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Summary 

 

Phenotypic variation is the basis of evolution because it acts as the raw material for 

selection. However, when a trait is under selection, favoured alleles may get fixed in the 

population and phenotypic variation could be eroded. Thus, to understand how variation in 

phenotypic traits can be maintained represents a central challenge in evolutionary biology. 

The overall aim of my PhD project was to study the evolutionary and behavioural ecology 

of among-individual variation in labile traits such as behaviour. The studies presented in this 

thesis were specifically planned to combine theoretical models and empirical data to obtain 

a better insight into the mechanisms explaining the existence and maintenance of individual 

differences in behaviour (i.e., animal personality). I addressed empirical questions using 

both observational and experimental data collected in the field and the lab in wintering and 

breeding great tits (Parus major).  

Behavioural ecologists have often focused on studying population-average levels of 

phenotypic plasticity. While it might be insightful in some cases, one should not ignore the 

multilevel nature of phenotypic variation in labile traits, such as behavioural or life-history 

traits. Chapter 1 is an opinion paper where my colleagues and I discussed the application of 

state-dependent behaviour theory to the study of animal personality, and expanded these 

ideas to broaden the conceptual framework of adaptive individual variation in behaviour. 

Particularly, our aim was to expand classic optimality models to specifically focus on 

among-individual differences in behaviour. Additionally, we presented new ideas about 

experimental design and provided insights into the statistical approach to empirically test 

the postulated models about among-individual differences in behaviour. 

Life-history theory posits that trade-offs are a likely mechanism maintaining 

phenotypic variation among individuals, assuming that variation already exists among 

individuals. Life-history theory also postulates that trade-offs might exist at some but not 

other hierarchical levels (e.g. within- but not among-individuals). In Chapter 2, we 

investigated whether a behavioural trade-off exists between two decision-making 

(cognitive) traits, thereby explaining the maintenance of variation in cognition, a presumed 

driver of variation in animal personality. To do so, we carried out a lab experiment to study 

a trade-off between accuracy in taking a decision and speed with which that decision was 

taken. We showed that speed-accuracy trade-offs were indeed level-specific: trade-offs 

between speed and accuracy existed among-individuals but not within-individuals. Our 

result thus demonstrated that birds that on average took faster decisions also were more 
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often wrong in their decisions than birds that on average took slower decisions. 

Furthermore, we also demonstrated that failure to correctly account for level-specific 

patterns of covariance can lead to biased inferences about the existence of trade-offs (i.e. we 

found no trade-off at the population level). This study thus exemplified the importance of 

partitioning the phenotypic variance among different hierarchical levels (i.e. of considering 

the hierarchical structure of labile traits) and supports the notion that trade-offs indeed have 

great potential in acting as mechanisms generating among-individual variation in behaviour.  

Following up with the notion of trade-offs as a cause of phenotypic variation among 

individuals, in Chapter 3 we investigated the factors that determine energy management in 

wintering great tits. Birds such as the great tit would face the bad winter conditions by 

increasing their fat reserves. However, birds must simultaneously avoid predation from 

aerial predators (e.g. hawks), giving rise to a trade-off between avoiding predation and 

avoiding starvation during periods of harsh environmental conditions. In Chapter 3, we 

studied the relationship between foraging activity at feeders and daily mass gain in wild 

wintering great tits. Our results demonstrated that birds foraged and gained mass early 

during the day, as predicted by theory when the starvation-predation risk trade-off is mass-

dependent and starvation risk outweighs predation risk. We concluded that increased 

energetic demands experienced by small birds in winter might favour individuals avoiding 

risk of starvation rather than predation avoidance. Furthermore, the hypothesized trade-off 

did not explain the existence of among-individual variation in behaviour because individuals 

did not differ in how they resolved the starvation-predation risk trade-offs, i.e. all birds 

gained mass in the similar manner throughout the day. This result suggests a different 

process (e.g. another trade-off) as the underlying mechanism explaining the observed 

variation in foraging behaviour among individuals.  

In Chapter 4, we jointly tested the two distinct bodies of theory explaining the 

maintenance of among-individual variation. On the one hand, evolutionary ecologists expect 

phenotypic integration in situations where correlational selection favours optimal 

combinations of functionally-related traits. On the other hand, optimality models developed 

by behavioural ecologists predict that an individual’s behaviour will vary as a function of its 

state (e.g. body condition, size), thus also predicting that particular combinations of state 

and behaviour maximize fitness. Both the state-dependent personality theory and 

correlational selection concept, therefore, imply that selection favours phenotypic 

integration and simultaneously leads to a flat fitness surface. In Chapter 4, we combined 

these two approaches and investigated patterns of phenotypic integration between 

morphology and behaviour based on predictions derived from two optimality models (the 

“asset protection” and “state-dependent safety” model). To test this hypothesis of “state-
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dependent personality”, we explored patterns of covariance for multiple morphological traits 

(body mass, wing length, tarsus length and bill length; encapsulating two dimensions of 

“state”: structural size and energetic reserves) and two behaviours (aggressiveness and 

exploration) in free-living great tits in spring. Our results demonstrated the existence of a 

behavioural module “risk-taking behaviour” that covaried with each of two morphological 

(state) modules (“body size” and “energy reserves”), thereby providing support for both 

optimality models simultaneously. We thus demonstrated the existence of state-dependent 

personality using for first time a multivariate approach. Furthermore, our results suggest that 

phenotypic integration in situations where correlational selection favours optimal 

combinations of functionally-related traits is a potential mechanism explaining among-

individual variation in behaviour.  

Overall, my thesis highlighted the relevance of embracing the multi-level nature of 

behaviour for a full understanding of the adaptive causes of behavioural variation among 

individuals. This is particularly necessary because behaviour also varies substantially within 

individuals. While I investigated these questions in the context of animal personality, my 

work aimed at achieving a general understanding on the importance of acknowledging that 

variation in labile traits can be due to among-individual and/or within-individual processes. 

Therefore, the framework presented throughout my thesis could be readily applied to other 

labile traits such as physiological and life-history traits.   
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General Introduction 

 

Multi-Level Phenotypic Variation in Labile Traits 

Phenotypic variation is the basis of evolution because it acts as the raw material for 

selection (Darwin, 1859). However, when a trait is under selection, favoured alleles may get 

fixed in the population and phenotypic variation could be eroded. A central challenge in 

evolutionary biology is therefore, to understand how variation in phenotypic traits can be 

maintained (e.g. Endler, 1986; Lack, 1961; Wilson, 1998); and a full understanding of 

phenotypic evolution necessarily requires acknowledging the multi-level nature of 

phenotypic variation (Westneat, Wright, & Dingemanse, 2015).  

Early studies investigating the causes of phenotypic variation among individuals 

have largely focused on “fixed traits”, traits that are expressed only once in an individual’s 

lifetime and vary solely among individuals. A classic example of a fixed trait is the 

morphological defence structures induced by the presence of predators. For instance, 

some species of Daphnia develop costly and life-long protective helmets, but only when 

coexisting with predatory fish (e.g. Tollrian 1995). Among-individual variation in fixed 

traits can be caused by genetic differences and by early-life environmental differences that 

have permanent effects on an individual's phenotype (Fig 1). These early-life 

environmentally-induced modifications of development and growth result in irreversible 

phenotypic variation in adulthood, a phenomenon known as “developmental plastici ty” 

(Schlichting & Pigliucci, 1998). 

In the past decade, however, evolutionary ecologists have increasingly focused on 

phenotypic traits that are repeatedly expressed throughout the life of an individual. These 

traits are called “labile traits” (Dingemanse et al. 2010). Examples of labile traits are 

repeatedly expressed life-history (e.g. timing of reproduction and the number of offspring) 

and physiological traits (e.g. body mass or energy reserves). In the case of labile traits, 

variation exists among- and within- individuals (Westneat et al., 2015) (Fig 1). Among-

individual variation in labile traits can be caused by genetic and environmental differences. 

Environmental differences can originate among-individual variation in two ways: via 

irreversible plasticity in response to early-life permanent environmental effects and via 

reversible plasticity in response to environmental variables that affect individuals in 

adulthood and that do not exhibit carry-overs (Fig 1). In both cases, the environmental 

conditions differ among individuals. Furthermore, labile traits allow individuals to adjust 

their responses to environmental conditions that vary within individuals. Hence, within-
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individual variation in labile traits results in response to environmental differences that have 

non-permanent effects and change over short time spans (i.e. environmental conditions are 

reversible) (Piersma & Drent, 2003) (Fig 1). 

Considerable research effort has been devoted to identify the conditions under 

which selection would favour the expression of reversible versus irreversible plasticity 

(Gabriel et al. 2005; Gabriel 2006; Botero et al. 2015, reviewed by Forsman 2015). The 

distinction between these two types of plasticity, and as corollary, acknowledging the 

existence of different variance components at the phenotypic level is important. This is 

because only among-individual variation that is underpinned by additive genetic 

differences is able to respond to selection. Thus, investigating the evolution of multilevel 

nature of labile traits will enhance our understanding of the ecological and evolutionary 

dynamics of natural populations (Forsman 2015). 

 

 

Figure 1. Schematic summary of the processes generating phenotypic variation in fixed and labile 

traits. The scheme depicts how genetic and environmental differences can lead to variation among- 

and within-individuals.  

 

The framework of phenotypic plasticity developed for labile traits such as 

physiology and life history can as well be applied to behaviour (Dingemanse et al., 2010; 

Stamps & Groothuis, 2010). Behavioural traits encompass both genetic and 

environmental differences that generate among- and within-individual variation 
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(Dingemanse et al., 2010). In the field of behavioural ecology, variation among 

individuals in their behavioural response is usually referred to as “animal personality” 

(Dingemanse et al., 2010). Among-individual differences in behaviour have been observed 

in many species, ranging from microbes to humans (Gosling & John 1999; Sih et al., 2004; 

Réale et al., 2007) and have been described for a number of different behaviours (Bell, 

Hankison, & Laskowski, 2009; Réale, Dingemanse, Kazem, & Wright, 2010). Furthermore, 

animal personality has been found to be heritable (Van Oers, De Jong, Van Noordwijk, 

Kempenaers, & Drent, 2005; Réale et al., 2007) and to affect fitness (Dingemanse & Reale, 

2005; Smith & Blumstein, 2008), being potentially subject to evolutionary change. 

 

Trade-Offs as a Fundamental Mechanism in the Maintenance of Among-Individual 

Variation  

Within single populations, individuals plastically adjust their responses to the environment 

(i.e. differences in deviations to mean behaviour), and at the same time, show repeatable 

differences in behaviour (i.e. differences in mean behaviour). While this “multilevel nature” 

of phenotypic variation in behavioural traits is commonly acknowledged, it is not yet clear 

why among-individual differences in behaviour actually exist (Dall et al., 2004; Sih et al., 

2004; Sih, Bell, Johnson, & Ziemba, 2004;  Dingemanse & Reale, 2005; Dingemanse & 

Wolf, 2010; Wolf & Weissing, 2010). Labile traits allow individuals to alter their phenotype 

to match the current environment, and therefore, have evolved to respond to reversible 

temporal environmental changes. Thus, the subsequent question must arise: why do 

individuals show consistency in their behavioural responses when plasticity is available to 

deal with changing environmental conditions? 

The study of the origin and maintenance of animal personality has indeed stimulated 

the development of several theoretical models and hypotheses (Dall et al., 2004; Sih et al., 

2004; Dingemanse & Reale, 2005; Dingemanse & Wolf, 2010; Wolf & Weissing, 2010). 

These models were developed to address the particular problem of repeatable among-

individual differences in otherwise very plastic behaviours. In general terms, however, the 

study of phenotypic variation in natural populations necessarily revolves around the classic 

idea of trade-offs. Trade-offs represent the “costs paid in the currency of fitness when a 

beneficial change in one trait is linked to a detrimental change in another” (Stearns, 1989). 

The relevance of trade-offs hinges on the notion that they limit the amount of resources that 

an individual can allocate to single traits. This notion, while basic, is essential. If there were 

no trade-offs, and therefore, no limits to trait expression, selection would ultimately 

optimize all traits correlated with fitness (Stearns, 1989). The consequences of such fitness 
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maximization would be the evolution of a single population of "Darwinian demons", e.g. 

individuals that would simultaneously live and reproduce ad infinitum. Since Darwinian 

demons do not seem to exist, trade-offs must be ubiquitous. 

Another important notion is that trade-offs can often be hidden due to environmental 

effects. The “resource-allocation model” (van Noordwijk & de Jong, 1986) postulates that 

trade-offs between traits can be masked by heterogeneity across individuals in resource 

acquisition ( van Noordwijk & de Jong, 1986; Stearns, 1992; Reznick, Nunney, & Tessier, 

2000). In that case, the expected negative genetic correlations between two costly traits will 

remain hidden in “raw” phenotypic data. The idea is that the absolute amount of resources 

available is assumed to vary across individuals, e.g., some individuals have access to more 

resources than others. Thus, while all individuals will face the same allocation trade-off, the 

absolute amount of resources allocated to each trait will vary among individuals according 

to their absolute total amount of resources. The “resource-allocation model” is therefore 

able to predict when variance in acquisition of resources will swamp variation in allocation 

of resources, and thereby, trade-offs will be unobservable.  

While trade-offs played a fundamental role in the development of life-history 

theory, they are also central in the study of animal personality. Trade-offs are often 

implicitly assumed as the underlying mechanism explaining among-individual variation in 

behaviour, both from the perspective of behavioural ecology and evolutionary quantitative 

genetics. From an adaptive theory perspective, researchers assume that selection optimizes 

behaviour but do not aim to formally test that assumption. The main goal of adaptive theory 

is to predict an individual’s behaviour by studying its optimal behavioural responses to 

environmental change (Parker & Maynard-Smith, 1990). From an evolutionary perspective, 

researchers have mainly focused on evolutionary dynamics and how behaviour responds to 

selection. Thus, the main aim is to understand how selection favours one particular 

behavioural strategy over another (Westneat & Fox, 2010). From both perspectives the 

study of among-individual differences in behaviour has extensively stimulated the 

development of theoretical models and hypotheses. Several non-mutually exclusive 

hypotheses have been proposed to explain the ultimate causes of among-individual variation 

in behaviour (Dall, Houston, and McNamara 2004; Sih, Bell, and Johnson 2004; Wolf et al., 

2007; Wolf, van Doorn, and Weissing 2008; Dingemanse and Wolf 2010; Luttbeg and Sih 

2010; Dingemanse and Reale 2013; Chapter 1). Below I introduce both, the adaptive theory 

and evolutionary quantitative genetics perspectives on the study of among-individual 

variation in behaviour: 
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 Adaptive theory perspective of among-individual differences in behaviour 

Over the past decade, there has been considerable (mathematical and verbal) theoretical 

work on the existence of among-individual differences in behaviour from an adaptive 

perspective (Dall, Houston, & McNamara 2004; Sih, Bell, & Johnson 2004; Wolf et al. 

2007; Wolf, van Doorn, & Weissing 2008; Dingemanse & Wolf 2010; Luttbeg and Sih 

2010; Dingemanse & Reale 2013, Chapter 1). Behavioural ecology theory is traditionally 

based on optimality theory (Krebs & McCleery, 1984). Optimality theory assumes that the 

fitness of an individual’s behavioural action is maximised by natural selection (Houston & 

McNamara, 1999). Thus, given enough time and standing phenotypic variation, selection 

will lead to optimal behavioural responses. Furthermore, optimality theory is based on the 

notion that each individual expresses the behaviour that is optimal given its state (Houston 

& McNamara, 1999).  State is broadly defined as any feature that affects the costs and 

benefits of an individual’s behavioural actions (e.g., energy reserves, metabolism, predation 

risk, age, information state, social rank, etc.; Houston & McNamara 1999, Chapter 1). The 

general idea of state-dependent behaviour models is that each individual’s phenotype is 

optimal and results from a balance between the fitness benefits and costs (Houston & 

McNamara, 1999) . Trade-offs underlying the costs and benefits in optimization theory are 

fundamental, typically involving the “resource allocation” model (see above). Adaptive 

hypotheses have primarily focused on explaining differences in behaviour due to feedback 

dynamics between behaviour and state. In the case of positive dynamics between behaviour 

and state, even small initial among-individuals differences in state will be reinforced, giving 

rise to individual differences in behaviour that are maintained through time (Dingemanse & 

Wolf 2010; Luttbeg & Sih 2010, Chapter 1). 

 

 Evolutionary quantitative genetics perspective of among-individual differences in 

behaviour 

Evolutionary quantitative genetics is based on the “(multivariate) breeder’s equation”, and 

therefore, focuses on understanding two main aspects: the heritability and genetic 

correlations underlying the (co)variation of traits, and how selection acts on these traits 

(Lande & Arnold, 1983). These two aspects have the potential to provide important insights 

into the evolutionary responses and constraints acting on behavioural (co)variation 

(Falconer & Mackay, 1998; Lynch & Walsh, 1998). In the specific case of among-

individual differences in behaviour, it has been repeatedly shown that animal personality is 

heritable (Stirling, Réale, & Roff, 2002; Van Oers et al., 2005, Réale et al., 2007) and 
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related to fitness (Dingemanse & Reale, 2005; Smith & Blumstein, 2008). Therefore, 

behavioural differences among individuals are potentially under selection (Smith & 

Blumstein, 2008). Several hypotheses have been developed to explain how among-

individual variation in behavioural traits can be maintained, instead of being eroded. These 

hypotheses are often based on complex patterns of covariances between behaviour and 

fitness. For instance, it is well known that there are trade-offs between life-history traits (see 

above), and different behavioural types might resolve trade-offs differently. Thus, within a 

single population, certain life-history strategies will be related to individuals with a 

particular behavioural type (e.g., “pace-of-life syndrome hypothesis”, Réale et al., 2010). 

Furthermore, antagonistic selection pressures over time or space represent another important 

mechanism explaining the maintenance of animal personality (Koolhaas, De Boer, Buwalda, 

& Van Reenen, 2007; Penke, Denissen, & Miller, 2007; Dingemanse & Reale, 2013). 

Spatio-temporal fluctuating selection occurs when the direction of selection on animal 

personality is temporally or spatially fluctuating according to, for instance, environmental 

factors such food availability or density (Dingemanse, Both, Drent, & Tinbergen, 2004; 

Quinn, Patrick, Bouwhuis, Wilkin, & Sheldon, 2009). Another mechanism explaining 

among-individual behavioural variation is correlational selection. In such a scenario, several 

multivariate phenotypic combinations would do equally well and result in a fitness “ridge” ( 

(Brodie, 1992; Sinervo & Svensson, 2002).  

 

Research Goal 

The main goal of my PhD project was to study the behavioural and evolutionary ecology of 

wild populations, and thus individual variation in behaviour, environmental effects, and the 

interaction between them. More specifically, I aimed to reconcile theoretical models and 

empirical data to obtain a better insight into the mechanisms explaining the existence and 

maintenance of among-individual differences in behaviour. These questions were addressed 

using both long-term observational data and short-term experimental work under field and 

lab conditions in wild great tits (Parus major). 

 

Study System: the Great Tit as a Model in Evolutionary and Behavioural Ecology 

For the empirical components of the thesis, I studied great tits. Historically, birds have made 

a major contribution to evolutionary theories concerning the development and maintenance 

of phenotypic variation (e.g. Grant and Grant 1991). Among birds, the great tit is one of the 

most well studied species, being a model system in ecology and evolution. Indeed, the great 

tit has a long history of being a model species; it was the focus of the first long-term 
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individual-based field studies of vertebrates started in 1912 in The Netherlands by Wolda 

and Kluijver (Kluijver, 1951). Its success as a model species probably resulted from its 

tractability as a nest box breeder, allowing to be monitored in a (semi)standardized fashion 

over long periods of time. Furthermore, great tits breed in large numbers (i.e. have high 

population density) in nest box populations, allowing to carry out extensive experimental 

(e.g. Pettifor et al., 1988; Tinbergen & Daan 1990) and descriptive work (e.g. Chapter 4) 

while simultaneously accruing large sample sizes. Besides its suitability for field studies 

under natural conditions, its success as a model species can also be attributed to the fact that 

great tits can be easily kept in captivity and performing natural behaviours. Indeed, wild-

caught great tits have previously been used in many captive experiments over extensive time 

periods (e.g., Krebs, Kacelnik, & Taylor 1978; Wansink & Tinbergen 1994; Marchetti & 

Drent 2000; Lange & Leimar 2004; van Oers et al., 2004, Chapter 2). Great tits thus make 

an ideal study system because of the extensive information available on their basic 

population ecology and their high suitability for field and lab studies. 

The great tit is a passerine bird from the family Paridae. It is a territorial hole-

nesting breeder inhabiting wooded areas throughout Europe, as well as parts of Asia and 

North Africa, being one of the most common Palearctic species. The species breeds between 

March and June. The great tit is socially monogamous (Kolliker, Brinkhof, Heeb, Fitze, & 

Richner, 2000), though commonly engages in extra-pair reproduction (Brommer, Korsten, 

Bouwman, Berg, & Komdeur, 2007). Females lay on average about nine, and maximally 

fifteen eggs. Whereas only the females incubate the eggs, both sexes provide parental care. 

Female great tits are known to adjust their breeding timing to spring temperatures. More 

specifically, individual females often advance their laying date in warm springs (McCleery 

& Perrins, 1998; Visser, Both, & Lambrechts, 2004). This response to temperature is the 

result of phenotypic plasticity (Visser et al., 2004) and considered adaptive. It allows birds 

to synchronize their phenology with the temperature-dependent hatching times and growth 

rates of the caterpillars, main food resource for nestlings provisioning  (Visser, Noordwijk, 

Tinbergen, & Lessells, 1998; Visser & Holleman, 2001). Seminal contributions to the topic 

made use of the extensive long-term information available on the basic population ecology 

of great tits (e.g. Visser et al., 1998; Nussey, Postma, Gienapp, & Visser, 2005; Charmantier 

et al., 2008); and currently, breeding timing in female great tits provides a textbook example 

of adaptive phenotypic plasticity in response to climate change in wild populations.  

In addition to general knowledge about their breeding ecology, other detailed 

information of great tits is also well known, such as their physiology (e.g. metabolic rate, 

Broggi et al., 2007; hormonal profiles, van Oers et al., 2011); cognitive abilities (e.g. 

innovation rate and problem-solving, Cole & Quinn 2012; Morand-Ferron, Cole, & Quinn 
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2015); and morphology (e.g. van Balen 1967; Gosler 1987). Furthermore, great tits are a 

highly suitable species to study behaviour. Initial studies focused on exploring population-

level variation in many sorts of behavioural responses: classic work on foraging (e.g. Smith 

& Dawkins 1971; Krebs, Kacelnik, & Taylor 1978), life-history decisions (e.g. Perrins 

1965; Perrins & McCleery 1989), aggressiveness (e.g. Lange & Leimar 2004), singing 

behaviour and territoriality (e.g. Krebs et al., 1977)... More recently, the great tit became a 

model species for studies on repeatable individual differences in behaviour (e.g., Groothuis 

& Carere 2005). This is because one of the earliest studies of the ecological and 

evolutionary relevance of individual differences in behaviour was carried out in great tits 

(Dingemanse, Both, Drent, van Oers, & van Noordwijk, 2002). This early work described 

individual differences in exploration behaviour (i.e. activity in an unfamiliar environment), 

that were later on found to be related to other behavioural traits such as dominance 

(Dingemanse & de Goede, 2004) or risk-taking behaviour (Stuber et al., 2013), and 

hormonal profiles (e.g. van Oers et al., 2011). Since this early work there has been an 

explosion of scientific output related to animal personality in great tits and many other 

animal taxa (for a review of empirical work see Réale, Dingemanse, et al., 2010). 

 The Research group “Evolutionary Ecology of Variation” at the Max Planck 

Institute for Ornithology in Seewiesen, where I carried out this PhD thesis, has been 

monitoring 12 nest box populations of great tits in Southern Germany (Bavarian Landkreis 

Starnberg; 47º 58' N, 11º 14' E) since 2010 (Fig 2). Each plot consisted of a regular grid of 

50 boxes, with 50 meters between adjacent boxes. The study area contains a total of 600 

nest boxes. Every breeding season, from April until June, all boxes are checked (bi)weekly 

to determine the date of the first egg, onset of incubation, and clutch size. When the 

nestlings are six days old, they are weighed, marked with an aluminium ring and blood 

sampled. Parents are caught with a spring trap in the nest box on the next day, measured, 

blood sampled, and marked with a unique combination of colour and aluminium rings, if 

caught for the first time. Weight, tarsus, wing and bill length are measured in adults and 

fourteen-day-old nestlings. As part of the general fieldwork protocol, we also systematically 

quantify territorial aggressiveness and exploration behaviour in spring (for further details 

see Chapter 4).  
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Figure 2. Study sites of all the Chapters of the PhD thesis. The geographic position of the Max 

Planck Institute for Ornithology, where Chapter 2 was carried out, is depicted in red; the field site of 

Chapter 3 is depicted in yellow; and the 12 plots where data for Chapter 4 was collected are 

depicted in blue. Image was overlaid on a Google Earth image. 

 

Besides the standard data collection during the breeding season, the research group 

has also been studying great tits in winter conditions. My colleagues and I have done 

experimental short-term work using automated identification systems (i.e. RFID antennas 

and PIT-tags) and bird feeders to quantify foraging activity (Chapter 3) and risk-taking 

behaviour (Mathot, Nicolaus, Araya-Ajoy, Dingemanse, & Kempenaers, 2014). The 

experimental winter data is complemented with a systematic behavioural test of the 

exploration behaviour in wintering great tits (see Dingemanse et al., 2002, Chapter 2). 

Therefore, besides general knowledge on breeding patterns and standard morphological 

data, long-term information on several behavioural traits is available for our great tit 

population (e.g., Chapter 4). These characteristics, and especially, the long-term 

behavioural data, make our population unique and exceptionally suitable for a study into the 

evolutionary and behavioural ecology of individual differences in behaviour in the wild. 

Thesis Outline 

The overall aim of my PhD project was to study the evolutionary and behavioural ecology 

of individual variation in labile traits. The studies described below were specifically planned 

to further the understanding of the adaptive cause of behavioural differences among 
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individuals. This thesis combined theoretical and empirical approaches. In addition, I 

addressed empirical questions using both long term (observational) data and experimental 

work carried out in field and lab conditions in wintering and breeding great tits.  

First I discussed the application of the theoretical models for adaptive individual 

variation (Chapter 1), to then introduce a conceptual framework of the main factors and 

mechanisms that contribute to an adaptive explanation of animal personality. In particular, 

my colleagues and I discussed how positive feedbacks between state and behaviour can lead 

to among-individual variation in behaviour. The remainder of the thesis, Chapters 2-4, 

presented a series of empirical studies. With these studies I aimed to investigate different 

mechanisms explaining why we observe individual differences in behaviour. Specifically, 

Chapters 2 and 3 focused on behavioural trade-offs as the mechanism maintaining 

phenotypic variation. I investigated whether the existence of a trade-off between decision-

making behaviours (Chapter 2), and between foraging and mass gain (Chapter 3) would 

ultimately cause the maintenance of individual variation. Both chapters were short-term 

empirical studies and applied different approaches (i.e. lab and field conditions) to quantify 

behavioural trade-offs in wintering birds. Chapters 4 focused on phenotypic integration 

among functionally related traits caused by correlational selection as the mechanism 

explaining state-dependent personality. 

