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Abstract
A transplant can be defined as a seedling or sprouted vegetative propagation material grown in a substrate or in the field, for
transfer to the final cropping site. Nurseries use a range of growing media in the production of transplants, and the quality of a
substrate may be defined in terms of its feasibility for the intended use and also according to the climatic condition of the
production site. Peat is the worldwide standard substrate, but because of its origin and the increasing environmental and
ecological concerns, new alternatives have been proposed for organic production. Here, we reviewed these new alternatives,
assuming that the proposed growing media will need to respond in a proper way to specific plant requirements while also taking
them into consideration to be environmental friendly, at the same time. Appropriate composting management combined with
suitable feedstock material can produce substrates with adequate properties to develop transplants. Potential added-value benefits
of particularized compost have been highlighted, and these include suppressiveness or capacity for plant pathogen control,
biofertilization, and biostimulation. This added value is an important point in relation to the framework of organic agriculture
because the use of chemical fertilizers and pesticides is limited. Different permitted fertilizers are proposed by incorporating them
by dress fertilization before planting or by foliar fertilization or fertigation during the seedling production phase. In this context,
specific beneficial microorganism inoculation demonstrates better and quicker nutrient solubilization. Its inclusion during seed-
ling production not only facilitates plant growth during the germination and seedling stages but also could bring efficient
microorganisms or beneficial microorganisms to the field with the transplants. This review will help to bridge the gap between
the producers of compost and the seedling plant producers by providing updated literature.
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1 Introduction to the transplant production
in the organic nursery

1.1 Background

The organizational separation of transplant production from
crop production is a recent global trend, especially for vege-
table and floriculture/ornamental crops requiring special tech-
niques and facilities (Kubota et al. 2012). A transplant can be
defined as a seedling or sprouted vegetative propagation ma-
terial grown in a substrate or in the field, for transfer to the
final cropping site (Fig. 1; Unal 2013). This new production
system has taken place over the past two decades to increase
resource use efficiency and reduce environmental impact
(Restrepo et al. 2013). Cultivation from seedlings has many
advantages including earlier harvest; more efficient use of

land, time, energy, and seeds; and healthy and homogenous
production. It can also lead to a reduction in or zero use of
chemical herbicides along with a reduced need for mechanical
and/or hand weeding. These represent great advantages for
organic agriculture, and in order to benefit from these advan-
tages, farmers have, whenever possible, modified their system
of production, thus increasing their demands for seedlings of
the more widely cultivated vegetable crops (Unal 2013).

The main inputs in greenhouse nurseries are seeds, labor,
growing media, fertilizers, permitted pesticides, and the infra-
structure itself (Restrepo et al. 2013). The labor to produce seed-
lings can reach 59% of the total costs, followed by the growing
media that can reach 23% of the total cost; these are variable
figures that depend on the crop, season, and climate of the place
where the greenhouse is sited (Restrepo et al. 2013). Transplant
production can vary according to whether they are grown in
physical trays or in pressed blocks of growing medium with
no physical walls (Fig. 1). Where trays are used, they can be
made of different materials, mainly polystyrene or plastic. Trays
also vary according to the size and number of individual cells
and can range from 72 cell trays used for grafting melon and
water melons to 384 cell trays for lettuces and onions. The
number of transplant production stages can also vary from
one-stage plantation, as usual in Mediterranean conditions, to
two stages for some fruit vegetables such as tomatoes, peppers,
and eggplants in Central andNorthern Europe. Two stagesmean
an additional transplanting from a first small container to a sec-
ond bigger one before transplanting to the soil. This is used

Fig. 1 a Overview of a
greenhouse nursery with the
disposal trays. b Example of a
typical nursery tray for growing
pepper transplants. c Shape of a
transplant once it is out of the tray.
Picture by J. Pascual and F
Tittarelli
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worldwide for greenhouse crops to delay the transplanting, to
save heating costs, and to achieve an earlier harvest.

1.2 Main issues to overcome transplant production
in the organic nursery

Organic transplants are produced in accordance with the rules
and principles laid down in EU Regulations Nos. 834/2007
(EC 2007) and 889/2008 (Reg (EC) No 1107/2009.
Therefore, seeds, fertilizers, and plant protection and disinfec-
tion are used only if they have been authorized for use in
organic production under the regulations (FIBL and IFOAM
2011 (EGTOP report); Tuzel et al. 2014). Another main differ-
ence is the site itself, which must be totally separated from the
conventional nursery area where both production systems are
operated by the same producer. The site must be certified by
the relevant organic authority or certifier.

As a general consideration, it is possible to state that the
main purpose of growingmedia is to satisfy the needs for good
seedling growth within the limited space of a container and to
prepare the seedlings for successful transplantation into the
field. The quality of growing media is one of the main factors
influencing the success of horticultural nursery activity (Raviv
and Lieth 2008), and it is directly linked to the quality of the
materials utilized in growing media formulations (Reis and
Coelho 2007). The choice of appropriate substrate is therefore
an important factor in promoting the optimum growth of
plants. Nursery producers know that the better the media, the
better the transplants, and this assumption is confirmed by the
scientific literature on the subject (Cantliffe 1993; Leskovar
and Stoffella 1995; Gruda and Schnitzler 2004; Paul and
Metzger 2005; Hasandokht and Nosrati 2010; Kubota et al.
2012). Growing media are responsible for the provision of
suitable water, nutrients, and oxygen for seedling development
and also to physically support the whole plant growth even
after transplantation into soil (Raviv 2005). Nurseries use var-
ious growing media in the production of transplants, and the
quality of a substrate may also be defined in terms of its feasi-
bility for the intended use and according to the climatic condi-
tion of the production area (Hasandokht and Nosrati 2010;
Schmilewski 2009). For this reason, a wide number of chem-
ical, physical, biological, and economic characteristics of the
constituents must be considered when developing media for-
mulations (Schmilewski 2009).

2 Growing media characteristics
for transplant production

Growing media must address the requirements of seeds and
seedlings and must have the necessary physical, chemical, and
biological characteristics required to germinate and grow
plants in their early stages. Growing media should ideally

contain ingredients that are from certified organic sources
wherever possible. The use of all the materials listed in
Annex I of the Reg. EC 889/2008 (including peat) as ingredi-
ents in growing media for organic production is allowed.
However, there is a lack of general standard procedures at
the European Union level (Kang et al. 2004), and some rules
are only available at the national level [for example, RAL in
Germany (Bundesgütegemeinschaft Kompost e.V., www-
kompost.de)]. The main physical, chemical, and biological
characteristics of growing media have been a matter of debate
throughout the world over the last decades, especially in the
framework of a comprehensive revision of regulation on or-
ganic agriculture. Peat cannot be used for open field amend-
ment despite its organic origin, a prohibition that originated
from the principle of ecology aiming to reduce the use of non-
renewable resources and to protect environmental features
such as landscapes and peatland habitats (EGTOP report).
Because of this concern, the regulation has introduced a der-
ogation to allow peat only for growing media preparation.
However, the restriction to a “maximum 80 % by volume of
growing media” is under discussion at the European level
(EGTOP report).

Nursery growing media characteristics have been deeply
debated and investigated in the scientific literature (Abad et
al. 2001; Benito et al. 2006; Pagliarini et al. 2012). The ideal
main characteristics which play key roles in the success of a
substrate are reported in Table 1 (Caron et al. 2014). The
physical properties of the growing media are the most impor-
tant parameters related to plant performance in pots (Raviv et
al. 1999; Abad et al. 2001; Pagliarini et al. 2012). Easily avail-
able water should range from 20 to 30%, and less available
water should be the lowest possible to give the better substrate

Table 1 Ideal characteristics of growing media (Benito et al. 2006;
Raviv and Lieth 2008; Abad et al. 2001)

Porous enough both to drain easily excess water and to allow sufficient
oxygen and carbon dioxide exchange at the root level

Enough water holding capacity

pH around neutrality

Electrical conductivity feasible for root growth and seedling development

Cation exchange capacity level able to provide nutrients for healthy plant
development by creating a reservoir of available nutrients

Appropriate level of nutrient ratio, mainly nitrogen, phosphorus, and
potassium related to carbon

Hold transplants firmly in place

Keep constant volume when wet or dry and generally retain its properties

Free from weeds, nematodes, and diseases

Easy storage for long periods of time without changes in physical and
chemical properties

Easy handling and blending

Light in weight to ease transport to the planting site

Low content of silt, clay, and ash
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in terms of water holding capacity (Amha et al. 2010; Londra
2010). The distribution of air, water, and solid in a container
medium depends on several factors including pore space, bulk
density, particle size distribution, container shape and volume,
and media settling (Lemaire 1995; Abad et al. 2001;
Schmilewski 2009; Ayanfeoluwa et al. 2015). The accepted
range of values of the physical parameters is recorded in
Table 2 and can be taken as general criteria (Abad et al.
2001; Pagliarini et al. 2012).

