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Abstract

Mathematical models of processes are now widely used at all levels, from pro-
cess synthesis and design, through operations planning, to process control and monitoring.
With the increasing sophistication of applications and the resulting models, i1t has become
clear that the formulation of appropriate consistent models is a major, time—-consuming
and error—prone task. A number of modelling and simulation packages have been devel-
oped In recent years to ald process modelling. In these systems the basic building blocks
are the equations representing the physico—chemical relations, however there has been
little work on aids for generating such equations.

This thesis 1s concerned with the development of a system for automatically
generating lumped-parameter models from a purely physical description of process sys-
tems, the majority of which routinely experience discontinuous physical behaviour such
as phase transitions (e.g. presence or absence of phases), flow regime transitions (between
laminar and turbulent) and discrete changes resulting from the geometry of individual
process units.

The approach described in this work is based on the conceptual view of pro-
cess systems as a set of inter—connected vessels containing interacting phases. A physical
modelling language supporting the description of process systems in a purely physical
manner has been designed, with a special emphasis on the hierarchical description of the
inter—connections between phases or vessels. A methodology for formulating mathemati-
cal models from the physical description represented in the language has been developed,
focusing on the mathematical description of discontinuous physico—chemical behaviour
as mentioned above. The current version of this package generates mathematical mod-
els in the format of the gPROMS (Barton, 1992) input language. The implementation
of this methodology (written in C) has led to a prototype of a new model generation
package. The ability of this package to automatically generate mathematical models is

demonstrated by several case studies.
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Chapter 1

Introduction

This thesis 1s concerned with the development of a software tool for automatically
generating a mathematical model from a purely physical description for a process unit or
system.

Models have been recognised as indispensable for describing and predicting the
behaviour of the real world. Many modelling methodologies have been applied to the ab-
straction of the real world for a long time. Among them, mathematical models expressed
in sets of differential, algebraic, integral equations etc., are most commonly used in the

wide range of science and engineering field.

Mathematical modelling essentially represents the translation of the real world
problems into mathematical problems. It is the art of devising a mathematical structure
that takes into account the essence of a given situation. A real world problem, in all
its generality, can seldom be translated into a mathematical domain, and even if it can
be so translated, it may not be possible to solve the mathematical equations. This fact
quite often necessitates the idealisation or approximation of an original problem to get it

translated and to obtain its solution.

In the area of process systems engineering mathematical models are essential in
tackling a variety of problems such as process synthesis and design, process simulation and
optimisation, planning and scheduling of process operation, and process control. They
provide the formal representation for describing the relevant physico-chemical dynamic
behaviour which is composed of the relationships between mathematical terms. Only
well formulated mathematical models enable us to successfully perform process systems
engineering tasks. If an incorrect mathematical model is applied, valid results of process
engineering work can not be expected. An important aspect of the modelling problem

is thus the identification of the significant features of the behaviour for the purpose 1n
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hand, and the construction of a model which adequately reproduces those features without
irrelevant complexities (Sargent, 1983).

Recently the rapid development of computer hardware and software has led
to the emergence of more powerful computational modelling tools in a wide variety of
fields. This trend could be seen in the field of process systems engineering in such a way
that flowsheeting whose application range was limited to simple unit modules has been
extended to be able to deal with dynamic modelling and simulation for complex process
systems involving several hundreds of thousands of variables.

At the same time, as the complexities of process interactions increase due to the
tighter specification of plant performance, the strengthening of the legislation on envi-
ronment and safety, and flexible and just-in-time production systems to meet the rapid
changes of market demands, higher—fidelity process models are required to adequately
cope with them. Actually in the course of specific process engineering activities, the
cost of developing the requisite models represents a significant part of the overall budget
(Perkins and Barton, 1987).

Those general trends mentioned above have therefore been stimulating the de-
velopment of a number of dynamic modelling packages, most of which are based on an
equation—oriented flowsheeting architecture.

This chapter 1s composed of four sections. Section 1.1 describes the background
to this research involving the motivation and the objective. In the following two sections
the important aspects for process models and an overview on the current state of art of

computer aids for automatic model generation are illustrated. Finally the thesis outline

will be introduced.