In the next sections of the thesis I will present the studies that are part of my PhD 

(Chapters 1-4) and then, discuss how my findings highlight the relevance of embracing the 

multi-level nature of behaviour for a full understanding of the adaptive causes of phenotypic 

variation among individuals. Additionally, I will also expose some of the general 

assumptions that are made when working with phenotypic data and applying a trait-by-trait 

approach. Although I focused in explaining adaptive patterns of among-individual variation 

in behavioural traits, my findings are readily applicable to other labile traits such as life-

history and physiology. 
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Chapter 1 

Animal personality and state–behaviour 

feedbacks: a review and guide for empiricists 

 

Andrew Sih, Kimberley J. Mathot, Maria Moiron, Pierre-Olivier Montiglio, Max 

Wolf, and Niels J. Dingemanse 

 

 

ABSTRACT 

An exciting area in behavioural ecology focuses on understanding why animals exhibit 

consistent among-individual differences in behaviour (animal personalities). Animal 

personality has been proposed to emerge as an adaptation to individual differences in state 

variables, leading to the question of why individuals differ consistently in state. Recent 

theory emphasizes the role that positive feedbacks between state and behaviour can play in 

producing consistent among-individual covariance between state and behaviour, hence state-

dependent personality. We review the role of feedbacks in recent models of adaptive 

personalities, and provide guidelines for empirical testing of model assumptions and 

predictions. We discuss the importance of the mediating effects of ecology on these 

feedbacks, and provide a roadmap for including state–behaviour feedbacks in behavioural 

ecology research. 
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STATE–BEHAVIOUR FEEDBACKS AND THE EMERGENCE OF PERSONALITY 

DIFFERENCES 

The past decade has seen tremendous interest in animal personalities (Dall, Bell, Bolnick, & 

Ratnieks, 2012; Sih, Bell, Johnson, & Ziemba, 2004; Wolf & Weissing, 2012), stemming 

from accumulating evidence for individual repeatability and significant correlations between 

various behaviours (e.g., boldness, aggressiveness, activity, exploration, or sociability). 

Empirical studies show that animal personalities and behavioural syndromes (correlations 

across contexts) vary as a function of ecology (Bell et al., 2009; Garamszegi, Markó, & 

Herczeg, 2012); for example, aggressiveness and boldness are often positively correlated 

but the strength of this correlation varies depending on the predation regime (Bell & Sih, 

2007; Dingemanse, Dochtermann, & Wright, 2010). Variation in syndrome structure also 

exists across different temporal scales; for instance, early experiences (e.g., exposure to 

stressors) can have large effects on the development of personality structure but such effects 

can either be temporary or permanent   (Stamps & Groothuis, 2010; Stamps & Groothuis, 

2010; Buwalda, Stubbendorff, Zickert, & Koolhaas, 2013;). Understanding the processes 

explaining the emergence of personality differences and variability of syndrome structure 

within and among species represents a major current topic in adaptive personality research.  

Although personality has been examined in numerous species, most studies are 

descriptive in nature, documenting patterns of behavioural structure. Over the past few 

years, however, theory has been developed to explain the existence of animal personalities 

from an adaptive perspective. Most of this theory invokes adaptive state-dependent 

behaviour, explaining personality as an adaptive outcome of among-individual differences 

in state (Biro & Stamps, 2008; Dingemanse & Wolf, 2010; Wolf & Weissing, 2010). 

Building on earlier work by Rands, Cowlishaw, Pettifor, Rowcliffe, & Johnstone (2003) and 

Dall, Houston, & McNamara (2004) recent models have focused on the joint emergence and 

maintenance of among-individual differences in behaviour and state, and how such 

differences are promoted by positive feedbacks between behaviour and state. These models 

(both mathematical and verbal) have generated testable predictions for a broad range of 

scenarios. The time is now ripe for more tests of the predictions of those models. Here, we 

present a framework that unifies the logic of numerous recent models in a fresh way and 

paves the way for rigorous testing of these models. Specifically, we: (i) describe the core 

idea underlying all feedback loops thereby uniting numerous mechanisms and models; (ii) 

discuss how this core idea can integrate the study of proximate and ultimate mechanisms, 

potentially over ecological, developmental, and evolutionary time scales; (iii) summarize 

predictions of these models on variation in animal personalities; and (iv) offer guidance to 
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empiricists for studying state–behaviour feedbacks, and for testing predictions on how these 

feedbacks relate to personalities.  

 

FEEDBACK LOOPS AND VARIATION IN PERSONALITIES – THE CORE 

CONCEPT 

 Although behaviour in principle can be infinitely flexible, behavioural repeatability can 

potentially be explained by among-individual differences in slower-changing or even fixed 

state variables, in combination with adaptive state- dependent behaviour (Dall et al., 2004; 

Dingemanse & Wolf, 2010; Luttbeg & Sih, 2010; Wolf & Weissing, 2010, Table 1). 

Individuals thus differ in behaviour because they differ in state and adjust their behaviour in 

an adaptive fashion to these differences. In behavioural ecology, the state of an individual 

includes any features that affect the cost and benefits of its behavioural actions (Houston & 

McNamara, 1999). Often, these involve labile characteristics of the focal individual such as 

its energy reserves, condition or vigour, reproductive value, physiology (metabolic rates, 

hormone levels, or immune state), morphology, or colour, age, or size. They could also 

include the individual’s information state, skill set, social rank, or role. Importantly, state 

variables are not restricted to features of the focal individual but include also characteristics 

of its social environment (e.g., its local density or sex ratio, or the behaviour or other traits 

of its social partners), or aspects of its ecological environment (e.g., its predators, 

competitors, or parasites). Consistent differences among individuals in any of these features 

can, in combination with adaptive state-dependent behaviour, explain consistent differences 

among individuals in behaviour. 

When state variables are themselves labile, the question shifts to: what explains 

consistent individual differences in both the labile state variables and behaviour? Recent 

models emphasize that positive feedbacks between state variables and behaviour can link 

the co-evolution or co-development of state and behaviour that can then drive divergence 

and persistence of long-term differences in both (Fig 1, Box 1, Table 1), thus resulting in 

consistent among-individual variation in behaviour (cf. personality) and state. By contrast, 

negative feedbacks result in convergence in state and behaviour, and thus no long-term 

persistence of differences in either. Note that with feed-backs, the state variable no longer 

needs to be inherently stable or slow-changing – feedbacks between two potentially rapidly 

changing variables can stabilize both. Whether feedbacks are positive or negative depends 

on the selective landscape. Positive versus negative feedbacks should evolve by means of 

positive versus negative correlational selection for optimal combinations of state and 

behaviour. Positive feedbacks, in particular, are favoured if a behavioural tendency produces 
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0000 

a change in a state variable that increases the net benefit of maintaining or even increasing 

that behavioural tendency (cf. adaptive phenotypic plasticity; Box 1). In the following 

section, we summarize models and ideas on state variables, feedback dynamics, and 

predictions about variation in personality (Box 1, Table 1).  

 

Box 1. Feedbacks: integration of proximate and ultimate approaches  

Animal behaviourists commonly distinguish between proximate versus ultimate approaches for 

explaining observed behaviour (but see Laland, Sterelny, Odling-Smee, Hoppitt, & Uller, 2011). The 

usual idea is that proximate explanations invoke underlying mechanisms; for example, how 

physiology, hormones, neurosensory, or cognitive mechanisms might explain observed behaviours. 

By contrast, adaptive, ultimate approaches attempt to explain behavioural patterns using cost–benefit 

considerations; animals exhibit behaviours that enhance fitness. The state–behaviour models 

described here integrate these two by solving for the best behaviour given the organism’s state (the 

proximate mechanism). That is, these models explicitly unify adaptive (ultimate) and mechanistic 

(proximate) views. To choose which model to use to explain observed behaviours in a given system, 

the behaviourist must match their system to the relevant state variable (see Guide for empiricists). 

One important point is that because the models emphasize feedback loops, the emphasis is on the 

joint unfolding of the back-and-forth feedback between the organism’s behaviour and its physiology 

(or other state variables) on short-term, developmental, or evolutionary time scales (i.e., state is a 

proximate underpinning of behaviour, and vice versa). Because many of the models track changes in 

behaviour and a state variable (e.g., condition, energy reserves, or RRV) over long periods of time, 

the models make predictions on the development of behaviour (and state variables) over ontogeny 

(Sih, 2011). With positive feedbacks, early experiences (that affect early differences in state) have 

large effects on later ‘personality type’, whereas with negative feedbacks even large differences in 

early state are predicted to have little effect on later personality. Thus the state–behaviour feedback 

framework suggests that developmental sensitive time windows (where experiences during the 

window govern later phenotypes) are not an invariant feature of a developmental system, but are 

instead an adaptive outcome of positive feedback loops. Finally, note that this framework 

substantially expands the usual view of what is a ‘proximate mechanism’. Instead of focusing 

primarily on physiology or neuroendocrine mechanisms (and perhaps associated genetic 

mechanisms), the relevant state variables could be any factor that influences adaptive behaviour and, 

in turn, is influenced by the behaviour. As noted in the text this can include a broad range of 

individual traits, as well as traits of other individuals (e.g., social partners), or even of other species 

(e.g., parasites). 

 

FEEDBACK LOOPS: AN OVERVIEW OF MODELS AND MECHANISMS  

Various models of feedbacks between state and behaviour have been proposed (Table 1). In 

the following sections we discuss three main types: (i) state–behaviour feedbacks involving 

intrinsic state variables; (ii) state–behaviour feedbacks involving extrinsic state variables; 

(iii) co-evolutionary feedbacks.  
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(i) State–behaviour feedbacks involving intrinsic state variables 

 We use intrinsic state variables to mean state variables that are features of the same 

individual that is expressing the behaviour; for example, an individual’s level of fat 

reserves, hormones, metabolic rate, residual reproductive value (RRV, see below), etc.  

Feedback loops involving risk–reward and life history trade-offs. Perhaps the most widely 

recognized mechanism explaining personality differences connects variation in life history 

strategies to personalities where the key state variable is the individual’s RRV, roughly 

speaking, it’s expected future reproductive success (or ‘assets’) (Wolf et al., 2007a). 

According to the asset protection principle (Clark, 1994), the higher the assets of an 

individual, the less willing that individual should be to risk its life for a given benefit, as the 

assets of an individual determine what it stands to lose in the case of death. Differences in 

assets are thus predicted to give rise to differences in all kind of risk-related behaviours like 

boldness and aggressiveness, with higher-asset individuals being more cautious. Positive 

feedbacks occur if: (a) being cautious means reducing current reproductive effort and 

investing instead in future reproduction (thus increasing RRV), and conversely, (b) if the 

risky behaviour of low-asset individuals tends to increase current reproductive success, but 

at the cost of decreases in future RRV (e.g., via exposure to parasites) (Wolf, van Doorn, 

Leimar, & Weissing, 2007b). In essence, positive feedbacks favour either a fast lifestyle 

associated with bold, aggressive, risky behaviour and rapid reproduction, or a slow lifestyle 

with cautious behaviour and delayed reproduction (Réale, Garant, et al., 2010). Asset 

protection, however, can also produce negative feedbacks if, for example, being bold results 

in increased assets (e.g., increased energy reserves) while being cautious results in an 

erosion of assets. This negative feedback would tend to produce convergence in assets and 

behaviour, and thus no long-term persistence of differences in personality.  

While the above arguments are based on the prediction that high-asset individuals 

are more cautious, higher assets in the form of higher condition can also favour higher risk-

taking (Luttbeg & Sih, 2010). For example, prey often enjoy state-dependent safety where 

larger, stronger, more vigorous prey are better at escaping from or defending against 

predators, and thus suffer lower costs of predation risk while foraging than weaker prey (see 

Luttbeg & Sih, 2010 for references). The lower cost allows high condition animals to forage 

actively and thus continue to bring in the energy to maintain their high condition. By 

contrast, animals in poor condition should not take risks if they can be easily captured. 

Because they hide instead, they take in little energy and stay in poor condition (i.e., animals 

in poor condition make the best of a bad job). Similar logic can generate positive feedback 

loops involving state-dependent resistance against parasites (Kortet, Hedrick, & Vainikka, 
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2010). Hosts in better condition might have more effective immune systems that allow them 

to be bold and active (and thus gain the energy to stay in good condition) even if this 

exposes them to more parasites.  

Condition-dependent foraging success can also generate positive feedback loops 

(Wilson, Grimmer, & Rosenthal, 2013). Game theory predicts that if the costs of fights are 

high then only animals in good condition (with high resource holding potential, RHP) 

should be aggressive, while those in poor condition should be unaggressive since they have 

a low chance of winning. High RHP, aggressive individuals then gain resources that keep 

them in superior condition, while low RHP, unaggressive individuals settle for less and 

remain in poor condition and thus unaggressive. An extreme case of this phenomenon 

involves condition-dependent cannibalism as the mechanism that generates the positive 

feedback that maintains individual differences in condition and behaviour (Kishida et al., 

2011). Finally, risk in the sense of uncertainty (e.g., about the best foraging options, 

breeding sites, etc.) can generate feedbacks between energy reserves and behaviour. 

Individuals that sample and learn about alternative foraging options can potentially gain 

more energy in the long-term but suffer short-term costs due to sampling (i.e., checking the 

state of an option that is currently unprofitable (Dall & Johnstone, 2002; Mathot & Dall, 

2013). Under high immediate risk of starvation, individuals in the poorest energetic state are 

expected to sample because the only means of achieving sufficient energy intake is to locate 

the most profitable feeding options, that is, ‘sampling for survival’ (Mathot & Dall, 2013). 

Because sampling will allow individuals with low energy reserves to build reserves, the 

feedback between sampling behaviour and energy reserves is negative, and individual 

differences in energy reserves and sampling behaviour will tend to erode over time. The 

situation reverses to a positive feedback loop when there is a low immediate risk of 

starvation. Then, individuals with lower energy reserves should not sample, because 

sampling errors will significantly increase their probability of starvation. Instead, only 

individuals with high energy reserves are expected to be able to afford the ‘luxury’ of 

sampling, because for them, the short-term costs of sampling are not enough to increase 

their probability of starvation (Mathot & Dall, 2013). 

 

Feedbacks involving an individual’s skill set or experience. An individual’s skill set is 

another key state variable. Often, the more experience an individual has with a particular 

behaviour, the better the individual gets at performing that behaviour which makes it 

advantageous for the individual to stick to that behaviour (Pearce, 2013; Wolf & Weissing, 

2010). This positive feedback between behaviour and the experience that an individual has 

with this behaviour thus favours consistency. Moreover, when selection on different 
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behavioural alternatives is negatively frequency-dependent, this feedback is predicted to 

promote consistent, among-individual differences in behaviour (Wolf et al., 2008); note that 

frequency-dependent selection alone does not predict consistency (Wolf, Van Doorn, & 

Weissing, 2011).  

The behaviour-experience feedback can also work for more complex behavioural 

phenotypes associated with differences in social roles, social niches, or positions in a social 

network (Bergmüller & Taborsky, 2010; Krause, James, & Croft, 2010); that is, personality 

differences can be understood as social niche specializations (Bergmüller & Taborsky, 

2010; Montiglio, Ferrari, & Reale, 2013). Here, the state variable is the individual’s social 

role, niche, or position. More broadly, the key state variable can be any ecological or social 

situation that is experienced by focal individuals (see below, feedbacks involving extrinsic 

state variables). Positive feedbacks can emerge if different social roles-niches-positions 

drive differences in behaviour that in turn reinforce the individual’s social role-niche-

position. For example, subordinate individuals might forage in low-quality patches to avoid 

competing with dominants over food, however, this patch choice can then prevent them 

from gaining the resources required to gain dominance, thereby reinforcing their subordinate 

position. This is a special case of the general idea that situation choice facilitates the 

evolution of specialization (Rosenzweig, 1987).  

 

 

  

 

 

 

 

 

Figure 1. Illustration of how multiple mechanisms can simultaneously shape feedbacks between state 

and behaviour. Foraging boldness allows individuals to accrue more resources and increase their 

body size (either through growth or accumulation of energy reserves). However, the effect of body 

size on behaviour differs depending on the mechanism underlying the relationship. Asset protection 

predicts a negative feedback that drives large individuals to avoid risky behaviours, and starvation 

avoidance predicts negative feedback that drives small individuals to take risks while foraging. 

Additionally, depending on the species, larger body size/energy reserves can provide safety benefits 
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(e.g., larger jumping spiders, Phidippus princeps, are better at escaping predators (Stankowich, 

2009); panel A) or reduce their escape performance (e.g., larger blackcaps, Sylvia atricapilla, have 

reduced predator evasion (Kullberg, Fransson, & Jakobsson, 1996); panel B). When the different 

mechanisms produce loops with differing directions (A), the net direction of the feedback between 

state (e.g., body size) and behaviour (foraging boldness) will depend on the relative importance of 

each of these mechanisms, which varies as a function of predation risk and resource level (i.e., the 

feedback outcome can be explained as match/mismatch between risk and rewards (Luttbeg & Sih, 

2010)). Photos obtained via Wikimedia commons. 

Hormone–behaviour feedbacks. Individual differences in hormone levels can drive 

differences in behaviour. Behaviour, in turn, can affect hormone levels. For example, high 

testosterone can increase aggressiveness, but aggressive behaviour can also drive up 

testosterone levels, giving rise to a positive feedback. Positive feedbacks also exist between 

social behaviours and oxytocin (Calcagnoli et al., 2014; Lukas et al., 2011; Neumann, 

2009), and between behaviour, life histories, and corticosterone responses (Del Giudice, 

Ellis, & Shirtcliff, 2011; Koolhaas, de Boer, Coppens, & Buwalda, 2010). Of course, 

neuroendocrine systems themselves are characterized by feedbacks (Korte, Koolhaas, 

Wingfield, & McEwen, 2005; Romero, Dickens, & Cyr, 2009) and these feedbacks can 

potentially stabilize personalities even if behaviour does not strongly affect hormones 

(Koolhaas et al., 2010).  

Hormones can also serve as an important mediator of feedbacks between other 

intrinsic or extrinsic state variables and behaviour. For example, behaviour–parasite 

feedbacks (discussed below) are often mediated by effects of parasites on host hormone 

levels (Adamo, 2013; Lafferty & Shaw, 2013) and, in some cases, appear to involve 

adaptive parasite manipulation of host neuroendocrine pathways (Lim, Kumar, Hari Dass, & 

Vyas, 2013; Perrot-Minnot & Cezilly, 2013). Progress in understanding feedbacks between 

behaviour and multiple, interacting components of the overall neuroendocrine system 

should be invaluable for better understanding personalities.  

(ii) State–behaviour feedbacks involving extrinsic state variables  

Other models emphasize that state variables that shape an individual’s personality need not 

be a trait of the focal individual, but can instead be a characteristic of a conspecific, 

members of another species (e.g., parasites), or some other external factor such as an 

environmental contaminant.  

An example involves the feedback between the predictable part of a focal 

individual’s behaviour (cf. its ‘personality’) and the responsiveness of its social partners. If 

the focal individual’s behaviour is consistent (and thus predictable), this favours social 
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partners that are paying attention (responsive). Conversely, if social partners are responsive, 

this can favour the focal individual being predictable. Being predictable can be favoured if it 

allows an individual to build a reputation (e.g., for being aggressive or cooperative) that 

manipulates a socially responsive partner’s behaviour in a mutually beneficial way (e.g., to 

back off without a fight, or to cooperate (Wolf & McNamara, 2013; Wolf et al., 2011). 

Similarly, the behaviour–predictability feedback is predicted to promote consistency (via a 

form of correlational selection that favours individuals continuing to do what they have 

done in the past) in leader–follower situations (Johnstone & Manica, 2011; Wolf & 

McNamara, 2013) and in contexts of social niche specialization (Bergmüller & Taborsky, 

2010). Other feedback loops involving the reciprocal behaviours of two or more individuals 

include effects of the aggressiveness of individual X on individual Y and vice versa 

(Wilson, Gelin, Perron, & Reale, 2009), and personality-dependent, predator–prey 

behavioural response games (Pruitt, Stachowicz, & Sih, 2012).  

A fascinating example of where the state variable is another species involves 

parasites. Individual differences in encounters with parasites due to small differences in 

behavioural tendencies or just to chance can affect the individual’s subsequent behaviour 

(Barber & Dingemanse, 2010; Coats, Poulin, & Nakagawa, 2010; Kortet et al., 2010) in 

ways that generate long-term, consistent, among-individual differences. If carrying a 

parasite load increases host energy demands without reducing host vitality, the result can be 

an increase in activity or exploratory behaviour (to ‘feed’ the parasite) that further increases 

parasite loads (i.e., positive feedback). Parasites can also manipulate host behaviour to 

enhance parasite transmission to the next host (Poulin, 2013). For example, parasites can 

make their hosts more active or bold, thus picking up more parasites until the host’s highly 

conspicuous behaviour causes them to be noticed and eaten by the parasite’s next host 

(Lafferty & Morris, 1996). As this process unfolds, the positive feedback loop can help 

explain the persistence of consistent personalities. Conversely, a negative feedback loop can 

exist if parasites weaken their hosts (and thus reduce host activity) or reduce their host’s 

tendency to be sociable (thereby reducing encounters with other infected hosts).  

Finally, state–behaviour feedbacks involving non-living, extrinsic factors can also 

generate personality. For example, if environmental chemicals influence behaviour in ways 

that increase the likelihood of being further exposed to chemicals, then even chance 

variation in initial encounters with contaminants, such as pesticides, heavy metals, or 

pharmaceuticals, could generate lasting among-individual differences in behaviour (Brodin, 

Fick, Jonsson, & Klaminder, 2013; Montiglio & Royauté, 2014) 
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(iii) The joint evolution of behaviour and state variables  

Most of the models discussed above assume that animals adjust their behaviour to their state 

in an adaptive way (e.g., animals with higher assets increase their fitness by being more 

cautious). Most also assume, however, that the converse need not hold; that is, while 

behaviour affects the state variable (e.g., bolder foraging increases energy reserves), the 

state variable is not adjusting adaptively to the behaviour. An alternative view explicitly 

models how behavioural consistency can emerge from the co-evolution or co-development 

of an adaptive, integrated phenotype where both the behaviour and state respond adaptively 

to the other. For example, in the classic hawk– dove game, in the absence of a co-evolving 

state variable, selection favours individuals that exhibit behavioural inconsistency (i.e., 

individuals that switch between hawk and dove behaviours in repeated interactions). If, 

however, behaviour co-evolves with physiological state variables (e.g., metabolic capacity), 

the result is the evolution of alternative, consistent personalities with associated differences 

in physiology: low-metabolism individuals that are unaggressive versus high-metabolism 

individuals that are aggressive (Wolf & McNamara, 2012). High metabolic capacity helps 

animals win fights that bring in the energy to offset the costs of maintaining a high 

metabolic capacity. Extending the scenario to allow for a second behavioural trait (boldness) 

that is also affected by the physiological state variable, this model predicts the co-evolution 

of positive correlations between metabolic rate, aggressiveness, and boldness. Although this 

model is couched in terms of co-evolving physiological state variables, the underlying 

concepts apply to any co-evolving morphological, cognitive, or life history trait that affects 

the costs or benefits of behavioural actions (Wolf & McNamara, 2012). Thus this model 

formalizes the basic logic underlying the Pace of Life syndrome (Réale, Garant, et al., 

2010)or life history-productivity syndrome (Biro & Stamps, 2008) ideas that posit the co-

evolution of fast versus slow general lifestyles including physiology, behaviour and life 

histories, and of fast/slow cognition syndromes (Sih & Del Giudice, 2012).  

 

MULTIPLE SIMULTANEOUS FEEDBACK LOOPS 

 Several of the above examples illustrate how a single mechanism (e.g., asset protection or 

starvation avoidance) can generate either positive or negative feedbacks depending on other 

factors. In other cases, state-dependent behaviour can be simultaneously shaped by 

mechanisms with contrasting feedback patterns (Fig 1). When the feedbacks do not all 

operate in the same direction, the net direction of the feed-back loop will depend on the 
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relative contribution of each mechanism, which is likely to vary as a function of ecological 

conditions (e.g., predation risk, food availability, etc.) (Luttbeg & Sih, 2010).  

 

GUIDE FOR EMPIRICISTS  

We next provide a guide for studying state–behaviour feedback loops and for testing 

predictions on how those loops influence animal personalities (Boxes 2 and 3). While one 

could start with a model and search for a system that appears to fit that model, we assume, 

for this guide, that the empiricist is already studying a particular system and seeks to 

identify and test models that can potentially explain variation in the structure of personality 

in that system.  

Because the various models revolve around different state variables, it is important 

to identify which state variables are good candidates for a state–behaviour feed-back loop in 

one’s system. Although feedback loops are dynamic processes that play out over time 

within an individual, they should often also generate among-individual state–behaviour 

correlations. For example, if hosts that are more active pick up more parasites that then 

make those hosts even more active, we expect development of an among-individual, 

positive (host activity vs. parasite load) correlation. A first step can thus be to screen for 

among-individual state–behaviour correlations. When some data are available on temporal 

consistency, focus on state variables that have a similar level of temporal consistency as 

behaviour. For example, behaviours that exhibit life-long stable differences among 

individuals are more likely to be connected to stable state variables (e.g., morphology, life 

history type, or a stable social role) than with day-to-day variation in the social 

environment. Identifying good candidate state variables leads the empiricist to one or a few 

of the models in Table 1. Next, check to make sure that your system fits key assumptions of 

those models.  

Having identified relevant state variables, if possible, manipulate these 

experimentally (e.g., alter energy reserves or parasite loads) to assess effects on behaviour. 

Following behaviour over longer periods of time will provide insights into feedbacks. Even 

after the initial manipulation, positive feedback loops should be associated with sustained 

changes in individual behaviour over time, whereas negative feedback loops should be 

associated with individuals returning to their original, pre-manipulation behaviour (and 

state). If the model makes predictions on how mediating factors (e.g., local density, risks, or 

resources) should affect personalities on an ecological time scale, experimentally 

manipulate these mediating factors. Take feedback loops into account when planning data 

collection and statistical analyses. Empirical studies often treat some of the state variables 
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described above as nuisance parameters, and try to correct for these, potentially removing 

the signature of feedback loops from the data. We thus suggest that empiricists should not 

follow the common practices of standardizing the social environment experienced by 

individuals, or to statistically standardize for individual body size or energy state when 

assessing individual behavioural variation. Ideally, collect longitudinal datasets, measuring 

individuals’ state and behaviour repeatedly over relevant time scales (i.e., time series). We 

next describe statistical methods for quantifying feedback loops and their outcomes.  

 

Quantifying within-individual loops 

 In principle, feedback loops can be characterized as an individual property, and thus vary 

among individuals (Zucchini, Raubenheimer, & MacDonald, 2008). For testing within-

individual feedback loops, repeated measurements of individuals’ behaviour and state are 

essential. Statistically, feedbacks within a single individual may be captured with a ‘double’ 

phenotypic equation where behaviour (𝑦𝑡,𝑏; b for behaviour) and state (𝑦𝑡,𝑠; s for state) at 

time t are both response variables (Box 3). The key difference with classic phenotypic 

equations (Dingemanse et al., 2010; Westneat, Hatch, Wetzel, & Ensminger, 2011) is that 

some variables are both predictor and response. Within-individual feedback loops leave 

various traces in empirical data when captured in action. First, among-individual variation 

in state and behaviour should increase over time with positive feedback and result in 

positive correlations between individual intercepts and slopes of temporal reaction norms 

(‘fanning-out’; left and middle panels of Fig 2A,D). When the effect of (current) state on 

(current) behaviour (𝜆𝑠→𝑏) and (current) behaviour on (future) state (𝜆𝑏→𝑠) are both positive 

(Fig 2D, right panel), state and behaviour shift in the same direction within the same 

individual, causing positive ‘within-individual correlations’ (Dingemanse & Dochtermann, 

2013). When 𝜆𝑠→𝑏 and 𝜆𝑏→𝑠are both negative, state and behaviour shift in opposite 

directions, causing negative within-individual correlations (Fig 2A, right panel). Along the 

same lines, negative loops also leave distinct patterns of (co)variance, for example, negative 

intercept– slope correlations (‘fanning-in’; left and middle panels of Fig 2B,C). 