Chemical properties of the formulated growing media also
affect plant growth and nutritional response in different ways
(Salifu et al. 2006). The most important characteristics of
growing media that determine the suitability of the substrate
are included in Table 3 (Raviv et al. 2002). The C/N ratio has
been used as a growing media index to represent its stability as
it has been established that a C/N ratio of 15 permits plants to
uptake nitrogen without it leaching as nitrate and C/N ratios
above 15 represent values at which nitrogen is immobilized
(Dresboll and Magid 2006). Higher C/N represents a higher

risk of immobilized nitrogen (unavailable to plants) while
lower C/N is better for nursery plant production (Zucconi et
al. 1981). There are other ratios such as mineralized NO3/N
(Fuchs and Biophyt 2000) where a ratio above 0.8 indicates
good N availability and low phytotoxicity due to the reduction
of ammonium throughmineralization to nitrate. Table 4 shows
the optimal chemical conditions for different plants and sodi-
um salinity and sensitivity according to Verdonck et al.
(1983).

The biological properties of growing media are also impor-
tant, and until now, they have often been characterized as the
absence of negative aspects such as plant pathogens, weed
seeds, insects, and diseases which may adversely affect the
vigor of transplants (Lemaire 1995). During recent years, the
importance of low microbial activity in reducing competition
for nutrients has also been pointed out. It is also important to
emphasize that some positive aspects, such as the presence of
beneficial microorganisms, have started to be considered
(Pascual et al. 2000; Berg and Smalla 2009). Beneficial

Table 2 Physical parameters of the growing medium

Physical parameters Definition Preferable value

Texture and structure It refers to the size and distribution of particles in soil
or mix, and it is really related to water retention and
air porosity. Structure refers to the combination of
different size particles. For example, pore diameter
can be reduced if smaller particles occupied the
spaces left by larger particles

It is reported as good substrates when they
were with medium to coarse texture,
equivalent to a particle size distribution
ranging between 0.25 and 2.5 mm
(Benito et al. 2006)

Total porosity It determines the available free space for water, air,
and root growth. The degree of porosity is responsible
for good gas exchange capacity for root system. In
general, large pores aid aeration whereas small to
fine pores aid water retention

Porosity should provide enough water and
oxygen to plants. Porosity is considered
to be good when in the range 50–80%
by volume (Beardsell et al. 1979;
Jaenicke 1999)

Particle size It is the structure and organization of the particles Representation of a wide range of all sizes
from the No. 4 to No. 200 sieves
(Lemaire 1995). The higher the coarseness,
the lower the water holding capacity.
Small particle size indicates high values
of easy available water (Schmilewski 2009)

Water holding capacity It is the amount of water held by the substrate without
leaching to ground from the container. The water
available for plants is named water retention, and
it is approximately 60% of the total water holding
capacity. It depends on the growing media, but the
container used is also a factor

The ideal water holding capacity is 40–65%
that corresponds with water retention of
25–30% (Abad et al. 2001)

Bulk density It is the mass of material particles divided by the total
volume they occupy. It is strictly linked to the degree
of particle compaction

It should not exceed 0.4 g cm−3 for vegetable
seedlings (Abad et al. 2001)

Shrinkage ratio It refers to the volumetric decrease percentage due to
a loss of water. It is an indicator of the stability of
the substrate during the time of its usage. It is
essential for long-term container growth. A high
degree of shrinkage leads to root destruction

The optimal values are those that do not exceed
30–35% shrinkage (Gebhardt et al. 2010)

Hydrophobic inertia It refers water repellency indicating the difficulty to
be wet. The determination is developed by using
capillary rise and droplet methods
(Michel and Lazzeri 2010)

The optimal values for peat ranged from − 32
and − 100 kPa. Lower values of − 100 kPa
would be considered as a hydrophobic substrate
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microorganisms can interact with the plant by acting as
biofertilizers, biostimulants, and/or biopesticides, permitting
the reduction of inputs in a sustainable production system
(Okon and Labanderagonzalez 1994; Pascual et al. 2002;
Harman et al. 2004; Alabouvette et al. 2006; Bonanomi et
al. 2007; Castro et al. 2007; Montesinos-Navarro et al. 2012).

Nursery media are either based on a sole growing medium
constituent or on a mixture of various materials. Mixtures of
various constituents with complementary physical and chem-
ical properties are widely used to produce desirable substrate
characteristics (Montesinos-Navarro et al. 2012) and to pro-
duce tailored growing media which respond to the specific
requirements of the target plants. The organic constituents
may be either from biological sources (peat, coconut coir,
and composted organic wastes), or inorganic substrates may
be derived from unmodified sources (sand, tuff, and pumice)

and processed materials (expanded clay as perlite and
vermiculite).

3 Peat as main traditional substrate
for transplant production: environmental
reasons underpinning the research for peat
alternatives

In general, peat has been the most common constituent of
growing medium (Bunt 1988). It is usually included in sub-
strates because it increases the water holding capacity, has a
good cation exchange capacity, does not contain phytotoxic
substances, and has a low bulk density. This is an issue that
must be addressed since almost 80% of growing media used in
Europe is constituted of peat materials (Abad et al. 2001). The

Table 3 Physicochemical characteristics of growing media that determine the suitability of the substrate

Parameter Definition Preferable value

pH It is defined as the acidity of the medium. The pH of substrate
affects the mobility and availability of nutrients. If it is not
within the desired range, nutrients can become either
unavailable or toxic. Also in organically certified
nurseries, substrate pH can be slightly modified by
mineral additives (e.g., lime or sulfur) (Schmilewski 2009)

Desired pH range 5.5–6.5 (Jaenicke 1999), although
each plant shows their optimum pH value

Cation exchange
capacity (CEC)

It represents the ability of a material to adsorb positively
charged ions. It is one of the most important factors
affecting the fertility of a growth substrate. CEC
indicates the fertilizer storage capacity of the substrate
and indicates how frequently fertilizer needs to be applied

Higher than 140 mEq/100 g results in nutrient
retention in the media. Less than 100 mEq/100 g
can cause nutrient leaching. For example, perlite
and sand have very low CEC values relative to
peat and vermiculite components (Lemaire 1995)

Electrical conductivity
(salinity)

t is the expression of the capacity of a solution to conduct an
electric current. In horticulture, it is related to the total
soluble salts of a saturated extract of either soil or
organic material

The average value for an ideal substrate was 0.42 dS/m
in a range from 0.33 to 0.51 dS/m (Abad et al. 2001).
High EC causes poor shoot and root growth

Stability rate It refers to the stability rate of the media (Dresboll and
Magid 2006). It influences the decomposition rate of
media. The higher the C/N ratio, the higher the risk
of nitrogen being unavailable to plants and may reflect
a tendency for the media to experience rapid
decomposition and subsequent decrease in volume
and aeration

C/N ratio around 15 permits nitrogen uptake by plants,
but when it is lower than 15, part of it is leached,
and when it is higher than 15, nitrogen starts to be
immobilized (Hartz and Johnstone 2006)

Table 4 Physicochemical and
chemical characteristics for
growing plants with different
sensitivity to salinity levels
(Verdonck et al. 1983)

Parameter Unit Level of salt sensitivity to NaCl

Sensitive Moderately sensitive Salt-tolerant

pH (H2O) 4.0–5.5 4.3–5.8 4.5–6.0

Electrical conductivity dS m−1 0.40–0.75 0.40–0.75 0.40–0.85

Nitrogen mg l−1 25–40 25–70 30–100

Phosphorus mg l−1 > 30 > 30 > 30

Potassium mg l−1 90–175 120–250 150–360

Calcium mg l−1 > 400 > 400 > 400

Magnesium mg l−1 125–200 150–300 150–300

H2O extract (1:5 v/v extracts) for the first three parameters, and NH4 acetate for the rest
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amount of white peat consumed annually has been estimated
as approximately 30 million m3, half of it is used for produc-
ing growing media for commercial horticulture, and 25% of
this is used extensively in conventional nurseries (Altmann
2008). The use of peat and the expanding growing media
industry in the European Union is estimated to be worth
€13,000 million and generates approximately 11,000 jobs
(EPAGMA 2012).

In recent years, there have been increasing environmental
and ecological concerns about the use of peat as a growing
medium because its harvest is jeopardizing endangered wet-
land ecosystems worldwide (Zaller 2007). In relation to peat
extraction, several environmental organizations such as the
International Mire Conservation Group (IMCG); the
International Peatland Society (IPS), a growing media indus-
try; the Society of Wetland Scientists (SWS); and the IUCN
Commission on Ecosystem Management (CEM) have pro-
duced a Global Action Plan for Peatlands (GAPP). The vision
statement of the GAPP recognizes the importance of peatlands
to the maintenance of global diversity of ecosystems and spe-
cies, the conservation of carbon vital to the world’s climate
system, and the wise use, conservation, and management of
natural resources for the benefit of people and the natural
environment. Peat utilization contradicts the basic principles
of the organic agriculture method as defined in Regulation
834/2007 (EC 2007). For this reason, the EGTOP report pro-
posed that “….to the listing of peat, the following restriction
should be added: ‘maximum 80 % by volume of growing
media’.”

