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Abstract 

Mathematical models of processes are now widely used at all levels, from pro- 

cess synthesis and design, through operations planning, to process control and monitoring. 

With the increasing sophistication of applications and the resulting models, it has become 

clear that the formulation of appropriate consistent models is a major, time-consuming 

and error-prone task. A number of modelling and simulation packages have been devel- 

oped in recent years to aid process modelling. In these systems the basic building blocks 

are the equations representing the physico-chemical relations, however there has been 

little work on aids for generating such equations. 

This thesis is concerned with the development of a system for automatically 

generating lumped-parameter models from a purely physical description of process sys- 

tems, the majority of which routinely experience discontinuous physical behaviour such 

as phase transitions (e. g. presence or absence of phases), flow regime transitions (between 

laminar and turbulent) and discrete changes resulting from the geometry of individual 

process units. 

The approach described in this work is based on the conceptual view of pro- 

cess systems as a set of inter-connected vessels containing interacting phases. A physical 

modelling language supporting the description of process systems in a purely physical 

manner has been designed, with a special emphasis on the hierarchical description of the 

inter-connections between phases or vessels. A methodology for formulating mathemati- 

cal models from the physical description represented in the language has been developed, 

focusing on the mathematical description of discontinuous physico-chemical behaviour 

as mentioned above. The current version of this package generates mathematical mod- 

els in the format of the gPROMS (Barton, 1992) input language. The implementation 

of this methodology (written in C) has led to a prototype of a new model generation 

package. The ability of this package to automatically generate mathematical models is 

demonstrated by several case studies. 
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Chapter 1 

Introduction 

This thesis is concerned with the development of a software tool for automatically 

generating a mathematical model from a purely physical description for a process unit or 

system. 

Models have been recognised as indispensable for describing and predicting the 

behaviour of the real world. Many modelling methodologies have been applied to the ab- 

straction of the real world for a long time. Among them, mathematical models expressed 

in sets of differential, algebraic, integral equations etc., are most commonly used in the 

wide range of science and engineering field. 

Mathematical modelling essentially represents the translation of the real world 

problems into mathematical problems. It is the art of devising a mathematical structure 

that takes into account the essence of a given situation. A real world problem, in all 

its generality, can seldom be translated into a mathematical domain, and even if it can 

be so translated, it may not be possible to solve the mathematical equations. This fact 

quite often necessitates the idealisation or approximation of an original problem to get it 

translated and to obtain its solution. 

In the area of process systems engineering mathematical models are essential in 

tackling a variety of problems such as process synthesis and design, process simulation and 

optimisation, planning and scheduling of process operation, and process control. They 

provide the formal representation for describing the relevant physico-chemical dynamic 

behaviour which is composed of the relationships between mathematical terms. Only 

well formulated mathematical models enable us to successfully perform process systems 

engineering tasks. If an incorrect mathematical model is applied, valid results of process 

engineering work can not be expected. An important aspect of the modelling problem 

is thus the identification of the significant features of the behaviour for the purpose in 
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hand, and the construction of a model which adequately reproduces those features without 
irrelevant complexities (Sargent, 1983). 

Recently the rapid development of computer hardware and software has led 
to the emergence of more powerful computational modelling tools in a wide variety of 
fields. This trend could be seen in the field of process systems engineering in such a way 
that flowsheeting whose application range was limited to simple unit modules has been 

extended to be able to deal with dynamic modelling and simulation for complex process 

systems involving several hundreds of thousands of variables. 
At the same time, as the complexities of process interactions increase due to the 

tighter specification of plant performance, the strengthening of the legislation on envi- 

ronment and safety, and flexible and just-in-time production systems to meet the rapid 

changes of market demands, higher-fidelity process models are required to adequately 

cope with them. Actually in the course of specific process engineering activities, the 

cost of developing the requisite models represents a significant part of the overall budget 

(Perkins and Barton, 1987). 

Those general trends mentioned above have therefore been stimulating the de- 

velopment of a number of dynamic modelling packages, most of which are based on an 

equation-oriented flowsheeting architecture. 
This chapter is composed of four sections. Section 1.1 describes the background 

to this research involving the motivation and the objective. In the following two sections 

the important aspects for process models and an overview on the current state of art of 

computer aids for automatic model generation are illustrated. Finally the thesis outline 

will be introduced. 

1.1 Motivation and Objective 

Considerable effort has been made in the development of modelling facilities 

which allow the user to concentrate on the correct mathematical formulation of the pro- 

cess model, as opposed to the numerical algorithms and coding required to solve it. From 

the earliest days flowsheeting packages provided a means of building whole process models 

from knowledge of the flowsheet and models for the individual units. SpeedUp (Sargent 

and Westerberg, 1964; Perkins and Sargent, 1982; Pantelides, 1988) provides a system 

which separates computation from the models enabling these to be provided essentially as 

a set of equations, together with a simple macro facility for building complex models from 

simpler ones. This has already been commercialised and being widely used in the pro- 
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cess industries. ASCEND (Piela, 1989; Piela et al., 1991) uses object-oriented program- 

ming methodologies to provide a more general facility using combination and inheritance, 

while DESIGN-KIT (Stephanopoulos et al., 1990a), and MODEL. LA (Stephanopoulos et 

al., 1987; Stephanopoulos et al., 1990b) uses object-oriented programming both to build 

models in this way, and to tailor them for different uses. Omola integrated with OmSim 
(Andersson, 1990; Mattsson and Andersson, 1992; Nilsson, 1993; Andersson, 1994) and 

gPROMS (Barton, 1992; Barton and Pantelides, 1994; Oh, 1995; Oh and Pantelides, 

1996) provide similar general facilities to model both the process and the operations. 
It is clear that current powerful modelling environments help modellers to alleviate the 

time-consuming and error-prone task of formulating appropriate consistent mathematical 

models for complex process systems. 
Even so, in the majority of all these packages, the correct formulation of the 

\ýF A 

mathematical model is the responsibility of the user. That is, users are required to 

mathematically formulate process models using the high-level modelling language which 
has its own syntax and semantics, consequently the correct mathematical modelling is 

the responsibility of the user. The formulation of correct, complete and non-redundant 

mathematical models is not always an easy task. The difficulties result from a number 

of situations such as the under-specification of the underlying system or vice versa, the 

formulation of inconsistent equations, and the inconsistent formulation of boundary and 

initial conditions. At this point, there is a crucial requirement for the development of 

more advanced modelling tool to provide the extensive support for model construction 

activities. In all the modelling packages mentioned above, the basic building blocks are 

the equations representing physico-chemical relations, and there has been little work on 

aids for generating such equations. The challenge in this area is to provide a modelling 
facility which allows the user to describe his system purely in terms of the elementary 

physico-chemical processes involved, with the-appropriate mathematical model generated 

automatically by the package (Sargent, 1990). 

There has been little work on exploring the possibility of computer-aided mathe- 

matical model generation for a process system, for example, by defining it in a more purely 

physical and elementary behaviour-oriented fashion. ; Meyssami and sbjornsen describe 

a prototype expert system for modelling from first principles (Meyssami and Asbjornsen, 

1989) while Preisig et. al have developed a computer-aided model generation tool for 

physical-chemical-biological systems using object-oriented model representation (Preisig 

et al., 1990; Preisig, 1995; Preisig, 1996) close to our approach in terms of the basic 

concept for process representation. 
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With the above in mind, it is thought to be of considerable importance to develop 

such an automatic model generation environment. 
The major objective of this research, which is a continuation of earlier work 

(Vazquez-Roman, 1992) resulting in a prototype computer program (written in the object- 

oriented language SMALLTALK), as a vehicle for ideas, is to develop a computer software 

package which generates a mathematical model from a purely physico-chemical descrip- 

tion of process systems, focusing on possible situations likely to arise from discontinuous 

behaviour. 

1.2 Important Aspects of Process Modelling 

This section describes several important aspects of process models and their 

systematic formulation. This section has been organised as follows : §1.2.1 briefly de- 

scribes the multi-faceted character of models with several applications of this nature, 

§1.2.2 explains basic concepts required to represent process models which are essential 

to systematic model-building and in §1.2.3 process discontinuities routinely arising in 

process systems will be discussed. 

1.2.1 Multi-faceted Character of Models 

As stated earlier, the modelling activity represents the abstraction of a real world 

problem by encapsulating the knowledge considered essential to the specific modelling 

purpose. Models do not exist in isolation and though they may at times be considered in 

their own terms, models are never fully understood except in relation to other members of 

the model family to which they belong (Aris, 1978). Simple models are required early in a 

process design but more complex ones are needed as the design process proceeds. We thus 

often need very different kinds of models at different modelling stage, and an important 

part of the modelling process is the tailoring of the model for the particular purpose in 

hand (Sargent, 1990). There are different models in terms of their levels of detail for 

the same process system depending on the modelling purpose at each modelling stages, 

resulting in an hierarchy structured into the model family. This is termed multi facet of 

process models and the facility for supporting it is provided in the majority of recently 

developed modelling languages. 

SpeedUp (Sargent and Westerberg, 1964; Perkins and Sargent, 1982; Pantelides. 

1988) provides a fixed number of modelling levels comprising hierarchy for supporting top- 

down or bottom-up modelling approach. Alternatively, Omola (Mattsson and Andersson, 
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1992; Nilsson, 1993), ASCEND (Piela, 1989) and gPROMS (Barton and Pantelides, 1994) 

have adopted the concept of hierarchical sub-model decomposition (Elmqvist, 1978) which 

enables to describe the formal definition of models in a recursive manner, thus permitting 

an effectively unlimited number of hierarchical levels (Pantelides and Barton, 1992). In 

MODEL. LA (Stephanopoulos et al., 1990b) multi-faceted modelling has been incorpo- 

rated as a key feature, and a provision for supporting multi-level modelling of the same 

process, to automate a hierarchical sub-model description. 

1.2.2 Model Structuring Concept 

The objective of all modelling languages is to eliminate the modelling bottleneck 

of engineering applications by providing a computer-aided environment which can sup- 

port: (a) expeditious construction of models by the human user, and/or (b) automatic 

generation of models by another program (Stephanopoulos and Han, 1996). Recently 

developed modelling languages, the majority of which have adopted the object-oriented 

concept, in common provide the user with a high level declarative representation coupled 

with highly structured formalism in order to support the construction of consistent math- 

ematical models for complex process systems. To achieve these objectives the majority 

of the modelling packages use a software architecture whereby the model description is 

completely decoupled from the mathematical solution method. This feature has resulted 

in a shift away from purely dynamic simulation packages towards more general-purpose 

modelling environments, in which a common process model is used in a number of different 

modes such as steady-state simulation and design, dynamic simulation, steady-state and 

dynamic optimisation, data reconciliation etc. (Pantelides and Barton, 1992). The basic 

conceptual point of view of process systems in order to support facilities for representing 

the process models in a more structural way will be briefly reviewed on recently emerged 

modelling languages in the following text. 

The conceptual essence of Omola (Andersson, 1990; Mattsson and Andersson, 

1992; Andersson, 1994) is based on object-oriented programming ideas. The key con- 

cept in Omola is the class, a general data aggregation which is the basis for representing 

different modelling concepts. Omola is structured into two separate layers: the data repre- 

sentation layer and the model representation layer. The former represents the description 

of the internal behaviour within a model. It defines a set of syntactic, semantic, and 

pragmatic rules for representing general data such as model variables and equations as 

well as the class. The model representation layer represents the interfaces of models for 

communicating with its environment. It consists of a set of classes previously defined 
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in the data representation layer and structural components such as models, parameters. 
terminals and connections. The connections represent topological linkages of involved 

models through the terminals which may transfer a set of information about the media. 
The parameters normally represent some kind of time-invariant design variables. 

ASCEND (Piela, 1989; Piela et al., 1991) is a domain-independent object- 

oriented computer environment for analysing and modelling complex process systems 

in terms of large sets of simultaneous nonlinear algebraic equations. The basic concep- 

tual elements of the ASCEND language are model, elementary and atom types. The 

models are structured types built hierarchically from instances of other models, instances 

of atoms, and relationships between instances. The elementary types are primitive data 

types such as real, string, unit, etc. The atoms are primitive structured types for represent- 

ing physical quantities. The atoms and models are organised into inheritance hierarchies 

comprising networks of connected parts which are themselves instances of models. 

gPROMS (Barton, 1992; Barton and Pantelides, 1994; Oh, 1995; Oh and Pan- 

telides, 1996) is a general-purpose software package designed for modelling and simula- 

tion of combined discrete and continuous processes, supporting combined lumped and 

distributed parameter mathematical models. The conceptual framework of the gPROMS 

language is based on three distinct categories of entities, models, tasks and processes. 

Model entities encapsulate the description of the physico-chemical behaviour, while task 

entities encapsulate the description of the external control actions or disturbances im- 

posed on the system. A process entity is formed by the application of tasks to instances 

of model entities in order to define a complete simulation of the process system. gPROMS 

is discussed in more detail later since it is closely related to our work. 

MODEL. LA (Stephanopoulos et al., 1990a; Stephanopoulos et al., 1990b) is a 

high level and completely declarative language especially constructed for the interactive 

and automatic definition of models of process systems, Based on the following fundamental 

requirement of modelling language: 

"A modeling language in process engineering should be fully declarative 

and in no way its generality should be compromised by the specificity 

of the methodologies of the process engineering tasks, themselves". 

The language structure is based on six modelling elements: three for modelling 

the "structural characteristics" of any processing system and three for describing the 

"functional characteristics" as follows. 

" Generic Unit (G U) : an isolated spatial region coupled with well defined system 
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boundary at any level of abstraction. 

" Port : special purpose entities through which G Us transfer information among each 

other. 

" Stream : the connections between GUs in association with their ports. 

" Modeling-Scope :a consistent set of declarative relationships, which apply to all the 

components of a model including the variables and parameters of a single GU or a 

network consisting of GUs, Ports and Streams. 

" Constraint : unsolved relations among quantities such as variables and terms, also 

containing the information on the scope of the relationship, its meaning and signif- 

icance, and range of its applicability. 

" Generic Variable : basic building block for constructing modelling relationships, en- 

capsulating the information on physical significance, value, possible range of values, 

units, trends, etc. 

Based on the six modelling elements given above and eleven semantic relation- 

ships obeying basic axioms of transitivity, monotonicity, commutativity and merging, 

process models can be interactively or automatically generated from the process repre- 

sentation. This representation is completely modularised using object-oriented formalism 

at various levels of abstraction and gives complete documentation of the modelling con- 

text (assumptions, simplifications, process engineering task) capturing qualitative, semi- 

quantitative and quantitative knowledge. The structure of process models is depicted by 

specific digraphs, which are symbolically constructed by algorithmic procedures driven 

by the context of the modelling activity. 

VEDA (Marquardt et al., 1993; Bogusch and Marquardt, 1995; Marquardt, 

1996) is an application specific object-oriented data model especially designed for sup- 

porting the object-oriented representation of chemical process systems in a structured 

way. It is currently being implemented to be integrated with DIVA (Holl et al., 1988; 

Kroner et al., 1990). It is the basic concept of VEDA that chemical process systems 

are described in terms of two basic entities; structure and behaviour. The structures of 

chemical processes are envisaged as sets of devices linked through connections which trans- 

form a driving force determined by the known states of two adjacent devices into a flux. 

VEDA supports hierarchical sub-model decomposition in a recursive fashion as devices 

and connections entities are structured into hierarchical taxonomy. The elementary device 

generalised phase is the key concept in the structural description of chemical processes. 
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It represents any delimitable - but not necessarily homogeneous - non-decomposable 

material entity in a process. The structural description of a complex process system is 

complemented by its behavioural description which characterises the system in terms of 

process quantities and model equations consisting of balance equations, constitutive equa- 

tions and constraints. 

1.2.3 Process Discontinuity 

Process systems cannot be considered to proceed in a completely continuous 

way. Most continuous processes undergo appreciable discrete changes overlaid on their 

mainly continuous behaviour. These discrete events result from, for example, the digital 

process control, plant equipment maintenance, plant shut-down and start-up. In addition 

to process operational discontinuities, other types of discontinuities may arise due to the 

intrinsic process mechanisms such as phase appearance/disappearance, reverse flow and 

the transition of flow regime between laminar and turbulent, etc. Of course, some process 

systems are designed to exhibit discontinuous behaviour, such as batch or semi-continuous 

processes. 

In order to encompass such discontinuities, mathematical models of process 

systems should switch between different structures in terms of equations and variables 

whenever discrete events occur. Future simulation packages must support the analysis of 

arbitrarily operated processes within a unified framework (Marquardt, 1991). 

Considerable efforts have been made in the development of specific-purpose 

simulation packages for batch and semi-continuous processes such as BOSS/BATCHES 

(Joglekar and Reklatis, 1984), UNIBATCH (Czulek, 1988) and DYNSIM (Gani et al., 

1992; Perregaard et al., 1992). 

However a few general-purpose modelling and simulation packages fully sup- 

porting the application of process models to combined discrete and continuous processes 

involving general discontinuities have emerged in academia in recent years. 
Omola, for example, has been extended to provide facilities for modelling com- 

bined discrete and continuous process systems, namely hybrid systems (Andersson, 1992; 

Andersson, 1994). In order to deal with hybrid systems, a general mathematical and log- 

ical framework to deal with the mechanisms of transitions between discrete states, called 

OHM (Omola Hybrid Model) has been developed as an intermediate representation. The 

formalism consists of sets of variables, parameters, equations, event conditions, and event 

actions. The OHM representation can be automatically translated into more specialised 

representation. 
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A key focus of gPROMS (Barton, 1992; Barton and Pantelides, 1994) was to sup- 

port process modelling of hybrid systems with general discontinuities. These are classified 
into two primitive categories; physico-chemical discontinuities and external actions. The 

former represents those inherently embedded in physics of the process including thermo- 

dynamic (e. g. appearance and absence of phase) and mechanical (e. g. flow regime change 
between laminar and turbulent) transitions and those resulting from the geometry of an 

individual process unit (e. g. the switch of the phase flowing through outlet pipe depend- 

ing on its level and the location of the pipe). The description of intrinsic discontinuities 

is incorporated into the model entity. The external actions represent those imposed on a 

process by its environment such as disturbances or control actions, and are incorporated in 

the task entity. Consequently, instead of decomposing a process model into a continuous 

subsystem and a discrete subsystem, the description of a process model is decomposed 

into the underlying combined discrete/ continuous physical behaviour of the plant and the 

external actions. This has the consequence that all the knowledge concerning the physical 

behaviour of a particular system is not only encapsulated in a single model entity but is 

also completely decoupled from the external actions that are applied during a particular 

operation. In order to provide a sufficiently general representation of the discontinuous 

behaviour, physico-chemical discontinuities are classified into three categories according 

to the mechanisms that result in transitions between the discrete states, namely reversible, 

irreversible and asymmetric and reversible discontinuities. A general formalism to repre- 

sent these mechanisms is provided. gPROMS deserves to receive attention on supporting 

the modelling and simulation of arbitrarily operated processing systems within a unified 

framework. 

1.3 Recent Computer-Aided Model Generation Techniques 

As illustrated, it is clear that the majority of recent modelling packages pro- 

vide advanced modelling facilities such as highly structured and declarative represen- 

tation of models, hierarchical sub-model decomposition for supporting the recursively 

modularised representation, the reusability and inheritance of models, documentation for 

specifying assumptions and the scope of models, user-friendly interfaces with modelling 

environments and the combined lumped/distributed parameter modelling of combined dis- 

crete/continuous processes within a single framework, where the physico-chemical process 

behaviour is coupled with complex sequences of control actions. 

It should be noted however that the current state-of-the-art of modelling pack- 
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ages is still in need to explore practically applicable computer aids for generating ap- 

propriate mathematical equations describing physical process behaviour. The key reason 
for this necessity is that the basic building blocks of most existing packages are a set 

of equations representing the physico-chemical conservation principles and closure equa- 

tions. The mathematical models built by the user using these packages are often badly 

posed, thus causing structural, functional or numerical singularity during the simulation. 
We note that the fundamental research on the automatic generation of correct, complete 

and non-redundant mathematical models by a computer facility is of considerable impor- 

tance in the area of the development of leading edge modelling packages. Little work has 

been carried out in this direction. Recent research progress in the field of computer-aided 

model generation are briefly discussed although not all are related directly. 

Several research projects on automatic model generation from natural language 

have recently been undertaken in the field of system simulation. Austin and Khoshnevis 

(Austin and Khoshnevis, 1989) have developed an intelligent simulation environment for 

automatically generating models of production-distribution systems from a description 

written in natural language. Perhaps more interestingly, Beck and Fishwick (Beck and 

Fishwick, 1989) have explored an approach to merge simulation and natural language. 

This is achieved using a conceptual framework for representing mathematical equations, 

the syntactical and semantical structure of sentences. Sentences are translated and trans- 

formed into the knowledge representation language, CANDIDE. This step results in a 

collection of CANDIDE objects whose structure represents the meaning of sentences. 

Mathematical equations are then generated from the information encapsulated in the 

structural description by using a language generation facility for differential equations. 

These procedures are undertaken in a system environment called NATSIM which accepts 

natural language descriptions of a model, generates equations, accepts questions about the 

model and then solves the equations using simulation or analytical techniques to answer 

these questions. 

PROFIT (Telnes, 1992) is a knowledge-based modelling tool for generating 

mathematical models from a menu-driven textual description of process systems based 

on first principles. The basic building blocks for constructing mathematical equations 
mow. 

are a set of simple physical terms such as volume, surfaces, phases, chemical reactions 

and transport phenomena and forces. The important classes defined in the system are 

OMPR (Object Model for Process Representation) and OMMK (Object Model for Mod- 

eling Knowledge). The former is employed for describing process systems, the latter for 

constructing the structural knowledge base of the mathematical models. The procedure 
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of mapping the process description stored in OMPR into mathematical models structured 

in the form of OMMK is driven by an inference engine where each term comprising the 

process description is associated with a physical phenomenon by an appropriate rule. The 

internal representation of the mathematical models is converted into a readable format 

by a translator. The current version of the translator produces a LATEX (Lamport, 1986) 

format. 

The knowledge base in the current system consists of the following three parts: 

"A dictionary containing features, global constants, approximating functions and 

other objects representing modelling knowledge in various forms. 

9A set of equations used to construct models. 

" Several sets of rules designed for different purposes such as phase interaction iden- 

tification and selection of conservation equations. 

In addition to the modelling aids above, PROFIT provides useful modelling 

facilities such as documentation of all relevant assumptions relating to the mathematical 

models under consideration and the modification of mathematical models according to 

changes in the process description. It should be noted that PROFIT supports a provision 

allowing the detailed description of the process equipment geometry. 
A computer-aided system for automatically generating problem specific process 

models from the physical description for process systems has been developed, which is 

intended to be integrated within the Integrated Computer Aided System (ICAS) (Jensen 

and Gani, 1996). The model generation methodology is based on two basic concepts: 

control shells representing a region of space delimited by its boundaries and a reference 

model containing all the possible terms arising in a chemical process model. The former 

is defined in such a way that within the boundaries the partial gradients (with respect 

to temperature, pressure and fugacity) are negligible, or can be incorporated in an inter- 

phase or overall flux model. The physical description of the underlying process system is 

undertaken in the control shell involving a geometric description, balance and boundary 

specifications and equilibrium specifications. A specific mathematical model is generated 

by applying the model generation algorithm procedures which simplify a reference model 

from the information given in the physical description of the control shells. One feature of 

this approach is the ability to generate distributed parameter models, although the use- 

fulness and practicality of using a distributed parameter control shell approach is open 

to question. 
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MODELLER (Preisig et al., 1990; Preisig, 1995; Preisig, 1996) is a object- 

oriented computer-aided modelling tool for generating mathematical models from a phys- 
ical description of physical-chemical-biological process systems. Process systems are 

viewed as being composed of a communicating network of simple thermodynamic systems. 
Based on this general point of view two principal conceptual elements are identified to 

support a physical description at any level of details in a hierarchically structured fashion, 

namely: systems and connections. The former represents any spatial capacities containing 

mass and is defined as consisting of a single phase or a pseudo-phase (an average of sev- 

eral phases such that it appears as a single phase). The latter represents communication 

paths between parts of the overall system and is employed for describing the transfer of 

extensive quantities through boundaries assuming a pseudo-steady state for the physical 

system associated with actual transfer. The transfer law is described as a function of 

the state variables of the two connected systems with its directionality. Connections also 
incorporate all effects associated with system surfaces (e. g. change of phase across the 

boundary). The topological structures of process systems are described in a graphical 

and textual manner and allows hierarchical decomposition of complex process systems 

into physical subsystems. In order to deal with the distribution of species in the physical 

topology of a given process, a set of species are specified including a set of species partic- 

ipating in chemical or biological reactions and a set of species representing permeability 

for allowing the passage through a connection. The final step in the physical descrip- 

tion procedure is to incorporate mechanistic details such as transfer laws, kinetic laws for 

chemical or biological reactions, physical property relations, geometrical properties, etc. 

It is intended that all the information required to incorporate these mechanistic details 

will be supplied from a knowledge base, although this has not yet been implemented 

in the current version of MODELLER. Mathematical models are generated in a textual 

output file containing both the list for the hierarchical structure of physical systems and 

a set of equations involving the total mass balance, the species balances and the energy 

balances. The development of information processing units to deal with control systems 

has been recently undertaken. It could be noted that MODELLER fully supports physical 

description in an easy-to-use graphical interface with the hierarchical decomposition of 

the topology of physical systems in a recursive way. 
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1.4 Thesis Outline 

This thesis is composed of 7 chapters. Chapter 1 describes the background to 

this research including the motivation and objectives, several significant aspects of process 

models and the current state-of-the-art in computer aids for generating mathematical 

models. Chapter 2 introduces the basic concepts for the representation of process systems. 
In chapter 3 the formal definition of the language for representing process systems in a 

purely physical fashion in terms of its syntactical structure and semantics is presented. 
Chapter 4 is mainly concerned with the development of the algorithms for formulating the 

mathematical model of a given process system from the physical description represented 
in the language defined in chapter 3. This includes the basic model building strategy, a 

generic mathematical formalism to deal with combined discrete/continuous behaviour and 

also gives the notation used in the mathematical models generated. Chapter 5 describes 

the software architecture and the details of the internal data structure of the current 

package. In chapter 6 The ability of the prototype of the package to automatically generate 

mathematical models is tested through several simulations to which the mathematical 

models generated by the package are applied. This thesis concludes in chapter 7 with 

some suggestions for future works. 
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Chapter 2 

Process Representation 

In the previous chapter we discussed the motivation and the ultimate goal of 

this work, which is the development of the package for automatically generating lumped- 

parameter models from a purely physical description of process systems, focusing on 

the incorporation of intrinsically physical discontinuous behaviour embedded in a given 

process system into the mathematical model. In order to achieve this objective first we 

need a conceptual framework for structuring process systems into basic elements. This 

chapter describes the basic concept for representing a process system in a purely physical 

fashion. 

We start with the concept for process representation developed in earlier work 
(Vazquez-Roman, 1992) followed by the argument with possible situations arising in a 

given process system, namely physical discontinuities, then finally construct the concept 

for process representation, which is general enough to deal with such discontinuities, 

identifying basic conceptual elements and their meanings in physical representation of 

process systems. It should be noted that the essence of the concept is still based on the 

previous one. 

Recently the formal description of the concept for process representation has 

been made as follows (Perkins et al., 1996): 

"A basic premise is that all material undergoing processing is instanta- 

neously in a stable thermodynamic state, which implies that this state 

is describable in terms of a finite set of state variables, for instance, 

two independent variable properties plus the masses of each chemical 

species (Feinberg, 1979). It further implies that all material is present 

in well defined thermodynamic phases, and hence that any process can 

ultimately be defined as a collection of interacting phases". 
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These interactions may involve transfers of material and/or energy between pairs 

of phases, which are described in terms of the state-variables of the two phases through 

well defined physico-chemical transfer laws. 

Other interactions arise from the fact that the phases are contained in vessels. 
We assume uniform pressure throughout each phase and across any free surfaces between 

phases. We note that a vessel is considered here simply as a containing surface; the mass 

of the containing walls and other relevant parts of actual vessels can, if desired, be taken 

into account by defining these as appropriate phases. 
Using this concept, a process is a set of vessels linked through connections. These 

are normally pipes through which material flows, but we extend the concept to cover trans- 

fer through permeable membranes or transmission of energy through pistons in pumps, 

compressors or engines. Again a connection is an idealised topological concept, merely 

defining a link for transfer of material and/or energy, and itself containing no material 

or energy holdup. These transfers are also described by physico-chemical transfer laws. 

By use of an appropriate law it is thus possible to include idealised valves, pumps, com- 

pressors etc., which merely provide flow-resistance, or cause pressure-changes, without 

involving material holdup. Again if desired these additional elements can be modelled 

more realistically by defining appropriate "vessels" and "phases" if desired. 

Of course the plant does not exist in isolation, but receives feeds from elsewhere, 

delivers products and also uses or generates utilities such as steam or cooling agents. There 

may also be heat losses to the atmosphere. These interactions with the environment are 

described in terms of exchanges with reservoirs of material or energy in appropriate states, 

which are assumed to be of infinite extent so that their states are not affected by transfers 

to or from them. 

The states of the phases are affected not only by interactions with other phases 

but also by chemical reactions occurring within them. Thus we need to define the chemical 

components present, and the relevant stoichiometry and kinetic laws. 

In figure 2.1 we give an example of the use of these concepts to describe part 

of a simple process, consisting of three vessels: a flash-drum, an absorber and a reactor, 

with feed, solvent, and cooling water provided from the "environment", a product to the 

environment and other streams for further processing. 

Thus far several key concepts for the representation of a process system have 

been described, however these are insufficient to deal with potential situations routinely 

arising in a given process system. For example, phases may appear and disappear even 

in the presence of only finite-rate transfers, as illustrated by the flash-drum in figure 2.2. 
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Figure 2.1: Conceptual diagram of simple process 



CHAPTER 2. PROCESS REPRESENTATION 26 

Case(a) is the normal situation in which a vapour-liquid feed is separated into vapour and 

liquid streams. Case(b) shows that a third "bubble phase" will appear if the liquid level 

is above the feed point, and with finite mass transfer rate its composition will differ from 

the vapour phase. Case(c) shows that this may still occur if vapour bubbles in the feed 

are entrained in the liquid, while case(d) illustrates the case when feed or flow conditions 

cause the liquid to disappear. In this case the bottom connection may include a float- 

valve which only allows liquid to pass, or vapour may flow through the connection. Similar 

complications arise if the drum fills with liquid. Finally, a pressure-rise downstream may 

cause a reverse flow (in the absence of a non-return valve) and, if this contains vapour, 

there will again be a bubble-phase, as in case(e). 
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Figure 2.2: Multiple possibilities in flash drum 
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The tool for mathematical models generation should deal with all the possible 

situations likely to arise in a given process system, providing a computer environment 

which enables the user to describe these situations in a compact and easy manner. We 

therefore need to provide a language for the user to describe the relevant assumptions 

and provisions and hence introduce two more concepts. 
First the phases in a vessel are assumed to be segregated into distinct layers in 

an order determined by their relative densities, unless otherwise specified. For a lumped- 

parameter system, the only other option is a uniform mixture of several phases, for exam- 

ple a suspension of a solid in a liquid, or a dispersion of one fluid in another in the form of 

bubbles, droplets, or an emulsion. We describe such a uniform mixture as an aggregation 

of phases, and again its relative position in the vessel is determined by its mean density. 

Normally connections to vessels are simply pipes, and what flows out through 

the connection depends on what phase or aggregation of phases is covering the outlet. We 

therefore define a port as the position of a connection to a vessel, which can be identified 

with respect to the geometry of the vessel. We also allow flow through a port to be 

restricted to one direction (implying, for example, the existence of a non-return valve). 

As already noted, what flows through a connection depends on the phases in contact with 

the upstream port, but to provide greater flexibility in process description, a phase or 

aggregation of phases associated with the upstream can be independently specified as an 

attribute of the entry port. 

2.1 Summary 

The process representation in terms of the concepts given above is sufficiently 

general to describe the arbitrary complex nature of process systems. However it should 

be noted that the arbitrary complexity above is within the scope of lumped-parameter 

system since the generated model is limited to a lumped parameter system. As illustrated 

earlier, these situations include phase appearance and disappearance, those resulting from 

the geometry of vessels, the change of the direction for reversible flow and a vast variety 

of other factors, for example, the change of flow regime in a pipe between laminar and 

turbulent. The conceptual elements identified are as follows: 

" vessels 

" phases 

" transfer laws 
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" aggregation 

" port 

" connections 

9 reservoirs 

Over the following chapters we will illustrate how these arbitrary complex situ- 

ations are incorporated into mathematical models, focusing on hierarchical descriptions 

of the inter-connections between phases or vessels. In the next chapter the language re- 

quired to represent process systems in purely physical fashion will be proposed in detail, 

based on the newly refined process representation concept. 
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Chapter 3 

Physical Modelling Language 

In the preceding chapter, it was a basic point of view for process representation 
that chemical process systems are envisaged as a set of inter-connected vessels in which 

phases interact. Then basic process structuring elements were identified: (phase, vessel 

and connection). Also it was argued through a simple flash drum example that process 

systems routinely experience intrinsic discontinuities which arise typically from discon- 

tinuous physical behaviour such as phase transitions (e. g. phase appearance or absence), 
flow regime transitions (e. g. between laminar and turbulent), discrete changes from ge- 

ometry of individual process units and other factors. In order to embody the basic process 

representation concept, a formal provision which enables users to describe process systems 

under investigation in a purely physical fashion is needed. A textual description in an 

elegantly designed language, which is completely oriented toward physical behaviour, has 

been chosen as the formal provision. 

This chapter is concerned with the introduction to the conceptual design of a 
language in terms of its syntax and semantics, in order to enable users to describe process 

systems in question in a purely physical fashion with the relevant assumptions and pro- 

visions. The proposed language therefore must not only possess syntactic structures and 

semantics to keep description consistencies but also provide a purely physical behaviour- 

oriented formalism. Furthermore, it must contain syntax and semantics by which process 

discontinuities can be identified in order for generated mathematical models to encompass 

physical discontinuities as noted above. In realising the basic concept with this language, 

an attempt to let conceptual elements correspond to language syntax structures as well 

as semantics has been made. As a consequence, the language structure has three basic 

primitive physical process entities: vessel, reservoir and connection. 

Drawing on these ideas, the elements of the proposed language and its structure 
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that enable the detailed description of three primitive process entities are introduced and 

several physical description examples written in the proposed language are presented, 

which will be utilised as input files to simulations. 

3.1 Vessel Entity 

This section is concerned with the development of language structures for the 

declaration of one of the three primitive physical process entities - vessel entity. 
A vessel entity is defined as the surface enclosing one or more phases, which 

must fill the volume of a vessel; the mass of the containing walls and other relevant parts 

of actual vessels can if desired be taken into account by defining these as requisite phases. 

For lumped parameter systems, uniform pressure throughout each phase and across any 

free surfaces between phases can be assumed. 

A vessel entity captures all the knowledge regarding the physical system of a ves- 

sel, including all possible phases present, their aggregation status, their physico-chemical 

interactions, and the things related to the vessel geometries. As a consequence, vessel 

entity forms a complex data structure that encapsulates a declaration of the following 

information regarding its structures and the physico-chemical behaviour likely to arise 

within the vessel: 

"A set of all possible existing phases within the vessel. 

"A set of possible uniform mixtures (aggregations) of several phases. 

"A set of phase interactions between pairs of phases, which are defined by physico- 

chemical transfer laws. 

"A set of terminals (ports) that represent the vessel's interface with its environment. 

The terminals will subsequently be utilised in the construction of a topological 

connection between vessels. 

"A set of the vessel's geometries including its shape, dimension, orientation, and the 

terminal (port) positions. 

Each item of information in the list above is called an attribute of the vessel 

entity. The identifier of an attribute must be unique, by which the attribute may be 

referenced in the vessel entity. The set of attributes encapsulate all the information 

about the physical representation of the vessel entity. 
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The declaration of a vessel entity commences with the keyword VESSEL and 
a colon followed by an identifier by which it may be referenced globally. The formalism 

of the declaration of a vessel entity is shown below. 

Formalism of the declaration of VESSEL entity 

VESSEL : <name> 1 

It is possible for users to declare more than one identifier in one vessel entity. 
Each identifier is distinguished by a comma. An illustrative example of multiple decla- 

rations of vessel identifiers is a series of CSTR (Continuous Stirred Tank Reactors), the 

formal description of which is shown in figure 3.1. 

VESSEL : CSTR1, CSTR2, CSTR3, CSTR4, CSTR5 

Figure 3.1: Example the declaration of VESSEL entity 

The remainder of the declaration of a vessel entity is decomposed into a set 

of sections so that all the attributes belonging to a particular set of the declaration are 

collected in the corresponding section, which makes it easy to document the physical 

system under question. The details of how to declare each category of attributes will now 
be introduced. 

3.1.1 Phase attributes 

Phase attributes represent thermodynamic phases the state of which is describ- 

able in terms of a finite set of state variables, which implies that all material is present 

in well defined thermodynamic phases, as discussed in the previous chapter. 
A phase instance is defined by two attributes; its name and type. A phase must 

be named uniquely within a vessel in the approach presented here. However, the name 

of identical phase instances in different vessels need not be unique and hence users are 

completely free to name phases arbitrarily. It is believed that this allows greater flexibility 

to support the physical model development through hierarchical sub-model decomposition 

(Barton, 1992). 

'Language key-words are written in bold or italics and user-defined names are enclosed with angle 
brackets 
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In order to deal with inter-vessel connections, the phase attribute information is 

required to associate the phases in each vessel with those in the inlet and outlet streams. 
This association cannot be made by the phase name, since the implementation presented 
here allows the user to define different phase names in each vessel for a particular phase 

flowing between two or more connected vessels (through ports), as mentioned above. 
Therefore, the association must be made by phase type. 

Conceptually, the phase type could be defined in analogy with those that exist in 

reality by its fundamental states, namely vapour, liquid and solid. However, this approach 

is not sufficient to give an unambiguous phase association as illustrated by the following 

example. Consider a vessel containing two immiscible liquids, A and B. The vessel has 

an inlet flow of one of the two liquids (say A) from an upstream vessel, but where it was 

named C by the user (see figure 3.2). 

Figure 3.2: Vessel containing two immiscible liquids 

Using the concept of only three phase types (vapour, liquid and solid) it is not 

possible to associate phase C with phase A since the phase types of A, B and C are all 

liquid. Additional information would be required to infer the correct phase association 

based on this conceptual view of the phase type. 

Instead, the phase association is made by extending the concept of phase type to 

allow the user to declare more detailed instances than merely liquid or solid. In this way a 

particular phase type (the state of which is liquid or solid) may be defined uniquely across 

vessels, for example as liquidl, liquid2, solidi, solid2, etc so that the information about 

the state of the phase can be encapsulated in the declaration of the phase type. This 

allows the inter-vessel phase connections to be determined unambiguously. Using this 
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extended concept phase A and C in the above example would be defined with the same 
phase type (say liquidl) and this would be different from that of phase B (say liquid2). 

It is the prerequisite for the use of this package that a user has enough knowledge 

of the physical process system to be able to describe the system. This requirement for the 

user includes the ability to declare all possible phases in vessels. For example, consider 
the flash vessel with two outlets and one inlet through which a pressurised gas flows from 

a container into the vessel. In the flash vessel, bubbles in the liquid must be created if 

the current liquid level is higher than the inlet point. Hence the possible phases in the 
flash vessel are separate vapour and bubbles in liquid. It is a user's responsibility in this 

example to declare the three phases in the flash vessel. If the user declares merely the 

separate vapour and the liquid containing no bubbles, the package will guide the user to 

declare the bubbles dispersed uniformly in the liquid before generating the appropriate 

mathematical model. 

In order to deal with chemical reactions, we need to provide the language to 

enable the user to specify a set of possible chemical reactions which could occur in each 

phase in each vessel, similar to specifying a transfer law for interactions between phases 
(which will be demonstrated in §3.1.3). Thus again we can envisage a library of chemical 

reactions, which contains the stoichiometry and kinetics for each reaction. This could 

easily be added to the Phase attributes. However, the provision of the language for 

chemical reactions has not yet been implemented in the present package. Of course, 

absence of declared reactions implies no reactions. 
In addition, we need a provision in the language for what compounds are present 

in the system. Since matter is present only in phases, this again implies a statement in 

the Phase section, and again one could require the user to give a list of compounds which 

could be present in each phase in each vessel. However this is clumsy, instead we note 

that it suffices to provide a list of compounds present in each feed reservoir; then the 

package can deduce from the flow type in connections (see §3.3), declared reactions and 

transfer laws what compounds could be present in all phases and all vessels. 

The Phase section is employed for the declaration of all the possible phase 

attributes of a vessel entity. It must contain all the possible existing phase attributes. 

Phase attributes must be declared as instances of a phase type. The formalism of the 

phase section is presented below and an example phase section is shown in figure 3.3. 

Formalism of Phase section 

Phase : <name> : <type> : <a list of reactions> 
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Again it should be noted that the provision of the language for chemical reactions 
is not available in the present package. It is recommended that this language provision 
be considered in association with the specification of the identity of the compounds in a 
feed reservoir (see §3.2.1). 

Phase : B, V: vapour 

L1 : liquidl 

L2 : liquid2 

L3 : liquid3 

L4 : liquid4 

Si : solidi 

S2 : solid2 

Figure 3.3: Example Phase section 

3.1.2 Aggregation attributes 

As introduced in chapter 2, the phases in a vessel are assumed to be segregated 
into distinct layers, in an order by their densities. For lumped systems, the other option 
is a uniform mixture of several phases, for example a dispersion of one fluid in another 
form of bubbles, droplets, or an emulsion. Such a uniform mixture is defined as an 

aggregation of phases enclosed in square brackets, and again its relative position in the 

vessel is determined by its mean density. 

Aggregation attributes are used to describe a set of aggregations of phases listed 

in an increasing order of relative density. Of course, it is unnecessary to declare an 

aggregation attribute if a user assumed that there was only one single phase in a vessel. 
As will be discussed in the port attributes section, in order to provide greater 

flexibility in physical description an aggregation attribute can be independently specified 

as an attribute of a port for an inlet stream associated with the aggregation in a vessel. 
An Aggregation section is employed to declare aggregation attributes and uses 

the phase instances declared already in the phase section. The formalism of the aggrega- 

tion section is presented below. An example of an aggregation section is shown in figure 

3.4. Assume that figure 3.3 is the description of the phase attributes for these aggregation 

attributes. 
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Formalism of Aggregation section 

Aggregation : <a list of aggregations of phases> 

Aggregation : V, [B, L1], [L2, L3], [S1, L4], S2 

Figure 3.4: Example Aggregation section 

3.1.3 Transfer Law attributes 

Transfer laws represent the interactions of phases within a vessel. These interac- 

tions may involve transfers of material and/or energy between pairs of phases, which are 
described in terms of the state variables of the two phases through well defined physico- 

chemical transfer laws. A transfer law attribute is composed of a pair of relevant phases 

and the corresponding transfer law which must be already installed in a library. 

Users are responsible for the requisite specification of transfer laws. Once a 
transfer law is specified by a user, the appropriate set of equations corresponding to the 

transfer law are invoked from a library where a set of equations for each transfer law have 

already been installed. Some transfer laws may include a subset of physical discontinuity 

equations depending on the nature of the transfer between the pair of phases. As will be 

described in the connection entity section, transfer law attributes will also be used in the 

transfer law declaration for transfers between vessels through their ports. 

The Transfer Law section is employed for the declaration of transfer law at- 

tributes. The specification of a transfer law attribute is optional. If no transfer law is 

specified between a pair of phases, the phases do not interact. The first phase of a pair 

of phases must be declared as a source of a transfer if the transfer was irreversible. The 

formalism of the transfer law section is as follows. 

Formalism of Transfer Law section 

Transfer Law : <phase name> , <phase name> : transfer law 

An example of a transfer law section is shown in figure 3.5, which represents a set 

of phase interactions in the flash drum discussed in chapter 2. This transfer law section 

contains two phase interactions: the physical thermodynamic equilibrium between the 
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liquid (L) and bubbles (B) dispersed in it, and the bubbles rising to the separate vapour 
(V) where the rising rate is determined by a BubbleRise transfer law. Note that there is 

no direct interaction between L and V. 

Transfer Law : B, L: PhaseEquilibrium 

B, V: BubbleRise 

Figure 3.5: Example Transfer Law section 

3.1.4 Port attributes 

Thus far there have been introductions of language syntax and semantics of three 

sections such as Phase, Aggregation and Transfer Law section, all of which have 

been centred around the intra-vessel physical description. This section is concerned with 

a vessel's interface with its environment, by which it is useful to identify and elaborate 

physical discontinuities. These intrinsic discontinuities may include phase transitions 

due to their thermodynamic states as well as transient behaviour within the vessel, and 

physical discontinuities resulting from the vessel's geometry. 

As introduced in chapter 2, normally connections to vessels are simply pipes, 

and what flows out through the connection depends on what phase or aggregation of 

phases is covering the outlet. A port therefore is defined as the position of a connection to 

a vessel, which can be identified with respect to the geometry of the vessel. We also allow 

flow through a port to be restricted to one direction (implying for example the existence 

of a non-return valve), which is termed irreversible. In addition, material can flow into or 

out of a vessel through a port, depending on a flow driving potential (for example pipe 

flow driven by pressure difference between vessels), so called reversible. 

We have the convention that what flows out of a port is determined by the layer 

covering the port, as mentioned above, though we can impose directionality (assuming 

a non-return valve) and could provide for selectivity (e. g.. via a filter or membrane), 

allowing passage of only specified phases or aggregations. For the latter, the language 

could then require identity between port specifications at each end of a connection, though 

it would be better for the package to deduce the logical intersection of the conditions. 

