFrac_L * Temp-co)

Z- SIGMA(MoleFrac_L * Zo)

Temp_r * Temp_c = Temp_L ;
M= SIGMA(MoleFrac_L * Moleweight)

viscosity of V

Viscosity_Vo = Av * Temp_V-Bv / (1 + Cv / Temp_V + Dv / Temp_V"2)

Viscosity_V = SIGMA(MassFrac_V * Viscosity_Vo) ;

viscosity of B_L

Viscosity Bo = (Av * Temp_B"Bv) / (1 + Cv / Temp
-B + Dv / Temp B"2)

Viscosity
-B = SIGMA (MassFrac V* Viscosity_Bo) ;

Viscosity_Lo = EXP(A1 * (B1 / Temp_L) + Cl * LOG(Temp_L) +

Dl * Temp_L"E1) ;

Viscosity_L = SIGMA(MassFrac_L * Viscosity_Lo)

Viscosity_B_L = Ratio_B * Viscosity_B +

(1 - Ratio_B) * Viscosity_L

dummy variables for visualisation #

Sum_Mass_V = SIGMA(Mass_V)

Der_IntEnergy_V = $IntEnergy_V;

Sum-Mass B_L = SIGMA(Mass_B_L)

Der Mass_B_L = SIGMA ($Mass B L);

Sum_Mass_B = SIGMA(Mass B)

Sum_Mass_L = SIGMA(Masa_L)

Sum_Rate_B_V = SIGMA(Rate B V)

Sum_Rate_Pi = SIGMA(Rate_Pi);

Sum_Rate_Pol = SIGMA (Ftate-Pol);

Sum_Rate_Po2 - SIGMA (Rate-Po2);

VapPress_1 = VapPress_L(1);

VapPress_2 = VapPress_L(2);

Equil_1 = EquilConst B_L(1);

Equil_2 = Equi1Const B_L(2);

END M end of MODEL m_F1ashDruml

MODEL m_F1ashDrum2

PARAMETER

vapour
AS INTEGER

APPENDIX D. SIMULATION INPUT FILES

OUTLET AS INTEGER

INLET AS INTEGER

vapour-liquid AS INTEGER

NoComp AS INTEGER

liquid AS INTEGER

Z_Pol AS REAL

Z_Po2 AS REAL

height AS REAL

Const_B_V AS REAL

Z_Pi AS REAL

diameter AS REAL

VARIABLE

Mass_B L AS Array(NoComp) of Mass

Mass
-B AS Array(NoComp) of Mass

Mass_V AS Array(NoComp) of Mass

Mass_L AS Array(NoComp) of Mass

Rate_S V AS Array(NoComp) of Mass
-
Rate

Rate_V_Pi AS Array(NoComp) of Mass- Rate

Rate_B_L_Pol AS Array(NoComp) of Mass- Rate

Rate_B_L_Po2 AS Array(NoComp) of Mass- Rate

Rate_V_Pot AS Array(NoComp) of Mass- Rate

Rate V Po2 AS Array(NoComp) of Mass- Rate

Rate Pi AS Array(NoComp) of Mass- Rate

Rate Pol AS Array(NoComp) of Mass- Rate

Rate Po2 AS Array(NoComp) of Mass- Rate

Rate B_L Pi AS Array(NoComp) of Mass- Rate

Mole B_L AS Array(NoComp) of Mole

Mole
-B

AS Array(NoComp) of Mole

Mole_L AS Array(NoComp) of Mole

Den_B_L AS Density

Den_B AS Density

Den_V AS Density

Den_L AS Density

Den_Pol AS Density

Den Po2 AS Density

Den_Pi AS Density

Viscosity_B_L AS Viscosity

Viscosity_Pi AS Viscosity

Viscosity_V AS Viscosity

Viscosity_Po2 AS Viscosity

Viscosity_Pol AS Viscosity

Press_B AS Pressure

Press_V AS Pressure

Press_L AS Pressure

Press_F1ashDrum2 AS Pressure

Press_B L AS Pressure

VapPress_L AS Array(NoComp) of Pressure

DewTemp_B_L AS Temperature

Temp_B AS Temperature

Temp_V AS Temperature

Temp_L AS Temperature

BubTemp_B_L AS Temperature

Vol_B AS Volume

Vol_B_L AS Volume

Vol_V AS Volume

Vol_L AS Volume

Vol_F1ashDrum2 AS Volume

Enth_Pol AS Enthalpy

Enth_Po2 AS Enthalpy

Enth_Pi AS Enthalpy

Enth_B AS Enthalpy

Enth_V AS Enthalpy

Enth_L AS Enthalpy

Enth_B_L AS Enthalpy

IntEnergy_B_L AS Int_Energy

IntEnergy_L AS Int Energy

IntEnergy_V AS Int_Energy

164

APPENDIX D. SIMULATION INPUT FILES 165

IntEnergy B AS Int_Energy

EnthFlow_V_Pi AS Enthalpy_Flov

EnthFlov_B_L_Pi AS Enthalpy_Flov

EnthFlow_Pi AS Enthalpy-Flow

EnthFlow_B_V AS Enthalpy-Flow

EnthFlow-V-Po2 AS Enthalpy-Flow

EnthFlow-B-L-Po2 AS Enthalpy-Flow

EnthFlov-Po2 AS Enthalpy-Flow

EnthFlow-V-Pol AS Enthalpy-Flow

EnthFlow_B_L_Pol AS Enthalpy_Flov

EnthFlow_Pol AS Enthalpy-Flow

Ratio-Pi AS Fraction

Ratio_B AS Fraction

Ratio_V AS Fraction

Ratio_Po2 AS Fraction

Ratio_Pol AS Fraction

MoleFrac_L AS Array(NoComp) of Fraction

MassFrac_B_L AS Array(NoComp) of Fraction

MassFrac_L AS Array(NoComp) of Fraction

MassFrac_Pi AS Array(NoComp) of Fraction

MassFrac V AS Array(NoComp) of Fraction

MassFrac_Po2 AS Array(NoComp) of Fraction

MoleFrac_B AS Array(NoComp) of Fraction

MassFrac B AS Array(NoComp) of Fraction

MassFrac_Pol AS Array(NoComp) of Fraction

Top_B_L AS Positive

Level_V AS Positive

Bot_V AS Positive

Level_B_L AS Positive

PhaseType_B_L AS Positive

PhaseType_L AS Positive

PortType_Pi AS Positive

PhaseType_Pi AS Positive

PhaseType V AS Positive

PhaseType Po2 AS Positive

PhaseType_B AS Positive

PhaseType_Pol AS Positive

Bot_B_L AS Positive

area AS Positive

Top_V AS Positive

EquilConst_B L AS Array(NoComp) of Positive

MoleWeight AS Array(NoComp) of Positive

Variables for Physical Properties #

Enth_Vo AS ARRAY(NoComp) OF Enthalpy

Enth_Bo AS ARRAY(NoComp) OF Enthalpy

Enth_Lo AS ARRAY(NoComp) OF Enthalpy

Heat_Lo AS ARRAY(NoComp) OF Enthalpy

Temp_ro AS ARRAY(NoComp) OF Fraction

Den_Vo AS ARRAY(NoComp) OF Density

Den_Bo AS AHRAY(NoComp) OF Density

Temp-co AS ARRAY(NoComp) OF Temperature

Viscosity_B As Viscosity

Viscosity_L As Viscosity

Viscosity Vo As ARRAY(NoComp) OF Viscosity

Viscosity_Bo As ARRAY(NoComp) OF Viscosity

Viscosity_Lo
As ARRAY(NoComp) OF Viscosity

Av, By, Cv, Dv AS ARRAY(NoComp) OF NoType

Al, B1, Cl, Dl, El AS ARRAY(NoComp) OF NoType

Temp
-r

AS Fraction

APPENDIX D. SIMULATION INPUT FILES

Press_c AS Pressure

Press-co AS ARRAY(NoComp) OF Positive
Temp_c AS Temperature

M AS Positive

Z AS NoType

Zo AS ARRAY(NoComp) OF NoType

A AS NoType

A, B, C, D, E AS ARRAY(NoComp) OF NoType
F, G AS AARAY(NoComp) OF NoType

vapl, vap2, vap3, vap4, vap5 AS ARRAy(NoComp) OF NoType
Wo AS ARRAY(NoComp) OF NoType

dummy variable for visualisation #

=======_°====-=--=============== #

Sum_Mass_V,

Der_IntEnergy_V,

Sum_Mass_B_L,

Der_Mass_B_L,

Sum_Mass_B,

Sum_Mass_L,

Sum_Rate_B_V,

Sum-Rate-Pi,

Snm_Rate Poi,

Sum_Rate_Po2,

VapPress_1,

VapPress_2,

Equil_1,

Equil_2 AS NoType

STREAM

Pi : Rate-Pi, EnthFlov Pi, Ratio Pi, PhaseType Pi AS MassStream

Pol : Rate_Pol, EnthFlov Pol, Ratio Poi, PhaseType Pol AS MassStream

Po2 : Rate_Po2, EnthFlov_Po2, Ratio_Po2, PhaseType_Po2 AS MassStream

SELECTOR

Phase_B_L AS (LPhase, TwoPhase, VPhase)

SET

vapour =1

Z_Pol = 0.500000

Z_Po2 2.500000

OUTLET =1

INLET "= 2

height 3.000000

vapour-liquid 3

liquid =2

Z_Pi .=1.500000
diameter .=1.000000

EQUATION

case invariant mass balance

$Mass_V = Rate_V_Pi - Rate V Pol - Rate_V_Po2 + Rate_B V

$Mass_B_L = Rate B_L_Pi - Rate B_LPol - Rate_B_L Po2 - Rate B_V ;

* case invariant energy balance

$IntEnergy_V * SIGMA(Mass_V) + IntEnergy_V * SIGMA($Mass_V) _

EnthFlov_V_Pi - EnthFlov_V_Po1 - EnthFlov_V_Po2 + EnthFlov_B_V

166

$IntEnergy_B_L * SIGMA(Mass-B_L) + IntBnergy B_L + SIGMA ($Mass B_L) =

EnthFlov_B_L_Pi - EnthFlov_B_L_Pol - EnthFlov_B_L_Po2 - EnthFlow_B_V

APPENDIX D. SIMULATION INPUT FILES 167

* ratio of dispersed phase
Ratio_V "1;

SIGMA(Mass B) = Ratio_B * SIGMA(Mass_B_L)

PhaseEquilibrium

Temp
-B = Temp_L ;

Mass_B_L = Mass_B + Mass_L

Mass_B = MoleWeight * Mole_B

Mass_B_L = MoleWeight * Mole_B_L

Mole B_L = Mole
-B

+ Mole_L ;
Mole

-B = MolePrac B* SIGMA(Mole_B)

Mole_L = MoleFrac_L * SIGMA(Mole_L)

CASE Phase_B_L OF

WHEN LPhase

Mole_B =0

EquilConst_B_L =0
SWITCH TO TwoPhase IF Temp_L > BubTemp B_L

WHEN TwoPhase :

VapPress_L * MoleFrac_L = MoleFrac_B * Press B_L

MoleFrac B= EquilConst B_L * MoleFrac_L

SWITCH TO LPhase IF SIGMA(Mole_B) <= 0

SWITCH TO VPhass IF SIGMA(Mole_L) <= 0

WHEN VPhase

Mole_L =0

EquilConst_B_L =1
SWITCH TO TwoPhase IF Temp_B < DewTemp_B_L

END

BubbleRise :

Rate_B_V = Const_B_V * Mass_B

EnthFlov_B_V = SIGMA(Rate_B_V) * Enth_B

mass = mass fraction * total mass
Mass_B_L = MassFrac_B_L * SIGMA(Mass_B_L)

Mass_L = MassFrac_L * SIGMA(Mass_L)

Mass_B = MassFrac_B * SIGMA(Mass_B)

Mass_V = MassFrac_V * SIGMA(Mass_V)

total mass = density * volume

SIGMA(Mass_B_L) = Den_B_L * Vol_B_L

SIGMA(Mass_L) = Den_L * Vol_L

SIGMA(Mass_B) = Den_B * Vol
-B

SIGMA(Mass_V) = Den_V * Vol_V

phase type

PhaseType_B_L = vapour-liquid

PhaseType_L = liquid

PhaseType_B = vapour

PhaseType_V = vapour

volume relationship

Vol_B_L = Vol
-B

+ Vol
-L

Vol_FlashDrum2 - Vol_V + Vol_B_L

uniform pressure within vessel

Press_FlashDrum2 = Press_B_L

Press_FlashDrum2 = Press_L

Press_FlashDrum2 = Press
-B

Press_FlashDrum2 = Press_V

phase bound : upper/low bound of phase volume = level

Top_B_L = Level_B_L

Bot_B_L =0;

Top_V = Level_V

Bot_V = Level B_L

Top_V - height ;

APPENDIX D. SIMULATION INPUT FILES 168

if phase volume : volume = area * (top - bottom)

area = (3.14/4) * diameter-2 ;

Vol B_L = area * (Top B_L - Bot B_L)

Vol_V = area * (Top_V - Bot_V) ;

discontinuity on both type port, "Pi"

IF PortType_Pi = OUTLET THEN

IF Z_Pi > Bot_V AND Z_Pi <= Top_V THEN

Viscosity_V = viscosity-pi

Den_V - Dan-Pi ;

MassFrac_V = MassFrac_Pi

Enth_V = Enth_Pi

Rate V Pi = Rate Pi

EnthFlov_V_Pi = EnthFlov_Pi

Rate_B_L_Pi =0

EnthFlov-B-L-Pi =0

ELSE

Viscosity_B_L = Viscosity_Pi

Den_B_L = Den-Pi ;

MassFrac_B_L = MassFrac_Pi

Enth B_L = Enth_Pi

Rate B_L Pi = Rate Pi

EnthFlov B_L Pi = EnthFlov_Pi

Rate_V_Pi =0

EnthFlov_V_Pi =0
END

ELSE

IF PhaseType_Pi = vapour THEN

IF Z_Pi > Bot_V AND Z_Pi <= Top_V THEN

Viscosity Pi =0
Den_Pi =0;

MassFrac_Pi =0

Enth_Pi =0

Rate_V Pi = Rate Pi

EnthFlov V Pi = EnthFlov_Pi

Rate_B_L_Pi =0

EnthFlov-B-L-Pi =0

ELSE

Viscosity Pi =0

Den Pi =0;

MassFrac_Pi =0

Enth_Pi =0

Rate_B_L_Pi = Rate Pi

EnthFlov_B L Pi = EnthFlow_Pi

Rate_V_Pi =0

EnthFlov_V_Pi =0

END

ELSE

viscosity-pi 0

Den-Pi =0;

MassFrac Pi =0

Enth Pi =0

Rate_B_L_Pi = Rate-Pi

EnthFlov-B-L-Pi = EnthFlov_Pi

Rate_V_Pi =0

EnthFlov_V_Pi =0

END

END

end of discontinuity on both type port, "Pi"

* discontinuity on output port, "Pol"

IF Z_Pol > Bot_V AND Z_Pol <- Top_V THEN

viscosity -V = viscosity-pol

Enth_V = Enth_Pol ;

MassFrac_V = MassFrac_Pol

Den_V = Den_Pol ;