Increasing demand and rising costs for peat as growing
media in horticulture have led to a search for high-quality
and low-cost substrates as an alternative. Industry dependence
on this sector implies fluctuating prices, but there is a clear
upward trend in average prices (13% increase during the
2006–2010 period (Restrepo et al. 2013)), depending on the
scarcity of peat and its non-renewable nature, that could result
in a loss of competitiveness for the nursery and greenhouse
growing sector in relation to soilless substrates. The interest in
finding low-cost, readily available substrates to replace peat
moss has therefore become very important. The rate of peat
consumption compared to other alternative materials has
started to decrease but not for growing media in nurseries
where it shows no sign of losing dominance (Altmann 2008).

4 Compost as a growing medium
for transplant production

Different materials, which can potentially substitute for or
combine with peat in growing media formulation, have been
evaluated (Jayasinghe et al. 2010; Ceglie et al. 2011; Carmona
et al. 2012). These include coir dust, pine bark, and wood fiber
(Frost et al. 2002; Clemmensen 2004) along with sand, tuff,

and pumice processed materials (expanded clay, perlite, and
vermiculite). The origin and definition of each of these are
listed in Table 5. These alternatives need to satisfy the relevant
technical requirements and be readily available in sufficient
quantities at reasonable cost. These materials have been used
to produce tailored growing media which better respond to
specific plant requirements, considering the requirements to
be environmental friendly, and reduce production costs
(Gruda and Schnitzler 2004).

Compost can be defined as a heterogeneousmaterial obtain-
ed by partial degradation of mixtures of organic waste mate-
rials of different origins through an exothermic process carried
out by aerobic microorganisms. Compost from various feed-
stocks is a renewable resource which can minimize the envi-
ronmental impact of waste disposal through recycling in agri-
culture. Compost may have physical, chemical, and biological
properties that can contribute to partial peat reduction in grow-
ing media formulations (Clemmensen 2004). On the other
hand, its utilization is hampered by the lack of uniformity of
compost characteristics over time, mainly because of different
feedstock availability and poor control of the composting pro-
cess. The main commercial goal of horticultural nursery activ-
ity, however, is the production of standardized and healthy
seedlings which cannot be subjected to variable characteristics
of the growing media used. Nevertheless, compost represents
by far the most deeply investigated constituent of growing
media (Pinamonti et al. 1997; Walker et al. 2006; Roberts et
al. 2007; Tittarelli et al. 2009; Ceglie et al. 2015).

It is widely accepted that the term “compost” covers a huge
range of materials and that not all compost would fit as suit-
able growing media constituents, given the need for homoge-
nous properties. It is important for compost producers to un-
derstand that a nursery owner has different product require-
ments from those of a farmer (Pinamonti and Sicher 2001).
Compost performance depends on the quality of the raw ma-
terials used in the formulation of the composting starting mix-
ture (Ceglie et al. 2015) and on the quality of the composting
process (Urrestarazu and Mazuela 2005).

Carmona et al. (2012) highlighted the most frequently cited
problems of the use of compost in growing media for vegeta-
ble transplants. The results concerning the suitability of the
tested composts varied significantly and were not always sat-
isfactory. These failures were often linked to the materials
used and the proportions in the mixtures. They were variously
attributed to the presence of phytotoxins (Roe and Kostewicz
1992), high electrical conductivity (EC) (Herrera et al. 2008),
immaturity in hardwood bark compost (Bearce and
Postlethwait 1982), excess of NH4

+ in spent mushroom com-
post (Lohr et al. 1984), heavy metal toxicity in urban solid
wastes (Rosen et al. 1993), or poor physical properties caused
by low aeration or scarce water holding capacity (Herrera et al.
2008; Carmona et al. 2012). Therefore, it is more a specific
problem of compost production with adequate quality
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Table 5 Different growing media components, origins, characteristics, and reasons to be considered as growing media

Origin Characteristics Case of use

Inorganic component

Perlite It is an aluminum silicate of volcanic origin,
and when it is crushed and heated rapidly
to 1000 °C, it expands to form white,
stable, sterile, and lightweight aggregates
with a cell-like structure that creates tiny
air tunnels, allowing water fluxes and gas
exchange at the root level

It holds water in an amount 3 to 4 times its
weight, and the water is mostly retained
on the surface of the aggregates, meaning
that mixtures with a high proportion of
perlite are well drained and do not retain
much water (Bunt 1988). Perlite granules
have a density of 128 kg m−3 (Jaenicke
1999); very low bulk density, high
porosity to water, high porosity to air,
pH 6–8, and very low CEC

To increase water holding capacity and
provide aeration

Vermiculite It is a micaceous hydrated
magnesium–aluminum–iron silicate, and
it expands when heated above 1000 °C to
form red–brown, sterile, and lightweight
small pieces

It holds 5 times its own weight of water.
Horticultural vermiculite density is in the
range 78–125 kg m−3. It can hold
positively charged nutrients like
potassium, magnesium, and calcium
(Kuepper and Adam 2003), and it is
graded to three sizes: coarse (2–3 mm),
quite often used in growing substrates;
medium (1–2 mm); and fine
(0.75–1 mm); very low bulk density, very
high porosity to water, high porosity to
air, and pH 6–8

It is widely used as a bulking agent that
reduces the compacting effect and keeps
good aeration and drainage. It is worth
noting that the structure of vermiculite is
fragile, especially in the case of a mixture
with heavy material, such as sand
(Jaenicke 1999)

Sand It comes from beaches, preferably from river
beach because sand from seaside contains
salts that must be leached before use

It varies in a wide range from 0.25 to 2 mm.
The density is about 1600 kg m−3. It is
important to choose carbonate-free sands
to avoid non-desirable effects related to
nutrient immobilization (Bunt 1988); very
high bulk density, moderate porosity to
water, very low porosity to air, pH
variable, and high CEC

It is used in propagation and to cover seeds
after sowing in tray or press pots/blocks. It
is used to increase the bulk density and to
improve the drainage. Usually, it is
included at a maximum of 10% of a
substrate volume because its fine fraction
clogs up the pores of the media

Gravel As described for the sands, it may need a
washing step to remove soil and sand
particles

It is heavy with a bulk density that ranges
from 1000 to 1700 kg m−3

Fine gravel, up to 5 mm, has been used
successfully in rooting cuttings

Pumice It is the dust form of a volcanic rock that
consists of highly vesicular, rough
textured volcanic glass, which may or
may not contain crystals. It is meshed at
different sizes depending on the purpose

It increases the water retention capacity and
decreases the bulk density of the mixture
(Sahin et al. 2006)

It improves aeration and water holding
capacity for a long period because of its
stable structure and physical and chemical
properties

Tuff It is produced from ash and rock fragments
ejected during volcanic eruptions. It
consists of mostly silicon dioxide and
aluminum oxide with small amounts of
iron, calcium, magnesium, and sodium

It increases aeration and drainage in growing
media

It possesses a buffering capacity and may
absorb or release nutrients, especially
phosphorus, that permit better plant
growth during seedling (Raviv et al.
2002)

Organic component

Wood fiber It is derived from renewable resources
(wood). It is fibrous in structure, porous,
loose, and elastic (Schmilewski 2009).
The use of conifer wood is preferred

Wood may be treated mechanically and/or
thermally before being used
(Schmilewski 2009). It has low bulk
density, high air capacity, and low water
capacity. pH is between 4.5 and 6.0

Due to its low shrinkage value, it can reduce
the shrinkage of a peat mixture (Raviv et
al. 2002). It is easy to re-wet after drying.
Wood fibers can suppress pathogen like
Pythium and can be used in peat blocks

Coir
(coconut
fiber)

It is the name given to the thick mesocarp or
husk of the coconut fruit. When the husk
is industrially processed, huge amounts of
pith and short-length fibers are disposal as
coir dust. Once coir dust is dried and
compressed into bricks or bales, wrapped,
and shipped, it is prepared for use as an
organic substrate (Schmilewski 2009)

It can retain water up to 9 times of its weight,
and it may last 2 to 4 times longer than
peat. Dry bulk density is very low, with a
pH range from 5.5 to 6.8. Usually, it
contains higher levels of P, K, and Na

It is increasingly used as a substrate, because
of its common characteristics with peat.
Coir improves physical properties of the
mixture and increases air space (Hanson
2003)

Bark It is a by-product of paper mills and sawmills
industry. This material cannot be used as
it is because it has high lignin content that

The horticultural quality of the transplants
produced on bark media depends on the
botanical origin of the material, on the

It is recommended as a component in blends
for potted herbaceous and woody
ornamentals
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standards for growing media formulation than a general prob-
lem of incompatibility of compost as growing media.

4.1 Advantages to the use of compost in growing
media: physical and chemical properties

Composts vary significantly depending on the composition and
origin of the wastes used, e.g., agricultural waste (Lopez-
Mondejar et al. 2010; Pane et al. 2013), agro-industrial waste
(Ntougias et al. 2008), or animal manures and slurries (Ros et
al. 2008; Bernal et al. 2009). Different residual biomasses, such
as coconut coir (Cocos nucifera L.), husk fiber, rice (Oryza
sativa L.) hulls (Evans and Gachukia 2007), switchgrass
(Panicum virgatum L.; Altland and Krause 2009), spent mush-
room compost (Agaricus bisporus and Pleurotus ostreatus;
Medina et al. 2009), beached Posidonia residues (Posidonia
oceanica L.), extracted sweet corn tassel (Zea mays L.;
Vaughn et al. 2011), and giant reed wastes (Arundo donax L.;
Andreu-Rodriguez et al. 2013), have been studied as partial or
total substrate constituents. Numerous studies have also report-
ed the use of compost, as a peat substitute in potting media.
These include municipal solid waste compost (Raviv et al.
2002; Herrera et al. 2008), animal manure compost, green
waste compost (Tittarelli et al. 2009), and agro-industrial

compost (Jayasinghe et al. 2010; Ceglie et al. 2011;
Kritsotakis and Kabourakis 2011; Carmona et al. 2012).