Parameters𝜆𝑠→𝑏 and 𝜆𝑏→𝑠)  can also be estimated directly, for example, using structural 

equation modelling (Box 3).  

Individual divergence due to positive feedback would typically cease at some point 

in time either because of biological floors or ceilings to both state and behaviour, because 

behaviour is open for modification only during certain developmental stages (J. A. Stamps 

& Groothuis, 2010) or because the effect of state on behaviour (or vice versa) is non-linear. 
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At such ‘end stages’, within-individual correlations would decrease to zero and be replaced 

by stable ‘among-individual correlations’ (Dingemanse & Dochtermann, 2013).  

 

Figure 2. Patterns of variation in temporal reaction norms for state (s) (left panel) and behaviour (b) 

(middle panel) while within-individual feedback loops are ‘in action’. All scenarios are drawn from 

the simple equations given in Box 3, with starting values of 0.1 (blue individuals) and _0.1 (yellow 

individuals) for state at time t for 20 time steps. Scenarios A through D differ in value of 𝜆𝑠→𝑏 and 

𝜆𝑏→𝑠 respectively (“-“ = -0.3; “+” = +0.3), resulting in either positive (A,D) or negative (B,C) 

loops. Different scenarios come with specific predictions for pattern and direction (arrows) of within-

individual covariance in state and behaviour leading to within-individual correlations while feedback 

loops are ‘in action’ (right panel). We note that negative feedback can, depending on parameter 

settings, also result in cycling or chaos; those scenarios are not depicted but would not result in 

among-individual differentiation (state-dependent personality). 
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Box 2. A worked example 

To illustrate our guide to empirically testing state–behaviour feedback loops, we provide an example 

with cannibalism as the focal behaviour and gape size in salamander larvae as the state variable.  

(i) Identify the system and the mechanism. The first step is to identify a system and a mechanism 

that fits the system. In this case, we focus on a state-dependent foraging strategy model as the 

mechanism and larval salamanders as the species. Many salamander larvae exhibit size-dependent 

cannibalism, especially under high population densities. These interactions induce an increase in gape 

size within populations that allows conspecific predation, and also an increase in foraging efficiency 

since conspecifics represent a rich resource. However, under high predation risk, salamander larvae 

reduce their foraging activity in order to avoid risky encounters. The relative importance of each 

mechanism will influence the net direction of the feedback loop.  

(ii) Predictions. See the predictions for positive and negative feed-backs of this model (‘State-

dependent foraging strategy’) in Table 1 in main text.  

(iii) Experimental approach. The most straightforward experimental test is to manipulate the body 

size of salamander larvae (e.g., by experimentally increasing food availability) as a proxy for gape 

size to investigate whether this manipulation results in the predicted effect on cannibalistic behaviour, 

and vice versa. In some cases, experimental manipulations of state and/or behaviour may not be 

feasible or even necessary. Non-experimental studies can also be suitable tests of state–behaviour 

feedback loops since natural variation in both variables can provide enough initial differences among 

individuals to initiate the dynamics. For instance, Kishida et al., (2011) empirically studied this 

mechanism and system based on baseline initial variation among individuals. A complementary 

experimental test is to manipulate the ecological conditions to test for predicted changes in the 

feedback loop direction. Theoretical models allow us to predict the feedback outcome based on 

match/mismatch between risk and rewards (Luttbeg & Sih, 2010). For instance, feedbacks between 

gape size and cannibalism can vary as a function of predation risk and resource level. One experiment 

can keep resource levels constant (here, salamander larvae density) and manipulate predation risk by 

adding larval dragonflies (top predators of amphibian larvae). The ecological prediction is that 

positive feedbacks should predominate in conditions of intermediate ecological favourability while 

negative feedbacks should predominate in highly favourable or highly unfavourable conditions 

(Luttbeg & Sih, 2010). In both cases, manipulative or not, repeated measurements of behaviour and 

state of the same individual and for different individuals are essential. Salamander larvae present 

continuous growth until metamorphosis, and therefore, changes in size (and gape size) can be 

measured daily over the entire larval period. In terms of behaviour, cannibalistic tendency can also be 

assessed regularly over the same period. The required data (i.e., number of measurements) will 

depend on the effect size of each variable, and consequently, on the statistical power.  

(iv) Statistical analysis. To analyse the relationship between number of salamanders cannibalized 

and gape size, we can use a ‘reaction norm’ approach (Dingemanse et al., 2010;  Nussey, Wilson, & 

Brommer, 2007) where time is fitted as the environmental (x) axis (Dingemanse et al., 2012) to 

estimate how cannibalistic behaviour and gape size change within individuals over time. We would, 

as a first step, statistically fit a random regression mixed-effect model that would enable us to 

estimate the statistical parameter (cf. intercept/slope correlation) that informs us on whether state and 

behaviour indeed showed patterns of ‘fanning-out’ (cf. among-individual divergence) or ‘fanning-in’ 

(cf. among-individual convergence) as expected when there were feedback loops in action (see Fig 2 

in main text). As a second step, we would fit a bivariate random regression model, where 

cannibalistic behaviour and gape size were both fitted as the two response variables, and quantify the 

covariance between the slopes of the two temporal reaction norms (for guidelines, see Dingemanse & 

Dochtermann, 2013). In the presence of feedbacks (whether positive or negative), the slopes of the 

reaction norms for behaviour and gape size would be correlated. See the text, Box 3, and Fig 2 in 

main text for more details.  
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Quantifying among-individual feedback loops  

Positive within-individual feedback loops lead to within- individual covariance between 

state and behaviour while the loop is in action. Among-individual correlations represent the 

final outcome of this process (i.e., stable, state- dependent personality differences); these 

among-individual correlations are, notably, of non-genetic origin. However, feedback loops 

can also occur at longer (evolutionary) time scales, and thus result in among-individual 

correlations due to the evolution of genetic correlations between the heritable parts of state 

and behaviour. On such an evolutionary time scale, long-term experiments could be used on 

short-lived organisms to quantify joint changes in breeding values of behaviour and state 

over multiple generations. Similarly, phylogenetic analyses comparing populations or 

species could be used to study the joint evolution of state and behaviour. Provided that 

feedbacks are indeed a function of ecological condition, a final approach would be to 

compare genetic correlation structures across populations (or species) experiencing different 

ecologies.  

 

Box 3. Feedbacks in equations and statistical analyses of phenotypes  

Feedbacks between phenotypic traits are often described mathematically using multivariate 

phenotypic equations with simultaneous relationships (Gianola & Sorensen, 2004; Wu, Heringstad, & 

Gianola, 2010). A simple example is represented by the following ‘double’ equation (Equation 1): 

𝑦𝑡𝑠 = 𝑦𝑡−1,𝑠 + 𝜆𝑏→𝑠𝑦𝑡−1,𝑏 + 𝑒𝑡𝑠        (Eqn. 1a) 

𝑦𝑡𝑏 = 𝜆𝑠→𝑏𝑦𝑡𝑠 + 𝑒𝑡𝑏        (Eqn. 1b) 

where 𝑦𝑡𝑠 and 𝑦𝑡𝑏  represent, respectively, state and behaviour of a single individual at time t. Here, 

the first part of the equation (Eqn. 1a) captures the notion that an individual’s current state is equal to 

its previous state (𝑦𝑡−1,𝑠) apart from a modification due to its previous behavioural action (𝑦𝑡−1,𝑏), 

where the dependence of current state on previous behaviour is given by 𝜆𝑏→𝑠. The second part of the 

equation (Eqn. 1b) captures the notion that an individual’s current behaviour is a function of its 

current state (𝑦𝑡𝑠), where the dependence of current state on previous behaviour is given by 𝜆𝑠→𝑏. 

Both models have residuals (𝑒𝑡𝑠, 𝑒𝑡𝑏) and would in reality also incorporate a multitude of fixed 

effects (e.g. age) that are ignored here for simplicity.  

The magnitude and sign of the feedback loop (L) between state and behaviour can be 

quantified by multiplying the effect of current state on current behaviour (𝜆𝑠→𝑏) with the effect 

current behaviour on future state (𝜆𝑏→𝑠). An important characteristic of equation 1 is that positive 

feedback will result in an infinite increase in individual differentiation over time (Fig 2a,d). In reality, 

we would expect biological floors and ceilings to both state and behaviour, resulting in the 

stabilisation of individual differentiation with time. Statistically, this can be implemented by 

specifying non-linear effects of state on behaviour (and vice versa). 

The simultaneous relationships between state and behaviour exemplified in our worked 

example can be quantified statistically using structural equation modelling for datasets where state 

and behaviour have both been assayed repeatedly on the same individual (Gianola & Sorensen, 2004; 

Wu et al., 2010). The approach can also be extended to quantify individual differences in feedback 

loops when implemented in a mixed-effect modelling framework (Zucchini et al., 2008); such 

variation is expected because ecological conditions should shape the magnitude and sign of feedbacks 
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in nature (Luttbeg & Sih, 2010). Finally, cases where a focal individual’s behaviour represents the 

state of another individual (cf. interacting phenotypes) can be captured by fitting a single phenotypic 

equation with two random effects (individual and social partner identity), where the feedback loop 

can be calculated directly from the covariance between the two random effects (McGlothlin, Moore, 

Wolf, & Brodie, 2010). 

 

CONCLUDING REMARKS 

 In this paper, we highlighted a parsimonious explanation for state-dependent personality 

due to positive feedbacks between state and behaviour. We reviewed theoretical models on 

the role of feedback loops in shaping behavioural variation both within and among 

individuals. The models discussed in this paper indicate that the direction and strengths of 

feedback loops will often depend on the ecological conditions. We clarify that positive 

feedback loops can lead to adaptive personalities (among-individual covariance between 

state and behaviour) whether of genetic or non-genetic origin. We further provide guidelines 

for empirical testing of adaptive theory (Box 3). We hope our conceptual framework for 

explaining variation in personalities proves useful for guiding future integration of 

theoretical and empirical work in this exciting field with many outstanding questions (Box 

4) to be addressed in the near future.  

 

Box 4. Outstanding questions  

 Feedbacks and distribution of personality types. Feedbacks would, in their simplest form, result 

in dichotomous among-individual variation in behaviour (see Fig 2 in main text), hence discrete 

personality types. What are the mechanisms that prevent the emerging among-individual 

variation to become dichotomous? What is the timescale over which feedback loops act? Is there 

an end-point to positive feedback and why? At what developmental stages do feedback loops 

exist, and why?  

 Selection on feedback loops. Feedback loops imply that state is a function of behaviour and vice 

versa. Such functions are commonly viewed as reaction norms (Niels J Dingemanse et al., 2010; 

D H Nussey et al., 2007). Do individuals differ in state–behaviour and behaviour–state reaction 

norms, whether in intercepts or slopes? And are components of these reaction norms correlated? 

How does selection act on these reaction norms (Box 1). _ Ecology of feedback loops. Are 

feedback loops a function of ecological conditions (e.g., competitive regimes, predators, food 

availability), and if so, which ecological factors are of key importance? Can temporal or spatial 

variation in ecological conditions explain variation among individuals in magnitude and sign of 

feedback loops?  

 Which combinations of behavioural and state variables show feedback? Theory has been 

developed for specific combinations of states and behaviours (see Table 1 in main text). How 

general are the associated predictions? Do they apply to specific behaviour–state combinations or 

more generally?  

 Ecological versus evolutionary time scales. Feedbacks can occur both within single individuals 

and across individuals, leading to among-individual correlations of non-genetic versus genetic 

origin, respectively. When should feedback loops evolve at each of those time scales? Do 

feedback loops differ between time scales; if so, why?  

 Fitness consequences of state–behaviour feedbacks. Do positive (divergent) feedbacks generate 

among-individual differences in fitness, or do they produce alternative state–behaviour 

combinations with equal fitness, and under what conditions? Does the strength or direction of the 

feedback loop predict changes in individual fitness proxies through time? 
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Table 1: Overview of mechanisms and models generating dynamic feedbacks between state and 

behaviour. 

Mechanism State ↔ 

Behaviour 

Predicted 

feedback 

Assumptions Key 

factors 

Typed Refs 

1. Feedbacks involving intrinsic state variables 

Asset 

protection 

RRVa ↔ 

Willingness to 

take risksb 

Positive feedback: 

emerge in scenarios 

where more risky 

actions increase 

assets.  

Negative feedback: 

emerge when more 

risky actions 

decrease assets. 

Thus, individuals 

with low RRV are 

more willing to take 

risks, while 

individuals with 

high RRV avoid 

risk in order to 

protect their assets.  

 

Risky 

actions 

increase or 

decrease 

assets 

compared to 

less risky 

actions; 

these effects 

can work via 

fecundity or 

mortality. 

Effect of 

risky 

actions on 

fecundity 

and 

mortality 

schedule. 

M (Luttbeg & 

Sih, 2010; 

McElreath, 

Luttbeg, 

Fogarty, 

Brodin, & 

Sih, 2007; 

Wolf et al., 

2007a, 

2007b) 

Starvation 

avoidance 

Energy reserves 

↔ Samplingc 

Positive feedback: 

under low 

starvation risk, only 

individuals with 

high energy 

reserves can 

‘afford’ to sample, 

which allows them 

to track resources 

and maintain higher 

long-term intake 

rates than non-

samplers. 

Negative feedback: 

under high 

starvation risk, 

individuals with 

low reserves sample 

for survival. 

Sampling allows 

them to build 

energy reserves, 

eroding among-

individual 

differences in 

energy reserves and 

sampling. 

Sampling 

behaviour 

involves 

immediate 

costs (e.g. 

sampling 

errors), but 

allows 

higher long-

term intake 

rate through 

tracking of 

resources 

Probability 

of energetic 

shortfall 

M (Mathot & 

Dall, 2013) 

Starvation 

avoidance 

Energy reserves 

↔ Boldness 

while foraging 

Positive feedback: 

Individual with 

lower energy 

reserves is more 

willing to take risks, 

but never increases 

in state relative to 

individuals with 

high reserves 

because individuals 

with high reserves 

always forage as 

part of a pair, 

allowing them to 

Foraging in 

pairs is 

advantageou

s because it 

lowers 

predation 

risk and/or 

increases 

energetic 

gain 

Social 

environmen

t (i.e. 

solitary 

versus 

group 

foraging) 

M (Harcourt, 

Ang, 

Sweetman, 

Johnstone, 

& Manica, 

2009; 

Luttbeg & 

Sih, 2010; 

Rands et al., 

2003)  
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forage more 

efficiently.  

Negative feedback: 

Poor condition 

individuals are 

forced to be bold 

because of the need 

to forage, and 

foraging builds 

energy reserves. 

High condition 

individuals are less 

bold and therefore 

they do not increase 

reserves as quickly. 

State-

dependent 

safety 

Size, energy 

reserves, 

condition, 

vigour ↔ 

Boldness in 

foraging 

context 

Positive feedback: 

Individuals in good 

condition behave 

more boldly, 

thereby increasing 

in condition 

 

 

Individuals 

with higher 

state face 

lower risk of 

predation 

while being 

bold. 

 M 

 

 

(Luttbeg & 

Sih, 2010) 

State-

dependent 

immune 

function  

Host immune 

function ↔ 

Boldness, 

activity 

 Positive feedback: 

High resource 

intake leads to 

efficient immune 

function, and 

individuals with 

efficient immune 

function are better 

able to cope with 

the potential 

exposure to 

parasites that results 

from high foraging 

effort (e.g. boldness 

and activity).  

High 

resource-

intake rates 

lead to 

efficient 

immune 

function. 

 V (Kortet et 

al., 2010) 

State-

dependent 

foraging 

strategy 

Gape size ↔ 

cannibalistic 

behaviour 

Positive feedback: 

Individuals with 

larger gape-size are 

more cannibalistic, 

thereby increasing 

in size and 

reinforcing their 

tendency to be 

cannibalistic.  

Negative feedback: 

Predation risk 

reduces cannibalism 

since predators 

preferentially attack 

cannibalistic 

individuals, which 

become less active, 

and thus, less likely 

to encounter 

potential 

cannibalism 

victims. 

Consequently, there 

is no reinforcement 

of cannibalism or 

size differences. 

 

Cannibalism 

increases 

growth rate 

due to an 

increase in 

foraging 

efficiency. 

Predation 

risk reduces 

cannibalism 

either 

through non-

consumptive 

effects or 

through 

consumptive

. 

Predation 

risk 

E (Kishida et 

al., 2011) 
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Learning 

/Skill 

Experience 

with 

responsiveness 

↔ 

Responsiveness 

Positive feedback: 

Initial differences in 

responsiveness are 

maintained. 

Individuals 

that have 

been 

responsive 

in the past 

face lower 

costs (or 

higher 

benefits) of 

being 

responsive 

again. 

 M (Wolf et al., 

2008) 

Winner-loser 

effects 

Winning/losing 

experience ↔ 

Aggressiveness 

Positive feedback: 

Individuals that 

have recently 

experienced a “win” 

in an agonistic 

encounter are more 

likely to initiate 

future agonistic 

encounters. 

Individuals 

initiating agonistic 

encounters have a 

higher probability 

of winning, 

reinforcing 

individual 

differences in 

winning-

experiences and 

aggressiveness. The 

strength of the loop 

would probably 

differ between 

winners and losers 

since winner effects 

are distinct from 

loser effects, and 

often have memory 

times. 

Initiating an 

aggressive 

encounter 

increases the 

likelihood of 

winning. 

 V (Chase, 

Bartolomeo, 

& Dugatkin, 

1994) 

Hormone-

mediated 

perception of 

hunger 

Insulin levels↔ 

Feeding 

behavior 

Positive feedback: 

High levels of 

insulin lead to 

overeating due to 

increased 

perception of 

hunger, and weight 

gain increases 

insulin levels. 

High insulin 

levels trigger 

overeating 

behavior 

 E (Rodin, 

1985) 

State-

dependent 

energy 

assimilation 

efficiency 

BMR ↔ 

behaviours that 

increase 

resource 

acquisition 

Positive feedback: 

Large metabolic 

machinery (e.g. 

stomach, intestines) 

is necessary to 

process high 

volumes of energy. 

Acquiring and 

processing high 

volumes of energy 

facilitates the 

maintenance of 

energetically costly 

organs that are 

needed for energy 

High energy 

processing 

ability 

promotes 

expression 

of 

behaviours 

that increase 

energy 

acquisition 

rate 

 V (Biro & 

Stamps, 

2010; Biro 

& Stamps, 

2008; 

Careau & 

Garland, 

2012; 

Careau, 

Thomas, 

Humphries, 

& Réale, 

2008) 
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processing. 

2. Feedbacks involving extrinsic state-variables 

Aggressivenes

s mediated by 

other 

individuals’ 

aggressiveness 

Aggressiveness

’ individual 1 

↔ 

Aggressiveness

’ individual 2 

Positive feedback: 

Individuals that are 

more aggressive are 

more likely to elicit 

aggressiveness in 

others.  

Recursive 

effect in 

interacting 

phenotypes 

 V (McGlothlin 

et al., 2010) 

Parasite 

mediated 

changes in 

energy 

expenditure 

Parasite 

infection ↔ 

boldness/activit

y 

Positive feedback: 

Parasite infection 

increases energetic 

needs, favouring 

high levels of 

boldness/activity to 

secure resources.  

Animals that are 

more bold/active 

are more likely to 

encounter and 

become infected by 

parasites. 

Parasite 

infection 

imposes 

non-

negligible 

energetic 

costs. 

 V (Barber & 

Dingemanse

, 2010) 

Anthropogeni

c 

contaminants 

(ACs) 

Exposure to AC 

↔ risky 

behaviours 

Positive feedback: 

Animals that are 

exposed to ACs 

decrease survival or 

increase 

reproductive effort, 

favouring an 

increased 

expression of risky 

behaviour. This 

further exposes 

them to ACs, 

reinforcing 

differences in 

survival/reproductiv

e effort. 

Negative feedback: 

Toxic effects of 

exposure to ACs 

lead to overall 

decrease in risky-

behaviours, 

reducing future 

exposure to ACs. 

Exposure to 

ACs changes 

optimal 

allocation of 

energy to 

growth, 

reproduction 

and 

maintenance 

AND/OR 

has toxic 

effects that 

impair the 

function of 

the 

organism. 

Toxicity V (Montiglio 

& Royauté, 

2014) 

3. Joint evolution of behaviour and state-variables  

Coevolutionar

y 

diversification 

Model applies 

to diverse range 

of behaviours 

and state 

variables 

Positive feedback: 

promotes the 

evolutionary 

emergence of 

correlated 

differences in state 

and behaviour 

State 

variable 

affects the 

cost and/or 

benefits of 

behaviour; 

behavioural 

trait is under 

negative 

frequency-

dependent 

selection 

Increases in 

the 

evolving 

state 

variable are 

costly to 

individuals. 

M (Wolf & 

McNamara, 

2012) 
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a
RRV = residual reproductive value, i.e. future fitness expectations 

b
any behaviour that increases access to resources at the cost of an increased risk of mortality 

c
investment of time and/or energy to reduce uncertainty about alternative foraging options 

d
Type of paper from which predictions were derived: M = Model, V = Verbal argument, 

E=Empirical 
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  Chapter 2 

A multi-level approach to quantify speed-

accuracy trade-offs in great tits (Parus major) 

 

Maria Moiron, Kimberley J. Mathot, and Niels J. Dingemanse 

 

 

ABSTRACT 

Animals often face a conflict between the speed and accuracy by which a decision is made. 

Decisions taken quickly might be relatively inaccurate, whereas decisions taken more 

slowly might be more accurate. Such “speed-accuracy trade-offs” receive increasing 

attention in behavioural and cognitive sciences. Importantly, life-history theory predicts that 

trade-offs typically exist only at certain hierarchical levels, such as within rather than among 

individuals. We therefore examined within- and among-individual correlations in the speed 

and accuracy by which decisions are taken, using a foraging context in wild-caught great tits 

(Parus major) as a worked example. We find that great tits exhibit among-individual 

variation in speed-accuracy trade-offs: some individuals predictably made relatively slow 

but accurate decisions, whereas others were predictably faster but less accurate. We did not, 

however, find evidence for the trade-off at the within-individual level. These level-specific 

relationships imply that different mechanisms acted across levels. These findings highlight 

the need for future work on the integration of individual behaviour and cognition across 

hierarchical levels. 
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INTRODUCTION 

An important research objective in evolutionary and behavioural sciences is to understand 

why phenotypic variation is maintained despite selection (Hallgrímsson & Hall, 2005). A 

classic explanation for the persistence of phenotypic variance is the occurrence of trade-offs 

in the simultaneous investment in multiple traits that are costly to produce (Reznick, 

Nunney, & Tessier, 2000b; Stearns, 1992; van Noordwijk & de Jong, 1986a). Though 

developed as part of life-history theory (Stearns, 1992), trade-offs are also commonly 

evoked to understand variation in behavioural decision-making and other phenotypic traits 

(e.g. risk-taking behaviours can be explained by a starvation-predation risk trade-off  

(Houston, McNamara, & Hutchinson, 1993; Lima, 1986) or male fertilization-related 

behaviours  and a trade-off between within-pair and extra-pair reproduction (Webster, 

Pruett-jones, Westneat, & Stevan, 1195)). Decision-making trade-offs arise when a 

beneficial increase in the performance of one trait decreases the performance in another. 

One well-known cognitive trade-off occurs between speed and accuracy of behavioural 

decisions (Chittka, Dyer, Bock, & Dornhaus, 2003; Chittka, Skorupski, & Raine, 2009). 

‘Slow’ decisions allow for time to collect and assess environmental information and 

consequently, allow for decisions based on relatively accurate information. By contrast, 

‘fast’ decisions allow for less time to assess environmental state, and consequently, enable 

quick decisions based on less accurate information. Because of this “speed– accuracy trade-

off”, multiple alternative strategies might persist within the same population. 

The study of speed-accuracy trade-offs has mainly focused on the within-individual 

level. That is, within the same individual, positive changes in speed typically co-occur with 

negative changes in accuracy (Chittka et al., 2009). Speed-accuracy trade-offs are also 

increasingly evaluated at the among-individual level, for example in studies of animal 

personality (Sih & Del Giudice, 2012). Among-individual trade-offs would imply that 

individuals that take, on average, fast decisions also, on average, take inaccurate decisions. 

Such among-individual differences in average behaviour imply individual repeatability in 

both speed and accuracy. Support for trade-offs at this level is, however, inconclusive 

(Chittka et al., 2003; Ducatez, Audet, & Lefebvre, 2014; Mamuneas, Spence, Manica, & 

King, 2014; Proulx, Parker, Tahir, & Brennan, 2014; Wang, Brennan, Lachlan, & Chittka, 

2015): both evidence, and lack of evidence, for the existence of a trade-off between speed 

and accuracy have been reported. For example, among-individual speed-accuracy trade-offs 

have been observed in different taxa (e.g. bumblebees (Chittka et al., 2003); birds (Ducatez 

et al., 2014); fish (Wang et al., 2015)) though other studies (in fish) failed to detect it 

(Mamuneas et al., 2014; Proulx et al., 2014).  
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Why some studies fail to find a trade-off between speed and accuracy represents an 

important research question. One prominent explanation known from the life-history 

literature is that different mechanisms contribute to correlations at different levels (Reznick 

et al., 2000b; Stearns, 1992; van Noordwijk & de Jong, 1986a). When a single mechanism is 

underlying the relationship at all levels, one can expect similar magnitudes and signs of 

correlations across all levels. In contrast, when mechanisms are level-specific, this could 

result in correlations with conflicting directions across different levels. The latter scenario 

occurs, for example, in situations where individuals have to trade-off investment in multiple 

costly actions while individuals simultaneously differ in their access to or acquisition of 

energy. For instance, in the classic example of resource acquisition and allocation of money 

invested in buying houses and cars in humans, a positive covariance at the among-individual 

level is expected between these two costly traits because rich people have enough money to 

buy both a big house and a big car (Reznick et al., 2000b; van Noordwijk & de Jong, 

1986a). Simultaneously, a negative covariance at the within-individual level is expected 

since money spent on a house cannot be spent on buying a car. House and car size are thus 

expected to correlate positively among individuals but negatively within individuals. 

Analogously, the same rationale can be applied to speed-accuracy trade-offs, where we 

might expect the covariance between cognitive traits to differ across hierarchical levels.  

In the recent literature, the idea that there may be repeatable individual differences 

in speed-accuracy trade-offs, and therefore, that individuals may consistently differ in 

cognition, which refers to the way individuals acquire, process, store, or act on information, 

has attracted some theoretical attention (Sih & Del Giudice, 2012). Sih and Del Giudice 

(2012), for example, hypothesized that variation in cognition functionally underpins 

variation in personality (defined as repeatable among-individual variance in behaviour; 

Dingemanse and Dochtermann, 2013). This hypothesis is based on the ‘coping style’ 

literature and poses that individual differences in behaviour fall on a ‘fast–slow’ gradient 

along the bold–aggressive–active–exploration axis. Thus, animals that are bolder, more 

aggressive, proactive and/or exploratory take more risks but can also gather more rewards 

(Coppens, de Boer, & Koolhaas, 2010). The overarching hypothesis is that cognitive traits 

also fall on this ‘fast–slow’ gradient where fast explorer individuals should take faster 

decisions but slow-explorer individuals should make more accurate choices, that is, fast 

explorer individuals should favour speed over accuracy (Guillette, Hahn, Hoeschele, 

Przyslupski, & Sturdy, 2014; Sih & Del Giudice, 2012).  