All mass streams passing through ports as well as interphase transfers within 

a vessel carry an accompanying energy flow. To allow users to describe heat transfer 
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between vessels where there should be only energy transfer through ports of the vessels 
without any material flow, we introduce a special kind of port, an "energy port" through 

which only energy transfers. 

A port attribute is composed of its name, type and optional specification of 
stream association. The optional stream association allows the user to specify explicitly 
the source and/or destination phase of material flowing through the port. For an energy 
port, there is no need to declare its type and the specification of stream association, but 

only its name. "Three port types are available in terms of flow directionality through the 

port as follows; 

9 in : entry port 

0 out : exit port 

" both :a port having reversible flow directionality 

A port section is employed for the declarations of port attributes. A port name 

must be declared as an instance of its port type (except energy port). The port section 
begins with a keyword, Port, and has three options as defined in the formalisms as follow; 

Formalism 1 of Mass Stream Port 

Port : <name> : type 

Formalism 2 of Mass Stream Port 

Port : <name> : type : <specification of stream association> 

Formalism of Energy Port 

Port : <name> 

An example of a port section is shown in figure 3.6 where there are six ports in 

a vessel. The flow of P1 and P2 must be in, and the flow of P2 can only be associated 

with the aggregate [B, L1]. The flow of P3 and P4 must be out, and only the phase L2 

flows out of port P4. Finally P6 is an energy port, allowing only energy transfer. 

For cases where the stream association is not specified, consistent rules for as- 

sociating the inlet stream with a phase or aggregation in a vessel should be established. 
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Port : P1 in 

P2 : in [B, L1] 

P3 : out 

P4 : out : L2 

P5 : both 

P6 

Figure 3.6: Example Port section 

In principle the rules are classified into two categories depending on whether the inlet 

stream is a mixed phase (an aggregation) or single phase. 
When a stream forming the aggregation is entering a vessel, the inlet stream 

association with a phase or an aggregation in the vessel depends on the availability of a 

suitable target aggregation in the vessel. If a suitable target aggregation was declared in 

the vessel, the inlet stream is associated with it regardless of the current levels of phases or 

aggregates in the vessel. Otherwise, the phases entering are distributed to the appropriate 
phases in the vessel. The formal description of this first category is as follows: 

If there is a suitable target aggregation in the vessel, 
r- 

" Associate the inlet stream with the target aggregation in the vessel. 

Else 

" Associate the components of the inlet stream with the same phase types. 

For example, consider a vessel containing a separate vapour, an aggregate (bub- 

bles dispersed into a liquid) and a liquid, each of which is distributed into its own distinct 

layer as shown in figure 3.7, an inlet aggregate (bubbles dispersed into a liquid) stream is 

entering through an entry port. All possible situations arising from the relative positions 

of the inlet port level and each level of phases or aggregate are given as cases (a), (b) and 

(c) in figure 3.7. By the rule above (corresponding to the If statement), since the aggre- 

gate in the vessel has been declared as a suitable target for the inlet stream association, 

the inlet stream is associated with the aggregate in the vessel in all cases. 

Now consider a vessel containing only two separate phases (a vapour and liquid) 

without any aggregation and an aggregate stream (bubbles dispersed into a liquid) is 

entering the vessel through the entry port. This example is illustrated in figure 3.8 . By 
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(a) : [Vin, Lin] 

(b) : [Vin, Lin] 

(c) : [Vin, Lin] 

For all cases, (a), (b) and (c), 

Vin - VI 

Lin - L1 

Figure 3.7: The Association of inlet aggregate stream by the aggregation type 

the rule above (corresponding to the Else statement), since there is no suitable target 

aggregation in the vessel, the bubbles in the inlet stream are associated with the vapour 

in the vessel, the type of which is the same as that of the bubble phase and the inlet 

liquid phase is associated with the liquid in the vessel, in both cases (a) and (b). Note 

that this association represents "instantaneous separation" of the phases comprising the 

inlet aggregate stream. 

(a) : [Vin, Lin] 

(b) : [Vin, Lin] 

For cases, both (a) and (b), 

Vin -V 

Lin -L 

Figure 3.8: The Association of inlet aggregate stream by the phase type 

When a stream entering a vessel is a single phase, the inlet stream association 

with a phase in the vessel depends on whether or not more than one suitable target phase 

(i. e. of the same phase type as the inlet stream) have been declared. In the former case 

the association of the inlet stream with a phase in the vessel is determined by the levels 

of the suitable target phases, whereas, in the latter case the association is determined by 

the same phase type. The formal description of this second category is as follows: 

If there is more than one suitable target phase in the vessel, 
ý 

. Associate the inlet stream with a target phase in the vessel, depending on the levels of 

the target phases in the vessel. 
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Else 

" Associate the inlet stream with the same phase type. 

For example, consider that a single vapour phase is entering the same vessel 

as given in figure 3.7. All the possibilities of associating the inlet stream with a phase 

in the vessel are given in figure 3.9, by applying the rule above (corresponding to the If 

statement). In the absence of to suitable target phase covering the entry port the inlet 

stream is associated with the nearest target phase to the entry port (case (c)). It should 

be noted that this reflects the physical situation that when an inlet single vapour phase 

is entering into a liquid covering an entry port, it creates the bubbles dispersed into the 

liquid. 

(a) : Vin 

(b) : Vin 

(c) : Vin 

(a) : Vin -V 

(b) : Vin - VI 

(C) ; Vin - Vi 

Figure 3.9: The Association of inlet single phase by the phase level 

Again consider that a single liquid phase is entering the same vessel as given in 

figure 3.8. The resulting inlet stream association with a phase in the vessel is shown in 

figure 3.10 by applying the rule above (corresponding to the Else statement). The inlet 

single liquid phase is associated with the same phase type in the vessel regardless of its 

level. This represents an "instantaneous separation" of the inlet stream. 

(a) : Lin 

(b) : Lin 

For cases, both (a) and (b), 

Lin -L 

Figure 3.10: The Association of inlet single phase by the phase type 
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Thus far the rule for associating an inlet stream with a phase or an aggrega- 
tion in a vessel has been presented with illustrative examples. It should be noted that 
although these examples include a system consisting of a vapour, liquid and its aggrega- 
tion, the same rule can be symmetrically applied to immiscible liquid systems forming an 
aggregation (droplets dispersed into a containing phase). 

In the early stages of design the vessel geometry will not be known, so the concept 
of a port can be extended to be an entry/exit point to a phase(or aggregation of phases), a 

vessel, or a process. This allows a top-down hierarchical approach to building up a model 

of a process. For example, a process can be first decomposed into a reaction system, 

separation systems etc. A separation system can in turn be decomposed successively into 

several columns, then each column into plates, condenser, reboiler, etc. finishing eventu- 

ally with phases. At each level of decomposition, ports and connections are introduced 

to link the ports for the subprocess in question to the newly defined elements within it. 

3.1.5 Geometry attributes 

A geometry attribute is concerned with the physical description of a vessel geom- 

etry itself. It encapsulates all the knowledge about a vessel's shape, orientation and the 

relevant dimensions including the positions of ports already declared in the port section. 

A geometry section is employed for the declaration of a geometry attribute and 

commences with keyword Geometry. It has the following four subsections and each will 

now be introduced in detail. 

" Shape 

" Orientation 

" Dimension 

" Port Position 

3.1.5.1 Shape attributes 

The shape of a vessel is described by a shape attribute. In reality there is a 

vast variety of shape types, however for simplicity only three kinds of primitive shapes 

are allowed in the present version of the language, which are cylinder, sphere and box. In 

addition to the shape types, we need the information about whether the vessel is closed 

or open. A Shape section is employed for the declaration of a shape attribute. The 

formalism of the shape section is as follows: 
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Formalism of Shane section 

Shape : typel : type, 

In the above formalism typel represents the type of the shape of a vessel and 
types is the specification on whether the vessel is closed or open. The example of the 
declaration of the shape section is shown in figure 3.11. 

Shape : cylinder : closed 

Figure 3.11: Example Shape section 

3.1.5.2 Orientation attributes 

A geometrical orientation of a vessel is described by its orientation attribute. 
Only two primitive types of orientation have been considered; vertical and horizontal. 

Since the "orientation" for a sphere has no geometrical meaning, it applies only to a 

cylinder. In the present prototype package, only the vertical type is available due to 

geometrical complexities resulting from the various types of orientation of a vessel and 

also 

An Orientation section is employed for the declaration of an orientation at- 

tribute. The formalism of the orientation section is as follows and an example of this is 

shown in figure 3.12. 

Formalism of Orientation section 

Orientation : type 

Orientation : vertical 

Figure 3.12: Example Orientation section 

3.1.5.3 Dimension attributes 

Dimension attributes are concerned with the declaration of relevant dimensions 

of a vessel. Selection of an appropriate set of dimension attributes depends on its shape. 



CHAPTER 3. PHYSICAL MODELLING LANGUAGE 43 

Hence height and diameter are necessarily typical set of dimension attributes for a vertical 
cylinder, diameter for sphere, and width, depth and height for box. 

A dimension attribute is described by its type followed by its numeric value. 
A Dimension section is used to describe dimension attributes and must contain all the 

requisite dimension attributes according to the vessel shape. A formalism of the dimension 

section is as follows; 

Formalism of Dimension section 

Dimension : type : numeric value 

An example of the description of the Dimension section for a cylindrical vessel 
is given in figure 3.13. 

Dimension : diameter : 1.0 

height : 5.0 

Figure 3.13: Example Dimension section 

3.1.5.4 Port Position attributes 

Port position attributes are concerned with physical locations of ports already 

declared in the port_�pection. For all ports including energy ports, their locations must 

be declared in port position attributes. The vertical location of a port can be specified 

with either a numeric value or one of the relevant dimension types of a vessel, which has 

already been declared in the dimension section. 

A Port Position section is employed for the declaration of port attributes and 

must contain all the ports previously declared in the port section. The formalism of the 

port position section is below, in which identifier represents the specification of the 

location of a port as mentioned above and Z is a language key-word to denote the position 

of a port. 

Formalism of Port Position section 

Port Position : Z(<name>) : identifier 
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An example of the declaration of a port position section is shown in figure 3.14. 
The vessel has three ports; P1 located at the bottom, P2 at 2.0 high from the bottom and 
P3 at the top, namely height. 

Port Positions : Z(P1) : 0.0 

Z(P2) : 2.0 

Z(P3) : height 

Figure 3.14: Example Port Position section 

3.2 Reservoir Entity 

In the previous section one of the three primitive physical process entities (vessel 

entity) has been demonstrated in terms of its syntax and semantics in detail. This section 
is concerned with the development of language structure for the reservoir entity. 

As already described in the preceding chapter, a plant does not exist in isolation, 

but receives feeds from elsewhere and delivers products, and also uses or generates utilities 

such as steam or cooling agents. A reservoir entity is defined as a source or sink of infinite 

extent so that its state is not affected by transfer to or from it. 

A sink reservoir should take whatever is delivered by the plant, and we need 

nothing but a name. However, a source reservoir is to allow the user to specify a stream 

from the environment to the plant, which in general is time-varying both qualitatively 

(different phases or aggregations at different times) and quantitatively (different ratios of 

phases, different state variables for each phase). We need language to enable the user to 

make these specifications, in addition to Phase, Aggregation (and possibly Transfer 

Law) sections, just as for a vessel - it is a vessel of infinite extent. 

As illustrated in 3.1.1, in order to deal with the identities of the compounds 

involved, we need to provide the language for users to specify a list of compounds present 

in each source reservoir, then the package can deduce what compounds could be present 

in all phases and all vessels, from the connection arrows (see §3.3) and a set of chemical 

reactions declared in the phase section and transfer laws. However, a language provision 

for specifying a list of compounds in each source reservoir has not yet been implemented 

in the present package. 
A reservoir entity begins with key-word, RESERVOIR followed by a unique 
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identifier by which it may be referenced globally. It is possible for users to declare more 
than one identifier in a reservoir entity, as shown in figure 3.15. 

Formalism of the declaration of RESERVOIR enti 

RESERVOIR : <name> 

RESERVOIR : R1, R2, R3 

Figure 3.15: Example the declaration of reservoir entity 

A reservoir entity is composed of five optional sections as follows: 

" Compound 

" Phase 

" Aggregation 

" Transfer Law 

" Port 

Since the description of Phase, Aggregation and Transfer Law sections are iden- 

tical to those of a vessel in terms of their syntax and semantics, Compound and Port 

sections will now be discussed. 

3.2.1 Compound attributes 

As stated above, compounds attributes represent the specification of a list of 

compounds present in each source reservoir. This information is also used for the package 

to deduce the requisite compounds in all phases and all vessels, as demonstrated in §3.1.1. 

So these attributes are limited to a source reservoir. 
A Compound section is used for the specification of compound attributes and 

must contain all the compounds present in a source reservoir. The formalism of the 

compound section is as follows: 

Formalism of the Compound section 

Compound : <a list of compounds> 
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An example of compound section is given in figure 3.16 where propane and 
butane are specified as feeding chemical compounds. 

Compound : C3H8, C4H10 

Figure 3.16: Example Compound section 

Again note that these attributes have not yet been implemented in the present 

package. Further, the implementation for chemical reactions has not been made. As 

discussed in §3.1.1 the provision of the language for compound attributes is recommended 

to be implemented, taking account of the language for chemical reactions. 

3.2.2 Reservoir Port attributes 

It is sufficient to declare only the port name for the reservoir port attributes 

(note that this is different from the port declaration for vessel ports where additional 

information is required, such as port type and position). The state variables required to 

define transfers between vessels and reservoirs are then automatically invoked from the 

appropriate transfer law in the library. 

A Port section is employed for the declaration of port attributes and must 

contain all the ports needed to connect between reservoirs and vessels. The formalism of 

the port section of a reservoir is given below. 

Formalism of the Port section of reservoir entity 

Port : <name> 

The example of a reservoir entity is shown in figure 3.17 where steam is consumed 

as a utility for a plant through the reservoir ports, P1, P2, P3. 

RESERVOIR : steam 

Port : P1, P2, P3 

Figure 3.17: Example reservoir entity 



CHAPTER 3. PHYSICAL MODELLING LANGUAGE 47 

3.3 Connection Entity 

In the previous section two of three primitive physical process entities; vessel and 
reservoir entity have been demonstrated in terms of its syntax -and semantics in detail. 
This section is concerned with the development of language structure for the connection 

entity. 

As introduced in chapter 2, a process system is a set of vessels linked through 

connections which may include the transfer of material through pipes or permeable mem- 
branes, or the transmission of energy by heat transfer or through pistons in pumps, 
compressors or engines. 

A connection entity is defined as an idealised topological link for inter-vessel 

transfer of material and/or energy, and itself containing no material and/or energy. These 

transfers are described by physico-chemical transfer laws. Such a topological link is 

represented by the pair of ports of two mutually connected vessels. A completion of the 

description of these connections results in a whole flowsheet for a given process. 

A connection attribute consists of its name, the topological link and the transfer 
law. A connection entity begins with key-word, CONNECTION followed by connection 

attributes. It must contain all the connection attributes required to describe the inter- 

vessel links (including a link between a reservoir and a vessel) for a given process. The 

formalism of the connection entity is as follows: 

Formalism of CONNECTION entity 

CONNECTION 

<name> : <vessell>. <portl> arrow <vessel2>. <port2> ; transfer law 

In the formalism port 1 and port 2 are user-defined port names of the two vessels 

mutually connected. The arrow in the formalism represents the types of flow through a 

connection and two types are available as follows, depending on whether the flow type is 

irreversible or reversible: 

" an arrow with right end : -+ 

" an arrow with both ends :() 

The arrow with right end (-+) represents irreversible flow through a connection 

(for example flow through a pipe installed with some kind of non-return valve), where the 
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type of portl and port2 must be the exit and entry, declared to be out and in, respectively. 
The arrow with both ends (( )) represents reversible flow through a connection where 
the types of the two ports must be reversible. This arrow is also used for energy transfer 
in which the types of the two ports must be those of energy port as previously introduced 
in §3.1.4. 

Note that the transfer law for reversible flow of a connection can contain a 
pair of two different sets of equations, according to the flow directionality. This is termed 

asymmetrically reversible. On the other hand, if the set of equations for forward directed- 

flow are same as those for reverse flow, it is termed symmetrically reversible. 
An example of a connection entity is shown in figure 3.18. The transfer law 

IrreversiblePressureDrivenFlow in C1 describes pipe flow with non-return valve, 

which contains flow regime transitions between laminar and turbulent depending on the 

currently active Reynolds Number. the transfer law of C2 is symmetrically reversible since 

the transfer law PressureDrivenFlow has the same set of equations for both directions 

containing flow transitions between laminar and turbulent, determined by the pressure 

difference between FlashDrum and Receiver. The details of the description of the library 

will be demonstrated in appendix C. 

CONNECTION : 

Cl : Feeder. Pl ---> F1ashDrum. P1 ; IrreversiblePressureDrivenFlow 

C2 : FlashDrum. P2 <--> Receiver. Pl ; PressureDrivenFlow 

Figure 3.18: Example connection entity 

As far as the physical description of "controllers" is concerned, the method 

suggested in earlier work (Vazquez-Roman, 1992) can be used to provide a transfer law 

through a connection, using "measurements" from "sensors" providing variables from 

phases in vessels. 

3.4 Physical Modelling Examples 

In the previous section the details of the design of the proposed language for 

describing purely physical behaviour were described in terms of syntax and semantics. 

This section shows how process systems are described in the proposed language through 

several examples, all of which will then be simulated. 
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3.4.1 Flash drum 

This example considers a flash drum where there exist three phases such as 

vapour, bubbles and liquid, and aims at validating how multiple possibilities of physical 
behaviour are encompassed. 

Consider a simple process system composed of a cylindrical flash drum, one 

reservoir (source) and two reservoirs (sink). The conceptual diagram of this example is 

shown in figure 3.19. The dashed lines drawn in the flash drum represent all possible cases 

in which one of three phases existing in the flash drum participates in the inter-vessel 

connections through the ports. The two arrows linking phases B and L, and linking from 

B to V represent transfer laws PhaseEquilibrium and BubbleRise respectively. The flash 

drum named FlashDrum is fed by reservoir R1 through the connection C1 with transfer 

law IrreversiblePressureDrivenFlow. The flash drum has two outlet pipes through 

which one or more of three phases flows out depending on which phase covers the exit 

points of the outlet pipes. Within the flash drum, bubbles dispersed into a liquid are in 

equilibrium with the liquid and simultaneously rise to a vapour through the liquid. Note 

that all connections(C1, C2, C3) are physically some sort of pipes installed with non- 

return valves which do not allow reverse flow through the pipes. The physical description 

of this example is represented in figure 3.20. 

V 

C3 
Po2 R3 

cl 
R1 Pit . '` 

C2 

---Pol R2 

BLJL) 

FlashDrum 

Figure 3.19: Conceptual diagram of Flash drum 

VESSEL : FlashDrum 

Phase : B, V: vapour 

L: liquid 

Aggregation : V, [B, L] 

0 818. 
LONDiB" 
ORiti 
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Transfer Law : B, V: BubbleRise 

B, L: PhaseEquilibrium 

Port . Pil : in 

Pol : out 

Po2 : out 

Geometry : Shape 

Orientation 

Dimension 

cylinder : closed 

vertical 

height :3 

diameter :1 

Port Position : Z(Pil) 

Z(Pol) 

Z(Po2) 

RESERVOIR : R1, R2, R3 

Port :P 

CONNECTION : 

. 1.5 

. 0.5 

. 2.5 

Cl : Rl. P ---> FlashDrum. Pil ; IrreversiblePressureDrivenFlow 

C2 : FlashDrum. Pol ---> R2. P ; IrreversiblePressureDrivenFlow 

C3 : F1ashDrum. Po2 ---> R3. P ; IrreversiblePressureDrivenFlow 

Figure 3.20: Physical Modelling Example Flash Drum 

3.4.2 Two Flash Drums with reversible flow 

As in the representative diagram (Figure 3.21), there are two flash drums linked 

through a pipe allowing reversible flow, representing that there is no non-return valve 

in it. The flow direction is determined by the sign (positive, negative) of the pressure 

difference between the two flash drums. The Physical description of this example is 

presented in Figure 3.22. The reversible flow through the pipe is described in connection 

C2 through the two ports Pol of FlashDruml and Pi of FlashDrum2, with transfer law 

PressureDrivenFlow. Note that the types of these two ports have been declared as both 
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in each vessel and that the phase types declared in the two flashdrums must be the same 

since the connection C2 is reversible flow between the two flash drums. 

FlashDrum2 

Figure 3.21: Conceptual diagram of Flash drum 

VESSEL : FlashDruml 

Phase : B, V: vapour 

L: liquid 

Aggregation : V, [B, L] 

Transfer Law : B, V: BubbleRise 

B, L: PhaseEquilibrium 

Port : Pi : in 

Pol : both 

Po2 : out 

Geometry : Shape : cylinder : closed 

Orientation : vertical 

Dimension : height :3 

diameter :1 

Port Position : Z(Pi) 1.5 
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VESSEL : FlashDrum2 

Phase : B, V: vapour 

L: liquid 

Aggregation : V, [B, L] 

Z(Pol) : 0.5 

Z(Po2) : 2.5 

Transfer Law : B, V: BubbleRise 

B, L: PhaseEquilibrium 

Port : Pi : both 

Pol, Po2 : out 

Geometry : Shape cylinder : closed 

Orientation : vertical 

Dimension : height :3 

diameter :1 

Port Position : Z(Pi) : 1.5 

Z(Pol) : 0.5 

Z(Po2) : 2.5 

RESERVOIR : R1, R2, R3, R4 

Port :P 

CONNECTION 

Cl : Rl. P --> FlashDruml. Pi ; IrreversiblePressureDrivenFlow 

C2 : FlashDruml. Pol <-> FlashDrum2. Pi ; PressureDrivenFlow 

C3 : FlashDruml. Po2 --> R4. P ; IrreversiblePressureDrivenFlow 

C4 : FlashDrum2. Pol --> R2. P ; IrreversiblePressureDrivenFlow 

C5 FlashDrum2. Po2 --> R3. P ; IrreversiblePressureDrivenFlow 

52 

Figure 3.22: Physical Modelling Example Two Flash Drums with reversible flow 
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3.4.3 Decanter 

A decanter is a typical example of an open vessel. A schematic diagram of the 

decanter is shown in Figure 3.23. There are two immiscible liquids such as butanol and 

water in the decanter. Note that port Po2 represents the rim of the decanter over which 

phases may flow out depending on their levels. The physical description of this example is 

given in figure 3.24. The flow mechanisms are described as WeirOverFlow in connection 

C3. 

Figure 3.23: Schematic Diagram of Decanter 
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VESSEL : Decanter 

Phase : B, B1 : liquids 

W, W1 : liquid2 

Aggregation : B, [B1, W1] ,W 

Transfer Law : B1, B : BubbleRise 

W1, W : ContainingPhaseTransfer 

Port : Pi1 : in : [B1, W1] 

Pol : out 

Po2 : out 

Geometry : Shape : cylinder : open 

Orientation : vertical 

Dimension : diameter :1 

height :5 

Port Position : Z(Pil) : 1.5 

Z(Pol) :0 

Z(Po2) : height 

RESERVOIR : R1, R2, R3 

Port :P 

CONNECTION : 

Cl : Rl. P --> Decanter. Pil ; IrreversiblePressureDrivenFlow 

C2 : Decanter. Pol --> R2. P ; StaticPressureDrivenFlow 

C3 : Decanter. Po2 --> R3. P ; WeirOverFlow 

Figure 3.24: Physical Modelling Example Decanter 
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3.5 Summary 

Based on the concept of the representation of process systems as already demon- 

strated in chapter 2, the language which enables us to describe chemical processes in a 

completely physical fashion has been designed and the details of its philosophy has been 

introduced in terms of its syntax and semantics by which physical discontinuities can be 

identified in the generated mathematical models. As a consequence, the three primitive 

physical process entities have been identified and the language has been structured into 

the hierarchy as shown in figure 3.25. 

PROCESS SYSTEM 

CONNECTION Entity 

VESSEL Entity 

Phase Section 

Aggregation Section 

Transfer Law Section 

Port Section 

Geometry Section 

Shape Section 

Orientation Section 

Dimension Section 

Port Position Section 

RESERVOIR Entity 

Compound Section 

Phase Section 

Aggregation Section 

Transfer Law Section 

Port Section 

Figure 3.25: Hierarchical structure of physical modelling elements 

Finally, three illustrative examples of physical description represented in the 

language have been introduced, all of which will be simulated later. 
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In the next chapter the methodology for generating the mathematical models 

from the information of physical systems described in the language developed will be 

demonstrated in terms of detailed algorithms for the model generation. 
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Chapter 4 

Mathematical Model Formulation 

In the preceding chapter, the design of the language for describing process sys- 

tems in a purely physical manner has been demonstrated in terms of its syntactical struc- 

ture and semantics, and several examples described in the language have been introduced. 

This chapter demonstrates the methodology for formulating a lumped math- 

ematical model from the information about a physical process system. Of course, as 

previously stressed, the mathematical models should encompass a set of physical discon- 

tinuities which process systems routinely experience in their dynamic behaviour. To deal 

with these key requirements, firstly the basic strategy for building mathematical models 

will be set up. Secondly the consistent and general formalism of the mathematical model 

required to encapsulate a set of physical discontinuities likely to arise for a given process, 

will be identified. Based on the model-building strategy and the generic model formal- 

ism, the detailed algorithms for generating the mathematical model from the information 

about physical description of a process system will be established as a final step of the 

mathematical model formulation method. 

In the remaining sections of this chapter we will deal with the convention of 

making the notations used in the mathematical models and finally the construction of 

transfer law libraries. The mathematical model consists of a large number of parameters 

and equations expressed in variables and relevant mathematical operators. The consis- 

tency in making notation of those parameters and variables comprising a mathematical 

model must be maintained through the whole generation procedure. Thus the notation 

used in the generated mathematical model will be introduced. 
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4.1 Basic Model Building Strategy 

This section describes the basic strategy for formulating mathematical models 
from the physical process representation described in the proposed language. 

As previously stated, we consider only lumped parameter models, for which each 

phase has a uniform state throughout its extent, though of course distributed-parameter 

systems can be modelled in these terms through the use of cell-type models. 
For each phase the masses of each chemical component present, the internal 

energy and pressure are taken as our basic state-variables. From the process description 

it is then possible to write down conservation laws for the mass of each component and 

the energy for each phase, containing typically an accumulation term, a rate of creation 
due to chemical reaction, and a term for each defined transfer. 

Using a library of transfer-laws, we can then write an equation for each transfer, 

and we need to add means of computing relevant physical properties and relations between 

other thermodynamic variables (such as temperature) and the basic state variables, finally 

the volume and pressure relations for vessels. 

This in general yields a dynamic model as a set of differential-algebraic equations 
(DAEs), but there are a number of complications. First, if the transfer law between two 

or more phases is equilibration, the relevant fluxes create a high-index DAE system; 

moreover the number of phases present may depend on the state. For these reasons the 

concept of "region" is introduced, the definition of which is a particular subdivision of the 

system being modelled composed of a single phase or multiple phases in thermodynamic 

equilibrium (Vazquez-Roman, 1992). Then the package automatically associates phases 

defined to be in thermodynamic equilibrium in a single region and assumes the availability 

of an appropriate thermodynamic subroutine to determine the number of phases and the 

state of each from the basic state-variables for the region. 

Now a complete strategy for formulating mathematical models in lumped-parameter 

systems in the form of a set of DAEs has been set up. However, in the course of building 

this strategy, the physical discontinuous behaviour that processes experience routinely in 

normal operation has not been considered. Hence in the next section we will discuss the 

method for dealing with these discontinuities and the generic formalism of mathematical 

models required to describe the discontinuities. 
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4.2 Generic Model Formalism 

In the previous section a basic model building strategy has been demonstrated 

without a consideration of physical discontinuities. As has been emphasised in the previ- 

ous chapters, one of the key requirements of the generated mathematical model is to de- 

scribe the physically discontinuous behaviour. This behaviour includes phase transitions 
(e. g. the presence or absence of phases), flow regime transitions (e. g. between laminar 

and turbulent flow), those resulting from the geometry of individual process units and a 

variety of other factors. In order to deal with these physical discontinuities we need to 

identify a sufficiently generalised and consistent mathematical modelling formalism cov- 

ering these discontinuities. We can then establish the detailed algorithms for generating 

mathematical models from a purely physical representation of process systems. 

Recently the important modelling issues and special modelling requirements 
for combined discrete/continuous process systems have been identified and used as the 

conceptual basis of gPROMS (general-purpose PROcess Modelling System), which is 

a general-purpose software package for the modelling and simulation of combined dis- 

crete/continuous process systems (Barton, 1992). In fact we intend to generate mathe- 

matical models in the form of gPROMS input language. Hence it is essential to discuss 

the conceptual framework of gPROMS, and how it deals with physical discontinuities. 

The fundamental model structuring concept in gPROMS is that process models 

are decomposed into two main entities; a model entity (a combined discrete/ continuous 

model of physical behaviour of a process) and a task entity (external actions imposed on 

processes such as disturbances and control ac ions . 
These two entities are completely 

decoupled in order to aid the representation of process systems in a natural way. Again 

all the information stored in the two entities is encapsulated in a single entity, namely 

a process entity, which represents a dynamic simulation experiment. The process model 

representation contained in the model entities may include any possible discontinuities 

arising from the physico-chemical mechanisms governing the dynamic behaviour of pro- 

cess systems. Thus we need to focus on the mathematical formalism, which enables us to 

represent these discontinuities in a consistent manner. 

In order to describe physical discontinuities their nature has been considered in 

terms of the transition mechanisms between discrete states. Then any discontinuities are 

categorised into the following three classes: 

" reversible discontinuity : The condition for one state transition is the negation 

of the condition for the other. Hence the two transitions are describable with one 
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transition rule (IF), e. g. flow through a pipe. 

" irreversible discontinuity : There is only one state transition which never returns to 

the other state, e. g. a burst-out of pressurised gas in a vessel fitted with a bursting 

disc. 

9 asymmetric and reversible discontinuity : The transition between two states is 

reversible but the transition conditions are not directly related. The CASE structure 
is used to describe this transition mechanism, instead of IF structure, e. g. a gas 

flow out of a tank controlled by a safety relief valve. 

Mathematical modelling of dynamic physico-chemical behaviour of process sys- 

tems in terms of lumped parameters yields a mixed set of differential and algebraic equa- 

tions(DAEs), of which the natural mathematical formalism is expressed by a set of DAEs 

of the form (Pantelides et al., 1988): 

f (x, x, y, u, t) =0 (4.1) 

u= U(t) (4.2) 

where: xEXC am, yEYCRm, uEUCeil, tET=[t(o), t(f)] and 

f: X XRnxYxUxTHRn+m. 

The unknowns x and y are usually referred to as the differential variables and 

algebraic variables respectively, u are the known system inputs, and t is the independent 

variable time. 

In general a process model involving physico-chemical discontinuities is repre- 

sented in terms of several discrete states, each described by a potentially different set of 

variables and/or equations. The general formalism of a process model for representing 

these discontinuities in a consistent way has been suggested as follows (Barton, 1992): 

"A set of variables x, x, y and u. 

"A set of equations f (x, x, y, u, t) = 0. 

"A set of transitions to other states (possibly empty). 

A transition is described by: 

" An initial state SI. 
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"A terminal state Ste'. 

"A scalar logical expression l (xI 
, xI, yl, uI, t) to describe each possible transition 

between states. 

"A set of relationships allowing the determination of consistent initial values for the 
variables in ST from the final values of the variables in S'. 

However, the mere existence and completeness of a mathematical formulation 
does not automatically guarantee that it will be an "easy" or "natural" means of modelling 
process systems of realistic complexity due to the following items (Pantelides, 1995): 

" The number of states in practical systems involving a number of discontinuous 

phenomena can be quite large. 

" Although practical systems are often described by tens of thousands of variables and 

equations, the sets of such variables and equations describing different system states 
typically differ only by a few elements. Having to specify the entire mathematical 
description of each state separately could be unnecessarily tedious. 

" The mathematical formulation makes no distinction between the description of the 
intrinsic physics of the process, and that of the external actions, manipulations and 
disturbances imposed on it. 

A sophisticated modelling technique for dealing with the mechanisms of a large 

number of the transitions of discontinuous states has been developed by Pantelides (Pan- 

telides, 1995). The basic view of physical discontinuities is that the large number of states 

arises because of the combination of several interacting discontinuous phenomena, the cur- 

rent state of which can be defined independently. Thus the current state of a system with 
discontinuous behaviour is described by the combination of a number of discontinuous 

subsystems, each described by its own state-transition network. In the flash drum ex- 

ample illustrated in chapter 2, these discontinuous subsystems include the equilibrium 

relationship between bubbles and liquid, the transition between laminar and turbulent 

flow regimes as well as the flow directionality resulting from the flow driving potential, 

and the transition of exit phases flowing through the outlet pipe depending on the liq- 

uid level. As a consequence, the mathematical description of process models including 

physical discontinuities is composed of a set of case invariant and variant equations, each 

characterised independently by its own discrete state and transition condition. We note 



CHAPTER 4. MATHEMATICAL MODEL FORMULATION 62 

that this modelling principle is vital to develop our strategy for generating a mathemati- 
cal model encompassing a set of physical discontinuities, hence it will be used as a basis 
for the development of the model generation algorithms. The detailed example as to how 
these independent transitions are combined, forming a set of case invariant and variant 
equations is given in the paper (Pantelides, 1995). 

The algorithms for generating mathematical models will be illustrated in the 

next section, based on the basic model building strategy and the generic mathematical 
modelling formalism. 

4.3 Model Generation Algorithms 

Until now, we have introduced the basic model building strategy and identified 

the mathematical formalism required to deal with physical discontinuities. This section 
is concerned with the development of the complete algorithms for generating appropriate 

mathematical models, based on the model building strategy and the generic mathematical 
formalism demonstrated in the previous sections. 

In the course of generating models the syntax analysis and semantic checking for 

the physical representation described in the proposed language are carried out in advance 

of the applications of the model generation algorithms. That is, the correct physical 
description in terms of the language syntax and semantics of language is an essential 

prerequisite for initiating the model generation algorithms. 

The model generation algorithms are structured into the same hierarchy as that 

of the conceptual elements for the purely physical representation of process systems as 

shown in figure 3.25. As a consequence of the exact correspondence between physical 

model structuring elements identified from the conceptualisation of process systems, and 
the mathematical model generation algorithms with respect to the hierarchical structure, 

the generated mathematical models also have the same hierarchical structure. It should 
be recognised that this consistent hierarchical structure has been maintained during the 

course of the entire model generation procedure, from the conceptualisation of physi- 

cal process systems, through the establishment of model generation algorithms, to the 

generation of appropriate mathematical models. 
The method of describing the whole algorithm for generating a mathematical 

model is based on hierarchical sub-algorithm decomposition (top-down description). 

Algorithm 4 given below is the master algorithm for generating a mathematical 

model from the physical representation of a given process system written in the proposed 
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physical modelling language. It contains the fixed set of key sub-model generation tasks 
at top level. 

Algorithm 4 GENERATE PROCESS SYSTEM MODEL 

1. GENERATE VESSEL SUB-MODEL. (see algorithm 4.1) 

2. GENERATE RESERVOIR SUB-MODEL. (see algorithm 4.2) 

3. GENERATE CONNECTION SUB-MODEL. (see algorithm 4.3) 

Vessel, reservoir and connection sub-model terms used at each step of algorithm 
4 represent the mathematical sub-models generated from the physical information encap- 
sulated into the three basic entities of vessel, reservoir and connection. The background 

and subsequent derivation of each procedure of algorithm 4 will now be discussed in detail. 

4.3.1 Vessel Sub-Model Generation 

A vessel sub-model is generated by applying a relevant model generation algo- 

rithm to the physical information encapsulated into the vessel entity. To do this, for each 

vessel, we need to initiate the tasks concerned with the generation of the mathemati- 

cal sub-model from the information stored into the sections comprising the vessel entity 
(phase, aggregation, transfer law, port and geometry sections). These tasks are therefore 

composed of a subset of procedures of calling algorithms, each of which corresponds to 

the algorithm for generating the mathematical sub-model from the physical information 

stored in the corresponding section. The formal algorithm for generating vessel sub-model 

is given algorithm 4.1 below. 

Algorithm 4.1 GENERATE VESSEL SUB-MODEL 

" For each vessel, 

1. GENERATE PHASE SECTION SUB-MODEL. (see algorithm 4.1.1 

2. GENERATE AGGREGATION SECTION SUB-MODEL. (see algorithm 4.1.2) 

3. GENERATE TRANSFER LAW SECTION SUB-MODEL. (see algorithm 4.1.3) 
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4. GENERATE PORT SECTION SUB-MODEL. (see algorithm 4.1.4) 

5. GENERATE CONSERVATION EQUATIONS. (see algorithm 4.1.5) 

6. SPECIFY DISCONTINUITIES IN A VESSEL. (see algorithm 4.1.6). 

7. GENERATE GEOMETRY SECTION SUB-MODEL. (see algorithm 4.1.7) 

From the implementational point of view, each step of algorithm 4.1 is completed 
by formulating the physical information corresponding to each section of the vessel into 

abstract data types made suitable for storing the information about the mathematical 
model. As a consequence, once the application of the algorithm 4.1 is finished successfully, 
the mathematical sub-model corresponding to the vessel entity is obtained, encapsulating 
all the information about the model in an appropriate data structure. If more than one 
vessel were declared in one vessel entity, all the information stored in the above data 

structure for the one vessel are copied to others. 
Subsequent derivation of the subset of algorithms comprising algorithm 4.1 will 

now be presented in detail. 

4.3.1.1 Phase Section Sub-Model 

This section is concerned with the generation of the mathematical sub-model 
from the physical information about the phase attributes declared in the phase section. 

As mentioned in §3.1.1, the provision of the language for chemical reactions has 

been suggested as a phase attribute, but has not yet been implemented in the present 

package. Consequently there is no algorithm for dealing with chemical reactions. 
Recall that the phase attributes described in the phase section includes the phase 

types for a set of all possible existing phases within the vessel, and that the phase types 

are employed for associating a stream passing through a port with a phase in a vessel. We 

thus create the variables required to represent the types of all the phases specified to be 

present in the vessel and declare all the phase types defined by the user. We also need to 

formulate the required constitutive equations. Finally the requirement that the pressure 

for all the phases present in a vessel is uniform is expressed in the form of equations. The 

formal procedures are described in algorithm 4.1.1 below. 

Algorithm 4.1.1 GENERATE PHASE SECTION SUB-MODEL 
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1. Create phase type variables. 

2. Declare user-defined phase types. 

3. Generate the required constitutive equations. 

4. Equate the pressure of the vessel to that of phases present. 

At step 2 the phase type defined for each phase in the physical description is 

declared as parameters in the mathematical model for later use to provide data for dealing 

with a set of discontinuities resulting from the selection of a phase or an aggregate passing 

through ports, the details of which will be described in §4.3.1.4. 

The constitutive equations (step 3) involve those relating total mass with density 

and volume as well as those relating mass of each component with total mass and mass 

fraction. 

As already stated, one of the basic assumptions for lumped systems is that 

pressure is uniform through all phases present within a vessel. This is embodied at step 

4 by equalising the pressure of the vessel to that of all phases present. 

4.3.1.2 Aggregation Section Sub-Model 

This section describes the procedures for generating the mathematical sub-model 

from the physical description of the aggregation section. 

By the similar rationale discussed in the previous section, for each aggregate, we 

create the variables representing the aggregation type and declare the user-defined phase 

type of the aggregate. Also total mass ratio of the dispersed phase should be defined for 

each aggregate. Finally the required constitutive equations and the equations describing 

the uniform pressure for each aggregate are then formulated. 

As demonstrated in the previous chapter, the information about which phase in 

a vessel is covering a port is required to determine the association of an entry stream with 

a phase in the vessel as well as the selection of a phase flowing out of an exit port. To do 

this, we need to create the variables for describing volume bounds of each element of the 

aggregation list and then relate them to their level variables. The formal procedures for 

the formulation of aggregation section sub-model is given in algorithm 4.1.2 below. 

Algorithm 4.1.2 GENERATE AGGREGATION SECTION SUB-MODEL 
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1. For each aggregation of phases, 

(a) Create the variable representing the aggregation type. 

(b) Declare the aggregation type. 

(c) Define the total mass ratio of the dispersed phase. 

(d) Generate the required constitutive equations. 

(e) Equate the pressure of the vessel to that of the aggregate. 

2. For each element of the aggregation list, 

(a) Create variables representing lower and upper volume bounds. 

(b) Create a variable representing level for the element. 

(c) Equalise the upper volume bound to its level. 

(d) Express inter-element boundaries by equalising the lower volume bound of one 

element, to the upper volume bound of the element located below. 

3. Specify numeric values starting with "0" at the bottom of the vessel, to the lower volume 
bounds of each element. 

The phase type variable for the aggregation is declared by combining the two 

strings of the user-defined phase types for the set of the aggregated phases through 

under-bar "_" (step 1. b). As an example of step 1. b, a phase type for an aggregation 

phase is vapour-liquid where vapour and liquid are user-defined phase types for the 

aggregation. Total mass ratio of the dispersed phase (step 1. c) is used to calculate the 

physical properties of an aggregation from the physical properties of each phase in the 

aggregation. 

The constitutive equations (step 1. d) include the relation of total mass with 
density and volume and that of each component mass with total mass and mass fraction as 

well as the expression of the aggregation variables in terms of the corresponding variables 

of the two aggregated phases with respect to mass, density, enthalpy, internal energy, etc. 

Step 2 and 3 are concerned with the specification of the lower/upper volume 

bounds for all the elements of the list of aggregation of phases. The notation of the 

variables used in mathematical models are expressed as "Bot" and "Top" to denote the 

lower and upper volume bound respectively. 
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4.3.1.3 Transfer Law Section Sub-Model 

This section presents the algorithmic procedures for generating the mathematical 
sub-model from the physical description of the transfer law section. Recall that in the 

transfer law section a possible set of the mechanisms of the transfer between phases 

present in a vessel are described by specifying the relevant phases with the names of 
transfer laws which have been already installed in the library. From this information 

a set of appropriate equations belonging to transfer laws will then be invoked from the 

library. Whence the set of equations the required additional properties are created. The 

formal procedures for the generation of the transfer law section sub-model are given in 

algorithm 4.1.3 below. 

Algorithm 4.1.3 GENERATE TRANSFER LAW SECTION SUB-MODEL. 

1. For each transfer law, 

(a) Search the transfer law entry in the library. 

(b) Transform the set of equations in the library into the appropriate form of equations 
by taking account of the relevant phases. 

From the implementational point of view once a transfer law is invoked, its 

availability is checked by searching its entry in the library table with its name (step 

1. a) and the set of equations comprising the transfer law are then transformed into the 

appropriate form of equations by passing the pair of phases participating in the transfer 

law as the parameters for the invoking function (step 1. b). 

4.3.1.4 Port Section Sub-Model 

This section describes the procedure for creating the variables for the streams 

passing through ports from the information stored in the port section. 

We note that it is reasonable that the information about the material flowing 

out of a port is encapsulated into a mass stream instance containing a set of its attributes; 

mass rate, enthalpy flow, dispersion ratio and phase type. In order to deal with energy 

transfer with no mass flow, we build an energy stream instance, which contains only an 

enthalpy flow as its attribute. The formal procedure for creating stream variables is given 

in algorithm 4.1.4 below. 
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Algorithm 4.1.4 GENERATE PORT SECTION SUB-MODEL 

1. For each mass stream port, 

(a) Create the set of variables as the mass stream attributes of the port; mass rate, 
enthalpy flow, dispersion ratio and phase type. 

(b) Build the MassStream instance containing the set of the above attributes. 

2. For each energy port, 

(a) Create the enthalpy flow variable as the energy stream attribute of the port. 

(b) Build the EnergyStream instance of the port with the above attribute. 

4.3.1.5 Conservation Equations 

This section is concerned with the algorithm for detecting regions and for for- 

mulating the conservation equations in terms of mass and energy. 

Recall that the flux between the phases in thermodynamic equilibrium creates 

a high index DAE system as incorporated into the conservation equations. To avoid this 

problem a region has been defined as a particular subdivision of the system being modelled 

consisting of a single phase or multiple phases in thermodynamic equilibrium (Vazquez- 

Roman, 1992) and the pair of phases in thermodynamic equilibrium is then incorporated 

into a single region. The appropriate set of conservation equations is formulated for each 

region instead of each phase present in the vessel. Therefore, the procedure for detecting 

regions are required in advance of formulating the conservation equations. The phases in 

thermodynamic equilibrium are detected from the transfer law attributes specified in the 

transfer law section. 

The formal procedure for formulating conservation equations is given in algo- 

rithm 4.1.5 below. 

Algorithm 4.1.5 GENERATE CONSERVATION EQUATIONS 

1. DETECT REGIONS. (see algorithm 4.1.5.1 

2. For each element of regions, 
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(a) GENERATE MASS CONSERVATION EQUATION. (see algorithm 4.1.5.2 

(b) GENERATE ENERGY CONSERVATION EQUATION. (see algorithm 4.1.5.3) 

As the task for detecting regions is completed by step 1, the information about 

a fixed set of elements of regions will then be saved into the proper data structure for 

later use to formulate conservation equations. 
The regions are first taken to be the set of phases present in the vessel. The set 

of phases in thermodynamic equilibrium are extracted from the regions and then included 

into the regions as a single element. The formal procedure for detecting regions is given 
in algorithm 4.1.5.1 below. 

Algorithm 4.1.5.1 DETECT REGIONS 

1. Define regions as a set of phases in the vessel. 

2. For each pair in phase equilibrium, 

(a) Remove the pair of phases from regions. 