The limitations in compost-type utilization can be solved
by identifying suitable input materials, standardizing the
composting process to obtain homogeneous compost material,
and testing it for specific plant growth (Bernal-Vicente et al.
2008). For this purpose, it is necessary to establish the mini-
mum number of parameters for the determination of compost
quality and to define standard composting processes for spe-
cific raw materials to obtain the expected compost quality.
These parameters have been related to physical, chemical,
and microbiological properties, and the most cited have been
the ones related to salinity and maturity (Roe and Kostewicz
1992; Bernal-Vicente et al. 2008; Herrera et al. 2008;
Carmona et al. 2012). Brinton (2000) presented a range of
parameters based on different German, Austrian, and US bod-
ies with recommended end-use values from specific tests for
composts used as potting formulations (Table 6).

Compost improves the physical and chemical properties of
the growing media and increases the availability of macronu-
trients, micronutrients, as well as plant growth regulators
(Abdallah et al. 2000; Ozores-Hampton et al. 2001). Klock
and Fitzpatrick (1997) pointed out that composts may be used
alone as growing media where the following criteria are met:

Table 5 (continued)

Origin Characteristics Case of use

leads to low mineralization rate and high
nitrogen immobilization. Therefore, a
composting stage is suggested before its
use in horticulture substrate preparation
(Verdonck et al. 1983). The availability of
bark-based substrates is limited on the
market due to the increasing demands for
other sectors, such as landscape mulch
and fuel

particle size distribution, and on the type
and duration of the composting process
(Jaenicke 1999; Lemaire 1995).
Composted pine bark lightens growing
media mixtures, the bulk density is very
low, and it decreases water holding
capacity, with a pH range from 5.0 to 6.5

Rice hull Rice hulls or husk are the coatings of seeds,
or grains, of rice. They are the outermost
layer of the paddy grain that is separated
from the rice grains during the milling
process

Cheap organic by-product with a high
capacity to increase porosity in growing
media mixes

It has been proven to be as effective as
perlite for the production of a range of
crops. This free-draining substrate has
low to moderate water holding capacity, a
slow rate of decomposition, and a low
level of nutrients

It is always mixed with peat, for seedling
germination, at a recommended ratio of
10% because of its negative effect on root
development. Cultivars of tomato and
pepper for transplanting were positively
raised at low dose, but for other species as
chicory, it was possible to include a higher
percentage

Compost They are characterized as stabilized organic
materials that have passed through a
thermophilic phase. The composting
process can be applied to different types
of fresh organic materials from sewage
sludge, agriculture residues, by-products
from agro-industry, municipal waste, etc.
The process needs enough aeration to
assure aerobiosis, moisture between 40
and 50% to permit a microbiological
activity, and certain C/N ratio

Compost improves physical and chemical
properties of the growing media and
increases the availability of macro- and
micronutrients and growth regulators for
transplant growth (Abdallah et al. 2000;
Ozores-Hampton et al. 2001)

Composts commonly added to growing
media can increase plant-available
nutrients; affect physical properties, pH,
and nutrient relationships in the growing
medium; promote or suppress diseases;
and subsequently affect seedling growth
(Manas et al. 2009; Perez-Murcia et al.
2006)
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porosity in the range 50–80%,water holding capacity between
25 and 60%, bulk density from 0.30 to 0.75 g cm−3, initial pH
5.5–6.5, initial soluble salt concentration from 0.33 to
0.51 dS m−1, and a C/N ratio in the range 15–20.
Composted materials that are highly compacted reduce the
porosity of the growing media, but this negative physical pa-
rameter can be ameliorated by adding perlite or pumice to the
substrate mixture (Fitzpatrick 2001). The main constraints in
the use of compost in growing media formulation are the high
electrical conductivity, the slightly alkaline pH (Verdonck et
al. 1983), and the low water holding capacity (Abad et al.
2001). Soluble salt levels in compost depend on feedstock
and processing. It has been proved that composts with lower
salt levels supported growth better than those with higher
levels (Garcia-Gomez et al. 2002). Both water holding capac-
ity and the ratio of water to air in the root medium after drain-
age are important to produce quality transplants. Compost
used as a constituent of growing media must be stable, with
relatively low salinity, low concentration of phytotoxic ions
and molecules, and free of phytopathogenic organisms (Raviv
et al. 2002). Composts commonly added to growing media
can increase plant-available nutrients; affect physical proper-
ties, pH, and nutrient relationships in the growing medium;
promote or suppress diseases; and subsequently affect seed-
ling growth (Manas et al. 2009). Therefore, a new and differ-
ent approach for optimizing growing media has been pro-
posed for obtaining the best results regarding plant growth
and productivity (Ceglie et al. 2015). It has been based on
the identification of a compost with the appropriate character-
istics for the purpose that it has to be intrinsically related to the
selection of the raw materials, their relative proportions, and
the composting procedures used in the production of a feasible
on-farm compost (Table 7).

In Europe, compost is used primarily to feed soil with or-
ganic matter, and only 15% of the compost produced is used
as a basematerial for the formulation of commercial substrates
for cultivation in containers (Rynk and Richard 2001; Raviv
2009). The combination of peat and compost in growing me-
dia is synergistic. Peat often enhances aeration and water re-
tention while compost or other additives improve the fertiliz-
ing capacity of a substrate (Jayasinghe 2012). In addition,

specific by-products and composts tend to have porosity and
aeration properties comparable to those of bark or peat and, as
such, are ideal substitutes in propagatingmedia (Chong 2005).
The greatest plant growth responses and largest yields have
usually occurred when composts constituted only a relatively
low proportion (25–50%) of the volume of the nursery con-
tainer medium mixture (Pinamonti et al., 1997; Atiyeh et al.
2001; Garcia-Gomez et al. 2002; Papafotiou et al. 2004;
Perez-Murcia et al. 2006).

Increasing demand and rising costs for peat as a growing
medium in horticulture have led to a search for high-quality
and low-cost substrates as alternatives (Chong 2005; Ostos et
al. 2008; Moral et al. 2009). So far, compost is developing as a
common media ingredient among organic growers (Kuepper
and Adam 2003). Moreover, compost use in growing media
increases the awareness about waste recycling.

4.2 Suppressiveness of compost for controlling plant
pests and diseases: added value in the role of using
compost as growing media

Seedlings growing in nurseries are susceptible to pathogen
and pest attack which can reduce their growth and prevent
transplantation into the field (Spies et al. 2011; Lopez-
Mondejar et al. 2012). Nurseries are particularly exposed to
the risk of disease emergence because of the temperature and
humidity conditions of plant raising. The organic nursery
needs to use more preventive techniques than conventional,
because once diseases appear, it is more difficult to eliminate
them due to the restriction on the use of pesticides.

Some research has been conducted to evaluate the effect of
peats and composts made from a variety of input materials on
the prevention or control of root and soil-borne diseases
(Darby et al. 2006; Escuadra and Amemiya 2008). In general,
peats tended to facilitate pathogen infection while the pres-
ence of compost in growing media successfully decreased
the mortality rates (Fig. 2; Pascual et al. 2002; Ros et al.
2005; Blaya et al. 2015). These suppressive composts provide
an environment in which plant disease development is re-
duced, even when the pathogen is favored by the presence
of a susceptible host (Hadar and Papadopoulou 2012).