The goal of this study was to estimate sources of variation in decision-making 

behaviour at the within- and among-individual levels, to examine whether there was a trade-

off between speed and accuracy, and whether this trade-off existed at multiple hierarchical 
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levels. We expected a trade-off to exist both among- and within-individuals. We also 

expected relationships with exploratory tendency (Sih and Del Giudice 2012), where we 

predicted that fast exploring individuals would be faster in taking a decision but also less 

accurate. These questions were applied to a foraging context using great tits (Parus major) 

as a model. To accomplish this, we screened wild-caught great tits in a novel environment 

task to assess their exploration behaviour (Dingemanse, Both, Drent, van Oers, & van 

Noordwijk, 2002). Birds were then repeatedly subjected to a foraging task to repeatedly 

assess their decision speed and accuracy. 

 

MATERIALS AND METHODS 

Collection of study subjects and housing conditions 

We used 31 wild-caught adult great tits (16 males and 15 females). The great tit is a 

common Palearctic passerine species, and a model for the study of repeatable individual 

differences in exploration behaviour (e.g. Dingemanse et al. 2002). Wild-caught great tits 

have previously been used in captive experiments over extensive time periods without 

showing signs of stress or abnormal behaviour (Lange & Leimar, 2004; te Marvelde, 

Webber, Meijer, & Visser, 2012; Wansink & Tinbergen, 1994) while exhibiting similar 

behaviours as observed in the wild (e.g. Krebs, Kacelnik, and Taylor 1978; Wansink and 

Tinbergen 1994; Marchetti and Drent 2000; Lange and Leimar 2004; van Oers et al. 2004). 

Furthermore, it has been recently shown that the great tit genome presents an 

overrepresentation of genes related to neuronal functions, learning and cognition in regions 

under positive selection (Laine et al., 2016), which makes this species an excellent animal 

models for studies in behaviour and cognition. Birds were caught between October and 

November 2014 in Seewiesen, Bavaria, southern Germany. Birds were transported to the 

laboratory within 30 minutes, weighed to the nearest 0.1 g, after which standard 

morphological measurements were taken (e.g. tarsus, bill and wing length). A maximum of 

4 individuals were taken per capture to ensure that all behavioural testing (detailed below) 

could be completed within 6 days of capture for any given individual. Sex and age of birds 

were determined based on plumage characteristics (Jenni & Winkler, 1994); to allow 

individual identification, birds were provided with an aluminium number ring. Birds were 

housed individually in home cages of 100 × 40 × 50 cm with five walls and a wire-mesh 

front. Each cage contained two food bowls, one water bowl and six perches, and was 

situated in a laboratory room with natural daylight conditions (i.e. laboratory facilities were 

lighted by the natural day light available through the  full length windows immediately in 

front of the cages).  Human disturbance was kept to a minimum. Birds were provided with 
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water and mealworms (larvae of Tenebrio molitor) ad libitum, and released at the capture 

site at the end of the experiment. 

 

Exploratory tendency assessment 

The day following capture, between 07h00 and 07h30, we measured the exploration 

behaviour of each bird. Exploration behaviour has been previously shown to predict 

willingness or ability to perceive changes in the environment in great tits (Nicolaus et al., 

2015; Stuber et al., 2013; Verbeek, Drent, & Wiepkema, 1994). Each bird was individually 

tested in a novel environment containing 5 artificial trees. Following the standard procedure 

established for this species (Dingemanse, Bouwman, et al., 2012), we introduced each bird 

into the room without handling by darkening the cage with a curtain, opening the sliding 

door, turning on the light in the test room and briefly lifting the curtain, after which all birds 

flew into the room. Birds were then scored based on movement (the total number of flights 

and hops) in the experimental room during a 2-minute period where faster explorers had 

higher exploration scores than slow explorers. After the exploration test, birds were returned 

to their home cages.  

 

Decision-making task 

We measured each individual’s decision-making behaviour repeatedly within a single 

experimental session. Each evening between 17h00 and 17h30, one bird was randomly 

selected and taken from its home cage to an individual cage adjacent to the experimental 

room. The selected bird had ad libitum access to water but was food-deprived until the start 

of the experiment the following morning, during which time the focal bird was tested 

individually. Thus, birds had no access to their normal food for 14 hours, a duration that was 

necessary to ensure a high motivation to search for food but at the same time is nearly 

identical to the natural non-feeding periods in free living tits in winter, as they do not feed 

from dusk to dawn. During experiments, no food was available other than that provided at 

the feeding stations.  

The foraging trials were conducted in the experimental room where the exploration 

test (see above) was previously conducted (Fig 1). The experimental room consisted of one 

perch, one water bowl and two wooden trays spaced 1.5 m from each other supporting a 

white food bowl (11 × 7.5 × 3.5 cm) (hereafter, “feeder”). The experimental room was kept 

on the same light cycle and temperature as the holding room, in both cases matching the 

natural photoperiod. At one side of the experimental room, there was a one-way screen from 

where we continuously monitored and scored the subject’s behaviour. During the 

experiment, the laboratory room was equipped with two feeders which consisted of two 
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identical operant feeding stations (i.e. requiring the same technique to pick up food) placed 

at one wall of the lab room, and located 1.5 m apart. Through two sliding doors in the wall, 

both feeders were placed inside the experimental room with the aid of a wooden board and 

without the experimenter being visible to the bird (Fig 1). There were two types of feeders: 

a low-reward feeder which contained half of a mealworm and a high-reward feeder which 

contained two mealworms. Each day each feeder’s reward size (i.e. right or left location) 

was switched; therefore it was fixed for a single bird but varied over the course of the 

experiment to exclude any side preference effects among individuals (left, n = 16; right, n = 

15; alternating by bird identity number). The order that a bird was selected to undertake the 

experiment among the 4 possible days was also randomized (“experimental sequence”). We 

tested for any effect of experimental sequence or of preference for a feeder location by 

including the sequence order and the side of the high reward feeder (left or right) as a 

predictor in our models to demonstrate that among-individual differences in our behavioural 

trait measures were not caused by those factors (see results reported in the Supplementary 

Material). 

The experimental session started at 8h00 when we opened the sliding shutter 

connecting the home cage (where they had stayed since their exploratory tendency 

assessment) to the experimental room. Birds were moved from the home cage to the 

experimental room without handling by darkening the cage that was to be left by placing a 

piece of cloth in front of it (Dingemanse et al., 2002). This procedure enabled us to not add 

extra stress caused by additional handling. Furthermore, once a focal bird was inside the 

experimental room, it was left undisturbed for 30 minutes in order to familiarize to the 

room. After this time, we started the training phase of the experiment where each bird was 

subjected to 16 foraging trials. The purpose of the training was to familiarize the birds with 

picking up food at feeders with the two different reward sizes. This was done by presenting 

a single feeder at each trial, forcing birds to make use of that location and therefore, to 

experience both food rewards over time. Thus, for these initial 16 trials, the bird was 

presented either with the low-reward feeder, containing a half mealworm per visit, or with 

the high-reward feeder, containing two mealworms per visit. We applied the same 

randomization scheme to all the birds. The order by which feeders were presented was 

therefore randomly allocated before the start of the experiment but both the low-reward and 

high-reward feeder were presented eight times exactly. After the bird took the food out of 

the feeder, independent of whether the bird was still processing the food, we removed that 

feeder from the experimental room. The maximum trial length was 2 hours (all 31 birds 

took all the food in each trial within that time range).  Five minutes later, a refilled feeder 

was placed back in the experimental room. During the first five trials the feeder was 
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uncovered so that the bird could see the reward and get familiar with the reward setup. After 

the fifth trial the feeder was fully covered by a cardboard lid so birds could not visually 

assess the reward size. Once these first 16 training trials were concluded, the experiment 

continued with the testing phase. This phase consisted of another 6 trials where the two 

feeders were presented simultaneously. As during the training phase, the low-reward feeder 

contained half a mealworm and the high-reward feeder contained two mealworms. As soon 

as the bird touched one of the feeders or cardboard lid, we considered the bird as having 

made a decision. The other feeder was immediately removed from the experimental room, 

while the ‘chosen’ feeder was left in the room so that the bird could acquire the food. As 

during the training phase, the refilled feeders were placed back into the experimental room 5 

minutes after the bird had taken a decision. By the end of the experiment, when a focal bird 

had completed a total of 22 trials, it was returned to its home cage where it was provided 

with ad libitum access to food and water.  

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Illustration of the experimental setup: a perch was placed in-between two sliding doors 

through which two feeders were presented. A sliding door also connected the home cage to the 

experimental room (3. 95L × 2.35W × 2.30 H m) (scale bar). 

 

Measures of decision speed and accuracy 

We were interested in the time needed to take a decision when both feeders were presented 

at the same time (“decision time”), and the accuracy of the decision taken. The training 

phase gave birds the opportunity to learn about the different rewards. Decision time (a proxy 

for decision speed) was computed as time (in seconds) elapsed between the moment that the 

feeders were made available in the experimental room and the moment that the bird touched 

one of them (our measure of feeder choice, see above). Shorter decision times thus indicate 

faster decision-making. Decision accuracy was defined by whether the bird made the correct 
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decision, that is, whether it chose the high-reward feeder (yes = 1, accurate, no = 0, 

inaccurate).  

 

Statistical analyses 

We applied a mixed-effect modelling framework to estimate sources of variation in both 

behaviours at both the within and among individual levels (following Dingemanse & 

Dochtermann 2013), and to quantify trade-offs between speed and accuracy within and 

among individuals. First, we investigated sources of variation in decision time and decision 

accuracy separately. To do so, we constructed two separate univariate mixed-effect models, 

one where our response variable was decision time (in seconds) and another where our 

response variable was decision accuracy (right or wrong choice) (Table 1). Sex (factor: male 

or female), age (factor: first-year adult or older adult), and exploration behaviour (covariate: 

total number of flights and hops) were fitted as fixed effects. Random intercepts were 

included for individual identity, enabling us to partition the total phenotypic variance into 

variance attributable to individual identity versus residual within-individual variance. We 

calculated “adjusted” repeatability of decision time and accuracy as the among-individual 

variance divided by the total variance not attributable to fixed effects (Nakagawa & 

Schielzeth, 2010). Decision time was log-transformed and modelled with Gaussian errors. 

Decision accuracy was modelled with binomial error structure where residual variance is 

taken to be π
2/3 

(Nakagawa & Schielzeth, 2010).  

Based on current theory, we predicted a clear cause-effect relationship between our 

variables: time to take a decision (“decision time”; predictor) should influence the accuracy 

of that decision (“decision accuracy”; response). Furthermore, we took into account that the 

effects of decision time on decision accuracy could vary within versus among individuals 

(see Introduction) (van de Pol & Wright, 2009). For example, within-individual changes in 

decision accuracy should result from within-individual phenotypic plasticity in decision 

time (sensu van de Pol and Wright 2009 ; Westneat et al. 2011), whereas among-individual 

effects of decision accuracy may also include effects of personality-related traits as well as 

effects attributable to repeatable variation in conditions due to the experimental design (i.e. 

the high-reward feeder location varying exclusively among individuals) (van de Pol & 

Verhulst, 2006). We thus used a within-subject centring approach to separate the within-

individual from among-individual effects of decision time (fixed effect predictor variable) 

on accuracy (response variable), and tested whether the estimate of this fixed effect differed 

within vs. among individuals (e.g., van de Pol and Verhulst 2006; van de Pol and Wright 

2009). Following van de Pol and Wright (2009) we calculated 1) the mean value of decision 

time for each individual and 2) the observation’s deviation from the focal individual’s mean 
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value. We then built a model where decision accuracy was fitted as a binary response 

variable to which the among- and within-individual components of decision time were fitted 

as fixed effects. We also fitted exploration behaviour as a fixed effect into this model to test 

whether this behaviour mediated the trade-off (Table 2). Individual identity was included as 

a random effect. Finally, we tested whether the among- and within-individual effects of 

speed on accuracy differed statistically. To do so, we calculated the difference between the 

parameter estimates of the within- and among-individual effect of decision time, and 

assessed whether its credible interval overlapped zero. 

All statistical analyses were carried out using the packages “lme4” and “arm” of the 

statistical freeware R-3.1.2 (R Development Core Team, 2014). To obtain parameter 

estimates, we used the sim function to simulate values from the posterior distributions of the 

model parameters. Model fit was assessed by visual inspection of the residuals. Based on 

5000 simulations, we extracted 95% credible intervals (CI) around the mean (Gelman & 

Hill, 2007), representing the uncertainty around our estimates. Assessment of statistical 

support was obtained from the posterior distribution of each parameter. We considered an 

effect as “strongly supported” if zero was not included within the 95% CI, while estimates 

centred on zero provide strong support for the absence of an effect. However, in the cases 

where zero was included within the 95% CI, but where these was a clear skew in the 

distribution of the 95% CI, we considered the support for that effect as “unknown” as it was 

neither “strongly supported” nor “strongly not supported” (e.g. Dingemanse et al. 2012). 

 

RESULTS 

During the 6 trials of the decision-making task, birds chose on average, the correct feeder 

significantly more than would be expected by chance (binomial test: number of successes = 

117, number of trials = 186, P < 0.001; alternative hypothesis: true probability of success is 

not equal to 0.5). Mean decision accuracy was 0.63 (SE = 0.48, min=0, max=1); there was 

some support that decision accuracy improved over time within the average individual 

(effect of trial: 0.12, 95%IC = -0.06, 0.32). Mean decision time was 119.2 seconds 

(SE=343.1, min=1; max=3899); there was weak support that decision time also decreased 

over time within the average individual (effect of trial: -0.03, 95%IC = -0.12, 0.05). Neither 

decision speed nor accuracy differed between sexes or age-classes (Table 1). Furthermore, 

we found inconclusive support for the prediction that fast explorers spent less time to make 

a less accurate decision owing to credible intervals of these effects slightly overlapping zero 

(Table 1 and Fig S1). Decision time was repeatable (R= 0.68; 95% CI: 0.61, 0.75) as was 
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decision accuracy (R=0.26; 95% CI: 0.18, 0.34). These findings imply that both cognitive 

traits harbored both within and among-individual variation. 

 

Table 1. Sources of variation in (a) decision accuracy (binary variable: correct vs. incorrect 

choice) and (b) log-transformed decision time (seconds).  

 
Decision accuracy Decision time 

Fixed effects β (95% CI) β (95% CI) 

Intercept 0.30 (-0.69, 1.27) 3.98 (2.82,5.11) 

Sex -0.83 (-2.03,0.34) -0.96 (-2.33, 0.44) 

Age 0.51 (-0.68, 1.73) -0.08 (-1.49, 1.35) 

Exploratory tendency 0.05 (-0.02, 0.12) -0.04 (-0.11, 0.04) 

Random effects σ
2
 (95%CI) σ

2
 (95%CI) 

Individual 0.93 (0.57, 1.39) 2.23 (1.76, 2.89) 

Residual π
2/3

 1.09 (0.89, 1.34) 

Repeatability R (95% CI) R (95% CI) 

 
0.23 (0.16, 0.31) 0.67 (0.59, 0.75) 

We present fixed (β) and random (σ
2
) parameters, and adjusted repeatabilities (R), with their 95% 

credible intervals. The reference categories for categorical variables are “male” for “sex” and “older 

adult” for “age”.  

 

 

Decision time and accuracy covaried among-individuals as expected: we found strong 

support for a positive correlation between an individual’s mean values for decision speed 

and accuracy (see the Supplementary Material for an alternative analysis following Lüdtke 

et al. (2008) that confirms this finding based on a bivariate mixed-effects modelling 

approach). Faster birds (i.e. birds with a lower mean decision time) were more likely to take 

less accurate decisions (Table 2, Fig 2). In contrast, there was strong support for a lack of 

correlation between decision time and accuracy within-individuals: moment-to-moment 

changes in decision speed did not predict moment-to-moment changes in accuracy within 

the same individual (Table 2, Fig 2). Importantly, there was strong support for level-specific 

relationships between decision time and accuracy as the 95% CIs of parameter estimating 

the difference between the among-individual minus the within- individual effect of decision 

time did not overlap zero (mean: 0.58; 95% CI: 0.13, 1.05). This finding implies that more 

than one mechanism needs to be invoked to explain the covariance between these two 

cognitive traits in our dataset.  
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Figure 2. The effect of decision time on decision accuracy (a) among and (b) within individuals. We 

plot here (a) each individual’s average level of decision time and accuracy over 6 repeated 

observations (i.e. the among-individual relationship), and (b) each instance’s deviation of decision 

time and accuracy from the individual’s mean (i.e. the within-individual relationship). 

  

DISCUSSION 

We investigated the presence of trade-offs between speed and accuracy in a foraging context 

in great tits, and asked whether such trade-offs varied across hierarchical levels. As 

predicted and in line with previous studies (e.g. Chittka et al. 2003), we detected a speed-

accuracy trade-off at the among-individual level: some birds, on average, made slow but 

accurate decisions over repeated observations of their decisions, while others, on average, 

made fast but less accurate choices. At the same time, contrary to earlier evidence and our 

own expectations, we did not find empirical support for the presence of within-individual 

correlations in decision time and accuracy: within-individual moment-to-moment changes in 

decision time did not predict moment-to-moment change in accuracy. Importantly, among- 

and within-individual effects differed statistically, implying that there was strong evidence 

for different mechanisms governing trade-off across these two hierarchical levels. 

 

Level-specific associations between decision speed and accuracy 

We expected the trade-off between speed and accuracy to occur both among and within 

individuals provided that they were governed by a single mechanism. In contrast to 

expectations, the within-individual trade-off was not revealed by our data analysis. There 

are several methodological and biological reasons why within-individual trade-offs may not 

have been detected.  

We start by discussing two key methodological reasons. First, within-individual 

trade-offs may have existed but may have been masked by measurement error (Dingemanse 

& Dochtermann, 2013). This would represent a valid explanation if measurement error 
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explained a major proportion of the within-individual variation in both speed and accuracy 

(for a statistical argument, see Dingemanse, Dochtermann, and Nakagawa 2012). Given that 

we collected accurate measurements under laboratory conditions, we forcefully reject this 

explanation. Second, we might not have had enough statistical power to detect patterns of 

within-individual covariance. We also find this explanation highly unlikely because 

statistical power to detect correlations is much higher at the within- compared to the among-

individual level (Dingemanse & Dochtermann, 2013); we were able to detect significant 

effects at that among-individual level, implying that we must have been able to detect trade-

offs at the within-individual level as well. We therefore assume that there were instead 

multiple biological mechanisms causing level-specific patterns of covariance. 

 

Table 2. Estimates of among- and within-individual effects of decision time, and among-

individual effects of exploratory tendency on decision accuracy.  

 
Decision accuracy 

Fixed effects β (95% CI) 

Intercept -1.53 ( -2.82, -0.16) 

Decision time 
 

Among-individual effect 0.49 (0.17, 0.81) 

Within-individual effect -0.09 (-0.44, 0.26) 

Exploration tendency  0.07 (0.00, 0.141) 

Random effects σ
2
 (95%CI) 

Individual ID 0.60 (0.36, 0.93) 

Residual π
2/3

 

 Estimated effects (β; mean and σ
2
; variance) are reported with their 95% credible intervals. 

 

We propose two biological mechanisms explaining level-specific patterns of covariance 

between speed and accuracy. First, given the presence of empirical evidence for within-

individual trade-offs in other studies of cognition (Chittka et al., 2003), and growing 

awareness that trade-offs (e.g. between life-history traits) may be context-specific (Sgrò & 

Hoffmann, 2004), a key biological explanation centres on the notion that another biological 

process may have obscured our ability to detect the trade-off at the within-individual level. 

Specifically, the overall lack of correlation at the within-individual level may have been due 

to an individual-level character mediating the magnitude of the trade-off within individuals. 

In the context of our foraging paradigm, we can imagine that the trade-off might only have 

been expressed within individuals that were in poor body condition. This would imply that 

among-individual variation in body condition might have predicted the strength of the trade-

off within individuals, and that failure to have modelled this cross-level statistical 

interaction obscured our interpretation. In order to test this post hoc explanation, we re-ran 



66 
 

our analysis after including a term that modelled the interaction between an individual’s 

average body mass and its within-subject centred decision times. However, our statistical 

model did not support this idea (see Supplementary Material).  

A second biological explanation for level-specificity would imply that the within-

individual speed-accuracy trade-off did not exist. Given the experimental setup of our study, 

we view this as the most likely explanation for our finding of level specificity. Specifically, 

our experimental design probably gave rise to a dual role of decision accuracy. That is, 

among-individual variation in decision accuracy might reflect differences in both how well 

the task was learned (the genuine “decision accuracy”) and willingness to sample (Mathot, 

Wright, Kempenaers, & Dingemanse, 2012). By contrast, within-individual variation in 

accuracy might instead solely have reflected willingness to sample. An “inaccurate” 

decision might thus not reflect inaccuracy per se but rather an active sampling decision, and 

therefore not covary with decision time within-individuals. We view this explanation as 

relatively likely because the experiment was set up in a way that caused each feeder’s 

reward to be constant over the foraging trials experienced by an individual. Individuals that 

delayed their choice (i.e. took slower decisions) would not necessarily acquire better 

information since they had already learned what the good feeder was. To unequivocally 

disentangle the effect of sampling and learning on our measure of decision accuracy, it 

would have been necessary to measure decision-making traits in multiple independent tasks 

(e.g. Chittka et al. 2003).  For example, performing a series of independent foraging tasks 

would allow us to explore the strength of the trade-off under different conditions. Previous 

studies imply that the speed-accuracy trade-off depends on the difficult of the task and also 

if errors (i.e. incorrect choices in the current experiment) were punished (Chittka et al., 

2003, 2009). With our experimental design, the position of the feeders did not vary among 

the six experimental trials (i.e. their ‘correct’ decision was not changing) and incorrect 

choices were not penalized. We demonstrated that, on average, birds did learn to 

discriminate the correct option in our set-up; however, individuals may exhibit variation in 

learning speed which in turn, may have influenced the quantification of cognitive traits 

(Guillette et al., 2014; Guillette, Reddon, Hurd, & Sturdy, 2009). Nonetheless, this uneven 

effect on the performance of individuals can still be considered as evidence for the existence 

of among-individual variation in decision-making behaviour, independent of whether it is 

due to learning, sampling, or other processes. In fact, the goal of the training involved in this 

study was to provide all individuals with the same opportunities to learn the different food 

rewards rather than training the individuals to perform the task with the same level of 

accuracy). If all individuals had performed the task accurately in each foraging trial, we 

would not have observed any among-individual variation in decision accuracy and would 
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therefore not have been able to investigate speed-accuracy trade-offs at the among-

individual level.  

 

Sources of variation in decision speed and accuracy 

Our study also examined sources of variation in cognitive traits. A recent conceptual 

framework hypothesized a link between variation in cognition and personality (Sih & Del 

Giudice, 2012). This prediction is based on the hypothesis that behavioural types might also 

differ consistently in cognitive traits. We found inconclusive statistical support for the 

notion that individual-level exploratory tendency mediated the among-individual trade-off 

between decision time and accuracy. The distribution of credible intervals around the 

estimated effects of exploration behaviour on speed and accuracy were such that the data 

failed to strongly support either the presence or the absence of personality-related 

differences in cognition. This finding indicates that a larger data set would have been 

required to draw firm conclusions.  

 

Hierarchical thinking: the merit of the approach 

The variance partitioning approach represents an important means to better understand the 

hierarchical structuring of labile phenotypic characters (Araya-Ajoy & Dingemanse, 2014; 

Westneat et al., 2015a). Here, we applied the approach to investigate the hierarchical 

structuring of trade-offs. Quantification of trade-offs is generally challenging because their 

existence may often be obscured by other biological processes (Hadfield, Nutall, Osorio, & 

Owens, 2007; Morrissey, 2014; Sgrò & Hoffmann, 2004; van Noordwijk & de Jong, 1986). 

Indeed, as we showed in the current study, decision speed and accuracy traded off only 

among-individuals. Importantly, if we would not have partitioned the covariance between 

these two cognitive traits across the two hierarchical levels, we would likely have drawn 

erroneous conclusions (for statistical arguments, see van de Pol and Wright 2009; 

Dingemanse and Dochtermann 2013). Indeed, when we re-ran our original statistical model 

(presented in Table 2) to include the unpartitioned effect of decision speed on accuracy 

(instead of its among- and within-individual components), the strength of support for the 

existence of trade-offs was substantially decreased as the 95% CIs of the unpartitioned 

effect included zero (i.e., effect of the ‘raw’ decision time on accuracy: 0.19; 95% CI: -0.05, 

0.43).  

The current study utilized a variance partitioning approach to investigate whether 

short-term (i.e. within-day) repeatable individual differences in speed predicted short-term 

repeatable individual difference in accuracy, while simultaneously considering within-day 

within-individual patterns of covariance between these two cognitive traits. An exciting 
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avenue for future study would be to expand this paradigm to investigate patterns of 

covariance between cognitive traits at higher hierarchical levels. For example, it would be 

insightful to understand whether long-term individual differences in speed would also 

negatively covary with long-term difference in accuracy, since evidence for level specificity 

would shed light on the proximate (temporal) mechanism causing trade-offs between 

cognitive traits. Along the same lines, the hierarchical structure of such analyses may be 

expanded to study trade-offs at the population or species level, where patterns of covariance 

are likely governed by different mechanisms. For instance, information sampling as a 

mechanism can act at the within-individual receptor cell level, at the central nervous 

processing system level or at the within-population group level (e.g. as might be the case in 

social insects or human societies), and speed-accuracy trade-offs may occur at any of these 

organizational levels (Bogacz, Wagenmakers, Forstmann, & Nieuwenhuis, 2010; Chittka et 

al., 2009; Jandt et al., 2014). In short, this study calls for the exploration of speed-accuracy 

trade-offs across a wider range of hierarchical levels as this would help us understand the 

types of environmental and genetic factors mediating the covariance between cognitive 

traits.  

 

Concluding remarks 

This study demonstrated that two cognitive traits, decision speed and accuracy, involved in 

a foraging context, varied both within and among individuals as did the covariance between 

them. The multi-level structuring of these cognitive traits underlines the need to incorporate 

level-specificity in biological hypotheses explaining the maintenance of this variation 

(Araya-Ajoy & Dingemanse, 2014; Westneat et al., 2015a). Our foraging paradigm applied 

to great tits demonstrates the need for such considerations, as level-specific effects of trade-

offs resulted in level-specific patterns of covariance between these cognitive traits. This 

study thereby illustrates the usefulness of considering the contribution of multiple biological 

mechanisms in understanding phenotypic variation in cognitive and other labile phenotypic 

traits. 
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Electronic Supplementary Material of Chapter 2 

Text S1. Assessment of body condition 

For our experiments, we used 31 adult great tits that were caught between October and 

November 2014 in Seewiesen, southern Germany. Birds were transported to the laboratory 

within 30 minutes, weighed to the nearest 0.1 g after which standard morphological 

measurements were taken (e.g. tarsus, bill and wing length). The day following capture we 

measured the exploratory behaviour of birds between 07h00 and 07h30. Each individual’s 

body weight (nearest 0.1 g) was measured prior to assessing exploratory behaviour. This 

latter weight measure is the “body mass” data that we used in our analyses (see Discussion 

and Table S2-S3).   