(b) Define a new element representing the pair of the phases. 

(c) Incorporate the element into regions. 

A set of mass and energy conservation equations are formulated for each region 

having been already detected by the completion of algorithm 4.1.5.1. Recall that the phys- 

ical discontinuities routinely arising in the vessel include appearance and disappearance 

of phases present in the vessel, and those resulting from the selection of the phase passing 

through the ports. To enable us to deal with these discontinuities later, the conservation 

equations are formulated in such a way that each element of the regions has a potential 

to pass through all the mass stream ports declared in the vessel. This has a consequence 

that each conservation equation has a set of potential mass input/output rate terms for 

the flows through all the mass stream ports. 

In order to determine the appropriate sign for the transfer terms in the conser- 

vation equations, we introduce the convention that the first of the two phases specified in 

the transfer law section is taken as the source, and the other as the sink. For example, in 



CHAPTER 4. MATHEMATICAL MODEL FORMULATION 70 

fig 3.5 the B phase is taken as the source and the V phase as the sink in the BubbleRise 
transfer law. 

The formal procedure for generating a mass conservation equation is given in 
algorithm 4.1.5.2 below. 

Algorithm 4.1.5.2 GENERATE MASS CONSERVATION EQUATION 

1. Write the differential term followed by equal sign. 

2. For each mass stream port, 

(a) Create the mass rate term. 

If the port type is an entry then 

(b) Add the mass rate term. 

Else 

(b) Subtract the mass rate term. 

3. For each defined inter-phase transfer, 

(a) Create the mass rate term. 

If the current region is a sink for the transfer then 

(b) Add the mass rate term. 

Else 

(b) Subtract the mass rate term. 

A conservation equation for the mass of each component comprising a region 

contains typically an accumulation term, the terms for the rates of inter-vessel mass flow, 

the terms for each defined transfer between interacting phases, and the rates of creation 

or consumption due to chemical reactions. 
The accumulation term is expressed with a time derivative (denoted $) followed 

by the mass holdup term of each component, for instance Mass_V represents the mass 

holdup of components present in the region V (step 1) and $Mass_V its time derivative. 
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As previously mentioned, each element of regions has a possibility of flowing 

through the mass stream ports present in a vessel, though the selection of a phase or an 

aggregation flowing through a mass stream port will be made in algorithm 4.1.6. We then 

incorporate into the mass conservation law the mass rates of flow through all the mass 

stream ports present in a vessel. The notation of a mass rate term is the combination of 

mass rate (Rate), the name of the element of the region and the name of the port, for 

instance Rate_V_P where V and P denote the name of element and the name of the port 

respectively. The sign of a mass rate term for a port depends on the type of the port 

specified by a user. By default, if a port type was declared as an entry, the sign becomes 

positive, otherwise (including an exit and reversible port) it becomes negative (step 2. b)1. 

The notation of a mass rate term for an intra-vessel defined transfer is made up 

of the combination of the rate symbol (Rate) with the names of phases participating in 

the transfer (e. g. Rate_B_L where B and L are phases of a transfer) (step 3. b). 

Although the provision for dealing with chemical reactions has not been imple- 

mented, the method for this will now be mentioned briefly. The reaction rate included in 

component mass conservation equations is composed of the following three terms: 

" stoichiometric coefficients 

" molecular weights 

" reaction kinetics 

In order to keep the dimension of the reaction rate terms consistent in the mass 

conservation equations, the dimension of the vector of stoichiometric coefficients is same 

as that of molecular weight, which is the number of components of the system. The signs 

of the corresponding stoichiometric coefficients of reactants and products are negative 

or positive respectively, since the reactants and products are consumed and produced 

during the chemical reaction. Of course, the reaction rate invoked by a user must have 

been already installed in the library for chemical reactions. 

As with a mass conservation law, an energy conservation law for a phase contains 

typically an accumulation term, the terms for the inter-vessel energy flows and the terms 

for the transfers specified between interacting phases. The procedures for formulating the 

energy conservation law will now be illustrated in algorithm 4.1.5.3 below. 

'In the case of reverse flow through a reversible port since the relevant inter-vessel transfer law contains 

the appropriate sign representing the directionality of the flow, there is no inconsistency for the sign of 

rate terms, for example, the sign of DrivingForce in appendix C. 7 (SGN(DrivingForce)) is negative in the 

case of reverse flow. 
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Algorithm 4.1.5.3 GENERATE ENERGY CONSERVATION EQUATION 

1. Write a differential term followed by equal sign. 

2. For each port, 

(a) Create the enthalpy term. 

If the port type is an entry then 

(b) Add the enthalpy flow term. 

Else 

(b) Subtract the enthalpy flow term. 

3. For each defined inter-phase transfer, 

(a) Create the enthalpy flow term. 

If the current region is a sink for the transfer then 

(b) Add the enthalpy flow term. 

Else 

(b) Subtract the enthalpy flow term. 

In principle the total energy of a phase should be defined as the summation of 

its kinetic, potential and internal energy in the absence of electric and magnetic fields. 

However we note that the kinetic and potential energy can be often neglected in process 

systems. The accumulation (differential) term therefore represents the total internal en- 

ergy of the current region. The total internal energy is described by the mass specific 

internal energy multiplied by the total mass of components for the region (step 1). 

It should be noted that an energy conservation law for a phase concerns the total 

energy and total mass, as opposed to a mass conservation law where the mass of each 

component within the phase is conserved. The reaction term therefore is included implic- 

itly in the internal energy. This has a consequence that there is no need to incorporate a 

term for a chemical reaction into the energy conservation law. 
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All the mass streams as well as the mass transfer between interacting phases 
carry an accompanying energy flow. The rates of energy flows required to formulate a 
conservation equation for energy therefore involve not only all the declared energy flows 
but also the energy flows associated with all the inter-vessel mass streams and by the 
transfer between interacting phases within a vessel (step 2 and 3). 

4.3.1.6 Phase Selection Rule 

As stated earlier, in order for a mathematical model to encompass physical 
discontinuities such as the appearance and absence of phases present in a vessel and the 

discontinuities resulting from a vessel geometry as well as to associate the stream passing 
through ports with a single phase or an aggregate, we introduce the rule for selecting a 

relevant phase or an aggregate passing through a port. This rule will therefore be used 

as a basis on formulating the algorithms for dealing with physical discontinuities. That 

is, by this rule a fixed set of discrete transitions are identified and each state can then be 

described. 

The phase selection rule is categorised into two classes based on the type of port 
(exit or entry). In fact the basic principle of this rule has been introduced in §3.1.4, how- 

ever the complete formal statement will be made in this section. Firstly, we consider the 

rule for exit port, which is concerned with the rule for selecting a phase or an aggregation 

of phases flowing out of the port. Since what flows out of the port is determined by the 

layer covering the outlet, the phase or aggregation of phases in contact with the port is 

selected as the outlet stream. By applying this rule to each element of aggregation list 

specified in the "Aggregation" statement, sets of all possible discrete transitions are iden- 

tified and each state is then described. If a phase or an aggregation of phases associated 

with the port is independently specified by a user for selectivity, allowing passage of only 

the specified phase or aggregation through the port, it is selected as the outlet stream 

passing through the port. The formal statement of the phase selection rule for an exit 

port is given in rule 4.1 below. 

Rule 4.1 PHASE SELECTION RULE FOR AN EXIT PORT 

Select the phase or aggregate covering the exit port as the outlet 

stream passing through the outlet unless specified differently in 

"Port" statement. 
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Now consider the phase selection rule for an entry port which allows association 
of an inlet phase with a phase in a vessel. As introduced in §3.1.4, the inlet stream 
association rule is classified into the two categories depending on whether the inlet stream 
is an aggregation or a single phase. We can get this information about the upstream 
from the application of the phase selection rule for the upstream port (exit port). This 
information will be used as a basis for determining the association of an inlet stream 

with a phase in a vessel. Of course, if a phase or an aggregate in a vessel is explicitly 
specified by the user as the entry port attributes, it will be taken as the inlet stream 
association without applying the inlet stream association rule introduced in §3.1.4. The 
formal statement of the phase selection rule for an entry port is given in the rule 4.2. 

Rule 4.2 PHASE SELECTION RULE FOR AN ENTRY PORT 

What enters through the entry port is determined by the rule in 

§3.1.4 unless specified differently in the "Port" statement. 

4.3.1.7 Vessel Discontinuities 

As stated in §4.2, in order to deal with the mechanisms of a large number of 
discontinuous phenomena in a consistent and systematic manner, a sophisticated mathe- 

matical modelling technique was adopted (Pantelides, 1995), decomposing a mathematical 

model into two main groups: case invariant group and a set of physical discontinuities, 

each characterised independently by its own state-transition. Based on this formalism, 

the method for handling physical discontinuities will now be introduced in detail. 

The required physical discontinuities are specified in such a way that based on 

the phase selection rule defined in §4.3.1.6, a set of possible discrete states for a given 

vessel are identified and each state is then described in terms of a set of relevant variables. 
As emphasised at the beginning of §4.3, the hierarchy of the conceptual elements 

of the physical modelling language, as shown in figure 3.25, will be maintained through- 

out the whole model generation procedure. As a consequence the method of dealing with 

physical discontinuities is based on this hierarchical structure. From this hierarchical 

point of view physical discontinuities are categorised into two classes; a vessel and con- 

nection class. In the vessel class the specification of a set of physical discontinuities is 

concerned with the selection of the phase or aggregate passing through a port, including 
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the appearance and disappearance of phases present in a vessel, on the other hand in the 
connection class it is concerned with the selection of the relevant port of the two mutually 
connected vessels. The latter is in fact carried out in the course of invoking appropriate 
inter-vessel transfer law libraries, the details of which will be presented at §4.3.3. The 
formal procedure for the specification of physical discontinuities in a vessel is given in 
algorithm 4.1.6 below. 

Algorithm 4.1.6 SPECIFY DISCONTINUITIES IN A VESSEL 

If the port type is reversible then 

1. Identify discrete cases in terms of flow directionality, each identified in accordance 
with PHASE SELECTION RULE. 

2. Specify discrete states in terms of relevant variables. 

Else 

I. Identify discrete cases in accordance with PHASE SELECTION RULE. 

2. Specify discrete states in terms of relevant variables 

Recall that a type of a mass stream port has the following three categories; 

an entry, exit and reversible port, as demonstrated in §3.1.4. The above algorithm is 

mainly decomposed into two cases depending on whether a port type is reversible or 

not. In the case of the port allowing a reversible flow, firstly the pair of transitions 

between flow directions (forward and reverse) are identified, and then each transition is 

again decomposed into a subset of the transitions resulting from the identification of a 

currently active phase or an aggregate passing through the reversible port. In the other 

cases (an entry or exit port), a set of transitions are identified in terms of a phase or an 

aggregate participating in the flow through the port. In order to identify these discrete 

cases, we suggest the rule for both selecting a phase or an aggregate through an exit port 

and associating an inlet stream with a phase or an aggregate in a vessel. The details of 

this rule will be illustrated in rule 4.1. Let us assume that a fixed set of discrete cases for a 

port have been identified by the application of rule 4.1. In accordance with the identified 

discrete cases, an appropriate set of equations is generated corresponding to each discrete 

state and if necessary, the condition for a set of transitions to the other states. 
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The basic method for specifying discrete states in mathematical terms will now 
be introduced. Once a set of states are identified by applying phase selection rule, the 

specification of a phase or aggregate passing through a port is mathematically formulated 

in such a way that a set of relevant variables is equated with the corresponding variables 

of the port. In order to maintain the same set of the variables across a given set of discrete 

cases, a set of the corresponding variables for a set of phases not passing through the port 

should be made dummy by assigning numeric value, "0" to this set of the variables. Note 

that relevant variables being able to be used here are categorised into the following three 

classes: 

" state-variables characterising the thermodynamic state of a phase or an aggregation 

of phases (e. g. viscosity, density, enthalpy, mass fraction and etc. ) 

" some of the attributes of a mass stream (e. g. mass rate, enthalpy flow, dispersion 

ratio and phase type of the port) 

" port type variables in the case of a reversible port (e. g. outlet and inlet). 

From the variables categorised in the above list those that are used to specify 

discrete states depend on the type of a port. First, in the case of an exit port, (as stated 

earlier) what flows out through the port depends on what phase or aggregate is covering 

the port. We therefore need to specify the discrete states in terms of all the attributes 

of the mass stream for the port as well as the appropriate set of state-variables. In the 

course of invoking from a library a set of equations representing the inter-vessel transfer 

law, these state-variables are determined by those contained in the library, which will be 

demonstrated in §4.3.3. 

In the case of an entry port, suppose that the discrete cases resulting from the 

association of the inlet stream with a phase in a vessel has been identified by applying 

the phase selection rule for the entry port. The set of variables required to specify each 

discrete state are mass rate and enthalpy flow. 

Finally in the case of a reversible port, as already noted, it is decomposed into 

two cases in terms of the flow directionality, and each is then identified by applying 

the appropriate phase selection rule. The flow directionality determines the type of the 

reversible port (an exit or entry port). This enables us to apply the appropriate method 

for specifying discrete states according to the flow directionality. That is, in the case of 

forward flow we apply the method for specifying discrete states for an exit port, in the 

other case (reverse flow) apply the method for an entry port. In the case of forward flow, 



CHAPTER 4. MATHEMATICAL MODEL FORMULATION 77 

as stated above, we need to specify discrete states in terms of all the attributes of the 

mass stream for an exit port. 
However, as far as the specification of discrete states in terms of the disper- 

sion ratio and phase type of the reversible mass stream attributes is concerned, the two 

vessel identifiers mutually connected are needed to describe the logical expression of the 

condition for each state. This will be dealt with in §4.3.3. 

As introduced in §3.1.4, a user could provide for selectivity (e. g. via a filter or 

membrane) allowing passages of only specified phase or aggregate. In this case, instead of 

specifying discrete states, we describe the fixed state in terms of a set of relevant variables 

of the explicitly specified phase or aggregate. 
Thus far we have demonstrated how to deal with a set of physical discontinuities 

through ports in a vessel. By the completion of algorithm 4.1.6, it is possible to generate 

an appropriate set of discontinuous equations through the explicit specifications of the 

relevant variables. It should be recognised that all possible physical discontinuities likely 

to arise through ports have been incorporated into a set of case variant equations in the 

mathematical model. Consequently these discontinuities encompass transitions resulting 

from vessel geometry (port positions). However, the discontinuities embedded intrinsically 

in a transfer law itself are beyond the scope of algorithm 4.1.6. For instance, the rela- 

tionship of phase equilibrium where the transitions among the states of only sub-cooled 

liquid, only super-heated vapour and coexistence of two phases, and pipe flow containing 

the transition between flow regimes (e. g. laminar and turbulent). The transfer law library 

should be constructed for these discontinuities to be embedded in it, the details of which 

will be illustrated in appendix C. 

In the next section the procedures for generating mathematical equations from 

the physical description of the geometry of a vessel will be introduced. 

4.3.1.8 Geometry Section Sub-Model 

This section is concerned with the generation of the mathematical sub- model 

from the physical description of the geometry of a vessel. The generation procedure is 

decomposed into the generation procedures for a set of subsections of the geometry such 

as the section of shape, dimension and port position. Recall that as far as the orientation 

section is concerned, only the "vertical" orientation is available in the present package 

due to its simplicity. Consequently there is no generation procedure for the orientation 

section. The master procedure for a geometry section model is given in algorithm 4.1.7 

below. 
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Algorithm 4.1.7 GENERATE GEOMETRY SECTION SUB-MODEL 

1. For shape section, 

(a) Apply vessel volume constraint. 

(b) For each element of the aggregation list, 

i. Generate an equation describing its volume. 

2. For dimension section, 

(a) Declare dimension variables as real type parameters. 

(b) Set all numerically specified values to the dimension variables. 

3. For port position section, 

(a) Declare port position variables as real type parameters. 

(b) Set all numerically specified values to the port position variables. 

(c) If a port position is specified by a dimension attribute then 

i. Equalise the port position variable to the dimension variable. 

Recall the basic premise that all the phases present in a vessel must fill the 

vessel. This is the case for a closed vessel the volume of which is fixed. The volume of a 

closed vessel therefore is equal to the summation of the volumes of all phases present in 

the vessel (step 1. a). Even the volume of an open vessel in fact cannot be varied. The 

difference between open and closed vessels is the fact that since the volumes of phases 

present in the open vessel may be varied and the remaining space is taken up by the 

atmosphere, which is the part of the environment, the vessel content need not fill an open 

vessel, but the vessel cannot be over-filled. We therefore assume that the remaining space 
is taken up by the pseudo-volume, namely Vol-Empty in order to relate the vessel volume 

to the volumes of the phases present in an open vessel, and then this volume is included 

into the volume constraint of the vessel. That is, the open vessel volume is equal to the 

summation of phases present plus the pseudo-volume (step 1. a). 
The equations describing the volume occupied by each element of the aggregation 

list are appropriately generated according to the shape of the vessel (step 1. b. i). For an 

open vessel, the equation describing the pseudo-volume is generated additionally. 
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The attributes of the geometrical dimension of a vessel are declared as the geo- 
metrical design parameters which are time invariant quantities, as opposed to the variables 
of equations governing dynamic behaviour (step 2). 

Similar to dimension attributes, the attributes of port positions are declared 

as time invariant design parameters if specified by numeric value (step 3. a and 3. b). 
However, if the attribute of a port position was specified by a dimension attribute (e. g. 
height, diameter for cylinder) instead of a numeric value, the equation equalising the port 

position attribute and the dimension attribute is generated (step 3. c. i). 

Thus far we have described the procedures for generating the mathematical 
model of a vessel (algorithm 4.1). The remaining sections will be concerned with the 

procedure for generating mathematical model from the information encapsulated into a 
reservoir and connection entity. 

4.3.2 Reservoir Sub-Model Generation 

This section describes how to generate the mathematical model of a reservoir 
from the physical information declared in a reservoir entity. 

As illustrated in §3.2, the package can deduce which compounds may be present 
in the phases within a vessel from the connection arrows and declared reactions and 

transfer laws and the list of compounds specified in each source reservoir (described in 

the reservoir entity). As the language provision for specifying a list of compounds in each 

reservoir is not available in the present package, this section does not include dealing with 

the identities of compounds involved. 

Therefore only the port section in a reservoir entity is specified since all the 

requisite state-variables in each reservoir are automatically detected from the information 

about the inter-vessel transfer law in library whether it is a source or sink (see §4.3.3). 

The procedure for the generation of the mathematical models of a reservoir is given in 

algorithm 4.2 below. 

Algorithm 4.2 GENERATE RESERVOIR SUB-MODEL 

1. For each mass stream port, 

(a) Create a set of the mass stream attributes; mass rate, enthalpy flow, dispersion 

ratio and phase type. 

(b) Build the mass stream instance composed of the set of the above attributes. 
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2. For each energy port, 

(a) Create the enthalpy flow attribute. 

(b) Build an energy stream instance which has the above attribute. 

This algorithm is mainly decomposed into two parts according to whether mass 

or energy flows through a port of a reservoir, which the package automatically can deduce 

from the information about the port of the vessel connected to the reservoir. 
As already noted in algorithm 4.1.4, the currently active status of any material 

flowing through a mass stream port is represented by a set of the mass stream attributes; 
its mass rate, enthalpy flow, ratio and phase type (step 1). 

Energy flow through an energy port is characterised by the enthalpy flow, since 
this is its only attribute (step 2). 

In the next section the detailed procedures for the generation of the mathemat- 

ical model from the physical description of a connection entity is described. 

4.3.3 Connection Sub-Model Generation 

This section deals with the generation of the mathematical sub-model from 

the information about physical description of a connection entity. The procedures for 

generating the mathematical sub-model from a connection entity are given in algorithm 

4.3 below. 

Algorithm 4.3 GENERATE CONNECTION SUB-MODEL 

1. Deduce the connectivities from the CONNECTION statement. 

2. Invoke appropriate transfer laws from library. 

3. If reversible mass flow then 

(a) SPECIFY CONNECTION DISCONTINUITIES. (see algorithm 4.3.1 

Recall that the physical description of an inter-vessel connection attribute con- 

sists of a pair of ports from two vessels (one of the two vessels may be a reservoir), the 

connection arrow to specify the flow directionality, and the inter-vessel transfer law. 
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From the information about the pair of the ports, the topological inter-vessel 

connections are deduced in terms of the relevant stream instances (step 1). The completion 
of this step results in whole process flow-sheeting for a given process system. 

As the inter-vessel transfer law is specified by a user, the set of transfer law 

equations will be invoked from the library (step 2). This procedure in fact proceeds to 

transform the set of the transfer law equations in the library table into an appropriate 
form by considering the pair of the ports through which the transfer is occurring, after 
having searched the specified transfer law to check whether or not it has been installed 

in the library table (step 2). As mentioned in algorithm 4.1.6, in the course of invoking 

a transfer law the set of state-variables embedded in the transfer law are identified and 
then discrete states arising through the port of the source vessel in terms of the set of 

state-variables. 

As mentioned in §4.3.1.7, if the directionality of the inter-vessel flow is reversible, 
it will be impossible to specify discrete states in terms of the dispersion ratio and phase 
type of the attributes of the mass stream passing through the reversible port within 

the scope of a vessel due to the impossibility of accessing vessels. These discrete states 

therefore are specified at connection entity (step 3. a). The method for this specification 

is that discrete cases are identified in terms of the flow directionality for a reversible 

connection and each is identified by applying the phase selection rule described in §4.3.1.6 

and then the state for each identified case is described in terms of the two attributes of 

the mass stream flowing through the reversible connection; its dispersion ratio and phase 

type. The formal procedure for specifying connection discontinuities is given in algorithm 

4.3.1 below. 

Algorithm 4.3.1 SPECIFY DISCONTINUITIES IN CONNECTION 

1. Identify discrete cases in terms of flow directionality, each identified in accordance with 
PHASE SELECTION RULE. 

2. Specify discrete states in terms of the two mass stream attributes; dispersion ratio and 

phase type. 

Thus far the algorithms required to formulate mathematical models from physi- 

cal description represented in the physical modelling language for a given process system 
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have been presented in detail. In the end the automatically formulated mathematical 
models encompass the discontinuous behaviour resulting from the discontinuities arising 
routinely in process systems, which includes the appearance and disappearance of phases, 
the flow regime transition, the discontinuities from vessel geometry and other factors. 

This concludes the algorithms required to generate the mathematical models. 
The remaining section describe the conventions for notation used in mathematical models. 

4.4 Notation used in Mathematical Models 

Before implementing the algorithms for generating mathematical models, a con- 

sistent method of notation should be identified. This section describes the notation used 
in the present implementation. The Notation described in this section is limited to that 

of variables and parameters comprising equations in mathematical models. As gPROMS 
language is the form of the generated mathematical models, the other symbols required 

to formulate a set of equations are based on the syntax of the gPROMS input language, 

which includes logical expressions, arithmetic operators and a set of built-in functions. 

In order to ensure a consistent notation, we take account of the symbols com- 

monly used in physical descriptions and for physical properties. There are several methods 
for formulating the notation. We note that the most significant aspect of notation is the 

legibility to users, prompting to adopt the names of physical properties and symbols in 

physical description literally. On the other hand we must control the length of a notation 

made in this way. Too long a notation may inhibit its legibility in itself and even the ease 

of understanding. These aspects lead to a balance between the literal adoption and com- 

pactness, depending on a specific notation. The standard notation used in this package 

is given in table 4.1, the lower part of which represents parameters used in mathematical 

models, and non-standard notation given in table 4.2. 

As stated earlier, all variables and parameters used in mathematical models 

should be unique within each vessel, reservoir and connection. To be so, a notation, in 

most cases, is made from the symbol of physical property followed by a additional identifier 

taken from a name of phase, aggregation, port, vessel, reservoir or connection as described 

in the physical process description. In addition to these, an under-bar, "_" is inserted for 

the ease of readability between the symbol of the physical property and the supplementary 

identifier. Examples are Mass_V, Enth_Pol, Vol_FlashDrum and Velocity_Cl, where 

V, Pol, FlashDrum and C1 denote identifiers of a phase, port, vessel and connection 

respectively. The under-bar is also employed as a delimiter in various cases. It should 
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standard items variables/parameters t 
mass Mass Array(NoComp) of Mass 
mole Mole Array(NoComp) of Mole 
mass fraction MassFrac Array(NoComp) of Fraction 
mole fraction MoleFrac Array(NoComp) of Fraction 
mass flow rate Rate Array(NoComp) of Mass-Rate 
velocity Velocity Array(NoComp) of Velocity 
enthalpy Enth Enthalpy 
internal energy IntEnergy Int_Energy 
enthalpy flow EnthFlow Enthalpy. Flow 
entropy Entropy Entropy 

pressure Press Pressure 
temperature Temp Temperature 

volume Vol Volume 
density Den Density 

viscosity Viscosity Viscosity 

ratio Ratio Array(NoComp) of Fraction 
total ratio TotalRatio Fraction 
phase type PhaseType Positive 
molecular weight MoleWeight Array(NoComp) of Positive 
equilibrium constant EquilConst Array(NoComp) of Positive 

phase bounds Top, Bot Positive 
level Level Positive 
area area Positive 

number of components NoComp INTEGER 
port position z REAL 
diameter diameter REAL 
height height REAL 
length length REAL 

width width REAL 

constant Const REAL 

port type OUTLET, INLET INTEGER 

Table 4.1: Standard Notation Table 

non-standard items variables/parameters types 
dew temperature DewTemp Temperature 
bubble temperature BubTemp Temperature 
driving force DrivingForce NoType 

reynolds number ReynoldsNo Positive 

reynolds constant ReynoldsConst Positive 

Table 4.2: Non-Standard Notation Table 
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be noted that users are banned from using an under-bar in the physical description of a 

process system. 

4.5 Summary 

This chapter was concerned with the generation of mathematical models ex- 
hibiting discontinuous behaviour potentially arising in a given system, from the purely 

physical description represented by the proposed language. 

The basic strategy for formulating mathematical models was established and 
then the consistent and general mathematical formalism required to encompass the phys- 

ical discontinuities in an "easy" and "natural" manner was identified on the basis of the 

gPROMS model structuring concept. Based on this model generation strategy and generic 

formalism, the complete algorithms for generating mathematical models from the physical 

description written in the physical modelling language designed in the previous chapter 

were developed. Finally, in the last section, the notation used in the mathematical models 

was discussed in detail. 

As the methodology for model generation has now been developed the computer 

implementation of it will be discussed in the next chapter. 
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Chapter 5 

Implementation 

In the previous two chapters a language supporting the formal physical descrip- 

tion of process systems and the methodology for formulating mathematical models from 

this physical description have been presented. 
This chapter is concerned with the implementation of the package for auto- 

matically generating mathematical models, based on the model formulation methodology 

presented in chapter 4. The current version of this package has been implemented in C 

programming language (Kernighan and Richie, 1988) on UNIX system. It begins with 

an overview of the model generation package in terms of the software architecture. The 

implementation of each of architectural sub-systems will then be discussed in detail in the 

subsequent sections, including the transfer law library and the two symbol tables for the 

internal storage of information about the physical description and mathematical models. 

5.1 Software Architecture 

The model generation package is composed of three major sub-systems: the 

translator, the model generation engine and the code generator. In addition there are 

the library containing appropriate transfer laws and the two symbol tables for the in- 

ternal dynamic storages of the physical description and mathematical models: physical 

and mathematical symbol table. A schematic diagram of the software architecture of the 

package is given in figure 5.1. 

In order to store the information about physical description in an appropriate 

data structure, we need to set up the physical symbol table, which is internally represented 

in the same hierarchical structure as shown in that of figure 3.25. Prior to building the 

physical symbol table, the translator takes an input file containing the physical description 
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and then checks the syntax and semantics of the language. If the input file is successfully 
translated, the translator creates the physical symbol table, which is dynamically allocated 
in memory, in which it stores all the information contained in the input file. The physical 

symbol table is used by the model generation engine to formulate mathematical models. 
based on the model generation algorithms developed in the previous chapter. In the 

course of the model formulation process the model generation engine may invoke transfer 

laws which have already been installed in the library. All the mathematical information 

generated by the model generation engine is encapsulated in the mathematical symbol 

table which uses the same structured hierarchy as shown in figure 3.25. Finally the 

mathematical symbol table is employed by the code generator to convert the internal 

mathematical representation into the form of a specific simulator input language. 

5.2 The Translator 

The translator performs two main tasks: 

" checks whether or not the physical description coded in the physical modelling 

language is correct in terms of its syntax and semantics. 

" stores the information about the physical description into the physical symbol table 

for later use by the model generation engine. 

In order to complete these tasks the translator is decomposed into the three 

structural sub-systems; the scanner, the parser and the semantic routines as shown 5.1. 

These sub-systems and the physical symbol table are discussed in the following sections. 

5.2.1 The Scanner 

The scanner reads the input character stream and identifies the tokens which 

include keywords, operators, identifiers, constants, literal strings and punctuation symbols 

such as parenthesis, commas and semicolons. The tokens are passed to the parser for 

syntax analysis. 
Although the scanner is the simplest sub-system of the translator enough to 

implement in any programming language, the scanner of this package has been easily 

implemented by lex (Levine et al., 1995) (installed on the UNIX operating system) which 

is a tool for automatically generating the scanner in C code from a specification based 

on regular expressions. The lex specification consists of the declarations section (which 

sets up the execution environments in terms of variables, manifest constants, and regular 
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Figure 5.1: The Software Architecture of the Prototype Package 
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definitions), the translation rules section, (which includes a list of regular expressions 

composed of the patterns and actions) and C supporting-subroutines section (there is no 

subroutine in the present package). The lex input file for the this package (appendix A) is 

compiled by using the UNIX command lex with the option 11 to get the scanner coded 
in C (namely lex . yy . c). 

5.2.2 The Parser 

The parser checks the syntactic structure of an input file representing the phys- 
ical description of a process systems in the form of the physical modelling language. 

Whenever the parser requires a new token, the scanner is invoked and returns the token 

as the corresponding integer to the parser. The returned token is used by the parser to 

check if it is correctly formed in terms of the syntax and the appropriate semantic routines 

are then undertaken. 

In addition to the lex utility, there is also an automatic parser generator yacc 
(Levine et al., 1995) on the UNIX operating system. The adoption of yacc has led to the 

rapid prototyping of the parser, otherwise, considerable efforts would have been required 

to implement it. The parser is thus generated by yacc in this package. To do this we 

need to specify the yacc input which is in the form of regular expressions. Similar to 

the basic structure of lex, yacc specification is composed of the declarations section, the 

translation rules section and C supporting-subroutines section. The declarations section 

has three optional sub-sections which includes a literal C block code enclosed in %{ %} 

lines, the declaration of the types of the stack used in the parser and the definition of a 

list of tokens. The yacc input file in this package is given in appendix B, where the first 

two options of the declarations section corresponds to the inclusion of the global header 

file (#include "global. h") and the declaration of the yacc stack type (union{ 
... 

}), 

respectively. In the translation rules section consists of a list of the rules for the grammar 

of the physical modelling language discussed in chapter 3. The C subroutine specified in 

the last section is the function calling lex (lex 
. yy . c). Once the yacc input specification 

is completed, the yacc input file is compiled using the UNIX command yacc with the 

option ly to get the parser (namely y. tab . c). 

5.2.3 The Semantic Routines 

Adoption of yacc has the consequence that coding of the semantic routines rep- 

resents most of the effort required in the implementation of the translator. The semantic 

routines undertake two main tasks as follows: 
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" checks that the semantics of the physical description contained in the input file are 
valid. 

" creates the physical symbol table, the appropriate internal data structure that will 
store the information about this physical description. 

The details of the semantics of the language for physical description have been 

presented in the chapter 3 and the following section deals with the data structure of the 

physical symbol table. 

5.2.3.1 The Physical Symbol Table 

As stated in chapter 3, there are three primitive physical process entities (vessel, 

reservoir and connection). The physical symbol table is thus categorised into three classes 

of tables corresponding to the three primitive physical process entities, i. e. the vessel, 

reservoir and connection tables. The physical symbol table for each entity is structured 

in the form of hash tables consisting of a fixed array, each element pointing to an entity 

instance currently created in memory. Again a set of attributes declared in each section 

belonging to an entity is structured into the corresponding hash table'. The hash table 

structure enables to speed up a search of the table, which will be used for the model 

generation engine to construct the mathematical symbol table. 

The detailed procedure for constructing the physical symbol table involves the 

following: 

1. create the space available to each attribute in memory by use of the dynamic storage 

allocation facilities of the programming language. 

2. store the attribute information into the space in memory. 

3. insert the entry into the table if it is not already present. 

5.3 The Model Generation Engine 

The model generation engine embodies the algorithms presented in chapter 4. 

That is, the model generation engine transforms the information encapsulated in the 

physical symbol table into a mathematical model by applying the generation algorithms 

and then stores the new information into the mathematical symbol table. In the course 

1 The structure of geometry attributes declared in geometry section of a vessel entity is not based on 

the hash table but based on a linked list because there is only one geometry instance for the vessel entity. 
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of this process, transfer laws in the library are invoked as required and then converted 
into an appropriate set of equations. 

To do this, the first task of the model generation engine is to design the abstract 
data type for the structure of the mathematical symbol table. The data type is basically 

composed of a set of complex combinations between linked lists and binary trees. Recall 

that the structure of a mathematical model is mainly decomposed into a case invariant 

group and a set of physical discontinuities to encompass the combined discrete/ continuous 
behaviour of a given process system. The linked list data type is employed for the case 
invariant group, whilst, the data type composed of the combined linked lists and binary 

trees is employed for storing mathematical sub-model representing the discontinuities. 

Based on a well designed abstract data type for the mathematical symbol table, 

all activities performed by the model generation engine, like those of the semantic routines, 

are concerned with handling the data structure, which includes the dynamic creation of 

an abstract data type, the intermediate storage of the information into the structure and 

its insertion into the mathematical symbol table. This is then used by the code generator 

to construct the mathematical model which is represented in a specific simulation input 

language. The details of internal data structure for the mathematical symbol table will 

now be presented. 

5.3.1 The Mathematical Symbol Table 

The internal representation of the mathematical symbol table is structured into 

the hierarchy as shown figure 3.25, in terms of the three primitive physical entities. The 

internal hierarchical structure of the mathematical symbol table is shown in figure 5.2. 

The table is decomposed into the three hierarchical levels, each corresponding to the sub- 

model (vessel, reservoir or connection sub-model) formulated from the corresponding 

physical process entity. The two dotted lines in figure 5.2 delimit the hierarchical levels 

of the three sub-models, each of which are composed of a set of abstract data sub- 

structures based on combinations of the data types of linked lists and/or binary trees. 

The declaration section in each sub-model represents a set containing the parameter, 

variable, set and selector sections. It should be noted that, as stated in §4.2, the equation 

section in the vessel and connection sub-model are decomposed into case invariant and 

discontinuity sections. 

Each sub-model is structured in the form of its own hash table. The following 

set of attributes are also structured in the form of hash tables: 

" parameter, variable and set attributes in each sub-model 
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" stream attributes in both the vessel sub-model and the reservoir sub-model stream 

attributes 

" unit attributes in the connection sub-model 

The internal structure used to store the discontinuity section in the connection 

and vessel sub-models are a set of abstract data types mainly built by the combination 

of linked lists and/or binary trees. The internal structure for the other sections are based 

on the derivatives of linked lists. 

5.4 The Transfer Law Library 

When a transfer law is invoked, its availability is checked by searching for it by 

name in the transfer law library table. The set of equations comprising the transfer law 

is then transformed into an appropriate form by passing the set of phases participating 

in the transfer law as the parameters of this invoking procedure. 

The data type required to represent a transfer law in the library is structured 
into a set containing its name, the type of flow (mass or energy flow) and a fixed set of 

equations providing a mathematical description of the transfer. As discussed in §4.3.1.7, 

the set of equations comprising a transfer law are categorised into two main classes: case 

invariant group and a set of physical discontinuities. The data types required to install 

the equations representing a transfer law are thus based on combinations of linked lists 

and/or binary trees. In order to improve the speed of searching for a transfer law in the 

library table, the transfer law instances are installed into a hash table structure. 

Also included in the library are a set of functions which manage the construction 

and installation of relevant variables and equations required to represent a transfer law, 

thus allowing easy maintenance and updating of the library. The task of installing a new 

transfer law is thus comparatively simple. 

5.5 The Code Generator 

Once the task of the model generation engine is completed by storing all the 

information about a mathematical model into the mathematical model symbol table, the 

final model generation procedure is undertaken by the code generator, which converts the 

information stored in the mathematical symbol table into a specific target language. In 

the present package the target language is the gPROMS (Barton, 1992) input language. 
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Figure 5.2: The Internal Hierarchical Structure of the Mathematical Symbol Table 
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From the point of view of programming, the conversion procedures simply utilise 
formatting functions to fit the output to the form of target language and hence the imple- 

mentation is in itself not a complex job. The task of updating the package to formulate 

a mathematical model in the form of a new target language therefore only requires the 

additional implementation in the code generator, rather than upgrading the whole model 
generation engine. This has a consequence that the model generation package provides the 

potential of multi-functionalities for generating different forms of mathematical models 
as required. 

5.6 Summary 

Based on the model generation algorithms presented in §4.3, the implementation 

of the current version of the package has been discussed in this chapter. The software 

architecture of the model generation package is similar to that of a compiler which is 

a program that reads a program written in one language - the source language - and 
translates it into an equivalent program in another language - the target language (which 

is usually a machine code) (Aho et al., 1986). The process of translating a program writ- 

ten in a source language (the physical description) into a target language (the simulation 
input language) is decomposed into two stages; the intermediate storage of the informa- 

tion about the mathematical models formulated by the model generation engine into the 

mathematical symbol table (instead of direct generation of the mathematical models from 

the information stored in the physical symbol table) and the conversion of the information 

encapsulated in the mathematical symbol table into a specific target language. 

The decoupling of the model generation process into the two stages provides a 

potential for the versatility of the code generator in this package, that is, it is possible 

to easily improve the code generator to generate mathematical models in the various 

forms of simulator input language (e. g. gPROMS, Speed Up, etc. ). Furthermore, it has a 

potential of enhancing the compatibility of this package which means the ease with which 

the package may be interfaced with other modelling and simulation environments. 

Inevitably the language designed for the physical description and facilities evolve 

as more complex processes and a wider range of applications are considered. Due to the 

adoption of the automatic parser generator (yacc), changes to the syntax of the language 

require only that the yacc input specification be updated. This process does not affect the 

semantic routines since the process of generating the parser by use of yacc is completely 

independent to the semantic routines. This has a consequence that the task of upgrading 
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the package resulting from the evolution of the language syntax is straightforward, which 

means high extendibility of software products. 
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Chapter 6 

Simulation Examples 

This chapter describes the simulation results of the examples introduced in §3.4. 

6.1 Flash Drum 

Here we consider the flash drum described in §3.4.1. Each phase is composed of 

two components; propane and butane. The operating and intial conditions used in this 

simulation are as follows: 

Operating Conditions 

" source reservoir, R1 

Pressure = 

Density = 

Mass Fraction = 

Enthalpy = 

Dispersion Ratio = 

PhaseType = 

Viscosity = 

4x1.013E2 kPa 

330 kg/m3 

[0.4,0.6] 

3.5E2 kJ/kg 

0.001 

3 (aggregation type) 

5E-5 Pa. s 

" sink reservoir, R2 and R3 

Pressure = 1.013E2 kPa 

Initial Conditions 

Temperature of vapour = 300 K 

Mass of each component in separate vapour = [1,1] kg 

Mass of each component in aggregation = [15,15] kg 

dispersion ratio = 0.001 
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Figure 6.1 and 6.2 show the change with time of the total mass holdup of each 
phase and the horizontal mixture level of the aggregate respectively. 
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Figure 6.1: Holdup variation in flash drum 

The connection between the flash drum and reservoir is defined to be irreversible 

flow (i. e. through the use of a pipe installed with a non-return valve). Since the pressure 

of the flash drum is initially lower that that of reservoir R2 there is no flow through the 

connection and the pressure of the flash drum varies with time. When the driving force 

(the pressure difference between the flash drum and reservoir) becomes positive (at t 

56 sec. ), the non-return valve opens and flow commences out of the flash drum through 

port Pol. Figure 6.3 and 6.4 shows this discontinuous behaviour. 
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Figure 6.2: Level variation in flash drum 
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Figure 6.3: Driving force variation accross of connection C2 between flash drum and the 

reservoir 

0.1 

0.1 

0.1 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.00 
0 100 200 300 400 Soo 

ýý PLANT. FLASRDRUM. SUM_RATE_PO1 

Figure 6.4: Variation of total mass rate flowing through port Pol in the flash drum 
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6.2 Two Flash Drums with reversible flow 

This example considers the two flash drums linked together via. a connection al- 
lowing flow in either direction. The operating and initial conditions used in this simulation 
are as follows: 

Operating Conditions 

9 source reservoir, R1 

Pressure = 

Density = 

Mass Fraction = 

Enthalpy = 

Dispersion Ratio = 

PhaseType = 

Viscosity = 

1.013E2 kPa 

330 kg/m3 

[0.4,0.6] 

3.5E2 kJ/kg 

0.01 

3 (aggregation type) 

5E-5 Pa. s 

" sink reservoirs, R2, R3 and R4 

Pressure = 1.013E2 kPa 

Initial Conditions 

" FlashDruml 

Temperature of vapour = 300 K 

Mass of each component in separate vapour = [1,1] kg 

Mass of each component in aggregation = [15,15] kg 

dispersion ratio = 0.001 

" FlashDrum2 

Temperature of vapour = 280 K 

Mass of each component in separate vapour = [1,1] kg 

Mass of each component in aggregation = [15,15] kg 

dispersion ratio = 0.002 

Figure 6.5,6.6 and 6.7 shows the change with time of the horizontal mixture 

levels and the total mass holdup in each flash drum respectively. 

This example illustrates the change in flow direction in the connection between 

the two flash drums. This is shown in in figure 6.8 which represents the change in port 

type with type. In this figure a port type of 1 represents an outlet flow whilst a port type 

of 2 represents a flow into the vessel. 
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Figure 6.5: Level variation in two flash drums 
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Figure 6.8: Flow reversibility between two flash drums 

6.3 Decanter : Settling tank 

102 

We now consider the simulation of the decanter introduced in §3.4.3. In this 

example we considered a single component multi-phase system. The operating and initial 

conditions are as follows: 

Operating Conditions 

" source reservoir, R1 

Pressure = 2*1.013E2 kPa 

Density = 902.5 kg/m3 

Mass Fraction = 1.0 

Enthalpy = 0 kJ/kg 

Dispersion Ratio = 0.3 

PhaseType = 3 (aggregation type) 

Viscosity = 0.00178 Pa. s 

" sink reservoirs, R2, R3 

Pressure = 1.013E2 kPa 
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9 decanter 

Enthalpy of Butanol =0 kJ/kg 

Enthalpy of Butanol in aggregation =0 

Enthalpy of Water in aggregation =0 

Enthalpy of Water =0 

Temperature of Butanol = 298 K 

Temperature of Butanol in aggregation = 298 

Temperature of Water in aggregation = 298 

Temperature of Water = 298 

Density of Butanol = 805 kg/m3 

Density of Butanol in aggregation = 805 

Density of Water in aggregation = 1000 

Density of Water = 1000 

Viscosity of Butanol = 2.65E-3 Pa. s 

Viscosity of Butanol in aggregation = 2.65E-3 

Viscosity of Water in aggregation = 9.0E-4 

Viscosity of Water = 9.0E-4 

Pressure in decanter = 1.013E2 kPa 

Initial Conditions 

" decanter 

Mass of Butanol 

Mass of Water 

Mass of the aggregate 
Mass of Water in aggregation 

IntEnergy of Butanol 

IntEnergy of Butanol in aggregation 

IntEnergy of Water in aggregation 

IntEnergy of Water 

=0 kg 

=0 kg 

=0 kg 

=0 kg 

=0 kJ/kg 

=0 kJ/kg 

=0 kJ/kg 

=0 kJ/kg 

103 

Figure 6.9 and 6.10 shows change with time of the butanol level and the mass 

holdup of each phase respectively. Figure 6.11 illustrates the fact that there is no flow 

over the weir until the butanol level as reached the top of the weir, at approximately 1200 

sec. 
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Figure 6.9: Level variation in decanter 
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Chapter 7 

Conclusions and Future Work 

7.1 Conclusions 

The software package implemented on the basis of the methodology described in 

this thesis allows the automatic generation of lumped-parameter models taking account 

of discontinuous behaviour routinely arising in process systems. The package has been 

successfully tested through the simulation of several examples using the general-purpose 

simulation package, gPROMS to prove the feasibility of the proposed model formulation 

approach. 

The starting point of this research was the construction of the concept for process 

representation from the previous work (Vazquez-Roman, 1992), which has been extended 

to encompass combined discrete/ continuous process systems, although the underlying 

concept remains unchanged. The basic premise is well defined thermodynamic phases 

where the state of all material present may be described in terms of a finite set of state 

variables and hence any process system may be viewed as a set of inter-connected vessels 

where the phases present interact. These interactions may involve transfers of material 

and/or energy between pairs of phases or vessels through well defined physico-chemical 

transfer laws. 

The textual description in a high level language specific to process systems has 

been chosen as a method for supporting the description of process systems in a purely 

physical fashion based on the conceptual process representation. The formal language 

for this purpose has been designed with a special emphasis on process representation for 

phase distribution within a vessel and on the geometry of process equipment and their 

connections. This has a consequence that the formalism of the language satisfies the key 

requirements of our ultimate research objective: 
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" highly declarative description 

" hierarchically structured formalism 

" purely physical behaviour-oriented feature 

" provisions enabling identification of the physical discontinuities routinely arising in 

a given process system 

The most important feature of the methodology for formulating mathematical 
models presented in this thesis is the capability for dealing with the physical discontinuities 

arising in a given process system. This discontinuous behaviour arises routinely due 

to the phase appearance or disappearance, transitions between fluid flow regimes and 
flow direction and those resulting from the geometry of individual process equipment. 
No other computer-aided model generation package designed to automatically identify 

these discontinuities and then to generate appropriate mathematical models from purely 

physical fashion has yet been reported. 