APPENDIX D. SIMULATION INPUT FILES 169

Rate V_Pol = Rate-Pol ;
EnthFlow_V_Pol = EnthPlov_Pol

Ratio_V = Ratio Poi

PhaseType V= PhaseType_Pol

Rate_B_L Pol 0;

EnthFlow_B_L_Pol =0

ELSE

Viscosity_B_L = Viscosity-Pol

Enth_B_L = Enth_Pol

MassFrac_B_L = MassFrac_Pol

Den_B_L = Den_Pol ;

Rate_B_L_Poi - Rate-Pol

EnthFlov_B_L_Pol = EnthFlow_Pol

Ratio_B = Ratio-Pol ;

PhaseType B_L PhaseType_Pol

Rate_V_Pol =0

EnthFlow_V_Pol =0

END

end of discontinuity on output port, "Pol"

discontinuity on output port, "Po2"

IF Z Pot > Bot_V AND Z_Po2 <= Top_V THEN

Viscosity_V = Viscosity_Po2

Enth_V = Enth_Po2 ;

MassFrae V= MassFrac_Po2

Den_V - Den_Po2 ;

Rate_V_Po2 = Rate_Po2

EnthFlow V_Po2 = EnthFlow_Po2

Ratio_V = Ratio_Po2

PhaseType_V = PhaseType_Po2

Rate_B_L_Po2 =0;

EnthFlov_B_L_Po2 =0

ELSE

Viscosity_B_L = Viscosity Po2

Enth_B_L = Enth_Po2

MassFrac_B L= MassFrac_Po2

Den_B_L = Den Pot ;

Rate_B_L_Po2 = Rate_Po2

EnthFlov_B_L_Po2 = EnthFlow_Po2

Ratio_B = Ratio Po2

PhaseType_B_L = PhaseType_Po2

Rate_V_Po2 =0

EnthFlov_V_Po2 =0

END

end of discontinuity on output port, "Po2"

Physical Properties #

vapour pressure of L

VapPress_L * 0.145 = 10-(F - G/((1.8 * Temp_L - 459.4) + 382))

VapPress_L 1E-3 * E%P(vapl + vap2/Temp_L + vap3*LOG(Temp_L) +

vap4*Temp_L-vap5) ;

0 Application Range :

Propane : 228K - 366K

* Butane : 228K - 421K

pure enthalpies of V

Enth_Vo * 0.43 -A* ((Temp_V * 9/5)/100) +B* ((Temp_V * 9/5)/100)'2 +

C* 1E-2 * ((Temp_V * 9/5)/100)"3 +D* (100/(Temp_V * 9/5)) +E;

enthalpy of V

Enth_V = SIGMA(MassFrac_V * Enth_Vo)

APPENDIX D. SIMULATION INPUT FILES 170

* pure enthalpies of B

Enth_Bo * 0.43 =A* ((Temp_B * 9/5)/100) +B* ((Temp
-B 9/5)/100)'2 +

C* 1E-2 * ((Temp_B * 9/5)/100)'3 +D* (100/(Temp_B * 9/5)) +E;

0 enthalpy of B

Enth_B = SIGMA(MassFrac_B * Enth_Bo)

X heats of vapourisation of pure L
Heat_Lo * MoleWeight = (R * Temp-co) * (7.08 * (1 - Temp_ro)"0.354 +

10.95 * Wo * (1-Temp_ro)'0.456) ;
Temp_ro * Temp-co = Temp_L ;

pure enthapies of L

Enth_Lo = Enth_Bo - Heat-Lo

A enthalpy of L

Enth_L = SIGMA(MassFrac_L * Enth_Lo)

enthalpy of B_L

Enth_B_L = Ratio_B * Enth_B + (1 - Ratio_B) * Enth_L

internal energy of V

Enth_V * SIGMA(Mass_V) = IntEnergy_V * SIGMA(Mass_V) +

SIGMA(Mass_V / MoleWeight) *R* Temp_V

internal energy of B_L

Enth_B_L = IntEnergy-B_L + press_B_L / Den_B_L

IntEnergy_B_L = IntEnergy B* Ratio_B +

(1 - Ratio B) * IntEnergy_L

internal energy of B

Enth_B * SIGMA(Mass B) = IntEnergy_B * SIGMA(Mass_B) +

SIGMA(Mass_B / MoleWeight) *R* Temp_B

internal energy of L

Enth_L = IntEnergy_L + press_L / Den_L

density of V

Den_Vo *R* Temp_V = Press
-V * MoleWeight ;# for pure component

Den_V * SIGMA(MassFrac_V / Den_Vo) =1; # for mixture

density of B

Den_Bo *A* Temp_L = Press
-B * MoleWeight; # for pure component

Den_B * SIGMA(MassFrac B/ Den Bo) = 1; # for mixture

* density of L

Den_L *R* Temp_c * Z-(1 + (1 - Temp-r)-(2/7)) = Press_c *M

Press_c - SIGMA(MoleFrac_L * Press-co)

Temp_c = SIGMA(MoleFrac_L * Temp-co)

Z= SIGMA(MoleFrac_L * Zo)

Temp_r * Temp_c - Temp_L ;

M= SIGMA(MoleFrac_L * MoleWeight)

* viscosity of V

Viscosity_Vo = Av * Temp V-Bv / (1 + Cv / Temp
-V

+ Dv / Temp_V"2)

Viscosity_V SIGMA(MassFrac_V * Viscosity_Vo) ;

viscosity of B_L

Viscosity-Bo = (AV * Temp B-Bv) / (1 + Cv / Temp
-B

+ Dv / Temp-B-2)

Viscosity_B = SIGMA(MassFrac_V * Viscosity_Bo) ;

Viscosity-Lo EXP(A1 * (B1 / Temp L) + Cl * LOG(Temp_L) +

D1 * Temp_L-E1) ;

Viscosity_L = SIGMA(MassFrac_L * Viscosity-Lo)

Viscosity_B_L = Ratio_B * Viscosity_B +

(1 - Ratio_B) * Viscosity_L

r _________________________=____=_= x

APPENDIX D. SIMULATION INPUT FILES

dummy variables for visualisation #

===::::::::: ___: __#

Sum-Mass V= SIGMA(Mass_V)

Der_IntEnergy_V = $IntEnergy_V;

Sum_Mass_B_L = SIGMA(Mass_B_L)

Der_Mass_B_L = SIGMA($Mass_B_L);

Sum_Mass_B = SIGMA(Mass_B)

Sum_Mass_L = SIGMA(Mass_L)

Sum-Rate B_V = SIGMA(Rate B_V)

Sum-Rate-Pi = SIGMA(Rate_Pi);

Sum_Rate_Pol = SIGMA (Rate Pol);

Sum_Rate_Po2 = SIGMA (Rate-Po2)

VapPress_1 = VapPress_L(1);

VapPress_2 = VapPress_L(2);

Equil_1 = EquilConst B_L(1);

Equil_2 = EquilConst_B_L(2);

END # end of MODEL m_F1ashDrum2

MODEL Flowsheet

PARAMETER

OUTLET AS INTEGER

INLET AS INTEGER

NoComp AS INTEGER

Const2_C3 AS REAL

Const2_C2 AS REAL

Const2_C1 AS REAL

Const2_C5 AS REAL

Const2_C4 AS REAL

Const3_C3 AS REAL

Const3_C2 AS REAL

Const3_C1 AS REAL

Const3_C5 AS REAL

Const3_C4 AS REAL

Const_C1 AS REAL

Const_C2 AS REAL

Const_C3 AS REAL

Const_C4 AS REAL

Const_C5 AS REAL

VARIABLE

Den_C2 AS Density

Enth_C2 AS Enthalpy

ReynoldsConstl_C5 AS Positive

ReynoldsConst2_C5 AS Positive

ReynoldsNo_C5 AS Positive

DrivingForce_C5 AS NoType

ReynoldsConstl_C4 AS Positive

ReynoldsConst2_C4 AS Positive

ReynoldsNo_C4 AS Positive

DrivingForce_C4 AS NoType

ReynoldsConstl_C3 AS Positive

ReynoldsConst2_C3 AS Positive

ReynoldsNo_C3 AS Positive

DrivingForce_C3 AS NoType

ReynoldsNo_C2 AS Positive

EnthFlov_C2 AS Enthalpy_Flov

Viscosity_C2 AS Viscosity

MassFrac_C2 AS Array(NoComp) of Fraction

DrivingForce_C2 AS NoType

ReynoldsConstl_C1 AS Positive

ReynoldsConst2_C1 AS Positive

ReynoldsNo_C1
AS Positive

DrivingForce_C1
AS NoTyps

AS Array(NoComp) of Mass_Rate
Rate_C2

171

APPENDIX D. SIMULATION INPUT FILES 172

UNIT

R1

R2

R3

R4

F1ashDruml

FlashDrum2

SELECTOR

F1ovType_C5 AS (Turbulent, Laminar)

F1ovType_C4 AS (Turbulent, Laminar)

F1ovType_C3 AS (Turbulent, Laminar)

F1ovType_C2 AS (Turbulent, Laminar)

F1ovType_C1 AS (Turbulent, Laminar)

SET

OUTLET

INLET .=2

EQUATION

AS m_R1
AS m_R2

AS m_R3
AS m_R4
AS m_F1ashDruml
AS m_F1ashDrum2

stream connections through ports #

R1. P IS F1ashDruml. Pi

F1ashDruml. Po1 IS F1ashDrum2. Pi

F1ashDruml. Po2 IS R4. P

F1ashDrum2. Po1 IS R2. P

F1ashDrum2. Po2 IS R3. P

transfer law of each connection #

"IrreversiblePressureDrivenFlow" in connection, Cl" "DrivingForce_C1

= R1. Press_P - F1ashDruml. Press_F1ashDruml

(4/3.14) * SIGMA (R1. Rate_P) = ReynoldsNo_C1 * Const_C1 * R1. Viscosity_P

ReynoldsConstl_C1 = 2100

ReynoldsConst2_C1 = 4000

R1. EnthFlov_P = SIGMA(R1. Rate_P) * R1. Enth_P

IF DrivingForce_C1 >0 THEN

CASE F1owType_C1 OF

WHEN Turbulent :

R1. Rate_P = Const2_C1 * R1. Den_P * R1. MassFrac_P

SQRT(DrivingForce_C1)

SWITCH TO Laminar IF ReynoldsNo_C1 < ReynoldsConstl_C1

WHEN Laminar :

R1. Rate_P = Const3_C1 * R1. Den_P * R1. MassFrac_P * DrivingForce_C1

SWITCH TO Turbulent IF ReynoldsNo_C1 > ReynoldsConst2_C1 ;
END

ELSE

R1. Rate_P =0

END

"Pro ssureDrivenPlow" in connection, 110"

DrivingForce_C2 = F1ashDruml. Press_F1ashDruml - F1ashDrum2. Press_F1ashDrum2

(4/3.14) * SIGMA(Rate_C2) = ReynoldsNo_C2 * Const_C2 * Viscosity_C2

EnthFlow_C2 = SGN(DrivingForce_C2) * SIGMA(ABS(Rate_C2)) * Enth_C2

IF DrivingForce_C2 >0 THEN

F1ashDruml. PortTypePol = OUTLET

F1ashDrum2. PortType Pi INLET

Rate_C2 = F1ashDruml. Rate_Pol

EnthFlow_C2 = F1ashDruml. EnthFlow_Pol

Viscosity_C2 = F1ashDruml. Viscosity_Po1

Den_C2 = F1ashDruml. Den_Po1 ;

MassFrac_C2 = F1ashDruml. MassFracPol

Enth_C2 - F1ashDruml. Enth_Pol ;

APPENDIX D. SIMULATION INPUT FILES 173

ELSE

F1ashDruml. Port Type
_Po1 = INLET

F1ashDrum2. Port Type
_Pi = OUTLET

Rate-C2 = F1ashDrum2. Rate_Pi ;

EnthFlov_C2 = F1ashDrum2. EnthFlow_Pi

Viscosity-C2 = F1ashDrum2. Viscosity_Pi

Den_C2 = F1ashDrum2. Den_Pi ;

MassFrac_C2 = F1ashDrum2. MassFrac_Pi

Enth_C2 = F1ashDrum2. Enth_Pi

END

CASE F1owType_C2 OF

WHEN Turbulent :

Rate_C2 = Const2_C2 * Den_C2 * MassFrac_C2 * SGN(DrivingForce_C2)

SQRT(ABS(DrivingForce_C2)) ;
SWITCH TO Laminar IF ReynoldsNo_C2 < 2100

WHEN Laminar :

Rate_C2 = Const3_C2 * Den_C2 * MassFrac_C2 * DrivingForce_C2

SWITCH TO Turbulent IF ReynoldsNo_C2 > 4000

END

"IrreversiblePressureDrivenFlow" in connection, "C3"

DrivingForce_C3 = F1ashDruml. Press_F1ashDruml - R4. Press_P

(4/3.14) * SIGMA(F1ashDruml. Rate_Po2) = ReynoldsNo_C3 * Const_C3

F1ashDruml. Viscosity_Po2

ReynoldsConstl_C3 = 2100

ReynoldsConst2_C3 = 4000

FlashDruml. EnthFlov_Po2 = SIGMA (FlashDruml. Rate_Po2) * FlashDruml. Enth_Po2

IF DrivingForce_C3 >0 THEN

CASE FlovType_C3 OF

WHEN Turbulent :

FlashDruml. Rate
_Po2 = Const2_C3 * FlashDruml. Den_Po2 *

FlashDruml. MassFrac_Po2 * SQRT(DrivingForce_C3)

SWITCH TO Laminar IF ReynoldsNo_C3 < ReynoldsConstl_C3

WHEN Laminar :

FlashDruml. RatePo2 = Const3_C3 * FlashDruml. Den Pot *

FlashDruml. MassFrac Po2 * DrivingForce_C3

SWITCH TO Turbulent IF ReynoldsNo_C3 > ReynoldsConst2_C3 ;

END

ELSE

F1ashDruml. Rate_Po2 =0;

END

"IrreversiblePressureDrivenFlov" in connection, "C4"

DrivingForce_C4 = F1ashDrum2. Press
_F1ashDrum2 - R2. Press_P

(4/3.14) * SIGMA(F1ashDrum2. Rate Po1) = ReynoldsNo_C4 * Const_C4

F1ashDruni2. Viscosity_Pol

ReynoldsConstl_C4 = 2100

ReynoldsConst2_C4 = 4000

F1ashDrum2. EnthFlov_Po1 = SIGMA(F1ashDrum2. Rate_Pol) * F1ashDrum2. Enth_Pol

IF DrivingForce_C4 >0 THEN

CASE F1owType_C4 OF

WHEN Turbulent :

F1ashDrum2. Rate Po1 = Const2_C4 * F1ashDrum2. Den_Pol

F1ashDrum2. MassFrac_Po1 * SQRT(DrivingForce_C4)

SWITCH TO Laminar IF ReynoldsNo_C4 < ReynoldsConstl_C4

WHEN Laminar :

F1ashDrum2. Rate
-Pol = Const3_C4 * F1ashDrum2. Den_Pol

F1ashDrum2. MassFrac_Po1 * DrivingForce_C4

SWITCH TO Turbulent IF ReynoldsNo_C4 > ReynoldsConst2_C4 ;