Text S2. Alternative analyses of the among-individual speed-accuracy trade-off  

We verified that the reported support for the among-individual correlation was not an 

artefact due to bias that sometimes occurs when using within-subject centering approaches 

(Lüdtke et al., 2008). To do so, we applied a bivariate mixed-modelling model approach 

where speed and accuracy were both simultaneously fitted as response variables. This 

bivariate model revealed that decision speed was indeed significantly positively correlated 

with decision accuracy at the among-individual level (among-individual correlation = 0.53, 

95 % 95% CI =0.18, 0.86).  

We used the following methodology for this alternative statistical analysis: we 

estimated the among-individual correlation between decision speed and decision accuracy 

using a Markov-chain Monte-Carlo bivariate mixed-effects model in the R package 

MCMCglmm (Hadfield, 2010). With this alternative approach, it was not possible to 

estimate within-individual correlations because of the properties of the binomial distribution 

of decision accuracy. This bivariate mixed-effects model included random intercepts for 

individual identity. We ran the model for 33,000,000 iterations, with a thinning interval of 

3,000, and a burn-in of 30000. This yielded effective sample sizes of 10990 for all 

(co)variances. We visually inspected plots of the traces and posterior distributions as well as 

calculated the autocorrelation between samples to ensure that all models yielded unbiased 

estimates. We ran the model using an inverse gamma prior. We calculated the among-

individual correlation of decision speed and accuracy by dividing the among-individual 

covariance between the two traits by the square root of the product of the among-individual 

variances. 
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Table S1. Effects of experimental sequence and preference for a feeder location 

Sources of variation in (a) decision accuracy (binary variable: correct vs. incorrect choice) 

and (b) log-transformed decision time (seconds). We used the same statistical model as 

detailed in the Main text (Table 1) with the difference that here we fitted the experimental 

sequence (covariate; order of experimental day ranged from 1 to 4) and feeder location 

(factor: high reward vs. low reward) as fixed effects. Estimate effects (β; mean and σ
2
; 

variance) are reported with their 95% Credible Interval. The reference category for the 

feeder location variable is “the right location” as opposed to “the left location”. 

 

 
(a) Decision accuracy (b) Decision time 

Fixed effects β (95% CI) β (95% CI) 

Intercept 0.52 (-0.65, 1.75) 3.95 (2.60, 5.30) 

Experimental sequence 0.08 (-0.39, 0.54) -0.17 (-0.70, 0.33) 

Feeder location  -0.11 (-1.11, 0.90) -0.91 (-2.07, 0.20) 

Random effects σ
2
  (95%CI) σ

2
  (95%CI) 

Individual ID 1.14 (0.69, 1.64) 2.20 (1.78, 2.80) 

Residual π
2/3

 1.08 (0.89, 1.34) 

Repeatability  R (95% CI)  R (95% CI) 

 
0.27 (0.18, 0.34) 0.67 (0.58, 0.74) 
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Table S2. Effects of body mass 

We examine the effect of among- and within-individual variation in decision time on 

accuracy. We used the same statistical model as detailed in the Main text (Table 2) with the 

difference that here we fitted body mass (covariate; in grams) and the interaction between 

body mass and the within-individual component of speed as fixed effects. Estimated effects 

(β; mean and σ
2
; variance) are reported with their 95% credible interval. Notably, the 

reported evidence for the absence of evidence for mass-mediated within-individual trade-

offs was also found when tarsus (a measure of structural size) and its interaction with 

within-subject centred decision speed were fitted as fixed effects, or when residuals of the 

relationship between mass (response) and tarsus (predictor) were used instead (Results not 

shown), implying that these findings are not biased by variation in structural size. 

 
Decision accuracy 

Fixed effects β (95% CI) 

Intercept -0.59 ( -1.65, 0.44) 

Decision time 
 

Among-individual effect 0.41 (0.10, 0.73) 

Within-individual effect -0.10 (-0.45, 0.27) 

Body mass 0.04 (-0.41, 0.50) 

Body mass × Decision time within individuals  -0.05 (-0.45, 0.37) 

Random effects σ
2
  (95% CI) 

Individual ID 0.84 (0.51, 1.29) 

Residual π
2/3
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Figure S1. Effect of Exploration on Decision Speed and Decision Accuracy 
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        Chapter 3 

To eat and not be eaten: diurnal mass gain 

and foraging strategies in wintering great tits 

 

Maria Moiron, Kimberley J. Mathot, and Niels J. Dingemanse 

 

ABSTRACT 

Adaptive theory predicts that the fundamental trade-off between starvation and predation 

risk shapes diurnal patterns in foraging activity and mass gain in wintering passerine birds. 

Foragers mitigating both types of risk should exhibit a bimodal distribution (increased 

foraging and mass gain early and late in the day), whereas both foraging and mass gains 

early (versus late) during the day are expected when the risk of starvation (versus predation) 

is greatest. Finally, relatively constant rates of foraging and mass gain should occur when 

the starvation–predation risk trade-off is independent of body mass. Using automated 

feeders with integrated digital balances, we estimated diurnal patterns in foraging and body 

mass gain to test which ecological scenario was best supported in wintering great tits Parus 

major. Based on data of 40 consecutive winter days recording over 12 000 body masses of 

28 individuals, we concluded that birds foraged and gained mass early during the day, as 

predicted by theory when the starvation– predation risk trade-off is mass-dependent and 

starvation risk outweighs predation risk. Slower explorers visited the feeders more often, 

and decreased their activity along the day more strongly, compared with faster explorers, 

thereby explaining a major portion of the individual differences in diurnal patterning of 

foraging activity detected using random regression analyses. Birds did not differ in body 

mass gain trajectories, implying both that individuals differed in the usage of feeders, and 

that unbiased conclusions regarding how birds resolve starvation–predation risk trade-off 

require the simultaneous recording of foraging activity and body mass gain trajectories. Our 

study thereby provides the first unambiguous demonstration that individual birds are 

capable of adjusting their diurnal foraging and mass gain trajectories in response to 

ecological predictors of starvation risk as predicted by starvation–predation risk trade-off 

theory 
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INTRODUCTION  

Small passerines rely on body reserves as their main means of energy storage in winter 

(Witter & Cuthill, 1993). Body reserves act as ‘insurance’ against detrimental effects of 

interrupted food supplies, and are therefore predicted to decrease the risk of starvation (Dall, 

2010; Houston & McNamara, 1993; Lima, 1986). Carrying body reserves, however, also 

comes with associated costs in the form of increased risk of predation. Extra body reserves 

increases predator exposure because it decreases manoeuvrability or take-off ability 

(Brodin, 2001; Gosler, Greenwood, & Perrins, 1995; Walters et al., 2017). Individual 

foragers have to resolve this predation-starvation risk trade-off to maximize overwinter 

survival (Houston & McNamara, 1993; Houston, McNamara, & Hutchinson, 1993). For 

small passerines, adaptive models predict that this trade-off can be resolved by individuals 

varying the amount of reserves carried (thus varying their body mass) both within days (e.g., 

between dawn and dusk) and among days (e.g., across successive days or between seasons) 

as a form of adaptive phenotypic plasticity (Houston & McNamara, 1993; Houston et al., 

1993; McNamara, Houston, & Lima, 1994). Species inhabiting seasonal environments, for 

instance, down-regulate their mass from winter to summer as predicted by theory 

(Lehikoinen, 1987). By contrast, comparatively few studies have empirically tested 

theoretical predictions regarding adaptive short-term (i.e., within day) regulation of body 

mass, particularly in the wild (Lilliendahl, 2002; Macleod, Gosler, & Cresswell, 2005; 

Thomas, 2000). 

Adaptive theory predicts that small passerine birds should increase their body mass 

(i.e., build up energy reserves) between dawn and dusk to survive the night, predicated on 

the fact that small birds lose mass overnight (e.g., Lima 1986; Houston and McNamara 

1993; Bednekoff and Houston 1994; McNamara, Houston, and Lima 1994). Previous work 

on body mass trajectories carried out under laboratory conditions has already demonstrated 

that birds are able to plastically adjust their body mass under artificially increased risk of 

starvation or predation (e.g., Bednekoff and Krebs 1995; Lilliendahl et al. 1996; Lilliendahl 

1998; Brandt and Cresswell 2009). Diurnal mass regulation has also been demonstrated in 

the wild but remains relatively understudied (Lilliendahl, 2002; Macleod, Gosler, et al., 

2005; Thomas, 2000). Furthermore, mass regulation has never been studied in conjunction 

with foraging activity, which is expected to be the behavioural driver of these fattening 

patterns. Studies conducted directly in natural populations are of vital importance because 

the evolution of body mass regulation has ultimately been moulded by natural selection in 

an ecological context that may not be adequately mimicked in the laboratory. This implies 

that field-based confirmation of adaptive theory would be particularly insightful. Field 



82 
 

studies are, moreover, extremely suitable for testing a wide range of general predictions 

related to how diurnal body mass regulation varies as a function of abiotic (e.g., day length, 

and night temperature) and biotic (e.g., food availability and predation risk) factors. 

Diurnal variation in body mass trajectories is ultimately thought to result from 

plastic adjustments in foraging behaviour over the day (Houston et al., 1993). While the 

former has at times been used as a proxy for the latter, foraging activity per se has received 

relatively less attention in studies of the starvation-predation risk trade-off (Bonter, 

Zuckerberg, Sedgwick, & Hochachka, 2013). Importantly, theoretical models of optimal 

foraging predict a bimodal distribution of foraging activity  in situations where the risk of 

starvation and the risk of predation are both of relatively high importance (McNamara et al., 

1994; Pravosudov & Lucas, 2001). Under such ecological conditions, individuals should 

restrict most of their foraging activity to right after dawn and right before dusk. These 

patterns are expected because early in the day body reserves are at their lowest, and birds 

thus need to rapidly build up extra reserves to insure against the possibility of food being 

unavailable later in the day; right before dusk, by contrast, body reserves will only expose a 

forager to increased (i.e., mass-dependent) predation risk for a relatively short period of time 

(McNamara et al., 1994). A different type of diurnal pattern would be expected when 

starvation risk is of relatively much greater importance than predation risk (McNamara et 

al., 1994). In such ecological conditions, mass should be gained as early in the day as 

possible, to insure against later unavailability of food. Once sufficient mass (energy 

reserves) is acquired, birds should reduce their exposure to predators by seeking a refuge 

and avoid foraging for the rest of the day. The opposite pattern would be expected when 

predation risk is of relatively much greater importance.  In that case, nearly all mass gain 

should be delayed until towards the end of the day (McNamara et al., 1994). Finally, when 

the starvation-predation risk trade-off is independent of mass (i.e. the level of energy 

reserves have no effect on either predation or starvation risk), a constant mass gain over the 

day is expected (i.e. the “risk- spreading theorem”, Houston, McNamara and Hutchinson 

1993).  In other words, theory predicts that the ecological conditions (i.e., the combination 

of levels of risk of predation and starvation) should affect both foraging and mass gain 

trajectories, and thereby calls for field studies that quantify both aspects under natural 

conditions. Previous work on free-living birds has focused on documenting either foraging 

activity (Bonter et al., 2013) or diurnal mass trajectories (Lilliendahl, 2002; Macleod, 

Gosler, et al., 2005) and has therefore not considered how the trade-off between avoiding 

risk of starvation and predation simultaneously shapes both traits. 

A practical problem associated with testing predictions derived from adaptive 

foraging theory is the difficulty of measuring mass gain and foraging behaviours directly in 
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the wild. Research on diurnal patterns in body weight in small passerine birds has often 

relied on measurements made during capture (e.g., Lehikoinen 1987; Gentle and Gosler 

2001), which may consequently change birds’ perception of predation risk, and thereby 

affect any subsequent measurement (Macleod & Gosler, 2006). For instance, great tits 

(Parus major) change their foraging behaviour in response to human disturbance (e.g., 

catching and handling) in a similar way as they would after encountering predators 

(Macleod & Gosler, 2006). Fortunately, technological developments, in the form of 

electronic balances capable of automatically registering both individual identity (by means 

of reading Passive Integrated Transponder (PIT) tags and Radio-Frequency Identification 

(RFID) antennas) and body mass, provide the opportunity to gather vast amounts of 

repeated measures on both foraging and mass trajectories on large numbers of individuals in 

the wild without requiring repeated capture and release (Bonter et al., 2013; Macleod, 

Gosler, et al., 2005). These technological advances enable research on starvation-predation 

trade-offs to empirically test predictions that go beyond population-level predictions 

because they allow testing key aspects of theory that require the estimation of among- and 

within-individual variation. For example, do individuals differ in how they resolve the 

starvation-predation risk trade-off, and if so which phenotypic traits mediate individual-

level variation? Similarly, is there within-individual variation (e.g. among days or years) in 

how this trade-off is resolved, and if so, which ecological factors vary to cause such effects?  

Differences in how individuals resolve the starvation-predation risk trade-off could 

arise if birds differ either in perceived or in actual starvation and/or predation risk. Such 

individual differences could be caused by individuals experiencing different environmental 

conditions or related to individual-specific phenotypic attributes such as sex, size or 

behavioural type. Individual-specific phenotypes affecting the ability to monopolize 

resources (e.g., aggressiveness, size, or sex affecting dominance) likely affect the risk of 

starvation (Koivula, Orell, Rytkönen, & Lahti, 1995; Krams, 2000; Lange & Leimar, 2004; 

Verhulst & Hogstad, 1996), while individual-specific phenotypes affecting exposure to 

predators (e.g., risk-taking behaviours, like willingness to foraging alone or in the open) 

may affect risk of predation (Abbey-Lee, Mathot, & Dingemanse, 2016). Furthermore, at 

the within-individual level, variation in the optimal resolution of the trade-off should exist 

because of variation in abiotic factors, like (night) temperature and day length, which affect 

the energetic requirements for self-maintenance and the time window available for foraging, 

respectively (Cuthill, 2000; Krams et al., 2010; Thomas & Cuthill, 2002; Witter & Cuthill, 

1993). Seasonal changes in diurnal body mass patterns are therefore expected because when 

conditions become harsh, such as in winter, birds may face greater energetic requirements 

and adjust their diurnal mass gain strategies accordingly.  
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In this study, we quantified among- and within-individual variation in body mass 

and foraging activity in a wild population of great tits. Using custom-made automated 

weighing-feeding systems, we recorded 12 678 feeder visits of 28 individual great tits over 

40 consecutive winter days. Our first objective was to quantify the total amount of 

phenotypic variation in body mass and foraging activity, and to partition this variation into 

its underlying within- and among-individual components. Our second objective was to 

investigate the shape of the diurnal mass gain and foraging activity patterns. We tested 

whether birds concentrated their mass gain and foraging activity (i) either around dawn and 

dusk (as predicted when both starvation and predation risk are of high importance), (ii) 

around the first half of the day (as predicted if starvation risk is greatest), (iii) around the last 

half of the day (as predicted if predation risk is greatest), (iv) or evenly over the day (as 

predicted by the risk-spreading theorem) (Houston et al., 1993; McNamara et al., 1994). Our 

third objective was to assess whether differences in body mass and foraging activity 

trajectories were a function of individual-specific phenotypic attributes or abiotic 

environmental conditions predicted to affect the optimal resolution of the starvation-

predation risk trade-off. 

 

MATERIALS AND METHODS 

The study was carried out in a forest plot in Bavaria, south-western Germany (47
o
58’ N, 

11
o
14’ E). Birds were captured with mist nets and marked with one aluminium and three 

colour rings if not previously marked. Directly following capture, we recorded the 

behaviour of the captured individual for a 2-min period in a 61 L × 39 W × 40 H cm cage, 

where the total number of hops among different sections of the cage (see Fig 1 in Stuber et 

al. 2013) was used to measure its activity (Araya-Ajoy et al., 2016). Activity in a novel 

environment, labelled ‘exploration behaviour’, represents a proxy for risk-taking behaviour 

as it correlates with anti-predator boldness (Stuber et al., 2013). After the behavioural test, 

we determined sex and age based on plumage characteristics and took standard 

morphological measurements (e.g. tarsus and wing length). Finally, each bird was implanted 

with a PIT-tag subcutaneously in the back above the scapula (Nicolaus, Bouwman, & 

Dingemanse, 2008), and released at its capture site. Previous work on great tits has shown 

that our protocol of PIT-tag implantation has no effect on survival (or other fitness 

components) (Nicolaus et al., 2008). 
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Automated weighing-feeding system 

We used an automated weighing-feeding system (‘feeder’; designed by Dorset, The 

Netherlands) to automatically weigh PIT-tagged birds when visiting the feeder. The system 

consisted of an electronic scale placed at the feeder entry suspended to one side. Thus, when 

a bird landed on the scale to feed, its tag was detected and the bird weighed (see 

Supplementary Material for a detailed description of feeder programming and functioning). 

Feeders were filled with peanut kernels, which were ground into tiny fragments because 

complete kernels might quickly be picked up and consumed elsewhere (i.e., within 

protective cover away from the feeder) and thus result in insufficient time at the platform to 

acquire an accurate weight measurement.  

 

Study design 

In July 2015 two simple (non-automated) feeders baited with ad libitum sunflower seeds 

were placed in the forest plot for 3 months to attract and familiarize birds with the set-up. 

One week prior to the onset of data collection (10 November 2015), these two simple 

feeders were replaced by two feeders with the weighing-feeding system described above. 

We used two feeders to cover a greater area of the study plot and thus, to increase the 

number of individuals with potentially access to the feeders. The study ran for 40 days (10 

November 2015 to 20 December 2015). The two feeder sites consisted of small shrubs 

surrounded by mature beech woodland with similar habitat characteristics of forest 

structure, cover and exposure to weather. 

Environmental data 

We used daily weather data from a nearby weather station (Rothenfeld weather station, 4 

km distance from study site, Agrarmeteorologie Bayern, www.am.rlp.de). We extracted 

average temperatures for each day (i.e. average temperature during day-time and preceding-

night of focal day). Daily sunrise and sunset times were acquired from the website 

www.timeanddate.com, using the nearest available location to the field site (Starnberg city; 

6 km distance from study site). Day length was subsequently calculated for each day by 

subtracting sunrise times from sunset times. 

 

Statistical analyses 

We used a reaction norm approach to quantify variation in body mass and foraging activity 

within and among individuals. In both cases, we first fitted a model estimating population-

average and individual-specific (linear and nonlinear) effects of time of day (Model 1), and 

then expanded the focal model to additionally quantify whether reaction norm variation was 

http://www.am.rlp.de)/
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attributable to environmental covariates (temperature, day length; Model 2) and individual-

level phenotypic traits (sex, size, exploration behaviour; Models 3a-c).  

 Analyses of body mass Variation in body mass was normally distributed and 

modelled using random-regression mixed-effects models that assumed Gaussian errors. The 

initial model focused on testing for (non)linearity of diurnal variation in mass regulation, 

and therefore fitted both the linear and quadratic effect of time of day (expressed in decimal 

fractions of hours after sunrise; continuous variable) as fixed effects (Model 1). The mixed-

effects model further included random intercepts for individual identity (28 levels) as well 

as random slopes with respect to the linear and quadratic effects of time of day. Covariances 

between random terms (i.e., intercept–linear slope, intercept–quadratic slope, and linear 

slope–quadratic slope covariances) were also modelled. We further estimated individual 

repeatability as the among-individual variance divided by the total phenotypic variance 

(Nakagawa & Schielzeth, 2010). This initial analysis thereby enabled us to fully quantify 

how individuals differed in the (non)linearity of diurnal body mass trajectories.  

 As a second step, Model 1 was expanded to test whether within-individual variation 

in reaction norm components could be attributed to environmental variation (Model 2). 

Average daily temperature and day length were therefore included as fixed-effects, as well 

as their two-way interactions with (non)linear time of day effects. We included the mean 

temperature of the focal day in our analyses because temperature variables are usually 

highly correlated and this variable has been used in previous studies (Bonter et al., 2013; 

Macleod, Gosler, et al., 2005). 

 As a third step, Model 2 was expanded to test whether among-individual variation 

in reaction norm components could be attributed to individual-specific traits (Model 3a-c). 

The following individual-level traits were included as fixed effects: sex (factor: male or 

female), size (covariate: tarsus length centred within-sex) and exploration behaviour 

(covariate: total number of hops among cage locations). Tarsus was centred within sex to 

break the collinearity between sex and size caused by the species’ sexual dimorphism 

(Gosler & Harper, 2000). We also included all two-way interactions between phenotypic 

traits and the linear, or quadratic, component of time of day, to test for phenotype-dependent 

variation in diurnal mass changes (see Introduction). Including all traits (and their two-

interactions) as predictor variables into the same model would have caused an over-

parameterized model; we therefore decided to evaluate the effects of each trait separately 

(Models 3a, 3b, 3c). Exploration behaviour data was missing for three out of 28 individuals 

and those individuals were given the average population phenotypic value (re-analysis of the 

data excluding these three individuals did not change our findings, results not shown). 

Owing to evidence for age-related variation in body mass (Gosler & Harper, 2000), we also 
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considered including age (first-year vs. older) as a predictor variable. Inclusion of age was, 

however, not possible because our sample harboured insufficient variation (only two out of 

28 individuals were first-year birds). 

Analyses of foraging activity We defined foraging activity as a binary variable by 

quantifying whether an individual was present (yes/no) at the feeder within 1-hour time 

blocks (for a detailed discussion of our reasons for this definition of foraging activity, see 

Supplementary Material). Foraging activity (0 = absent from the feeder within a given time 

block, 1 = present at the feeder) was modelled with a Binomial error structure where 

residual variance was taken to be π
2
/3 (Nakagawa & Schielzeth, 2010). Days where a focal 

bird was not present at all were removed because this would cause uninterpretable variation 

in reaction norm slopes. Variation in foraging activity was subsequently modelled by fitting 

Models 1 through 3c as described above for our analyses of body mass.  

 General modelling procedures All covariates included in our models were mean-

centred and standardized to the standard deviation units. We evaluated the importance of 

considering temporal autocorrelations but we chose not to control for it in our models (for 

statistical approaches and results, see Supplementary Material). Statistical analyses for the 

univariate models were carried out using the packages “lme4” and “arm” of the statistical 

freeware R-3.3.2 (R Development Core Team, 2016). To obtain parameter estimates, we 

used the sim function to simulate values from the posterior distributions of the model 

parameters. Model fit was assessed by visual inspection of the residuals. Based on 5000 

simulations, we extracted 95% credible intervals (CI) around the mean (Gelman & Hill, 

2007), representing the uncertainty around our estimates. Assessment of statistical support 

was obtained from the posterior distribution of each parameter. We considered an effect as 

“significant” if zero was not included within the 95% CI, while estimates centred on zero 

were considered to provide strong support for the absence of an effect. 

 

RESULTS 

Over the course of the study, we recorded 12 678 visits from 28 PIT-tagged individual great 

tits (20 males and 8 females). The population-average body mass was 18.96 g (SD: 1.03). 

An individual bird was recorded on average 20.61 on days (range: 1 to 40) and the 

probability that an individual bird was recorded on a given day was not influenced by sex, 

size, behavioural type, temperature or day length (results not shown). The mean number of 

visits per individual per day was 21.92 (range: 1 to 68). Mean daily temperature was 4.05°C 

(range: -4.64°C to 13.45°C) and mean day length was 8.69 hours (range: 8.37 h to 9.52 h).  
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Diurnal mass gain trajectories 

Individuals differed substantially in their average body mass over repeated observations as 

indicated by the existence of among-individual variation in reaction norm intercepts (Model 

1, Table 1). The repeatability of body mass was high (R = 0.88; 95% CI: 0.87, 0.89). Body 

mass increased relatively steeply early in the morning and levelled off towards the end of 

the day, as revealed by a positive linear and negative quadratic effect of time of day (Model 

1, Table 1, Fig 1a). Interestingly, individuals did not differ in their diurnal patterns of body 

mass gain (black lines in Fig 1a), as indicated by a near-zero among-individual variance in 

linear and quadratic reaction norm slopes with respect to time of day (Model 1, Table 1). 

Temperature and day length both affected the average body mass of individuals 

within days as well as its diurnal pattern: on colder days and on shorter days, individuals 

had higher body mass (indicated by the main effects of temperature and day length; Model 

2, Table 1). Furthermore, birds increased their body mass more steeply over the day when 

days were short (indicated by the interaction between day length and linear time; Model 2, 

Table 1). Both these environmental factors also affected the non-linear nature of mass gain 

over the day (indicated by their interactions with quadratic time; Model 2, Table 1). When 

days were colder, birds showed a more pronounced increase of mass gain compared to 

warmer days. 

As expected for this size-dimorphic species, males and structurally large individuals 

were heavier than females and structurally small individuals (main effect of sex and tarsus; 

Model 3a-b, Table 1) while heavier birds did not differ from leaner birds in exploration 

behaviour (no support for a main effect of exploration behaviour; Model 3c, Table 1). In 

line with our finding of a complete lack of among-individual variation in diurnal body mass 

trajectories (see above), neither sex, exploration behaviour, nor within-sex variation in body 

size explained variation in how body mass changed over the day (i.e., none of the 

interactions between (linear or quadratic) time and individual-specific attributes (sex, tarsus, 

exploration) deviated from zero; Table 1; Model 3a-c). 

 

Daily foraging strategies 

Individuals differed in how often they visited the feeders, indicated by the existence of 

among-individual variation in reaction norm intercepts for foraging activity (Model 1, Table 

2). Individual repeatability of foraging behaviour was, simultaneously, relatively low (R = 

0.14; 95% CI: 0.11, 0.17). Foraging activity further showed a non-linear pattern over the 

day (Table 2, Fig 1b). Birds started to feed just before sunrise (maximum 25 min before 

sunrise), after which they increased their foraging activity over the course of the morning. 

Foraging activity remained relatively stable during the rest of the day but subsequently 
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declined abruptly in the hour before sunset. Interestingly, individuals differed in how 

steeply their foraging activity declined over the day (as indicated by nonzero among-

individual variation in linear reaction norm slopes) and in how peaked their foraging activity 

was (among-individual variation in quadratic reaction norm slopes, Model 1; Table 2; Fig 

1b). Patterns of among-individual covariance among intercepts and (linear and quadratic) 

slopes implied that birds visiting the feeders relatively more often showed stronger 

decreases in foraging activity (as indicated by a negative intercept-linear slope covariance) 

while such birds also had a more marked peak of foraging activity (as indicated by a 

negative intercept-quadratic slope covariance) (Fig 1b). 

Temperature and day length both affected the average foraging activity of 

individuals within days as well as its diurnal  pattern: on colder days and on shorter days, 

individuals visited the feeders more often (indicated by the main effects of temperature and 

day length; model 2, Table 2). Furthermore, birds increased their foraging activity more 

steeply over the day when days were short (indicated by the interaction between day length 

and linear time; model 2, Table 2). When days were shorter the birds also showed a more 

marked peak in their foraging activity (indicated by the interaction between day length and 

quadratic time; model 2, Table 2).    

 

Figure 1. Diurnal variation in winter body mass and foraging activity. We present posterior 

distributions of estimates from non-linear reaction norm models of body mass as a function of time of 

day (hours after sunrise) (A) and foraging activity and as a function of time blocks (1-hour time 

block) (B). Open grey circles represent raw data (jittered in vertical direction), solid lines represent 

single individuals, and dotted line represents population average and its shaded grey area, 95% CI. 
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Relatively slow-explorers visited the feeders more often and decreased their activity 

along the day more strongly compared to relatively fast-explorers (non-zero main effect of 

exploration and linear term interaction; Model 3c, Table 2, Fig 2).  Importantly, exploration 

behaviour explained a large amount of the covariance between the intercept and linear slope 

of time (as the intercept-slope covariance estimate reduced substantially between Model 1 

and 2).  Interestingly, exploration behaviour did not explain the intercept–quadratic slope 

covariance, implying that another trait that we did not measure caused this effect. None of 

the other phenotypic traits (sex or size) explained variation in average level of either 

foraging activity or foraging trajectories (i.e., no evidence for main effects of sex and tarsus 

and none of the interactions between (linear or quadratic) time deviated from zero; Table 2; 

Models 3a-b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Non-linear effects of exploration behaviour on daily foraging patterns. Foraging activity 

was measured as binary (presence of an individual at the feeder in a given time block) and time 

along the day was divided into 1-hour blocks. Exploration was included as continuous predictor in 

our analysis but is grouped in terciles (i.e. “fast” represents high explorative individuals, and 

“slow”, low exploration scores) for illustrative purposes. Lines represent the effect of each category 

and shaded area, standard errors. 
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Table 1. Results from random regression models performed to quantify variation in body 

mass (measured as a continuous variable, in grams). 