Table 6 End-use test values
recommended for compost:
category potting mixes (assuming
40–50% of mix (v/v) is compost)
(Brinton 2000)

Test parameter German Austrian WERL (USA)

Salt < 2.5 g l−1 < 2 g l−1 < 2 mmhos cm−1

Available N < 300 mg l−1 < 800 mg l−1 100–300 mg l−1

Phosphate < 1200 mg l−1 < 800 mg l−1 800–2500 mg l−1

Potassium < 2000 < 1500 mg l−1 500–2000 mg l−1

Maturity Dewar V Pass plant test Solvita 7–8

Organic matter % > 15 > 20 > 30

pH Need to be declared 5.5–7.0 6–7

Foreign matter Max 0.5%> 2 mm Max 0.5% > 2 mm < 1%> 2 mm
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Table 7 Effect of growing media on different crops

Growing medium components Response Reference

Peat
Coir
Vermiculite
Perlite

100% peat, (75% peat + 25% vermiculite),
or (50% peat + 50% vermiculite) had greater
tomato root dry weight, stem diameter, leaf area,
shoot dry weight, and stem length; more than
50% coir which exhibited reduced plant growth

Arenas et al. (2002)

Old peat 65% + white peat 30% + perlite 5%
Old peat 65% + municipal solid waste compost

30% + perlite 5%
White peat 65% + old peat 30% + perlite 5%
White peat 65% + municipal solid waste

compost 30% + perlite 5%
Municipal solid waste compost 65% + white

peat 30% + perlite 5%

Quality indices of tomato seedlings in white peat
65% + municipal solid waste compost 30%
were similar to those grown conventional mixtures
of old and white peat sphagnum (control)

Herrera et al. (2008)

Replacing commercial growing media with
the different rates (0, 10, and 50%) of coffee
pulp compost (CP)

At CP (10%), tomato serial biomass, seedling height,
and the number of nodes/plant were higher than
pro-mix media

Berecha et al. (2011)

Four rates (20, 45, 70, and 90%; v/v) on a volume basis
of olive pomace waste (OPW) and green waste
compost (GWC)

Treatments GWC 20%, 45%, and OWC 20% showed
the best performances in tomato seedlings compared
with peat

Ceglie et al. (2011)

Local peat (LP) + perlite (PER) + composted
farmyard manure (CFYM; 1:1:1, v/v)

LP + clinoptilolite (CLI) + CFYM (1:1:1, v/v)
LP + PER + vermicompost (VC; 1:1:1, v/v)
LP + CLI + VC (1:1:1, v/v)
VC peat as control

LP + VC + CLI and LP + VC + PER were found
as promising alternatives for tomato seedlings

Tuzel et al. (2015)

Compost of rose oil processing wastes, separated
dairy manure, poultry manure, and straw mixed
with local peat at the rates of 25, 50, 75, and 100% (v/v)

Composting method: aerated static pile or turned windrow
composting methods

Germination period was the longest in 100% compost use,
and shoot biomass decreased with increasing compost
rates in tomato seedling production

Oztekin et al. (2016)

Compost of 2-phase and 3-phase olive mill wastes and
olive oil waste water sludge plus separated dairy manure,
poultry manure, and straw

Different rates of local peat at the rates of 25, 50, 75,
and 100% (v/v) were assayed for tomato transplant
production

Germination period was extended with the increase of
compost rates. The highest tomato shoot dry matter
was in the mixture with 25% of the enriched compost
obtained from 3-phase olive mill wastes

Tuzel et al. (2016)

Garden wastes and cow manure compost at 0, 10, 20,
40, 60, and 100% (v/v) compared with peat (100%)

Quality of tomato and cucumber transplants of 100%
compost was similar to the ones grown in peat (100%)

Ghanbari Jahromi and
Aboutalebi (2009)

Urban solid wastes, sewage treatment plant, and vegetable
wastes + white peat 47.7:47.5 (melon); 65:30
(WP/C) (tomato)

Increasing doses of compost substitution decreased
germination speed of melon and tomato

Diaz-Perez and
Camacho-Ferre (2010)

Fig. 2 Six-day-old cress grown in the presence of an increasing
concentration of Pythium ultimum on a substrate containing 70% peat
and 30% coco fibers and fertilized with 0.3 g N l−1 substrate horn flour

(a) or a substrate containing 70% peat and 30% compost fertilized with
0.3 g N l−1 substrate crab shells to which 10 g l−1 Gliocladium
catenulatum suspension was added (b). Picture by Veronika Hofer
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Not all composts are suppressive, however, as this feature
is dependent on the activities of antagonistic microorganisms,
the plant host, the pathogen species involved, and the charac-
teristics of the compost (Fuchs 2002; Bonanomi et al. 2006).
Moreover, the ability of composts to suppress phytopathogen-
ic agents varies and they can be inconsistent against different
pathogens. Termorshuizen et al. (2006) assayed the effect of
18 composts against seven pathosystems (126 cases corre-
sponding to 100%). They found disease suppression in 54%
of the cases, no significant suppression in 43%, and disease
enhancement in 3%. Particle size, nitrogen content, cellulose
and lignin content, electrical conductivity, pH, inhibitors re-
leased by composts, and compost microbiota may also affect
the incidence of soil-borne plant pathogens (Hoitink and
Boehm 1999). These factors also include the nutritional status
of the transplant and the pathogenic process of the specific
pathogen (Aviles et al. 2011). For instance, a majority of
Phytophthora root rot diseases are inhibited by pH below 5
(Blaker and MacDonald 1983). The low pH reduced sporan-
gium formation, zoospore release, and motility. Besides, pH
above 8 leads to the reduction of Fusarium wilts since pH is
associated with the availability of macro- and micronutrients,
important for growth, sporulation, and virulence of Fusarium
oxysporum (Bernal-Vicente et al. 2008). Inclusion of lignin-
rich or chitin residue feedstock in the compost enhances its
suppressive capacity, because it contains compounds similar
to those present in the pathogenic microorganism cell walls.
Compost maturity is also another important factor to attend
depending on the pathogen to be controlled (Bonanomi et al.
2010). For example, young compost is more effective in sup-
pressing Pythium, while mature compost is recommended
against Rhizoctonia (Harman et al. 2004; Bernal-Vicente et
al. 2008, 2012). However, extremely stable composts do not
support microbiological activity, so the potential for biological
suppression potential is lost (Widmer et al. 1998). Next to the
production processes, storage of compost also affects the ac-
tivity of a compost (van Rijn et al. 2007).

The suppressive effect in composts has been classified
as either general or specific. General suppression is in-
duced by a large metabolically active microbial communi-
ty, while specific suppression is attributed to specific mi-
crobial agents that proliferate in the presence of compost
and affect pathogen growth or infection through a particu-
lar biological control mechanism (i.e., competition,
antibiosis, parasitism, induced plant resistance, or a
comb ina t i on o f the se mechan i sms ; Hada r and
Papadopoulou 2012). It is important to maintain the biotic
factors that are related to suppressiveness in compost as
much as possible in the final stage of the composting pro-
cess, by avoiding overheating or steaming compost
(Borrero et al. 2006; Fuchs et al. 2008). It is also important
to store compost at optimal aeration and moisture content.

A more recent approach to compost suppressiveness has
been the enrichment of compost with specific strains of bio-
control agents (Hadar and Papadopoulou 2012). Good results
have been achieved with the introduction of species of genera
Acremonium, Chaetomium, Gliocadium, Trichoderma, and
Zygorrhynun spp. (Hadar and Papadopoulou 2012). It is also
important to take into account the inoculation time (after the
heat peak of the composting process) and obtain a critical
concentration of the biocontrol agent (Bernal-Vicente et al.
2012). The use of certain Trichoderma spp. has been proposed
because of the ability of these fungi to rapidly colonize the
rhizosphere, control pathogenic and competitive microbiota,
and improve plant health and root growth (Lopez-Mondejar et
al. 2010; Bernal-Vicente et al. 2012).

Many factors must to be used to define a growing medium;
in general, all these aspects are important but they are not
practical for end-users to decide what to measure and which
are the minimal characteristics of a growing medium to re-
spond to its expectation. Mixture design surface has been pre-
sented as a promising technique, performing a simultaneous
optimization of several response parameters of the transplants
(Ceglie et al. 2015). This technique elaborates a mathematical
model to predict the transplant performances in respect to the
growing media components (Fig. 3). A successful scaling to
semi-industrial level will give producers the possibility to re-
alize growing media tailored at specific crop performances
and based on the best mixture of components under economic
and environmental points of view.

5 Fertilization strategies in organic
greenhouse conditions

Seedling production requires very specific fertilization strate-
gies due to the short cultivation period and the demand of
specific nutrients (Möller and Schultheiß 2013). Roots are able
to explore a relatively small volume of growing medium;
therefore, efficient methods of nutrient supply are very impor-
tant. In the case of conventional nurseries, the fertilization pro-
grams are managed through the addition of mineral fertilizers
to provide most of nutrients required for plant growth (Möller
and Schultheiß 2013). In organic nurseries, nutrients must be
totally or partly released from organic amendments and it can
be necessary to incorporate a significant proportion of nutrients
in base and top dressing nutrition programs (Fig. 4). It must be
taken into account that fertilizers must be in the Annex I list of
permitted inputs for organic production (EC 889/08). Compost
mineralization rates cannot supply nutrients to the whole plant
demand period, but it is assumed that 40% of compost as an
ingredient of the growing media is sufficient to supply plant
nutrient demand in the early stages, at least for 2–3 weeks,
except for nitrogen (Biernbaum et al. 2006). It is therefore
necessary to add fertilizers as base dressings in the substrate
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before planting and/or by fertigation or foliar fertilization to
supply the required nutrients during the seedling or transplant
growth cycle (Möller and Schultheiß 2013).

5.1 Base dressing fertilization

Organic fertilizers are mainly based on animal manures
and by-products such as mature manure, dried blood, hoof
and horn, dehydrated and pelletized blends of animal and/
or plant wastes, and by-products of fish, livestock, food,
and other processing industries (Table 8). Nicola and
Basoccu (1994) concluded that N was the major factor
affecting seedlings. In organic systems, nitrogen manage-
ment is based on nitrogen sources that must be mineralized
by soil microorganisms before becoming available for
plant uptake. For example, blood meal addition increases
fresh and dry weights of plants grown in compost because

microbial activity is improved rather than because of the
addition of nutrients (Leonard and Rangarajan 2007).