END

ELSE

F1ashDrum2. Rate_Pol -0

END

"IrreversiblePressureDrivenFlov" in connection, "C5"

DrivingForce_C5 = F1ashDrum2. Press_F1ashDrum2 - R3. Press_P

(4/3.14) * SIGMA (F1ashDrum2. Rate_Po2) = ReynoldsNo_C5 * Const_C5

F1ashDrum2. Viscosity_Po2

APPENDIX D. SIMULATION INPUT FILES 174

ReynoldsConstl_C5 = 2100

ReynoldsConst2_C5 - 4000

F1ashDrum2. EnthFlow Po2 = SIGMA (F1ashDrum2. Rate
_Po2) * F1ashDrum2. Enth_Po2

IF DrivingForce_C5 >0 THEN

CASE F1owType_C5 OF

WHEN Turbulent :

F1ashDrum2. Rate_Po2 = Const2_C5 * F1ashDrum2. Den_Po2 *
F1ashDrum2. MassFrac_Po2 * SQRT(DrivingForce_C5)

SWITCH TO Laminar IF ReynoldsNo_C5 < ReynoldsConstl_C5

WHEN Laminar :

F1ashDrum2. Rate_Po2 = Const3_C5 * F1ashDrum2. Den Pot *
F1ashDrum2. MassFracPo2 * DrivingForce_C5

SWITCH TO Turbulent IF ReynoldsNo_C5 > ReynoldsConst2_C5 ;
END

ELSE

F1ashDrum2. Rate_Po2 =0

END

selection of ratio and phase type on reversible connection #

ratio and phase type on "reversible" connection, "C2"

IF FlashDruml. PortType_Pol = OUTLET THEN

IF FlashDruml. Z_Pol > FlashDruml. Bot_V AND

FlashDruml. Z_Pol <= FlashDruml. Top V THEN

FlashDruml. Ratio_V = FlashDruml. Ratio Pol ;
FlashDruml. PhaseType_V = FlashDruml. PhaseType_Po1

ELSE

FlashDruml. Ratio_B = FlashDruml. Ratio_Pol

FlashDruml. PhaseType_B_L = FlashDruml. PhaseType_Pol

END

ELSE

IF FlashDrum2. Z_Pi > FlashDrum2. Bot_V AND

FlashDrum2. Z_Pi <= FlashDrum2. Top_V THEN

FlashDrum2. Ratio_V = FlashDrum2. Ratio_Pi ;
FlashDrum2. PhaseType V= FlashDrum2. PhaseType Pi

ELSE

FlashDrum2. Ratio_B = FlashDrum2. Ratio_Pi

FlashDrum2. PhaseType_B_L = FlashDrum2. Phase Type
_Pi

END

END

END # end of MODEL Flowsheet

##########################

END of generated model #

##########################

Process #

PROCESS test

UNIT

Plant AS Flowsheet

SET

WITHIN Plant DO

NoComp =2

Const_C1 . = 0.05

Const_C2 . = 0.05

Const_C3 . = 0.05

Const C4 0.05

Conat_C5 = 0.05

Const2_C1 . = IE-5

Const2_C2 5*1E-5

APPENDIX D. SIMULATION INPUT FILES 175

Const2_C3
.= 1E-5

Const2_C4
.= 1E-5

Const2_C5 1E-5

Const3_C1
.= 1E-6

Const3_C2 5*1E-6

Const3_C3 .= 1E-6

Const3_C4 = 1E-6

Const3_C5
.= 1E-6

WITHIN R1 DO

NoComp =2
END

WITHIN R2 DO

NoComp
.=2

END

WITHIN R3 DO

NoComp =2
END

WITHIN R4 DO

NoComp =2
END

WITHIN F1ashDruml DO

NoComp =2
Const_B_V .= 1E-5

END

WITHIN F1ashDrum2 DO

NoComp .=2
Const B_V .= 1E-5

END

END

ASSIGN

WITHIN Plant DO

WITHIN R1 DO

Press_P = 1.013E2

Den_P . = 330

Enth_P . = 3.5E2

MassFrac_P [0.4,0.6]

Ratio_P . = 0.01

PhaseType P =3;

Viscosity
-P . = 5E-5

END # RI

WITHIN R2 DO

Press_P = 1.013E2

END * R2

WITHIN R3 DO

Press_P = 1.013E2

END # R3

WITHIN R4 DO

Press_P . = 1.013E2

END # R3

WITHIN F1ashDruml DO

BubTemp_B_L . = 240

DevTemp B_L = 300

Temp-co(l) .= 369.82

Temp-co(2) .= 425.15

A(1) = 8.03820

A(2) = 8.29348

B(1) 3.49075

B(2) = 3.46000

C(1) -3.96060

C(2) -4.02109

D(1) .= 27.52980

D(2) .= 30.35096

E(1) .= 166.170

E(2) .= 153.044

R 8.31433 ;# [kJ/kmol K)

Wo(1) .= 0.1454

APPENDIX D. SIMULATION INPUT FILES 176

Wo(2) 0.1928

MoleWeight(1) 44.09

MoleWeight(2) 58.12

vapl(1) = 5.4276E1

vapl(2) .=6.2570E1
vap2(1) -3.3680E3

vap2(2) -4.3220E3

vap3(1) -5.2610E0

vap3(2) -6.3640E0

vap4(1) :=8.6000E-6

vap4(2) = 6.8000E-6

vap5(1) 2.0000EO

vap5(2) .=2.0000EO

{

}

F(1) 4.843

F(2) 5.273

G(1) = 1245.3

G(2) .= 1747.2

Av(1) = 2.2090E-6

Av(2) .=1.0310E-5
Bv(1) = 3.8240E-1

Bv(2) .=2.0770E-1
Cv(1) 4.0500E2

Cv(2) .=1.0055E3
Dv(1) =0;

Dv(2) = 8.1000E3

A1(1) -1.2832E1
A1(2) 7.5000E-1

B1(1) .=5.6634E2
B1(2) .=2.1870E2
C1(1) = 3.4688E-1

C1(2) -1.7882 ;

D1(1) -3.5111E-26
D1(2) -4.0000E-27
E1(1) .=1.0000E1
E1(2) .=1.0000E1

{

}

Den_L .= 600 ;

viscosity
-V = 7.9E-6

Viscosity_B L := 5E-5 ;

Press-co(l) = 4248

Press-co(2) .= 3795

Zo(1) :=0.27664

Zo(2) :=0.27331

END * within F1ashDruml

WITHIN F1ashDrum2 DO

BubTemp_B_L = 240

DewTemp_B_L = 300

Temp-co(l) = 369.82

Temp-co(2) .= 425.15

A(1) 8.03820

A(2) = 8.29348

B(1) = 3.49075

B(2) .=3.46000
C(1) -3.96060

C(2) -4.02109

D(1) .= 27.52980

D(2) = 30.35096

E(1) = 166.170

E(2) .= 153.044

APPENDIX D. SIMULATION INPUT FILES 177

{

}

{

R 8.31433

Wo(1) .=0.1454
Wo(2) = 0.1928

MoleWeight(1) := 44.09

MoleWeight(2) 58.12

vapl(1) 5.4276E1

vapl(2) .=6.2570E1
vap2(1) -3.3680E3

vap2(2) -4.3220E3

vap3(1) -5.2610E0

vap3(2) -6.3640E0

vap4(1) .=8.6000E-6
vap4(2) 6.8000E-6

vap5(1) 2.0000EO

vap5(2) .=2.0000EO

F(i) :=4.843
F(2) 5.273

G(1)
.= 1245.3

G(2) = 1747.2

Av(1) = 2.2090E-6

Av(2) = 1.0310E-5

Bv(1)
.=3.8240E-1

Bv(2)
.=2.0770E-1

Cv(1) 4.0500E2

Cv(2) = 1.0055E3

Dv(1) 0;

Dv(2)
.=8.1000E3

A1(1) -1.2832E1
A1(2) = 7.5000E-1

B1(1) .=5.6634E2
B1(2) 2.1870E2

C1(1) = 3.4688E-1

C1(2) -1.7882 ;
D1(1) -3.5111E-26
D1(2) -4.0000E-27
E1(1)

.=1.0000E1
E1(2) = 1.0000E1

Den_L
.= 600 ;

Viscosity_V .=7.9E-6
Viscosity_B_L := 6E-5 ;

}

Press-co(l) .= 4248

Press-co(2) = 3795

Zo(1) .=0.27664
Zo(2) .=0.27331

END # within FlashDrum2

END # within Plant

x [kJ/lrmol K)

PRESET

PLANT. FLASHDRUMI. ENTHFLOW_V_P02 :=0.00000E+00 : -1.000E+09 : 1.000E+07

PLANT. FLASHDRUM1. ENTHFLOW_B_L_PO1 :=0.00000E+00 : -1.000E+09 : 1.000E+07

PLANT. FLASHDRUMI. PORTTYPE_PO1 :=1.00000E+00 : -1.000E-03 : 1.000E+09 ;
PLANT. FLASHDRUMI. ENTHFLOW_B_L_P02 :=0.00000E+00 : -1.000E+09 : 1.000E+07

PLANT. FLASHDRUM2. ENTHFLOW_V_P02 :=0.00000E+00 : -1.000E+09 : 1.000E+07 ;
PLANT. FLASHDRUM2. ENTHFLOW_B_L_P01 :=0.00000E+00 : -1.000E+09 : 1.000E+07

PLANT. FLASHDRUM2. ENTH_PI :=0.00000E+00 : -1.000E+07 : 1.000E+04 ;

PLANT. FLASHDRUM2. ENTHFLOW_B_L_P02 :=0.00000E+00 : -1.000E+09 : 1.000E+07

APPENDIX D. SIMULATION INPUT FILES 178

PLANT. FLASHDRUM2. VOL_B :=5.91120E-02 : -1.000E-01 : 1.000E+01
PLANT. FLASHDRUM2. PHASETYPE_B 1.00000E+00 : -1.000E-03 : 1.000E+09
PLANT. FLASHDRUM2. RATE_PO1(1) 0.00000E+00 : -1.000E-01 : 1.000E+04
PLANT. FLASHDRUM2. RATE_P01(2) :=0.00000E+00 : -1.000E-01 : 1.000E+04
PLANT. FLASHDRUM2. MASSFRAC_B(1) 8.85860E-01 : -1.000E-01 : 1.000E+01
PLANT. FLASHDRUM2. MASSFRAC_B(2) 1.14140E-01 : -1.000E-01 : 1.000E+01
PLANT. FLASHDRUM2. ENTH_LD(1) 1.70751E+02 : -1.000E+07 1.000E+04
PLANT. FLASHDRUM2. ENTH_LO(2) 1.49773E+02 -1.000E+07 1.000E+04
PLANT. PLASHDRUM2. RATE_PI(1) 1.03162E-05 -1.000E-01 : 1.000E+04
PLANT. FLASHDRUM2. RATE_PI(2) 1.03162E-05 -1.000E-01 1.000E+04
PLANT. FLASHDRUM2. ENTHFLOW_PI 1.45923E-02 : -1.000E+09 : 1.000E+07
PLANT. FLASHDRUM2. RATIO-PI :=1.00000E+00 : -1.000E-01 : 1.000E+01
PLANT. FLASHDRUM2. PHASETYPE_PI 1.00000E+00 : -1.000E-03 : 1.000E+09
PLANT. FLASHDRUM2. RATE_P02(1) 0.00000E+00 : -1.000E-01 1.000E+04
PLANT. FLASHDRUM2. RATE_P02(2) 0.00000E+00 : -1.000E-01 : 1.000E+04
PLANT. FLASHDRUM2. INTENERGY_B 5.56946E+02 : -1.000E+09 1.000E+04
PLANT. FLASHDRUM2. DER_MASS_B_L 0.00000E+00 -1.000E+09 : 1.000E+09
PLANT. FLASHDRUM2. DEN_B0(1) 9.87056E-01 : -1.000E-01 1.000E+05
PLANT. FLASHDRUM2. DEN BO(2) 1.30115E+00 : -1.000E-01 1.000E+05
PLANT. FLASHDRUM2. ENTH_P01 6.73665E+02 -1.000E+07 : 1.000E+04

PLANT. FLASHDRUM2. MOLEFRAC_L(1) 5.67874E-01 -1.000E-01 1.000E+01
PLANT. FLASHDRUM2. MOLEFRAC_L(2) 4.32126E-01 : -1.000E-01 1.000E+01

PLANT. FLASHDRUM2. ENTH_P02 :=6.73665E+02 : -1.000E+07 : 1.000E+04

PLANT. FLASHDRUM2. ENTHFLOW_B_V :=5.37878E-03 : -1.000E+09 : 1.000E+07

PLANT. FLASHDRUM2. LEVEL_V :=3.00000E+00 : -1.000E-03 : 1.000E+09

PLANT. FLASHDRUM2. EQUILCONST B_L(1) 1.60416E+00 : -1.000E-03 1.000E+09

PLANT. FLASHDRUM2. EQUILCONST B_L(2) 2.06052E-01 -1.000E-03 1.000E+09

PLANT. FLASHDRUM2. VISCOSITY-BO (1) 6.20289E-06 -1.000E-01 : 1.000E+02

PLANT. FLASHDRUM2. VISCOSITY_B0(2) 5.58908E-06 -1.000E-01 1.000E+02

PLANT. FLASHDRUM2. PRESS_B :=4.13075E+01 -1.000E-01 1.000E+04

PLANT. FLASHDRUM2. LEVEL
_B _L :=1.36386E-01 : -1.000E-03 : 1.000E+09

PLANT. FLASHDRUM2. ENTHFLOW_P01 :=0.00000E+00 : -1.000E+09 : 1.000E+07

PLANT. FLASHDRUM2. RATIO
_P01 :=1.00000E+00 : -1.000E-01 : 1.000E+01

PLANT. FLASRDRUM2. PHASETYPE_P01 :=1.00000E+00 : -1.000E-03 : 1.000E+09

PLANT. FLASHDRUM2. PRESS
_C :=4.05225E+03 : -1.000E-01 : 1.000E+04

PLANT. FLASHDRUM2. SUM_MASS_B :=6.00000E-02 : -1.000E+09 : 1.000E+09

PLANT. FLASHDRUM2. ENTHFLOW_P02 :=0.00000E+00 : -1.000E+09 : 1.000E+07

PLANT. FLASHDRUM2. RATIO_P02 :=1.00000E+00 : -1.000E-01 : 1.000E+01

PLANT. FLASHDRUM2. PHASETYPE P02 :=1.00000E+00 : -1.000E-03 : 1.000E+09

PLANT. FLASHDRUM2. BOT_V :=1.36386E-01 : -1.000E-03 : 1.000E+09

PLANT. FLASHDRUM2. BOT_B_L :=0.00000E+00 : -1.000E-03 1.000E+09

PLANT. FLASHDRUM2. MOLE_ B (1) 1.20552E-03 -1.000E-01 : 1.000E+02

PLANT . PLASHDRUM2. MOLE_ B(2) 1.17832E-04 : -1.000E-01 : 1.000E+02

PLANT. FLASHDRUM2. VOL_L :=4.79511E-02 : -1.000E-01 : 1.000E+01

PLANT. FLASHDRUM2. PHASETYPE_L :=2.00000E+00 : -1.000E-03 : 1.000E+09

PLANT. FLASHDRUM2. DEN_PI :=0.00000E+00 : -1.000E-01 : 1.000E+05 ;