 
Model 1 Model 2 Model 3a Model 3b Model 3c 

Fixed effects β (95% CI) β (95% CI) β (95% CI) β (95% CI) β (95% CI) 

Intercept 

19.00 

(18.63, 

19.38) 

19.00 

(18.65, 

19.42) 

18.01 

(17.45, 

18.57) 

19.04 

(18.66, 

19.41) 

19.06 

(18.62, 

19.46) 

Time (linear term) 
0.36 (0.33, 

0.39) 

0.37 (0.34, 

0.40) 

0.38 (0.32, 

0.45) 

0.37 (0.34, 

0.40) 

0.37 (0.34, 

0.40) 

Time (quadratic term) 
-0.06 (-0.09, 

-0.03) 

-0.05 (-0.08, 

-0.02) 

-0.06 (-0.11, 

-0.02) 

-0.05 (-0.07, 

-0.02) 

-0.05 (-0.07, 

-0.02) 

Sex [male] - 
- 1.38 (0.73, 

2.04) 

- - 

Sex [male] × Time (linear term) 
- - -0.02 (-0.09, 

0.05) 

- - 

Sex [male] × Time (quadratic 

term) 

- - 0.02 (-0.04, 

0.07) 

- - 

Within-sex centred tarsus 
- - - 0.28 (-0.10, 

0.73) 

- 

Within-sex centred tarsus × 

Time (linear term) 

- - - -0.01 (-0.04, 

0.03) 

- 

Within-sex centred tarsus × 

Time (quadratic term) 

- - - -0.00 (-0.04, 

0.04) 

- 

Exploration behaviour 
- - - - -0.07 (-0.43, 

0.28) 

Exploration behaviour × Time 

(linear term) 

- - - - -0.01 (-0.04, 

0.02) 

Exploration behaviour × Time  

(quadratic term) 

- - - - -0.01 (-0.03, 

0.01) 

Mean Temperature 
- -0.07 (-0.08, 

-0.06) 

-0.07 (-0.08, 

-0.06) 

-0.07 (-0.08, 

-0.06) 

-0.07 (-0.08, 

-0.06) 

Mean Temperature × Time 

(linear term) 

- -0.00 (-0.01, 

0.01)  

-0.00 (-0.01, 

0.01)  

-0.00 (-0.01, 

0.01)  

-0.00 (-0.01, 

0.01)  

Mean Temperature × Time  

(quadratic term) 

- -0.01 (-0.02, 

-0.00) 

-0.01 (-0.02, 

-0.00) 

-0.01 (-0.02, 

-0.00) 

-0.01 (-0.02, 

-0.00) 

Day length 
- -0.06 (-0.07, 

-0.05) 

-0.06 (-0.07, 

-0.05) 

-0.06 (-0.07, 

-0.05) 

-0.06 (-0.07, 

-0.05) 

Day length × Time (linear term) 
- -0.04 (-0.05, 

-0.03) 

-0.04 (-0.05, 

-0.03) 

-0.04 (-0.05, 

-0.03) 

-0.04 (-0.05, 

-0.03) 

Day length × Time  (quadratic 

term) 

- 0.01 (-0.00, 

0.01) 

0.01 (-0.00, 

0.01) 

0.01 (-0.00, 

0.01) 

0.01 (-0.00, 

0.01) 

      Random effects σ2  (95%CI) σ2  (95%CI) σ2  (95%CI) σ2  (95%CI) σ2  (95%CI) 

Among-individual 
     

Intercept 
1.03 (0.93, 

1.16) 

1.05 (0.97, 

1.17) 

0.67 (0.61, 

0.79) 

1.02 (0.92, 

1.21) 

1.07 (0.97, 

1.29) 

      
Linear term Slope 

0.01 (0.00, 

0.01)  

0.01 (0.00, 

0.01)  

0.01 (0.00, 

0.01)  

0.01 (0.00, 

0.01)  

0.01 (0.00, 

0.01)  

Quadratic term Slope 
0.00 (0.00, 

0.01)  

0.00 (0.00, 

0.01)  

0.00 (0.00, 

0.01)  

0.00 (0.00, 

0.00)  

0.00 (0.00, 

0.01)  

      Intercept–linear slope 

covariance 

0.01 (-0.22, 

0.23) 

0.15 (-0.07, 

0.36) 

0.32 (0.09, 

0.50) 

0.17 (-0.06, 

0.39) 

0.14 (-0.09, 

0.36) 

Intercept–quadratic slope 

covariance 

0.07 (-0.17, 

0.30) 

0.16 (-0.09, 

0.39) 

0.07 (-0.19, 

0.32) 

0.14 (-0.10, 

0.38) 

0.16 (-0.09, 

0.40) 

      Linear slope–quadratic slope 

covariance 

-0.07 (-0.33, 

0.19) 

-0.08 (-0.37, 

0.20) 

-0.06 (-0.35, 

0.22) 

-0.09 (-0.37, 

0.19) 

-0.07 (0.36, 

0.21) 

      Within-individual  
     

Residual variance 
0.14 (0.14, 

0.15) 

0.13 (0.12, 

0.13) 

0.13 (0.12, 

0.13) 

0.13 (0.12, 

0.13) 

0.13 (0.12, 

0.13) 

Point estimates and 95% credible intervals (CI) are provided for each fixed (β; mean) and 

random (σ
2
; variance) parameter. 
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Table 2. Results from random regression models performed to quantify variation in 

foraging activity (measured as binary trait, presence at feeder at a given 1-hour time block). 

 

 
Model 1 Model 2 Model 3a Model 3b Model 3c 

Fixed effects β (95% CI) β (95% CI) β (95% CI) β (95% CI) β (95% CI) 

Intercept 
-0.42 (-0.76, 

-0.09) 

-0.34 (-0.68, 

0.01) 

-0.03 (-0.65, 

0.59) 

-0.33 (-0.66, 

0.01)  

-0.29 (-0.59, 

-0.03) 

Time (linear term) 
-0.34 (-0.41, 

-0.27) 

-0.36 (-0.43, 

-0.28) 

-0.43 (-0.57, 

-0.30) 

-0.35 (-0.42, 

-0.28) 

-0.37 (-0.43, 

-0.31) 

Time (quadratic term) 
-0.24 (-0.36, 

-0.12) 

-0.27 (-0.39, 

-0.16) 

-0.33 (-0.55, 

-0.09) 

-0.27 (-0.39, 

-0.16) 

-0.28 (-0.40, 

-0.16) 

Sex [male] 
- - -0.42 (-1.16, 

0.30) 

- - 

Sex [male] × Time (linear term) 
- - 0.11 (-0.04,  

0.26) 

- - 

Sex [male] × Time (quadratic 

term) 

- - 0.07 (-0.19, 

0.33) 

- - 

Within-sex centred tarsus 
- - - -0.17 (-0.54, 

0.20) 

- 

Within-sex centred tarsus × Time 

(linear term) 

- - - -0.03 (-0.10, 

0.05) 

- 

Within-sex centred tarsus × Time 

(quadratic term) 

- - - 0.04 (-0.09, 

0.18) 

- 

Exploration behaviour 
- - - - -0.36 (-0.67, 

-0.06) 

Exploration behaviour × Time 

(linear term) 

- - - - 0.08 (0.00, 

0.13) 

Exploration behaviour × Time  

(quadratic term) 

- - - - 0.07 (-0.05, 

0.18) 

Mean Temperature 
- -0.14 (-0.24, 

-0.04) 

-0.14 (-0.24, 

-0.05) 

-0.14 (-0.24, 

-0.04) 

-0.14 (-0.24, 

-0.04) 

Mean Temperature × Time 

(linear term) 

- -0.07 (-0.13, 

-0.01) 

-0.07 (-0.13, 

-0.01) 

-0.07 (-0.14, 

-0.01) 

-0.07 (-0.13, 

-0.01) 

Mean Temperature × Time  

(quadratic term) 

- 0.05 (-0.02, 

0.13) 

0.05 (-0.02, 

0.13) 

0.06 (-0.02, 

0.13) 

0.05 (-0.02, 

0.13) 

Day length 
- -0.44 (-0.54, 

-0.34) 

-0.44 (-0.54, 

-0.34) 

-0.44 (-0.54, 

-0.34) 

-0.43 (-0.54, 

-0.34) 

Day length × Time (linear term) 
- 0.25 (0.18, 

0.31) 

0.25 (0.18, 

0.31) 

0.25 (0.18, 

0.32) 

0.24 (0.18, 

0.31) 

Day length × Time  (quadratic 

term) 

- 0.21 (0.14, 

0.29) 

0.21 (0.14, 

0.29) 

0.22 (0.14, 

0.29) 

0.21 (0.14, 

0.29) 

      Random effects σ2  (95%CI) σ2  (95%CI) σ2  (95%CI) σ2  (95%CI)  σ2  (95%CI) 

Among-individual 
     

Intercept 
0.74 (0.54, 

0.98) 

0.76 (0.55, 

1.00) 

0.75 (0.54, 

0.98) 

0.76 (0.55, 

1.01) 

0.61 (0.45, 

0.81) 

      
Linear term Slope 

0.03 (0.02, 

0.04) 

0.01 (0.00, 

0.01) 

0.01 (0.01, 

0.01) 

0.04 (0.02, 

0.07) 

0.04 (0.02, 

0.06) 

Quadratic term Slope 
0.02 (0.02, 

0.03) 

0.00 (0.00, 

0.00) 

0.00 (0.00, 

0.00) 

0.03 (0.03, 

0.04) 

0.03 (0.03, 

0.04) 

      
Intercept–linear slope covariance 

-0.61 (-0.80, 

-0.34) 

-0.87 (-0.93, 

-0.77) 

-0.85 (-0.93, 

-0.75) 

-0.55 (-0.77, 

-0.26) 

-0.06 (-0.42, 

0.30) 

Intercept–quadratic slope 

covariance 

-0.61 (-0.73, 

-0.45) 

-0.64 (-0.77, 

-0.45) 

-0.61 (-0.76, 

-0.43) 

-0.61 (-0.72, 

-0.50) 

-0.55 (-0.66, 

-0.44) 

      Linear slope–quadratic slope 

covariance 

0.74 (0.55, 

0.87) 

0.63 (0.42, 

0.79) 

0.61 (0.40, 

0.78) 

0.37 (0.04, 

0.65) 

0.05 (-0.33, 

0.41) 

      Within-individual 
     

Residual variance π2/3 π2/3 π2/3 π2/3 π2/3 

Point estimates and 95% credible intervals (CI) are provided for each fixed (β; mean) and 

random (σ
2
; variance) parameter. 
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DISCUSSION 

Theoretical models predict that a fundamental trade-off between risk of starvation and risk 

of predation shapes diurnal patterns in foraging activity and mass gain in wild passerine 

birds. A bimodal distribution in foraging activity and mass gain (due to peaks at the 

beginning and at the end of the day) is expected for foragers mitigating both types of risk. 

Early foraging activity and mass gain are expected when the risk of starvation is greater. In 

contrast, delayed foraging activity and mass gain are expected when the risk of predation is 

greater. A relatively constant rate of foraging and mass gain throughout the day (i.e. spread 

the risk) is instead expected when the starvation-predation risk trade-off is independent of 

body mass. In this study, we simultaneously quantified foraging activity and body mass in 

free-living great tits. We observed no individual differences in mass gain trajectories but 

birds did differ in their foraging strategies. Furthermore, we found that exploration 

behaviour partly explained observed among-individual differences in diurnal patterns of 

foraging activity, and that the diurnal patterns in both traits varied within-individuals as a 

function of mean day temperature and day length. Overall, our results are consistent with the 

birds responding to a mass dependent starvation-predation risk trade-off where starvation 

risk is considerably higher than predation risk. 

 

Diurnal patterns  

Diurnal mass gain was highest after dawn, and slowly decreased over the course of the day 

with very little mass gained in the second half of the day. This mass gain pattern matches 

relatively well with the actual foraging activity demonstrated in our study at the population 

level. This suggests that unbiased estimates of within-individual patterns for foraging 

activity were captured by the birds’ visits to our feeders, and that the (unobserved) usage of 

alternative food sources (elsewhere in the forest) did not greatly bias observed population-

level patterns. Birds showed an initial burst of foraging activity in the morning, decreased 

feeding relatively uniformly throughout the day, and terminated feeding abruptly as sunset 

approached. The initial rapid increase in body mass can therefore be explained by early 

foraging activity beginning right before sunrise (i.e. when birds would be energy-depleted 

following a night of fasting). For the remainder of the day, the rate of mass gain was lower. 

At the end of the day, we observed the opposite pattern; birds dropped their foraging 

activity an hour before sunset. This early termination of feeding under daylight conditions 

could imply that birds reached their satiation threshold (Houston & McNamara, 1993), 

which seems biologically unlikely. Alternatively, our results may also be explained by other 

mechanisms such as an increase in predation risk later in the day. Certain predators (e.g. 

owls and sparrowhawks) might have a late-day peak in their foraging activity (McNamara, 
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Barta, Houston, & Race, 2005), in which case, great tits might not face a constant risk of 

predation over the day but instead, suffer a higher predation risk around dusk. This pattern 

of late-day drops in foraging activity has also been reported for other wintering birds 

(Bonter et al., 2013; Lima, 1988). Another possibility is that predation risk could be 

minimized to become zero, for example, if birds make use of refuges. After taking an 

increased foraging risk and gaining enough mass to survive overnight great tits can take 

advantage of the refuge effect (Houston et al., 1993) by seeking cover and waiting out the 

rest of the day with the minimum possible energy expenditure (Cresswell, 1998). Overall, of 

the four hypotheses proposed to explain our patterns of diurnal mass gain and foraging 

activity, our results are more consistent with the hypothesis of an early foraging activity and 

mass change due to a higher starvation risk. Therefore, we tentatively conclude that our 

findings imply that small birds face higher starvation compared to predation risk in winter 

and that the balance between avoiding the risks of starvation and predation is consequently 

skewed towards reducing starvation risk during those winter months. 

 

Ecological conditions 

Theory also predicts that starvation and predation risks should vary over time and between-

individuals due to variation in environmental factors. Indeed, birds seem to use day length 

and to a lesser extent, daily mean temperature as proximate cues to assess how much 

foraging to perform and mass to gain. As nights become longer, there is a greater risk that 

reserves will be depleted before foraging can resume at dawn (Bednekoff & Houston, 1994; 

Houston & McNamara, 1993, 1999; McNamara et al., 1994). This tendency acts in 

conjunction with the temperature effect because temperatures tend to be lowest when nights 

are longest. Thus, given that metabolic costs increase when temperatures drop, energy 

reserves will be exhausted earlier in the night. To compensate for such a joint effect, birds in 

our population went to roost with higher body mass under inclement weather conditions 

(Table 1). Individuals modified their body mass gain and foraging strategies slightly to 

reach their targeted end-weight. For instance, birds adjusted their end-of-day mass by 

increasing their mass gain more steeply on shorter days and they had a more rapid mass gain 

on colder days (Cresswell, 1998; Macleod, Barnett, Clark, & Cresswell, 2005; Thomas, 

2000). Individuals also foraged more actively (i.e. visited more often the feeders) on shorter 

days and under lower mean temperatures (Bonter et al., 2013). Furthermore, day length had 

a positive effect on the quadratic effect of time; that is, birds presented a more prominent 

peak of foraging activity on shorter days. This study thus provides the first clear 

demonstration that birds are capable of adjusting their diurnal mass gain trajectory and 
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foraging strategy in response to ecological predictors of starvation risk as predicted by 

starvation-predation risk trade-off theory (Houston et al., 1993; Lima, 1986).  

 

Individual variation in trajectories 

We quantified whether and how individuals differed in their diurnal patterning of body mass 

and foraging activity, and whether diurnal patterns were explained by individual-level 

morphological and behavioural traits. We used a reaction norm framework as a heuristic 

tool for doing so (Dingemanse, Kazem, Réale, & Wright, 2010; Nussey, Wilson, & 

Brommer, 2007). These reaction norm analyses showed i) that individuals did not differ in 

their diurnal patterning of mass gain, ii) that individuals did differ in diurnal patterning of 

foraging activity, iii) and that exploration behaviour (partly) explained these among-

individual differences in diurnal patterns of foraging activity. This result has, at least, two 

important implications. First, it demonstrates that observations of diurnal patterns of 

foraging activity alone do not provide a complete picture of how individuals resolve 

starvation-predation risk trade-offs. If we had recorded only foraging activity in the present 

study, as is commonly done in field studies, we might have erroneously concluded that slow 

explorers  face higher starvation risk and/or lower predation risk relative to fast and 

intermediate explorers, and consequently, increase foraging activity mid-day relative to 

other birds. However, the observation that patterns of mass gain did not mirror patterns of 

foraging activity in slow explorers suggests in fact that higher foraging intensity at the 

feeders was required by slow explorers to achieve the same level of starvation insurance (i.e. 

energy reserves) compared with intermediate and fast explorers. Whether this reflects 

exploration-related differences in the use of alternative food sources (e.g., natural food 

sources in forest plots or other feeders), or exploration-related differences in energy 

conversion efficiency is unclear, and should be the focus of future work. Furthermore, only 

two out of 28 individuals were first-year birds, and only eight individuals were females (i.e. 

20 males). Given that adult males are dominant over females and juvenile males at feeders 

(Dingemanse & de Goede, 2004), further research is required to elucidate whether the 

patterns of mass regulation reported here also characterizes these least dominant categories 

of birds. 

 

Conclusions 

Wintering great tits in our population demonstrated substantial variation in body mass and 

foraging strategies. Temporal patterns of mass gain matched those of foraging activity, 

indicating unbiased estimates of within-individual patterns for foraging activity. 

Furthermore, individuals differed in foraging strategies (i.e. diurnal patterning of foraging 



96 
 

activity at the feeder) but not in their mass gain patterns. The observed differences in 

foraging activity suggest that birds exhibit behavioural flexibility in resolving the trade-off 

but nonetheless exhibit a fixed diurnal pattern in mass gain. Taken together, our findings 

imply that increased energetic demands experienced by small birds in winter might favour 

individuals prioritising avoiding risk of starvation rather than maximising predation 

avoidance. How the predictions of the starvation-predation risk trade off apply to other 

ecological scenarios, and whether observed differences between behavioural types result 

from individual differences risk of predation and/or starvation, should be addressed by 

future research in this area.  
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Electronic Supplementary Material of Chapter 3 

 

Text S1. Automated feeder functioning 

The automated weighing-feeding system consisted of an electronic scale placed at the feeder 

entry suspended to one side. Thus, when a bird landed on the scale to feed, its tag was 

detected and the bird weighed. Mass was only stored (to the nearest 0·1g) when a stable 

reading was obtained for at least 1 second (reading rate of 60 times/second). Furthermore, 

on some occasions birds perched with one foot on the weighing platform causing their body 

mass to be substantially underestimated. To avoid such biases, we excluded all mass values 

that were 0.5 g lower than the maximum mass recorded within the focal hour of the 

measurement for the focal individual, as such a rate of mass loss would not be possible and 

therefore must reflect measurement error. The feeder was equipped with a RFID antenna 

fitted with a clock (recording date and time to the nearest second). For each visit, the feeder 

was programmed to remain open for 10 s, after which it closed for another 10 s, before 

opening again (regardless of whether another bird arrived in the meantime). Feeder closing 

was meant to stimulate birds to leave the feeder after a visit and thereby reduce the 

probability of monopolizing access. Reliability of the RFID readers was verified by 

comparing readings registered to the SD card with videos collected at feeders. We thus were 

able to confirm that the feeder-weighing system worked properly.  
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Table S1. Estimates of foraging activity (measured as binary variable) for analyses with 

different time block definitions. We calculated foraging activity as a binary variable where 

we quantified the presence/absence of an individual at the feeder in a given time block. We 

did not use bins for body mass because body mass was a continuous (normally distributed) 

variable. In order to test whether using different time blocks (i.e. dividing time in different 

arbitrary time frames) would lead to different conclusions regarding diurnal foraging 

patterns, we performed sensitivity tests of the discretization of the time variable from 5 to 

30 and 60 minutes by running the same models with different time blocks (i.e. 10, 20 or 120 

time blocks). To do so, we ran 3 univariate mixed-effects models where foraging activity 

(measured as binary variable, presence at the feeder per a given time block) was the 

response variable. We added the variable time divided in three different time blocks and its 

quadratic term as fixed effects. We included random intercepts and slopes for individual 

identity (28 levels). 

 

 

60-min interval 30-min interval 5-min interval 

Fixed effects β (95% CI) β (95% CI) β (95% CI) 

Intercept -0.37 (-0.64, -0.08) -1.15 (-1.41, -0.89) -2.83 (-3.06, -2.59) 

Time (linear term) -0.34 (-0.41, -0.28) -0.33 (-0.40, -0.27) -0.09 (-0.14, -0.03) 

Time (quadratic term) -0.29 (-0.35, -0.22) -0.26 (-0.31, -0.21) -0.15 (-0.18, -0.12) 

    
Random effects σ

2
  (95%CI) σ

2
  (95%CI) σ

2
  (95%CI) 

Intercept 0.52 (0.41, 0.65) 0.44 (0.35, 0.55) 0.37 (0.30, 0.47) 

Slope 0.01 (0.00, 0.01) 0.01 (0.00, 0.01) 0.01 (0.01, 0.02) 

Intercept–slope covariance -0.83 (-0.91, -0.71) -0.75 (-0.86, -0.58) -0.62 (-0.77, -0.41) 

 
   Residuals       

 

·π
2
/3 π

2
/3 π

2
/3 
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Table S2. Fixed effects estimates of models that fitted a temporal autocorrelation structure. 

Body mass was measured as continuous variable (in grams) and foraging activity as binary 

variable (presence at the feeder per a given 1-hour time block). We tested the importance of 

temporal autocorrelation in our data by comparing two models, one with an autoregressive - 

moving average correlation structure and one not controlling for any autocorrelation 

(Pinheiro & Bates 2000). To do so, we ran two univariate mixed-effects models where body 

mass was the response variable, and two univariate mixed-effects models where foraging 

activity was the response variable. We also added the variable time and its quadratic term as 

fixed effects (either “Time” as continuous variable for body mass or “Time blocks” as time 

divided in 1-hour block for foraging activity). We included random intercepts and slopes for 

individual identity (28 levels). To control for autocorrelation in our residuals, we included 

an ARMA (1,1) correlation structure (Pinheiro & Bates 2000). We checked the normalized 

residuals of our model to confirm that the ARMA correlation matrix did control for the 

temporal correlation. To run the models with body mass we used the R-package “lme” and 

for foraging activity, we used “glmmPQL” package.  

 

 

Body mass Foraging Activity 

Fixed effects β (95% CI) β (95% CI) 

Intercept 18.96 (18.59, 19.34) -0.32 (-0.61, -0.03) 

Time (linear term) 0.40 (0.38, 0.42) -0.46 (-0.52, -0.40) 

Time (quadratic term) -0.08 (-0.09, -0.07) -0.31 (-0.37, -0.23) 

 

 

 

 

 

 

 

 

 

 

 

http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2656.2010.01659.x/full#b38
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2656.2010.01659.x/full#b38


103 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



104 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



105 
 

Chapter 4 

Evidence for phenotypic integration predicted 

by state-dependent behaviour theory in a wild 

bird population 

 

Maria Moiron, Yimen G. Araya-Ajoy, Kimberley J. Mathot, Alexia Mouchet and Niels 

J. Dingemanse 

 

 

ABSTRACT 

State-dependent behaviour has been proposed as a key mechanism generating repeatable 

among-individual differences in behaviour (i.e., animal personality). Two hypothesized 

patterns of state-dependent risk-taking behaviour are based on “asset protection” and “state-

dependent safety” models. Based on these two optimality models, we tested hypotheses of 

phenotypic integration between morphology and behaviour in a free-living population of 

great tits (Parus major) monitored for seven years. While investigating these patterns of 

phenotypic integration, we explicitly studied the role of body mass in the integration of 

morphology and behaviour, distinguishing between the body mass components of structural 

size and of energetic reserves. We repeatedly quantified multiple morphological (body 

mass, wing, tarsus, and bill length; encapsulating two dimensions of “state”: structural size 

and energetic reserves) and behavioural traits (aggressiveness and exploration) in >740 

individual males. Structural equation modelling supported the existence of a behavioural 

module, “risk-taking behaviour” that covaried with each of two morphological modules 

“body size” and “energetic reserves”, thereby providing support for both optimality models 

simultaneously. Overall, we demonstrated that an individual’s morphological and 

behavioural traits represent expressions of an integrated phenotype, suggesting a role for 

state-dependent behaviour in generating animal personality in a wild bird population. 
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INTRODUCTION 

State-dependent behaviour has been proposed as a key mechanism generating repeatable 

among-individual differences in behaviour (i.e., animal personality). Testing state-

dependent models for adaptive animal personality is challenging because the states and 

behaviours of interest often cannot be captured adequately by simply quantifying single 

traits, given that in many cases, the state and behaviour are latent variables (Araya-Ajoy & 

Dingemanse, 2014). For example, approach distance to a dummy, probability of attack, and 

number of calls and songs are observable expressions of “territorial aggressiveness” in male 

great tits, the latter representing a latent variable that has likely evolved because 

correlational selection favoured phenotypic integration of behavioural traits (Araya-Ajoy & 

Dingemanse, 2014). Understanding how selection acts on combinations of traits therefore 

poses a major challenge in evolutionary ecology. Empirical evidence demonstrates that 

natural selection can act on many traits simultaneously, while phenotypic correlations are 

also widespread (Lande & Arnold, 1983). This is because natural selection favours 

correlations among phenotypic traits when certain combinations of traits enable an organism 

to accomplish a particular function (Pigliucci, 2003; Schwenk, 2001). An optimal 

combination of functionally-related traits is defined as phenotypic integration (Pigliucci, 

2003; Sinervo & Svensson, 2002; Wagner, 2000). These functional modules arising from 

the evolution of phenotypic integration have the potential to ultimately respond to selection 

as a unit (Houle, 2001). Additionally, some functional modules might overlap with others. 

While the traits that form a single module are highly inter-connected, a single module may, 

to a certain extent, be more weakly connected to other modules, a phenomenon called 

“quasi-independence” (Wagner, Pavlicev, & Cheverud, 2007). The concept of functional 

integration and quasi-independence is well illustrated by work on Physid snails: shell shape 

ranges continuously from elongated to rotund, and individuals with different shell shapes 

rely on different anti-predator responses to survive attacks by their common predators, 

crayfish and fish (namely, usage of near-surface habitats vs. refuges) (DeWitt, Robinson, & 

Wilson, 2000; DeWitt, Sih, & Wilson, 1998). Under high predation pressure by crayfish, 

snails have narrower shells and make more use of surface habitats. In contrast, under high 

predation pressure by fish, snails have wider shells and make more use of refuges. This 

integration exists because a different optimal combination of morphological defence and 

anti-predator behaviour is favoured under different ecological scenarios. Given that 

behavioural and/or morphological traits can aggregate as integrated units across functionally 

different contexts, phenotypic integration has been invoked as a potential mechanism 

explaining the existence and maintenance of repeatable among-individual differences in 
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behaviour, also called animal personality (Sih et al., 2004). 