The current version of this package generates mathematical models in the form 

of gPROMS input language, which makes it possible for the models to be directly simu- 
lated within the gPROMS environment. The procedure of storing the information about 

mathematical models in internal data structure is completely decoupled from that of gen- 

erating its output format, instead of directly producing its output format without its 

intermediate storage. From the point of view of a software development this suggests a 

potential for high compatibility of a software product, producing multiple output formats 

as desired within a unified software framework, thus making it possible to easily interface 

with other modelling and simulation packages. 

Research into the development of general-purpose modelling environments, which, 

in this context, provide users with a facility for describing the underlying dynamic be- 

haviour of process systems in terms of a set of variables and equations, may be thought 

of as being somewhat in its maturity, though further work is required in some aspects, for 

example, the modelling and simulation of combined lumped and distributed parameter 

systems. In contrast, the research into automatically generating appropriate mathemat- 

ical models, partly or totally, with the objective of ultimately freeing users from formu- 

lating the consistent set of equations comprising the model for a desired process system, 

from author's point of view, is still in its infancy. It is hoped that the work described 

in this thesis will make some contribution towards enhancing the practical feasibility of 

sophisticated computer-aided modelling tools. 
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7.2 Future Work 

In this section a number of issues for future work from a both theoretical and 
practical point of view will briefly be discussed. 

7.2.1 Suggestions on "Phase" and "Aggregation" statement 

The phase selection rule for entry ports in this research has been developed in 
§4.3.1.6. However, further refinement of this rule is still required to deal with the wide 

range of real situations relating to the behaviour of interacting phases in a vessel and 
their inter-vessel connections. 

The basic idea is to predict the ratios of the phases present as a function of 
height, using simple mixing/separation laws (in general "dispersion law"), thus their 

solution yields volume-fractions of phases present in a vessel as a function of height and 

time. By this idea it is clear that what flows out of a port at a given height is the mixture of 

phases at this height. Similarly, the injection of a given mixture of phases through a feed- 

port will be dispersed according to these dispersion laws. These dispersion laws can take 

account of the presence of stirrers, and are thus defined for each vessel (not for transfers 

between phases), in principle to cover all possible phases which can be simultaneously 

present in the vessel. 

Strictly, this sweeps away the need for our "Aggregation" statement, since in 

principle all phases involved may be simultaneously present, and mixed to different extents 

at different heights. Instead the user is allowed to simply define the dispersion laws. 

However it may be useful to retain the Aggregation statement so that the user 

can override this general principle, restricting the possible combinations assumed to occur 

and specifying perhaps different dispersion laws for different combinations. 

7.2.2 Broadening the scope of the physical description 

The model formulation methodology developed in this thesis has been proved 

to be successful as shown through the simulation of several examples involving flash 

drums and a decanter. However the current version of the proposed language and the 

implemented software package based on this methodology requires some extensions to 

deal with a wide range of applications such as membrane, packed beds, fluidised beds. 

In addition to this requirement, a more general treatment for describing irregular 

geometry of process equipments is needed. One possible way to cope with this is an 

integration of the model generation package with a commercialised facility fully supporting 
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the geometrical description of individual process units in 3-dimensions. 

7.2.3 System environment 

This thesis has focussed on the core part of computer-aided process modelling, 
the automatic mathematical model generation, rather than the design of a sophisticated 

system environment (Stephanopoulos et al., 1987; Sorlie, 1990; Bar and Zeitz, 1990; 
Westerberg et al., 1991; Andersson, 1994; Vazquez-Roman et al., 1996) which is an issue 

of considerable importance in process engineering. The current version of the package 
is thus designed to interface with those environments above. As far as the development 

of such an environment is concerned, it is recommended that such development should 
be undertaken within the scope of the development of an integrated process engineering 

environment. 

7.2.4 Refinement of transfer law library 

As illustrated in §4.1, the transfers of material and/or energy between pairs of 
interacting phases and inter-vessels are described in terms of the state-variables of the 

two phases through well defined physico-chemical transfer laws. The set of equations 

and variables comprising a given transfer law are invoked from the transfer law library. 

In order for the library to hold a vast variety of transfer laws and to allow rapid access 

to search for a given transfer law entry, it is desirable to construct the library whose 

internal structure is designed by the technology employed for building efficient database 

management systems. 

7.2.5 Generation of distributed parameter models 

At present the prototype package is limited to the generation of lumped-parameter 

models. To broaden the range of application, the extension of this package to generate 

distributed-parameter models (or combined with lumped-parameter models) as a long 

term research project is recommended. Current contributions made in this direction are 

(Dieterich and Eigenberger, 1995; Lohmann and Marquardt, 1996; Jensen and Gani, 

1996; Barber, 1997). A number of issues of considerable importance remain unresolved, 

these include facilities for handling complex geometries, the automatic generation of ap- 

propriate boundary conditions and a consistent methodology for modelling multi-phase 

systems. 

As a continuation of this work the development of a computer package for the 

automatic generation of combined lumped/distributed parameter mathematical models 
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is in progress at Imperial College (Barber, 1997). This work will include the design of 

a conceptual framework for representing process systems based on a completely physical 
description and the development of a mathematical modelling strategy to deal with, in 

general, 3 dimensional multi-phase systems. 

It is also worth noting that the second version of gPROMS (Oh, 1995) is the only 

currently available modelling environment with facilities for modelling and simulation of 

combined lumped and distributed parameter systems. 
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Appendix A 

Lex Input Specification 

/* Lex Input Specification */ 

#include <stdio. h> 

#include <ctype. h> 

/* regular definitions */ 

comment 

delim 

ws 

letter 

digit 

irreversible-flow 

reversible-flow 

id 

number 

underline 

{comment} {} 

11#11. * 

[ \t\n\r] 

{delim}+ 

[A-Za-z] 

[0-9] 
11-10+\> 

11 <11 {irreversible_flow} 

{letter}({letter}I{digit})* 

{digit}+(\. {digit}+)? (E[+\-]? {digit}+)? 

11 
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{ws} {} 

{irreversible_flow} {return IRREVERSIBLE_FLOW; } 

{reversible_f low} {return REVERSIBLE-FLOW; } 

RESERVOIR {return RESERVOIR; } 

VESSEL {return VESSEL; } 

CONNECTION {return CONNECTION; } 

Phase {return PHASE; } 

vapour {return VAPOUR; } 

Aggregation {return AGGREGATION; } 

Transfer\ Law {return TRANSFER_LAW; } 

Port {return PORT; } 

in {return IN; } 

out {return OUT; } 

both {return BOTH; } 

Geometry {return GEOMETRY; } 

Port\ Position {return PORT_POSITION; } 

Phase\ Position {return PHASE_POSITION; } 

Shape {return SHAPE; } 

cylinder {return CYLINDER; } 

box {return BOX; } 

sphere {return SPHERE; } 

open {return OPENVESSEL; } 

closed {return CLOSEDVESSEL; } 

Dimension {return DIMENSION; } 

height {return HEIGHT; } 

length {return LENGTH; } 

width {return WIDTH; } 

depth {return DEPTH; } 

diameter {return DIAMETER; } 

area {return AREA; } 

Orientation {return ORIENTATION; } 

vertical {return VERTICAL; } 

horizontal {return HORIZONTAL; } 

\Z {return 'Z'; } 

{id} {return Identifier; } 
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{number} {return Number; } 

{return ', '; } 

\; {return '; '; } 

\( {return '('; } 

\) {return ')'; } 

\: {return ': '; } 

{return '. '; } 

\[ {return '[,; I 

\] {return ']'; } 

%% 

120 
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Appendix B 

Yacc Input Specification 

/* ======================================================= */ 
/* yacc_input. y : Yacc Input Specification for the Current */ 

/* Implemenatation of a model generator 

/* ======================================================= */ 

%ý 

#include "global. h" 

%I 

/* data structure for YACC stack type 

%uni on 

{ 

VesselSymb *vessel_symb; 

ReservoirSymb *reservoir_symb; 

Symb *symb; 

PhaseDec *phase_dec; 

AggPair *agg_pair; 

TransferLawDec *transfer_law_dec; 

PortDec *port_dec; 

PortPhaseSpec *port_phase_spec; 

GeometrySec *geometry_sec; 



APPENDIX B. YACC INPUT SPECIFICATION 122 

PortPositionDec 

Parameter 

DimensionDec 

ConnectionSection 

Path 

double 

int 

char 

} 

/* ====== */ 
/* Tokens */ 

%token 

%token 

%token 

%token 

%token 

%token 

%token 

%token 

%token 

%token 

%token 

%token 

%token 

'/. token 

%token 

%token 

'/. token 

'/. token 

'/. token 

'/. token 

%token 

Identifier 

Number 

'Z' 

RESERVOIR 

VESSEL 

PHASE 

VAPOUR 

AGGREGATION 

TRANSFER-LAW 

PORT 

IN 

OUT 

BOTH 

*port_position_dec; 

*parameter; 

*dimension_dec; 

*connection_section; 

*path; 

fval; 

ival; 

*string; 
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'/°t oken GEOMETRY 

%token PORT-POSITION 

%token PHASE-POSITION 

'/, token SHAPE 

%token CYLINDER 

%token BOX 

%token SPHERE 

%token OPENVESSEL 

%token CLOSEDVESSEL 

%token DIMENSION 

%token HEIGHT 

%token LENGTH 

%token WIDTH 

%token DEPTH 

%token DIAMETER 

%token AREA 

'/, token ORIENTATION 

%token VERTICAL 

%token HORIZONTAL 

%token CONNECTION 

%token IRREVERSIBLE-FLOW 

%token REVERSIBLE_FLOW 

%% 

/* Grammar Definition */ 

/* A Process System */ 

yyModelBlock : yyVesselBlock 

yyReservoirBlock 

yyConnectionBlock 

i 
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/* Vessel Entities */ 

yyVesselBlock : yyVesselSection 

I yyVesselBlock yyVesselSection 
i 

yyReservoirBlock : yyReservoirSection 

I yyReservoirBlock yyReservoirSection 
i 

yyReservoirSection : RESERVOIR ': ' 

yyReservoirldentifierList 

PORT ': ' 

yyIdentifierList 

s 

yyReservoirldentif ierList : Identifier 

yyReservoirldentifierList ', ' Identifier 

yyVesselSection : VESSEL ': ' yyVesselldentif ierList 

yyPhaseSection 

yyAggregationSection 

yyTransferLawSection 

yyPortSection 

yyGeometrySection 

yyVesselldentif ierList : Identifier 

I yyVesselldentifierList ', ' Identifier 

yyPhaseSection : PHASE ': ' yyPhaseList 

s 

yyPhaseList : yyPhaseDec 
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yyPhaseList yyPhaseDec 

yyPhaseDec : yyIdentif ierList ': ' yyPhaseType 
s 

yyPhaseType : Identifier 

yyAggregationSection : AGGREGATION ': ' yyAggregationList 

i 

yyAggregationList : yyAggregationDec 

yyAggregationList ', ' yyAggregationDec 

i 

yyAggregationDec : Identifier 

I yyAggIdentifier 

� 

yyAggIdentifier :' C' Identifier 1,1 Identifier ']' 

i 

yyTransf erLawSection : TRANSFER_LAW ': ' yyTransferLawList 

yyTransferLawList : yyTransferLawDec 

yyTransferLawList yyTransferLawDec 

i 

yyTransferLawDec : Identifier 1 ,1 Identifier ': ' Identifier 

i 
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yyPortSection : PORT ': ' yyPortList 

yyPortList : yyPortDec 

I yyPortList yyPortDec 
s 

yyPortDec : yyIdentifierList 

yyIdentif ierList ': ' yyPortType 

yyIdentif ierList ': ' yyPortType ': ' yyPortPhaseSpecification 

s 

yyPortType : IN 

OUT 

BOTH 

s 

yyPortPhaseSpecification : Identifier 

yyPortAggIdentifier 

s 

yyPortAggIdentif ier : I[' Identifier 1,1 Identifier I]' 

yyGeometrySection : GEOMETRY ': ' 

yyShapeSection 

yyOrientationSection 

yyDimensionSection 

yyPortPositionSection 

s 

yyPortPositionSection : PORT_POSITION ': ' yyPortPositionList 

s 
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yyPortPositionList : yyPortPositionDec 

yyPortPositionList yyPortPositionDec 
s 

yyPortPositionDec : 'Z' '(' Identifier ')' ': ' yyParameter 
i 

yyParameter : Number 

HEIGHT 

DIAMETER 

Identifier 

s 

yyShapeSection : SHAPE ': ' yyShapeType ': ' yyOpenClosed 

yyShapeType : CYLINDER 

Box 
SPHERE 

s 

yyOpenClosed : OPENVESSEL 

CLOSEDVESSEL 

i 

yyDimensionSection : DIMENSION ': ' yyDimensionList 

i 

yyDimensionList : yyDimensionDec 

yyDimensionList yyDimensionDec 

yyDimensionDec : yyDimensionType ': ' Number 

s 
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yyDimensionType : Identifier 

HEIGHT 

DEPTH 

WIDTH 

DIAMETER 

yyOrientationSection : ORIENTATION ': ' yyOrientationType 
s 

yyürientationType : VERTICAL 

I HORIZONTAL 

s 

yyConnectionBlock : CONNECTION ': ' yyConnectionList 

� 

yyConnectionList : yyConnectionSection 

yyConnectionList yyConnectionSection 
s 

yyConnectionSection : Identifier ': ' 

yyPathName yyConnectionType yyPathName '; ' 

Identifier 

i 

yyPathName : Identifier '. ' Identifier 

s 

yyConnectionType : IRREVERSIBLE-FLOW 

REVERSIBLE_FLOW 

s 

yyIdentifierList : Identifier 
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I yyIdentifierList 1,1 Identifier 

'/. '/. 

#include "lex. yy. c" 
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Appendix C 

Transfer Law Library 

As illustrated earlier, a transfer law is a set of equations describing the mech- 
anism of the transfer between phases in a vessel or through a connection. Such a law 

should be installed in the library table so that whenever invoked by the user, the pack- 

age searches the library table and then proceeds to transform the set of equations in the 

transfer law into an appropriate form by taking account of the relevant phases (intra- 

vessel phase interaction) or ports (inter-vessel connection). In general the mathematical 
formalism of transfer laws is the same as that discussed in §4.2 in terms of dealing with 

physical discontinuities, which are decomposed into case invariant equations and variant 

parts. 

Illustrative transfer laws installed in the library table in order to deal with the 

examples presented will now be introduced in detail. 

C. 1 Phase Equilibrium 

Recall that if the package detects a region where the pair of phases are in phase 

equilibrium, a new element for the region will be created and incorporated into regions, 

assuming the availability of an appropriate thermodynamic subroutine to determine the 

number of phases and the state of each. However, as there is no utility for interfacing the 

subroutine to a package for predicting physical properties in the present implementation 

(and in the present version of gPROMS), we have constructed a library phase equilibrium 

routine, the name of which is PhaseEquilibrium. 

From this law, we obtain not only the relevant physical properties of two phases 

in thermodynamic equilibrium, but also their distribution. This law is therefore de- 

composed into three discontinuous states; sub-cooled liquid (the temperature below the 
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bubble point), super-heated vapour (the temperature above the dew point) and the equi- 
librated two phases. 

As the state transitions are reversible but the conditions of transitions are not 
directly related (asymmetric and reversible, see §4.2), a set of equations for describing 
this discontinuity should be expressed into the logical statement of CASE instead of IF. 

A set of equations for this library are given below, where we assume that vapour A 

and liquid B are declared to be in phase equilibrium if both are present and the mechanism 
for this equilibration follows Raoult's law. 

Temp 
_A = Temp_B ; (c. 1) 

Mass 
_A_B = Mass_A + Mass 

_B ; (c. 2) 

Mass 
_A_B = MoleWeight * Mole_A_B ; (c. 3) 

Mass 
_B = MoleWeight * Mole_B ; (c. 4) 

Mole 
_A_B = Mole_A + Mole 

_B ; (c. 5) 

Mole 
_A = MoleFrac_A * SIGMA(Mole_A) ; (c. 6) 

Mole 
_B = MoleFrac_B * SIGMA(Mole_B) ; (c. 7) 

CASE Phase_A_B OF 

WHEN LPhase : 

Mole_A =0; (c. 8) 

EquilConst_A_B =0; (c. 9) 

SWITCH TO TwoPhase IF Temp_B > BubTemp_A_B 

WHEN TwoPhase : 

VapPress_B * MoleFrac_B = MoleFrac_A * Press_A_B ; (c. 10) 

MoleFrac_B = EquilConst_B_L * MoleFrac_L ; (c. 11) 

SWITCH TO LPhase IF SIGMA(Mole_A) <= 0; 

SWITCH TO VPhase IF SIGMA(Mole_B) <= 0; 

WHEN VPhase : 

Mole_B =0; (c. 12) 

EquilConst_A_B =1; (c. 13) 

SWITCH TO TwoPhase IF Temp_A < DewTemp_A_B 

END 

Note that the set of equations (c. 1 - c. 7) are categorised as a set of case invariant 

equations and those within the CASE statement (c. 8 - c. 13) are categorised as a set of case 

variant equations describing a set of three discrete states; sub-cooled liquid (c. 8 and c. 9), 
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equilibrium state (c. 10 - c. 11) and super-heated vapour (c. 12 and c. 13). Also note that 
the same number of equations in the CASE statement are maintained through the discrete 

states so as to make it possible to simulate the problem. 

C. 2 Bubble Rise 

This law (namely BubbleRise) concerns the transfer between the vapour phase 
(dispersed into the liquid in the form of bubbles) and another vapour phase separated 

from the aggregated mixture. The driving force for this transfer is the density difference 

between the bubbles and the liquid. Several factors, in reality, have an effect on this trans- 

fer; the size of the bubbles enlarge gradually and the rising rate is accelerated as it rises 

through the liquid, wall effects, also bubble break-up, and coalescence. In other words, 

the rising rate of bubbles is a function of several variables of both phases; mass holdups, 

densities, etc. However, for simplicity we assume that the transfer rate is proportional 

to the mass of the bubble phase. The set of library equations, where A and B denote the 

bubble phase and liquid respectively, are given in equation c. 14 and c. 15 which describes 

the energy flow accompanied by the bubble phase. 

Rate_A_B = Const_A_B * Mass_B ; (c. 14) 

EnthFlow_A_B = SIGMA(Rate_ A_B) * Enth_A ; (c. 15) 

C. 3 Containing Phase Transfer 

This transfer law (namely ContainingPhase Transfer) describes the natural pro- 

duction of the separate phase from the containing phase in an aggregate as the dispersed 

phase leaves the aggregate (for example, transfer law "BubbleRise"). 

Let's assume that uniform dispersion of Al in B1, containing phase and all bub- 

bles (or droplets) of Al rise at the same rate. 

Suppose the instantaneous volume of the aggregate is Vol-A1-B1, with volume 

fractions VolFrac_A1 of Al and VolFrac_B1 of B1 (VolFrac_A1 + VolFrac_B1 = 1), and 

the volume rate of rise of Al is VolRate_A1. 

Since all bubbles rise at the same rate, over interval [t, t+dt] a volume VolRatei11*dt 

of Al will leave the aggregate and join separate Al (namely A). The same volume of Al 

will leave the bottom layer of the aggregate, leaving B1 to join clear B1 (namely B). 
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If the volume of this bottom layer is dVol_Al_B1, mass balance gives: 

VolRate_A1*dt = VolFrac_A1*d(Vo1_A1_B1) 

and the amount of B1 joining B is 

VolFrac_B1*dVol_A1_B1 = (VolFrac_B1/VolFrac_A1)*VolRate_Al*dt 

Note also that the volume fractions VolFrac_A1, VolFrac_B1 left in the aggre- 
gate do not change with time. Thus the dynamic mass balances are : 

dVol_A1/dt = VolRate_A1 =- VolFrac_A1*dVol_A1_B1/dt 

dVol_B1/dt = (VolFrac_B1/VolFrac_A1)*VolRate_A1 

=- VolFrac_B1*dVol_A1_B1/dt 

If this relation is expressed in mass rate terms, the equation c. 16 is constructed. 
This transfer law has not yet been implemented in the current package. 

Rate_B1_B * Vol_A1 * Den_A1 = Rate_A1_A * Vol-B1 * Den-B1 ; (c. 16) 

EnthFlow_A_B = SIGMA(Rate_A_B) * Enth_A ; (c. 17) 

C. 4 Irreversible Laminar Flow 

Consider that fluid flows through a pipe where a non-return valve has been 

installed to prevent reverse flow. We assume that the transfer rate is slow enough so that 

the flow regime should be laminar. In order to take the irreversible flow directionality into 

account we need the fixed set of physical discontinuities described in terms of two discrete 

states, corresponding to whether or not fluid flows through the pipe. The transition 

between states depends on the sign of the value of the pressure difference between the 

mutually connected vessels; we can set up the fixed set of discrete cases describing that 

the fluid will flow if the sign is positive, otherwise there is no flow (reflecting the existence 

of the non-return valve). 

Since the conditions for the transitions of the two discrete states can be charac- 

terised by a single logical expression, a set of equations structured into an IF statement 

is suitable for dealing with this discontinuity. 
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The set of equations for this law (namely IrreversibleLaminarFlow) is given 
in equation c. 18 - c. 21, where S1 and S2 denote the vessels connected with the pipe 
respectively. The laminar flow mechanism is described in equation c. 19 (Ramirez, 1989). 

DrivingForce = Press-S1 - Press_S2 ; (c. 18) 

IF DrivingForce >0 THEN 

Rate = Const * Den * MassFrac * DrivingForce ; (c. 19) 

ELSE 

Rate =0; (c. 20) 

END 

EnthFlow = SIGMA(Rate) * Enth ; (c. 21) 

C. 5 Irreversible Turbulent Flow 

The set of equations for this law (namely Irreversible TurbulentFlow) are essen- 
tially the same as those of the previous law, except for the fact that the pipe-flow regime 

is turbulent (Ramirez, 1989). The symbol SQRT in equation c. 23 denotes square root, 

which is one of the built-in function in gPROMS. Note that the sign of the numeric value 

of DrivingForce is guaranteed to be positive due to the condition of the IF expression 

(DrivingForce > 0). 

DrivingForce = Press-S1 - Press_S2 ; 

IF DrivingForce >0 THEN 

Rate = Const * Den * MassFrac * SQRT(DrivingForce) ; 

ELSE 

Rate =0; 

END 

EnthFlow = SIGMA(Rate) * Enth ; 

C. 6 Irreversible Pressure Driven Flow 

(c. 22) 

(c. 23) 

(c. 24) 

(c. 25) 

This law (namely IrreversiblePressureDrivenFlow) is concerned with the transfer 

law for describing the flow mechanism of fluid through a pipe fitted with a non-return 
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valve, encompassing the two pipe-flow regimes; laminar and turbulent. 
In order to allow transition between the two regimes, the conditions for the 

transitions between the flow regimes are described by a logical expression in terms of 
dimensionless Reynolds number defined in equation c. 27 where Const represents the di- 

ameter of the pipe. The two transition conditions, in reality, are not directly related, so 
the equations for dealing with this discontinuity are structured into a CASE statement. 
The transition from turbulent to laminar regime is detected from the logical condition 
(the value of current Reynolds number less than ReynoldsConstl) and the reverse tran- 

sition detected from the other logical condition (the value of current Reynolds number 

greater than ReynoldsConst2). For generality, these two constants may be specified by 

users to take the reality of individual situation into account, rather than equations c. 28 

and c. 29. 

In addition to this, flow irreversibility should be taken into account. Conse- 

quently, this law becomes a merged version of the two previous laws (§C. 4 and §C. 5). 

The set of discontinuities in this law (case variant group) are organised in such a way that 

the flow irreversibility is structured into an IF statement, which again embraces a CASE 

statement to deal with the transitions between the flow regimes. 

DrivingForce = Press-S1 - Press_S2 ; (c. 26) 

(4/3.14) * SIGMA(Rate) = ReynoldsNo * Const * Viscosity (c. 27) 

ReynoldsConstl = 2100 ; (c. 28) 

ReynoldsConst2 = 4000 ; (c. 29) 

EnthFlow = SIGMA(Rate) * Enth ; (c. 30) 

IF DrivingForce >0 THEN 

CASE FlowType OF 

WHEN Turbulent : 

Rate = Const2 * Den * MassFrac * SQRT(DrivingForce) ; (c. 31) 

SWITCH TO Laminar IF ReynoldsNo < ReynoldsConstl ; 

WHEN Laminar : 

Rate = Const3 * Den * MassFrac * DrivingForce ; (c. 32) 

SWITCH TO Turbulent IF ReynoldsNo > ReynoldsConst2 

END 

ELSE 

Rate =0; 
(c. 33) 

END 
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C. 7 Pressure Driven Flow 

This law (namely PressureDrivenFlow) concerns the same physical situation with 
the previous library, except the reverse flow, considering the possibility of a pressure-rise 
downstream through the pipe not fitted with a non-return valve. It is composed of three 

main parts as follows: 

"a set of case invariant equations: c. 34 - c. 36, 

9a set of discontinuities for the transitions between flow regimes, structured into a 
CASE statement: c. 37 and c. 38, 

"a set of discontinuities for the selection of the relevant port of the mutually linked 

vessels according to the flow directionality, structured into an IF statement: c. 39 - 

c. 54. 

In equation c. 37 the absolute quantity of DrivingForce within the square root 
is taken to guarantee its positive value (SQRT(ABS(DrivingForce))) and then the flow 

directionality is determined by the sign of DrivingForce (SGN(DrivingForce)). 

The suffix P1 and P2 used in the IF statements denote the name of the ports of 

the mutually connected vessels (denoted S1 and S2). 

It should be recognised in third part of this library that the selection of the 

relevant ports is embodied by specifying each discrete state in terms of port type, rele- 

vant state variables (viscosity, density, mass fraction and enthalpy) and the mass stream 

attributes (mass rate and enthalpy flow). 

DrivingForce = Press-S1 Press_S2 ; (c. 34) 

(4/3.14) * SIGMA(Rate) = ReynoldsNo * Const * Viscosity (c. 35) 

EnthFlow = SGN(DrivingForce) * SIGMA(ABS(Rate)) * Enth ; (c. 36) 

CASE FlowType OF 

WHEN Turbulent 

Rate = Const2 * Den * MassFrac * SGN(DrivingForce) 

SQRT(ABS(DrivingForce)) ; (c. 37) 

SWITCH TO Laminar IF ReynoldsNo < 2100 

WHEN Laminar : 

Rate = Const3 * Den * MassFrac * DrivingForce ; (c. 38) 

SWITCH TO Turbulent IF ReynoldsNo > 4000 ; 
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END 

IF DrivingForce 

PortType_P1 = 

PortType_P2 = 

= Rate 

EnthFlow = 

>0 THEN 

OUTLET 

INLET 

Rate-P1 

EnthFlow_P1 

Viscosity = Viscosity-P1 ; 

Den 

MassFrac 

Enth 

ELSE 

= Den-P1 ; 

= MassFrac_P1 ; 

= Enth_P1 ; 

PortType_P2 = OUTLET ; 

PortType_P2 = INLET ; 

Rate = Rate_P2 

EnthFlow = EnthFlow_P2 

Viscosity = Viscosity_P2 ; 

Den 

MassFrac 

Enth 

END 

= Den_P2 ; 

= MassFrac_P2 

= Enth_P2 ; 

C. 8 Weir Over Flow 

137 

(c. 39) 

(c. 40) 

(c. 41) 

(c. 42) 

(c. 43) 

(c. 44) 

(c. 45) 

(c. 46) 

(c. 47) 

(c. 48) 

(c. 49) 

(c. 50) 

(c. 51) 

(c. 52) 

(c. 53) 

(c. 54) 

This law (namely WeirOverFlow) describes the behaviour of the flow over a weir. 

The mechanism of this law is based on the modified Francis formula (Pantelides, 1996). 

The discontinuity for this behaviour can be specified in terms of two states, corresponding 

to whether or not fluid flows over the weir. However, as the weir may be considered as a 

type of port, this discontinuity has been already considered in the course of specifying a 

set of discontinuities for a port (see §4.3.1.4). This law therefore only describes the flow 

mechanism itself. The symbol Level and Z in equation c. 55 denote the level of the phase 

flowing over the weir and the position of the port (weir). 

Rate = Const * Den * ABS(Level - Z)-1.5 ; 

EnthFlow = SIGMA(Rate) * Enth ; 

(c. 55) 

(c. 56) 
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C. 9 Static Pressure Driven Flow 

This law (namely StaticPressureDrivenFlow) describes the flow mechanism driven 

from static liquid head pressure. The velocity is 2gh where g is gravitational constant 

and h represent the liquid level. This relation is expressed in terms of mass rate at 

equation c. 57. 

Rate = Const * Den * SQRT(2 * 9.8 * ABS(Level)) ; (c. 57) 

EnthFlow = SIGMA(Rate) * Enth ; (c. 58) 
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Appendix D 

Simulation Input Files 

D. 1 Flash Drum 
DECLARE 

TYPE 

Mass-rate = 50 -1E-1 1E4 UNIT = "kg/sec" 

Temperature = 100 -1E-1 1E4 UNIT = "K" 

Length = 15 -IE-1 1E2 UNIT = "m" 

Enthalpy = 700 -1E7 1E4 UNIT = "kJ/kg" 

Int_Energy = 600 -1E9 1E4 UNIT = "kJ/kg" 

Volume = 0.5 -1E-1 . 1E1 UNIT = "m3" 

Pressure = 43 -1E-1 1E4 UNIT = "kPa" 

Enthalpy_Flov = 1E3 -1E9 . 1E7 UNIT = "kJ/sec" 

Mass =5 -1E-1 1E9 UNIT = "kg" 

Mole = 0.1 -1E-1 1E2 UNIT = "kmole" 

Density = 100 -1E-1 . 1E5 UNIT = "kg/m3" 

Viscosity = 5E-5 -1E-1 1E2 UNIT = "Pa. s" 

Velocity = 1E1 -1E-1 1E4 UNIT = 
Fraction = 0.5 . -1E-1 10 

NoType = 200 -1E9 . 1E9 

Positive =5 -1E-3 1E9 

STREAM 

MassStream IS Mass_Rate, Enthalpy_Flow, Fraction, Positive 

EnergyStream IS Enthalpy_Flow 

END 

# ===========-=========------------================------------------------- -------- ----------------- 

# ############################## 

# BEGINNING of generated model # 

# ############################## 

MODEL m_R1 

PARAMETER 

NoComp AS INTEGER 

VARIABLE 

Ratio_P AS Fraction 

Rate 
-P 

AS Array(NoComp) of Mass-Rate 

Den 
-P 

AS Density 

Press_P AS Pressure 
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EnthFlov_P AS Enthalpy_Flov 

PhaseType P AS Positive 

MassFrac_P AS Array(NoComp) of Fraction 

Viscosity 
-p 

AS Viscosity 

Enth_P AS Enthalpy 

STREAM 

P: Rate-P, EnthFlov_P, Ratio-P, PhaseType_P AS MassStream 

END ft end of MODEL m_R1 

MODEL m_R2 

PARAMETER 

NoComp AS INTEGER 

VARIABLE 

Ratio_P AS Fraction 

Rate_P AS Array(NoComp) of Mass-Rate 

Press_P AS Pressure 

EnthFlov-P AS Enthalpy-Flow 

PhaseType_P AS Positive 

STREAM 

P: Rate P, EnthFlov P, Ratio_P, PhaseType_P AS MassStream 

END # end of MODEL m_R2 

MODEL m_R3 

PARAMETER 

NoComp AS INTEGER 

VARIABLE 

Ratio 
-P 

AS Fraction 

Rate_P AS Array(NoComp) of Mass Rate 

Press 
-P 

AS Pressure 

EnthFlow-P AS Enthalpy-Flow 

PhaseType_P AS Positive 

STREAM 

P: Rate_P, EnthFlov_P, Ratio-P, PhaseType P AS MassStream 

END # end of MODEL m_R3 

MODEL m_F1ashDrum 

PARAMETER 

NoComp AS INTEGER 

vapour AS INTEGER 

vapour-liquid AS INTEGER 

liquid AS INTEGER 

Z_Pil AS REAL 

Z_Pol AS REAL 

Z Pot AS REAL 

height AS REAL 

Const_B_V AS Array(NoComp) of REAL 

diameter AS REAL 

VARIABLE 

Mass_B_L AS Array(NoComp) of Mass 

Mass 
-B 

AS Array(NoComp) of Mass 

Mass 
-V 

AS Array(NoComp) of Mass 

Mass_L AS Array(NoComp) of Mass 

Rate_B_V AS Array(NoComp) of Mass_Rate 
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Rate_B L Pol AS Array(NoComp) Of Mass-Rate 

Rate_B_L Po2 AS krray(NoComp) of Mass-Rate 

Rats B L_Pil AS Array(NoComp) Of Mass-Rat, 

Rate_V_Pil AS Array(NoComp) of Mass-Rate 

Rate Pil AS Array(NoComp) of Mass-Rate 

Rate_V_Pol AS Array(NoComp) of Mass-Rate 

Rate_V_Po2 AS Array(NoComp) of Mass-Rate 

Rate-Pol AS Array(NoComp) of Mass-Rate 

Rate_Po2 AS Array(NoComp) Of Mass-Rate 

Mole_B AS Array(NoComp) of mole 

Mole_L AS Array(NoComp) of Mole 

Mole B_L AS Array(NoComp) of Mole 

Den_B_L AS Density 

Den_B AS Density 

Den_V AS Density 

Den_L AS Density 

Den_Pol AS Density 

Den_Po2 AS Density 

Viscosity_B_L AS Viscosity 

Viscosity_V AS Viscosity 

Viscosity_Po2 AS Viscosity 

Viscosity-Pol AS Viscosity 

Press_B AS Pressure 

Press_V AS Pressure 

Press_F1ashDrum AS Pressure 

Press_L AS Pressure 

Press_B_L AS Pressure 

VapPress_L AS Array(NoComp) of Pressure 

DewTemp_B L AS Temperature 

Temp_B AS Temperature 

Temp_V AS Temperature 

Temp_L AS Temperature 

BubTemp_B_L AS Temperature 

Vol_B AS Volume 

Vol_B_L AS Volume 

Vol_V AS Volume 

Vol_L AS Volume 

Vol_F1ashDrum AS Volume 

Enth_Pol AS Enthalpy 

Enth_Po2 AS Enthalpy 

Enth_B AS Enthalpy 

Enth_V AS Enthalpy 

Enth_L AS Enthalpy 

Enth_B_L AS Enthalpy 

IntEnergy_B_L AS Int Energy 

IntEnergy_L AS Int_Energy 

IntEnergy_V AS Int_Energy 

IntEnergy_B AS Int_Energy 

EnthFlov_B_V AS Enthalpy_Flov 

EnthFlov_V_Po2 AS Enthalpy_Flov 

EnthFlow_B_L_Po2 AS Enthalpy_Flov 

EnthFlow-Po2 AS Enthalpy-Flow 

EnthFlov-V-PoI AS Enthalpy-Flow 

EnthFlow_B_L_Pol AS Enthalpy Flow 

EnthFlow_Poi AS Enthalpy_Flov 

EnthFlow-V-PiI AS Enthalpy-Flow 

EnthFlov-B-L-Pil AS Enthalpy-Flow 

EnthFlow_Pil AS Enthalpy-Flow 

Ratio_B AS Fraction 

Ratio_V AS Fraction 

Ratio_Pil AS Fraction 

Ratio_Po2 AS Fraction 

Ratio_Pol AS Fraction 

MoleFrac_L AS Array(NoComp) of Fraction 

MassFrac_B_L AS Array(NoComp) of Fraction 

MassFrac_L AS Array(NoComp) of Fraction 

MassFrac_V AS Array(NoComp) of Fraction 

141 
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MassFrac_Po2 AS Array(NoComp) of Fraction 

MoleFrac_B AS Array(NoComp) of Fraction 

MassFrac B AS Array(NoComp) of Fraction 

MassFrac Pol AS Array(NoComp) of Fraction 

Top_B_L AS Positive 

Level 
-V 

AS Positive 

Bot_V AS Positive 

Level B_L AS Positive 

PhaseType_B_L AS Positive 

PhaseType L AS Positive 

PhaseType V AS Positive 

PhaseType_Po2 AS Positive 

PhaseType_B AS Positive 

PhaseType_Pol AS Positive 

PhaseType_Pil AS Positive 

Bot_B_L AS Positive 

area AS Positive 

Top 
-V 

AS Positive 

EquilConst B_L AS Array(NoComp) of Positive 

MoleWeight AS Array(NoComp) of Positive 

# =================_=============== # 

# Variables for Physical Properties # 

Enth Vo AS ARRAY(NoComp) OF Enthalpy 

Enth_Bo AS ARRAY(NoComp) OF Enthalpy 

Enth_Lo AS ARRAY(NoComp) OF Enthalpy 

Heat_Lo AS ARRAY(NoComp) OF Enthalpy 

Temp_ro AS ARRAY (NoComp) OF Fraction 

Den_Vo AS ARRAY(NoComp) OF Density 

Den Bo AS ARRAY(NoComp) OF Density 

Temp-co AS ARRAY(NoComp) OF Temperature 

Viscosity 
-B 

As Viscosity 

Viscosity_L As Viscosity 

Viscosity_Vo As ARRAY(NoComp) OF Viscosity 

Viscosity Bo As ARRAY(NoComp) OF Viscosity 

Viscosity_Lo As ARRAY(NoComp) OF Viscosity 

Av, By, Cv, Dv AS ARRAY(NoComp) OF NoType 

Al, B1, Cl, Dl, El AS ARRAY(NoComp) OF NoType 

Temp_r AS Fraction 

Press_c AS Pressure 

Press-co AS ARAAY(NoComp) OF Positive 

Temp_c AS Temperature 

M AS Positive 

Z AS NoType 

yo AS ARHAY(NoComp) OF NoType 

a AS NoType 

A, B, C. D, E AS ARRAY(NoComp) OF NoType 

# F, G AS ARRAY(NoComp) OF NoType 

vapl, vap2, vap3, vap4, vap5 AS ARRAy(NoComp) OF NoType 

Wo AS ARRAY(NoComp) OF NoType 

# °_: # 

# dummy variable for visualisation # 

Sum-Mass-V, 

Der_Intßnergy_V, 

Sum_Mass_B_L, 

Der_Mass_B_L, 

Sum_Mass_B. 
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Sum_Mass_L, 

Sum_Rate_B_V, 

Sum_Rate_Pi1, 

Sum_Rate_Pol, 

Sum_Rate_Po2, 

VapPress_1, 

VapPress_2, 

Equil_1, 

Equil_2 AS NoType 

STREAM 

Pil : Rate_Pil, EnthFlov_Pi1, Ratio_Pil, PhaseType_Pil AS MassStream 
Pol : Rate Pol, EnthFlov Pol, Ratio_Pol, PhaseType_Pol AS MassStream 
Pot : Rate Po2, EnthFlov Po2, Ratio Po2, PhaseType_Po2 AS MassStream 

SELECTOR 

Phase B_L AS (LPhase, TwoPhase, VPhase) 

SET 

vapour =1 
Z_Pil 

.=1.500000 
Z_Pol = 0.500000 

Z_Po2 
.=2.500000 

height = 3.000000 

vapour-liquid 3 

liquid 
.=2 

diameter 
.=1.000000 

EQUATION 

# case invariant mass balance 

$Mass_V = Rate_V_Pii - Rate_V-Pol - Rate_V_Po2 + Rate_B_V 

Mass BL= Rate_B_L_Pii - Rate_B L_Pol - Rate B_L_Po2 - Rate_B V; 

# case invariant energy balance 

$IntEnergy_V * SIGMA(Mass_V) + IntEnergy_V * SIGMA($Mass_V) _ 
EnthFlov_V_Pii - EnthFlov V Pol - EnthFlov V Pot + EnthFlov_B V 

$IntEnergy_B_L * SIGMA(Mass_B_L) + IntEnergy_B_L * SIGMA($Mass_B_L) _ 
EnthFlow_B_L_Pil - EnthFlov_B_L_Pol - EnthFlov_B_L_Po2 - EnthFlow_B_V 

# ratio of dispersed phase 

Ratio_V =1; 

SIGMA(Mass_B) = Ratio_B * SIGMA(Mass_B_L) 

# Equilibrium : 

Temp_B = Temp_L 

Mass_B_L - Mass_B + Mass_L 

Mass_B_L = MoleWeight * Mole_B_L 

Mole_B_L = Mole 
_B 

+ Mole 
-L ; 

Mass_B = MoleWeight * Mole_B 

Mole_B = MoleFrac_B * SIGMA(Mole_B) 

Mole_L = MoleFrac_L * SIGMA(Mole_L) 

CASE Phase B_L OF 

WHEN LPhase 

Mole_B =0 

EquilConst_B_L =0 

SWITCH TO TwoPhase IF Temp_L > BubTemp_B_L 

WHEN TwoPhase : 

VapPrsss_L " MoleFrac_L - MoleFrac B* Press_B_L 

MoleFrac_B = EquilConst_B_L * MoleFrac_L 

SWITCH TO LPhase IF SIGMA(Mole_B) <= 0 

SWITCH TO VPhase IF SIGMA(Mole_L) <= 0 

WHEN VPhass 

Mole_L =0 
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EquilConst_B_L =1; 

SWITCH TO TvoPhass IF Temp_B < DevTemp B_L 

END 

* BubbleRise : 

Rate_B_V = Const BV* Mass_B 

EnthFlov_B_V = SIGMA(Rate_B_V) * Enth_B 

# mass - mass fraction * total mass 
Mass B_L = MassFrac_B L* SIGMA(Mass B L) 

Mass_L = MassFrac_L * SIGMA(Mass_L) 

Mass_B = MassFrac_B * SIGMA(Mass_B) 

Mass 
-V = MassFrac_V * SIGMA(Mass_V) 

# total mass = density * volume 
SIGMA(Mass_B_L) = Den_B_L * Vol_B_L 

SIGMA(Mass_L) = Den_L * Vol_L 

SIGMA(Mass B) = Den 
-B * Vol_B 

SIGMA(Mass_V) = Den_V * Vol 
-V 

X phase type 

PhaseType_B_L = vapour-liquid 

PhaseType_L = liquid 

PhaseType_B = vapour 

PhaseType V= vapour 

# volume relationship 

Vol_B_L = Vol_B + Vol_L 

Vol_FlashDrum = Vol_V + Vol_B_L 

# uniform pressure within vessel 
Press_F1ashDrum = Press B_L 

Press_F1ashDrum = Press_L 

Press_F1ashDrum = Press_B 

Press_F1ashDrum = Press 
-V 

# phase bound : upper/low bound of phase volume = level 

Top 
-V = Level_V ; 

Top B_L = Level_B_L 

Top_V = height 

Bot B_L =0; 

Bot_V = Top_B_L 

# phase volume : volume = area * (top - bottom) 

area = (3.14/4) * diameter-2 ; 

Vol_B_L = area * (Top B_L - Bot B_L) 

Vol_V = area * (Top 
-V - Bot V) ; 

# discontinuity on input port, "Pit" 

IF PhaseType_Pii = vapour THEN 

IF Bot_V < Z_Pil AND Z_Pii <= Top_V THEN 

Rate_V_Pil - Rate_Pil ; 

EnthFlov_V_Pi1 = EnthFlow Pil 

Rate_B_L_Pii =0; 

EnthFlov_B_L Pi1 =0 

ELSE 

Rate_B_L_Pil = Rate-Pit 

EnthFlov_B_L_Pil = EnthFlow_Pil 

Rate_V_Pil =0; 

EnthFlov V_Pil -0 

END 

ELSE 

Rate_B_L_Pi1 = Rate_Pil 

EnthFlow_B_L_Pil = EnthFlow_Pi1 

Rate_V_Pil =0; 

EnthFlov_V_Pi1 =0 

END 

# and of discontinuity on input port, "Pit" 
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* discontinuity on output port, "Pol" 

IF Bot_V < Z_Pol AND Z_Pol <= Top_V TEEN 

MassFrac_V MassFrac_Pol ; 

viscosity 
-V = Viscosity Pol 

Den_V Den_Pol ; 

Enth_V = Enth_Pol 

Rate_V_Pol - Rate-Pol 

EnthFlov_V_Pol = EnthFlov_Poi 

Ratio 
-V = Ratio Pol 

PhaseType_V = PhaseType_Pol 

Rate_B_L_Pol 0; 

EnthFlov_B_L Pol =0 

ELSE 

MassFrac_B_L = MassFrac_Pol 

Viscosity_B_L = Viscosity-Pol 

Den_B_L = Den Pol ; 
Enth_B_L = Enth Pol 

Rate_B_L_Pol = Rate-Pol 

EnthFlov_B_L_Po! = EnthFlov_Pol 

Ratio_B = Ratio-Pol ; 
PhaseType_B_L = PhaseType_Poi 

Rate_V_Pol =0 

EnthFlov_V_Pol =0 

END 

# end of discontinuity on output port, "Pol" 

# discontinuity on output port, "Po2" 

IF Bot_V < Z_Po2 AND Z_Po2 <= Top_V THEN 

MassFrac_V = MassFrac_Po2 ; 
Viscosity_V = Viscosity_Po2 

Den_V = Den_Po2 ; 
Enth_V = Enth_Po2 

Rate_V_Po2 = Rate_Po2 

EnthFlov_V_Po2 = EnthFlow_Po2 

Ratio_V = Ratio_Po2 

PhaseType_V = PhaseType_Po2 

Rate_B_L Po2 =0; 