In general, organic fertilizers have slow-release character-
istics due to organically bound nitrogen. The rate of net nitro-
gen mineralization from solid organic fertilizers varies from
slow to fast and depends mainly on the C/N ratio and the
temperature (Hartz and Johnstone 2006). This means that dif-
ferent nitrogen management strategies will be required de-
pending on the climate conditions and that the type and size
of organic substrate should be adjusted according to growing
temperatures to achieve better seedling hardening, establish-
ment, and yield. Moderate climate regions traditionally use
bigger growingmedia volumes (e.g., pressed peat blocks) than
warm regions to buffer the reduction of microbial nitrogen
mineralization due to low temperatures. Composting is anoth-
er factor that reduces mineral N content by increasing the
organic matter stability, whereas anaerobic fermentation re-
sults in reduced available content of available N (Gutser et

Fig. 3 Desirability prediction
level of three components for a
growing medium of tomato
transplants. The scale green–
yellow–red in the triangle surface
represents the range from the best
to the worst transplant production.
Each triangle vertex represents
one of the three different
components (Ceglie et al. 2015)

Fig. 4 Tomato rootstock grown in
organic media (Klasmann-
Deilmann). a Irrigated by water
and chemical fertilizer (7:3:7).
b Only irrigated by water. c
Incorporated “Guano” organic.
d Fertilization with 50 ppm N:
“Nugro” organic. e The use of
50 ppm N by Nugro fertilizer
caused atrophy and deformation
of the shoot tips. Picture by A.
Koren
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al. 2005). Koller et al. (2004) studied different organic nitro-
gen sources (Table 8), concluding that the animal-based fer-
tilizers were more suitable for base dressing, in terms of higher
production and less phytotoxic symptoms, than some plant-
based fertilizers.

Chitin-containing fertilizers (e.g., crab shell or by-products
ofPenicillium fermentation) are known for their phytosanitary
side effects on fungal disease, e.g., corky root rot
(Pyrenochaeta lycopersici; Michel and Lazzeri 2010), be-
cause they can boost the populations of microorganisms that
can break down chitin, which are well-defined suppressive
microorganisms (Haas and Defago 2005; Gagnon and
Berrouard 1994).

A negative aspect of organic fertilizers results from the
attraction of sciarid flies (e.g., Bradysia sp.). Ammonia and
other by-products released during the mineralization process
of fertilizers appear to be major attractants for female sciarid
flies. The larvae of sciarid flies normally feed on algae and
fungi in growing media, but they can also feed on plant roots
and cause severe damage to seedlings (Koller et al. 2004).

Sciarid flies in growing media could be controlled by
Steinernema feltiae and Bacillus thuringiensis subsp.
israelensis to a sufficient extent degree (Koller et al. 2004).

It is worth noting that in organic agriculture, the opportu-
nities for the use of mineral fertilizers are restricted to rock
phosphates and potassium sulfates for phosphorus and potas-
sium enrichment of the substrates (Table 8). Generally, the use
of natural rock materials releases some macro- and
micronutrients which are converted to the soluble form avail-
able for plants leading to higher fresh and dry weights of
seedlings (Park 2011).

Badran et al. (2007) studied the effectiveness of rock phos-
phate and potassium sulfate incorporated in compost for organ-
ic tomato transplant production. It was demonstrated that sul-
fate did not produce any effect on plant, but rock phosphate
improved the composting process itself by accelerating organic
matter decomposition as evidenced by transplant growth in-
crease (Caravaca et al. 2005; Richardson et al. 2009).
Furthermore, the phosphorus availability during composting
can be further increased if somemicroorganisms are inoculated

Table 8 Mineral nutrient value of
some organic and mineral
fertilizers permitted by the EU
regulation in organic agriculture
(McLaurin and Reeves 2006)

Material N P2O5 K2O Relative availability

Organic origin

Alfalfa meal 3.0 1.0 2.0 Medium-slow

Blood meal 12.0 1.5 0.6 Medium-rapid

Bone meal (steamed) 0.7–2.6 11.0–34.0 0.0 Slow-medium

Brewers grain (wet) 0.9 0.5 0.1 Slow

Cocoa shell meal 2.5 1.0 2.5 Slow

Ground coffee (dry) 2.0 0.4 0.7 Slow

Cotton gin trash 0.7 0.2 1.2 Slow

Cotton seed meal (dry) 6.0 2.5 1.7 Slow-medium

Eggshells 1.2 0.4 0.1 Slow

Feather 11.0–15.0 0.0 0.0 Slow

Fish meal 10.0 4.0 0.0 Slow

Fish emulsion 5.0 2.0 2.0 Medium-rapid

Fish scrap (dry) 3.5–12.0 1.0–12.0 0.8–1.6 Slow

Garbage tankage (dry) 2.7 3.0 1.0 Very slow

Grape pomace 3.0 0.0 0.0 Slow

Greensand 0.0 1.0–2.0 5.0 Slow

Guano (bat) 5.7 8.6 2.0 Medium

Guano (Peru) 12.5 11.2 2.4 Medium

Algae extracts 0.9 0.5 1.0–4.0 Slow

Vinasses (processed molasse) 4.5 0.3 5.5 Medium-rapid

Manure (cattle, horse, sheep, swine) 0.3–0.6 0.2–0.3 0.3–0.8 Medium

Poultry (75% water) 1.5 1.0 0.5 Medium-rapid

Mineral origin

Colloidal phosphate 0.0 18–24 0.0 Slow

Rock phosphate 0 20–32 0 Slow

Granite dust 0.0 0.0 3–5 Very slow

Potassium sulfate 0 0 21 Rapid
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such as Aspergillus niger, Pantoea agglomerans, and
Pseudomonas putida. These microorganisms favor plant phos-
phorus uptake due to acid production in the rhizosphere or by
higher root exudate production as a consequence of compost
biostimulation of the plant (Hayat et al. 2010; Park 2011).

In this context, the efficacy of some fertilizers has been
improved by the simultaneous addition of specific microor-
ganisms that promote faster and more efficient nutrient solu-
bilization. As an example, the addition of arbuscular mycor-
rhiza or Aspergillus niger together with natural rock phos-
phate resulted in better plant growth due to their reduction of
rhizosphere pH and the higher amount of available phospho-
rus used by plants (Caravaca et al. 2005; Medina et al. 2009).
In other examples, the addition of biofertilizer microorgan-
isms such as Azospirillum, Rhizobium, or Bacillus improved
organic matter mineralization in the substrate, leading to the
uptake of released nutrients by plants (Bashan and Holguin
2004; Vassilev et al. 2006; Hayat et al. 2010). These microor-
ganisms will be discussed in greater detail in Section 6.

5.2 Top dress fertilization strategies

Popescu et al. (2004) showed that growing media cannot
be successful in organic transplant production without any
top dress application during the plant growth. It is hard to
generalize from these results, however, because of the high
variability of the composition and nature of the organic
amendments, the cell size of the trays, and the specific
experimental conditions. In temperate regions, it is possi-
ble to use base fertilizers only, specifically by using trays
with large cell sizes or in peat blocks with no trays. In
high-temperature areas such as the Mediterranean areas,
mineralization is sometimes too fast and this limits the sole
use of base fertilizers in the growing media. Organic nurs-
eries, in the Mediterranean, use other fertilization tech-
niques, such as foliar or root application, to supply the
growing media substrates. Nielsen and Thorup-Kristensen
(2004) demonstrated that the choice of growing media and
fertilization strategy is one of the greatest challenges for
organic seedling production because of the restricted num-
ber of growing media. Efficient methods of nutrient supply
are therefore recommended, and these include the use of
foliar application of fertilizers in liquid form delivered
from hydrolyzed feather, meat, bone, and blood meal for
crop fertilization (Gaskell and Smith 2007). Fertigation is
also considered to be an optimal system for the supply of
required nutrients as it is based on the application of dilut-
ed liquid fertilizers directly at the root level. It has the
advantages of increasing nutrient uptake and reducing wa-
ter and nutrient leaching loss. Fertigation opens up a range
of opportunities because its flexible fertilization patterns
enable growers to manage specific nutritional requirements
not only for different crops on the same kind of substrates

but also during the growth of the same crop during its
different stages of development. Fertilizers suitable for
fertigation must be mixed in water, and they should not
react with any substances in the irrigation water to form
insoluble precipitates (McLaurin and Reeves 2006;
Gaskell and Smith 2007). Most of fertigation products are
usually composed of dehydrated and pelletized blends of
animal and/or plant wastes and by-products of fish, live-
stock, food, and other processing industries (Table 8). The
ebb–flood system is an alternative to fertigation in seedling
production. It is a form of hydroponics where the seedling
in the growing medium is periodically flooded with the
required fertilizers.

Top dressing with liquid fertilizers is used to improve ni-
trogen fertilization (Gaskell and Smith 2007). Unlike dry fer-
tilizers, which are not easily applied through irrigation sys-
tems, liquid fertilizers are more suitable for fertigation in drip
systems which are popular in arid and hot climate zones.