Here, we test a pattern of phenotypic integration between morphology and 

behaviour based on state-dependent behaviour theory developed in behavioural ecology 

(Houston & McNamara, 1999). Optimality models developed in behavioural ecology 

predict the adaptive integration of physiology or morphology (called “state” variables) and 

behaviour. The “asset protection” model predicts that individuals with the highest assets 

(e.g., energetic reserves), should display lower risk-taking behaviour because they have 

much to lose (Clark, 1994; Luttbeg & Sih, 2010). In contrast, “state-dependent safety” 

models predict the opposite effect; individuals with higher assets can perform higher risk-

taking behaviour (i.e. take more risks) because their assets make them less vulnerable to 

predation (Luttbeg & Sih, 2010). Despite the contrasting relationship of physiology or 

morphology and behaviour, both optimality models predict covariation between traits, that 

is, adaptive phenotypic integration. In this study, we investigated a model of morphological 

and behavioural integration in a natural population of great tits (Parus major) breeding in 12 

nest box plots. We measured six morphological and behavioural observable variables in all 

breeding male individuals (body mass, tarsus length, bill length, wing length, aggressiveness 

and exploration behaviour) for each of seven consecutive years (2010-2016). Hereafter we 

used the term “trait” as an observable (measured) variable and “character” as the 

unmeasured variable underlying the expression of functionally related observable variables 

(Bollen 2002). 

Most of the above-mentioned optimality models have focused on the effect that 

assets have on risk-taking behaviour, without being explicit as to whether these assets are a 

measure of body size or energetic reserves. In addition to this conceptual ambiguity, most 

empirical tests involving “assets” use body mass as a measure of both body size and 

energetic reserves (Piersma & Davidson, 1991). This is because body size and body 

condition cannot be measured directly as they represent latent variables. Body size is 

defined as the structural size of an organism independent of its energetic reserves (Piersma 

& Davidson, 1991). Energetic reserves are the amounts of nutrients (especially fat and 

protein) that individuals store in order to survive periods of negative energy balance. 

Energetic reserves may vary with time of day and year, reproductive status, and habitat 

quality. Body mass certainly contains information about both body size and energetic 

reserves; however the failure to properly quantify and differentiate between the two 

variables can result in misleading interpretations. Therefore, this paper offers a statistical 

solution to test for the effects of both processes simultaneously. In this study, while 

investigating patterns of phenotypic integration between morphology and behaviour, we 

explicitly focussed on distinguishing between components of structural size and of energetic 
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reserves. One hypothesis is that a risk-taking behavioural module (detailed above) is present 

above and beyond the general allometric covariation caused by the latent variable “body 

size”. In this case, body mass would simply be an expression of the latent variable “body 

size”; the behavioural module would thus be linked directly to “body size”, and only 

indirectly linked to body mass (Fig 1, Table 1, models 2-9). Alternatively, the behavioural 

module could be associated with the specific trait body mass (i.e., when size-independent 

variation in body mass represents a proxy for energetic reserves). The existence of a 

“energetic reserves” module can occur independently if the behaviour module is directly 

related to the latent variable “body size” (Fig 1, Table 1, Models 10-12) or not (Fig 1, Table 

1, Models 13-18). In both cases (Fig 1, Models 10-18), “energetic reserves” would represent 

another latent variable that is covarying with the latent variable “body size”. 

 

Table 1. A priori hypotheses of morphological and behavioural integration in male great tits. 

Model Hypothesis 

Model 1 Null model of trait independence 

Model 2 All morphological traits are part of the latent variable, and behavioural traits are uncorrelated 

(with each other and with the morphological traits) 

Model 3 All morphological traits are part of the latent variable, and behavioural traits are correlated with 

each other, but not with the morphological traits. 

Model 4 All traits are part of the latent variable, and there is additional covariance between behaviours 

independent of the latent variable 

Model 5 All traits are part of the latent variable 

Model 6, 8 All morphological traits are part of the latent variable and either exploration (6) or aggressiveness 

(8) is part of the latent variable 

Model 7, 9 
All morphological traits are part of the latent variable and either exploration (7) or aggressiveness 

(9) is part of the latent variable. There is additional covariance between behaviours independent 

of the latent variable 

Model 10-12 All traits are part of the latent variable; and there is a causal influence of body mass on both 

behaviours at the same time (10), either exploration (11) or aggressiveness (12) 

Model 13-15 All morphological traits are part of the latent variable; and there is a causal influence of body 

mass on both behaviours at the same time (13), either exploration (14) or aggressiveness (15) 

Model 16-17 All morphological traits are part of the latent variable; behaviours are correlated and there is a 

causal influence of body mass on either exploration (16) or aggressiveness (17) 

Model 18 
All morphological traits are part of the latent variable; there is a causal influence of body mass on 

both behaviours and there is additional covariance between behaviours independent of the latent 

variable 
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In sum, in this study we tested for the existence of three quasi-independent modules; 

one morphological module labelled as “body size” where we predicted that all 

morphological traits were connected via a latent variable; one energetic module labelled as 

“energetic reserves” where predicted that size-independent variation in body mass is 

connected to the two behavioural traits; and one behavioural module labelled “risk-taking 

behaviour” where we predicted that exploration behaviour and aggressiveness were 

connected via a latent variable (Fig 1). We then examine whether these modules were part 

of an integrated phenotype in great tits. We explicitly investigated the role of body mass in 

the integration of quasi-independent modules. We tested these alternative hypotheses of 

phenotypic integration and state-dependent behaviour at the among-individual level, 

acknowledging the hierarchical structure of evolutionary characters  (Araya-Ajoy & 

Dingemanse, 2014; Klingenberg, 2014). To do so, we used mixed effect models combined 

with structural equation modelling (SEM) to test the relative fit of distinct biological 

hypotheses of among-individual integration between morphology and behaviour (i.e., 

“personality”). Our results provide evidence for the existence of a behavioural module “risk-

taking behaviour” that covaried with each of two morphological modules (“body size” and 

“energy reserves”), demonstrating that asset protection and state-dependent safety models 

were both supported. 

Figure 1. Models (1–18) of hypothesized relationships between morphological and behavioural 

traits. Models are described in Table 1. Unidirectional arrows represent causal relationships 

between traits; bidirectional arrows represent undefined correlations. Solid lines represent 

relationships present across the whole set; dashed lines represent relationships expressed in specific 

cluster structures. “L1” represents a latent variable. Path “a” is active in model 3; “a-c” in model 

4; “b-c” in model 5; “b” is active in model 6; “a-b” are active in model 7; “c” is active in model 8; 

“a” and “c” are active in model 9. Paths “a-e” are active in model 10; “a-d” is active in model 11; 

“a-c” and “e” are active in model 12; Path “f” and “g” are active in model 13; “f” is active in 

model 14; “g” is active in model 15; paths “f” and “h” are active in model 16; “g” and “h” are 

active in model 17; and “f-h” are active in model 18. 
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METHODS  

- Population and study site: 

Our study was carried out in a nest box population of great tits consisting of 12 plots, 

established in autumn 2009 in Bavaria, southern Germany (Starnberg; 47º 58' N, 11º 14' E). 

Each plot consisted of a forest patch with 50 nest boxes positioned in a regular grid with 50 

m between each box. The population was monitored from 2010 onwards following the same 

fieldwork protocol to collect morphological, behavioural and life-history data for every 

breeder. Our protocol consisted of checking nest boxes twice a week from April through 

July to determine lay date and clutch size (see Nicolaus et al. 2015 for more details). Once 

an egg was found, we assessed aggressiveness of each focal male four times; twice during 

the egg-laying stage and twice during the egg-incubation stage (see below). When chicks 

were seven days old, parents were caught with a spring trap inside the nest box, marked 

with a unique combination of rings if not previously marked and assessed for their 

exploration behaviour (see below). After the test, birds were measured and a small blood 

sample was taken. Sex and age (first-year vs. older breeder) were determined based on 

plumage characteristics, body mass was measured using a Pesola spring balance to the 

nearest 0.1 g, tarsus length and bill length were measured with slide callipers to the nearest 

0.1 mm, and wing length (third primary) was measured with a wing ruler to the nearest 0.5 

mm. We collected morphological and behavioural data for a seven-year period (2010-2016) 

for all first broods produced by great tit pairs in our study plots. First broods were defined as 

those broods initiated within 30 days of the first clutch of the year (Noordwijk, McCleery, & 

Perrins, 1995). All birds in the current study were adult males (n=742, total number of 

observations: n = 1111), given that we were only able to measure aggressiveness in males. 

- Experimental protocol:  

Aggressiveness: We quantified male aggressiveness by simulating territorial intrusions at 

each focal nest. We performed four tests per nest per year, twice during the egg-laying stage 

and twice during the egg-incubation stage. The aggression test consisted of a taxidermic 

mount of a male great tit presented on a 1.2 meter wooden pole with a playback song one 

meter away from the subject’s nest box. Once the focal male had entered a 15-meter radius 

around the box, we recorded the behaviour of the individual for three minutes. Details of the 

experimental setup and assayed behaviours are provided in Araya-Ajoy & Dingemanse 

(2014). Following previous work, we used the minimum distance of the focal male to the 

mount as our measure of the intensity of an aggressive response for both breeding stages 

(Araya-Ajoy et al., 2016; Araya-Ajoy & Dingemanse, 2014, 2017). For ease of 
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interpretation, approach distance was multiplied by −1 so that higher values represented 

more aggressive responses (Araya-Ajoy & Dingemanse, 2014). Observations where males 

did not arrive within 15 min were scored as nonresponsive. Previous work from the same 

population of great tits showed that the cross-context correlation (r) between aggressiveness 

expressed during the laying versus incubating stages was much lower than one (r ± 95% 

credible interval (CI) = 0.51 (0.31, 0.60)) (Araya-Ajoy & Dingemanse, 2014), indicating 

that aggressiveness during the two different breeding stages did not fully represent the same 

character (Roff, 1997). Araya-Ajoy and Dingemanse (2014) also showed that correlations 

between expressions of aggressiveness were tighter during the egg laying compared to the 

incubation stage (Araya-Ajoy & Dingemanse, 2014). For the statistical analyses presented 

here, we pragmatically chose to focus on aggressiveness expressed during the laying stage, 

using the mean of the two repeated measures collected annually during laying for each 

individual, thereby best approximating their individual-specific annual values (Araya-Ajoy 

& Dingemanse, 2017). In cases where there was only one data point available (i.e. the 

individual did not respond to one of the behavioural assays), we took the single score as a 

proxy for the mean score. Reassuringly, our decision to use the mean score of 

aggressiveness during laying stage (vs incubation) did not alter our conclusions (Results not 

shown).  

Exploration behaviour: We assayed exploration behaviour of adults directly 

following capture when their nestlings were seven days old. For two minutes, we recorded 

the behaviour of the captured individual in a 61 L × 39 W × 40 H cm cage adapted from the 

classic “novel environment test” (for more details see Stuber et al. 2013). The total number 

of movements between different sections of the cage (see Fig 1 in Stuber et al. 2013) was 

used to measure an individual’s activity in a novel environment, labelled “exploration 

behaviour” (Araya-Ajoy et al., 2016).  

- Statistical analyses:  

We conducted three sets of statistical analyses. First, we explored the sources of variation 

for each of the six measured traits (i.e. body mass, wing length, tarsus length, bill length, 

aggressiveness and exploration). To do so, we partitioned the phenotypic variation across 

multiple levels using mixed-effect models. Univariate models were used to determine the 

magnitudes of sources of variation, and informed us on relevant terms to be included in the 

multivariate model. As a second step, we estimated patterns of covariance among traits at 

different hierarchical levels using a multivariate extension of the model. Finally, we fitted 

structural equation models (SEMs) to study the hypothesized causal relationships between 

the phenotypic traits at the among-individual level. Aggressiveness was squared-root 
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transformed (Araya-Ajoy & Dingemanse, 2014) and morphological traits were log-

transformed as their relationships are expected to be linear on this scale (Houle, Pélabon, 

Wagner, & Hansen, 2011). We modelled all six variables assuming a Gaussian error 

distribution and scaled each to standard deviation units (i.e. mean centred and variance 

standardized) to facilitate comparison of the relative magnitudes of variance components 

across traits.  

 

Univariate mixed-effects modelling  

We ran univariate mixed-effect models, where each trait (i.e., body mass, tarsus length, 

wing length, bill length, aggressiveness, or exploration) was fitted as the response variable. 

Time of day (i.e. expressed in decimal fractions of hours after sunrise) of the measurement 

was included as fixed effect. Because we were only interested in variance components, we 

will not discuss fixed effect estimates further (they are listed in Table S1). We fitted random 

intercepts for the identity of the plot (n=12 levels), year (n=7 levels), plot-year (the unique 

combination of plot and year, n=84 levels); individual (n=742); and observer (n=40). 

Observer identity was not fitted for models where aggression was the response variable, 

because those used the mean value of two behavioural assays (see above). This decision was 

justifiable as a previous study showed that observer identity did not explain  significant 

variation in aggressiveness (Araya-Ajoy & Dingemanse, 2014). Univariate analyses were 

performed using the R-packages “lme4” and “arm” implemented in R v. 3.3.3 (Team R 

Core 2017). We used the “sim” function to simulate posterior distributions of the model 

parameters. Based on 5000 simulations, we extracted the mean value and 95% CI (Gelman 

& Hill, 2007). Model fit was assessed by visual inspection of the residuals. 

 

Multivariate mixed-effects modelling 

We estimated among-trait covariance at the among-individual, among-observer and within-

individuals-among-year levels, using a multivariate mixed-effects model. To do so, we 

fitted all six traits as response variables and individual and observer identity as random 

effects. To avoid over-parameterization, we only included those random effects that 

explained substantial variation in the univariate analyses (i.e. individual and observer 

identity; see Table S1). The resulting among-observer and within-individuals among-years 

covariance matrices were not important to our study question and thus not discussed further 

(Results not shown). The multivariate mixed-effects model was fitted using a Bayesian 

framework implemented in R v. 3.3.3 (Team R Core 2017) with the R-package 

MCMCglmm (Hadfield, 2010). We used an inverse gamma prior and ran 3,005,000 

iterations per model, with a burn in period of 5000 and a thinning interval of 3000 iterations. 
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Posterior means and 95% CI were estimated for covariances and correlations. We also 

checked whether our estimates were a function of the choice of prior, which was not the 

case. 

 

Structural equation modelling 

To test the relative fit of alternative biological hypotheses of phenotypic integration, we 

applied structural equation modelling to 18 a priori conceived scenarios assessing how the 

different traits were associated among individuals (Fig 1, Table 1). Of the 18 models, model 

1 represents a (biologically unrealistic) statistical “null” expectation; models 2-9 represent 

different scenarios of phenotypic integration and quasi-independence between body size and 

risk-taking modules; and models 10-18 represent hypotheses of body size as a module and 

causal influences of body mass (as proxy for the “energetic reserves” module) on the risk-

taking module. We used the among-individual correlation matrix estimated with the 

multivariate mixed-effects model to test our SEM hypotheses with the R-package “SEM” in 

R v. 3.3.3 (Team R Core 2017). We then compared the model fit using the Akaike 

information criterion (AIC) (Burnham & Anderson, 2004) and evaluated the relative support 

based on AIC differences relative to the best-fitting model (ΔAIC).   

 

RESULTS 

All phenotypic traits (i.e., body mass, tarsus length, wing length, bill length, exploration 

behaviour and aggressiveness) showed considerable variation among individuals (Table S1). 

In addition, most morphological traits were strongly correlated (Table 2). In general, heavier 

birds had longer tarsi, wings and bills suggesting that all were expressions of a common 

latent variable (i.e., representing “body size”). Furthermore, individuals that were on 

average relatively aggressive toward conspecifics were also relatively active in a novel 

environment (i.e. more “explorative”) suggesting the existence of the hypothesized 

behavioural character “risk-taking behaviour” (Table 2).  

SEM comparisons identified model 10 as best explaining the among-individual 

correlation matrix (as it had the lowest AIC value; Table S2). Model 10 posited the overall 

phenotypic integration of two quasi-independent modules, representing “body size” and 

“risk-taking”, respectively. The overarching latent variable included paths affecting the 

expression of all traits with an additional covariance between the behavioural traits (i.e. that 

was independent of the latent variable “body size”) (Model 10; Fig 2). Furthermore, 

variation in body mass not attributable to the latent variable “body size” was negatively 

linked to both behavioural traits, implying that the amount of energetic reserves was also 
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linked (independent from body size) to “risk-taking behaviour”. 

 

Table 2. Among-individual correlation estimates (with associated 95% CI) between six 

morphological and behavioural traits. Values in bold face indicate significant correlations, 

owing to with 95% CI not overlapping zero. 

 

 

Body mass Exploration Aggressiveness Tarsus length Wing length 

Exploration -0.02 (-0.16, 0.12) 

 

Aggressiveness -0.12 (-0.32, 0.08) 0.28 (0.02, 0.49) 

 

Tarsus length 0.54 (0.44, 0.64) 0.18 (0.04, 0.31) -0.10 (-0.31, 0.07) 

 

Wing length 0.31 (0.18, 0.45) -0.01 (-0.18, 0.16) 0.06 (-0.15, 0.31) 0.20 (0.08, 0.34) 

 

Bill length 0.19 (0.03, 0.35) 0.24 (0.07, 0.43) 0.11 (-0.16, 0.38) 0.25 (0.08, 0.38) -0.02 (-0.20, 0.16) 

 

 

DISCUSSION 

This study investigated patterns of among-individual integration between morphology and 

behaviour (i.e., “personality”) in free-living male great tits. We found evidence for an 

overall integration between behaviour and morphology mediated by two distinct 

mechanisms: one integration mechanism between behaviour and morphology acted through 

the overarching latent variable “body size” while another integration mechanism was 

mediated by size-independent variation in body mass (i.e., an “energetic reserves” module). 

By using structural equation models we effectively disentangled multiple ways by which 

body mass was involved in the integration between morphology and behaviour. Our 

statistical approach therefore allows us to provide firm support for both optimality models 

simultaneously. 
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Figure 2. Parameter estimates of the structural equation model that best fitted our data (Model 10). 

For each trait, we report the variance explained by the SEM structure and factor loadings with the 

corresponding standard error (SE) in parentheses. Solid lines represent causal relationships, and 

dashed lines are connecting the behavioural traits between them (i.e. constituting the latent variable 

“Risk-taking behaviour”). 

 

  While theoretical studies have attracted extensive empirical attention to the link 

between “state” features (e.g. body size, energetic reserves) and behavioural expressions 

(Houston & McNamara, 1999), there are very few empirical studies that addressed state and 

behavioural traits as evolutionary characters. Our study investigated such a key aspect and 

tested for among-individual integration between morphology and behavioural characters 

predicted by adaptive behavioural ecology theory (Brodie, 1992; DeWitt et al., 2000). 

Additionally, body features like size or energetic reserves have been among the most 

frequently invoked state variables in state-dependent behaviour theory. Models based on 

those body features predict that the energy that an organism obtains typically depends on its 

size or reserves, and the organism’s body features will be influenced by its behavioural 

responses (Houston & McNamara, 1999). The central problem in testing these models is the 

difficulty of empirically quantifying body size and energetic reserves, given that both are 

latent variables. A common approach to measure any of these two distinct body features is 

by quantifying the total mass of an individual. Notably, in this study we found that body 

mass played two distinct roles in the overall integration between morphology and behaviour. 

On the one hand, behaviour and morphology were integrated within an overarching latent 

variable representing size-related behaviour. Individuals that defended their territories more 

strongly against conspecifics and explored their environment more actively also had higher 
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mass and longer tarsi, wings and bills. Thus, risk-takers were also relatively large 

individuals.  At the same time, behaviour was additionally linked to the portion of body 

mass that was independent of “body size” (e.g., energetic reserves). Individuals that 

defended their territories more vigorously against conspecifics and explored their 

environment more actively also had a lower size-independent body mass. Thus, risk-takers 

had lower energetic reserves compared to risk-avoiding individuals. 

Our evidence for phenotypic integration of behaviour and morphology is 

particularly insightful given the considerable theoretical and conceptual literature that 

suggests such links (Houston & McNamara, 1999). The support for quasi-independence 

between the “body size”, “energetic reserves” and “risk-taking behaviour” modules fits with 

predictions derived from theoretical models of state-dependent behaviour. We had predicted 

that if integration had evolved as an asset protection mechanism, individuals with more 

“assets” such as energetic reserves or body size would be more cautious. In contrast, if 

integration had evolved as a state-dependent safety mechanism, individuals with higher 

assets would be better at avoiding high predation risk, and therefore, take more risks 

(Luttbeg & Sih, 2010). Our study showed support for a state-dependent safety mechanism 

causing positive covariation between “body size” and “risk-taking behaviour”. Importantly, 

we also found that the two behavioural traits were negatively associated to the variation in 

body mass independent of the latent variable “body size” (i.e. energetic reserves). This 

finding is in line with predictions from the asset protection principle where individuals with 

higher assets (energetic reserves) were less risk-taking (Clark, 1994; Luttbeg & Sih, 2010). 

In our case, individuals that had on average low energetic reserves and therefore, less to 

lose, were relatively explorative and aggressive (i.e. took more risks), likely as a way to 

secure more resources. In contrast, higher assets allow individuals to behave more 

cautiously and avoid taking risks in order to protect their assets. An alternative 

interpretation of this finding is that birds that are heavy (independent of body mass) have a 

higher wing-loading (Bednekoff & Houston, 1994), and consequently, take less risk due to 

their greater vulnerability to predation. These two explanations cannot be disentangled with 

our study design. Yet, our findings do confirm the general notion that morphological and 

behavioural traits from different functional contexts covary. Our study therefore implies that 

phenotypic integration of behaviour and morphology may be more common among 

organisms than previously assumed (Araya-Ajoy & Dingemanse, 2014; Carter & Feeney, 

2012; Dochtermann & Jenkins, 2007) and provides firm evidence for state-dependent 

personality. 

 The opposing effects of body mass (as a measure of both body size and energetic 

reserves) on behaviour highlights the benefits of using statistical approaches (such as 
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structural equation modelling) that enable multiple relationships between traits to be 

estimated simultaneously. Doing so allowed us to conclude that a portion of the variation in 

one module was explained by associations with other modules. Our analyses suggest that 

empiricists interested in the relationships between body size, energetic reserves and 

behaviour should focus on quantifying latent variables instead of considering single traits 

such as total body mass. Our findings thus offer a solution to the long-running debate 

focussing on the question of whether body mass more strongly reflects energetic reserves or 

structural body size (Piersma & Davidson, 1991), by demonstrating that both components 

can be statistically quantified simultaneously. Theoretical work predicts that multiple state 

variables covary with risk-taking behaviour. However, previous studies did not account for 

the joint effect of several multivariate states acting on suites of correlated behavioural traits. 

Here we introduced an approach allowing the simultaneous study how multiple aspects of 

state covary with risk-taking. Only by doing so we were able to elucidate that asset 

protection and state-dependent safety models were both supported. 

 Overall, this study expands upon a classic body of research predicting that selection 

pressures generate correlations between morphology and behaviour, as a general example of 

state-dependent behaviour theory. We found that behavioural traits were linked to 

morphological traits by an overarching latent variable as part of a unique phenotypic 

character and to the single trait body mass as part of an “energetic reserves” module. Our 

study thus implies that an individual’s morphological and behavioural traits may represent 

expressions of a uniquely evolved character, ultimately having consequences for 

evolutionary trajectories. The modularity framework utilized here also emphasizes the broad 

applicability of multivariate analyses (e.g. SEM) in personality research and brings new 

exciting possibilities to behavioural ecologists studying complex relationships between 

phenotypic traits among individuals.  
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Electronic Supplementary Material of Chapter 4 

 

Table S1. Sources of variation in six morphological and behavioural attributes 

(standardized) measured in male great tit individuals. We present fixed (β) and random (σ
2
) 

parameters with their 95% credible intervals (CI). Adjusted individual repeatability was 

calculate for each attribute as the proportion of the total phenotypic variance not attributable 

to fixed effects that was explained by individual identity. 

 

 

Body mass Exploration Aggressiveness Tarsus length Wing length Bill length 

Fixed effects β (95% CI) β (95% CI) β (95% CI) β (95% CI) β (95% CI) β (95% CI) 

Intercept 
-0.38 (-0.62, -

0.13) 

-0.31 (-0.54, -

0.07) 

0.01 (-0.10, 

0.12) 

0.12 (-0.09, 

0.35) 

-0.05 (-0.29, 

0.19) 

0.06 (-0.28, 

0.40) 

Time  0.06 (0.03, 0.09) 0.05 (0.02, 0.08) -- 
-0.02 (-0.04, 

0.01) 

-0.00 (-0.03, 

0.03) 

-0.01 (-0.03, 

0.02) 

       
Random 

effects 
σ2  (95%CI) σ2  (95%CI) σ2  (95%CI) σ2  (95%CI) σ2  (95%CI) σ2  (95%CI) 

Individual 0.63 (0.57, 0.69) 0.37 (0.33, 0.40) 
0.27 (0.24, 

0.31) 

0.66 (0.61, 

0.73) 

0.39 (0.35, 

0.43) 

0.30 (0.27, 

0.34) 

Plot 0.02 (0.01, 0.05) 0.01 (0.00, 0.02) 
0.01 (0.00, 

0.02) 

0.02 (0.01, 

0.03) 

0.00 (0.00, 

0.01) 

0.02 (0.01, 

0.03) 

Year 0.03 (0.01, 0.05) 0.01 (0.00, 0.02) 
0.00 (0.00, 

0.01) 

0.00 (0.00, 

0.00) 

0.01 (0.00, 

0.01) 

0.01 (0.01, 

0.01) 

PlotYear 0.01 (0.00, 0.01) 0.00 (0.00, 0.00) 
0.01 (0.00, 

0.01) 

0.00 (0.00, 

0.00) 

0.02 (0.01, 

0.02) 

0.00 (0.00, 

0.00) 

Observer 0.02 (0.01, 0.02) 0.02 (0.01, 0.03) -- 
0.12 (0.08, 

0.16) 

0.14 (0.10, 

0.19) 

0.26 (0.18, 

0.37) 

Residual 0.33 (0.31, 0.36) 0.56 (0.51, 0.61) 
0.72 (0.66, 

0.79) 

0.30 (0.28, 

0.33) 

0.49 (0.45, 

0.53) 

0.45 (0.42, 

0.49) 

 
      Adjusted 

repeatability R (95% CI) R (95% CI) R (95% CI) R (95% CI) R (95% CI) R (95% CI) 

Individual 0.61 (0.58, 0.63) 0.37 (0.35, 0.40) 

0.27 (0.25, 

0.29) 

0.60 (0.56, 

0.63) 

0.38 (0.35, 

0.40) 

0.27 (0.24, 

0.30) 
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Table S2. Results of model comparison using Akaike information criterion (AIC) to 

compare our 15 candidate models. Smaller AIC values are given to models that better fit the 

data. Models whose AIC values differ from that of the top model (ΔAIC) by more than 2 are 

considered to lack explanatory power relative to the top model. We also present the Akaike 

weight of each model, showing that a single model (Model 10) best explains the data and is 

82 times more likely (i.e., weight = 0.82) than competing models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Model AIC ΔAIC Weight 

Model 10 133.86 0.00 0.82 

Model 11 136.85 2.98 0.18 

Model 4 198.33 64.47 0.00 

Model 12 200.32 66.45 0.00 

Model 9 205.98 72.12 0.00 

Model 7 206.42 72.56 0.00 

Model 17 207.97 74.11 0.00 

Model 18 209.61 75.74 0.00 

Model 3 221.21 87.34 0.00 

Model 16 222.96 89.10 0.00 

Model 15 293.46 159.59 0.00 

Model 13 295.10 161.23 0.00 

Model 5 295.41 161.55 0.00 

Model 8 296.74 162.88 0.00 

Model 6 301.80 167.94 0.00 

Model 2 306.81 172.95 0.00 

Model 14 308.45 174.59 0.00 

Model 1 855.98 722.12 0.00 
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General Discussion 

My PhD thesis aimed at investigating how natural selection can give rise to repeatable 

among-individual differences in behaviour (i.e. animal personality). This question has 

attracted much attention from theoreticians and empiricists (e.g., Dall, Houston, & 

McNamara, 2004; Dingemanse & Wolf, 2010; Stamps, 2007; Wolf, van Doorn, Leimar, & 

Weissing, 2007; Wolf, van Doorn, & Weissing, 2008; Wolf & Weissing, 2010, Chapter 1). 