PLANT. FLASHDRUM2. MASSFRAC_L(1) 4.99227E-01 : -1.000E-01 1.000E+01

PLANT. FLASHDRUM2. MASSFRAC_L(2) 5.00773E-01 -1.000E-01 : 1.000E+01

PLANT. FLASHDRUM2. ENTH_V0(1) :=6.87779E+02 : -1.000E+07 1.000E+04

PLANT. FLASHDRUM2. ENTH_V0(2) 6.59551E+02 : -1.000E+07 : 1.000E+04

PLANT. FLASHDRUM2. VOL_FLASHDRUM2 :=2.35500E+00 : -1.000E-01 : 1.000E+01

PLANT. FLASHDRUM2. ENTH-B :=5.97642E+02 : -1.000E+07 : 1.000E+04 ;

PLANT. FLASHDAUM2. INTENERGY_L :=1.60180E+02 : -1.000E+09 : 1.000E+04

PLANT. FLASHDRUM2. RATIO_V :=1.00000E+00 -1.000E-01 1.000E+01

PLANT. FLASHDRUM2. VISCOSITY_PI :=0.00000E+00 : -1.000E-01 : 1.000E+02

PLANT. FLASHDRUM2. TEMP_ R0(1) 6.00081E-01 -1.000E-01 1.000E+01

PLANT. FLASHDRUM2. TEMP_R0(2) 5.21985E-01 -1.000E-01 1.000E+01

PLANT. FLASHDRUM2. VISCOSITY_LO(1) 4.55853E-14 -1.000E-01 : 1.000E+02

PLANT. FLASHDRUM2. VISCOSITY_LO(2) 1.31680E-04 -1.000E-01 : 1.000E+02

PLANT. FLASHDRUM2. DEN_PO1 8.89705E-01 -1.000E-01 : 1.000E+05

PLANT. FLASHDRUM2. PRESS
_L

4.13075E+01 : -1.000E-01 1.000E+04

PLANT. FLASHDRUM2. MASS_B(1) 5.31516E-02 : -1.000E-01 1.000E+09

PLANT. FLASHDRUM2. MASS_B(2) 6.84842E-03 : -1.000E-01 1.000E+09

PLANT. FLASHDRUM2. DEN_P02 :=8.89705E-01 -1.000E-01 1.000E+05

PLANT. FLASHDRUM2. SUM-MASS _L :=2.99400E+01 : -1.000E+09 : 1.000E+09

PLANT. FLASHDRUM2. VISCOSITY_PO1 :=9.40000E-06 : -1.000E-01 : 1.000E+02

PLANT. FLASHDRUM2. PRESS
_FLASHDRUM2 :=4.13075E+01 : -1.000E-01 : 1.000E+04

PLANT. FLASHDRUM2. VISCOSITY_P02 :=9.40000E-06 : -1.000E-01 : 1.000E+02

APPENDIX D. SIMULATION INPUT FILES 179

PLANT. FLASHDRUM2. TEMP_B :=2.21922E+02 : -1.000E-01 : 1.000E+04
PLANT. FLASHDRUM2. MOLE_L(1) 3.39007E-01 : -1.000E-01 : 1.000E+02
PLANT. FLASHDRUM2. MOLE_L(2) 2.57969E-01 : -1.000E-01 : 1.000E+02
PLANT. FLASHDRUM2. VQL_V :=2.24794E+00 : -1.000E-01 : 1.000E+01
PLANT. FLASHDRUM2. PHASETYPE_V :=1.00000E+00 : -1.000E-03 : 1.000E+09
PLANT. FLASHDAUM2. TEMP_C :=3.93730E+02 : -1.000E-01 : 1.000E+04
PLANT. FLASHDRUM2. VAPPRESS_1 :=6.62637E+01 : -1.000E+09 : 1.000E+09
PLANT. FLASHDAUM2. VOL_B_L :=1.07063E-01 : -1.000E-01 1.000E+01
PLANT. FLASHDRUM2. MASSFRAC_V(1) 5.00000E-01 -1.000E-01 : 1.000E+01
PLANT. FLASHDRUM2. MASSFRAC_V(2) 5.00000E-01 : -1.000E-01 : 1.000E+01
PLANT. FLASHDRUM2. PHASETYPE_B_L 3.00000E+00 : -1.000E-03 1.000E+09
PLANT. FLASHDRUM2. VAPPRESS_2 :=8.51150E+00 : -1.000E+09 : 1.000E+09
PLANT. FLASHDRUM2. ENTH_L :=1.60248E+02 -1.000E+07 : 1.000E+04
PLANT. FLASHDRUM2. INTENERGY_V :=6.27236E+02 : -1.000E+09 : 1.000E+04
PLANT. FLASHDRUM2. MASSFRAC_B_L(1) 5.00000E-01 : -1.000E-01 1.000E+01
PLANT. FLASHDRUM2. MASSFRAC_B_L(2) 5.00000E-01 : -1.000E-01 : 1.000E+01
PLANT. FLASHDRUM2. TOP_V :=3.00000E+00 : -1.000E-03 : 1.000E+09

PLANT. FLASHDRUM2. INTENERGY_B_L :=1.60973E+02 : -1.000E+09 : 1.000E+04
PLANT. FLASHDRUM2. TOP B_L :=1.36386E-01 : -1.000E-03 : 1.000E+09

PLANT. FLASHDRUM2. DEN_VO(1) 7.82319E-01 : -1.000E-01 1.000E+05

PLANT. FLASHDRUM2. DEN_VO(2) 1.03126E+00 : -1.000E-01 1.000E+05
PLANT. FLASHDRUM2. DEN_B :=1.01502E+00 : -1.000E-01 : 1.000E+05

PLANT. FLASHDRUM2. VISCOSITY_VO(1) 8.32490E-06 : -1.000E-01 1.000E+02

PLANT. FLASHDRUM2. VISCOSITY VO(2) 7.58946E-06 : -1.000E-01 : 1.000E+02

PLANT. FLASHDRUM2. M :=5.01527E+01 : -1.000E-03 1.000E+09 ;
PLANT. FLASHDRUM2. PRESS_V :=4.13075E+01 -1.000E-01 1.000E+04

PLANT. FLASHDRUM2. VISCOSITY_B :=5.89599E-06 : -1.000E-01 : 1.000E+02

PLANT. FLASHDRUM2. EQUIL_1 :=1.60416E+00 -1.000E+09 1.000E+09

PLANT. FLASHDRUM2. MASS_L(1) 1.49468E+01 -1.000E-01 : 1.000E+09

PLANT. FLASHDRUM2. MASS_L(2) 1.49932E+01 -1.000E-01 : 1.000E+09

PLANT. FLASHDRUM2. RATE_V_PI(1) 0.00000E+00 : -1.000E-01 : 1.000E+04

PLANT. FLASHDRUM2. RATE_V_PI(2) 0.00000E+00 : -1.000E-01 : 1.000E+04

PLANT. FLASHDRUM2. PRESS_B_L 4.13075E+01 : -1.000E-01 1.000E+04

PLANT. FLASHDRUM2. SUM_MASS_V 2.00000E+00 -1.000E+09 1.000E+09

PLANT. FLASHDRUM2. EQUIL_2 :=2.06052E-01 -1.000E+09 1.000E+09

PLANT. FLASHDRUM2. RATE_B_L_PI(1) 1.03162E-05 : -1.000E-01 : 1.000E+04

PLANT. FLASHDRUM2. RATE_B_L_PI(2) 1.03162E-05 -1.000E-01 : 1.000E+04

PLANT. FLASHDRUM2. SUM_MASS_B_L :=3.00000E+01 : -1.000E+09 : 1.000E+09

PLANT. FLASHDRUM2. TEMP_L :=2.21922E+02 : -1.000E-01 : 1.000E+04

PLANT. FLASHDRUM2. AREA :=7.85000E-01 : -1.000E-03 : 1.000E+09 ;

PLANT. FLASHDRUM2. SUM_RATE_B_V :=9.00000E-06 -1.000E+09 : 1.000E+09

PLANT. FLASHDRUM2. MOLE_B_L(1) 3.40213E-01 : -1.000E-01 : 1.000E+02

PLANT. FLASHDRUM2. MOLE_B_L(2) 2.58087E-01 -1.000E-01 1.000E+02

PLANT. FLASHDRUM2. RATE_V_P01(1) 0.00000E+00 : -1.000E-01 1.000E+04

PLANT. FLASHDRUM2. RATE_V_PO1(2) 0.00000E+00 : -1.000E-01 : 1.000E+04

PLANT. FLASHDRUM2. ENTH_V :=6.73665E+02 -1.000E+07 : 1.000E+04

PLANT. FLASHDRUM2. RATE_B_L_PO1(1) 0.00000E+00 : -1.000E-01 : 1.000E+04

PLANT. FLASHDRUM2. RATE_B_L_P01(2) 0.00000E+00 -1.000E-01 : 1.000E+04

PLANT. FLASHDRUM2. RATE_V_P02(1) 0.00000E+00 : -1.000E-01 1.000E+04

PLANT. FLASHDRUM2. RATE_V_P02(2) 0.00000E+00 : -1.000E-01 : 1.000E+04

PLANT. FLASHDRUM2. ENTH_B_L :=1.61121E+02 : -1.000E+07 : 1.000E+04 ;

PLANT. FLASHDRUM2. RATE_B_L_P02(1) 0.00000E+00 : -1.000E-01 : 1.000E+04

PLANT. FLASHDRUM2. RATE_B_L_P02(2) 0.00000E+00 : -1.000E-01 1.000E+04

PLANT. FLASHDRUM2. DEN_L 6.24386E+02 : -1.000E-01 : 1.000E+05

PLANT. FLASHDRUM2. TEMP_R 5.63640E-01 : -1.000E-01 : 1.000E+01

PLANT. FLASHDRUM2. VISCOSITY_L :=6.58909E-05 : -1.000E-01 : 1.000E+02

PLANT. FLASHDRUM2. DER_INTENERGY_V :=2.68939E-03 : -1.000E+09 : 1.000E+09

PLANT. FLASHDRUM2. SUM_RATE_PI :=2.06323E-05 : -1.000E+09 : 1.000E+09

PLANT. FLASHDRUM2. MASS_V(1) 1.00000E+00 : -1.000E-01 : 1.000E+09

PLANT. FLASHDRUM2. MASS_V(2) 1.00000E+00 -1.000E-01 : 1.000E+09

PLANT. FLASHDRUM2. MASS_B_L(1) 1.50000E+01 : -1.000E-01 : 1.000E+09

PLANT. FLASHDRUM2. MASS_B_L(2) 1.50000E+01 : -1.000E-01 1.000E+09

PLANT. FLASHDRUM2. MASSFRAC_PI(1) 0.00000E+00 : -1.000E-01 1.000E+01

PLANT. FLASHDRUM2. MASSFRAC_PI(2) 0.00000E+00 : -1.000E-01 : 1.000E+01

PLANT. FLASHDRUM2. HEAT- LD(1) 4.30058E+02 -1.000E+07 1.000E+04

PLANT. FLASHDRUM2. HEAT- L0(2) 4.23293E+02 -1.000E+07 : 1.000E+04

PLANT. FLASHDRUM2. Z :=2.75201E-01 : -1.000E+09 : 1.000E+09 ;

PLANT. FLASHDRUM2. TEMP_V :-2.80000E+02 -1.000E-01 : 1.000E+04

APPENDIX D. SIMULATION INPUT FILES 180

PLANT. FLASHDRUM2. RATE_B_V(1) 7.95751E-06 : -1.000E-01 : 1.000E+04

PLANT. PLASHDRUM2. RATE_B_V(2) 1.04249E-06 : -1.000E-01 : 1.000E+04
PLANT. FLASHDRUM2. ENTH_BO(1) 6.00809E+02 : -1.000E+07 : 1.000E+04

PLANT. FLASHDRUM2. ENTH_BO(2) 5.73066E+02 -1.000E+07 : 1.000E+04

PLANT. FLASHDRUM2. SUM_RATE_P01 0.00000E+00 -1.000E+09 : 1.000E+09
PLANT. FLASRDRUM2. ENTEFLOW_V_PI 0.00000E+00 -1.000E+09 : 1.000E+07

PLANT. FLASHDRUM2. RATIO_B :=2.0000E-03 : -1.000E-01 : 1.000E+01 ;
PLANT. FLASHDRUM2. SUM_RATE_P02 :=0.00000E+00 : -1.000E+09 1.000E+09