1.1 Motivation and Objective

Considerable eflort has been made in the development of modelling facilities
which allow the user to concentrate on the correct mathematical formulation of the pro-
cess model, as opposed to the numerical algorithms and coding required to solve it. From
the earliest days flowsheeting packages provided a means of building whole process models
from knowledge of the flowsheet and models for the individual units. SpeedUp (Sargent
and Westerberg, 1964; Perkins and Sargent, 1982; Pantelides, 1988) provides a system
which separates computation from the models enabling these to be provided essentially as
a set of equations, together with a simple macro facility for building complex models from

simpler ones. This has already been commercialised and being widely used in the pro-
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cess industries. ASCEND (Piela, 1989; Piela et al., 1991) uses object—oriented program-
ming methodologies to provide a more general facility using combination and inheritance,
while DESIGN-KIT (Stephanopoulos et al., 1990a), and MODEL.LA (Stephanopoulos et
al., 1987; Stephanopoulos et al., 1990b) uses object-oriented programming both to build
models 1n this way, and to tailor them for different uses. Omola integrated with OmSim
(Andersson, 1990; Mattsson and Andersson, 1992; Nilsson, 1993; Andersson, 1994) and
gPROMS (Barton, 1992; Barton and Pantelides, 1994; Oh, 1995; Oh and Pantelides,
1996) provide similar general facilities to model both the process and the operations.
It 1s clear that current powerful modelling environments help modellers to alleviate the

time—consuming and error—prone task of formulating appropriate consistent mathematical

models for complex process systems.
~

Iiven so, 1n the maJor1ty of all these packages, the correct formulation of the

wwmﬂ' “##m Iy BARRIELTN O Sy

el Sl kb,

mathematical model is the respons1b1l1ty of the user. That 1s, users are required to

mathematlcally formulate process models using the high-level modelling language which
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‘has its own syntax and semantics, consequently the correct mathematical modelling is

the responsibility of the user. The formulation of correct, complete and non-redundant
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mathematical models is not always an easy task "The difficulties result from a number
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of situations such as the under—spemﬁcatlon of the underlying system or vice versa, the
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formulation of inconsistent equations, and the inconsistent formulation of boundary and
initial conditions. At this point, there i1s a crucial requirement for the development ot
more advanced modelling tool to provide the extensive support for model construction
activities. In all the modelling packages mentioned above, the basic building blocks are
the equations representing physico—chemical relations, and there has been little work on

alds for generating such equations. The challenge in this area 1s to prowde a modellmg
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facility which allows the user to describe his system purely in terms of the elementary
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phys1co—chem1cal processes involved, with theap apprOprlate mathematical model generated
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automatlcally by the package (Sargent 1990)

There has been httle Work on explorlng the pOSS1b111ty of computer—aided mathe-
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matical model generatlon for a, process system, for example by deﬁnmg it in a more purely
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prototype expert system for modellmg from first principles (Meyssami and Asbjgrnsen,
e - et

1989) while Preisig et. al have developed a computer-aided model generation tool for

physical-chemical-biological systems using object—oriented model representation (Preisig

et al., 1990; Preisig, 1995; Preisig, 1996) close to our approach in terms of the basic

concept for process representation.
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With the above in mind, it is thought to be of considerable importance to develop
such an automatic model generation environment.

The major objective of this research, which is a continuation of earlier work
(Vazquez-Roman, 1992) resulting in a prototype computer program (written in the object-
oriented language SMALLTALK), as a vehicle for ideas, is to develop a computer software
package which generates a mathematical model from a purely physico—chemical descrip-

tion of process systems, focusing on possible situations likely to arise from discontinuous

behaviour.

1.2 Important Aspects of Process Modelling

This section describes several important aspects of process models and their
systematic formulation. This section has been organised as follows : §1.2.1 briefly de-
scribes the multi—faceted character of models with several applications of this nature,
81.2.2 explains basic concepts required to represent process models which are essential
to systematic model-building and in §1.2.3 process discontinuities routinely arising 1n

process systems will be discussed.

1.2.1 Multi—faceted Character of Models

As stated earlier, the modelling activity represents the abstraction of a real world
problem by encapsulating the knowledge considered essential to the speciic modelling
purpose. Models do not exist in isolation and though they may at times be considered in
their own terms, models are never fully understood except in relation to other members ot
the model family to which they belong (Aris, 1978). Simple models are required early 1n a
process design but more complex ones are needed as the design process proceeds. We thus
often need very different kinds of models at different modelling stage, and an important
part of the modelling process is the tailoring of the model for the particular purpose in
hand (Sargent, 1990). There are different models in terms of their levels of detail for
the same process system depending on the modelling purpose at each modelling stages,
resulting in an hierarchy structured into the model family. This is termed multi-facet ot
process models and the facility for supporting it is provided in the majority ot recently
developed modelling languages.