As mentioned in Section 5.1, climate conditions are impor-
tant in the determination of nitrogen uptake efficiency (Hartz
and Johnstone 2006). For example, the commercial produc-
tion of vegetable transplants in the Mediterranean Basin faces
several problems connected to the use of fertilizers. In sum-
mer, the nurseries are exposed to high temperatures, above
35 °C during the day and about 15 °C at night. Seedling
production with detached and shallow media increases the
exposure of the substrate and the roots to the high ambient
temperatures. Symptoms like budless tomato transplants, root
burn, and physiological deformation in transplants are com-
mon, and the cause is not always clear (Wetztein and Vavrina
2002). These symptoms may be due to ammonium toxicity or
other gas emissions, but the problem is not yet solved so
further research will be needed to identify the causes
(Wetztein and Vavrina 2002).

6 Beneficial microorganisms: plant
growth-promoting rhizobacteria
and biological control agents

Plant growth and productivity is heavily influenced by the
interactions between plant roots and the surrounding microbi-
al populations. The plant rhizosphere harbors microorganisms
that may have positive, negative, or no visible effect on plant
growth. Themain positive effects are related to (i) suppression
of disease (biocontrol), (ii) enhancement of nutrient availabil-
ity (biofertilization), and (iii) production of plant hormones
(phytostimulation) (Martinez-Viveros et al. 2010;
Bhattacharyya and Jha 2012). Beneficial microorganism inoc-
ulation is one of the aims of agricultural biotechnology, with a
key goal of reducing reliance on chemical fertilizers and pes-
ticides in conventional agriculture, and to permit functional
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organic agriculture where synthetic inputs are not permitted
(Minorsky 2008; Adesemoye et al. 2009).

There are many factors which should be taken into con-
sideration to obtain benefits from bio-inoculation (Berg
and Smalla 2009), including the selection of the appropri-
ate microorganisms based on the target host plant, indige-
nous microbial communities, environmental conditions, in-
oculant density, suitability of carriers, compatibility with
integrated crop management, and soil type. The inclusion
of beneficial microorganisms during seedling production
would permit two main benefits: (i) facilitating plant
growth during the germination and seedling stages and
(ii) introducing with the transplant to the soil beneficial
microorganisms (Zehnder et al. 2001).

6.1 Microbial inoculation for disease and pest control

Microorganisms that suppress plant pathogens are referred as
biological control agents (BCAs) (Harman et al. 2004). The
BCAs used in agriculture today can be classified into two
types. One group includes those microorganisms that can con-
trol a large spectrum of taxonomically diverse pathogen hosts,
including species of Bacillus, Pseudomonas, Streptomyces,
Trichoderma, Clonostachys, and some yeasts. The other
group can counteract only one of a few targeted pathogens
and includes biocontrol species of Agrobacterium,
Ampelomyces, Coniothyrium, non-pathogenic Fusarium,
atoxigenic Aspergillus, etc. (Ruocco et al. 2015). Currently,
there are a limited number of biological control products avail-
able on the market with the situation varying from country to
country. In countries, such as the USA, Australia, and New
Zealand, the use of BCAs to control aerial and soil-borne plant
pathogens is a widespread control method. However, in the
European Union, few microorganisms are currently approved
under Regulation EC 117/2009, which was implemented on
14 June 2011 (Table 9). The new regulation contains the text
of reference which regulates the use of plant protection prod-
ucts (PPPs), including chemicals as well as microbial biolog-
ical control agents (http://ec.europa.eu/food/plant/pesticides/
eu -pe s t i c i de s -da t aba se /pub l i c / ? even t=p roduc t .
selection&language=EN).

The success of BCAs is due to several properties that can
be summarized in various strategies. The oomycetes
Phytophthora ssp. and Pythium spp. are described as highly
sensitive to microbial nutrient competition. They depend on
exogenous carbon sources for germination to infect host plants
(Hoitink and Boehm 1999). Competition for nutrients and
space is one of the modes of action of many BCAs such as
Trichoderma spp. (Alabouvette et al. 2006).

Competition for micronutrients such as iron is also fre-
quently found, being one of the modes of action of fluorescent
Pseudomonas which produces siderophores limiting growth
and germination of chlamydospores of pathogenic Fusarium

oxysporum (Heydari and Pessarakli 2010). It is known that
Trichoderma harzianum secretes iron-chelating siderophores
that limit the availability of iron for the germ tube growth of F.
oxysporum (Verma et al. 2007).

Representatives of a range of species of bacteria
(Pseudomonas , Burkholderia , Bacillus , Serratia ,
Streptomyces) and fungi (Trichoderma, Penicillium,
Gliocadium, Sporidesmium, non-pathogenic Fusarium spp.)
have been identified as antagonistic to one or more soil-
borne plant pathogens (Aviles et al. 2011). Positive correla-
tions have been found between these microbial species and the
ability of composts to suppress soil-borne pathogens
(Bonanomi et al. 2010). The effectiveness of the application
of microorganisms such as T. harzianum under seedling nurs-
ery conditions was related directly to the growing media for-
mulation, because the formulation had a clear influence on the
survival of this antagonistic fungus. A commercial bentonite–
vermiculite formulation based on T. harzianum strain CECT
20714 could be effective in greenhouse nurseries (Bernal-
Vicente et al. 2008) with a double objective as follows: (i) to
enhance plant growth and (ii) to reduce the incidence of
Fusarium wilt in melon plants.

6.2 Biofertilization and biostimulation effect

Some microbial species promote plant growth through nitro-
gen fixation, phosphate solubilization, production of phyto-
hormones like auxin and cytokinin, and production of volatile
growth stimulants such as ethylene and 2,3-butanediol (Ryu et
al. 2003; Vessey 2003; Castro et al. 2009). The production of
phytohormones is now considered to be one of the most im-
portant mechanisms by which many beneficial microorgan-
isms promote plant growth (Spaepen et al. 2007).
Phytohormones are molecules acting as chemical messengers,
and they play a fundamental role as growth and development
regulators in plants. Numerous fungal and bacterial species
can affect plant phytohormone metabolism (Tsavkelova et
al. 2006). Indol-3-acetic acid (IAA)-mediated ethylene pro-
duction can be increased through plant growth-promoting
rhizobacteria (PGPR)-inoculated tomato plants (Ribaudo et
al. 2006). At present, auxin-synthesizing rhizobacteria are
the most studied phytohormone producers (Tsavkelova et al.
2006; Spaepen et al. 2007). Azospirillum is one of the best
studied IAA producers (Dobbelaere et al. 1999). Other IAA-
producing bacteria belonging to the genera Aeromonas
(Halda-Alija 2003), Azotobacter (Ahmad et al. 2008),
Bacillus (Swain and Ray 2007), Burkholderia (Halda-Alija
2003), Enterobacter (Shoebitz et al. 2009), Pseudomonas
(Niranjana et al. 2009), and Rhizobium (Ghosh et al. 2008)
have been isolated from different soil rhizospheres.

A classic example of biofertilization is nitrogen fixation by
microorganisms such as Azoarcus sp., Beijerinckia sp.,
Klebsiella pneumoniae, Pantoea agglomerans, and
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Rhizobium sp. which are reported to fix atmospheric N2

(Riggs et al. 2001; Vessey 2003). Phosphate-solubilizing mi-
croorganisms are another example of biofertilization that have
been recorded, converting the insoluble form of phosphorus to
the soluble and available form through acidification, secretion
of organic acids or protons (Richardson et al. 2009), and

chelation and exchange reactions (Hameeda et al. 2008).
Saprophytic bacteria and fungi are reported to solubilize phos-
phate in soil due to chelation-mediated mechanisms
(Whitelaw 2000). The most significant phosphate-
solubilizing microorganism reported is from genera such as
Microbacterium, Pseudomonas, Rhizobium, Beijerinckia,

Table 9 Microbial control agents
with status of approved under
Reg. (EC) No. 1107/2009
(repealing Directive 91/414/EEC)

Microbial control agent Strain Use

Adoxophyes orana GV BV-0001 Insecticide

Ampelomyces quisqualis AQ-10 Fungicide

Aureobasidium pullulans DSM 14940, DSM 14941 Bactericide

Fungicide

Bacillus firmus I-1582 Nematicide

Bacillus pumilus QST 2808 Fungicide

Bacillus subtilis QST 713 Bactericide

Fungicide

Bacillus thuringiensis subsp. aizawau ABTS-1857, GC-91 NS

Bacillus thuringiensis subsp. israeliensis
(serotype H-14)