PLANT. FLASHDRUM2. ENTHFLOW_B_L_PI 1.45923E-02 : -1.000E+09 1.000E+07

PLANT. FLASHDRUM2. MASSFRAC_P01(1) 5.00000E-01 -1.000E-01 : 1.000E+01

PLANT. FLASHDRUM2. MASSFRAC-PO1(2) 5.00000E-01 -1.000E-01 1.000E+01

PLANT. FLASHDRUM2. PORTTYPE_PI :=2.00000E+00 : -1.000E-03 : 1.000E+09

PLANT. FLASHDRUM2. DEN_V :=8.89705E-01 : -1.000E-01 : 1.000E+05

PLANT. FLASHDRUM2. MASSFRAC_P02(1) 5.00000E-01 : -1.000E-01 1.000E+01

PLANT. FLASHDRUM2. MASSFRAC_PO2(2) 5.00000E-01 : -1.000E-01 1.000E+01

PLANT. FLASHDRUM2. MOLEFRAC_B(1) 9.10959E-01 : -1.000E-01 1.000E+01

PLANT. FLASHDRUM2. MOLEFRAC_B(2) 8.90405E-02 -1.000E-01 : 1.000E+01

PLANT. FLASHDRUM2. DEN B_L :=2.80209E+02 : -1.000E-01 1.000E+05

PLANT. FLASHDRUM2. VISCOSITY_V :=7.95718E-06 : -1.000E-01 : 1.000E+02

PLANT. FLASHDRUM2. VISCOSITY B_L 6.58309E-05 : -1.000E-01 : 1.000E+02

PLANT. FLASHDRUM2. VAPPRESS_L(1) 6.62637E+01 : -1.000E-01 : 1.000E+04

PLANT. FLASHDRUM2. VAPPRESS_L(2) 8.51150E+00 -1.000E-01 : 1.000E+04

PLANT. FLASHDRUM2. ENTHFLOW_V_P01 0.00000E+00 : -1.000E+09 : 1.000E+07

PLANT. FLASHDRUMI. VOL_B :=2.80947E-02 : -1.000E-01 : 1.000E+01

PLANT. FLASHDRUMI. PHASETYPE_B 1.00000E+00 : -1.000E-03 1.000E+09

PLANT. FLASHDRUMI. RATE_PO1(1) 1.03162E-05 : -1.000E-01 : 1.000E+04

PLANT. FLASHDRUMI. RATE-POI (2) 1.03162E-05 : -1.000E-OS 1.000E+04

PLANT. FLASHDRUMI. MASSFRAC_B(1) 8.84494E-01 -1.000E-01 : 1.000E+01

PLANT. FLASHDRUMI. MASSFRAC_B(2) 1.15506E-01 -1.000E-01 1.000E+01

PLANT. FLASHDRUMI. ENTH_LO(1) 1.73454E+02 : -1.000E+07 : 1.000E+04

PLANT. FLASHDRUMI. ENTH_LO(2) 1.52137E+02 : -1.000E+07 1.000E+04

PLANT. FLASHDRUMI. RATE_PI(1) 1.25494E-01 : -1.000E-01 1.000E+04

PLANT. FLASHDRUMI. RATE_PI(2) 1.88241E-01 : -1.000E-O1 1.000E+04

PLANT. FLASHDRUMI. ENTHFLOW_PI 1.09807E+02 -1.000E+09 : 1.000E+07

PLANT. FLASHDRUMI. RATIO_PI :=4.00000E-01 : -1.000E-01 : 1.000E+01

PLANT. FLASHDRUMI. PHASETYPE PI 3.00000E+00 : -1.000E-03 : 1.000E+09

PLANT. FLASHDRUMI. RATE_PO2(1) 0.00000E+00 -1.000E-01 : 1.000E+04

PLANT. FLASHDRUMI. RATE_PO2(2) 0.00000E+00 : -1.000E-01 : 1.000E+04

PLANT. FLASHDRUMI. INTENERGY_B 5.58220E+02 : -1.000E+09 1.000E+04

PLANT. FLASHDRUMI. DER_MASS_B_L 3.13726E-01 : -1.000E+09 : 1.000E+09

PLANT. FLASHDRUM1. DEN_BO(1) 1.03804E+00 -1.000E-01 1.000E+05

PLANT. FLASHDRUMI. DEN_BO(2) 1.36836E+00 -1.000E-01 : 1.000E+05

PLANT. FLASHDRUMI. ENTH_PO1 7.07255E+02 -1.000E+07 1.000E+04

PLANT. FLASHDRUMI. MOLEFRAC_L(1) 5.68255E-01 -1.000E-01 : 1.000E+01

PLANT. FLASHDRUMI. MOLEFRAC_L(2) 4.31745E-01 -1.000E-01 : 1.000E+01

PLANT. FLASHDRUMI. ENTH_P02 :=7.07255E+02 : -1.000E+07 : 1.000E+04

PLANT. FLASHDRUMI. ENTHFLOW_B_V :=5.39479E-03 : -1.000E+09 1.000E+07

PLANT. FLASHDRUMI. LEVEL V :=3.00000E+00 : -1.000E-03 1.000E+09

PLANT. FLASHDRUMI. EQUILCONST_B_L(1) 1.60115E+00 : -1.000E-03 : 1.000E+09

PLANT. FLASHDRUMI. EQUILCONST_B_L(2) 2.08772E-01 : -1.000E-03 : 1.000E+09

PLANT. FLASHDRUM1. VISCOSITY-BO (1) 6.20289E-06 -1.000E-01 : 1.000E+02

PLANT. FLASHDRUM1. VISCOSITY_B0(2) 5.58908E-06 -1.000E-01 : 1.000E+02

PLANT. FLASHDRUM1. PRESS_B :=4.36584E+01 : -1.000E-01 1.000E+04

PLANT. FLASHDRUMI. LEVEL_B_L :=9.70524E-02 : -1.000E-03 : 1.000E+09

PLANT. FLASHDRUMI. ENTHFLOW_P01 :=1.45923E-02 : -1.000E+09 1.000E+07

PLANT. FLASHDRUM1. RATIO-POI :=1.00000E+00 : -1.000E-01 : 1.000E+01

PLANT. FLASHDRUMI. PHASETYPE_PO1 :=1.00000E+00 : -1.000E-03 : 1.000E+09

PLANT. FLASHDRUM1. PRESS_C :=4.05242E+03 : -1.000E-01 1.000E+04

PLANT. FLASHDRUMI. SUM_MASS_B :=3.00000E-02 : -1.000E+09 : 1.000E+09

PLANT. FLASHDRUMI. ENTHFLOW_P02 :=0.00000E+00 : -1.000E+09 1.000E+07

PLANT. FLASHDRUMI. RATIO_P02 :-1.00000E+00 : -1.000E-01 : 1.000E+01

PLANT. FLASHDRUMI. PHASETYPE P02 :=1.00000E+00 : -1.000E-03 : 1.000E+09

PLANT. FLASHDRUM1. B0T_V :=9.70524E-02 : -1.000E-03 : 1.000E+09

PLANT. FLASHDRUMI. BOT_B_L :=0.00000E+00 : -1.000E-03 : 1.000E+09

PLANT. FLASHDRUMI. MOLE_B(1) 6.01833E-04 : -1.000E-01 : 1.000E+02

PLANT. FLASHDRUM1. M0LE_B(2) 5.96210E-05 : -1.000E-01 1.000E+02

PLANT. FLASHDRUMI. VOL_L :=4.80914E-02 : -1.000E-01 : 1.000E+01

PLANT. FLASHDRUM1. PHASETYPE_L :-2.00000E+00 : -1.000E-03 : 1.000E+09

APPENDIX D. SIMULATION INPUT FILES 181

PLANT. FLASHDRUMI. VOL_FLASHDRUMI 2.35500E+00 : -1.000E-01 : 1.000E+01
PLANT. FLASHDRUMI. MASSFRAC_L(1) :=4.99615E-01 : -1.000E-01 : 1.000E+01
PLANT. FLASHDRUM1. MASSFRAC_L(2) 5.00385E-01 : -1.000E-01 : 1.000E+01
PLANT. FLASHDRUMI. ENTH_VO(1) 7.21461E+02 : -1.000E+07 : 1.000E+04
PLANT. FLASHDRUM1. ENTH_VO(2) :=6.93049E+02 : -1.000E+07 : 1.000E+04
PLANT. FLASHDRUMI. ENTH-B :=5.99106E+02 -1.000E+07 1.000E+04
PLANT. FLASHDRUMI. INTENERGY_L :=1.62717E+02 -1.000E+09 : 1.000E+04
PLANT. FLASHDRUM1. RATIO_V :=1.00000E+00 : -1.000E-01 : 1.000E+01
PLANT. FLASHDRUMI. TEMP_RO(1) 6.03079E-01 -1.000E-01 : 1.000E+01
PLANT. FLASHDRUMI. TEMP_RO(2) 5.24593E-01 -1.000E-01 1.000E+01
PLANT. FLASHDRUMI. VISCOSITY_LO(1) 4.55853E-14 -1.000E-01 : 1.000E+02
PLANT. FLASHDRUMI. VISCOSITY-LO(2) 1.31680E-04 : -1.000E-01 1.000E+02
PLANT. FLASHDRUMI. DEN_PO1 :=8.77650E-01 : -1.000E-01 : 1.000E+05
PLANT. FLASHDRUMI. PRESS_L 4.36584E+01 : -1.000E-01 : 1.000E+04
PLANT. FLASHDRUMI. MASS_B(1) 2.65348E-02 : -1.000E-01 1.000E+09
PLANT. FLASHDRUM1. MASS_B(2) 3.46517E-03 -1.000E-01 : 1.000E+09
PLANT. FLASHDRUM1. DEN_P02 :=8.77650E-01 : -1.000E-01 1.000E+05
PLANT. FLASHDRUMI. PRESS_FLASHDRUM1 :=4.36584E+01 : -1.000E-01 : 1.000E+04
PLANT. FLASHDRUMI. SUM_MASS_L :=2.99700E+01 : -1.000E+09 : 1.000E+09
PLANT. FLASHDRUMI. VISCOSITY_PO1 9.40000E-06 : -1.000E-01 1.000E+02
PLANT. FLASHDRUMI. VISCOSITY PO2 9.40000E-06 -1.000E-01 : 1.000E+02
PLANT. FLASHDRUMI. TEMP-B :=2.23031E+02 -1.000E-01 1.000E+04

PLANT. FLASHDRUMI. MOLE_L(1) :=3.39611E-01 : -1.000E-01 : 1.000E+02

PLANT. FLASHDRUMI. MOLE_L(2) 2.58027E-01 : -1.000E-01 1.000E+02

PLANT. FLASHDRUMI. VOL V :=2.27881E+00 : -1.000E-01 : 1.000E+01

PLANT. FLASHDRUMI. PHASETYPE V :=1.00000E+00 : -1.000E-03 : 1.000E+09

PLANT. FLASHDRUMI. TEMP_C :=3.93708E+02 : -1.000E-01 : 1.000E+04

PLANT. FLASHDRUMI. VAPPRESS_1 :=6.99037E+01 : -1.000E+09 : 1.000E+09

PLANT. FLASHDRUMI. VOL B_L :-7.61861E-02 -1.000E-01 1.000E+01

PLANT. FLASHDRUMI. MASSFRAC_V(1) 5.00000E-01 : -1.000E-01 1.000E+01

PLANT. FLASHDRUMI. MASSFRAC_V(2) 5.00000E-01 : -1.000E-01 1.000E+01

PLANT. FLASHDRUMI. PHASETYPE-BL 3.00000E+00 : -1.000E-03 1.000E+09

PLANT. FLASHDRUM1. VAPPRESS_2 :=9.11464E+00 : -1.000E+09 : 1.000E+09

PLANT. FLASHDRUMI. ENTH_L :=1.62787E+02 -1.000E+07 1.000E+04

PLANT. FLASHDRUMI. INTENERGY_V :=6.57510E+02 -1.000E+09 : 1.000E+04

PLANT. FLASHDRUMI. MASSFRAC_B_L(1) 5.00000E-01 : -1.000E-01 : 1.000E+01

PLANT. FLASHDRUM1. MASSFRAC_B_L(2) 5.00000E-01 : -1.000E-01 1.000E+01

PLANT. FLASHDRUMI. TOP_V :=3.00000E+00 : -1.000E-03 : 1.000E+09

PLANT. FLASHDRUMI. INTENERGY_B L :=1.63113E+02 : -1.000E+09 : 1.000E+04

PLANT. FLASHDRUMI. TOP B_L :=9.70524E-02 -1.000E-03 : 1.000E+09

PLANT. FLASHDRUM I. DEN V0(1) 7.71719E-01 -1.000E-01 : 1.000E+05

PLANT. FLASHDRUMI. DEN VO(2) 1.01729E+00 -1.000E-01 : 1.000E+05

PLANT. FLASHDRUMI. DEN B :=1.06782E+00 : -1.000E-01 : 1.000E+05

PLANT. FLASHDRUMI. VISCOSITY-VO (1) 8.32490E-06 : -1.000E-01 : 1.000E+02

PLANT. FLASHDRUMI. VISCOSITY_VO(2) 7.58946E-06 : -1.000E-01 1.000E+02

PLANT. FLASHDRUM1. M :=5.01474E+01 -1.000E-03 1.000E+09 ;

PLANT. FLASHDRUMI. PRESS V :=4.36584E+01 : -1.000E-01 : 1.000E+04

PLANT. FLASHDRUMI. VISCOSITY B :=5.89599E-06 -1.000E-01 : 1.000E+02

PLANT. FLASHDRUMI. EQUIL_1 :=1.60115E+00 : -1.000E+09 1.000E+09

PLANT. FLASHDRUMI. MASS
_L(1)

1.49735E+01 -1.000E-01 : 1.000E+09

PLANT. FLASHDRUMI. MASS
_L(2)

1.49965E+01 : -1.000E-01 1.000E+09

PLANT. FLASHDRUMI. RATE_V_PI(1) 0.00000E+00 : -1.000E-01 : 1.000E+04

PLANT. FLASHDRUMI. RATE_V_PI(2) 0.00000E+00 : -1.000E-01 1.000E+04

PLANT. FLASHDRUMI. PRESS_B_L 4.36584E+01 : -1.000E-01 1.000E+04

PLANT. FLASHDRUM1. SUM_MASS_V 2.00000E+00 -1.000E+09 : 1.000E+09

PLANT. FLASHDRUMI. EQUIL_2 :=2.08772E-01 -1.000E+09 1.000E+09

PLANT. FLASHDRUMI. RATE_B_L_PI(1) 1.25494E-01 : -1.000E-01 : 1.000E+04

PLANT. FLASHDRUMI. RATE_B_L_PI(2) 1.88241E-01 : -1.000E-01 1.000E+04

PLANT. FLASHDRUMI. SUM_MASS_B_L :-3.00000E+01 : -1.000E+09 : 1.000E+09

PLANT. FLASHDRUMI. TEMP_L :=2.23031E+02 -1.000E-01 : 1.000E+04

PLANT. FLASHDRUMI. AREA :=7.85000E-01 : -1.000E-03 : 1.000E+09 ;

PLANT. FLASHDRUMI. SUM- RATE- B_V :=9.00000E-06 -1.000E+09 : 1.000E+09

PLANT. FLASHDRUMI. MOLE- B_L(1) 3.40213E-01 : -1.000E-01 1.000E+02

PLANT. FLASHDRUMI. MOLE- B_L(2) 2.58087E-01 -1.000E-01 1.000E+02

PLANT. FLASHDRUMI. RATE- V_P01(1) 1.03162E-05 : -1.000E-01 1.000E+04

PLANT. FLASHDRUMI. RATE_ V_P01(2) 1.03162E-05 -1.000E-01 1.000E+04

PLANT. FLASHDRUM1. ENTH_V :=7.07255E+02 -1.000E+07 1.000E+04

PLANT. FLASHDRUM1. RATE- B_L-P01(1) :=0.00000E+00 : -1.000E-01 : 1.000E+04

APPENDIX D. SIMULATION INPUT FILES 182

PLANT. FLASHDRUM1. RATE_B_L_PO1(2) :=0.00000E+00 : -1.000E-01 : 1.000E+04
PLANT. FLASHDRUMI. RATE- V_P02(1) 0.00000E+00 : -1.000E-01 : 1.000E+04
PLANT. FLASHDRUMI. RATE_V_P02(2) 0.00000E+00 : -1.000E-01 1.000E+04
PLANT. FLASHDRUMI. ENTH_B_L :=1.63224E+02 : -1.000E+07 : 1.000E+04 ;
PLANT. FLASHDRUMI. RATE_B_L_P02(1) 0.00000E+00 : -1.000E-01 1.000E+04
PLANT. FLASHDRUMI. RATE_B_L_P02(2) 0.00000E+00 -1.000E-01 1.000E+04
PLANT. FLASHDRUMI. DEN_L 6.23188E+02 : -1.000E-01 1.000E+05

PLANT. FLASHDRUMI. TEMP_R 5.66487E-01 -1.000E-01 1.000E+01
PLANT. FLASHDRUM1. VISCOSITY_L :=6.58909E-05 -1.000E-01 1.000E+02
PLANT. FLASHDRUM1. DER- INTENERGY V :_ -4.59876E-03 : -1.000E+09 : 1.000E+09
PLANT. FLASHDRUMI. SUM_AATE_PI :=3.13735E-01 -1.000E+09 1.000E+09
PLANT. FLASHDRUMI. MASS

_V(1)
1.00000E+00 -1.000E-01 : 1.000E+09

PLANT. FLASHDRUMI. MASS_V(2) 1.00000E+00 : -1.000E-01 1.000E+09
PLANT. FLASHDRUMI. MASS_B_L(1) 1.50000E+01 : -1.000E-01 1.000E+09