EnthFlow_B_L_Po2 =0 

ELSE 

MassFrac_B_L = MassFrac_Po2 

Viscosity_B_L = Viscosity_Po2 

Den_B_L = Den_Po2 ; 

Enth_B_L Enth_Po2 

Rate_B_L_Po2 = Rate_Po2 

EnthFlov B_L Po2 = EnthFlow Po2 

Ratio 
-B = Ratio_Po2 

Phas. Type_B_L = PhaseType_Po2 

Rate_V_Po2 =0 

EnthFlov_V_Po2 0 

END 

* end of discontinuity on output port, "Po2" 

# Physical Properties 

# vapour pressure of L 

# VapPress_L * 0.145 = 10"(F - G/((1.8 * Temp_L - 459.4) + 382)) 

VapPress_L = IE-3 * EXP(vapl + vap2/Temp_L + vap3*LOG(Temp_L) + 

vap4*Temp_L"vap5) ; 

* Application Range : 

S Propane 228K - 366K 

8 Butane 228K - 421K 
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X pure enthalpies of V 

Enth_Vo * 0.43 =A* ((Temp_V * 9/5)/100) +B* ((Temp_V * 9/5)/100)"2 + 
C* IE-2 * ((Temp_V * 9/5)/100)'3 +D* (100/(Temp_V * 9/5)) +E; 

# enthalpy of V 

Enth_V = SIGMA(MassFrac_V * Enth_Vo) 

# pure enthalpies of B 

Enth_Bo * 0.43 =A* ((Temp_B * 9/5)/100) +B* ((Temp_B * 9/5)/100)"2 + 
C* IE-2 * ((Temp_B * 9/5)/100)"3 +D* (100/(Temp_B * 9/5)) +E; 

X enthalpy of B 

Enth_B = SIGMA(MassPrae_B * Enth_Bo) 

# heats of vapourisation of pure L 

Heat_Lo * MoleWeight = (R * Temp-co) * (7.08 * (1 - Temp_ro)-0.354 + 
10.95 * Wo * (1-Temp_ro)-0.456) ; 

Temp_ro * Temp-co = Temp 
-L ; 

# pure enthapies of L 

Enth_Lo = Enth Bo - Heat_Lo 

# enthalpy of L 

Enth_L = SIGMA(MassFrac_L * Enth_Lo) 

# enthalpy of B_L 

Enth_B_L = Ratio_B * Enth_B + (1 - Ratio_B) * Enth_L 

# internal energy of V 

Enth_V * SIGMA(Mass V) = IntEnergy_V * SIGMA(Mass_V) + 

SIGMA(Mass_V / MoleWeight) *R* Temp_V 

# internal energy of B_L 

Enth BL= IntEnergy B_L + press BL/ Den_B_L ; 

# IntEnergy_B L= IntEnergy_B * Ratio 
-B 

+ 

# (1 - Ratio_B) * IntEnergy_L 

# internal energy of B 

Enth_B * SIGMA(Mass_B) = IntEnergy B* SIGMA(Mass_B) + 

SIGMA(Mass_B / MoleWeight) *R* Temp_B 

ü internal energy of L 

Enth_L = IntEnergy_L + Press_L / Den_L 

# density of V 

Den_Vo "R* Temp 
-V = Press_V * MoleWeight # for pure component 

Den_V " SIGMA(MassFrac_V / Den_Vo) =1; # for mixture 

# density of B 

Den_Bo *R* Temp_L = Press_B * MoleWeight; * for pure component 

Den_B * SIGMA(MassFrac_B / Den-Bo) = 1; # for mixture 

# density of L 

Den_L *R* Temp_c * Z'(1 + (1 - Temp-r)-(2/7)) = Press_c *M 

Press_c = SIGMA(MoleFrac_L * Press-co) 

Temp_c = SIGMA(MoleFrac_L * Temp-co) 

Z= SIGMA(MoleFrac_L * Zo) 

Temp_r * Temp_c = Temp_L ; 

M= SIGMA(MoleFrac_L * MoleWeight) 

# viscosity of V 

Viscosity_Vo Av   Temp_V"Bv / (1 + Cv / Temp_V + Dv / Temp-V-2) 

Viscosity_V SIGMA(MassFrac_V " Viscosity_Vo) ; 

# viscosity of B_L 

Viscosity-Bo - (Av * Temp B-Bv) / (1 + Cv / Temp_B + Dv / Temp-B-2) 

Viscosity_B = SIGMA(MassFrac_V * Viscosity_Bo) ; 
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Viscosity_Lo EXP(A1 * (B1 / Temp_L) + Cl * LOG(Temp_L) + 
Dl * Temp-L-E1) ; 

Viscosity_L = SIGMA(MassFrac_L * Viscosity_Lo) 

Viscosity_B_L = Ratio-B * Viscosity_B + 
(1 - Ratio_B) * Viscosity_L 

# _________......... # 
# dummy variables for visualisation # 
# ============================___== # 

Sum_Mass_V = SIGMA(Mass_V) 

Der_IntEnergy_V = $IntEnergy_V; 

Sum_Mass_B_L = SIGMA(Mass B_L) 

Der_Mass_B_L = SIGMA($Mass_B_L); 

Sum_Mass_B - SIGMA(Mass B) 

Sum_Mass_L = SIGMA(Mass_L) 

Sum_Rate_B_V = SIGMA(Rate_B_V) 

Sum_Rate_Pi1 = SIGMA(Rate_Pil); 

Sum_Rate_Pol = SIGMA(Rate_Poi); 

Sum_Rate_Po2 = SIGMA(Rate Po2); 

VapPress_1 = VapPress L(1); 

VapPress_2 = VapPress_L(2); 

Equil_1 = EquilConst_B_L(1); 

Equil_2 = EquilConst_B_L(2); 

END # end of MODEL m_F1ashDrum 

MODEL Flovsheet 

PARAMETER 

NoComp AS INTEGER 

Const2_C3 AS REAL 

Const2_C2 AS REAL 

Const2_C1 AS REAL 

Const3_C3 AS REAL 

Const3_C2 AS REAL 

Const3_C1 AS REAL 

Const_C1 AS REAL 

Const_C2 AS REAL 

Const_C3 AS REAL 

VARIABLE 

DrivingForce_C3 AS NoType 

ReynoldsNo_C3 AS Positive 

ReynoldsConstl_C3 AS Positive 

ReynoldsConst2_C3 AS Positive 

DrivingForce_C2 AS NoType 

ReynoldsNo_C2 AS Positive 

ReynoldsConstl_C2 AS Positive 

ReynoldsConst2_C2 AS Positive 

DrivingForce_C1 AS NoType 

ReynoldsNo_C1 AS Positive 

ReynoldsConstl_C1 AS Positive 

ReynoldsConst2_C1 AS Positive 

UNIT 

R1 AS m R1 

R2 AS m_R2 

R3 AS m_R3 

F1ashDrum AS m_F1ashDrum 

SELECTOR 

F1owType_C1 AS (Turbulent, Laminar) 

F1ovType_C2 AS (Turbulent, Laminar) 
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F1owType_C3 AS (Turbulent, Laminar) 

EQUATION 

# stream connections through ports # 

R1. P IS F1ashDrum. Pil 

FlashDrum. Pol IS R2. P 

FlashDrum. Po2 IS R3. P 

# transfer law of each connection # 

# "IrreversiblePressureDrivenFlov" in connection, Cl' "DrivingForce_C1 

= R1. Press P- F1ashDrum. Press_F1ashDrum 

(4/3.14) * SIGMA(R1. Rate_P) = ReynoldsNo_C1 * Const_C1 * R1. Viscosity_P 
ReynoldsConstl_C1 = 2100 

ReynoldsConst2_C1 = 4000 

R1. EnthFlov P= SIGMA(R1. Rate_P) * R1. Enth P 

IF DrivingForce_C1 >0 THEN 

CASE F1ovType_C1 OF 

WHEN Turbulent : 

R1. Rate_P = Const2_C1 * R1. Den_P * R1. MassFrac_P 

SQRT(DrivingForce_C1) 

SWITCH TO Laminar IF ReynoldsNo_C1 < ReynoldsConstl_C1 

WHEN Laminar : 
R1. Rate_P = Const3_C1 * R1. Den_P * R1. MassFrac_P * DrivingForce_C1 

SWITCH TO Turbulent IF ReynoldsNo_C1 > ReynoldsConst2_C1 

END 

ELSE 

R1. Rate_P = 0; 

END 

# "IrreversiblePressureDrivenFlov" in connection, "C2" 

DrivingForce_C2 = F1ashDrum. Press_F1ashDrum - R2. Press_P 

(4/3.14) * SIGMA(F1ashDrum. Rate_Poi) = ReynoldsNo_C2 * Const_C2 

F1ashDrum. Viscosity_Pol 

ReynoldsConstl_C2 = 2100 

ReynoldsConst2_C2 = 4000 

F1ashDrum. EnthFlow_Pol = SIGMA (F1ashDrum. Rate_Pol) * F1ashDrum. Enth_Pol 

IF DrivingForce_C2 >0 THEN 

CASE F1owType_C2 OF 

WHEN Turbulent : 

F1ashDrum. Rate_Pol = Const2_C2 * F1ashDrum. Den_Pol 

F1ashDrum. MassFrac_Pol * SQRT(DrivingForce_C2) 

SWITCH TO Laminar IF ReynoldsNo_C2 < ReynoldsConstl_C2 

WHEN Laminar : 

F1ashDrum. Rate_Pol = Const3_C2 * F1ashDrum. Den_Pol * 

F1ashDrum. MassFrac_Pol * DrivingForce_C2 

SWITCH TO Turbulent IF ReynoldsNo_C2 > ReynoldsConst2_C2 ; 

END 

ELSE 

F1ashDrum. Rate_Pol = 0; 

END 

# "IrreversiblePressureDrivenFlov" in connection, "C3" 

DrivingForce_C3 - F1ashDrum. Press_F1ashDrum - R3. Press_P 

(4/3.14) * SIGMA(F1ashDrum. Rate_Po2) = ReynoldsNo_C3 * Const_C3 

F1ashDrum. Viscosity_Po2 

ReynoldsConstl_C3 = 2100 

ReynoldsConst2_C3 - 4000 

F1ashDrum. EnthFlov_Po2 = SIGMA (F1ashDrum. Rate 
_Po2) * FlashDrum. Enth_Po2 

IF DrivingForce_C3 >0 THEN 

CASE F1owType_C3 OF 
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WHEN Turbulent : 

F1ashDrum. Rate 
_Po2 - Const2_C3 * F1ashDrum. Den_Po2 

F1ashDrum. MassFrac_Po2 * SQRT(DrivingForce_C3) 

SWITCH TO Laminar IF ReynoldsNo_C3 < ReynoldeConstl_C3 

WHEN Laminar : 

F1ashDrum. Rate_Po2 = Const3_C3 * F1ashDrum. Den_Po2 

F1ashDrum. Mass Frac_Po2 * DrivingForce_C3 

SWITCH TO Turbulent IF ReynoldsNo_C3 > ReynoldsConst2_C3 ; 
END 

ELSE 

F1ashDrum. Rate_Po2 - 0; 

END 

END # end of MODEL Flowsheet 

# 

########################## 

# END of generated model # 

########################## 

# Process # 

PROCESS test 

UNIT 

Plant AS Flowsheet 

SET 

WITHIN Plant DO 

NoComp . =2 

Const_C1 . = 0.05 

Const_C2 . = 0.05 

Const_C3 = 0.05 

Const2-C1 . = 5E-5 

Const2-C2 SE-4 

Const2-C3 . = 1E-5 

Const3-C1 = 5E-6 

Const3-C2 = 1E-5 

Const3-C3 . = 1E-6 

WITHIN R1 DO 

NoComp . =2 

END 

WITHIN R2 DO 

NoComp =2 

END 

WITHIN R3 DO 

NoComp . =2 

END 

WITHIN FlashDrum DO 

NoComp 2 

Const_B_V . = 3E-4 

END 

END 

ASSIGN 

WITHIN Plant DO 

WITHIN R1 DO 

Press 
-P 

Den 
-P 

Enth_P 

MassFrac_P 

Ratio_P 

PhaseType_P 

Viscosity_P 

4*1.013E2 

= 330 ; 

= 3.5E2 

[0.4,0.63 

= 0.001 

=3; 

= 5E-5 ; 
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END " Rl 

WITHIN R2 DO 

Press_P = 1.013E2 

END " R2 

WITHIN R3 DO 

Press_P = 1.013E2 

END # R3 

WITHIN F1ashDrum DO 

BubTemp_B_L = 260 

DewTemp_B_L .= 300 

Temp-co(l) .= 369.82 

Tamp-co(2) = 425.15 

{ 

} 

A(1) = 8.03820 

A(2) 8.29348 

B(1) 3.49075 

B(2) = 3.46000 

C(1) -3.96060 
C(2) -4.02109 
D(1) . = 27.52980 

D(2) = 30.35096 

E(1) 166.170 

E(2) = 153.044 

A: = 8.31433 

Wo(1) . = 0.1454 

Wo(2) = 0.1928 

MoleWeight(1) 44.09 

MoleWeight(2) : = 58.12 

vapl(1) = 5.4276E1 

vapl(2) 6.2570E1 

vap2(1) -3.3680E3 

vap2(2) -4.3220E3 

vap3(1) -5.2610E0 

vap3(2) -6.3640E0 

vap4(1) .=8.6000E-6 
vap4(2) .=6.8000E-6 
vap5(1) .=2.0000EO 
vap5(2) = 2.0000EO 

F(1) .=4.843 
F(2) = 5.273 

G(1) = 1245.3 

G(2) .= 1747.2 

Av(1) = 2.2090E-6 

Av(2) = 1.0310E-5 

Bv(1) .=3.8240E-1 
Bv(2) .=2.0770E-1 
Cv(1) = 4.0500E2 

Cv(2) .=1.0055E3 
Dv(1) 0; 

Dv(2) = 8.1000E3 

A1(1) -1.2832E1 

A1(2) .=7.5000E-1 
B1(1) .=5.6634E2 
B1(2) = 2.1870E2 

C1(1) .=3.4688E-1 
C1(2) -1.7882 ; 

D1(1) -3.5111E-26 

D1(2) -4.0000E-27 

E1(1) = 1.0000E1 

E1(2) 1.0000E1 

[kJ/kmol K] 

{ 
Den_L 600 
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Viscosity_V .=7.9E-6 
Viscosity_B_L 5E-5 ; 

} 

Press-co(l) = 4248 

Press-co(2) .= 3795 

Zo(1) .=0.27664 
Zo(2) .=0.27331 

END # within P1ashDrum 

END # within Plant 

PRESET 

PLANT. FLASHDRUM. ENTHFLOW_V_P02 :=0.00000E+00 : -1.000E+09 : 1.000E+07 
PLANT. FLASHDRUM. ENTHFLOW_B_L PO1 0.00000E+00 -1.000E+09 : 1.000E+07 
PLANT. FLASHDRUM. ENTHFLOW B_L P02 0.00000E+00 -1.000E+09 1.000E+07 
PLANT. FLASHDRUM. VOL_B :=2.80947E-02 : -1.000E-01 : 1.000E+01 
PLANT. FLASHDRUM. PHASETYPE_B 1.00000E+00 -1.000E-03 1.000E+09 
PLANT. FLASHDRUM. RATE_PI1(1) 1.25494E-01 -1.000E-01 1.000E+04 
PLANT. FLASHDRUM. RATE-PI1(2) 1.88241E-01 -1.000E-01 1.000E+04 
PLANT. FLASHDRUM. ENTHFLOW_PI1 1.09807E+02 -1.000E+09 1.000E+07 
PLANT. FLASHDRUM. RATIO_PI1 :=6.00000E-01 -1.000E-01 : 1.000E+01 
PLANT. FLASHDRUM. PHASETYPE_PI1 :=3.00000E+00 -1.000E-03 : 1.000E+09 

PLANT. FLASHDRUM. RATE_P01(1) 0.00000E+00 : -1.000E-01 : 1.000E+04 

PLANT. FLASHDRUM. RATE_P01(2) 0.00000E+00 -1.000E-01 : 1.000E+04 

PLANT. FLASHDRUM. MASSFRAC_B(1) 8.84494E-01 -1.000E-01 : 1.000E+01 

PLANT. FLASHDRUM. MASSFRAC_B(2) 1.15506E-01 -1.000E-01 : 1.000E+01 

PLANT. FLASHDRUM. ENTH_LO(1) 1.73454E+02 -1.000E+07 : 1.000E+04 

PLANT. FLASHDRUM. ENTH_LO(2) 1.52137E+02 -1.000E+07 1.000E+04 

PLANT. FLASHDRUM. RATE_P02(1) 0.00000E+00 -1.000E-01 : 1.000E+04 

PLANT. FLASHDRUM. RATE_P02(2) 0.00000E+00 : -1.000E-01 : 1.000E+04 

PLANT. FLASHDRUM. INTENERGY_B 5.58220E+02 -1.000E+09 1.000E+04 

PLANT. FLASHDRUM. DEN-BO(1) 1.03804E+00 : -1.000E-01 1.000E+05 

PLANT. FLASHDRUM. DEN_BO(2) 1.36836E+00 : -1.000E-01 : 1.000E+05 

PLANT. FLASHDRUM. ENTH_PO1 7.07255E+02 -1.000E+07 : 1.000E+04 

PLANT. FLASHDRUM. MOLEFRAC_L(1) :=5.68255E-01 : -1.000E-01 : 1.000E+01 

PLANT. FLASHDRUM. MOLEFRAC_L(2) 4.31745E-01 -1.000E-01 : 1.000E+01 

PLANT. FLASHDRUM. ENTH P02 :=7.07255E+02 : -1.000E+07 : 1.000E+04 ; 
PLANT. FLASHDRUM. ENTHFLOW_B_V :=5.39479E-03 : -1.000E+09 : 1.000E+07 

PLANT. FLASHDRUM. LEVEL_V :=3.00000E+00 -1.000E-03 : 1.000E+09 

PLANT. FLASHDRUM. EQUILCONST_B_L(1) 1.60115E+00 -1.000E-03 : 1.000E+09 

PLANT. FLASHDRUM. EQUILCONST-B_L(2) 2.08772E-01 -1.000E-03 1.000E+09 

PLANT. FLASHDRUM. VISCOSITY_BO(1) 6.20289E-06 -1.000E-01 : 1.000E+02 

PLANT. FLASHDRUM. VISCOSITY_BO(2) 5.58908E-06 -1.000E-01 : 1.000E+02 

PLANT. FLASHDRUM. PRESS_B :=4.36584E+01 -1.000E-01 : 1.000E+04 

PLANT. FLASHDRUM. LEVEL_B_L :=9.70524E-02 -1.000E-03 : 1.000E+09 

PLANT. FLASHDRUM. ENTHFLOW_P01 :=0.00000E+00 : -1.000E+09 : 1.000E+07 

PLANT. FLASHDRUM. RATIO_P01 :=1.00000E+00 : -1.000E-01 : 1.000E+01 

PLANT. FLASHDRUM. PHASETYPE_PO1 :=1.00000E+00 -1.000E-03 : 1.000E+09 

PLANT. FLASHDRUM. PRESS_C :=4.05242E+03 : -1.000E-01 : 1.000E+04 

PLANT. FLASHDRUM. ENTHFLOW_P02 :=0.00000E+00 : -1.000E+09 : 1.000E+07 

PLANT. FLASHDRUM. RATIO_P02 :=1.00000E+00 -1.000E-01 : 1.000E+01 

PLANT. FLASHDRUM. PHASETYPE_P02 :=1.00000E+00 -1.000E-03 : 1.000E+09 

PLANT. FLASHDRUM. BOT_V :=9.70524E-02 : -1.000E-03 : 1.000E+09 ; 

PLANT. FLASHDRUM. BOT_B_L :=0.00000E+00 -1.000E-03 : 1.000E+09 

PLANT. FLASHDRUM. MOLE_B(1) 6.01833E-04 : -1.000E-01 1.000E+02 

PLANT. FLASHDRUM. MOLE_B(2) 5.96210E-05 : -1.000E-01 1.000E+02 

PLANT. FLASHDRUM. VOL_L :=4.80914E-02 : -1.000E-OS : 1.000E+01 ; 

PLANT. FLASHDRUM. PHASETYPE_L :=2.00000E+00 : -1.000E-03 : 1.000E+09 

PLANT. FLASHDRUM. MASSFRAC_L(1) 4.99615E-01 -1.000E-01 : 1.000E+01 

PLANT. FLASHDRUM. MASSFRAC_L(2) 5.00385E-01 : -1.000E-01 : 1.000E+01 

PLANT. FLASHDRUM. ENTH_VO(1) 7.21461E+02 : -1.000E+07 1.000E+04 

PLANT. FLASHDRUM. ENTH_VO(2) 6.93049E+02 : -1.000E+07 1.000E+04 

PLANT. FLASHDRUM. VOL_FLASHDRUM :=2.35500E+00 : -1.000E-01 : 1.000E+01 

PLANT. FLASHDRUM. ENTH_B :=5.99106E+02 : -1.000E+07 : 1.000E+04 ; 

PLANT. FLASHDRUM. INTENERGY_L :=1.62717E+02 : -1.000E+09 : 1.000E+04 

PLANT. FLASHDRUM. RATIO_V :=1.00000E+00 -1.000E-01 : 1.000E+01 
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PLANT. FLASHDRUM. TEMP RO(1) 6.03079E-01 : -1.000E-01 : 1.000E+01 
PLANT. FLASHDRUM. TEMP_RO(2) 5.24593E-01 : -1.000E-01 : 1.000E+01 
PLANT. FLASHDRUM. VISCOSITY_LO(1) 4.55853E-14 : -1.000E-01 : 1.000E+02 
PLANT. FLASHDRUM. VISCOSITY_LO(2) 1.31680E-04 : -1.000E-01 : 1.000E+02 
PLANT. FLASHDRUM. DEN_P01 8.77650E-01 : -1.000E-01 1.000E+05 
PLANT. FLASHDRUM. PRESS_L 4.36584E+01 : -1.000E-01 1.000E+04 

PLANT. FLASHDRUM. MASS B(1) 2.65348E-02 : -1.000E-01 : 1.000E+09 
PLANT. FLASHDRUM. MASS B(2) 3.46517E-03 : -1.000E-01 1.000E+09 
PLANT. FLASHDRUM. DEN_P02 :=8.77650E-01 : -1.000E-01 : 1.000E+05 

PLANT. FLASHDRUM. VISCOSITY_PO1 :=9.40000E-06 -1.000E-01 1.000E+02 
PLANT. FLASHDRUM. PRESS_FLASHDRUM :=4.36584E+01 : -1.000E-01 1.000E+04 
PLANT. FLASHDRUM. VISCOSITY_P02 :=9.40000E-06 -1.000E-01 1.000E+02 
PLANT. FLASHDRUM. TEMP_B :=2.23031E+02 : -1.000E-01 : 1.000E+04 

PLANT. FLASHDRUM. MOLE_L(1) 3.39611E-01 -1.000E-01 : 1.000E+02 

PLANT. FLASHDRUM. MOLE_L(2) 2.58027E-01 -1.000E-01 1.000E+02 
PLANT. FLASHDRUM. VOL_V :=2.27881E+00 : -1.000E-01 : 1.000E+01 

PLANT. FLASHDRUM. PHASETYPE_V :=1.00000E+00 -1.000E-03 : 1.000E+09 

PLANT. FLASHDRUM. TEMP_C 3.93708E+02 : -1.000E-01 1.000E+04 

PLANT. FLASHDRUM. VOL_B_L 7.61861E-02 : -1.000E-01 : 1.000E+01 

PLANT. FLASHDRUM. MASSFRAC_V(1) 5.00000E-01 : -1.000E-01 : 1.000E+01 

PLANT. FLASHDRUM. MASSFRAC_V(2) 5.00000E-O1 -1.000E-01 : 1.000E+01 

PLANT. FLASHDRUM. PHASETYPE_B_L 3.00000E+00 -1.000E-03 1.000E+09 

PLANT. FLASHDRUM. ENTH_L :=1.62787E+02 : -1.000E+07 : 1.000E+04 

PLANT. FLASHDRUM. INTENERGY_V :=6.57510E+02 : -1.000E+09 : 1.000E+04 

PLANT. FLASHDRUM. MASSFRAC_B_L(1) 5.00000E-01 : -1.000E-01 1.000E+01 

PLANT. FLASHDRUM. MASSFRAC-B_L(2) 5.00000E-01 -1.000E-01 : 1.000E+01 

PLANT. FLASHDRUM. TOP_V :=3.00000E+00 : -1.000E-03 : 1.000E+09 

PLANT. FLASHDRUM. INTENERGY_B_L :=1.63113E+02 : -1.000E+09 : 1.000E+04 

PLANT. FLASHDRUM. TOP_B_L 9.70524E-02 : -1.000E-03 : 1.000E+09 

PLANT. FLASHDRUM. DEN VO(1) 7.71719E-01 : -1.000E-01 : 1.000E+05 

PLANT. FLASHDRUM. DEN_VO(2) 1.01729E+00 : -1.000E-01 : 1.000E+05 

PLANT. FLASHDRUM. DEN_B :=1.06782E+00 : -1.000E-01 : 1.000E+05 

PLANT. FLASHDRUM. VISCOSITY_VO(1) 8.32490E-06 : -1.000E-01 1.000E+02 

PLANT. FLASHDRUM. VISCOSITY_VO(2) 7.58946E-06 : -1.000E-01 1.000E+02 

PLANT. FLASHDRUM. M :-5.01474E+01 -1.000E-03 1.000E+09 

PLANT. FLASHDRUM. RATE_V_PI1(1) 0.00000E+00 : -1.000E-01 : 1.000E+04 

PLANT. FLASHDRUM. RATE_V-PI1(2) 0.00000E+00 -1.000E-01 : 1.000E+04 

PLANT. FLASHDRUM. PRESS_V :=4.36584E+01 : -1.000E-01 : 1.000E+04 

PLANT. FLASHDRUM. VISCOSITY_B :=5.89599E-06 -1.000E-01 : 1.000E+02 

PLANT. FLASHDRUM. MASS-L(1) 1.49735E+01 -1.000E-01 : 1.000E+09 

PLANT. FLASHDRUM. MASS_L(2) 1.49965E+01 : -1.000E-01 1.000E+09 

PLANT. FLASHDRUM. RATE_B_L_PI1(1) 1.25494E-01 : -1.000E-01 : 1.000E+04 

PLANT. FLASHDRUM. RATE_B_L_PI1(2) 1.88241E-01 : -1.000E-01 : 1.000E+04 

PLANT. FLASHDRUM. PRESS_B_L :=4.36584E+01 : -1.000E-01 : 1.000E+04 

PLANT. FLASHDRUM. TEMP_L :-2.23031E+02 : -1.000E-01 : 1.000E+04 

PLANT. FLASHDRUM. AREA :=7.85000E-01 : -1.000E-03 : 1.000E+09 ; 

PLANT. FLASHDRUM. MOLE_B_L(1) 3.40213E-01 : -1.000E-01 1.000E+02 

PLANT. FLASHDRUM. MOLE_B_L(2) 2.58087E-01 : -1.000E-OS 1.000E+02 

PLANT. FLASHDRUM. RATE_V-P01(1) 0.00000E+00 -1.000E-01 : 1.000E+04 

PLANT. FLASHDRUM. RATE_V_P01(2) 0.00000E+00 -1.000E-01 : 1.000E+04 

PLANT. FLASHDRUM. ENTH_V :=7.07255E+02 : -1.000E+07 : 1.000E+04 

PLANT. FLASHDRUM. RATE_B_L_P01(1) 0.00000E+00 -1.000E-01 : 1.000E+04 

PLANT. FLASHDRUM. RATE_B_L_P01(2) 0.00000E+00 -1.000E-01 : 1.000E+04 

PLANT. FLASHDRUM. RATE_V_P02(1) 0.00000E+00 : -1.000E-01 : 1.000E+04 

PLANT. FLASHDRUM. RATE_V-P02(2) 0.00000E+00 : -1.000E-01 : 1.000E+04 

PLANT. FLASHDRUM. ENTH_B_L :=1.63224E+02 : -1.000E+07 : 1.000E+04 ; 

PLANT. FLASHDRUM. RATE_B_L_P02(1) 0.00000E+00 : -1.000E-01 : 1.000E+04 

PLANT. FLASRDRUM. RATE_B_L_P02(2) 0.00000E+00 : -1.000E-01 : 1.000E+04 

PLANT. FLASHDRUM. DEN_L 6.23188E+02 : -1.000E-01 : 1.000E+05 

PLANT. FLASHDRUM. TEMP R 5.66487E-01 -1.000E-01 : 1.000E+01 

PLANT. FLASHDRUM. VISCOSITY_L :=6.58909E-05 -1.000E-01 : 1.000E+02 

PLANT. FLASHDRUM. MASS_V(1) 1.00000E+00 -1.000E-01 : 1.000E+09 

PLANT. FLASHDRUM. MASS_V(2) 1.00000E+00 -1.000E-01 : 1.000E+09 

PLANT. FLASHDRUM. MASS_B_L(1) 1.50000E+01 : -1.000E-01 : 1.000E+09 

PLANT. FLASHDRUM. MASS_B_L(2) 1.50000E+01 : -1.000E-01 : 1.000E+09 

PLANT. FLASHDRUM. HEAT_L0(1) 4.28858E+02 : -1.000E+07 : 1.000E+04 

PLANT. FLASHDRUM. HEAT_LO(2) 4.22423E+02 : -1.000E+07 : 1.000E+04 

PLANT. FLASHDRUM. Z :=2.75202E-01 : -1.000E+09 1.000E+09 
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PLANT. FLASHDRUM. TEMP V :=3.00000E+02 : -1.000E-01 : 1.000E+04 
PLANT. FLASHDRUM. RATE B V(1) 7.95751E-06 -1.000E-01 : 1.000E+04 
PLANT. FLASHDRUM. RATE_H_V(2) 1.04249E-06 -1.000E-01 : 1.000E+04 
PLANT. FLASHDRUM. ENTHFLOW_V_PI1 :=0.00000E+00 : -1.000E+09 : 1.000E+07 
PLANT. FLASHDRUM. ENTH_BO(1) 6.02311E+02 : -1.000E+07 : 1.000E+04 
PLANT. FLASHDRUM. ENTH_BO(2) 5.74560E+02 -1.000E+07 : 1.000E+04 
PLANT. FLASHDRUM. ENTHFLOW_B_L_PI1 :=1.09807E+02 : -1.000E+09 1.000E+07 
PLANT. FLASHDRUM. RATIO_B :=1.0000E-03 : -1.000E-01 : 1.000E+01 
PLANT. FLASHDRUM. MASSFRAC_P01(1) 5.00000E-01 : -1.000E-01 1.000E+01 
PLANT. FLASHDRUM. MASSFRAC_P01(2) 5.00000E-01 : -1.000E-01 : 1.000E+01 
PLANT. FLASHDRUM. DEN_V :=8.77650E-01 : -1.000E-01 : 1.000E+05 ; 
PLANT. FLASHDRUM. MASSFRAC P02(1) 5.00000E-01 : -1.000E-01 1.000E+01 
PLANT. FLASHDRUM. MASSFRAC_P02(2) 5.00000E-01 : -1.000E-01 : 1.000E+01 
PLANT. FLASHDRUM. MOLEFRAC_B(1) 9.09864E-01 : -1.000E-01 : 1.000E+01 
PLANT. FLASHDRUM. MOLEFRAC_B(2) 9.01362E-02 -1.000E-01 : 1.000E+01 
PLANT. FLASHDRUM. DEN_B_L :=3.93772E+02 : -1.000E-01 : 1.000E+05 

PLANT. FLASHDRUM. VISCOSITY_V :=7.95718E-06 : -1.000E-01 : 1.000E+02 

PLANT. FLASHDRUM. VISCOSITY_B-L 6.58309E-05 : -1.000E-01 : 1.000E+02 
PLANT. FLASHDRUM. VAPPRESS_L(1) 6.99037E+01 -1.000E-01 1.000E+04 
PLANT. FLASHDRUM. VAPPRESS_L(2) 9.11464E+00 -1.000E-01 1.000E+04 

PLANT. FLASHDRUM. ENTHFLOW_V_P01 0.00000E+00 : -1.000E+09 1.000E+07 
PLANT. R3. RATIO_P :=1.00000E+00 -1.000E-01 : 1.000E+01 ; 
PLANT. R3. PHASETYPE_P :=1.00000E+00 : -1.000E-03 : 1.000E+09 

PLANT. R3. RATE_P(1) 0.00000E+00 -1.000E-01 : 1.000E+04 

PLANT. R3. RATE_P(2) 0.00000E+00 : -1.000E-01 : 1.000E+04 

PLANT. R3. ENTHFLOW_P 0.00000E+00 : -1.000E+09 1.000E+07 

PLANT. R2. RATIO_P :=1.00000E+00 : -1.000E-01 : 1.000E+01 ; 
PLANT. R2. PHASETYPE_P :=1.00000E+00 : -1.000E-03 : 1.000E+09 

PLANT. R2. RATE_P(1) 0.00000E+00 : -1.000E-01 : 1.000E+04 

PLANT. R2. RATE_P(2) 0.00000E+00 : -1.000E-01 1.000E+04 

PLANT. R2. ENTHFLOW_P 0.00000E+00 : -1.000E+09 1.000E+07 

PLANT. RI. RATE P(1) 1.25494E-01 -1.000E-01 : 1.000E+04 

PLANT. RI. RATE_P(2) 1.88241E-01 : -1.000E-01 : 1.000E+04 

PLANT. RI. ENTHFLOW_P 1.09807E+02 -1.000E+09 : 1.000E+07 

PLANT. DRIVINGFORCE_C1 :=3.61542E+02 -1.000E+09 1.000E+09 

PLANT. DRIVINGFORCE_C2 -5.76416E+01 : -1.000E+09 1.000E+09 

PLANT. DRIVINGFORCE_C3 -5.76416E+01 : -1.000E+09 : 1.000E+09 

PLANT. REYNOLDSCONSTI_C1 2.10000E+03 : -1.000E-03 1.000E+09 

PLANT. REYNOLDSCONSTI_C2 2.10000E+03 : -1.000E-03 : 1.000E+09 

PLANT. REYNOLDSCONST2_C1 :=4.50000E+03 -1.000E-03 1.000E+09 

PLANT. REYNOLDSCONSTI_C3 2.10000E+03 : -1.000E-03 1.000E+09 

PLANT. REYNOLDSCONST2_C2 :=4.50000E+03 : -1.000E-03 : 1.000E+09 

PLANT. REYNOLDSCONST2_C3 4.50000E+03 : -1.000E-03 : 1.000E+09 

PLANT. REYNOLDSNO_C1 8.30707E+03 -1.000E-03 1.000E+09 

PLANT. REYNOLDSNO_C2 0.00000E+00 : -1.000E-03 : 1.000E+09 

PLANT. REYNOLDSNO_C3 0.00000E+00 : -1.000E-03 : 1.000E+09 

WITHIN Plant DO 

ReynoldsNo_C2 5000 

ReynoldsNo_C3 = 5000 

WITHIN FlashDrum DO 

PhaseType_V =1 

PhaseType B 

PhaseType_L .=2 
PhaseType_B_L =3 

PhaseType_Pol 3 

PhaseType_Po2 =1 

Top_V 3 

Bot_V 0.0535 

Top_B_L 0.0535 

Bot_B_L 0 

Level_H L .=0.0535 
Level_V "= 3 

VapPress_L(1) .= 311.379 

VapPress_L(2) .= 11.018E-3 

EquilConst_B_L(1) = 1.6 

EquilConst_B_L(2) .=0.2 

{ 
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Vol_F1ashDrum .=2.356 
Presa_F1ashDrum := 43 

Temp_B 220 

Temp_L 220 

END 

END 

} 

SELECTOR 

WITHIN Plant DO 

F1owType_C1 = Turbulent 

F1ovType_C2 . = Turbulent 

F1ovType_C3 . = Turbulent 

WITHIN FlashDrum DO 

Phase_B_L = TwoPhase 

END 

END 

INITIAL 

WITHIN Plant DO 

WITHIN FlashDrum DO 

Temp_V = 300 

Mass_V =1 

Mass_B_L = 15 

Ratio_B = 0.001 

END 

END 

SOLUTIONPARAMETERS 

BLOCKDECOMPOSITION := OFF ; 

OUTPUTLEVEL :=1; 

SCHEDULE 

SEQUENCE 

CONTINUE FOR 10 

RESET P1ant. R1. Press_P := 4*1.013E2 + (TIME-10) 

END 

CONTINUE UNTIL P1ant. Rl. Press_P > 500 

RESET P1ant. R1. Press_P := 600 - TIME 

END 

CONTINUE UNTIL P1ant. R1. Press_P < 350 

RESET P1ant. R1. Press_P := 4*1.013E2 

END 

CONTINUE UNTIL Plant. FlashDrum. Der_IntEnergy_V-2 < 1E-20 

END 

END # Process test 
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D. 2 Two Flash Drums with reversible flow 
DECLARE 

TYPE 

Mass-rate - 50 -1E-1 . 1E4 UNIT = "kg/sec" 

Temperature = 100 -1E-1 1E4 UNIT = "K" 

Length = 15 -1E-1 1E2 UNIT = 
Enthalpy = 700 -1E7 1E4 UNIT = "kJ/kg" 

Int_Energy = 600 -1E9 1E4 UNIT = "kJ/kg" 

Volume = 0.5 -1E-1 1E1 UNIT = "m3" 

Pressure = 43 -1E-1 1E4 UNIT = "kPa" 

Enthalpy_Flov = 1E3 -1E9 1E7 UNIT = "kJ/sec" 

Mass =5 -1E-1 1E9 UNIT = "kg" 

Mole = 0.1 -1E-1 1E2 UNIT = "kmole" 

Density = 100 -1E-1 1E5 UNIT = "kg/m3" 

Viscosity = 5E-5 -1E-1 1E2 UNIT = "Pa. s" 
Velocity = 10 -1E-1 1E4 UNIT = "m/s" 

Fraction = 0.5 -1E-1 . 10 

NoType = 200 -1E9 . 1E9 

Positive = 1E2 -IE-3 . 1E9 

STREAM 

MassStream IS Mass Rate, Enthalpy_Flov, Fraction, Positive 

EnergyStream IS Enthalpy_Flov 

END 

# ############################## 

# BEGINNING of generated model # 

# ############################## 

MODEL m_R1 

PARAMETER 

NoComp AS INTEGER 

VARIABLE 

Ratio_P AS Fraction 

Rate_P AS krray(NoComp) of Mass-Rate 

Den_P AS Density 

Press_P AS Pressure 

EnthFlow-P AS Enthalpy-Flow 

PhaseType P AS Positive 

Viscosity_P AS Viscosity 

MassFrac_P AS Array(NoComp) of Fraction 

Enth_P AS Enthalpy 

STREAM 

P: Rate_P, EnthFlov P, Ratio_P, PhaseType P AS MassStream 

END S end of MODEL m_R1 

MODEL m_R2 

PARAMETER 

NoComp AS INTEGER 

VARIABLE 

Ratio_P AS Fraction 

Rate_P AS krray(NoComp) of Mass-Rate 

Press_P AS Pressure 
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EnthFlow-P AS Enthalpy-Flow 

PhaseType_P AS Positive 

STREAM 

P: Rate_P, EnthFlov_P, Ratio-P, PhaseType P AS MassStream 

END 0 end of MODEL m_R2 

MODEL m_R3 

PARAMETER 

NoComp AS INTEGER 

VARIABLE 

Ratio 
-P 

AS Fraction 

Rate_P AS Array(NoComp) of Mass Rate 
Press 

-P AS Pressure 

EnthFlov_P AS Enthalpy Flow 

PhaseType_P AS Positive 

STREAM 

P: Rate_P, EnthFlow_P, Ratio P, PhaseType_P AS MassStream 

END # end of MODEL m_R3 

MODEL m_R4 

PARAMETER 

NoComp AS INTEGER 

VARIABLE 

Ratio 
-P 

AS Fraction 

Rate_P AS Array(NoComp) of Mass-Rate 

Press_P AS Pressure 

EnthFlow-P AS Enthalpy-Flow 

PhaseType_P AS Positive 

STREAM 

P: Rate-P, EnthFlow_P, Ratio P, PhaseType_P AS MassStream 

END ß end of MODEL m_R4 

MODEL m_F1ashDruml 

PARAMETER 

vapour AS INTEGER 

OUTLET AS INTEGER 

INLET AS INTEGER 

vapour-liquid AS INTEGER 

NoComp AS INTEGER 

liquid AS INTEGER 

Z_Pol AS REAL 

Z_Po2 AS REAL 

height AS REAL 

Const_B_V AS REAL 

Z_Pi AS REAL 

diameter AS REAL 

VARIABLE 

Mass_B L AS Array(NoComp) of Mass 

Mass_B AS Array(NoComp) of Mass 

Mass_V AS Array(NoComp) of Mass 

Mass_L AS Array(NoComp) of Mass 

Rate_B_V AS Array(NoComp) of Mass_Rate 
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Rate_V_Pi AS Array(NoComp) of Mass-Rate 
Rate_B_L_Pol AS krray(NoComp) of Mass-Rate 
Rate_B_L_Po2 AS Array(NoComp) of Mass_Rate 
Rate_V_Pol AS Array(NoComp) of Mass-Rate 
Rate_V_Po2 AS Array(NoComp) of Mass-Rate 
Rate_Pi AS Array(NoComp) of Mass Rate 
Rate_Pol AS Array(NoComp) of Mass Rate 
Rate_Po2 AS Array(NoComp) of Mass-Rate 
Rate_B_L_Pi AS Array(NoComp) of Mass Rate 
Mole_B_L AS Array(NoComp) of Mole 
Mole_B AS Array(NoComp) of Mole 

Mole_L AS Array(NoComp) of Mole 

Den_B L AS Density 

Den_B AS Density 

Den_V AS Density 

Den_L AS Density 

Den-Pot AS Density 

Den Pot AS Density 

Viscosity_B_L AS Viscosity 

Viscosity 
-V AS Viscosity 

Viscosity Po2 AS Viscosity 

Viscosity Pol AS Viscosity 

Press_B AS Pressure 

Press 
-V 

AS Pressure 

Press 
-L 

AS Pressure 

Press_FlashDruml AS Pressure 

Press_B_L AS Pressure 

VapPress_L AS Array(NoComp) of Pressure 

DevTemp B_L AS Temperature 

Temp 
-B 

AS Temperature 

Temp 
-V 

AS Temperature 

Temp_L AS Temperature 

BubTemp B_L AS Temperature 

Vol_B AS Volume 

Vol_B_L AS Volume 

Vol_V AS Volume 

Vol_L AS Volume 

Vol_FlashDruml AS Volume 

Enth_Pol AS Enthalpy 

Enth_Po2 AS Enthalpy 

Enth_B AS Enthalpy 

Enth_V AS Enthalpy 

Enth_L AS Enthalpy 

Enth_B_L AS Enthalpy 

IntEnergy_B_L AS Int_Energy 

IntEnergy_L AS Int_Energy 

IntEnergy_V AS Int_Energy 

IntEnergy_B AS Int_Energy 

EnthFlow-V-Pi AS Enthalpy-Flow 

EnthFlow-B-L-Pi AS Enthalpy-Flow 

EnthFlov-Pi AS Enthalpy-Flow 

EnthFlov-B-V AS Enthalpy-Flow 

EnthFlov-V-Po2 AS Enthalpy-Flow 

EnthFlov-B-L-Po2 AS Enthalpy-Flow 

EnthFlow-Po2 AS Enthalpy-Flow 

EnthFlov-V-Pol AS Enthalpy-Flow 

EnthFlow-B-L-Pol AS Enthalpy-Flow 

EnthFlov_Pol AS Enthalpy_Flov 

Ratio-Pi AS Fraction 

Ratio_B AS Fraction 

Ratio_V AS Fraction 

Ratio Po2 AS Fraction 

Ratio_Pol AS Fraction 

MoleFrac_L AS Array(NoComp) of Fraction 

MassFrac_B_L AS Array(NoComp) of Fraction 

MassFrac_L AS Array(NoComp) of Fraction 

MassFrac_V AS Array(NoComp) of Fraction 

MassFrac_Po2 AS Array(NoComp) of Fraction 
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MoleFrac_B AS Array(NoComp) of Fraction 