However, to date and despite the notable scientific input, the evolutionary origin of adaptive 

animal personality is still poorly understood. My thesis chapters were specifically planned 

to further our understanding of the adaptive cause of individual differences in labile traits 

such as behaviour. Below I provide a summary of the main findings of each Chapter.  

Behavioural ecologists have mainly focused on studying patterns of phenotypic 

plasticity (i.e. within-individual variation). However, one should not ignore the multilevel 

structure of phenotypic variation in labile traits (i.e. variation among- and within-

individuals). Chapter 1 is an opinion paper where my colleagues and I discussed the 

application of state-dependent behaviour models to the study of animal personality, and 

expanded these ideas to broaden the conceptual framework of adaptive individual variation 

in behaviour. Particularly, our aim was to expand classic optimality models to specifically 

focus on among-individual differences in behaviour. Additionally, we presented new ideas 

about experimental design and provided insights into the statistical approach to empirically 

test the postulated models about among-individual differences in behaviour. 

Life-history theory posits that trade-offs are a likely mechanism maintaining 

phenotypic variation among individuals, assuming that variation already exists among 

individuals. Life-history theory also specifies that trade-offs might exist at some but not 

other hierarchical levels (e.g. within- but not among-individuals). However, most empirical 

studies in behavioural ecology have focused, so far, on testing the existence of trade-offs 

using phenotypic data. In Chapter 2, we investigated whether a behavioural trade-off exists 

between decision-making traits, thereby explaining the maintenance of variation in 

cognition, a presumed driver of variation in animal personality. Furthermore, we placed 

special emphasis on testing whether the trade-off between the two cognitive traits was level-

specific. To do so, we carried out a lab experiment to study the trade-off between two 

decision-making traits related to information use: accuracy in taking a decision and speed 

with which that decision was taken. We showed that speed-accuracy trade-offs were indeed 

level-specific: trade-offs between speed and accuracy existed among-individuals but not 

within-individuals. Our result thus demonstrated that birds that on average took faster 
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decisions also were more often wrong in their decisions than birds that on average took 

slower decisions. Furthermore, we also demonstrated that failure to correctly account for 

level-specific trade-offs can lead to biased inferences about the existence of trade-offs (i.e. 

we found no trade-off at the population level). This study thus exemplified the importance 

of considering the hierarchical structure of labile traits when testing hypotheses involving 

trade-offs and supports the notion of trade-offs as mechanisms generating repeatable 

behavioural variation among individuals. 

Following up with the notion of trade-offs as a cause of phenotypic variation, in 

Chapter 3 we investigated the factors that determine energy management in wintering great 

tits. Great tits, as well other small passerines, face lower resource levels, shorter days and 

harsher climatic conditions as winter approaches. An extended number of theoretical models 

have aimed to explain how small birds survive in winter under such harsh conditions 

(Houston & McNamara, 1993; Houston et al., 1993; McNamara et al., 1994; Pravosudov & 

Lucas, 2001). Birds such as the great tit would face the bad winter conditions by increasing 

their fat reserves. However, birds must simultaneously avoid predation from aerial predators 

(e.g. hawks), giving rise to a trade-off between avoiding predation and avoiding starvation 

during periods of harsh environmental conditions. Several tests of models of fattening 

strategies in wintering birds have been carried out in the lab, very few in the wild, and 

almost no study attempted to measure both traits simultaneously in wild conditions (but see 

Macleod et al. 2005). In Chapter 3, we simultaneously studied the relationship between 

foraging activity at feeders and daily mass gain in wild wintering great tits. Our results 

demonstrated that birds foraged and gained mass early during the day, as predicted by 

theory when the starvation-predation risk trade-off is mass-dependent and starvation risk 

outweighs predation risk. We thus concluded that increased energetic demands experienced 

by small birds in winter might favour individuals avoiding risk of starvation rather than 

predation avoidance. Furthermore, the hypothesized trade-off did not explain the existence 

of among-individual variation in behaviour because individuals did not differ in how they 

resolved the starvation-predation risk trade-offs, i.e. all birds gained mass in the similar 

manner throughout the day. This result suggests a different process (e.g. another trade-off) 

as the underlying mechanism explaining the observed variation in foraging behaviour 

among individuals. 

In Chapter 4, we jointly investigated the two bodies of theory explaining the 

maintenance of individual variation. On the one hand, evolutionary ecologists expect 

phenotypic integration in situations where correlational selection favours optimal 

combinations of functionally-related attributes. On the other hand, optimality models 

developed by behavioural ecologists predict that an individual’s behaviour will vary as a 
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function of its state (e.g. body condition, size), thus also predicting that particular 

combinations of state and behaviour maximize fitness (see Introduction). Both the state-

dependent personality theory and correlational selection concepts therefore imply that 

selection favours phenotypic integration and simultaneously leads to a flat fitness surface. In 

Chapter 4, we combined these two approaches and investigated patterns of phenotypic 

integration between morphology and behaviour based on predictions derived from two 

optimality models (i.e. “asset protection” and “state-dependent safety”). To test this 

hypothesis of state-dependent personality, we explored patterns of covariance for multiple 

morphological traits (body mass, wing length, tarsus length and bill length; encapsulating 

two dimensions of “state”: structural size and energetic reserves) and two behaviours 

(aggressiveness and exploration) in free-living great tits in spring. Our results demonstrated 

the existence of a behavioural module “risk-taking behaviour” that covaried with each of 

two morphological (state) modules (“body size” and “energy reserves”), thereby providing 

support for both optimality models simultaneously (i.e. support for the “asset protection” 

and “state-dependent safety” hypotheses). Using for the first time a multivariate approach, 

we provided support for the existence of adaptive state-dependent personality. Furthermore, 

our results suggest that phenotypic integration in situations where correlational selection 

favours optimal combinations of functionally-related traits has indeed great potential as 

mechanism explaining among-individual variation in behaviour.  

Generally, the relevance of my findings for ecology and evolution is implicitly 

addressed in each of the chapters of the thesis (Chapters 1 - 4). Therefore, in this General 

Discussion section I will frame the results presented throughout this thesis in a wider 

context. To do so, I will firstly discuss the need of reconciling theory on animal personality 

with empirical data and I will back up my arguments with ideas from Chapter 1. Second, I 

will highlight the importance of the variance-partitioning approach to study multi-level 

variation in labile traits such as behaviour. I will also expose the rationale and benefits of 

the use of the variance-partitioning approach by building up on the findings from Chapters 

2 and 3. Third, I will discuss the multivariate nature of phenotypic traits and evoke for a 

more geometric view of phenotypic variation. While multivariate phenotypic variation is 

transversal to the entire thesis, I will develop my arguments focusing on Chapter 4. Fourth, 

I will discuss whether phenotypic traits are genetically unconstrained and discuss the 

assumption of the “phenotypic gambit”.  To conclude the General Discussion, I will provide 

some brief remarks on future avenues for behavioural and evolutionary ecologists interested 

in studying among-individual differences in behaviour.  
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Theoretical Modelling in Behavioural Ecology 

“Essentially, all models are wrong but some are useful.”  

(Adage attributed to statistician George Box) 

 

The goal of theoretical modelling in the field of behavioural ecology is to generate 

hypotheses that empiricists can experimentally test. One of the most prominent types of 

models in behavioural ecology involves optimality theory. Optimality models have been 

widely used to develop hypotheses about how nature works, providing quantitative 

predictions that can be tested with observational or experimental work. Models usually 

make obvious assumptions about the nature of the system (e.g. birds must gain more energy 

reserves when winter conditions are severe, Chapter 3); but these modelling exercises force 

researchers to identify important components of complex systems. These complex systems 

of optimal behaviour should be ideally underlined by simple mechanisms, as opposed to the 

more traditional approach of complex models developed in simple environments 

(McNamara & Houston, 2009).  

 While optimality theory is unequivocally a powerful tool in behavioural ecology, it 

is not exempt from criticism (e.g. reviewed by Parker & Maynard-Smith, 1990). Optimality 

models are based on the assumption that natural selection maximises the fitness 

consequences of the behavioural action (e.g. via reproductive output or survival). 

However, these models do not aim to demonstrate that natural selection indeed produces 

optimal solutions (i.e. models do not test whether nature optimizes). The ultimate goal of 

optimality theory is to help us understanding the biological constraints that shape 

adaptations. Thus, given a specific state and time, optimality models will inform 

researchers about the optimal behavioural response of an individual. For instance, models 

will predict how much foraging a bird should perform based on its energy reserves, 

predation risk and food availability (Chapter 3).  

The application of optimality theory to the study of repeatable individual 

differences in behaviour (i.e. animal personality) has not been exempt from criticism either. 

The main critique is that models are not explicit about the level of variation they aim to 

explain (i.e. whether the model concerns individual- versus mean-population-level 

plasticity). This vague definition of their level-specificity has led to some misunderstanding 

about the suitability of the theory in explaining animal personality. When considering that 

models predict mean-population plasticity, all individuals of a population are expected to 

optimally adjust their behaviour in response to the environmental conditions in order to 

maximize fitness. In that scenario, all individuals of the population behave optimally and 



129 
  

theory would predict a single mean optimum for the entire population. Hence, variation 

among individuals would be considered as statistical noise around the adaptive mean 

(Wilson, 1998). This view is, however, opposite to the actual rationale of optimality theory. 

The focus of the theory is usually at the individual level. That is, optimality theory is based 

on the notion that each individual makes specific behavioural decisions to optimize its 

fitness by trading-off the costs and benefits of such decisions and given its own state 

(Houston & McNamara, 1999). Thus, optimality theory explains individual differences in 

behaviour based on individual differences in state. State is broadly defined as any feature 

that affects the costs and benefits of an individual’s behavioural actions (e.g., energy 

reserves, metabolism, predation risk, age, information state, social rank, etc.; Houston & 

McNamara 1999, Chapter 1). 

 Feedback dynamics between states and behaviours have been long assumed ( 

(Houston & McNamara, 1999). However, those feedbacks were typically assumed to be 

negative (e.g. the balancing feedback between nestling begging behaviour and parental 

provisioning effort in many bird species). More recently, positive state-behaviour feedbacks 

have come to the foreground as part of the field of animal personality (Chapter 1). These 

models effectively explain the emergence of among-individual variation in behaviour; 

however they cannot explain or predict consistency in behavioural differences. In other 

words, most optimality models predict patterns of reversible plasticity (Fig 1 in 

Introduction). While there have been some attempts to describe how feedback dynamics 

between state and behaviour can lead to repeatable behaviour differences among individuals 

(reviewed in Chapter 1), the field of animal personality is lacking a general theoretical 

framework. Hence, future modelling work should focus on investigating under which 

conditions state-behaviour feedbacks give rise to consistent individual differences in 

behaviour. To investigate that question, theoreticians need to model whether it is possible 

that initial differences in state or behaviour have different equilibrium points and to 

determine how easily individuals can be moved from one equilibrium point to another (e.g. 

due to stochastic changes caused by a parasitic infection or windfall resources). 

Additionally, future empirical work should put more emphasis in hypothesis-testing. The 

goal of mathematical models is to determine which factors are capable of generating 

repeatable individual differences via feedbacks dynamics; and it is the turn of experimental 

biologists to accumulate empirical data supporting the notion that state-behaviour feedback 

can indeed predict repeatable individual differences in behaviour. To date, there has been 

scarce exchange between state-behaviour feedback theory and real-world data (but see 

Mathot, Dekinga, & Piersma, 2017).  



130 
  

 Overall, the field of behavioural ecology and specially, behavioural ecological 

research on animal personality, will greatly benefit from an enhanced communication and 

collaboration between theoreticians and empiricists. Indeed, the aim of Chapter 1 was 

precisely that one, to promote an active feedback between models and empirical data (see 

Mathot & Frankenhuis, 2018; Niemelä & Dingemanse, 2018 for similar arguments). 

Besides expanding the scope of classic optimality theory to specifically focus on models 

about among-individual differences in behaviour, in Chapter 1 we also provided clear 

guidelines to empiricists on how to go about with experiments and statistical analyses. Thus, 

our ultimate goal was to encourage researchers to do more hypotheses testing and facilitate 

future research on the topic. 

 

The Merit of the Variance-Partitioning Approach 

Responses to selection are only expected if the covariance between behaviour and fitness is 

at the among-individual level and underpinned by an additive genetic covariance (Lynch & 

Walsh, 1998). Therefore, it is important to acknowledge the multi-level nature of labile 

traits when testing hypotheses about the adaptive causes of phenotypic variation among 

individuals. For this reason, in Chapters 2-4 I made use of theory and methods developed 

in quantitative genetics to partition phenotypic variation at multiple levels. 

Variance-partitioning approach refers to a statistical method developed to 

“partition” the relative contribution of the genetic (among-individual) versus environmental 

(within-individual) components to the total phenotypic variation in traits (and fitness). The 

relevance of the variance-partitioning approach is well acknowledged because the study of 

evolutionary responses to selection explicitly requires the partitioning of phenotypic 

variation into the among- and within-individual components (Falconer & Mackay, 1998). 

However, collecting repeated measures of the same behavioural traits for each individual 

and applying the “variance-partitioning” approach is not yet the norm in behavioural 

ecology.  

Behavioural ecologists typically collect phenotypic observations, being forced to 

assume that phenotypic information is representative of the underlying among-individual 

architecture. Hence, researchers rely on the so-called “individual gambit” (i.e. to infer 

patterns of among-individual variation in labile traits based on unpartitioned phenotypic 

data) (Brommer, 2013). Empirical evidence has shown, however, that phenotypic 

behavioural data may or may not be representative of underlying patterns of among-

individual differences of behaviour (Dingemanse et al., 2012). There are several reasons for 

that. First, the use of phenotypic data to describe individual (co)variation might be a 
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conservative approach when residuals of behavioural traits are uncorrelated. This will lead 

to a biased estimation of individual-(co)variance compared to the actual ones (Brommer, 

2013). Second, phenotypic data to describe individual (co)variation can be a deficient 

approach given the existence of level-specific mechanisms underlying individual patterns 

(e.g. Chapters 2 and 3). This will lead to an underestimation of individual-(co)variance 

compared to the actual ones. Lastly, phenotypic data to describe individual (co)variation can 

indeed be an appropriate approach given the good correspondence between patterns at 

different levels (reviewed in Brommer & Class, 2017). In sum, while in some specific cases 

it might seem a valid approach; it is likely that researchers are simply gambling when 

relying on the individual gambit. I will discuss our findings from Chapters 2 and 3 to 

illustrate in more detail the importance of partitioning the phenotypic variance into among- 

and within-individual components, and consequently, study level-specific patterns.  

In Chapter 2, we applied a variance-partitioning approach to investigate the 

hierarchical structuring of trade-offs between decision speed and accuracy. Quantifying 

trade-offs is generally challenging because their existence may often be obscured by other 

biological processes (van Noordwijk & de Jong, 1986, see Introduction). Indeed, we 

showed that decision speed and accuracy traded off among- but not within-individuals. 

Furthermore, when we re-ran our original statistical model to include the phenotypic effect 

of decision speed on accuracy instead of its among- and within-individual components, the 

strength of support for the existence of trade-offs decreased substantially to the extent that it 

was no longer significant. Thus, if we would have not partitioned the covariance between 

these two cognitive traits across the two hierarchical levels, we would have likely drawn the 

erroneous conclusion that there was no trade-off between decision accuracy and speed.  

Similarly, in Chapter 3 we applied a variance-partitioning approach to test 

predictions developed by starvation-predation risk trade-off theory for wintering great tits. 

By applying such a statistical framework, we showed that the part of our analyses focussing 

on the trade-off at the population level demonstrated a match between the temporal pattern 

of mass gain and foraging activity. So, overall birds foraged more intensively in the 

morning, and therefore, gained mass more rapidly in the first half of the day. By contrast, 

when focussing on individual differences we demonstrated that birds differed greatly in how 

often they visited the feeders. Strikingly, all birds in our population gained mass in the same 

manner. This means that even though all individuals acquired enough reserves before going 

to roost, their patterns of foraging were very different. Some individuals relied heavily on 

our feeders and other individuals visited the feeders but foraged for the bulk of the day 

somewhere else. This mismatch between population-level patterns and individual-level 

patterns was indeed one of the most exciting findings of Chapter 3 and it would have 
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remained hidden if we had relied on the “individual gambit”, and thus, applying a 

phenotypic approach.  

 In conclusion, the multi-level nature of behaviour (as of all labile traits) underlines 

the need to incorporate level-specificity in biological hypotheses explaining the maintenance 

of individual variation among individuals (Westneat, Wright, & Dingemanse, 2015b). 

Indeed, two of the empirical studies of this thesis (Chapters 2 and 3) demonstrated the 

need for such considerations, as level-specific mechanisms in the trade-offs between speed 

and accuracy, and between avoiding risk of predation and starvation, resulted in level-

specific patterns of covariance between the traits studied. Furthermore, the “individual 

gambit” should not be taken for granted because it is more biologically meaningful, but also 

because statistically speaking is usually more appropriate to use mixed effects models than a 

phenotypic approach to investigate variation in traits that vary across multiple levels. The 

findings from PhD thesis thus showed that the use of mixed-effect models and variance-

partitioning to study individual differences in labile traits is important because allowed the 

detection of the actual among-individual patterns that otherwise would have been hidden at 

the population level.  

 

A Geometric View of Phenotypic Variation: Multivariate Traits 

 

“Pigeons with short beaks have small feet, and those with long beaks large feet. Hence, if man goes 

on selecting, and thus augmenting, any peculiarity, he will almost certainly unconsciously modify 

other parts of the structure, owing to the mysterious laws of the correlation of growth.” 

Darwin (1859) 

 

Phenotypic variation is found in almost all labile traits even in the presence of strong natural 

selection; however selection should deplete such variation in phenotypes. The perceived 

incompatibility between these two common observations is likely a consequence of taking a 

trait-by-trait approach to study phenotypic variation in a single trait and its evolutionary 

consequences (reviewed in Walsh & Blows, 2009). Since Darwin (1859) it is clear that 

phenotypic traits are not independent. While Darwin in the quote at the beginning of the 

section was referring to allometric correlations between morphological traits, researchers 

have long debated about the degree of independence of many sorts of traits (reviewed in 

Walsh & Blows, 2009). For instance, several studies have already pointed out the 

multivariate nature of behaviour (e.g., Araya-Ajoy & Dingemanse, 2014; Carter & Feeney, 

2012). The multivariate nature of phenotypes is, thereby, well known. Furthermore, 
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empirical evidence also demonstrates that phenotypic correlations are indeed widespread 

(Lande & Arnold, 1983b). 

Chapter 4 provided a fitting illustration of the relevance of using such a 

multivariate framework when investigating the causes of adaptive behavioural variation 

among individuals. In Chapter 4, we investigated patterns of among-individual integration 

between morphology and behaviour in free-living male great tits. We found evidence for 

quasi-independent modules; a morphological module linking the four morphological traits 

positively to a latent variable that one may dub “body size”; and a behavioural module 

linking the two behavioural traits positively to a latent variable that we may dub “risk-taking 

behaviour”. Importantly, we also found evidence for an overall integration between 

behaviour and morphology mediated by two distinct mechanisms: one integration 

mechanism between behaviour and morphology acted through the overarching latent 

variable “body size” while another integration mechanism was mediated by size-

independent variation in body mass (i.e., an “energetic reserves” module). Our analyses 

therefore provided an important lesson for future research, suggesting that empiricists 

interested in the relationships between body size, energetic reserves and behaviour should 

focus on quantifying multivariate variables instead of considering single traits such as total 

body mass. Overall, the framework applied in Chapter 4 allowed us to quantify the 

multivariate nature of the underlying (i.e., latent) evolutionary “character” (c.f. Houle, 2001) 

while testing for hypothesis of causal relationships among traits. 

In conclusion, given the existing theoretical and empirical evidence, multivariate 

analyses should logically be favoured over univariate ones for describing the complex 

structure of multiple labile traits that will likely covary with each other. However, this 

approach is not the norm. Researchers still often inappropriately assume that selection acts 

on single traits, consequently applying univariate analyses. A plausible reason for such a 

preference towards univariate approaches is the difficulty of implementing multivariate 

analyses. However, one may argue that the benefits of applying multivariate analyses will 

likely exceed the challenges of implementing complex methods, and promise a deeper 

understanding on the evolutionary constrains of labile traits. 

 

The “Phenotypic Gambit” and Evolutionary Constraints of Behaviour 

The “phenotypic gambit” is an approach to the study of adaptations based on the assumption 

that patterns at the phenotypic level are not constrained by the underlying genetics (Grafen, 

1984). Under this assumption, natural selection acts as an optimising process, being 

unconstrained by genetic architecture (Grafen, 1984). Behavioural ecology largely relies on 
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the “phenotypic gambit” to make evolutionary inferences, both from the theoretical and 

empirical perspectives. From the theoretical perspective, optimality theory is largely a 

phenotypic framework (Grafen, 1984; Weissing, 1996). The underlying genetics of the 

behavioural traits in optimality models are unknown but assumed to be not constraining 

phenotypic patterns and under the general rules of natural selection (i.e. any required genetic 

mechanism will evolve and that any genetic constraint will be removed during long-term 

evolution, (Weissing, 1996). Thus, by assuming that the underlying genetics impose no 

constraints on natural selection; modellers can ignore the evolutionary dynamics and 

increase the tractability of their models. From the empirical perspective, behavioural 

ecology relies on the phenotypic gambit as researchers typically collect phenotypic 

observations of behavioural traits, and therefore, it is not possible to partition the genetic 

and environmental components from total phenotypic variation. 

Is it valid, however, to assume that the genetic architecture does not constrain 

behavioural traits? The answer is not so obvious. To detect quantitative constraints, 

researchers must first examine both the amount and nature of the genetic variation for each 

trait. This is important because the amount of genetic variation will set an upper limit to the 

rate of evolution of each trait. In the case of behavioural traits, among-individual differences 

have been shown to be heritable (Réale et al., 2007; Stirling et al., 2002; Van Oers et al., 

2005).  Even though it is important to bear in mind that labile traits such as behaviours are 

in general expected to present large environmental (co)variance (Falconer & Mackay, 

1998). Additionally, to predict a quantitative constraint, researchers need to measure the 

genetic covariance among traits. This is important because genetic correlations among traits 

have the potential to affect evolutionary responses of behaviours as correlated traits may not 

be able to respond to selection independently (Blows & Hoffmann, 2005; Lande, 1979; 

Lande & Arnold, 1983b; Walsh & Blows, 2009). These correlations might either speed or 

constrain the evolutionary potential of a population (Dochtermann & Dingemanse, 2013). In 

the case of behavioural traits, they are often correlated with each other or with other traits 

such as life-history or morphological traits (e.g. Chapter 4). Furthermore, there is also good 

evidence that genetic correlations between behaviours can indeed produce suites of 

correlated behaviours (reviewed by Dochtermann, 2011). Indeed, the results of a meta-

analysis implied that there are stronger genetic correlations among behavioural traits than 

among life-history traits (Dochtermann & Dingemanse 2013). This suggests that among-

individual correlations between behaviours impose greater evolutionary constraints than 

correlations between morphological or life-history traits (Dochtermann & Dingemanse, 

2013). Hence, caution is needed when making inferences about the evolutionary responses 
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of populations (Kruuk, Merilä, & Sheldon, 2003), especially for labile traits such as 

behaviour. 

In conclusion, it is important to collect both phenotypic and genetic data for a full 

understanding of the evolutionary processes of behavioural variation (Roff, 1997). Thus, the 

subsequent question must arise: why some behavioural ecologists are still willing to take the 

phenotypic gambit? The answer is straightforward. Estimating genetic parameters (and then 

constructing a pedigree) is logistically-challenging in most natural systems. One of the 

reasons is that relatedness matrices in field studies are not easy to obtain because essentially 

every individual in the population needs to be known. Furthermore, estimating heritabilities 

and genetic correlations accurately requires large sample sizes. Both aspects make very 

difficult to obtain genetic information of individuals in natural populations. This is also the 

case in our own great tit population (Araya-Ajoy et al., 2016; Araya-Ajoy & Dingemanse, 

2017). In this thesis I was able to partition phenotypic variation into among- and within-

individual variance components because I had repeated behavioural observations for each 

individual. However, I did not further partition the among-individual variation into its 

genetic versus environmental components. This is because we currently lack a sufficiently 

deep pedigree from our population of great tits (but see Araya-Ajoy & Dingemanse, 2017). 

These impediments might be, however, alleviated with the introduction of genomics in the 

field of behavioural ecology (Bengston et al., 2018; Rittschof & Robinson, 2014; Zuk & 

Balenger, 2014). For instance, genetic mapping is the progressing genetics approach to 

relate molecular genetic patterns with phenotypes (Hoffman et al., 2014; Knief, 

Kempenaers, & Forstmeier, 2017; Lander & Schork, 1994), allowing researchers to study 

the genetics of phenotypic variation without information on the pedigree of a population.  

 

Conclusions 

The main findings of my PhD thesis lead to several important conclusions. On one hand, 

behavioural ecology theoreticians working in optimality models should develop models that 

generate quantitative predictions about the relative contributions of the different processes 

to phenotypic variation (i.e., we need more level-specific predictions). On the other hand, 

empiricists should test the theoretical predictions of such models and in turn, inform 

theoreticians (i.e., we need more hypothesis testing). Furthermore, researchers should also 

collect and use appropriate data and statistical tools to quantify the different sources of 

multilevel variation in labile traits (i.e., we should not simply rely on the individual 

gambit). Additionally, my findings emphasize the importance of a “whole organism” 

(rather than “single trait”) approach, thus taking into consideration that organisms are 
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integrated complex phenotypes (i.e., we need to go multivariate). Lastly, I call for caution 

when ignoring the underlying genetics of phenotypic variation and making inferences about 

the evolutionary responses of populations (i.e. we need to acknowledge the existence of 

genetic constraints).  

Overall, this thesis presented a series of studies on the adaptive causes of among-

individual differences in behaviour. These studies were developed with two main objectives. 

The first objective was to dive into the theoretical background on the maintenance of 

repeatable individual differences in behaviour. The second objective was to test and provide 

empirical evidence for the postulated theoretical framework. In general, my PhD work calls 

for the integration of different perspectives to study the adaptive causes of phenotypic 

variation among individuals in labile traits. While these questions were investigated in the 

context of behaviour, my work aimed at achieving a general understanding on the multilevel 

nature of labile traits. Therefore, the framework presented throughout my thesis could be 

readily applied to other phenotypic traits, such as physiological and life-history traits. 
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