PLANT. FLASHDRUMI. MASS_B_L(2) 1.50000E+01 : -1.000E-01 : 1.000E+09

PLANT. FLASHDRUMI. HEAT_LO(1) 4.28858E+02 -1.000E+07 : 1.000E+04

PLANT. FLASHDRUMI. HEAT_LO(2) 4.22423E+02 -1.000E+07 : 1.000E+04

PLANT. FLASHDRUM1. Z :=2.75202E-01 : -1.000E+09 : 1.000E+09

PLANT. FLASHDRUMI. TEMP_V :=3.00000E+02 : -1.000E-01 : 1.000E+04

PLANT. FLASHDRUMI. RATE_B-V(1) 7.95751E-06 : -1.000E-01 1.000E+04

PLANT. FLASHDRUMI. RATE_B_V(2) 1.04249E-06 -1.000E-01 1.000E+04

PLANT. FLASHDRUMI. ENTH_BO(1) 6.02311E+02 -1.000E+07 : 1.000E+04

PLANT. FLASHDRUM1. ENTH_BO(2) 5.74560E+02 -1.000E+07 : 1.000E+04

PLANT. FLASHDRUMI. SUM RATE_P01 2.06323E-05 : -1.000E+09 : 1.000E+09

PLANT. FLASHDRUM1. ENTHFLOW_V_PI 0.00000E+00 : -1.000E+09 1.000E+07

PLANT. FLASHDRUMI. RATIO_B :=1.0000E-03 : -1.000E-01 : 1.000E+01

PLANT. FLASHDRUM1. SUM_RATE_P02 :-0.00000E+00 : -1.000E+09 : 1.000E+09

PLANT. FLASHDRUMI. ENTHFLOW_B_L_PI 1.09807E+02 : -1.000E+09 1.000E+07

PLANT. FLASHDRUMI. MASSFRAC_P01(1) 5.00000E-01 : -1.000E-01 1.000E+01

PLANT. FLASHDRUMI. MASSFRAC_P01(2) 5.00000E-01 -1.000E-01 : 1.000E+01

PLANT. FLASHDRUM1. DEN V :-8.77650E-01 : -1.000E-01 : 1.000E+05

PLANT. FLASHDRUMI. MASSFRAC_P02(1) 5.00000E-01 : -1.000E-01 : 1.000E+01

PLANT. FLASHDRUMI. MASSFRAC_P02(2) 5.00000E-01 : -1.000E-01 1.000E+01

PLANT. FLASHDRUMI. MOLEFRAC_B(1) 9.09864E-01 -1.000E-01 : 1.000E+01

PLANT. FLASHDRUM1. MOLEFRAC_B(2) 9.01362E-02 : -1.000E-01 : 1.000E+01

PLANT. FLASHDRUM1. DEN_B_L :=3.93772E+02 : -1.000E-01 : 1.000E+05 ;

PLANT. FLASHDRUMI. VISCOSITY_V :=7.95718E-06 -1.000E-01 : 1.000E+02

PLANT. FLASHDRUM1. VISCOSITY_B_L 6.58309E-05 : -1.000E-01 : 1.000E+02

PLANT. FLASHDRUMI. VAPPRESS_L(1) 6.99037E+01 -1.000E-01 : 1.000E+04

PLANT. FLASRDRUMI. VAPPRESS_L(2) 9.11464E+00 -1.000E-01 1.000E+04

PLANT. FLASHDRUMI. ENTHFLOW_V_P01 1.45923E-02 : -1.000E+09 : 1.000E+07

PLANT. R4. RATIO_P :=1.00000E+00 -1.000E-01 : 1.000E+01

PLANT. R4. PHASETYPE_P :=1.00000E+00 : -1.000E-03 : 1.000E+09

PLANT. R4. RATE_P(1) 0.00000E+00 : -1.000E-01 1.000E+04

PLANT. R4. RATE_P(2) 0.00000E+00 : -1.000E-01 : 1.000E+04

PLANT. R4. ENTHFLOW_P 0.00000E+00 : -1.000E+09 : 1.000E+07

PLANT. R3. RATIO_P :=1.00000E+00 : -1.000E-01 : 1.000E+01

PLANT. R3. PHASETYPE_P :=1.00000E+00 : -1.000E-03 : 1.000E+09

PLANT. R3. RATE_P(1) 0.00000E+00 -1.000E-01 : 1.000E+04

PLANT. R3. RATE_P(2) 0.00000E+00 -1.000E-01 : 1.000E+04

PLANT. R3. ENTHFLOW_P 0.00000E+00 : -1.000E+09 1.000E+07

PLANT. R2. RATIO_P :=1.00000E+00 : -1.000E-01 : 1.000E+01

PLANT. R2. PHASETYPE_P :=1.00000E+00 : -1.000E-03 : 1.000E+09

PLANT. R2. RATE_P(1) 0.00000E+00 : -1.000E-01 : 1.000E+04

PLANT. R2. RATE_P(2) 0.00000E+00 -1.000E-01 : 1.000E+04

PLANT. R2. ENTBFLOW_P 0.00000E+00 -1.000E+09 : 1.000E+07

PLANT. RI. RATE_P(1) 1.25494E-01 -1.000E-01 : 1.000E+04

PLANT. RI. RATE P(2) :=1.88241E-01 -1.000E-01 : 1.000E+04

PLANT. RI. ENTHFLOW_P 1.09807E+02 -1.000E+09 1.000E+07

PLANT. MASSFRAC_C2(1) 5.00000E-01 : -1.000E-01 : 1.000E+01

PLANT. MASSFRAC_C2(2) 5.00000E-01 : -1.000E-01 1.000E+01

PLANT. DRIVINGFORCE_C1 3.61542E+02 : -1.000E+09 : 1.000E+09

PLANT. DRIVINGFORCE_C2 2.35086E+00 : -1.000E+09 : 1.000E+09

PLANT. DRIVINGFORCE_C3 -5.76416E+01 -1.000E+09 : 1.000E+09

PLANT. DRIVINGFORCE_C4 -5.99925E+01 -1.000E+09 1.000E+09

PLANT. RATE_C2(1) 1.03162E-05 : -1.000E-01 : 1.000E+04

PLANT. RATE- C2(2) 1.03162E-05 : -1.000E-01 : 1.000E+04

PLANT. DRIVINGFORCE_C5 :_ -5.99925E+01 : -1.000E+09 : 1.000E+09

APPENDIX D. SIMULATION INPUT FILES 183

PLANT. ENTH_C2 :=7.07255E+02 : -1.000E+07 : 1.000E+04 ;
PLANT. REYNOLDSCONST1_C1 2.10000E+03 : -1.000E-03 1.000E+09

PLANT. REYNOLDSCONST2_C1 2.20000E+03 : -1.000E-03 : 1.000E+09

PLANT. DEN_C2 :=8.77650E-01 : -1.000E-01 : 1.000E+05

PLANT. REYNOLDSCONSTI_C3 :=2.10000E+03 : -1.000E-03 : 1.000E+09

PLANT. ENTHFLOW_C2 :=1.45923E-02 : -1.000E+09 : 1.000E+07 ;
PLANT. REYNOLDSCONSTI_C4 2.10000E+03 : -1.000E-03 : 1.000E+09

PLANT. REYNOLDSCONST2_C3 2.20000E+03 -1.000E-03 : 1.000E+09

PLANT. REYNOLDSCONSTI_C5 2.10000E+03 : -1.000E-03 : 1.000E+09

PLANT. REYNOLDSCONST2_C4 2.20000E+03 : -1.000E-03 1.000E+09

PLANT. VISCOSITY_C2 :=9.40000E-06 : -1.000E-01 : 1.000E+02 ;
PLANT. REYNOLDSCONST2_C5 :=2.20000E+03 : -1.000E-03 : 1.000E+09

PLANT. REYNOLDSNO_C1 8.30707E+03 -1.000E-03 : 1.000E+09

PLANT. REYNOLDSNO_C2 2.79608E+00 : -1.000E-03 : 1.000E+09

PLANT. REYNOLDSNO_C3 0.00000E+00 : -1.000E-03 1.000E+09

PLANT. REYNOLDSNO_C4 0.00000E+00 -1.000E-03 : 1.000E+09

PLANT. REYNOLDSNO_C5 0.00000E+00 : -1.000E-03 : 1.000E+09

{
WITHIN Plant DO

ReynoldsNo_C2 .= 5000

ReynoldsNo_C3 .= 5000

WITHIN F1ashDrum DO

PhaseType-V

PhaseType_B

PhaseType_L .=2
PhaseType B_L =3

PhaseType_Pol .=3
PhaseType_Po2 =I

Top_V .=3
Bot_V .=0.0535
Top_B_L = 0.0535

Bot B_L .=0
Level B_L = 0.0535

Level_V .=3
VapPress_L(1) = 311.379

VapPress_L(2) .= 11.018E-3

EquilConst_B_L(1) .=1.6
EquilConst_B_L(2) .=0.2
Vol_F1ashDrum .=2.356
Press_F1ashDrum 43

Temp
-B

220

Temp_L = 220

END

END

}

SELECTOR

WITHIN Plant DO

F1owType_C1 .= Turbulent

F1ovType_C2 .= Laminar ;

F1owType_C3 = Turbulent

F1ovType_C4 = Turbulent

F1ovType_C5 .= Turbulent

WITHIN FlashDruml DO

Phase_B_L .= TvoPhase

END

WITHIN FlashDrum2 DO

Phase_B_L = TwoPhase

END

END

INITIAL

WITHIN Plant DO

WITHIN F1ashDruml DO

Temp_V = 300

Mass_V `1;

APPENDIX D. SIMULATION INPUT FILES 184

Mass_B_L = 15 ;

Ratio_B = 0.001

END

WITHIN F1ashDrum2 DO

Temp
-V = 280

Mass_V =1

Mass_B_L = 15

Ratio_B = 0.002

END

END

SOLUTIONPAAAMETERS

BLOCKDECOMPOSITION := OFF ;

OUTPUTLEVEL :=1;

SCHEDULE

SEQUENCE

CONTINUE FOR 10

RESET P1ant. R1. Press_P :=1.013E2 + (TIME-10)

END

CONTINUE UNTIL P1ant. Rl. Press_P > 500

RESET P1ant. R1. Press P := 600 - TIME

END

CONTINUE UNTIL P1ant. R1. Press_P < 350

RESET P1ant. R1. Press_P :=1.013E2
END

CONTINUE UNTIL P1ant. FlashDruml. Der_Mass-B_L < 1E-20

RESET P1ant. R1. Press P :=0; * atop feed

END

CONTINUE FOR 2E6

END

END * Process test

APPENDIX D. SIMULATION INPUT FILES

D. 3 Decanter : Settling Tank

DECLARE

TYPE

Mass-rate = 50 -1E-1 1E4 UNIT = "kg/sec"
Temperature = 100 . -1E-1 IN UNIT = "K"
Length =1 -1E-1 1E2 UNIT = "m"
Enthalpy =0 -1E7 1E4 UNIT = "kJ/kg"
Int_Energy =0 -1E9 . 1E4 UNIT = "kJ/kg"
Volume = 0.5 -10 1E1 UNIT = "m3"
Pressure = 43 -1E-1 . 1E4 UNIT = "kPa"
Enthalpy_Flov = 10 -1E9 1E7 UNIT = "kJ/sec"
Mass =5 -1E-1 1E9 UNIT = "kg"

Mole = 0.1 -1E-1 1E2 UNIT = "kmole"
Density = 1000 -1E-1 1E5 UNIT = "kg/m3"
Viscosity = 5E-3 -IE-1 1E2 UNIT = "Pa. s"
Velocity = IE-1 -1E-1 . 1E4 UNIT = "m/e"

Fraction = 0.6 -5E-1 10

NoType = 200 -1E9 1E9

Positive = 50 -1E-3 1E9

STREAM

Mas8Stream IS Mass_Rate, Enthalpy_Flov, Fraction, Positive

EnergyStream IS Enthalpy_Flov

END

################################

BEGINNING of generated model #

################################

MODEL m_R1

PARAMETER

NoComp AS INTEGER

VARIABLE

Ratio_P AS Fraction

Rate_P AS Array(NoComp) of Mass-Rate

Den
-P

AS Density

Press
-P

AS Pressure

EnthFlov_P AS Enthalpy_Flov

PhaseType P AS Positive

Viscosity_P AS Viscosity

MassFrac_P AS Array(NoComp) of Fraction

Enth_P AS Enthalpy

STREAM

P: Rate_P, EnthFlov P, Ratio P, PhaseType_P AS MassStream

END # end of MODEL m_R1

MODEL m_R2

PARAMETER

NoComp AS INTEGER

VARIABLE

Ratio_P AS Fraction

Rate
-P

AS Array(NoComp) of Mass Rate

EnthFlow-P AS Enthalpy-Flow

PhaseType_P AS Positive

185

APPENDIX D. SIMULATION INPUT FILES 186

STREAM

P: Rate_P, EnthFlov_P, Ratio_P, PhaseType_P AS MassStream

END # end of MODEL m_R2

MODEL m_R3

PARAMETER

NoComp AS INTEGER

VARIABLE

Ratio
-P AS Fraction

Rate_P AS Array(NoComp) of Mass-Rate
EnthFlow-P AS Enthalpy-Flow

PhaseType_P AS Positive

STREAM

P: Rats P, EnthFlow_P, Ratio P, PhaseType_P AS MassStream

END * end of MODEL m -R3

MODEL m_decanter

PARAMETER

liquidl_liquid2 AS INTEGER
NoComp AS INTEGER

liquidl AS INTEGER

liquid2 AS INTEGER

Z_Pol AS REAL

height AS REAL

Const_B1_B AS REAL

Z_Pi AS REAL

diameter AS REAL

VARIABLE

Mass_B1 AS Array(NoComp) of Mass

Mass-W1 AS Array(NoComp) of Mass

Mass_B1_W1 AS Array(NoComp) of Mass

Mass_B AS Array(NoComp) of Mass

Mass_W AS Array(NoComp) of Mass

Rate_W_Pol AS Array(NoComp) of Mass-Rate

Rate W_Po2 AS Array(NoComp) of Mass-Rate

Rate-B1 B AS Array(NoComp) of Mass-Rate

Rate_Pi AS Array(NoComp) of Mass Rate

Rate B1_W1 Po2 AS Array(NoComp) of Mass-Rate

Rate_B1_W1_Pol AS Array(NoComp) of Mass Rate

Rate B_Pol AS krray(NoComp) of Mass-Rate

Rate_B_Po2 AS Array(NoComp) of Mass-Rate

Rate Pol AS Array(NoComp) of Mass-Rate

Rate_Po2 AS Array(NoComp) of Mass-Rate

Rate_W1_W AS Array(NoComp) of Mass Rate

Den_Wi AS Density

Den-B1-W1 AS Density

Den_B AS Density

Den_W AS Density

Den-Pot AS Density

Den_Bi AS Density

Den Po2 AS Density

Viscosity_W AS Viscosity

Viscosity_B AS Viscosity

viscosity-pol AS Viscosity

Viscosity_WI AS Viscosity

Viscosity_B1 AS Viscosity

Viscosity_B1_W1 AS Viscosity

Press-B1-W1 AS Pressure

Press-81 AS Pressure

APPENDIX D. SIMULATION INPUT FILES 187

Press_B AS Pressure
Press_W AS Pressure
Press-decanter AS Pressure
Press-WS AS Pressure
Temp_B AS Temperature
Temp_W AS Temperature
Temp-B1 AS Temperature
Temp-W1 AS Temperature
Vol-BI-W1 AS Volume
Vol_B AS Volume
Vol