MassFrac_B AS Array(NoComp) of Fraction 

MaseFrac_Poi AS Array(NoComp) of Fraction 

Top_B_L AS Positive 

Level_V AS Positive 

Bot_V AS Positive 

Level_B_L AS Positive 

PhaseType_B_L AS Positive 

PhaseType_L AS Positive 

PhaseType_Pi AS Positive 

PhaseType_V AS Positive 

PhaseType_Po2 AS Positive 

PhaseType B AS Positive 

PortType_Pol AS Positive 

PhaseType_Pol AS Positive 

Bot_B_L AS Positive 

area AS Positive 

Top_V AS Positive 

EquilConst_B_L AS Array(NoComp) of Positive 

MoleWeight AS Array(NoComp) of Positive 

# Variables for Physical Properties # 

Enth_Vo AS ARRAY(NoComp) OF Enthalpy 

Enth_Bo AS ARRAY(NoComp) OF Enthalpy 

Enth_Lo AS ARRAY(NoComp) OF Enthalpy 

Heat_Lo AS ARRAY(NoComp) OF Enthalpy 

Temp_ro AS ARRAY(NoComp) OF Fraction 

Den_Vo AS ARRAY(NoComp) OF Density 

Den_Bo AS ARRAY(NoComp) OF Density 

Temp-co AS ARRAY(NoComp) OF Temperature 

Viscosity_B As Viscosity 

Viscosity_L As Viscosity 

Viscosity_Vo As ARRAY(NoComp) OF Viscosity 

Viscosity_Bo As ARRAY(NoComp) OF Viscosity 

Viscosity-Lo As ARRAY(NoComp) OF Viscosity 

Av, By, Cv, Dv AS ARRAY(NoComp) OF NoType 

Al, B1, Cl, Dl, El AS ARRAY(NoComp) OF NoType 

Temp_r AS Fraction 

Press_c AS Pressure 

Press-co AS ARRAY(NoComp) OF Positive 

Temp_c AS Temperature 

M AS Positive 

z AS NoType 

Zo AS ARRAY(NoComp) OF NoType 

R AS NoType 

A, B, C, D, E AS ARRAY(NoComp) OF NoType 

# F, G AS ARRAY(NoComp) OF NoType 

vapl, vap2, vap3, vap4, vap5 AS ARRAy(NoComp) OF NoType 

Wo AS ARRAY(NoComp) OF NoType 

# dummy variable for visualisation # 

# ==-============================= # 

Sum-Mass-V, 

Der_IntEnergy_V, 

Sum_Mass_B_L, 

Der_Mass_B_L, 
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Sum_Mass_B, 

Sum_Mass_L, 

Sum_Rate_B_V, 

Sum_Rate Pi, 

Sum Rate_Pol, 

Sum_Rate_Po2, 

VapPress_1, 

VapPress_2, 

Equil_1, 

Equil_2 AS NoType 

STREAM 

Pi : Rate_Pi, EnthFlov_Pi, Ratio-Pi, PhaseType_Pi AS MassStream 
Pol : Rate_Pol, EnthFlow_Pol, Ratio_Pol, PhaseType_Pol AS MassStream 
Po2 : Rate_Po2, EnthFlow_Po2, Ratio_Po2, PhaseType_Po2 AS MassStream 

SELECTOR 

Phase B_L AS (LPhase, TwoPhase, VPhase) 

SET 

vapour 1 

Z_Pol 0.500000 

Z_Po2 
.=2.500000 

OUTLET =1 
INLET 2 

height = 3.000000 

vapour-liquid 3 

liquid =2 
Z_Pi = 1.500000 

diameter .=1.000000 

EQUATION 

# case invariant mass balance 

$Mass_V = Rate-V_Pi - Rate_V_Poi - Rate_V_Po2 + Rate B_V 

$Mass_B_L = Rate_B_L_Pi - Rate_B_L_Pol - Rate_B_L_Po2 - Rate_B_V ; 

# case invariant energy balance 

$IntEnergy_V * SIGMA(Mass_V) + IntEnergy V* SIGMA($Mass V) _ 

EnthFlov_V_Pi - EnthFlov_V_Poi - EnthFlov V_Po2 + EnthFlov BV 

$IntEnergy_B_L * SIGMA(Mass_B_L) + IntEnergy_B_L * SIGMA($Mass_B_L) = 

EnthFlow_B_L_Pi - EnthFlov_B_L_Po1 - EnthFlov_B_L_Po2 - EnthFlow_B_V 

# ratio of dispersed phase 

Ratio_V =1; 

SIGMA(Mass_B) = Ratio 
-B * SIGMA(Mass B_L) 

# PhaseEquilibrium 

Temp_B = Temp_L ; 

Mass_B_L = Mass_B + Mass_L 

Mass_B = MoleWeight * Mole_B 

Mass_B_L = MoleWeight * Mole_B_L 

Mole_B_L = Mole_B + Mole j; 

Mole 
-B = MoleFrac_B * SIGMA(Mole_B) 

Mole_L = MoleFrac_L * SIGMA(Mole_L) 

CASE Phase_B_L OF 

WHEN LPhase 

Mole_B -0 

EquilConst_B_L =0 

SWITCH TO TwoPhase IF Temp_L > BubTemp_B_L 

WHEN TvoPhase : 

VapPress_L " MoleFrac_L = MoleFrac_B * Press B_L 

MoleFrac_B = EquilConst_B_L * MoleFrac_L ; 
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SWITCH TO LPhase IF SIGMA(Mole B) <= 0 

SWITCH TO VPhaze IF SIGMA(Mole L) <= 0 

WHEN VPhase : 

EquilConst_B_L =0 

Mole_L -0; 

SWITCH TO TwoPhase IF Temp_B < DewTemp_B_L 

END 

# BubbleRise : 

Rate_B_V = Const_B_V * Mass_B 

EnthFlov_B_V = SIGMA(Rate_B_V) * Enth_B 

# mass = mass fraction * total mass 
Mass_B_L = MassFrac_B_L * SIGMA(Mass_B_L) 

Mass_L = MassFrac_L * SIGMA(Mass_L) 

Mass_B = MassFrac_B * SICMA(Mass_B) 

Mass_V = MassFrac_V * SIGMA(Mass_V) 

X total mass = density * volume 
SIGMA(Mass_B_L) = Den_B_L * Vol_B_L 

SIGMA(Mass_L) = Den_L * Vol 
-L 

SIGMA(Mass_B) = Den_B * Vol 
-B 

SIGMA(Mass_V) = Den 
-V * Vol_V 

# phase type 

PhaseType B_L = vapour-liquid 
PhaseType_L = liquid 

PhaseType B= vapour 

PhaseType_V = vapour 

# volume relationship 
Vol B_L = Vol 

-B + Vol_L 

Vol_FlashDruml = Vol 
-V 

+ Vol_B_L 

# uniform pressure within vessel 

Press_FlashDruml - Press B_L 

Press_FlashDruml = Press_L 

Press_FlashDruml - Press_B 

Press_FlashDruml = Press_V 

# phase bound : upper/lov bound of phase volume = level 

Top_B_L = Level_B_L 

Bot_B_L =0; 

Top 
-V = Level_V 

Bot_V = Level_B_L 

Top_V - height ; 

# phase volume : volume = area * (top - bottom) 

area = (3.14/4) + diameter-2 ; 

Vol_B_L = area + (Top B_L - Bot_B_L) 

Vol_V = area * (Top_V - Bot_V) ; 

# discontinuity on input port, "Pi" 

IF PhaseType_Pi = vapour THEN 

IF Z_Pi > Bot_V AND Z_Pi <= Top_V THEN 

Rate_V_Pi = Rate_Pi 

EnthFlow_V_Pi = EnthFlow_Pi 

Rate_B_L_Pi =0; 

EnthFlow_B_L_Pi =0 

ELSE 

Rate_B_L_Pi = Rate-Pi 

EnthFlow_B_L_Pi = EnthFlow_Pi 

Rate_V_Pi =0; 

EnthFlow_V_Pi =0 

END 

ELSE 

Rate B_L_Pi - Rate_Pi 
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EnthFlov_B_L_Pi - EnthFlov_Pi 

Rate_V_Pi -0; 

EnthFlov_V Pi =0 

END 

* and of discontinuity on input port, "Pi" 

# discontinuity on both type port, "Pol" 

IF PortType_Pol = OUTLET THEN 

IF Z 
-Pol 

> Bot_V AND Z 
-Pol <= Top_V THEN 

viscosity 
-V = viscosity-pol 

Den_V = Den-Pol ; 

MassFrac_V = MassFrac_Pol 

Enth_V = Enth_Pol 

Rate_V Pol = Rats Pol 

EnthFlow_V_Pol = EnthFlow_Pol 

Rate_B_L_Pol =0 

EnthFlov B_L_Poi =0 
ELSE 

Viscosity B_L - Viscosity-Poi 

Den_B_L = Den-Pol ; 
MassFrac_B_L = MassFrac Pol 

Enth_B_L = Enth_Pol 

Rate_B_L Pol = Rate Pol 

EnthFlow_B_L_Pol = EnthFlow_Poi 

Rate_V_Pol =0 
EnthFlov_V Poi =0 

END 

ELSE 

IF PhaseType_Poi = vapour THEN 

IF Z 
-Pol 

> Bot_V AND Z_Pol <= Top_V THEN 

viscosity-pol 0 

Den-Pot =0; 

MassFrac_Pol =0 

Enth Pol =0 

Rate V_Pol = Rate Pol 

EnthFlow_V_Poi = EnthFlow_Pol 

Rate_B_L_Pol =0 

EnthFlov_B_L_Poi =0 

ELSE 

viscosity-pol 0 

Den_Pol =0; 
MassFrac_Pol =0 

Enth_Pol =0 

Rate B_L Pol = Rate Poi 

EnthFlov_B_L_Pol = EnthFlow_Po1 

Rate_V_Pol =0 

EnthFlov V_Poi =0 

END 

ELSE 

viscosity-pol 0 

Den_Pol =0; 

MassFrac_Pol =0 

Enth_Pol =0 

Rate_B_L_Pol = Rate-Pol 

EnthFlow_B_L_Pol = EnthFlov_Pol 

Rate_V Pol =0 

EnthFlow_V Pol =0 

END 

END 

# and of discontinuity on both type port, "Pol" 

* discontinuity on output port, "Po2" 

IF Z_Po2 > Bot_V AND Z_Po2 <= Top_V THEN 

Viscosity j= Viscosity Pot 

Enth_V - Enth_Po2 ; 

MassFrac_V = MassFrac_Po2 
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Den_V = Den_Po2 ; 

Ante V_Po2 = Rats Pot 

EnthFlov V_Po2 = EnthPlov Po2 

Ratio_V = Ratio_Po2 

PhaseType_V = PhaseType_Po2 

Rate_B_L Po2 =0; 

EnthFlov_B_L_Po2 =0 

ELSE 

Viscosity_B_L = Viscosity_Po2 

Enth_B_L - Enth_Po2 

MassFrac BL= MassFrac_Po2 

Den_B_L = Den_Po2 ; 

Rate_B_L_Po2 = Rate_Po2 

EnthFlov_B_L_Po2 = EnthFlov Po2 

Ratio 
-B = Ratio_Po2 

PhaseType_B_L PhaseType_Po2 

Rate_V_Po2 -0 

EnthFlov_V Po2 =0 

END 

# end of discontinuity on output port, "Po2" 

# Physical Properties # 

# vapour pressure of L 

# VapPress-L * 0.145 = 10-(F - G/((1.8 * Temp_L - 459.4) + 382)) 

VapPress_L = 1E-3 * EXP(vapl + vap2/Temp_L + vap3*LOG(Temp_L) + 

vap4*Temp_L'vap5) ; 

# Application Range : 
# Propane : 228K - 366K 

# Butane 228K - 421K 

# pure enthalpies of V 

Enth_Vo * 0.43 =A* ((Temp_V * 9/5)/100) +B* ((Temp_V * 9/5)/100)"2 + 

C* 1E-2 * ((Temp 
-V * 9/5)/100)'3 +D* (100/(Temp V* 9/5)) +E; 

# enthalpy of V 

Enth_V = SIGMA(MassFrac_V * Enth_Vo) 

ü pure enthalpies of B 

Enth_Bo * 0.43 =A* ((Temp_B * 9/5)/100) +B* ((Temp_B * 9/5)/100)'2 + 

C* 1E-2 * ((Temp_B * 9/5)/100)"3 +D* (100/(Temp_B * 9/5)) +E; 

# enthalpy of B 

Enth_B = SIGMA(MassFrae_B * Enth_Bo) 

# heats of vapourisation of pure L 

Heat_Lo * MoleWeight = (R * Temp-co) * (7.08 * (1 - Temp_ro)'0.354 + 

10.95 * Wo * (1-Temp_ro)"0.456) ; 

Temp_ro * Temp-co = Temp_L ; 

# pure enthapies of L 

Enth_Lo = Enth Bo - Heat 
_Lo 

# enthalpy of L 

Enth L= SIGMA(MasBFrac_L * Enth_Lo) 

# enthalpy of B_L 

Enth_B_L = Ratio_B * Enth_B + (1 - Ratio_B) * Enth_L 

* internal energy of V 

Enth_V * SIGMA(Mass V) = IntEnergy_V * SIGMA(Mass V) + 

SIGMA(Mass_V / MoleWeight) *R* Temp_V 



1 

APPENDIX D. SIMULATION INPUT FILES 163 

$ internal energy of B_L 

Enth_B_L - IntEnergy_B_L + Press_B_L / Den_B_L 

X IntEnergy B_L - IntEnergy B* Ratio 
-B + 

X (1 - Ratio_B) * IntEnergy_L 

# internal energy of B 

Enth_B * SIGMA(Mase_B) = IntEnergy_B * SIGMA(Mass_B) + 
SIGMA(Mass_B / MoleWeight) *R* Temp_B 

8 internal energy of L 

Enth_L = IntEnergy_L + Press_L / Den_L 

# density of V 

Den_Vo *R* Temp_V = Press_V * MoleWeight ;# for pure component 
Den_V * SIGMA(MassFrac_V / Den_Vo) =1; # for mixture 

# density of B 

Den_Bo *R* Temp_L = Press 
-B * MoleWeight; # for pure component 

Den 
-B * SIGMA(MassFrac B/ Den_Bo) = 1; # for mixture 

# density of L 

Den_L *R* Temp_c * Z'(1 + (1 - Temp-r)-(2/7)) = Press_c *M 
Press_c = SIGMA(MoleFrac_L * Press-co) 

Temp_c = SIGMA(MoleFrac_L * Temp-co) 

Z- SIGMA(MoleFrac_L * Zo) 

Temp_r * Temp_c = Temp_L ; 
M= SIGMA(MoleFrac_L * Moleweight) 

# viscosity of V 

Viscosity_Vo = Av * Temp_V-Bv / (1 + Cv / Temp_V + Dv / Temp_V"2) 

Viscosity_V = SIGMA(MassFrac_V * Viscosity_Vo) ; 

# viscosity of B_L 

Viscosity Bo = (Av * Temp_B"Bv) / (1 + Cv / Temp 
-B + Dv / Temp B"2) 

Viscosity 
-B = SIGMA (MassFrac V* Viscosity_Bo) ; 

Viscosity_Lo = EXP(A1 * (B1 / Temp_L) + Cl * LOG(Temp_L) + 

Dl * Temp_L"E1) ; 

Viscosity_L = SIGMA(MassFrac_L * Viscosity_Lo) 

Viscosity_B_L = Ratio_B * Viscosity_B + 

(1 - Ratio_B) * Viscosity_L 

# dummy variables for visualisation # 

Sum_Mass_V = SIGMA(Mass_V) 

Der_IntEnergy_V = $IntEnergy_V; 

Sum-Mass B_L = SIGMA(Mass_B_L) 

Der Mass_B_L = SIGMA ($Mass B L); 

Sum_Mass_B = SIGMA(Mass B) 

Sum_Mass_L = SIGMA(Masa_L) 

Sum_Rate_B_V = SIGMA(Rate B V) 

Sum_Rate_Pi = SIGMA(Rate_Pi); 

Sum_Rate_Pol = SIGMA (Ftate-Pol); 

Sum_Rate_Po2 - SIGMA (Rate-Po2); 

VapPress_1 = VapPress_L(1); 

VapPress_2 = VapPress_L(2); 

Equil_1 = EquilConst B_L(1); 

Equil_2 = Equi1Const B_L(2); 

END M end of MODEL m_F1ashDruml 

MODEL m_F1ashDrum2 

PARAMETER 

vapour 
AS INTEGER 
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OUTLET AS INTEGER 

INLET AS INTEGER 

vapour-liquid AS INTEGER 

NoComp AS INTEGER 

liquid AS INTEGER 

Z_Pol AS REAL 

Z_Po2 AS REAL 

height AS REAL 

Const_B_V AS REAL 

Z_Pi AS REAL 

diameter AS REAL 

VARIABLE 

Mass_B L AS Array(NoComp) of Mass 

Mass 
-B AS Array(NoComp) of Mass 

Mass_V AS Array(NoComp) of Mass 

Mass_L AS Array(NoComp) of Mass 

Rate_S V AS Array(NoComp) of Mass 
- 
Rate 

Rate_V_Pi AS Array(NoComp) of Mass- Rate 

Rate_B_L_Pol AS Array(NoComp) of Mass- Rate 

Rate_B_L_Po2 AS Array(NoComp) of Mass- Rate 

Rate_V_Pot AS Array(NoComp) of Mass- Rate 

Rate V Po2 AS Array(NoComp) of Mass- Rate 

Rate Pi AS Array(NoComp) of Mass- Rate 

Rate Pol AS Array(NoComp) of Mass- Rate 

Rate Po2 AS Array(NoComp) of Mass- Rate 

Rate B_L Pi AS Array(NoComp) of Mass- Rate 

Mole B_L AS Array(NoComp) of Mole 

Mole 
-B 

AS Array(NoComp) of Mole 

Mole_L AS Array(NoComp) of Mole 

Den_B_L AS Density 

Den_B AS Density 

Den_V AS Density 

Den_L AS Density 

Den_Pol AS Density 

Den Po2 AS Density 

Den_Pi AS Density 

Viscosity_B_L AS Viscosity 

Viscosity_Pi AS Viscosity 

Viscosity_V AS Viscosity 

Viscosity_Po2 AS Viscosity 

Viscosity_Pol AS Viscosity 

Press_B AS Pressure 

Press_V AS Pressure 

Press_L AS Pressure 

Press_F1ashDrum2 AS Pressure 

Press_B L AS Pressure 

VapPress_L AS Array(NoComp) of Pressure 

DewTemp_B_L AS Temperature 

Temp_B AS Temperature 

Temp_V AS Temperature 

Temp_L AS Temperature 

BubTemp_B_L AS Temperature 

Vol_B AS Volume 

Vol_B_L AS Volume 

Vol_V AS Volume 

Vol_L AS Volume 

Vol_F1ashDrum2 AS Volume 

Enth_Pol AS Enthalpy 

Enth_Po2 AS Enthalpy 

Enth_Pi AS Enthalpy 

Enth_B AS Enthalpy 

Enth_V AS Enthalpy 

Enth_L AS Enthalpy 

Enth_B_L AS Enthalpy 

IntEnergy_B_L AS Int_Energy 

IntEnergy_L AS Int Energy 

IntEnergy_V AS Int_Energy 
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IntEnergy B AS Int_Energy 

EnthFlow_V_Pi AS Enthalpy_Flov 

EnthFlov_B_L_Pi AS Enthalpy_Flov 

EnthFlow_Pi AS Enthalpy-Flow 

EnthFlow_B_V AS Enthalpy-Flow 

EnthFlow-V-Po2 AS Enthalpy-Flow 

EnthFlow-B-L-Po2 AS Enthalpy-Flow 

EnthFlov-Po2 AS Enthalpy-Flow 

EnthFlow-V-Pol AS Enthalpy-Flow 

EnthFlow_B_L_Pol AS Enthalpy_Flov 

EnthFlow_Pol AS Enthalpy-Flow 

Ratio-Pi AS Fraction 

Ratio_B AS Fraction 

Ratio_V AS Fraction 

Ratio_Po2 AS Fraction 

Ratio_Pol AS Fraction 

MoleFrac_L AS Array(NoComp) of Fraction 

MassFrac_B_L AS Array(NoComp) of Fraction 

MassFrac_L AS Array(NoComp) of Fraction 

MassFrac_Pi AS Array(NoComp) of Fraction 

MassFrac V AS Array(NoComp) of Fraction 

MassFrac_Po2 AS Array(NoComp) of Fraction 

MoleFrac_B AS Array(NoComp) of Fraction 

MassFrac B AS Array(NoComp) of Fraction 

MassFrac_Pol AS Array(NoComp) of Fraction 

Top_B_L AS Positive 

Level_V AS Positive 

Bot_V AS Positive 

Level_B_L AS Positive 

PhaseType_B_L AS Positive 

PhaseType_L AS Positive 

PortType_Pi AS Positive 

PhaseType_Pi AS Positive 

PhaseType V AS Positive 

PhaseType Po2 AS Positive 

PhaseType_B AS Positive 

PhaseType_Pol AS Positive 

Bot_B_L AS Positive 

area AS Positive 

Top_V AS Positive 

EquilConst_B L AS Array(NoComp) of Positive 

MoleWeight AS Array(NoComp) of Positive 

# Variables for Physical Properties # 

Enth_Vo AS ARRAY(NoComp) OF Enthalpy 

Enth_Bo AS ARRAY(NoComp) OF Enthalpy 

Enth_Lo AS ARRAY(NoComp) OF Enthalpy 

Heat_Lo AS ARRAY(NoComp) OF Enthalpy 

Temp_ro AS ARRAY(NoComp) OF Fraction 

Den_Vo AS ARRAY(NoComp) OF Density 

Den_Bo AS AHRAY(NoComp) OF Density 

Temp-co AS ARRAY(NoComp) OF Temperature 

Viscosity_B As Viscosity 

Viscosity_L As Viscosity 

Viscosity Vo As ARRAY(NoComp) OF Viscosity 

Viscosity_Bo As ARRAY(NoComp) OF Viscosity 

Viscosity_Lo 
As ARRAY(NoComp) OF Viscosity 

Av, By, Cv, Dv AS ARRAY(NoComp) OF NoType 

Al, B1, Cl, Dl, El AS ARRAY(NoComp) OF NoType 

Temp 
-r 

AS Fraction 
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Press_c AS Pressure 

Press-co AS ARRAY(NoComp) OF Positive 
Temp_c AS Temperature 

M AS Positive 

Z AS NoType 

Zo AS ARRAY(NoComp) OF NoType 

A AS NoType 

A, B, C, D, E AS ARRAY(NoComp) OF NoType 
F, G AS AARAY(NoComp) OF NoType 

vapl, vap2, vap3, vap4, vap5 AS ARRAy(NoComp) OF NoType 
Wo AS ARRAY(NoComp) OF NoType 

# dummy variable for visualisation # 

# =======_°====-=--=============== # 

Sum_Mass_V, 

Der_IntEnergy_V, 

Sum_Mass_B_L, 

Der_Mass_B_L, 

Sum_Mass_B, 

Sum_Mass_L, 

Sum_Rate_B_V, 

Sum-Rate-Pi, 

Snm_Rate Poi, 

Sum_Rate_Po2, 

VapPress_1, 

VapPress_2, 

Equil_1, 

Equil_2 AS NoType 

STREAM 

Pi : Rate-Pi, EnthFlov Pi, Ratio Pi, PhaseType Pi AS MassStream 

Pol : Rate_Pol, EnthFlov Pol, Ratio Poi, PhaseType Pol AS MassStream 

Po2 : Rate_Po2, EnthFlov_Po2, Ratio_Po2, PhaseType_Po2 AS MassStream 

SELECTOR 

Phase_B_L AS (LPhase, TwoPhase, VPhase) 

SET 

vapour =1 

Z_Pol = 0.500000 

Z_Po2 2.500000 

OUTLET =1 

INLET "= 2 

height 3.000000 

vapour-liquid 3 

liquid =2 

Z_Pi .=1.500000 
diameter .=1.000000 

EQUATION 

# case invariant mass balance 

$Mass_V = Rate_V_Pi - Rate V Pol - Rate_V_Po2 + Rate_B V 

$Mass_B_L = Rate B_L_Pi - Rate B_LPol - Rate_B_L Po2 - Rate B_V ; 

* case invariant energy balance 

$IntEnergy_V * SIGMA(Mass_V) + IntEnergy_V * SIGMA($Mass_V) _ 

EnthFlov_V_Pi - EnthFlov_V_Po1 - EnthFlov_V_Po2 + EnthFlov_B_V 

166 

$IntEnergy_B_L * SIGMA(Mass-B_L) + IntBnergy B_L + SIGMA ($Mass B_L) = 

EnthFlov_B_L_Pi - EnthFlov_B_L_Pol - EnthFlov_B_L_Po2 - EnthFlow_B_V 
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* ratio of dispersed phase 
Ratio_V "1; 

SIGMA(Mass B) = Ratio_B * SIGMA(Mass_B_L) 

# PhaseEquilibrium 

Temp 
-B = Temp_L ; 

Mass_B_L = Mass_B + Mass_L 

Mass_B = MoleWeight * Mole_B 

Mass_B_L = MoleWeight * Mole_B_L 

Mole B_L = Mole 
-B 

+ Mole_L ; 
Mole 

-B = MolePrac B* SIGMA(Mole_B) 

Mole_L = MoleFrac_L * SIGMA(Mole_L) 

CASE Phase_B_L OF 

WHEN LPhase 

Mole_B =0 

EquilConst_B_L =0 
SWITCH TO TwoPhase IF Temp_L > BubTemp B_L 

WHEN TwoPhase : 

VapPress_L * MoleFrac_L = MoleFrac_B * Press B_L 

MoleFrac B= EquilConst B_L * MoleFrac_L 

SWITCH TO LPhase IF SIGMA(Mole_B) <= 0 

SWITCH TO VPhass IF SIGMA(Mole_L) <= 0 

WHEN VPhase 

Mole_L =0 

EquilConst_B_L =1 
SWITCH TO TwoPhase IF Temp_B < DewTemp_B_L 

END 

# BubbleRise : 

Rate_B_V = Const_B_V * Mass_B 

EnthFlov_B_V = SIGMA(Rate_B_V) * Enth_B 

# mass = mass fraction * total mass 
Mass_B_L = MassFrac_B_L * SIGMA(Mass_B_L) 

Mass_L = MassFrac_L * SIGMA(Mass_L) 

Mass_B = MassFrac_B * SIGMA(Mass_B) 

Mass_V = MassFrac_V * SIGMA(Mass_V) 

# total mass = density * volume 

SIGMA(Mass_B_L) = Den_B_L * Vol_B_L 

SIGMA(Mass_L) = Den_L * Vol_L 

SIGMA(Mass_B) = Den_B * Vol 
-B 

SIGMA(Mass_V) = Den_V * Vol_V 

# phase type 

PhaseType_B_L = vapour-liquid 

PhaseType_L = liquid 

PhaseType_B = vapour 

PhaseType_V = vapour 

# volume relationship 

Vol_B_L = Vol 
-B 

+ Vol 
-L 

Vol_FlashDrum2 - Vol_V + Vol_B_L 

# uniform pressure within vessel 

Press_FlashDrum2 = Press_B_L 

Press_FlashDrum2 = Press_L 

Press_FlashDrum2 = Press 
-B 

Press_FlashDrum2 = Press_V 

# phase bound : upper/low bound of phase volume = level 

Top_B_L = Level_B_L 

Bot_B_L =0; 

Top_V = Level_V 

Bot_V = Level B_L 

Top_V - height ; 
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if phase volume : volume = area * (top - bottom) 

area = (3.14/4) * diameter-2 ; 

Vol B_L = area * (Top B_L - Bot B_L) 

Vol_V = area * (Top_V - Bot_V) ; 

# discontinuity on both type port, "Pi" 

IF PortType_Pi = OUTLET THEN 

IF Z_Pi > Bot_V AND Z_Pi <= Top_V THEN 

Viscosity_V = viscosity-pi 

Den_V - Dan-Pi ; 

MassFrac_V = MassFrac_Pi 

Enth_V = Enth_Pi 

Rate V Pi = Rate Pi 

EnthFlov_V_Pi = EnthFlov_Pi 

Rate_B_L_Pi =0 

EnthFlov-B-L-Pi =0 

ELSE 

Viscosity_B_L = Viscosity_Pi 

Den_B_L = Den-Pi ; 

MassFrac_B_L = MassFrac_Pi 

Enth B_L = Enth_Pi 

Rate B_L Pi = Rate Pi 

EnthFlov B_L Pi = EnthFlov_Pi 

Rate_V_Pi =0 

EnthFlov_V_Pi =0 
END 

ELSE 

IF PhaseType_Pi = vapour THEN 

IF Z_Pi > Bot_V AND Z_Pi <= Top_V THEN 

Viscosity Pi =0 
Den_Pi =0; 

MassFrac_Pi =0 

Enth_Pi =0 

Rate_V Pi = Rate Pi 

EnthFlov V Pi = EnthFlov_Pi 

Rate_B_L_Pi =0 

EnthFlov-B-L-Pi =0 

ELSE 

Viscosity Pi =0 

Den Pi =0; 

MassFrac_Pi =0 

Enth_Pi =0 

Rate_B_L_Pi = Rate Pi 

EnthFlov_B L Pi = EnthFlow_Pi 

Rate_V_Pi =0 

EnthFlov_V_Pi =0 

END 

ELSE 

viscosity-pi 0 

Den-Pi =0; 

MassFrac Pi =0 

Enth Pi =0 

Rate_B_L_Pi = Rate-Pi 

EnthFlov-B-L-Pi = EnthFlov_Pi 

Rate_V_Pi =0 

EnthFlov_V_Pi =0 

END 

END 

# end of discontinuity on both type port, "Pi" 

* discontinuity on output port, "Pol" 

IF Z_Pol > Bot_V AND Z_Pol <- Top_V THEN 

viscosity -V = viscosity-pol 

Enth_V = Enth_Pol ; 

MassFrac_V = MassFrac_Pol 

Den_V = Den_Pol ; 
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Rate V_Pol = Rate-Pol ; 
EnthFlow_V_Pol = EnthPlov_Pol 

Ratio_V = Ratio Poi 

PhaseType V= PhaseType_Pol 

Rate_B_L Pol 0; 

EnthFlow_B_L_Pol =0 

ELSE 

Viscosity_B_L = Viscosity-Pol 

Enth_B_L = Enth_Pol 

MassFrac_B_L = MassFrac_Pol 

Den_B_L = Den_Pol ; 

Rate_B_L_Poi - Rate-Pol 

EnthFlov_B_L_Pol = EnthFlow_Pol 

Ratio_B = Ratio-Pol ; 

PhaseType B_L PhaseType_Pol 

Rate_V_Pol =0 

EnthFlow_V_Pol =0 

END 

# end of discontinuity on output port, "Pol" 

# discontinuity on output port, "Po2" 

IF Z Pot > Bot_V AND Z_Po2 <= Top_V THEN 

Viscosity_V = Viscosity_Po2 

Enth_V = Enth_Po2 ; 

MassFrae V= MassFrac_Po2 

Den_V - Den_Po2 ; 

Rate_V_Po2 = Rate_Po2 

EnthFlow V_Po2 = EnthFlow_Po2 

Ratio_V = Ratio_Po2 

PhaseType_V = PhaseType_Po2 

Rate_B_L_Po2 =0; 

EnthFlov_B_L_Po2 =0 

ELSE 

Viscosity_B_L = Viscosity Po2 

Enth_B_L = Enth_Po2 

MassFrac_B L= MassFrac_Po2 

Den_B_L = Den Pot ; 

Rate_B_L_Po2 = Rate_Po2 

EnthFlov_B_L_Po2 = EnthFlow_Po2 

Ratio_B = Ratio Po2 

PhaseType_B_L = PhaseType_Po2 

Rate_V_Po2 =0 

EnthFlov_V_Po2 =0 

END 

# end of discontinuity on output port, "Po2" 

# Physical Properties # 

# vapour pressure of L 

# VapPress_L * 0.145 = 10-(F - G/((1.8 * Temp_L - 459.4) + 382)) 

VapPress_L 1E-3 * E%P(vapl + vap2/Temp_L + vap3*LOG(Temp_L) + 

vap4*Temp_L-vap5) ; 

0 Application Range : 

# Propane : 228K - 366K 

* Butane : 228K - 421K 

# pure enthalpies of V 

Enth_Vo * 0.43 -A* ((Temp_V * 9/5)/100) +B* ((Temp_V * 9/5)/100)'2 + 

C* 1E-2 * ((Temp_V * 9/5)/100)"3 +D* (100/(Temp_V * 9/5)) +E; 

# enthalpy of V 

Enth_V = SIGMA(MassFrac_V * Enth_Vo) 
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* pure enthalpies of B 

Enth_Bo * 0.43 =A* ((Temp_B * 9/5)/100) +B* ((Temp 
-B   9/5)/100)'2 + 

C* 1E-2 * ((Temp_B * 9/5)/100)'3 +D* (100/(Temp_B * 9/5)) +E; 

0 enthalpy of B 

Enth_B = SIGMA(MassFrac_B * Enth_Bo) 

X heats of vapourisation of pure L 
Heat_Lo * MoleWeight = (R * Temp-co) * (7.08 * (1 - Temp_ro)"0.354 + 

10.95 * Wo * (1-Temp_ro)'0.456) ; 
Temp_ro * Temp-co = Temp_L ; 

# pure enthapies of L 

Enth_Lo = Enth_Bo - Heat-Lo 

A enthalpy of L 

Enth_L = SIGMA(MassFrac_L * Enth_Lo) 

# enthalpy of B_L 

Enth_B_L = Ratio_B * Enth_B + (1 - Ratio_B) * Enth_L 

# internal energy of V 

Enth_V * SIGMA(Mass_V) = IntEnergy_V * SIGMA(Mass_V) + 

SIGMA(Mass_V / MoleWeight) *R* Temp_V 

# internal energy of B_L 

Enth_B_L = IntEnergy-B_L + press_B_L / Den_B_L 

# IntEnergy_B_L = IntEnergy B* Ratio_B + 

# (1 - Ratio B) * IntEnergy_L 

# internal energy of B 

Enth_B * SIGMA(Mass B) = IntEnergy_B * SIGMA(Mass_B) + 

SIGMA(Mass_B / MoleWeight) *R* Temp_B 

# internal energy of L 

Enth_L = IntEnergy_L + press_L / Den_L 

# density of V 

Den_Vo *R* Temp_V = Press 
-V * MoleWeight ;# for pure component 

Den_V * SIGMA(MassFrac_V / Den_Vo) =1; # for mixture 

# density of B 

Den_Bo *A* Temp_L = Press 
-B * MoleWeight; # for pure component 

Den_B * SIGMA(MassFrac B/ Den Bo) = 1; # for mixture 

* density of L 

Den_L *R* Temp_c * Z-(1 + (1 - Temp-r)-(2/7)) = Press_c *M 

Press_c - SIGMA(MoleFrac_L * Press-co) 

Temp_c = SIGMA(MoleFrac_L * Temp-co) 

Z= SIGMA(MoleFrac_L * Zo) 

Temp_r * Temp_c - Temp_L ; 

M= SIGMA(MoleFrac_L * MoleWeight) 

* viscosity of V 

Viscosity_Vo = Av * Temp V-Bv / (1 + Cv / Temp 
-V 

+ Dv / Temp_V"2) 

Viscosity_V SIGMA(MassFrac_V * Viscosity_Vo) ; 

# viscosity of B_L 

Viscosity-Bo = (AV * Temp B-Bv) / (1 + Cv / Temp 
-B 

+ Dv / Temp-B-2) 

Viscosity_B = SIGMA(MassFrac_V * Viscosity_Bo) ; 

Viscosity-Lo EXP(A1 * (B1 / Temp L) + Cl * LOG(Temp_L) + 

D1 * Temp_L-E1) ; 

Viscosity_L = SIGMA(MassFrac_L * Viscosity-Lo) 

Viscosity_B_L = Ratio_B * Viscosity_B + 

(1 - Ratio_B) * Viscosity_L 

r _________________________=____=_= x 



APPENDIX D. SIMULATION INPUT FILES 

# dummy variables for visualisation # 

# ===::::::::: ___: __# 

Sum-Mass V= SIGMA(Mass_V) 

Der_IntEnergy_V = $IntEnergy_V; 

Sum_Mass_B_L = SIGMA(Mass_B_L) 

Der_Mass_B_L = SIGMA($Mass_B_L); 

Sum_Mass_B = SIGMA(Mass_B) 

Sum_Mass_L = SIGMA(Mass_L) 

Sum-Rate B_V = SIGMA(Rate B_V) 

Sum-Rate-Pi = SIGMA(Rate_Pi); 

Sum_Rate_Pol = SIGMA (Rate Pol); 

Sum_Rate_Po2 = SIGMA (Rate-Po2) 

VapPress_1 = VapPress_L(1); 

VapPress_2 = VapPress_L(2); 

Equil_1 = EquilConst B_L(1); 

Equil_2 = EquilConst_B_L(2); 

END # end of MODEL m_F1ashDrum2 

MODEL Flowsheet 

PARAMETER 

OUTLET AS INTEGER 

INLET AS INTEGER 

NoComp AS INTEGER 

Const2_C3 AS REAL 

Const2_C2 AS REAL 

Const2_C1 AS REAL 

Const2_C5 AS REAL 

Const2_C4 AS REAL 

Const3_C3 AS REAL 

Const3_C2 AS REAL 

Const3_C1 AS REAL 

Const3_C5 AS REAL 

Const3_C4 AS REAL 

Const_C1 AS REAL 

Const_C2 AS REAL 

Const_C3 AS REAL 

Const_C4 AS REAL 

Const_C5 AS REAL 

VARIABLE 

Den_C2 AS Density 

Enth_C2 AS Enthalpy 

ReynoldsConstl_C5 AS Positive 

ReynoldsConst2_C5 AS Positive 

ReynoldsNo_C5 AS Positive 

DrivingForce_C5 AS NoType 

ReynoldsConstl_C4 AS Positive 

ReynoldsConst2_C4 AS Positive 

ReynoldsNo_C4 AS Positive 

DrivingForce_C4 AS NoType 

ReynoldsConstl_C3 AS Positive 

ReynoldsConst2_C3 AS Positive 

ReynoldsNo_C3 AS Positive 

DrivingForce_C3 AS NoType 

ReynoldsNo_C2 AS Positive 

EnthFlov_C2 AS Enthalpy_Flov 

Viscosity_C2 AS Viscosity 

MassFrac_C2 AS Array(NoComp) of Fraction 

DrivingForce_C2 AS NoType 

ReynoldsConstl_C1 AS Positive 

ReynoldsConst2_C1 AS Positive 

ReynoldsNo_C1 
AS Positive 

DrivingForce_C1 
AS NoTyps 

AS Array(NoComp) of Mass_Rate 
Rate_C2 

171 
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UNIT 

R1 

R2 

R3 

R4 

F1ashDruml 

FlashDrum2 

SELECTOR 

F1ovType_C5 AS (Turbulent, Laminar) 

F1ovType_C4 AS (Turbulent, Laminar) 

F1ovType_C3 AS (Turbulent, Laminar) 

F1ovType_C2 AS (Turbulent, Laminar) 

F1ovType_C1 AS (Turbulent, Laminar) 

SET 

OUTLET 

INLET .=2 

EQUATION 

AS m_R1 
AS m_R2 

AS m_R3 
AS m_R4 
AS m_F1ashDruml 
AS m_F1ashDrum2 

# stream connections through ports # 

R1. P IS F1ashDruml. Pi 

F1ashDruml. Po1 IS F1ashDrum2. Pi 

F1ashDruml. Po2 IS R4. P 

F1ashDrum2. Po1 IS R2. P 

F1ashDrum2. Po2 IS R3. P 

# transfer law of each connection # 

# "IrreversiblePressureDrivenFlow" in connection, Cl" "DrivingForce_C1 

= R1. Press_P - F1ashDruml. Press_F1ashDruml 

(4/3.14) * SIGMA (R1. Rate_P) = ReynoldsNo_C1 * Const_C1 * R1. Viscosity_P 

ReynoldsConstl_C1 = 2100 

ReynoldsConst2_C1 = 4000 

R1. EnthFlov_P = SIGMA(R1. Rate_P) * R1. Enth_P 

IF DrivingForce_C1 >0 THEN 

CASE F1owType_C1 OF 

WHEN Turbulent : 

R1. Rate_P = Const2_C1 * R1. Den_P * R1. MassFrac_P 

SQRT(DrivingForce_C1) 

SWITCH TO Laminar IF ReynoldsNo_C1 < ReynoldsConstl_C1 

WHEN Laminar : 

R1. Rate_P = Const3_C1 * R1. Den_P * R1. MassFrac_P * DrivingForce_C1 

SWITCH TO Turbulent IF ReynoldsNo_C1 > ReynoldsConst2_C1 ; 
END 

ELSE 

R1. Rate_P =0 

END 

# "Pro ssureDrivenPlow" in connection, 110" 

DrivingForce_C2 = F1ashDruml. Press_F1ashDruml - F1ashDrum2. Press_F1ashDrum2 

(4/3.14) * SIGMA(Rate_C2) = ReynoldsNo_C2 * Const_C2 * Viscosity_C2 

EnthFlow_C2 = SGN(DrivingForce_C2) * SIGMA(ABS(Rate_C2)) * Enth_C2 

IF DrivingForce_C2 >0 THEN 

F1ashDruml. PortTypePol = OUTLET 

F1ashDrum2. PortType Pi INLET 

Rate_C2 = F1ashDruml. Rate_Pol 

EnthFlow_C2 = F1ashDruml. EnthFlow_Pol 

Viscosity_C2 = F1ashDruml. Viscosity_Po1 

Den_C2 = F1ashDruml. Den_Po1 ; 

MassFrac_C2 = F1ashDruml. MassFracPol 

Enth_C2 - F1ashDruml. Enth_Pol ; 
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ELSE 

F1ashDruml. Port Type 
_Po1 = INLET 

F1ashDrum2. Port Type 
_Pi = OUTLET 

Rate-C2 = F1ashDrum2. Rate_Pi ; 

EnthFlov_C2 = F1ashDrum2. EnthFlow_Pi 

Viscosity-C2 = F1ashDrum2. Viscosity_Pi 

Den_C2 = F1ashDrum2. Den_Pi ; 

MassFrac_C2 = F1ashDrum2. MassFrac_Pi 

Enth_C2 = F1ashDrum2. Enth_Pi 

END 

CASE F1owType_C2 OF 

WHEN Turbulent : 

Rate_C2 = Const2_C2 * Den_C2 * MassFrac_C2 * SGN(DrivingForce_C2) 

SQRT(ABS(DrivingForce_C2)) ; 
SWITCH TO Laminar IF ReynoldsNo_C2 < 2100 

WHEN Laminar : 

Rate_C2 = Const3_C2 * Den_C2 * MassFrac_C2 * DrivingForce_C2 

SWITCH TO Turbulent IF ReynoldsNo_C2 > 4000 

END 

# "IrreversiblePressureDrivenFlow" in connection, "C3" 

DrivingForce_C3 = F1ashDruml. Press_F1ashDruml - R4. Press_P 

(4/3.14) * SIGMA(F1ashDruml. Rate_Po2) = ReynoldsNo_C3 * Const_C3 

F1ashDruml. Viscosity_Po2 

ReynoldsConstl_C3 = 2100 

ReynoldsConst2_C3 = 4000 

FlashDruml. EnthFlov_Po2 = SIGMA (FlashDruml. Rate_Po2) * FlashDruml. Enth_Po2 

IF DrivingForce_C3 >0 THEN 

CASE FlovType_C3 OF 

WHEN Turbulent : 

FlashDruml. Rate 
_Po2 = Const2_C3 * FlashDruml. Den_Po2 * 

FlashDruml. MassFrac_Po2 * SQRT(DrivingForce_C3) 

SWITCH TO Laminar IF ReynoldsNo_C3 < ReynoldsConstl_C3 

WHEN Laminar : 

FlashDruml. RatePo2 = Const3_C3 * FlashDruml. Den Pot * 

FlashDruml. MassFrac Po2 * DrivingForce_C3 

SWITCH TO Turbulent IF ReynoldsNo_C3 > ReynoldsConst2_C3 ; 

END 

ELSE 

F1ashDruml. Rate_Po2 =0; 

END 

# "IrreversiblePressureDrivenFlov" in connection, "C4" 

DrivingForce_C4 = F1ashDrum2. Press 
_F1ashDrum2 - R2. Press_P 

(4/3.14) * SIGMA(F1ashDrum2. Rate Po1) = ReynoldsNo_C4 * Const_C4 

F1ashDruni2. Viscosity_Pol 

ReynoldsConstl_C4 = 2100 

ReynoldsConst2_C4 = 4000 

F1ashDrum2. EnthFlov_Po1 = SIGMA(F1ashDrum2. Rate_Pol) * F1ashDrum2. Enth_Pol 

IF DrivingForce_C4 >0 THEN 

CASE F1owType_C4 OF 

WHEN Turbulent : 

F1ashDrum2. Rate Po1 = Const2_C4 * F1ashDrum2. Den_Pol 

F1ashDrum2. MassFrac_Po1 * SQRT(DrivingForce_C4) 

SWITCH TO Laminar IF ReynoldsNo_C4 < ReynoldsConstl_C4 

WHEN Laminar : 

F1ashDrum2. Rate 
-Pol = Const3_C4 * F1ashDrum2. Den_Pol 

F1ashDrum2. MassFrac_Po1 * DrivingForce_C4 

SWITCH TO Turbulent IF ReynoldsNo_C4 > ReynoldsConst2_C4 ; 

END 

ELSE 

F1ashDrum2. Rate_Pol -0 

END 

# "IrreversiblePressureDrivenFlov" in connection, "C5" 

DrivingForce_C5 = F1ashDrum2. Press_F1ashDrum2 - R3. Press_P 

(4/3.14) * SIGMA (F1ashDrum2. Rate_Po2) = ReynoldsNo_C5 * Const_C5   

F1ashDrum2. Viscosity_Po2 
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ReynoldsConstl_C5 = 2100 

ReynoldsConst2_C5 - 4000 

F1ashDrum2. EnthFlow Po2 = SIGMA (F1ashDrum2. Rate 
_Po2) * F1ashDrum2. Enth_Po2 

IF DrivingForce_C5 >0 THEN 

CASE F1owType_C5 OF 

WHEN Turbulent : 

F1ashDrum2. Rate_Po2 = Const2_C5 * F1ashDrum2. Den_Po2 * 
F1ashDrum2. MassFrac_Po2 * SQRT(DrivingForce_C5) 

SWITCH TO Laminar IF ReynoldsNo_C5 < ReynoldsConstl_C5 

WHEN Laminar : 

F1ashDrum2. Rate_Po2 = Const3_C5 * F1ashDrum2. Den Pot * 
F1ashDrum2. MassFracPo2 * DrivingForce_C5 