SpeedUp (Sargent and Westerberg, 1964; Perkins and Sargent, 1982; Pantelides.
1988) provides a fixed number of modelling levels comprising hierarchy for supporting top-

down or bottom—up modelling approach. Alternatively, Omola (Mattsson and Andersson,
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1992; Nilsson, 1993), ASCEND (Piela, 1989) and gPROMS (Barton and Pantelides, 1994)
have adopted the concept of hierarchical sub—model decomposition (Elmqvist, 1978) which
enables to describe the formal definition of models in a recursive manner, thus permitting
an effectively unlimited number of hierarchical levels (Pantelides and Barton, 1992). In
MODEL.LA (Stephanopoulos et al., 1990b) multi—faceted modelling has been incorpo-
rated as a key feature, and a provision for supporting multi-level modelling of the same

process, to automate a hierarchical sub-model description.

1.2.2 Model Structuring Concept

The ob‘jective of all modelling languages is to eliminate the modelling bottleneck
of engineering applications by providing a computer—-aided environment which can sup-
port: (a) expeditious construction of models by the human user, and/or (b) automatic
generation of models by another program (Stephanopoulos and Han, 1996). Recently
developed modelling languages, the majority of which have adopted the object—oriented
concept, in common provide the user with a high level declarative representation coupled
with highly structured formalism in order to support the construction of consistent math-
ematical models for complex process systems. To achieve these objectives the majority
of the modelling packages use a software architecture whereby the model description 1s
completely decoupled from the mathematical solution method. This feature has resulted
in a shift away from purely dynamic simulation packages towards more general-purpose
modelling environments, in which a common process model is used in a number of different
modes such as steady—state simulation and design, dynamic simulation, steady—state and
dynamic optimisation, data reconciliation etc. (Pantelides and Barton, 1992). The basic
conceptual point of view of process systems in order to support facilities for representing
the process models in a more structural way will be briefly reviewed on recently emerged
modelling languages in the following text.

The conceptual essence of Omola (Andersson, 1990; Mattsson and Andersson,
1992: Andersson, 1994) is based on object-oriented programming ideas. The key con-
cept in Omola is the class, a general data aggregation which is the basis for representing
different modelling concepts. Omola. is structured into two separate layers: the data repre-
sentation layer and the model representation layer. The former represents the description
of the internal behaviour within a model. It defines a set of syntactic, semantic, and
pragmatic rules for representing general data such as model variables and equations as
well as the class. The model representation layer represents the interfaces of models for

communicating with its environment. It consists of a set of classes previously defined
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in the data representation layer and structural components such as models, parameters.
terminals and connections. The connections represent topological linkages of involved
models through the terminals which may transfer a set of information about the media.

The parameters normally represent some kind of time-invariant design variables.

ASCEND (Piela, 1989; Piela et al., 1991) is a domain- -independent object-

-#

oriented computer environment for a,p.a,lysmg and modelhng complex process systems
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in terms of large sets of simultaneous nonlinear algebraic equations. The basic concep-

MM - R - -

tual elements of the ASCEND language are model, elementary and atom types. The

models are structured types built hierarchically from instances of other models, instances
of atoms, and relationships between instances. The elementary types are primitive data
types such as real, string, unit, etc. The atoms are primitive structured types for represent-
ing physical quantities. The atoms and models are organised into inheritance hierarchies
comprising networks of connected parts which are themselves instances of models.

ePROMS (Barton, 1992; Barton and Pantelides, 1994; Oh, 1995; Oh and Pan-
telides, 1996) is a general-purpose software package designed for modelling and simula-
tion of combined discrete and continuous processes, supporting combined lumped and
distributed parameter mathematical models. The conceptual framework of the gPROMS
language is based on three distinct categories of entities, models, tasks and processes.
Model entities encapsulate the description of the physico—chemical behaviour, while task
entities encapsulate the description of the external control actions or disturbances 1m-
posed on the system. A process entity is formed by the application of tasks to instances
of model entities in order to define a complete simulation of the process system. gPROMS
is discussed in more detail later since it is closely related to our work.

MODEL.LA (Stephanopoulos et al., 1990a; Stephanopoulos et al., 1990b) is a
high level and completely declarative language especially constructed for the interactive

and automatic definition of models of process systems, Based on the following fundamental

requirement of modelling language:

“A modeling language in process engineering should be fully declarative
and in no way its generality should be compromised by the specificity

of the methodologies of the process engineering tasks, themselves”.