-W AS Volume
Vol-decanter AS Volume
Vol B1 AS Volume
Vol_W1 AS Volume
Vol_Empty AS Volume
Enth_Pol AS Enthalpy
Enth_Po2 AS Enthalpy

Enth_B1 AS Enthalpy
Enth_B1_W1 AS Enthalpy

Enth_W1 AS Enthalpy

Enth_B AS Enthalpy

Enth_W AS Enthalpy

IntEnergy_W AS Int-Energy

IntEnergy_B AS Int-Energy

IntEnergy_B1_Wi AS Int-Energy

IntEnergy_W1 AS Int Bnergy

IntEnergy_Bi AS Int-Energy

EnthFlow_Pi AS Enthalpy-Flow

EnthFlow_W1_W AS Enthalpy Flow

EnthFlow_B_Po2 AS Enthalpy-Flow

EnthFlow-BI-Wl-Po2 AS Enthalpy-Flow

EnthFlow_W_Po2 AS Enthalpy_Flov

EnthFlow_Po2 AS Enthalpy_Flov

EnthFlov_B1_B AS Enthalpy_Flov

EnthFlow-B-Pol AS Enthalpy-Flow

EnthFlow-BI-WI-Pol AS Enthalpy-Flow

EnthFlow-W-Pol AS Enthalpy-Flow

EnthFlow-Pol AS Enthalpy-Flow

MassFrac_W AS Array(NoComp) of Fraction

MassFrac B AS Array(NoComp) of Fraction

MassFrac_Pol AS Array(NoComp) of Fraction

MassFrac_B1_W1 AS Array(NoComp) of Fraction

MassFrac_W1 AS Array(NoComp) of Fraction

MassFrac B1 AS Array(NoComp) of Fraction

Ratio-Pi AS Fraction

Ratio-BI AS Fraction

Ratio
-B

AS Fraction

Ratio_W AS Fraction

Ratio_Po2 AS Fraction

Ratio-Pol AS Fraction

y Po2 AS Positive

Level_B AS Positive

Level
-W

AS Positive

Bot_B AS Positive

Bot
-W

AS Positive

C Wi_W AS Positive

PhaseType_Pi AS Positive

PhaseType_W AS Positive

PhaseType_P02 AS Positive

PhaseType_B AS Positive

Level_Po2 AS Positive

Level_Pol AS Positive

PhaseType_Pol AS Positive

Level_B1_W1 AS Positive

PhaseType_B1_W1 AS Positive

PhaseType_W1
AS Positive

PhaseType_B1
AS Positive

Bot-Bi-W1
AS Positive

APPENDIX D. SIMULATION INPUT FILES 188

area AS Positive
Top_B AS Positive
Top

-W AS Positive
Top-Bi-W1 AS Positive

STREAM

Pi : Rate-Pi, EnthFlov_Pi, Ratio-Pi, PhaseType_Pi AS MassStream
Pol : Rate_Pol, EnthFlov Pol, Ratio_Pol, PhaseType_Pol AS MassStream
Pot : Rate_Po2, EnthFlov Pot, Ratio Po2, PhaseType_Po2 AS MassStream

SET

Z_Pol = 0.000000

height
.=5.000000

liquidi_liquid2 3
liquidl =1
liquid2

,. 2

Z_Pi
.=1.500000

diameter
.=1.000000

EQUATION

case invariant mass balance

$Mass_B =- Rate_B_Poi - Rate_B_Po2 + Rate_B1_B

$Mass B1 = Rate-Pi * Ratio Pi - Rate-Bi-WI-Pol * Ratio-Pol -
Rate_B1_W1_Po2 * Ratio_Po2 - Rate B1_B ;

$Mass_W1 = Rate-Pi * (1 - Ratio-Pi) - Rate-BI-WI-Pol *
(1 - Ratio_Pol) - Rate B1_W1_Po2 * (1 - Ratio_Po2) - Rate_W1_W

$Mass W=- Rate_W_Pol - Rate_W_Po2 + Rate_W1_W ;

case invariant energy balance

$IntEnergy B* SIGMA(Mass_B) + IntEnergy_B * SICMA($Mass_B) _

- EnthFlov_H Pol - EnthFlov B_Po2 + EnthFlov_B1_B ;

$IntEnergy_B1 * SIGMA(Mass_B1) + IntEnergy_B1 * SIGMA($Mass_B1) _
EnthFlov_Pi * Ratio Pi - EnthFlov_B1_W1_Pol * Ratio Pol -
EnthFlov_B1_W1_Po2 * Ratio Po2 - EnthFlov_B1_B ;

$IntEnergy_W1 * SIGMA(Mass_W1) + IntEnergy_W1 * SIGMA($Mass_W1) =
EnthFlov_Pi * (1 - Ratio_Pi) - EnthFlow_B1_W1_Pol * (1 - Ratio_Pol) -
EnthFlov_B1_W1_Po2 * (1 - Ratio_Po2) - EnthFlov_W1_W ;

$IntEnergy_W * SIGMA(Mass_W) + IntEnergy_W * SIGMA($Mass W) _

- EnthFlov_W_Pol - EnthFlov_W_Po2 + EnthFlov_W1_W ;

S ratio of dispersed phase

Ratio_B =1;

SIGMA(Mass_B1) = Ratio_B1 * SIGMA (Mass-BI-Wl)

Ratio_W =1;

HeavyPhaseTransfer :

Rate W1_W = C_W1_W * Mass_Wi

EnthFlov_W1_W = SIGMA(Rate_W1_W) * Enth_W1

BubbleRise :

Rate_B1_B = Const_B1_B * Mass B1

EnthFlow_B1_B = SIGMA(Rate B1_B) " Enth_B1

mass = mass fraction * total mass

Mass_B1_W1 = MassFrac_B1_W1 * SIGMA (Mass-BI-WI)

Mass_W = MassFrac_W * SIGMA(Mass_W) ;

Mass-W1 = MassFrac_W1 * SIGMA(Mass W1)

Mass_B = MassFrae B* SIGMA(Mass_B) ;

Mass_B1 = MassFrac_B1 * SIGMA(Mass_B1)

APPENDIX D. SIMULATION INPUT FILES 189

X total mass = density * volume
SIGMA(Mass_W) = Den_W * Vol_W ;
SIGMA(Mass_W1) = Den_W1 * Vol_Wi

SIGMA(Mass_B) = Den_B * Vol_B ;
SIGMA(Mass_B1) - Den_B1 * Vol-B1

I phase type

PhaseType_B1

PhaseType_W

PhaseType_W1

PhaseType_B

PhaseType_B1

W1 - liquidi_liquid2

liquid2

= liquid2

liquidl

= liquidl

aggregated mass
Mass-BI-W1 = Mass B1 + Mass-WI

aggregated phase density

Den-B1-W1 = Ratio-B1 * Den-BS + (1 - Ratio-BI) * Den_N1

aggregated phase enthalpy
Enth_B1 W1 = Ratio B1 * Enth B1 + (1 - Ratio B1) * Enth_W1

aggregated phase internal energy
IntEnergy_B1_Wi = Ratio_B1 * IntEnergy_B1 + (1 - Ratio_B1) * IntEnergy_W1

aggregated phase viscosity
Viscosity_B1_Wi = Ratio B1 * Viscosity_B1 + (1 - Ratio_B1) * Viscosity_W1

volume relationship

Vol-S1-W1 = Vol-BI + Vol-WI

Vol-decanter = Vol_B + Vol_S1_Wi + Vol_W + Vol_Empty

uniform pressure within vessel

Press-decanter = Press_B1_W1

Press-decanter = Press_W

Press-decanter = Press-W1

Press-decanter = Press_B

Press-decanter = Press_B1

phase bound : upper/low bound of phase volume = level

Top_W = Level_W

Bot_W =0;

Top-BI-WI = Level-BI-WI

Bot_BI_N1 = Level
-W

Top
-B = Level

-B ;

Bot_B = Level-B1-W1

phase volume : volume = area * (top - bottom)

area = (3.14/4) * diameter-2 ;

Vol_Empty = area * (height - Top-B)

Vol_W = area * (Top_W - Bot_W) ;

Vol_B1_W1 = area * (Top_B1_W1 - Bot_B1_W1)

Vol
-B = area * (Top

-B - Bot B)

discontinuity on output port, "Pol"

IF Z_Pol >- Bot_B AND Z_Pol < Top_B THEN

Level_B = Level-Pol ;

Viscosity_B = Viscosity-Pol

Enth_B = Enth_Pol ;

MassFrac B= MaseFrac_Pol

Den_B = Den-Pol ;

Rate_B_Po1 = Rate-Pol

EnthFlov_B_Pol = EnthFlov_Pol

Ratio_B = Ratio-Pol ;

PhaseType_B = PhaseType_Pol

APPENDIX D. SIMULATION INPUT FILES 190

Rate_W Pol -0;
EnthFlov W_Pol =0
Rate B1_Wi_Pol =0
EnthFlov_B1_W1_Pol =0

ELSE

IF Z_Pol >= Bot_B1_W1 AND Z
_Pol

< Top_BI_W1 THEN
Level-B1-W1 = Level Pol ;
Viscosity-B1-W1 = Viscosity-Pol

Enth_B1_W1 = Enth Pol

MassFrac_B1_W1 = MaseFrac_Po1

Den_Bl_Wl = Den Pol

Rate-B1-W1-Pol = Rate-Pol

EnthFlov_BS_W1_Poi = EnthFlov_Pol

Ratio-B1 = Ratio-Pol ;
PhaseType_B1_W1 = PhaseType_Pol

Rate_W_Pol =0
EnthFlov_W_Pol =0
Rate_B Pol =0

EnthFlov_B_Pol 0

ELSE

IF Z_Pol >= Bot_W AND Z_Pol < Top_W THEN

Level_W = Level Pol

Viscosity_W = viscosity-pol

Enth_W = Enth_Pol

MassFrac_W = MassFrac_Pol

Den_W = Den_Pol ;
Rate_W_Poi = Rate-Pol

EnthFlov_W_Pol = EnthFlow_Pol

Ratio
-W = Ratio Pol

PhaseType_W = PhaseType_Pol

Rate_B1_WS_Pol =0
EnthFlov_B1_W1_Po1 =0
Rate_B_Pol =0

EnthFlov_B_Pol =0
ELSE

Level_Po1 =0
viscosity-pol 0

Enth_Pol =0

MassFrac Pol =0

Den_Poi =0

Rate_W_Pol =0

EnthFlov_W_Pol =0

Rate_B1_W1_Pol =0

EnthFlov BIWl_Pol =0

Rate_B Poi =0

EnthFlov_B_Pol =0

Ratio_Pol =0

PhaseType_Pol =0

END

END

END

ü end of discontinuity on output port, "Pol"

discontinuity on output port, "Po2"

IF Z_Po2 >- Bot_B AND Z_Po2 < Top_B TEEN

Den_B = Den_Po2 ;

Level_B = Level_Po2

Enth_B Enth_Po2 ;

Rate B_Po2 = Rate_Po2

EnthFlov_B_Po2 = EnthFlov_Po2

Ratio
-B = Ratio_Po2 ;

PhaseType_B = PhaseType_Po2

Rate_W_Po2 =0;

EnthFlov_W_Po2 =0

Rate_B1_W1_Po2 =0

EnthFlov_B1_W1_Po2 =0

ELSE

APPENDIX D. SIMULATION INPUT FILES 191

IF Z Po2 >= Bot-B1-W1 AND Z_Po2 < Top-B1-W1

Den-B1-W1 - Den_Po2

Level-B1-W1 Level_Po2

Enth_B1_W1 = Enth_Po2

Rate B1_W1_Po2 = Rate_Po2

EnthFlov_B1 W1_Po2 = EnthFlov_Po2

Ratio B1 = Ratio Po2

PhaseType B1_W1 = PhaseType_Po2

Rate_W_Po2 =0
EnthFlov_W_Po2 =0
Rate_S Po2 =0
EnthFlov B_Po2 =0

ELSE

IF Z Po2 >= Bot_W AND Z Po2 < Top_W THEN

Den_W = Den_Po2 ;
Level_W = Level_Po2

Enth_W Enth_Po2

Rate_W_Po2 = Rate Po2

EnthFlov_W_Po2 = EnthFlov_Po2

Ratio
-W = Ratio_Po2

PhaseType_W = PhaseType_Po2

Rate_B1_W1_Po2 =0
EnthFlov_B1 W1_Po2 =0
Rate B_Po2 =0

EnthFlov_B_Po2 =0

ELSE

Den_Po2 =0

Level_Po2 =0

Enth_Po2 =0

Rate_W_Po2 =0

EnthFlov_W_Po2 =0

Rate_B1_W1_Po2 =0

EnthFlov_B1_W1_Po2 =0

Rate_B Po2 =0

EnthFlov_B_Po2 =0

Ratio_Po2 =0

PhaseType_Po2 =0

END

END

END

end of discontinuity on output port, "Po2"

port position

Z_Po2 = height

THEN

specification of C_W1_W in HeavyPhaseTransfer #

C_W1_W = 0.5E-1;

END ü end of MODEL m_decanter

MODEL Flowshest

PARAMETER

NoComp

Const2_C1

Const3_C1

Const_C1

Const_C2

Const_C3

AS INTEGER

AS REAL

AS REAL

AS REAL

AS REAL

AS REAL

VARIABLE

ReynoldsConstl_C1 AS Positive

ReynoldsConst2_C1 AS Positive

ReynoldeNo_C1 AS Positive

DrivingForce_C1 AS NoType

APPENDIX D. SIMULATION INPUT FILES 192

UNIT

R1

R2

R3

decanter

SELECTOR

F1owType_CS AS (Turbulent, Laminar)

EQUATION

AS m_R1
AS m_R2
AS m_R3
AS m_decanter

stream connections through ports #

R1. P IS decanter. Pi

decanter. Poi IS R2. P

decanter. Po2 IS R3. P

transfer law of each connection #

#" IrreversiblePre s sureDrivenF low" in connection, "C1"
DrivingForce_C1 = R1. Press_P - decanter. Press_decanter
(4/3.14) * SIGMA(R1. Rate_P) = ReynoldsNo_C1 * Const_C1 * R1. Viscosity_P
ReynoldsConsti_C1 = 2100

ReynoldsConst2_C1 = 4000

R1. EnthFlov_P = SIGMA(R1. Rate_P) * R1. Enth_P

IF DrivingForce_C1 >0 THEN

CASE F1ovType_C1 OF

WHEN Turbulent :

R1. Rate_P = Const2_C1 * R1. Den_P * R1. MassFrac_P *
SQRT(DrivingForce_C1)

SWITCH TO Laminar IF ReynoldsNo_Ci < ReynoldsConstl_C1

WHEN Laminar :

R1. Rate_P = Const3_C1 * RS. Den_P * R1. MassFrac_P *

DrivingForce_C1 ;
SWITCH TO Turbulent IF ReynoldsNo_C1 > ReynoldsConst2_C1

END

ELSE

R1. Rate P=0

END

"StaticPressureDrivenFlow" in connection "C2"