SWITCH TO Turbulent IF ReynoldsNo_C5 > ReynoldsConst2_C5 ; 
END 

ELSE 

F1ashDrum2. Rate_Po2 =0 

END 

# selection of ratio and phase type on reversible connection # 

# ratio and phase type on "reversible" connection, "C2" 

IF FlashDruml. PortType_Pol = OUTLET THEN 

IF FlashDruml. Z_Pol > FlashDruml. Bot_V AND 

FlashDruml. Z_Pol <= FlashDruml. Top V THEN 

FlashDruml. Ratio_V = FlashDruml. Ratio Pol ; 
FlashDruml. PhaseType_V = FlashDruml. PhaseType_Po1 

ELSE 

FlashDruml. Ratio_B = FlashDruml. Ratio_Pol 

FlashDruml. PhaseType_B_L = FlashDruml. PhaseType_Pol 

END 

ELSE 

IF FlashDrum2. Z_Pi > FlashDrum2. Bot_V AND 

FlashDrum2. Z_Pi <= FlashDrum2. Top_V THEN 

FlashDrum2. Ratio_V = FlashDrum2. Ratio_Pi ; 
FlashDrum2. PhaseType V= FlashDrum2. PhaseType Pi 

ELSE 

FlashDrum2. Ratio_B = FlashDrum2. Ratio_Pi 

FlashDrum2. PhaseType_B_L = FlashDrum2. Phase Type 
_Pi 

END 

END 

END # end of MODEL Flowsheet 

########################## 

# END of generated model # 

########################## 

# Process # 

PROCESS test 

UNIT 

Plant AS Flowsheet 

SET 

WITHIN Plant DO 

NoComp =2 

Const_C1 . = 0.05 

Const_C2 . = 0.05 

Const_C3 . = 0.05 

Const C4 0.05 

Conat_C5 = 0.05 

Const2_C1 . = IE-5 

Const2_C2 5*1E-5 
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Const2_C3 
.= 1E-5 

Const2_C4 
.= 1E-5 

Const2_C5 1E-5 

Const3_C1 
.= 1E-6 

Const3_C2 5*1E-6 

Const3_C3 .= 1E-6 

Const3_C4 = 1E-6 

Const3_C5 
.= 1E-6 

WITHIN R1 DO 

NoComp =2 
END 

WITHIN R2 DO 

NoComp 
.=2 

END 

WITHIN R3 DO 

NoComp =2 
END 

WITHIN R4 DO 

NoComp =2 
END 

WITHIN F1ashDruml DO 

NoComp =2 
Const_B_V .= 1E-5 

END 

WITHIN F1ashDrum2 DO 

NoComp .=2 
Const B_V .= 1E-5 

END 

END 

ASSIGN 

WITHIN Plant DO 

WITHIN R1 DO 

Press_P = 1.013E2 

Den_P . = 330 

Enth_P . = 3.5E2 

MassFrac_P [0.4,0.6] 

Ratio_P . = 0.01 

PhaseType P =3; 

Viscosity 
-P . = 5E-5 

END # RI 

WITHIN R2 DO 

Press_P = 1.013E2 

END * R2 

WITHIN R3 DO 

Press_P = 1.013E2 

END # R3 

WITHIN R4 DO 

Press_P . = 1.013E2 

END # R3 

WITHIN F1ashDruml DO 

BubTemp_B_L . = 240 

DevTemp B_L = 300 

Temp-co(l) .= 369.82 

Temp-co(2) .= 425.15 

A(1) = 8.03820 

A(2) = 8.29348 

B(1) 3.49075 

B(2) = 3.46000 

C(1) -3.96060 

C(2) -4.02109 

D(1) .= 27.52980 

D(2) .= 30.35096 

E(1) .= 166.170 

E(2) .= 153.044 

R 8.31433 ;# [kJ/kmol K) 

Wo(1) .= 0.1454 
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Wo(2) 0.1928 

MoleWeight(1) 44.09 

MoleWeight(2) 58.12 

vapl(1) = 5.4276E1 

vapl(2) .=6.2570E1 
vap2(1) -3.3680E3 

vap2(2) -4.3220E3 

vap3(1) -5.2610E0 

vap3(2) -6.3640E0 

vap4(1) :=8.6000E-6 

vap4(2) = 6.8000E-6 

vap5(1) 2.0000EO 

vap5(2) .=2.0000EO 

{ 

} 

F(1) 4.843 

F(2) 5.273 

G(1) = 1245.3 

G(2) .= 1747.2 

Av(1) = 2.2090E-6 

Av(2) .=1.0310E-5 
Bv(1) = 3.8240E-1 

Bv(2) .=2.0770E-1 
Cv(1) 4.0500E2 

Cv(2) .=1.0055E3 
Dv(1) =0; 

Dv(2) = 8.1000E3 

A1(1) -1.2832E1 
A1(2) 7.5000E-1 

B1(1) .=5.6634E2 
B1(2) .=2.1870E2 
C1(1) = 3.4688E-1 

C1(2) -1.7882 ; 

D1(1) -3.5111E-26 
D1(2) -4.0000E-27 
E1(1) .=1.0000E1 
E1(2) .=1.0000E1 

{ 

} 

Den_L .= 600 ; 

viscosity 
-V = 7.9E-6 

Viscosity_B L := 5E-5 ; 

Press-co(l) = 4248 

Press-co(2) .= 3795 

Zo(1) :=0.27664 

Zo(2) :=0.27331 

END * within F1ashDruml 

WITHIN F1ashDrum2 DO 

BubTemp_B_L = 240 

DewTemp_B_L = 300 

Temp-co(l) = 369.82 

Temp-co(2) .= 425.15 

A(1) 8.03820 

A(2) = 8.29348 

B(1) = 3.49075 

B(2) .=3.46000 
C(1) -3.96060 

C(2) -4.02109 

D(1) .= 27.52980 

D(2) = 30.35096 

E(1) = 166.170 

E(2) .= 153.044 
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{ 

} 

{ 

R 8.31433 

Wo(1) .=0.1454 
Wo(2) = 0.1928 

MoleWeight(1) := 44.09 

MoleWeight(2) 58.12 

vapl(1) 5.4276E1 

vapl(2) .=6.2570E1 
vap2(1) -3.3680E3 

vap2(2) -4.3220E3 

vap3(1) -5.2610E0 

vap3(2) -6.3640E0 

vap4(1) .=8.6000E-6 
vap4(2) 6.8000E-6 

vap5(1) 2.0000EO 

vap5(2) .=2.0000EO 

F(i) :=4.843 
F(2) 5.273 

G(1) 
.= 1245.3 

G(2) = 1747.2 

Av(1) = 2.2090E-6 

Av(2) = 1.0310E-5 

Bv(1) 
.=3.8240E-1 

Bv(2) 
.=2.0770E-1 

Cv(1) 4.0500E2 

Cv(2) = 1.0055E3 

Dv(1) 0; 

Dv(2) 
.=8.1000E3 

A1(1) -1.2832E1 
A1(2) = 7.5000E-1 

B1(1) .=5.6634E2 
B1(2) 2.1870E2 

C1(1) = 3.4688E-1 

C1(2) -1.7882 ; 
D1(1) -3.5111E-26 
D1(2) -4.0000E-27 
E1(1) 

.=1.0000E1 
E1(2) = 1.0000E1 

Den_L 
.= 600 ; 

Viscosity_V .=7.9E-6 
Viscosity_B_L := 6E-5 ; 

} 

Press-co(l) .= 4248 

Press-co(2) = 3795 

Zo(1) .=0.27664 
Zo(2) .=0.27331 

END # within FlashDrum2 

END # within Plant 

x [kJ/lrmol K) 

PRESET 

PLANT. FLASHDRUMI. ENTHFLOW_V_P02 :=0.00000E+00 : -1.000E+09 : 1.000E+07 

PLANT. FLASHDRUM1. ENTHFLOW_B_L_PO1 :=0.00000E+00 : -1.000E+09 : 1.000E+07 

PLANT. FLASHDRUMI. PORTTYPE_PO1 :=1.00000E+00 : -1.000E-03 : 1.000E+09 ; 
PLANT. FLASHDRUMI. ENTHFLOW_B_L_P02 :=0.00000E+00 : -1.000E+09 : 1.000E+07 

PLANT. FLASHDRUM2. ENTHFLOW_V_P02 :=0.00000E+00 : -1.000E+09 : 1.000E+07 ; 
PLANT. FLASHDRUM2. ENTHFLOW_B_L_P01 :=0.00000E+00 : -1.000E+09 : 1.000E+07 

PLANT. FLASHDRUM2. ENTH_PI :=0.00000E+00 : -1.000E+07 : 1.000E+04 ; 

PLANT. FLASHDRUM2. ENTHFLOW_B_L_P02 :=0.00000E+00 : -1.000E+09 : 1.000E+07 
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PLANT. FLASHDRUM2. VOL_B :=5.91120E-02 : -1.000E-01 : 1.000E+01 
PLANT. FLASHDRUM2. PHASETYPE_B 1.00000E+00 : -1.000E-03 : 1.000E+09 
PLANT. FLASHDRUM2. RATE_PO1(1) 0.00000E+00 : -1.000E-01 : 1.000E+04 
PLANT. FLASHDRUM2. RATE_P01(2) :=0.00000E+00 : -1.000E-01 : 1.000E+04 
PLANT. FLASHDRUM2. MASSFRAC_B(1) 8.85860E-01 : -1.000E-01 : 1.000E+01 
PLANT. FLASHDRUM2. MASSFRAC_B(2) 1.14140E-01 : -1.000E-01 : 1.000E+01 
PLANT. FLASHDRUM2. ENTH_LD(1) 1.70751E+02 : -1.000E+07 1.000E+04 
PLANT. FLASHDRUM2. ENTH_LO(2) 1.49773E+02 -1.000E+07 1.000E+04 
PLANT. PLASHDRUM2. RATE_PI(1) 1.03162E-05 -1.000E-01 : 1.000E+04 
PLANT. FLASHDRUM2. RATE_PI(2) 1.03162E-05 -1.000E-01 1.000E+04 
PLANT. FLASHDRUM2. ENTHFLOW_PI 1.45923E-02 : -1.000E+09 : 1.000E+07 
PLANT. FLASHDRUM2. RATIO-PI :=1.00000E+00 : -1.000E-01 : 1.000E+01 
PLANT. FLASHDRUM2. PHASETYPE_PI 1.00000E+00 : -1.000E-03 : 1.000E+09 
PLANT. FLASHDRUM2. RATE_P02(1) 0.00000E+00 : -1.000E-01 1.000E+04 
PLANT. FLASHDRUM2. RATE_P02(2) 0.00000E+00 : -1.000E-01 : 1.000E+04 
PLANT. FLASHDRUM2. INTENERGY_B 5.56946E+02 : -1.000E+09 1.000E+04 
PLANT. FLASHDRUM2. DER_MASS_B_L 0.00000E+00 -1.000E+09 : 1.000E+09 
PLANT. FLASHDRUM2. DEN_B0(1) 9.87056E-01 : -1.000E-01 1.000E+05 
PLANT. FLASHDRUM2. DEN BO(2) 1.30115E+00 : -1.000E-01 1.000E+05 
PLANT. FLASHDRUM2. ENTH_P01 6.73665E+02 -1.000E+07 : 1.000E+04 

PLANT. FLASHDRUM2. MOLEFRAC_L(1) 5.67874E-01 -1.000E-01 1.000E+01 
PLANT. FLASHDRUM2. MOLEFRAC_L(2) 4.32126E-01 : -1.000E-01 1.000E+01 

PLANT. FLASHDRUM2. ENTH_P02 :=6.73665E+02 : -1.000E+07 : 1.000E+04 

PLANT. FLASHDRUM2. ENTHFLOW_B_V :=5.37878E-03 : -1.000E+09 : 1.000E+07 

PLANT. FLASHDRUM2. LEVEL_V :=3.00000E+00 : -1.000E-03 : 1.000E+09 

PLANT. FLASHDRUM2. EQUILCONST B_L(1) 1.60416E+00 : -1.000E-03 1.000E+09 

PLANT. FLASHDRUM2. EQUILCONST B_L(2) 2.06052E-01 -1.000E-03 1.000E+09 

PLANT. FLASHDRUM2. VISCOSITY-BO (1) 6.20289E-06 -1.000E-01 : 1.000E+02 

PLANT. FLASHDRUM2. VISCOSITY_B0(2) 5.58908E-06 -1.000E-01 1.000E+02 

PLANT. FLASHDRUM2. PRESS_B :=4.13075E+01 -1.000E-01 1.000E+04 

PLANT. FLASHDRUM2. LEVEL 
_B _L :=1.36386E-01 : -1.000E-03 : 1.000E+09 

PLANT. FLASHDRUM2. ENTHFLOW_P01 :=0.00000E+00 : -1.000E+09 : 1.000E+07 

PLANT. FLASHDRUM2. RATIO 
_P01 :=1.00000E+00 : -1.000E-01 : 1.000E+01 

PLANT. FLASRDRUM2. PHASETYPE_P01 :=1.00000E+00 : -1.000E-03 : 1.000E+09 

PLANT. FLASHDRUM2. PRESS 
_C :=4.05225E+03 : -1.000E-01 : 1.000E+04 

PLANT. FLASHDRUM2. SUM_MASS_B :=6.00000E-02 : -1.000E+09 : 1.000E+09 

PLANT. FLASHDRUM2. ENTHFLOW_P02 :=0.00000E+00 : -1.000E+09 : 1.000E+07 

PLANT. FLASHDRUM2. RATIO_P02 :=1.00000E+00 : -1.000E-01 : 1.000E+01 

PLANT. FLASHDRUM2. PHASETYPE P02 :=1.00000E+00 : -1.000E-03 : 1.000E+09 

PLANT. FLASHDRUM2. BOT_V :=1.36386E-01 : -1.000E-03 : 1.000E+09 

PLANT. FLASHDRUM2. BOT_B_L :=0.00000E+00 : -1.000E-03 1.000E+09 

PLANT. FLASHDRUM2. MOLE_ B (1) 1.20552E-03 -1.000E-01 : 1.000E+02 

PLANT . PLASHDRUM2. MOLE_ B(2) 1.17832E-04 : -1.000E-01 : 1.000E+02 

PLANT. FLASHDRUM2. VOL_L :=4.79511E-02 : -1.000E-01 : 1.000E+01 

PLANT. FLASHDRUM2. PHASETYPE_L :=2.00000E+00 : -1.000E-03 : 1.000E+09 

PLANT. FLASHDRUM2. DEN_PI :=0.00000E+00 : -1.000E-01 : 1.000E+05 ; 

PLANT. FLASHDRUM2. MASSFRAC_L(1) 4.99227E-01 : -1.000E-01 1.000E+01 

PLANT. FLASHDRUM2. MASSFRAC_L(2) 5.00773E-01 -1.000E-01 : 1.000E+01 

PLANT. FLASHDRUM2. ENTH_V0(1) :=6.87779E+02 : -1.000E+07 1.000E+04 

PLANT. FLASHDRUM2. ENTH_V0(2) 6.59551E+02 : -1.000E+07 : 1.000E+04 

PLANT. FLASHDRUM2. VOL_FLASHDRUM2 :=2.35500E+00 : -1.000E-01 : 1.000E+01 

PLANT. FLASHDRUM2. ENTH-B :=5.97642E+02 : -1.000E+07 : 1.000E+04 ; 

PLANT. FLASHDAUM2. INTENERGY_L :=1.60180E+02 : -1.000E+09 : 1.000E+04 

PLANT. FLASHDRUM2. RATIO_V :=1.00000E+00 -1.000E-01 1.000E+01 

PLANT. FLASHDRUM2. VISCOSITY_PI :=0.00000E+00 : -1.000E-01 : 1.000E+02 

PLANT. FLASHDRUM2. TEMP_ R0(1) 6.00081E-01 -1.000E-01 1.000E+01 

PLANT. FLASHDRUM2. TEMP_R0(2) 5.21985E-01 -1.000E-01 1.000E+01 

PLANT. FLASHDRUM2. VISCOSITY_LO(1) 4.55853E-14 -1.000E-01 : 1.000E+02 

PLANT. FLASHDRUM2. VISCOSITY_LO(2) 1.31680E-04 -1.000E-01 : 1.000E+02 

PLANT. FLASHDRUM2. DEN_PO1 8.89705E-01 -1.000E-01 : 1.000E+05 

PLANT. FLASHDRUM2. PRESS 
_L 

4.13075E+01 : -1.000E-01 1.000E+04 

PLANT. FLASHDRUM2. MASS_B(1) 5.31516E-02 : -1.000E-01 1.000E+09 

PLANT. FLASHDRUM2. MASS_B(2) 6.84842E-03 : -1.000E-01 1.000E+09 

PLANT. FLASHDRUM2. DEN_P02 :=8.89705E-01 -1.000E-01 1.000E+05 

PLANT. FLASHDRUM2. SUM-MASS _L :=2.99400E+01 : -1.000E+09 : 1.000E+09 

PLANT. FLASHDRUM2. VISCOSITY_PO1 :=9.40000E-06 : -1.000E-01 : 1.000E+02 

PLANT. FLASHDRUM2. PRESS 
_FLASHDRUM2 :=4.13075E+01 : -1.000E-01 : 1.000E+04 

PLANT. FLASHDRUM2. VISCOSITY_P02 :=9.40000E-06 : -1.000E-01 : 1.000E+02 
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PLANT. FLASHDRUM2. TEMP_B :=2.21922E+02 : -1.000E-01 : 1.000E+04 
PLANT. FLASHDRUM2. MOLE_L(1) 3.39007E-01 : -1.000E-01 : 1.000E+02 
PLANT. FLASHDRUM2. MOLE_L(2) 2.57969E-01 : -1.000E-01 : 1.000E+02 
PLANT. FLASHDRUM2. VQL_V :=2.24794E+00 : -1.000E-01 : 1.000E+01 
PLANT. FLASHDRUM2. PHASETYPE_V :=1.00000E+00 : -1.000E-03 : 1.000E+09 
PLANT. FLASHDAUM2. TEMP_C :=3.93730E+02 : -1.000E-01 : 1.000E+04 
PLANT. FLASHDRUM2. VAPPRESS_1 :=6.62637E+01 : -1.000E+09 : 1.000E+09 
PLANT. FLASHDAUM2. VOL_B_L :=1.07063E-01 : -1.000E-01 1.000E+01 
PLANT. FLASHDRUM2. MASSFRAC_V(1) 5.00000E-01 -1.000E-01 : 1.000E+01 
PLANT. FLASHDRUM2. MASSFRAC_V(2) 5.00000E-01 : -1.000E-01 : 1.000E+01 
PLANT. FLASHDRUM2. PHASETYPE_B_L 3.00000E+00 : -1.000E-03 1.000E+09 
PLANT. FLASHDRUM2. VAPPRESS_2 :=8.51150E+00 : -1.000E+09 : 1.000E+09 
PLANT. FLASHDRUM2. ENTH_L :=1.60248E+02 -1.000E+07 : 1.000E+04 
PLANT. FLASHDRUM2. INTENERGY_V :=6.27236E+02 : -1.000E+09 : 1.000E+04 
PLANT. FLASHDRUM2. MASSFRAC_B_L(1) 5.00000E-01 : -1.000E-01 1.000E+01 
PLANT. FLASHDRUM2. MASSFRAC_B_L(2) 5.00000E-01 : -1.000E-01 : 1.000E+01 
PLANT. FLASHDRUM2. TOP_V :=3.00000E+00 : -1.000E-03 : 1.000E+09 

PLANT. FLASHDRUM2. INTENERGY_B_L :=1.60973E+02 : -1.000E+09 : 1.000E+04 
PLANT. FLASHDRUM2. TOP B_L :=1.36386E-01 : -1.000E-03 : 1.000E+09 

PLANT. FLASHDRUM2. DEN_VO(1) 7.82319E-01 : -1.000E-01 1.000E+05 

PLANT. FLASHDRUM2. DEN_VO(2) 1.03126E+00 : -1.000E-01 1.000E+05 
PLANT. FLASHDRUM2. DEN_B :=1.01502E+00 : -1.000E-01 : 1.000E+05 

PLANT. FLASHDRUM2. VISCOSITY_VO(1) 8.32490E-06 : -1.000E-01 1.000E+02 

PLANT. FLASHDRUM2. VISCOSITY VO(2) 7.58946E-06 : -1.000E-01 : 1.000E+02 

PLANT. FLASHDRUM2. M :=5.01527E+01 : -1.000E-03 1.000E+09 ; 
PLANT. FLASHDRUM2. PRESS_V :=4.13075E+01 -1.000E-01 1.000E+04 

PLANT. FLASHDRUM2. VISCOSITY_B :=5.89599E-06 : -1.000E-01 : 1.000E+02 

PLANT. FLASHDRUM2. EQUIL_1 :=1.60416E+00 -1.000E+09 1.000E+09 

PLANT. FLASHDRUM2. MASS_L(1) 1.49468E+01 -1.000E-01 : 1.000E+09 

PLANT. FLASHDRUM2. MASS_L(2) 1.49932E+01 -1.000E-01 : 1.000E+09 

PLANT. FLASHDRUM2. RATE_V_PI(1) 0.00000E+00 : -1.000E-01 : 1.000E+04 

PLANT. FLASHDRUM2. RATE_V_PI(2) 0.00000E+00 : -1.000E-01 : 1.000E+04 

PLANT. FLASHDRUM2. PRESS_B_L 4.13075E+01 : -1.000E-01 1.000E+04 

PLANT. FLASHDRUM2. SUM_MASS_V 2.00000E+00 -1.000E+09 1.000E+09 

PLANT. FLASHDRUM2. EQUIL_2 :=2.06052E-01 -1.000E+09 1.000E+09 

PLANT. FLASHDRUM2. RATE_B_L_PI(1) 1.03162E-05 : -1.000E-01 : 1.000E+04 

PLANT. FLASHDRUM2. RATE_B_L_PI(2) 1.03162E-05 -1.000E-01 : 1.000E+04 

PLANT. FLASHDRUM2. SUM_MASS_B_L :=3.00000E+01 : -1.000E+09 : 1.000E+09 

PLANT. FLASHDRUM2. TEMP_L :=2.21922E+02 : -1.000E-01 : 1.000E+04 

PLANT. FLASHDRUM2. AREA :=7.85000E-01 : -1.000E-03 : 1.000E+09 ; 

PLANT. FLASHDRUM2. SUM_RATE_B_V :=9.00000E-06 -1.000E+09 : 1.000E+09 

PLANT. FLASHDRUM2. MOLE_B_L(1) 3.40213E-01 : -1.000E-01 : 1.000E+02 

PLANT. FLASHDRUM2. MOLE_B_L(2) 2.58087E-01 -1.000E-01 1.000E+02 

PLANT. FLASHDRUM2. RATE_V_P01(1) 0.00000E+00 : -1.000E-01 1.000E+04 

PLANT. FLASHDRUM2. RATE_V_PO1(2) 0.00000E+00 : -1.000E-01 : 1.000E+04 

PLANT. FLASHDRUM2. ENTH_V :=6.73665E+02 -1.000E+07 : 1.000E+04 

PLANT. FLASHDRUM2. RATE_B_L_PO1(1) 0.00000E+00 : -1.000E-01 : 1.000E+04 

PLANT. FLASHDRUM2. RATE_B_L_P01(2) 0.00000E+00 -1.000E-01 : 1.000E+04 

PLANT. FLASHDRUM2. RATE_V_P02(1) 0.00000E+00 : -1.000E-01 1.000E+04 

PLANT. FLASHDRUM2. RATE_V_P02(2) 0.00000E+00 : -1.000E-01 : 1.000E+04 

PLANT. FLASHDRUM2. ENTH_B_L :=1.61121E+02 : -1.000E+07 : 1.000E+04 ; 

PLANT. FLASHDRUM2. RATE_B_L_P02(1) 0.00000E+00 : -1.000E-01 : 1.000E+04 

PLANT. FLASHDRUM2. RATE_B_L_P02(2) 0.00000E+00 : -1.000E-01 1.000E+04 

PLANT. FLASHDRUM2. DEN_L 6.24386E+02 : -1.000E-01 : 1.000E+05 

PLANT. FLASHDRUM2. TEMP_R 5.63640E-01 : -1.000E-01 : 1.000E+01 

PLANT. FLASHDRUM2. VISCOSITY_L :=6.58909E-05 : -1.000E-01 : 1.000E+02 

PLANT. FLASHDRUM2. DER_INTENERGY_V :=2.68939E-03 : -1.000E+09 : 1.000E+09 

PLANT. FLASHDRUM2. SUM_RATE_PI :=2.06323E-05 : -1.000E+09 : 1.000E+09 

PLANT. FLASHDRUM2. MASS_V(1) 1.00000E+00 : -1.000E-01 : 1.000E+09 

PLANT. FLASHDRUM2. MASS_V(2) 1.00000E+00 -1.000E-01 : 1.000E+09 

PLANT. FLASHDRUM2. MASS_B_L(1) 1.50000E+01 : -1.000E-01 : 1.000E+09 

PLANT. FLASHDRUM2. MASS_B_L(2) 1.50000E+01 : -1.000E-01 1.000E+09 

PLANT. FLASHDRUM2. MASSFRAC_PI(1) 0.00000E+00 : -1.000E-01 1.000E+01 

PLANT. FLASHDRUM2. MASSFRAC_PI(2) 0.00000E+00 : -1.000E-01 : 1.000E+01 

PLANT. FLASHDRUM2. HEAT- LD(1) 4.30058E+02 -1.000E+07 1.000E+04 

PLANT. FLASHDRUM2. HEAT- L0(2) 4.23293E+02 -1.000E+07 : 1.000E+04 

PLANT. FLASHDRUM2. Z :=2.75201E-01 : -1.000E+09 : 1.000E+09 ; 

PLANT. FLASHDRUM2. TEMP_V :-2.80000E+02 -1.000E-01 : 1.000E+04 
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PLANT. FLASHDRUM2. RATE_B_V(1) 7.95751E-06 : -1.000E-01 : 1.000E+04 

PLANT. PLASHDRUM2. RATE_B_V(2) 1.04249E-06 : -1.000E-01 : 1.000E+04 
PLANT. FLASHDRUM2. ENTH_BO(1) 6.00809E+02 : -1.000E+07 : 1.000E+04 

PLANT. FLASHDRUM2. ENTH_BO(2) 5.73066E+02 -1.000E+07 : 1.000E+04 

PLANT. FLASHDRUM2. SUM_RATE_P01 0.00000E+00 -1.000E+09 : 1.000E+09 
PLANT. FLASRDRUM2. ENTEFLOW_V_PI 0.00000E+00 -1.000E+09 : 1.000E+07 

PLANT. FLASHDRUM2. RATIO_B :=2.0000E-03 : -1.000E-01 : 1.000E+01 ; 
PLANT. FLASHDRUM2. SUM_RATE_P02 :=0.00000E+00 : -1.000E+09 1.000E+09 

PLANT. FLASHDRUM2. ENTHFLOW_B_L_PI 1.45923E-02 : -1.000E+09 1.000E+07 

PLANT. FLASHDRUM2. MASSFRAC_P01(1) 5.00000E-01 -1.000E-01 : 1.000E+01 

PLANT. FLASHDRUM2. MASSFRAC-PO1(2) 5.00000E-01 -1.000E-01 1.000E+01 

PLANT. FLASHDRUM2. PORTTYPE_PI :=2.00000E+00 : -1.000E-03 : 1.000E+09 

PLANT. FLASHDRUM2. DEN_V :=8.89705E-01 : -1.000E-01 : 1.000E+05 

PLANT. FLASHDRUM2. MASSFRAC_P02(1) 5.00000E-01 : -1.000E-01 1.000E+01 

PLANT. FLASHDRUM2. MASSFRAC_PO2(2) 5.00000E-01 : -1.000E-01 1.000E+01 

PLANT. FLASHDRUM2. MOLEFRAC_B(1) 9.10959E-01 : -1.000E-01 1.000E+01 

PLANT. FLASHDRUM2. MOLEFRAC_B(2) 8.90405E-02 -1.000E-01 : 1.000E+01 

PLANT. FLASHDRUM2. DEN B_L :=2.80209E+02 : -1.000E-01 1.000E+05 

PLANT. FLASHDRUM2. VISCOSITY_V :=7.95718E-06 : -1.000E-01 : 1.000E+02 

PLANT. FLASHDRUM2. VISCOSITY B_L 6.58309E-05 : -1.000E-01 : 1.000E+02 

PLANT. FLASHDRUM2. VAPPRESS_L(1) 6.62637E+01 : -1.000E-01 : 1.000E+04 

PLANT. FLASHDRUM2. VAPPRESS_L(2) 8.51150E+00 -1.000E-01 : 1.000E+04 

PLANT. FLASHDRUM2. ENTHFLOW_V_P01 0.00000E+00 : -1.000E+09 : 1.000E+07 

PLANT. FLASHDRUMI. VOL_B :=2.80947E-02 : -1.000E-01 : 1.000E+01 

PLANT. FLASHDRUMI. PHASETYPE_B 1.00000E+00 : -1.000E-03 1.000E+09 

PLANT. FLASHDRUMI. RATE_PO1(1) 1.03162E-05 : -1.000E-01 : 1.000E+04 

PLANT. FLASHDRUMI. RATE-POI (2) 1.03162E-05 : -1.000E-OS 1.000E+04 

PLANT. FLASHDRUMI. MASSFRAC_B(1) 8.84494E-01 -1.000E-01 : 1.000E+01 

PLANT. FLASHDRUMI. MASSFRAC_B(2) 1.15506E-01 -1.000E-01 1.000E+01 

PLANT. FLASHDRUMI. ENTH_LO(1) 1.73454E+02 : -1.000E+07 : 1.000E+04 

PLANT. FLASHDRUMI. ENTH_LO(2) 1.52137E+02 : -1.000E+07 1.000E+04 

PLANT. FLASHDRUMI. RATE_PI(1) 1.25494E-01 : -1.000E-01 1.000E+04 

PLANT. FLASHDRUMI. RATE_PI(2) 1.88241E-01 : -1.000E-O1 1.000E+04 

PLANT. FLASHDRUMI. ENTHFLOW_PI 1.09807E+02 -1.000E+09 : 1.000E+07 

PLANT. FLASHDRUMI. RATIO_PI :=4.00000E-01 : -1.000E-01 : 1.000E+01 

PLANT. FLASHDRUMI. PHASETYPE PI 3.00000E+00 : -1.000E-03 : 1.000E+09 

PLANT. FLASHDRUMI. RATE_PO2(1) 0.00000E+00 -1.000E-01 : 1.000E+04 

PLANT. FLASHDRUMI. RATE_PO2(2) 0.00000E+00 : -1.000E-01 : 1.000E+04 

PLANT. FLASHDRUMI. INTENERGY_B 5.58220E+02 : -1.000E+09 1.000E+04 

PLANT. FLASHDRUMI. DER_MASS_B_L 3.13726E-01 : -1.000E+09 : 1.000E+09 

PLANT. FLASHDRUM1. DEN_BO(1) 1.03804E+00 -1.000E-01 1.000E+05 

PLANT. FLASHDRUMI. DEN_BO(2) 1.36836E+00 -1.000E-01 : 1.000E+05 

PLANT. FLASHDRUMI. ENTH_PO1 7.07255E+02 -1.000E+07 1.000E+04 

PLANT. FLASHDRUMI. MOLEFRAC_L(1) 5.68255E-01 -1.000E-01 : 1.000E+01 

PLANT. FLASHDRUMI. MOLEFRAC_L(2) 4.31745E-01 -1.000E-01 : 1.000E+01 

PLANT. FLASHDRUMI. ENTH_P02 :=7.07255E+02 : -1.000E+07 : 1.000E+04 

PLANT. FLASHDRUMI. ENTHFLOW_B_V :=5.39479E-03 : -1.000E+09 1.000E+07 

PLANT. FLASHDRUMI. LEVEL V :=3.00000E+00 : -1.000E-03 1.000E+09 

PLANT. FLASHDRUMI. EQUILCONST_B_L(1) 1.60115E+00 : -1.000E-03 : 1.000E+09 

PLANT. FLASHDRUMI. EQUILCONST_B_L(2) 2.08772E-01 : -1.000E-03 : 1.000E+09 

PLANT. FLASHDRUM1. VISCOSITY-BO (1) 6.20289E-06 -1.000E-01 : 1.000E+02 

PLANT. FLASHDRUM1. VISCOSITY_B0(2) 5.58908E-06 -1.000E-01 : 1.000E+02 

PLANT. FLASHDRUM1. PRESS_B :=4.36584E+01 : -1.000E-01 1.000E+04 

PLANT. FLASHDRUMI. LEVEL_B_L :=9.70524E-02 : -1.000E-03 : 1.000E+09 

PLANT. FLASHDRUMI. ENTHFLOW_P01 :=1.45923E-02 : -1.000E+09 1.000E+07 

PLANT. FLASHDRUM1. RATIO-POI :=1.00000E+00 : -1.000E-01 : 1.000E+01 

PLANT. FLASHDRUMI. PHASETYPE_PO1 :=1.00000E+00 : -1.000E-03 : 1.000E+09 

PLANT. FLASHDRUM1. PRESS_C :=4.05242E+03 : -1.000E-01 1.000E+04 

PLANT. FLASHDRUMI. SUM_MASS_B :=3.00000E-02 : -1.000E+09 : 1.000E+09 

PLANT. FLASHDRUMI. ENTHFLOW_P02 :=0.00000E+00 : -1.000E+09 1.000E+07 

PLANT. FLASHDRUMI. RATIO_P02 :-1.00000E+00 : -1.000E-01 : 1.000E+01 

PLANT. FLASHDRUMI. PHASETYPE P02 :=1.00000E+00 : -1.000E-03 : 1.000E+09 

PLANT. FLASHDRUM1. B0T_V :=9.70524E-02 : -1.000E-03 : 1.000E+09 

PLANT. FLASHDRUMI. BOT_B_L :=0.00000E+00 : -1.000E-03 : 1.000E+09 

PLANT. FLASHDRUMI. MOLE_B(1) 6.01833E-04 : -1.000E-01 : 1.000E+02 

PLANT. FLASHDRUM1. M0LE_B(2) 5.96210E-05 : -1.000E-01 1.000E+02 

PLANT. FLASHDRUMI. VOL_L :=4.80914E-02 : -1.000E-01 : 1.000E+01 

PLANT. FLASHDRUM1. PHASETYPE_L :-2.00000E+00 : -1.000E-03 : 1.000E+09 
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PLANT. FLASHDRUMI. VOL_FLASHDRUMI 2.35500E+00 : -1.000E-01 : 1.000E+01 
PLANT. FLASHDRUMI. MASSFRAC_L(1) :=4.99615E-01 : -1.000E-01 : 1.000E+01 
PLANT. FLASHDRUM1. MASSFRAC_L(2) 5.00385E-01 : -1.000E-01 : 1.000E+01 
PLANT. FLASHDRUMI. ENTH_VO(1) 7.21461E+02 : -1.000E+07 : 1.000E+04 
PLANT. FLASHDRUM1. ENTH_VO(2) :=6.93049E+02 : -1.000E+07 : 1.000E+04 
PLANT. FLASHDRUMI. ENTH-B :=5.99106E+02 -1.000E+07 1.000E+04 
PLANT. FLASHDRUMI. INTENERGY_L :=1.62717E+02 -1.000E+09 : 1.000E+04 
PLANT. FLASHDRUM1. RATIO_V :=1.00000E+00 : -1.000E-01 : 1.000E+01 
PLANT. FLASHDRUMI. TEMP_RO(1) 6.03079E-01 -1.000E-01 : 1.000E+01 
PLANT. FLASHDRUMI. TEMP_RO(2) 5.24593E-01 -1.000E-01 1.000E+01 
PLANT. FLASHDRUMI. VISCOSITY_LO(1) 4.55853E-14 -1.000E-01 : 1.000E+02 
PLANT. FLASHDRUMI. VISCOSITY-LO(2) 1.31680E-04 : -1.000E-01 1.000E+02 
PLANT. FLASHDRUMI. DEN_PO1 :=8.77650E-01 : -1.000E-01 : 1.000E+05 
PLANT. FLASHDRUMI. PRESS_L 4.36584E+01 : -1.000E-01 : 1.000E+04 
PLANT. FLASHDRUMI. MASS_B(1) 2.65348E-02 : -1.000E-01 1.000E+09 
PLANT. FLASHDRUM1. MASS_B(2) 3.46517E-03 -1.000E-01 : 1.000E+09 
PLANT. FLASHDRUM1. DEN_P02 :=8.77650E-01 : -1.000E-01 1.000E+05 
PLANT. FLASHDRUMI. PRESS_FLASHDRUM1 :=4.36584E+01 : -1.000E-01 : 1.000E+04 
PLANT. FLASHDRUMI. SUM_MASS_L :=2.99700E+01 : -1.000E+09 : 1.000E+09 
PLANT. FLASHDRUMI. VISCOSITY_PO1 9.40000E-06 : -1.000E-01 1.000E+02 
PLANT. FLASHDRUMI. VISCOSITY PO2 9.40000E-06 -1.000E-01 : 1.000E+02 
PLANT. FLASHDRUMI. TEMP-B :=2.23031E+02 -1.000E-01 1.000E+04 

PLANT. FLASHDRUMI. MOLE_L(1) :=3.39611E-01 : -1.000E-01 : 1.000E+02 

PLANT. FLASHDRUMI. MOLE_L(2) 2.58027E-01 : -1.000E-01 1.000E+02 

PLANT. FLASHDRUMI. VOL V :=2.27881E+00 : -1.000E-01 : 1.000E+01 

PLANT. FLASHDRUMI. PHASETYPE V :=1.00000E+00 : -1.000E-03 : 1.000E+09 

PLANT. FLASHDRUMI. TEMP_C :=3.93708E+02 : -1.000E-01 : 1.000E+04 

PLANT. FLASHDRUMI. VAPPRESS_1 :=6.99037E+01 : -1.000E+09 : 1.000E+09 

PLANT. FLASHDRUMI. VOL B_L :-7.61861E-02 -1.000E-01 1.000E+01 

PLANT. FLASHDRUMI. MASSFRAC_V(1) 5.00000E-01 : -1.000E-01 1.000E+01 

PLANT. FLASHDRUMI. MASSFRAC_V(2) 5.00000E-01 : -1.000E-01 1.000E+01 

PLANT. FLASHDRUMI. PHASETYPE-BL 3.00000E+00 : -1.000E-03 1.000E+09 

PLANT. FLASHDRUM1. VAPPRESS_2 :=9.11464E+00 : -1.000E+09 : 1.000E+09 

PLANT. FLASHDRUMI. ENTH_L :=1.62787E+02 -1.000E+07 1.000E+04 

PLANT. FLASHDRUMI. INTENERGY_V :=6.57510E+02 -1.000E+09 : 1.000E+04 

PLANT. FLASHDRUMI. MASSFRAC_B_L(1) 5.00000E-01 : -1.000E-01 : 1.000E+01 

PLANT. FLASHDRUM1. MASSFRAC_B_L(2) 5.00000E-01 : -1.000E-01 1.000E+01 

PLANT. FLASHDRUMI. TOP_V :=3.00000E+00 : -1.000E-03 : 1.000E+09 

PLANT. FLASHDRUMI. INTENERGY_B L :=1.63113E+02 : -1.000E+09 : 1.000E+04 

PLANT. FLASHDRUMI. TOP B_L :=9.70524E-02 -1.000E-03 : 1.000E+09 

PLANT. FLASHDRUM I. DEN V0(1) 7.71719E-01 -1.000E-01 : 1.000E+05 

PLANT. FLASHDRUMI. DEN VO(2) 1.01729E+00 -1.000E-01 : 1.000E+05 

PLANT. FLASHDRUMI. DEN B :=1.06782E+00 : -1.000E-01 : 1.000E+05 

PLANT. FLASHDRUMI. VISCOSITY-VO (1) 8.32490E-06 : -1.000E-01 : 1.000E+02 

PLANT. FLASHDRUMI. VISCOSITY_VO(2) 7.58946E-06 : -1.000E-01 1.000E+02 

PLANT. FLASHDRUM1. M :=5.01474E+01 -1.000E-03 1.000E+09 ; 

PLANT. FLASHDRUMI. PRESS V :=4.36584E+01 : -1.000E-01 : 1.000E+04 

PLANT. FLASHDRUMI. VISCOSITY B :=5.89599E-06 -1.000E-01 : 1.000E+02 

PLANT. FLASHDRUMI. EQUIL_1 :=1.60115E+00 : -1.000E+09 1.000E+09 

PLANT. FLASHDRUMI. MASS 
_L(1) 

1.49735E+01 -1.000E-01 : 1.000E+09 

PLANT. FLASHDRUMI. MASS 
_L(2) 

1.49965E+01 : -1.000E-01 1.000E+09 

PLANT. FLASHDRUMI. RATE_V_PI(1) 0.00000E+00 : -1.000E-01 : 1.000E+04 

PLANT. FLASHDRUMI. RATE_V_PI(2) 0.00000E+00 : -1.000E-01 1.000E+04 

PLANT. FLASHDRUMI. PRESS_B_L 4.36584E+01 : -1.000E-01 1.000E+04 

PLANT. FLASHDRUM1. SUM_MASS_V 2.00000E+00 -1.000E+09 : 1.000E+09 

PLANT. FLASHDRUMI. EQUIL_2 :=2.08772E-01 -1.000E+09 1.000E+09 

PLANT. FLASHDRUMI. RATE_B_L_PI(1) 1.25494E-01 : -1.000E-01 : 1.000E+04 

PLANT. FLASHDRUMI. RATE_B_L_PI(2) 1.88241E-01 : -1.000E-01 1.000E+04 

PLANT. FLASHDRUMI. SUM_MASS_B_L :-3.00000E+01 : -1.000E+09 : 1.000E+09 

PLANT. FLASHDRUMI. TEMP_L :=2.23031E+02 -1.000E-01 : 1.000E+04 

PLANT. FLASHDRUMI. AREA :=7.85000E-01 : -1.000E-03 : 1.000E+09 ; 

PLANT. FLASHDRUMI. SUM- RATE- B_V :=9.00000E-06 -1.000E+09 : 1.000E+09 

PLANT. FLASHDRUMI. MOLE- B_L(1) 3.40213E-01 : -1.000E-01 1.000E+02 

PLANT. FLASHDRUMI. MOLE- B_L(2) 2.58087E-01 -1.000E-01 1.000E+02 

PLANT. FLASHDRUMI. RATE- V_P01(1) 1.03162E-05 : -1.000E-01 1.000E+04 

PLANT. FLASHDRUMI. RATE_ V_P01(2) 1.03162E-05 -1.000E-01 1.000E+04 

PLANT. FLASHDRUM1. ENTH_V :=7.07255E+02 -1.000E+07 1.000E+04 

PLANT. FLASHDRUM1. RATE- B_L-P01(1) :=0.00000E+00 : -1.000E-01 : 1.000E+04 
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PLANT. FLASHDRUM1. RATE_B_L_PO1(2) :=0.00000E+00 : -1.000E-01 : 1.000E+04 
PLANT. FLASHDRUMI. RATE- V_P02(1) 0.00000E+00 : -1.000E-01 : 1.000E+04 
PLANT. FLASHDRUMI. RATE_V_P02(2) 0.00000E+00 : -1.000E-01 1.000E+04 
PLANT. FLASHDRUMI. ENTH_B_L :=1.63224E+02 : -1.000E+07 : 1.000E+04 ; 
PLANT. FLASHDRUMI. RATE_B_L_P02(1) 0.00000E+00 : -1.000E-01 1.000E+04 
PLANT. FLASHDRUMI. RATE_B_L_P02(2) 0.00000E+00 -1.000E-01 1.000E+04 
PLANT. FLASHDRUMI. DEN_L 6.23188E+02 : -1.000E-01 1.000E+05 

PLANT. FLASHDRUMI. TEMP_R 5.66487E-01 -1.000E-01 1.000E+01 
PLANT. FLASHDRUM1. VISCOSITY_L :=6.58909E-05 -1.000E-01 1.000E+02 
PLANT. FLASHDRUM1. DER- INTENERGY V :_ -4.59876E-03 : -1.000E+09 : 1.000E+09 
PLANT. FLASHDRUMI. SUM_AATE_PI :=3.13735E-01 -1.000E+09 1.000E+09 
PLANT. FLASHDRUMI. MASS 

_V(1) 
1.00000E+00 -1.000E-01 : 1.000E+09 

PLANT. FLASHDRUMI. MASS_V(2) 1.00000E+00 : -1.000E-01 1.000E+09 
PLANT. FLASHDRUMI. MASS_B_L(1) 1.50000E+01 : -1.000E-01 1.000E+09 