AMS-52 NS

Bacillus thuringiensis subsp. kurstaki ABTS 351; PB 54; SA 11; SA 12;
EG 2348

NS

Bacillus thuringiensis subsp. tenebrionis NB 176 (TM 141) NS

Beauveria bassiana ATCC 74040; GHA Insecticide

Candida oleophila 0 Fungicide

Cydia pomonella granulovirus CpGV NS Insecticide

Gliocadium catenulatum J1446 Fungicide

Helicoverpa armigera nucleopolyhedrovirus Hear NPV Insecticide

Lecanicillium muscarium (formerly Verticillium lecanii) Ve6 Insecticide

Metarhizium anisopliae var. anisopliae BIPESCO SIF52 Insecticide

Paecilomyces fumosoroseus Apopka 97 Insecticide

Paecilomyces fumosoroseus Fe9901 Insecticide

Paecilomyces lilacinus 251 Nematicide

Phlebiopsis gigantean Several strains Fungicide

Pseudomonas chlororaphis MA342 Fungicide

Pseudomonas sp. DSMZ 13134 NS

Pythium oligandrum M1 Fungicide

Spodoptera exigua nuclear polyhedrosis virus NS Insecticide

Spodoptera littoralis nucleopolyhedrovirus NS Insecticide

Streptomyces K61 (formerly Streptomyces griseoviridis) NS Fungicide

Streptomyces lydicus WYEC 108 NS Bactericide

Fungicide

Trichoderma asperellum (formerly T. harzianum) ICCO12; T25; TV1 Fungicide

Trichoderma asperellum T3T Fungicide

Trichoderma atroviride (formerly T. harzianum) IMI 206040; T11 Fungicide

Trichoderma atroviride I-1237 Fungicide

Trichoderma gamsii (formerly Trichoderma viride) ICC080 Fungicide

Trichoderma harzianum T-22; ITEM 908 NS

Trichoderma polysporum IMI 206039 Fungicide

Verticillium allbo-atrum (formerly Verticillium dahliae) WC5850 Fungicide

Zucchini yellow mosaic virus Weak strain Fungicide

NS not specified
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Burkholderia, Enterobacter, and Serratia (Mehnaz and
Lazarovits 2006). There are also reports on the efficacy of
combinations of Bacillus and Microbacterium inoculants to
improve the uptake of some minerals such as Ca, K, Fe, Cu,
Mn, and Zn by crop plants (Karlidag et al. 2007), through the
stimulation of proton pump ATPase, forcing the decrease in
rhizosphere pH (Mantelin and Touraine 2004).

Close examination of the individual effects of beneficial
microorganisms leads to the conclusion that many of the best
strains are multifunctional. Thus, many beneficial microor-
ganisms simultaneously solubilize phosphate, produce auxins
that stimulate root growth, and produce antibiotics and
siderophores that may function in the suppression of plant
pathogens. In most cases, individual strains vary considerably
in performance and there is no clear relationship between tax-
onomy andmicrobial functions that can be used tomonitor the
population size and activity of these bacteria based on quan-
tification of specific taxonomic groups in the soil. The best
example of such inconsistency is found in the body of work on
Azospirillum, which was initially based on this bacterium’s
ability to fix nitrogen, but which was later shown to affect
plant growth by the production of phytohormones (Spaepen
et al. 2007). Similarly, many phosphate-solubilizing bacteria
have been screened and selected based on their ability to sol-
ubilize hydroxyapatite on agar media, but they have later been
found to affect root growth by the production of plant growth
hormones.

Arbuscular mycorrhizal fungi (AMF), grouped into the
phylum Glomeromycota, can form mutualistic symbiotic
relationships with most land plants and can colonize a
wider soil volume (Richardson et al. 2009). The AMF re-
ceive carbon from their host while favoring plant growth
through their ability to exploit resources and deliver nutri-
ents, especially phosphorus, and water back to the plant
(Smith and Read 2008). AMF may inhibit pathogen prolif-
eration through the formation of a bacterial community that
limits the pathogen invasion (Li et al. 2006; St-Arnaud and
Vujanovic 2007). The successful use of AMF in sustain-
able agriculture requires the selection of the appropriate
host/fungus combination and the infectivity and efficacy
being two of the criteria for the selection (Tarbell and
Koske 2007).

6.3 Interaction among beneficial microorganisms

In the rhizosphere, interactions between microorganisms
are crucial to ensure their successful establishment in
plants, and from these interactions, beneficial effects on
plants can be observed. The combination of AMF and the
strain of Trichoderma harzianum (T78) produces better
plant establishment in melon plants under nursery condi-
tions (Martinez-Medina et al. 2013). The presence of T.
harzianum significantly increased root colonization by

Glomus intraradices, Glomus constrictum, and Glomus
claroideum, reaching values significantly higher than the
most effective AMF Glomus mosseae (Fracchia et al.
2 0 00 ) . Tr i c hod e rma kon i n g i i c omb i n e d w i t h
Pseudomonas chlororaphis or Pseudomonas fluorescens
Q2–87 gave higher suppression of the severe plant disease
wheat take-all than T. koningii alone (Duffy et al. 1996).
Another case is the combination effect of Trichoderma
virens GI-3 combined with Burkholderia cepacia which
provided greater protection to pepper seeds than either an-
tagonist inoculated separately in the presence of four soil-
borne pathogens. Datnoff et al. (1995) reported a higher
suppressive effect against Fusarium crown and root rot of
tomato with the combination of T. harzianum and G.
intraradices than with each biological agent applied alone.
Combinations of the AMF and T. harzianum could control
Fusarium wilt more effectively than each AMF applied
alone. It is worth noting, however, that the effects of the
interaction between AMF and T. harzianum may be very
different depending on the AMF, the saprophytic strain,
and the host plant (Fracchia et al. 2000), and in general,
it can be attributed more to the type of strain than the
species or genus (Martinez-Medina et al . 2014).
Martinez-Medina et al. (2013) studied the effect of the
pre-inoculation by AMF and the specific T. harzianum
T78, demonstrating that plants co-inoculated with the
AMF and T. harzianum at the nursery had similar growth
and fruit production in nutrient-poor soil compared to
mineral-fertilized soil without pre-inoculation.

The application of beneficial microorganisms to trans-
plants can be done in different ways. The first example
involves liquid applications from a previous fermentation.
These microorganisms can either be based on a mineral
medium or on an organic oil-based solution. The main
advantages are related to the simplified system of produc-
tion and application for the farmers. As they are applied
directly, liquid inoculants allow direct contact of seed with
the microorganisms and consequently increase the survival
of microbial strain on plant roots. However, they may fail
to provide a protective environment for the microbial
strain, leading to a decrease of the inoculated microbe pop-
ulation, possibly due to poor adaptation to the medium
and/or the lack of physical protection. Different clays such
as bentonite, perlite, and vermiculite have been used as
carriers of some strains such as T. harzianum T78. The
use of clays is based on the incorporation of hypha and
spores between the physical parts of clays, which provides
physical conditions adequate for the development of this
antagonistic fungus. Both bentonite and vermiculite have a
laminar structure, large surface area, and high capacity for
adsorption and absorption and so can provide the moisture,
nutrients, and also the oxygen needed for fungus growth
(Bernal-Vicente et al. 2008). Bio-encapsulation is another
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way to assure better survival both during storage and fol-
lowing inocu la t ion in to the envi ronment . Bio-
encapsulation uses natural polymers such as alginate pro-
duced by brown algae such as Macrocystis pyrifera,
Laminaria digitata , Laminaria hyperborean , and
Ecklonia cava and bacteria such as Azotobacter vinelandii
and Pseudomonas strains.

One of the pitfalls in the use of microorganisms, and
therefore a limitation of their commercial distribution, is
the lack of consistency in the results obtained because dif-
ferent authors showed contrasting results. Improving the
understanding of modes of action may produce promising
results in the control of plant pathogens. This could iden-
tify critical threshold population sizes that are likely to be
required to induce the expression of some traits, particular-
ly those involved in biocontrol. The cumulative effects of
microorganisms that influence root growth rates, root sys-
tem architecture, root hair formation, and longevity will
indirectly affect the ability to acquire water and nutrients
and the tolerance of root loss from disease. More in-depth
research, on which mechanisms are most important and
how to manage soil microflora to obtain expression of
these traits, is the future great challenge for consistent mi-
crobiota use in agricultural systems.

7 Main conclusions and future challenges
of growing media

Peat use could be reduced considerably in growing media if
replaced by a proportion of compost or other proposed mate-
rials supplemented with coir and mineral. This substitution
would permit the production of higher transplant biomass
and plant growth as good as peat, in particular, due to the
improvement of physical, chemical, and microbiological
properties. These materials, such as added-value compost or
tailored compost, would bring added values that peat cannot
provide, such as the feeding of seedlings with macro- and
micronutrients or the carrying of beneficial microorganisms
needed tomineralize compounds into plant-available nutrients
and to suppress plant pathogens.

There is an information gap between the producers of
growing media, in particular compost producers, and the re-
quirements of nurseries, which should be overcome by the
provision of trusted common information for both markets.
There is a lack of practical research, and more attention must
be paid to the involvement of the whole chain from input and
growing media producers to the seedling and vegetable
growers. It needs to be demonstrated that mixtures of added-
value growing media could be upscaled from laboratory size
to amounts of several cubic meters or tons without losing their
useful properties, taking into account several weeks of storage
which is unavoidable in commercial handling. These steps are

necessary to translate the achievements of the research on
growing media into farm practice. It is important to carry out
a more in-depth analysis of the effects of specific composts
used by nurseries to assure the best seedling growth
conditions.

More involvement of compost producers and end-users in
educational and planning efforts could improve the quality of
growing media by introducing added-value characteristics,
reducing the use of peat that would permit a more sustainable
regime as claimed by stakeholders of organic agriculture.
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