IF (decanter. Z Pol >= decanter. Bot_B AND decanter. Z_Pol <

decanter. Top_B) OR (decanter. Z_Poi >= decanter. Bot-Bj_Wl AND

decanter. Z_Pol < decanter -Top-BI-WI) OR (decanter. Z-Pol >=

decanter. Bot_W AND decanter. Z Pol < decanter. Top_W) THEN

decanter. Rate_Pol = Const_C2 * decanter. Den_Pol *

SQRT(2 * 9.8 * ABS(decanter. Level_Pol))

ELSE

decanter. Rate_Pol =0

END

decanter. EnthFlov_Pol = SIGMA (decanter. Rate_Pol) * decanter. Enth_Poi;

"WeirOverFlov" in connection, "C3"

IF (decanter. Z_Po2 >= decanter. Bot_B AND decanter. Z_Po2 <

decanter. Top_B) OR (decanter. Z Po2 >= decanter. Bot_B1_W1 AND

decanter. Z_Po2 < decanter. Top B1-W1) OR (decanter. Z_Po2 >_

decanter. Bot_W AND decanter. Z_Po2 < decanter. Top_W) THEN

decanter. Rate
_Po2 = Const_C3 * decanter. Den_Po2 *

(ABS (decant er. Level
_Po2 - decanter. Z_Po2))-1.5

ELSE

decanter. Rate_Po2 -0

END

decanter. EnthFlov_Po2 = SIGMA(decanter. Rate
_Po2)

* decanter. Enth_Po2

APPENDIX D. SIMULATION INPUT FILES 193

END * end of MODEL Flowshost

###########################

END of generated models #

###########################

PROCESS test

UNIT

Plant AS Flovsheet

SET

WITHIN Plant Do

NoComp =1;
Const_C1 = 0.05

U cross-sectional area of pipe, C2

* =======°__==___°_______________" #

Const_C2
._

(3.14 / 4) * 0.05-2

modified Francis formula in C3, "WeirOverFlov" #

weir length = 3.14*diameter,

wall correction factor = 1.04 #

Const_C3 (2*3.14*0.5) / ((0.68175*1.04)"1.5)

Const2_Ci .= 9E-4

Const3_C1 = 5E-5

WITHIN R1 DO

NoComp

END

WITHIN R2 DO

NoComp = 1

END

WITHIN R3 DO

NoComp = 1

END

WITHIN decanter DO

NoComp .= 1

Const_B1_B .= 0.3E-1

END

END

ASSIGN

WITHIN Plant DO

WITHIN R1 DO

Press_P = 2*1.013E2 [kPa7

Den_P .= 902.5 ;ß [kg/m3]

Enth_P 0

MassFrac_P = 1.0

Ratio_P = 0.3

PhaseType_P = 3

Viscosity
-P = 0.00178

END

WITHIN decanter DO

Enth_B = 0

Enth_B1 = 0

Enth_W1 = 0

Enth_W "= 0

Temp
-B .= 298

Temp Bi .= 298

Temp W1 .= 298

Temp_W = 298

APPENDIX D. SIMULATION INPUT FILES 194

Den
-B 805

Dan-BI 805

Den_W1 - 1000

Den_W
.= 1000

Viscosity_B
.=2.65E-3

Viscosity-BI
.=2.65E-3

Viscosity-W1 = 9.0E-4

Viscosity_W
.=9.0E-4

Press-decanter 1.013E2

END

END

PRESET

PLANT. R2. RATIO_P 0.00000E+00 : -1.000E-01 : 1.000E+01
PLANT. R3. RATIO_P 0.00000E+00 -1.000E-01 1.000E+01
PLANT. DECANTER. ENTHFLOW_W_P01 :=0.00000E+00 -1.000E+09 1.000E+07
PLANT. DECANTER. VOL_B1 :=0.00000E+00 : -1.000E+01 : 1.000E+01
PLANT. DECANTER. ENTHFLOW_W_P02 :=0.00000E+00 : -1.000E+09 : 1.000E+07
PLANT. DECANTER. PHASETYPE B1 :=1.00000E+00 : -1.000E-03 1.000E+09
PLANT. DECANTER. VOL-B :-1.24224E-02 -1.000E+01 : 1.000E+01
PLANT. DECANTER. MASSFRAC_B1(1) :=5.00000E-01 : -1.000E-01 : 1.000E+01
PLANT. DECANTER. PHASETYPE_B 1.00000E+00 : -1.000E-03 : 1.000E+09
PLANT. DECANTER. RATE_P01(1) 0.00000E+00 : -1.000E-01 : 1.000E+04
PLANT. DECANTER. INTENERGY_B1 0.00000E+00 : -1.000E+09 1.000E+04
PLANT. DECANTER. MASSFRAC_B(1) 1.00000E+00 : -1.000E-01 : 1.000E+01
PLANT. DECANTER. RATE-PI (1) 4.67116E+03 -1.000E-01 : 1.000E+04
PLANT. DECANTER. ENTHFLOW_PI 0.00000E+00 : -1.000E+09 : 1.000E+07
PLANT. DECANTER. RATIO_PI :=5.00000E-01 : -1.000E-01 : 1.000E+01

PLANT. DECANTER. PHASETYPE_PI :=3.00000E+00 : -1.000E-03 1.000E+09

PLANT. DECANTER. RATE_P02(1) 0.00000E+00 -1.000E-01 1.000E+04

PLANT. DECANTER. INTENERGY B 0.00000E+00 -1.000E+09 1.000E+04

PLANT. DECANTER. TOP_B :=4.13024E-02 -1.000E-03 : 1.000E+09

PLANT. DECANTER. DEN_B1_W1 1.00000E+03 : -1.000E-01 : 1.000E+05

PLANT. DECANTER. ENTH P01 0.00000E+00 : -1.000E+07 1.000E+04

PLANT. DECANTER. PRESS-BI :=1.01300E+02 -1.000E-01 1.000E+04

PLANT. DECANTER. ENTH P02 :=0.00000E+00 : -1.000E+07 : 1.000E+04

PLANT. DECANTER. VISCOSITY_B1_W1 :=9.00000E-04 : -1.000E-01 : 1.000E+02

PLANT. DECANTER. PRESS_B 1.01300E+02 : -1.000E-01 : 1.000E+04

PLANT. DECANTER. LEVEL_W 1.27389E-02 -1.000E-03 : 1.000E+09

PLANT. DECANTER. ENTHFLOW_P01 :=0.00000E+00 : -1.000E+09 : 1.000E+07

PLANT. DECANTER. RATIO_P01 :=0.00000E+00 -1.000E-01 : 1.000E+01

PLANT. DECANTER. PHASETYPE P01 :=0.00000E+00 : -1.000E-03 : 1.000E+09

PLANT. DECANTER. ENTHFLOW_B1_W1_PO1 :=0.00000E+00 : -1.000E+09 1.000E+07

PLANT. DECANTER. ENTHFLOW-P02 :=0.00000E+00 : -1.000E+09 1.000E+07

PLANT. DECANTER. RATIO_P02 :=0.00000E+00 -1.000E-01 : 1.000E+01

PLANT. DECANTER. PHASETYPE_P02 :=0.00000E+00 : -1.000E-03 1.000E+09

PLANT. DECANTER. ENTHFLOW_B1_W1-P02 :=0.00000E+00 : -1.000E+09 1.000E+07

PLANT. DECANTER. BOT_W :=0.00000E+00 -1.000E-03 : 1.000E+09

PLANT. DECANTER. RATE_W1_W(1) 0.00000E+00 : -1.000E-01 1.000E+04

PLANT. DECANTER. RATE- B_P01(1) 0.00000E+00 -1.000E-01 1.000E+04

PLANT. DECANTER. RATE_B_P02(1) 0.00000E+00 : -1.000E-01 : 1.000E+04

PLANT. DECANTER. RATIO-W :=1.00000E+00 : -1.000E-01 : 1.000E+01

PLANT. DECANTER. LEVEL-B1_W1 2.54777E-02 : -1.000E-03 : 1.000E+09

PLANT. DECANTER. MASS_B1(1) :=0.00000E+00 -1.000E-01 : 1.000E+09

PLANT. DECANTER. DEN_P01 :=0.00000E+00 : -1.000E-01 : 1.000E+05

PLANT. DECANTER. VOL_DECANTER :=3.92500E+00 : -1.000E+01 : 1.000E+01

PLANT. DECANTER. MASS-B(1) :=1.00000E+01 : -1.000E-01 : 1.000E+09

PLANT. DECANTER. VISCOSITY_P01 :=0.00000E+00 : -1.000E-01 : 1.000E+02

PLANT. DECANTER. BOT_B1_W1 :=1.27389E-02 -1.000E-03 : 1.000E+09

PLANT. DECANTER. RATE_B1-B(1) :=0.00000E+00 : -1.000E-01 1.000E+04

PLANT. DECANTER. VOL_W1 :=1.00000E-02 -1.000E+01 : 1.000E+01

PLANT. DECANTER. PHASETYPE_W1 :=2.00000E+00 : -1.000E-03 1.000E+09

PLANT. DECANTER. VOL_W :=1.00000E-02 : -1.000E+01 : 1.000E+01

PLANT. DECANTER. MASSFRAC-W1(1) :=1.00000E+00 : -1.000E-01 : 1.000E+01

PLANT. DECANTER. PHASETYPE_W 2.00000E+00 -1.000E-03 1.000E+09

PLANT. DECANTER . INTENERGY_W1 0.00000E+00 -1.000E+09 1.000E+04

PLANT. DECANTER. MASSFRAC-W(1) 1.00000E+00 -1.000E-01 1.000E+01

PLANT. DECANTER . INTENERGY_W :=0.00000E+00 : -1.000E+09 : 1.000E+04

APPENDIX D. SIMULATION INPUT FILES 195

PLANT. DECANTER. TOP_W :=1.27389E-02 -1.000E-03 : 1.000E+09

PLANT. DECANTER. PRESS-WI :-1.01300E+02 : -1.000E-01 : 1.000E+04

PLANT. DECANTER. ENTHFLOW_W1_W :=0.00000E+00 : -1.000E+09 : 1.000E+07
PLANT. DECANTER. PRESS_W :=1.01300E+02 -1.000E-01 : 1.000E+04

PLANT. DECANTER. ENTAFLOW_B_PO1 0.00000E+00 -1.000E+09 : 1.000E+07
PLANT. DECANTER. ENTHFLOW_B_P02 0.00000E+00 -1.000E+09 : 1.000E+07
PLANT. DECANTER. C_W1_W :=0.00000E+00 : -1.000E-03 : 1.000E+09 ;
PLANT. DECANTER. LEVEL_P02 :=0.00000E+00 : -1.000E-03 : 1.000E+09
PLANT. DECANTER. AREA :=7.85000E-01 : -1.000E-03 : 1.000E+09

PLANT. DECANTER. VOL_B1_W1 :=1.00000E-02 : -1.000E+01 : 1.000E+01
PLANT. DECANTER. PHASETYPE B1_W1 :=3.00000E+00 : -1.000E-03 1.000E+09

PLANT. DECANTER. MASSFRAC_B1_W1(1) :=1.00000E+00 : -1.000E-01 1.000E+01
PLANT. DECANTER. INTENERGY_B1_W1 :=0.00000E+00 : -1.000E+09 1.000E+04

PLANT. DECANTER. TOP B1_W1 :=2.54777E-02 : -1.000E-03 : 1.000E+09

PLANT . DECANTER. RATE_W_PO1(1) :=0.00000E+00 : -1.000E-01 : 1.000E+04

PLANT. DECANTER. VOL_EMPTY :=3.89258E+00 : -1.000E+01 : 1.000E+01

PLANT. DECANTER. RATE_W_P02(1) 0.00000E+00 : -1.000E-01 1.000E+04

PLANT. DECANTER. ENTHFLOW_B1_B 0.00000E+00 -1.000E+09 : 1.000E+07

PLANT. DECANTER. LEVEL_B :=4.13024E-02 -1.000E-03 : 1.000E+09

PLANT. DECANTER. PRESS_B1_W1 1.01300E+02 -1.000E-01 : 1.000E+04

PLANT. DECANTER. MASS_W1(1) 1.00000E+01 : -1.000E-01 1.000E+09

PLANT. DECANTER. MASS_W(1) 1.00000E+01 : -1.000E-01 : 1.000E+09

PLANT. DECANTER. BOT_B :=2.54777E-02 -1.000E-03 : 1.000E+09

PLANT. DECANTER. RATIO_B1 :=0.00000E+00 : -1.000E-01 : 1.000E+01

PLANT. DECANTER. RATE_B1_W1_PO1(1) :=0.00000E+00 : -1.000E-01 1.000E+04

PLANT. DECANTER. ENTH_B1_W1 :=0.00000E+00 : -1.000E+07 : 1.000E+04

PLANT. DECANTER. RATIO_B :=1.00000E+00 -1.000E-01 : 1.000E+01

PLANT. DECANTER. Z_P02 :=5.00000E+00 : -1.000E-03 1.000E+09

PLANT. DECANTER. RATE_B1_W1_P02(1) :=0.00000E+00 : -1.000E-01 1.000E+04

PLANT. DECANTER. MASSFRAC_P01(1) :=0.00000E+00 : -1.000E-01 : 1.000E+01

PLANT. DECANTER. MASS
_B1_W1(1) :=1.00000E+01 : -1.000E-01 : 1.000E+09

PLANT. R3. PHASETYPE_P :=0.00000E+00 -1.000E-03 : 1.000E+09

PLANT. R3. RATE_P(1) 0.00000E+00 : -1.000E-01 1.000E+04

PLANT. R3. ENTHFLOW_P 0.00000E+00 : -1.000E+09 1.000E+07

PLANT. R2. PHASETYPE_P 0.00000E+00 -1.000E-03 1.000E+09

PLANT. R2. RATE P(1) :=0.00000E+00 -1.000E-01 : 1.000E+04

PLANT. R2. ENTHFLOW P 0.00000E+00 : -1.000E+09 1.000E+07

PLANT. RI. RATE_P(1) 4.57116E+03 : -1.000E-01 1.000E+04

PLANT. RI. ENTHFLOW_P 0.00000E+00 : -1.000E+09 1.000E+07

PLANT. DRIVINGFORCE_C1 :=1.01300E+02 : -1.000E+09 : 1.000E+09

PLANT. REYNOLDSCONST2_C1 :=4.00000E+03 : -1.000E-03 : 1.000E+09

PLANT. REYNOLDSNO_C1 :=6.54285E+05 -1.000E-03 : 1.000E+09

SELECTOR

WITHIN Plant DO

F1ovType_C1 := Turbulent

END

INITIAL

WITHIN Plant DO

WITHIN decanter DO

Mass_B =0

Mass_W =0

Mass_B1_W1 =0

Mass-W1 =0

IntEnergy B=0

IntEnergy_B1 =0

IntEnergy_W1 =0

IntEnergy W=0

END

END

SOLUTIONPARAMETERS

BLOCKDECOMPOSITION ON ;

OUTPUTLEVEL =1

APPENDIX D. SIMULATION INPUT FILES 196

SCHEDULE

SEQUENCE

CONTINUE UNTIL TIME > 1600

END

END * Process test

618L.
Dit.

un ..