PLANT. FLASHDRUMI. MASS_B_L(2) 1.50000E+01 : -1.000E-01 : 1.000E+09 

PLANT. FLASHDRUMI. HEAT_LO(1) 4.28858E+02 -1.000E+07 : 1.000E+04 

PLANT. FLASHDRUMI. HEAT_LO(2) 4.22423E+02 -1.000E+07 : 1.000E+04 

PLANT. FLASHDRUM1. Z :=2.75202E-01 : -1.000E+09 : 1.000E+09 

PLANT. FLASHDRUMI. TEMP_V :=3.00000E+02 : -1.000E-01 : 1.000E+04 

PLANT. FLASHDRUMI. RATE_B-V(1) 7.95751E-06 : -1.000E-01 1.000E+04 

PLANT. FLASHDRUMI. RATE_B_V(2) 1.04249E-06 -1.000E-01 1.000E+04 

PLANT. FLASHDRUMI. ENTH_BO(1) 6.02311E+02 -1.000E+07 : 1.000E+04 

PLANT. FLASHDRUM1. ENTH_BO(2) 5.74560E+02 -1.000E+07 : 1.000E+04 

PLANT. FLASHDRUMI. SUM RATE_P01 2.06323E-05 : -1.000E+09 : 1.000E+09 

PLANT. FLASHDRUM1. ENTHFLOW_V_PI 0.00000E+00 : -1.000E+09 1.000E+07 

PLANT. FLASHDRUMI. RATIO_B :=1.0000E-03 : -1.000E-01 : 1.000E+01 

PLANT. FLASHDRUM1. SUM_RATE_P02 :-0.00000E+00 : -1.000E+09 : 1.000E+09 

PLANT. FLASHDRUMI. ENTHFLOW_B_L_PI 1.09807E+02 : -1.000E+09 1.000E+07 

PLANT. FLASHDRUMI. MASSFRAC_P01(1) 5.00000E-01 : -1.000E-01 1.000E+01 

PLANT. FLASHDRUMI. MASSFRAC_P01(2) 5.00000E-01 -1.000E-01 : 1.000E+01 

PLANT. FLASHDRUM1. DEN V :-8.77650E-01 : -1.000E-01 : 1.000E+05 

PLANT. FLASHDRUMI. MASSFRAC_P02(1) 5.00000E-01 : -1.000E-01 : 1.000E+01 

PLANT. FLASHDRUMI. MASSFRAC_P02(2) 5.00000E-01 : -1.000E-01 1.000E+01 

PLANT. FLASHDRUMI. MOLEFRAC_B(1) 9.09864E-01 -1.000E-01 : 1.000E+01 

PLANT. FLASHDRUM1. MOLEFRAC_B(2) 9.01362E-02 : -1.000E-01 : 1.000E+01 

PLANT. FLASHDRUM1. DEN_B_L :=3.93772E+02 : -1.000E-01 : 1.000E+05 ; 

PLANT. FLASHDRUMI. VISCOSITY_V :=7.95718E-06 -1.000E-01 : 1.000E+02 

PLANT. FLASHDRUM1. VISCOSITY_B_L 6.58309E-05 : -1.000E-01 : 1.000E+02 

PLANT. FLASHDRUMI. VAPPRESS_L(1) 6.99037E+01 -1.000E-01 : 1.000E+04 

PLANT. FLASRDRUMI. VAPPRESS_L(2) 9.11464E+00 -1.000E-01 1.000E+04 

PLANT. FLASHDRUMI. ENTHFLOW_V_P01 1.45923E-02 : -1.000E+09 : 1.000E+07 

PLANT. R4. RATIO_P :=1.00000E+00 -1.000E-01 : 1.000E+01 

PLANT. R4. PHASETYPE_P :=1.00000E+00 : -1.000E-03 : 1.000E+09 

PLANT. R4. RATE_P(1) 0.00000E+00 : -1.000E-01 1.000E+04 

PLANT. R4. RATE_P(2) 0.00000E+00 : -1.000E-01 : 1.000E+04 

PLANT. R4. ENTHFLOW_P 0.00000E+00 : -1.000E+09 : 1.000E+07 

PLANT. R3. RATIO_P :=1.00000E+00 : -1.000E-01 : 1.000E+01 

PLANT. R3. PHASETYPE_P :=1.00000E+00 : -1.000E-03 : 1.000E+09 

PLANT. R3. RATE_P(1) 0.00000E+00 -1.000E-01 : 1.000E+04 

PLANT. R3. RATE_P(2) 0.00000E+00 -1.000E-01 : 1.000E+04 

PLANT. R3. ENTHFLOW_P 0.00000E+00 : -1.000E+09 1.000E+07 

PLANT. R2. RATIO_P :=1.00000E+00 : -1.000E-01 : 1.000E+01 

PLANT. R2. PHASETYPE_P :=1.00000E+00 : -1.000E-03 : 1.000E+09 

PLANT. R2. RATE_P(1) 0.00000E+00 : -1.000E-01 : 1.000E+04 

PLANT. R2. RATE_P(2) 0.00000E+00 -1.000E-01 : 1.000E+04 

PLANT. R2. ENTBFLOW_P 0.00000E+00 -1.000E+09 : 1.000E+07 

PLANT. RI. RATE_P(1) 1.25494E-01 -1.000E-01 : 1.000E+04 

PLANT. RI. RATE P(2) :=1.88241E-01 -1.000E-01 : 1.000E+04 

PLANT. RI. ENTHFLOW_P 1.09807E+02 -1.000E+09 1.000E+07 

PLANT. MASSFRAC_C2(1) 5.00000E-01 : -1.000E-01 : 1.000E+01 

PLANT. MASSFRAC_C2(2) 5.00000E-01 : -1.000E-01 1.000E+01 

PLANT. DRIVINGFORCE_C1 3.61542E+02 : -1.000E+09 : 1.000E+09 

PLANT. DRIVINGFORCE_C2 2.35086E+00 : -1.000E+09 : 1.000E+09 

PLANT. DRIVINGFORCE_C3 -5.76416E+01 -1.000E+09 : 1.000E+09 

PLANT. DRIVINGFORCE_C4 -5.99925E+01 -1.000E+09 1.000E+09 

PLANT. RATE_C2(1) 1.03162E-05 : -1.000E-01 : 1.000E+04 

PLANT. RATE- C2(2) 1.03162E-05 : -1.000E-01 : 1.000E+04 

PLANT. DRIVINGFORCE_C5 :_ -5.99925E+01 : -1.000E+09 : 1.000E+09 



APPENDIX D. SIMULATION INPUT FILES 183 

PLANT. ENTH_C2 :=7.07255E+02 : -1.000E+07 : 1.000E+04 ; 
PLANT. REYNOLDSCONST1_C1 2.10000E+03 : -1.000E-03 1.000E+09 

PLANT. REYNOLDSCONST2_C1 2.20000E+03 : -1.000E-03 : 1.000E+09 

PLANT. DEN_C2 :=8.77650E-01 : -1.000E-01 : 1.000E+05 

PLANT. REYNOLDSCONSTI_C3 :=2.10000E+03 : -1.000E-03 : 1.000E+09 

PLANT. ENTHFLOW_C2 :=1.45923E-02 : -1.000E+09 : 1.000E+07 ; 
PLANT. REYNOLDSCONSTI_C4 2.10000E+03 : -1.000E-03 : 1.000E+09 

PLANT. REYNOLDSCONST2_C3 2.20000E+03 -1.000E-03 : 1.000E+09 

PLANT. REYNOLDSCONSTI_C5 2.10000E+03 : -1.000E-03 : 1.000E+09 

PLANT. REYNOLDSCONST2_C4 2.20000E+03 : -1.000E-03 1.000E+09 

PLANT. VISCOSITY_C2 :=9.40000E-06 : -1.000E-01 : 1.000E+02 ; 
PLANT. REYNOLDSCONST2_C5 :=2.20000E+03 : -1.000E-03 : 1.000E+09 

PLANT. REYNOLDSNO_C1 8.30707E+03 -1.000E-03 : 1.000E+09 

PLANT. REYNOLDSNO_C2 2.79608E+00 : -1.000E-03 : 1.000E+09 

PLANT. REYNOLDSNO_C3 0.00000E+00 : -1.000E-03 1.000E+09 

PLANT. REYNOLDSNO_C4 0.00000E+00 -1.000E-03 : 1.000E+09 

PLANT. REYNOLDSNO_C5 0.00000E+00 : -1.000E-03 : 1.000E+09 

{ 
WITHIN Plant DO 

ReynoldsNo_C2 .= 5000 

ReynoldsNo_C3 .= 5000 

WITHIN F1ashDrum DO 

PhaseType-V 

PhaseType_B 

PhaseType_L .=2 
PhaseType B_L =3 

PhaseType_Pol .=3 
PhaseType_Po2 =I 

Top_V .=3 
Bot_V .=0.0535 
Top_B_L = 0.0535 

Bot B_L .=0 
Level B_L = 0.0535 

Level_V .=3 
VapPress_L(1) = 311.379 

VapPress_L(2) .= 11.018E-3 

EquilConst_B_L(1) .=1.6 
EquilConst_B_L(2) .=0.2 
Vol_F1ashDrum .=2.356 
Press_F1ashDrum 43 

Temp 
-B 

220 

Temp_L = 220 

END 

END 

} 

SELECTOR 

WITHIN Plant DO 

F1owType_C1 .= Turbulent 

F1ovType_C2 .= Laminar ; 

F1owType_C3 = Turbulent 

F1ovType_C4 = Turbulent 

F1ovType_C5 .= Turbulent 

WITHIN FlashDruml DO 

Phase_B_L .= TvoPhase 

END 

WITHIN FlashDrum2 DO 

Phase_B_L = TwoPhase 

END 

END 

INITIAL 

WITHIN Plant DO 

WITHIN F1ashDruml DO 

Temp_V = 300 

Mass_V `1; 
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Mass_B_L = 15 ; 

Ratio_B = 0.001 

END 

WITHIN F1ashDrum2 DO 

Temp 
-V = 280 

Mass_V =1 

Mass_B_L = 15 

Ratio_B = 0.002 

END 

END 

SOLUTIONPAAAMETERS 

BLOCKDECOMPOSITION := OFF ; 

OUTPUTLEVEL :=1; 

SCHEDULE 

SEQUENCE 

CONTINUE FOR 10 

RESET P1ant. R1. Press_P :=1.013E2 + (TIME-10) 

END 

CONTINUE UNTIL P1ant. Rl. Press_P > 500 

RESET P1ant. R1. Press P := 600 - TIME 

END 

CONTINUE UNTIL P1ant. R1. Press_P < 350 

RESET P1ant. R1. Press_P :=1.013E2 
END 

CONTINUE UNTIL P1ant. FlashDruml. Der_Mass-B_L < 1E-20 

RESET P1ant. R1. Press P :=0; * atop feed 

END 

CONTINUE FOR 2E6 

END 

END * Process test 



APPENDIX D. SIMULATION INPUT FILES 

D. 3 Decanter : Settling Tank 

DECLARE 

TYPE 

Mass-rate = 50 -1E-1 1E4 UNIT = "kg/sec" 
Temperature = 100 . -1E-1 IN UNIT = "K" 
Length =1 -1E-1 1E2 UNIT = "m" 
Enthalpy =0 -1E7 1E4 UNIT = "kJ/kg" 
Int_Energy =0 -1E9 . 1E4 UNIT = "kJ/kg" 
Volume = 0.5 -10 1E1 UNIT = "m3" 
Pressure = 43 -1E-1 . 1E4 UNIT = "kPa" 
Enthalpy_Flov = 10 -1E9 1E7 UNIT = "kJ/sec" 
Mass =5 -1E-1 1E9 UNIT = "kg" 

Mole = 0.1 -1E-1 1E2 UNIT = "kmole" 
Density = 1000 -1E-1 1E5 UNIT = "kg/m3" 
Viscosity = 5E-3 -IE-1 1E2 UNIT = "Pa. s" 
Velocity = IE-1 -1E-1 . 1E4 UNIT = "m/e" 

Fraction = 0.6 -5E-1 10 

NoType = 200 -1E9 1E9 

Positive = 50 -1E-3 1E9 

STREAM 

Mas8Stream IS Mass_Rate, Enthalpy_Flov, Fraction, Positive 

EnergyStream IS Enthalpy_Flov 

END 

################################ 

# BEGINNING of generated model # 

################################ 

MODEL m_R1 

PARAMETER 

NoComp AS INTEGER 

VARIABLE 

Ratio_P AS Fraction 

Rate_P AS Array(NoComp) of Mass-Rate 

Den 
-P 

AS Density 

Press 
-P 

AS Pressure 

EnthFlov_P AS Enthalpy_Flov 

PhaseType P AS Positive 

Viscosity_P AS Viscosity 

MassFrac_P AS Array(NoComp) of Fraction 

Enth_P AS Enthalpy 

STREAM 

P: Rate_P, EnthFlov P, Ratio P, PhaseType_P AS MassStream 

END # end of MODEL m_R1 

MODEL m_R2 

PARAMETER 

NoComp AS INTEGER 

VARIABLE 

Ratio_P AS Fraction 

Rate 
-P 

AS Array(NoComp) of Mass Rate 

EnthFlow-P AS Enthalpy-Flow 

PhaseType_P AS Positive 

185 



APPENDIX D. SIMULATION INPUT FILES 186 

STREAM 

P: Rate_P, EnthFlov_P, Ratio_P, PhaseType_P AS MassStream 

END # end of MODEL m_R2 

MODEL m_R3 

PARAMETER 

NoComp AS INTEGER 

VARIABLE 

Ratio 
-P AS Fraction 

Rate_P AS Array(NoComp) of Mass-Rate 
EnthFlow-P AS Enthalpy-Flow 

PhaseType_P AS Positive 

STREAM 

P: Rats P, EnthFlow_P, Ratio P, PhaseType_P AS MassStream 

END * end of MODEL m -R3 

MODEL m_decanter 

PARAMETER 

liquidl_liquid2 AS INTEGER 
NoComp AS INTEGER 

liquidl AS INTEGER 

liquid2 AS INTEGER 

Z_Pol AS REAL 

height AS REAL 

Const_B1_B AS REAL 

Z_Pi AS REAL 

diameter AS REAL 

VARIABLE 

Mass_B1 AS Array(NoComp) of Mass 

Mass-W1 AS Array(NoComp) of Mass 

Mass_B1_W1 AS Array(NoComp) of Mass 

Mass_B AS Array(NoComp) of Mass 

Mass_W AS Array(NoComp) of Mass 

Rate_W_Pol AS Array(NoComp) of Mass-Rate 

Rate W_Po2 AS Array(NoComp) of Mass-Rate 

Rate-B1 B AS Array(NoComp) of Mass-Rate 

Rate_Pi AS Array(NoComp) of Mass Rate 

Rate B1_W1 Po2 AS Array(NoComp) of Mass-Rate 

Rate_B1_W1_Pol AS Array(NoComp) of Mass Rate 

Rate B_Pol AS krray(NoComp) of Mass-Rate 

Rate_B_Po2 AS Array(NoComp) of Mass-Rate 

Rate Pol AS Array(NoComp) of Mass-Rate 

Rate_Po2 AS Array(NoComp) of Mass-Rate 

Rate_W1_W AS Array(NoComp) of Mass Rate 

Den_Wi AS Density 

Den-B1-W1 AS Density 

Den_B AS Density 

Den_W AS Density 

Den-Pot AS Density 

Den_Bi AS Density 

Den Po2 AS Density 

Viscosity_W AS Viscosity 

Viscosity_B AS Viscosity 

viscosity-pol AS Viscosity 

Viscosity_WI AS Viscosity 

Viscosity_B1 AS Viscosity 

Viscosity_B1_W1 AS Viscosity 

Press-B1-W1 AS Pressure 

Press-81 AS Pressure 
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Press_B AS Pressure 
Press_W AS Pressure 
Press-decanter AS Pressure 
Press-WS AS Pressure 
Temp_B AS Temperature 
Temp_W AS Temperature 
Temp-B1 AS Temperature 
Temp-W1 AS Temperature 
Vol-BI-W1 AS Volume 
Vol_B AS Volume 
Vol 

-W AS Volume 
Vol-decanter AS Volume 
Vol B1 AS Volume 
Vol_W1 AS Volume 
Vol_Empty AS Volume 
Enth_Pol AS Enthalpy 
Enth_Po2 AS Enthalpy 

Enth_B1 AS Enthalpy 
Enth_B1_W1 AS Enthalpy 

Enth_W1 AS Enthalpy 

Enth_B AS Enthalpy 

Enth_W AS Enthalpy 

IntEnergy_W AS Int-Energy 

IntEnergy_B AS Int-Energy 

IntEnergy_B1_Wi AS Int-Energy 

IntEnergy_W1 AS Int Bnergy 

IntEnergy_Bi AS Int-Energy 

EnthFlow_Pi AS Enthalpy-Flow 

EnthFlow_W1_W AS Enthalpy Flow 

EnthFlow_B_Po2 AS Enthalpy-Flow 

EnthFlow-BI-Wl-Po2 AS Enthalpy-Flow 

EnthFlow_W_Po2 AS Enthalpy_Flov 

EnthFlow_Po2 AS Enthalpy_Flov 

EnthFlov_B1_B AS Enthalpy_Flov 

EnthFlow-B-Pol AS Enthalpy-Flow 

EnthFlow-BI-WI-Pol AS Enthalpy-Flow 

EnthFlow-W-Pol AS Enthalpy-Flow 

EnthFlow-Pol AS Enthalpy-Flow 

MassFrac_W AS Array(NoComp) of Fraction 

MassFrac B AS Array(NoComp) of Fraction 

MassFrac_Pol AS Array(NoComp) of Fraction 

MassFrac_B1_W1 AS Array(NoComp) of Fraction 

MassFrac_W1 AS Array(NoComp) of Fraction 

MassFrac B1 AS Array(NoComp) of Fraction 

Ratio-Pi AS Fraction 

Ratio-BI AS Fraction 

Ratio 
-B 

AS Fraction 

Ratio_W AS Fraction 

Ratio_Po2 AS Fraction 

Ratio-Pol AS Fraction 

y Po2 AS Positive 

Level_B AS Positive 

Level 
-W 

AS Positive 

Bot_B AS Positive 

Bot 
-W 

AS Positive 

C Wi_W AS Positive 

PhaseType_Pi AS Positive 

PhaseType_W AS Positive 

PhaseType_P02 AS Positive 

PhaseType_B AS Positive 

Level_Po2 AS Positive 

Level_Pol AS Positive 

PhaseType_Pol AS Positive 

Level_B1_W1 AS Positive 

PhaseType_B1_W1 AS Positive 

PhaseType_W1 
AS Positive 

PhaseType_B1 
AS Positive 

Bot-Bi-W1 
AS Positive 
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area AS Positive 
Top_B AS Positive 
Top 

-W AS Positive 
Top-Bi-W1 AS Positive 

STREAM 

Pi : Rate-Pi, EnthFlov_Pi, Ratio-Pi, PhaseType_Pi AS MassStream 
Pol : Rate_Pol, EnthFlov Pol, Ratio_Pol, PhaseType_Pol AS MassStream 
Pot : Rate_Po2, EnthFlov Pot, Ratio Po2, PhaseType_Po2 AS MassStream 

SET 

Z_Pol = 0.000000 

height 
.=5.000000 

liquidi_liquid2 3 
liquidl =1 
liquid2 

,. 2 

Z_Pi 
.=1.500000 

diameter 
.=1.000000 

EQUATION 

# case invariant mass balance 

$Mass_B =- Rate_B_Poi - Rate_B_Po2 + Rate_B1_B 

$Mass B1 = Rate-Pi * Ratio Pi - Rate-Bi-WI-Pol * Ratio-Pol - 
Rate_B1_W1_Po2 * Ratio_Po2 - Rate B1_B ; 

$Mass_W1 = Rate-Pi * (1 - Ratio-Pi) - Rate-BI-WI-Pol * 
(1 - Ratio_Pol) - Rate B1_W1_Po2 * (1 - Ratio_Po2) - Rate_W1_W 

$Mass W=- Rate_W_Pol - Rate_W_Po2 + Rate_W1_W ; 

# case invariant energy balance 

$IntEnergy B* SIGMA(Mass_B) + IntEnergy_B * SICMA($Mass_B) _ 

- EnthFlov_H Pol - EnthFlov B_Po2 + EnthFlov_B1_B ; 

$IntEnergy_B1 * SIGMA(Mass_B1) + IntEnergy_B1 * SIGMA($Mass_B1) _ 
EnthFlov_Pi * Ratio Pi - EnthFlov_B1_W1_Pol * Ratio Pol - 
EnthFlov_B1_W1_Po2 * Ratio Po2 - EnthFlov_B1_B ; 

$IntEnergy_W1 * SIGMA(Mass_W1) + IntEnergy_W1 * SIGMA($Mass_W1) = 
EnthFlov_Pi * (1 - Ratio_Pi) - EnthFlow_B1_W1_Pol * (1 - Ratio_Pol) - 
EnthFlov_B1_W1_Po2 * (1 - Ratio_Po2) - EnthFlov_W1_W ; 

$IntEnergy_W * SIGMA(Mass_W) + IntEnergy_W * SIGMA($Mass W) _ 

- EnthFlov_W_Pol - EnthFlov_W_Po2 + EnthFlov_W1_W ; 

S ratio of dispersed phase 

Ratio_B =1; 

SIGMA(Mass_B1) = Ratio_B1 * SIGMA (Mass-BI-Wl) 

Ratio_W =1; 

# HeavyPhaseTransfer : 

Rate W1_W = C_W1_W * Mass_Wi 

EnthFlov_W1_W = SIGMA(Rate_W1_W) * Enth_W1 

# BubbleRise : 

Rate_B1_B = Const_B1_B * Mass B1 

EnthFlow_B1_B = SIGMA(Rate B1_B) " Enth_B1 

# mass = mass fraction * total mass 

Mass_B1_W1 = MassFrac_B1_W1 * SIGMA (Mass-BI-WI) 

Mass_W = MassFrac_W * SIGMA(Mass_W) ; 

Mass-W1 = MassFrac_W1 * SIGMA(Mass W1) 

Mass_B = MassFrae B* SIGMA(Mass_B) ; 

Mass_B1 = MassFrac_B1 * SIGMA(Mass_B1) 
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X total mass = density * volume 
SIGMA(Mass_W) = Den_W * Vol_W ; 
SIGMA(Mass_W1) = Den_W1 * Vol_Wi 

SIGMA(Mass_B) = Den_B * Vol_B ; 
SIGMA(Mass_B1) - Den_B1 * Vol-B1 

I phase type 

PhaseType_B1 

PhaseType_W 

PhaseType_W1 

PhaseType_B 

PhaseType_B1 

W1 - liquidi_liquid2 

liquid2 

= liquid2 

liquidl 

= liquidl 

# aggregated mass 
Mass-BI-W1 = Mass B1 + Mass-WI 

# aggregated phase density 

Den-B1-W1 = Ratio-B1 * Den-BS + (1 - Ratio-BI) * Den_N1 

# aggregated phase enthalpy 
Enth_B1 W1 = Ratio B1 * Enth B1 + (1 - Ratio B1) * Enth_W1 

# aggregated phase internal energy 
IntEnergy_B1_Wi = Ratio_B1 * IntEnergy_B1 + (1 - Ratio_B1) * IntEnergy_W1 

# aggregated phase viscosity 
Viscosity_B1_Wi = Ratio B1 * Viscosity_B1 + (1 - Ratio_B1) * Viscosity_W1 

# volume relationship 

Vol-S1-W1 = Vol-BI + Vol-WI 

Vol-decanter = Vol_B + Vol_S1_Wi + Vol_W + Vol_Empty 

# uniform pressure within vessel 

Press-decanter = Press_B1_W1 

Press-decanter = Press_W 

Press-decanter = Press-W1 

Press-decanter = Press_B 

Press-decanter = Press_B1 

# phase bound : upper/low bound of phase volume = level 

Top_W = Level_W 

Bot_W =0; 

Top-BI-WI = Level-BI-WI 

Bot_BI_N1 = Level 
-W 

Top 
-B = Level 

-B ; 

Bot_B = Level-B1-W1 

# phase volume : volume = area * (top - bottom) 

area = (3.14/4) * diameter-2 ; 

Vol_Empty = area * (height - Top-B) 

Vol_W = area * (Top_W - Bot_W) ; 

Vol_B1_W1 = area * (Top_B1_W1 - Bot_B1_W1) 

Vol 
-B = area * (Top 

-B - Bot B) 

# discontinuity on output port, "Pol" 

IF Z_Pol >- Bot_B AND Z_Pol < Top_B THEN 

Level_B = Level-Pol ; 

Viscosity_B = Viscosity-Pol 

Enth_B = Enth_Pol ; 

MassFrac B= MaseFrac_Pol 

Den_B = Den-Pol ; 

Rate_B_Po1 = Rate-Pol 

EnthFlov_B_Pol = EnthFlov_Pol 

Ratio_B = Ratio-Pol ; 

PhaseType_B = PhaseType_Pol 
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Rate_W Pol -0; 
EnthFlov W_Pol =0 
Rate B1_Wi_Pol =0 
EnthFlov_B1_W1_Pol =0 

ELSE 

IF Z_Pol >= Bot_B1_W1 AND Z 
_Pol 

< Top_BI_W1 THEN 
Level-B1-W1 = Level Pol ; 
Viscosity-B1-W1 = Viscosity-Pol 

Enth_B1_W1 = Enth Pol 

MassFrac_B1_W1 = MaseFrac_Po1 

Den_Bl_Wl = Den Pol 

Rate-B1-W1-Pol = Rate-Pol 

EnthFlov_BS_W1_Poi = EnthFlov_Pol 

Ratio-B1 = Ratio-Pol ; 
PhaseType_B1_W1 = PhaseType_Pol 

Rate_W_Pol =0 
EnthFlov_W_Pol =0 
Rate_B Pol =0 

EnthFlov_B_Pol 0 

ELSE 

IF Z_Pol >= Bot_W AND Z_Pol < Top_W THEN 

Level_W = Level Pol 

Viscosity_W = viscosity-pol 

Enth_W = Enth_Pol 

MassFrac_W = MassFrac_Pol 

Den_W = Den_Pol ; 
Rate_W_Poi = Rate-Pol 

EnthFlov_W_Pol = EnthFlow_Pol 

Ratio 
-W = Ratio Pol 

PhaseType_W = PhaseType_Pol 

Rate_B1_WS_Pol =0 
EnthFlov_B1_W1_Po1 =0 
Rate_B_Pol =0 

EnthFlov_B_Pol =0 
ELSE 

Level_Po1 =0 
viscosity-pol 0 

Enth_Pol =0 

MassFrac Pol =0 

Den_Poi =0 

Rate_W_Pol =0 

EnthFlov_W_Pol =0 

Rate_B1_W1_Pol =0 

EnthFlov BIWl_Pol =0 

Rate_B Poi =0 

EnthFlov_B_Pol =0 

Ratio_Pol =0 

PhaseType_Pol =0 

END 

END 

END 

ü end of discontinuity on output port, "Pol" 

# discontinuity on output port, "Po2" 

IF Z_Po2 >- Bot_B AND Z_Po2 < Top_B TEEN 

Den_B = Den_Po2 ; 

Level_B = Level_Po2 

Enth_B Enth_Po2 ; 

Rate B_Po2 = Rate_Po2 

EnthFlov_B_Po2 = EnthFlov_Po2 

Ratio 
-B = Ratio_Po2 ; 

PhaseType_B = PhaseType_Po2 

Rate_W_Po2 =0; 

EnthFlov_W_Po2 =0 

Rate_B1_W1_Po2 =0 

EnthFlov_B1_W1_Po2 =0 

ELSE 
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IF Z Po2 >= Bot-B1-W1 AND Z_Po2 < Top-B1-W1 

Den-B1-W1 - Den_Po2 

Level-B1-W1 Level_Po2 

Enth_B1_W1 = Enth_Po2 

Rate B1_W1_Po2 = Rate_Po2 

EnthFlov_B1 W1_Po2 = EnthFlov_Po2 

Ratio B1 = Ratio Po2 

PhaseType B1_W1 = PhaseType_Po2 

Rate_W_Po2 =0 
EnthFlov_W_Po2 =0 
Rate_S Po2 =0 
EnthFlov B_Po2 =0 

ELSE 

IF Z Po2 >= Bot_W AND Z Po2 < Top_W THEN 

Den_W = Den_Po2 ; 
Level_W = Level_Po2 

Enth_W Enth_Po2 

Rate_W_Po2 = Rate Po2 

EnthFlov_W_Po2 = EnthFlov_Po2 

Ratio 
-W = Ratio_Po2 

PhaseType_W = PhaseType_Po2 

Rate_B1_W1_Po2 =0 
EnthFlov_B1 W1_Po2 =0 
Rate B_Po2 =0 

EnthFlov_B_Po2 =0 

ELSE 

Den_Po2 =0 

Level_Po2 =0 

Enth_Po2 =0 

Rate_W_Po2 =0 

EnthFlov_W_Po2 =0 

Rate_B1_W1_Po2 =0 

EnthFlov_B1_W1_Po2 =0 

Rate_B Po2 =0 

EnthFlov_B_Po2 =0 

Ratio_Po2 =0 

PhaseType_Po2 =0 

END 

END 

END 

# end of discontinuity on output port, "Po2" 

# port position 

Z_Po2 = height 

THEN 

# specification of C_W1_W in HeavyPhaseTransfer # 

C_W1_W = 0.5E-1; 

END ü end of MODEL m_decanter 

MODEL Flowshest 

PARAMETER 

NoComp 

Const2_C1 

Const3_C1 

Const_C1 

Const_C2 

Const_C3 

AS INTEGER 

AS REAL 

AS REAL 

AS REAL 

AS REAL 

AS REAL 

VARIABLE 

ReynoldsConstl_C1 AS Positive 

ReynoldsConst2_C1 AS Positive 

ReynoldeNo_C1 AS Positive 

DrivingForce_C1 AS NoType 
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UNIT 

R1 

R2 

R3 

decanter 

SELECTOR 

F1owType_CS AS (Turbulent, Laminar) 

EQUATION 

AS m_R1 
AS m_R2 
AS m_R3 
AS m_decanter 

# stream connections through ports # 

R1. P IS decanter. Pi 

decanter. Poi IS R2. P 

decanter. Po2 IS R3. P 

# transfer law of each connection # 

#" IrreversiblePre s sureDrivenF low" in connection, "C1" 
DrivingForce_C1 = R1. Press_P - decanter. Press_decanter 
(4/3.14) * SIGMA(R1. Rate_P) = ReynoldsNo_C1 * Const_C1 * R1. Viscosity_P 
ReynoldsConsti_C1 = 2100 

ReynoldsConst2_C1 = 4000 

R1. EnthFlov_P = SIGMA(R1. Rate_P) * R1. Enth_P 

IF DrivingForce_C1 >0 THEN 

CASE F1ovType_C1 OF 

WHEN Turbulent : 

R1. Rate_P = Const2_C1 * R1. Den_P * R1. MassFrac_P * 
SQRT(DrivingForce_C1) 

SWITCH TO Laminar IF ReynoldsNo_Ci < ReynoldsConstl_C1 

WHEN Laminar : 

R1. Rate_P = Const3_C1 * RS. Den_P * R1. MassFrac_P * 

DrivingForce_C1 ; 
SWITCH TO Turbulent IF ReynoldsNo_C1 > ReynoldsConst2_C1 

END 

ELSE 

R1. Rate P=0 

END 

# "StaticPressureDrivenFlow" in connection "C2" 

IF (decanter. Z Pol >= decanter. Bot_B AND decanter. Z_Pol < 

decanter. Top_B) OR (decanter. Z_Poi >= decanter. Bot-Bj_Wl AND 

decanter. Z_Pol < decanter -Top-BI-WI) OR (decanter. Z-Pol >= 

decanter. Bot_W AND decanter. Z Pol < decanter. Top_W) THEN 

decanter. Rate_Pol = Const_C2 * decanter. Den_Pol * 

SQRT(2 * 9.8 * ABS(decanter. Level_Pol)) 

ELSE 

decanter. Rate_Pol =0 

END 

decanter. EnthFlov_Pol = SIGMA (decanter. Rate_Pol) * decanter. Enth_Poi; 

# "WeirOverFlov" in connection, "C3" 

IF (decanter. Z_Po2 >= decanter. Bot_B AND decanter. Z_Po2 < 

decanter. Top_B) OR (decanter. Z Po2 >= decanter. Bot_B1_W1 AND 

decanter. Z_Po2 < decanter. Top B1-W1) OR (decanter. Z_Po2 >_ 

decanter. Bot_W AND decanter. Z_Po2 < decanter. Top_W) THEN 

decanter. Rate 
_Po2 = Const_C3 * decanter. Den_Po2 * 

(ABS (decant er. Level 
_Po2 - decanter. Z_Po2))-1.5 

ELSE 

decanter. Rate_Po2 -0 

END 

decanter. EnthFlov_Po2 = SIGMA(decanter. Rate 
_Po2) 

* decanter. Enth_Po2 
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END * end of MODEL Flowshost 

########################### 

# END of generated models # 

########################### 

PROCESS test 

UNIT 

Plant AS Flovsheet 

SET 

WITHIN Plant Do 

NoComp =1; 
Const_C1 = 0.05 

U cross-sectional area of pipe, C2 

* =======°__==___°_______________" # 

Const_C2 
._ 

(3.14 / 4) * 0.05-2 

# modified Francis formula in C3, "WeirOverFlov" # 

# weir length = 3.14*diameter, 

# wall correction factor = 1.04 # 

Const_C3 (2*3.14*0.5) / ((0.68175*1.04)"1.5) 

Const2_Ci .= 9E-4 

Const3_C1 = 5E-5 

WITHIN R1 DO 

NoComp 

END 

WITHIN R2 DO 

NoComp = 1 

END 

WITHIN R3 DO 

NoComp = 1 

END 

WITHIN decanter DO 

NoComp .= 1 

Const_B1_B .= 0.3E-1 

END 

END 

ASSIGN 

WITHIN Plant DO 

WITHIN R1 DO 

Press_P = 2*1.013E2 [kPa7 

Den_P .= 902.5 ;ß [kg/m3] 

Enth_P 0 

MassFrac_P = 1.0 

Ratio_P = 0.3 

PhaseType_P = 3 

Viscosity 
-P = 0.00178 

END 

WITHIN decanter DO 

Enth_B = 0 

Enth_B1 = 0 

Enth_W1 = 0 

Enth_W "= 0 

Temp 
-B .= 298 

Temp Bi .= 298 

Temp W1 .= 298 

Temp_W = 298 



APPENDIX D. SIMULATION INPUT FILES 194 

Den 
-B 805 

Dan-BI 805 

Den_W1 - 1000 

Den_W 
.= 1000 

Viscosity_B 
.=2.65E-3 

Viscosity-BI 
.=2.65E-3 

Viscosity-W1 = 9.0E-4 

Viscosity_W 
.=9.0E-4 

Press-decanter 1.013E2 

END 

END 

PRESET 

PLANT. R2. RATIO_P 0.00000E+00 : -1.000E-01 : 1.000E+01 
PLANT. R3. RATIO_P 0.00000E+00 -1.000E-01 1.000E+01 
PLANT. DECANTER. ENTHFLOW_W_P01 :=0.00000E+00 -1.000E+09 1.000E+07 
PLANT. DECANTER. VOL_B1 :=0.00000E+00 : -1.000E+01 : 1.000E+01 
PLANT. DECANTER. ENTHFLOW_W_P02 :=0.00000E+00 : -1.000E+09 : 1.000E+07 
PLANT. DECANTER. PHASETYPE B1 :=1.00000E+00 : -1.000E-03 1.000E+09 
PLANT. DECANTER. VOL-B :-1.24224E-02 -1.000E+01 : 1.000E+01 
PLANT. DECANTER. MASSFRAC_B1(1) :=5.00000E-01 : -1.000E-01 : 1.000E+01 
PLANT. DECANTER. PHASETYPE_B 1.00000E+00 : -1.000E-03 : 1.000E+09 
PLANT. DECANTER. RATE_P01(1) 0.00000E+00 : -1.000E-01 : 1.000E+04 
PLANT. DECANTER. INTENERGY_B1 0.00000E+00 : -1.000E+09 1.000E+04 
PLANT. DECANTER. MASSFRAC_B(1) 1.00000E+00 : -1.000E-01 : 1.000E+01 
PLANT. DECANTER. RATE-PI (1) 4.67116E+03 -1.000E-01 : 1.000E+04 
PLANT. DECANTER. ENTHFLOW_PI 0.00000E+00 : -1.000E+09 : 1.000E+07 
PLANT. DECANTER. RATIO_PI :=5.00000E-01 : -1.000E-01 : 1.000E+01 

PLANT. DECANTER. PHASETYPE_PI :=3.00000E+00 : -1.000E-03 1.000E+09 

PLANT. DECANTER. RATE_P02(1) 0.00000E+00 -1.000E-01 1.000E+04 

PLANT. DECANTER. INTENERGY B 0.00000E+00 -1.000E+09 1.000E+04 

PLANT. DECANTER. TOP_B :=4.13024E-02 -1.000E-03 : 1.000E+09 

PLANT. DECANTER. DEN_B1_W1 1.00000E+03 : -1.000E-01 : 1.000E+05 

PLANT. DECANTER. ENTH P01 0.00000E+00 : -1.000E+07 1.000E+04 

PLANT. DECANTER. PRESS-BI :=1.01300E+02 -1.000E-01 1.000E+04 

PLANT. DECANTER. ENTH P02 :=0.00000E+00 : -1.000E+07 : 1.000E+04 

PLANT. DECANTER. VISCOSITY_B1_W1 :=9.00000E-04 : -1.000E-01 : 1.000E+02 

PLANT. DECANTER. PRESS_B 1.01300E+02 : -1.000E-01 : 1.000E+04 

PLANT. DECANTER. LEVEL_W 1.27389E-02 -1.000E-03 : 1.000E+09 

PLANT. DECANTER. ENTHFLOW_P01 :=0.00000E+00 : -1.000E+09 : 1.000E+07 

PLANT. DECANTER. RATIO_P01 :=0.00000E+00 -1.000E-01 : 1.000E+01 

PLANT. DECANTER. PHASETYPE P01 :=0.00000E+00 : -1.000E-03 : 1.000E+09 

PLANT. DECANTER. ENTHFLOW_B1_W1_PO1 :=0.00000E+00 : -1.000E+09 1.000E+07 

PLANT. DECANTER. ENTHFLOW-P02 :=0.00000E+00 : -1.000E+09 1.000E+07 

PLANT. DECANTER. RATIO_P02 :=0.00000E+00 -1.000E-01 : 1.000E+01 

PLANT. DECANTER. PHASETYPE_P02 :=0.00000E+00 : -1.000E-03 1.000E+09 

PLANT. DECANTER. ENTHFLOW_B1_W1-P02 :=0.00000E+00 : -1.000E+09 1.000E+07 

PLANT. DECANTER. BOT_W :=0.00000E+00 -1.000E-03 : 1.000E+09 

PLANT. DECANTER. RATE_W1_W(1) 0.00000E+00 : -1.000E-01 1.000E+04 

PLANT. DECANTER. RATE- B_P01(1) 0.00000E+00 -1.000E-01 1.000E+04 

PLANT. DECANTER. RATE_B_P02(1) 0.00000E+00 : -1.000E-01 : 1.000E+04 

PLANT. DECANTER. RATIO-W :=1.00000E+00 : -1.000E-01 : 1.000E+01 

PLANT. DECANTER. LEVEL-B1_W1 2.54777E-02 : -1.000E-03 : 1.000E+09 

PLANT. DECANTER. MASS_B1(1) :=0.00000E+00 -1.000E-01 : 1.000E+09 

PLANT. DECANTER. DEN_P01 :=0.00000E+00 : -1.000E-01 : 1.000E+05 

PLANT. DECANTER. VOL_DECANTER :=3.92500E+00 : -1.000E+01 : 1.000E+01 

PLANT. DECANTER. MASS-B(1) :=1.00000E+01 : -1.000E-01 : 1.000E+09 

PLANT. DECANTER. VISCOSITY_P01 :=0.00000E+00 : -1.000E-01 : 1.000E+02 

PLANT. DECANTER. BOT_B1_W1 :=1.27389E-02 -1.000E-03 : 1.000E+09 

PLANT. DECANTER. RATE_B1-B(1) :=0.00000E+00 : -1.000E-01 1.000E+04 

PLANT. DECANTER. VOL_W1 :=1.00000E-02 -1.000E+01 : 1.000E+01 

PLANT. DECANTER. PHASETYPE_W1 :=2.00000E+00 : -1.000E-03 1.000E+09 

PLANT. DECANTER. VOL_W :=1.00000E-02 : -1.000E+01 : 1.000E+01 

PLANT. DECANTER. MASSFRAC-W1(1) :=1.00000E+00 : -1.000E-01 : 1.000E+01 

PLANT. DECANTER. PHASETYPE_W 2.00000E+00 -1.000E-03 1.000E+09 

PLANT. DECANTER . INTENERGY_W1 0.00000E+00 -1.000E+09 1.000E+04 

PLANT. DECANTER. MASSFRAC-W(1) 1.00000E+00 -1.000E-01 1.000E+01 

PLANT. DECANTER . INTENERGY_W :=0.00000E+00 : -1.000E+09 : 1.000E+04 
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PLANT. DECANTER. TOP_W :=1.27389E-02 -1.000E-03 : 1.000E+09 

PLANT. DECANTER. PRESS-WI :-1.01300E+02 : -1.000E-01 : 1.000E+04 

PLANT. DECANTER. ENTHFLOW_W1_W :=0.00000E+00 : -1.000E+09 : 1.000E+07 
PLANT. DECANTER. PRESS_W :=1.01300E+02 -1.000E-01 : 1.000E+04 

PLANT. DECANTER. ENTAFLOW_B_PO1 0.00000E+00 -1.000E+09 : 1.000E+07 
PLANT. DECANTER. ENTHFLOW_B_P02 0.00000E+00 -1.000E+09 : 1.000E+07 
PLANT. DECANTER. C_W1_W :=0.00000E+00 : -1.000E-03 : 1.000E+09 ; 
PLANT. DECANTER. LEVEL_P02 :=0.00000E+00 : -1.000E-03 : 1.000E+09 
PLANT. DECANTER. AREA :=7.85000E-01 : -1.000E-03 : 1.000E+09 

PLANT. DECANTER. VOL_B1_W1 :=1.00000E-02 : -1.000E+01 : 1.000E+01 
PLANT. DECANTER. PHASETYPE B1_W1 :=3.00000E+00 : -1.000E-03 1.000E+09 

PLANT. DECANTER. MASSFRAC_B1_W1(1) :=1.00000E+00 : -1.000E-01 1.000E+01 
PLANT. DECANTER. INTENERGY_B1_W1 :=0.00000E+00 : -1.000E+09 1.000E+04 

PLANT. DECANTER. TOP B1_W1 :=2.54777E-02 : -1.000E-03 : 1.000E+09 

PLANT . DECANTER. RATE_W_PO1(1) :=0.00000E+00 : -1.000E-01 : 1.000E+04 

PLANT. DECANTER. VOL_EMPTY :=3.89258E+00 : -1.000E+01 : 1.000E+01 

PLANT. DECANTER. RATE_W_P02(1) 0.00000E+00 : -1.000E-01 1.000E+04 

PLANT. DECANTER. ENTHFLOW_B1_B 0.00000E+00 -1.000E+09 : 1.000E+07 

PLANT. DECANTER. LEVEL_B :=4.13024E-02 -1.000E-03 : 1.000E+09 

PLANT. DECANTER. PRESS_B1_W1 1.01300E+02 -1.000E-01 : 1.000E+04 

PLANT. DECANTER. MASS_W1(1) 1.00000E+01 : -1.000E-01 1.000E+09 

PLANT. DECANTER. MASS_W(1) 1.00000E+01 : -1.000E-01 : 1.000E+09 

PLANT. DECANTER. BOT_B :=2.54777E-02 -1.000E-03 : 1.000E+09 

PLANT. DECANTER. RATIO_B1 :=0.00000E+00 : -1.000E-01 : 1.000E+01 

PLANT. DECANTER. RATE_B1_W1_PO1(1) :=0.00000E+00 : -1.000E-01 1.000E+04 

PLANT. DECANTER. ENTH_B1_W1 :=0.00000E+00 : -1.000E+07 : 1.000E+04 

PLANT. DECANTER. RATIO_B :=1.00000E+00 -1.000E-01 : 1.000E+01 

PLANT. DECANTER. Z_P02 :=5.00000E+00 : -1.000E-03 1.000E+09 

PLANT. DECANTER. RATE_B1_W1_P02(1) :=0.00000E+00 : -1.000E-01 1.000E+04 

PLANT. DECANTER. MASSFRAC_P01(1) :=0.00000E+00 : -1.000E-01 : 1.000E+01 

PLANT. DECANTER. MASS 
_B1_W1(1) :=1.00000E+01 : -1.000E-01 : 1.000E+09 

PLANT. R3. PHASETYPE_P :=0.00000E+00 -1.000E-03 : 1.000E+09 

PLANT. R3. RATE_P(1) 0.00000E+00 : -1.000E-01 1.000E+04 

PLANT. R3. ENTHFLOW_P 0.00000E+00 : -1.000E+09 1.000E+07 

PLANT. R2. PHASETYPE_P 0.00000E+00 -1.000E-03 1.000E+09 

PLANT. R2. RATE P(1) :=0.00000E+00 -1.000E-01 : 1.000E+04 

PLANT. R2. ENTHFLOW P 0.00000E+00 : -1.000E+09 1.000E+07 

PLANT. RI. RATE_P(1) 4.57116E+03 : -1.000E-01 1.000E+04 

PLANT. RI. ENTHFLOW_P 0.00000E+00 : -1.000E+09 1.000E+07 

PLANT. DRIVINGFORCE_C1 :=1.01300E+02 : -1.000E+09 : 1.000E+09 

PLANT. REYNOLDSCONST2_C1 :=4.00000E+03 : -1.000E-03 : 1.000E+09 

PLANT. REYNOLDSNO_C1 :=6.54285E+05 -1.000E-03 : 1.000E+09 

SELECTOR 

WITHIN Plant DO 

F1ovType_C1 := Turbulent 

END 

INITIAL 

WITHIN Plant DO 

WITHIN decanter DO 

Mass_B =0 

Mass_W =0 

Mass_B1_W1 =0 

Mass-W1 =0 

IntEnergy B=0 

IntEnergy_B1 =0 

IntEnergy_W1 =0 

IntEnergy W=0 

END 

END 

SOLUTIONPARAMETERS 

BLOCKDECOMPOSITION ON ; 

OUTPUTLEVEL =1 
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SCHEDULE 

SEQUENCE 

CONTINUE UNTIL TIME > 1600 

END 

END * Process test 

618L. 
Dit. 

un .. 