The language structure is based on six modelling elements: three for modelling

the “structural characteristics” of any processing system and three for describing the

“functional characteristics” as follows.

e Generic Unit (GU) : an isolated spatial region coupled with well defined system
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boundary at any level of abstraction.

e Port: special purpose entities through which G'Us transfer information among each

other.

e Stream : the connections between G Us in association with their ports.

e Modeling—Scope : a consistent set of declarative relationships, which apply to all the
components of a model including the variables and parameters of a single GU or a

network consisting of GUs, Ports and Streams.

e Constraint : unsolved relations among quantities such as variables and terms, also
containing the information on the scope of the relationship, its meaning and signii-

icance, and range of its applicability.

e Generic Variable : basic building block for constructing modelling relationships, en-
capsulating the information on physical significance, value, possible range ot values,

units, trends, etc.

Based on the six modelling elements given above and eleven semantic relation-
ships obeying basic axioms of transitivity, monotonicity, commutativity and merging,
process models can be interactively or automatically generated from the process repre-
sentation. This representation is completely modularised using object—oriented formalism
at various levels of abstraction and gives complete documentation of the modelling con-
text (assumptions, simplifications, process engineering task) capturing qualitative, semi-
quantitative and quantitative knowledge. The structure of process models is depicted by
specific digraphs, which are symbolically constructed by algorithmic procedures driven
by the context of the modelling activity.

VEDA (Marquardt et al., 1993; Bogusch and Marquardt, 1995; Marquardt,
1996) is an application specific object—oriented data model especially designed for sup-
porting the object-oriented representation of chemical process systems in a structured
way. It is currently being implemented to be integrated with DIVA (Holl et al., 1988;
Kroner et al., 1990). It is the basic concept of VEDA that chemlcal process systems

. e '
iy WP I
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are described 1n terms of two basic entltles structure and behavzour The structures ot
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chemical processes are env1saged as sets ot defuzces hnked through connectzons which trans-

M

form a driving force determined by the known states of two adjacent devices into a flux.
VEDA supports hierarchical sub-model decomposition in a recursive fashion as devices
and connections entities are structured into hierarchical taxonomy. The elementary device

s -

generalised phase 1s the key concept in the structural description of chemical processes.
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It represents any delimitable — but not necessarily homogeneous — non—-decomposable
material entity in a process. The structural description of a complex process system is
complemented by its behavioural description which characterises the system in terms of

process quantities and model equations consisting of balance equations, constitutive equa-

tions and constraints.

1.2.3 Process Discontinuity

Process systems cannot be considered to proceed in a completely continuous
way. Most continuous processes undergo appreciable discrete changes overlaid on their
mailnly continuous behaviour. These discrete events result from, for example, the digital
process control, plant equipment maintenance, plant shut—-down and start—up. In addition
to process operational discontinuities, other types of discontinuities may arise due to the
intrinsic process mechanisms such as phase appearance/disappearance, reverse flow and
the transition of flow regime between laminar and turbulent, etc. Of course, some process

systems are designed to exhibit discontinuous behaviour, such as batch or semi—continuous

processes.

In order to encompass such discontinuities, mathematical models of process
systems should switch between different structures in terms of equations and variables
whenever discrete events occur. Future simulation packages must support the analysis of
arbitrarily operated processes within a unified framework (Marquardt, 1991).

Considerable efforts have been made in the development of specific—purpose

simulation packages for batch and semi—continuous processes such as BOSS/BATCHES

(Joglekar and Reklatis, 1984), UNIBATCH (Czulek, 1988) and DYNSIM (Gani et al.,
1992; Perregaard et al., 1992).

However a few general-purpose modelling and simulation packages tully sup-
porting the application of process models to combined discrete and continuous processes
involving general discontinuities have emerged 1n academia 1n recent years.

Omola, for example, has been extended to provide facilities for modelling com-
bined discrete and continuous process systems, namely hybrid systems (Andersson, 1992;
Andersson, 1994). In order to deal with hybrid systems, a general mathematical and log-
ical framework to deal with the mechanisms of transitions between discrete states, called
OHM (Omola Hybrid Model) has been developed as an intermediate representation. The
formalism consists of sets of variables, parameters, equations, event conditions, and event

actions. The OHM representation can be automatically translated into more specialised

representation.
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A key focus of gPROMS (Barton, 1992; Barton and Pantelides, 1994) was to sup-

port process modelling of hybrid systems with general discontinuities. These are clas<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>