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Abstract 21 

Most stomatopod crustaceans have complex retinas in their compound eyes, with up to 16 22 

spectral types of photoreceptors, but members of the superfamily Squilloidea have much simpler retinas, 23 

thought to contain a single photoreceptor spectral class.  In the Atlantic stomatopod Squilla empusa, 24 

microspectrophotometry shows that all photoreceptors absorb light maximally at 517 nm, indicating that a 25 

single visual pigment is present in all photoreceptors in the retina. However, six distinct, but partial, long 26 

wavelength sensitive (LWS) opsin transcripts, which encode the protein component of the visual pigment, 27 

have been previously isolated through RT-PCR.  In order to investigate the spectral and functional 28 

differences among S. empusa’s opsins, we used RT-PCR to complete the 3’ end of sequences for five of 29 

the six expressed opsins.  The extended sequences spanned from the first transmembrane helix (TM1) to 30 

the 3’ end of the coding region. Using homology-based modeling, we predicted the three-dimensional 31 

structure of the amino acid translation of the S. empusa opsins. Based on these analyses, S. empusa LWS 32 

opsins share a high sequence identity in transmembrane regions and in amino acids within 15Å of the 33 

chromophore-binding lysine on transmembrane helix 7 (TM7), suggesting that these opsins produce 34 

spectrally similar visual pigments in agreement with previous results. However, we propose that these 35 

spectrally similar opsins differ functionally, as there are non-conservative amino acid substitutions found 36 

in intracellular loop 2 (ICL2) and TM5/ICL3, which are critical regions for G-protein binding, and 37 

substitutions in extracellular regions suggest different chromophore attachment affinities.  In situ 38 

hybridization of two of the opsins (Se5 and Se6) revealed strong co-expression in all photoreceptors in 39 

both midband and peripheral regions of the retina as well as in selected ocular and cerebral ganglion 40 

neuropils. These data suggest expression of multiple opsins - likely spectrally identical, but functionally 41 

different - in multiple types of neuronal cells in S. empusa.  This suggests that the multiple opsins 42 

characteristic of other stomatopod species may have similar functional specialization. 43 

 44 

  45 

46 
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Introduction 47 

Stomatopod crustaceans, commonly referred to as mantis shrimps, make up a group of marine 48 

crustaceans that has been shown to have complex visual physiology, with up to 16 spectrally distinct 49 

photoreceptor classes observed in some species (Cronin et al. 1994; Cronin et al. 2010; Porter et al. 2009). 50 

Stomatopods have apposition compound eyes which are composed of many visual units called ommatidia 51 

(Marshall et al. 2007). Each ommatidium in the stomatopod eye has its own corneal and crystalline cone 52 

optical elements positioned above a rhabdom produced by seven or eight retinular photoreceptor cells 53 

(Marshall et al. 2007). In Squilla empusa, each rhabdom is formed by microvilli laden with visual 54 

pigments projected from seven photoreceptors, forming a single photoreceptive unit (Schönenberger, 55 

1977). Visual pigments are composed of an opsin G-protein coupled receptor protein and a light sensitive 56 

chromophore. Upon photon absorption, the chromophore undergoes isomerization, typically from 11-cis 57 

retinal into all-trans retinal, and starts the phototransduction cascade. The spectral absorbance properties 58 

of visual pigments are typically tuned by alterations to the opsin residues that interact with and stabilize 59 

the chromophore in its binding pocket. Usually, one spectral class of photoreceptor expresses only one 60 

type of visual pigment (and thus a single opsin), although there is evidence for the expression of multiple 61 

distinct opsins within a single photoreceptor class from a number of species (e.g. African cichlid fish, 62 

Dalton et al. 2015; Limulus polyphemus, Battelle et al. 2016). 63 

At the structural level, stomatopod compound eyes are characterized by having two peripheral 64 

regions (dorsal and ventral) bisected horizontally by an equatorial midband region of specialized 65 

ommatidia (Marshall et al. 2007). While the peripheral regions contain the typical crustacean set of two 66 

photoreceptors spectral types, one sensitive to violet or ultraviolet (UV) light and the second sensitive to 67 

blue-green wavelengths, photoreceptors within the midband row are typically specialized for 68 

polychromatic and polarization vision. Most stomatopod species (superfamilies Gonodactyloidea, 69 

Lysiosquilloidea, Pseudosquilloidea, and Hemisquilloidea) have six ommatidial rows in the midband 70 

region, but species in the Squillioidea, including Squilla empusa in the present study, have only two 71 
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ommatidial rows in the midband and are monochromatic (Schiff et al. 1986; Cronin, 1985).  Phylogenetic 72 

studies of the stomatopods suggest that the common ancestor of the Squilloidea most likely had six 73 

midband rows (Ahyong, 1997; Porter et al. 2010). Thus, the two-row midband in Squilloidea is likely an 74 

evolved loss of photoreceptor diversity and spectral sensitivities. S. empusa are found near the coast of the 75 

Western Atlantic Ocean, from Maine to the Gulf of Mexico (Schiff et al. 1986). As is common in 76 

stomatopods, they make their homes by creating burrows on the ocean floor. Unlike stomatopods found in 77 

shallow coral reef habitats, S. empusa tends to burrow in muddy sea floors in dark and murky waters 78 

(Schiff et al. 1986). The limited light availability and their nocturnal hunting lifestyle (Schiff et al. 1986) 79 

may have contributed to the evolution of reduced visual complexity in S. empusa. 80 

Microspectrophotometric (MSP) studies of S. empusa eyes showed that all retinal photoreceptors 81 

absorb light maximally at 517 nm (Cronin, 1985). The reduced complexity of the S. empusa retinal 82 

structure and the presence of a single spectral type of photoreceptor implies there is also a single 83 

expressed opsin in the retina that initiates a conserved visual phototransduction cascade. However, recent 84 

studies have suggested that S. empusa visual physiology could be more complex than previously thought.  85 

Porter et al. (2009) isolated six unique opsin sequences from S. empusa retinas that cluster with other 86 

crustacean long wavelength sensitive (LWS) opsins.  This raises an interesting question—why would a 87 

species with a monochromatic visual system possesses multiple opsins?  The first possibility could be that 88 

the opsins differ spectrally and when expressed together, they tune the photoreceptors to their maximal 89 

absorbance value. However, this typically leads to a broadened photoreceptor curve, and there is no 90 

evidence of multiple visual pigments with different absorbance peaks from past MSP studies (Cronin, 91 

1985).  Alternatively, the opsins could be identical, or highly similar, in spectral absorbance and yet differ 92 

functionally in how they initiate the phototransduction cascade due to structural differences leading to 93 

differences in membrane localization or chromophore coupling.  There also exists the possibility that the 94 

opsins could be evolutionary vestiges, and are not translated into protein. In this study, we extended 95 

sequences of five opsin transcripts from Porter et al. 2009 to span from TM1 to the end of the coding 96 
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region in order to predict the opsins’ functional and spectral differences. We also analyzed the expression 97 

of two of these opsins in S. empusa retinal and neural tissues. The data we present here suggest that S. 98 

empusa has multiple, spectrally-similar, but functionally distinct opsins expressed in the retina, optic 99 

lobes, and cerebral ganglion. We propose that this monochromatic stomatopod possesses a complex 100 

molecular toolkit of opsins, perhaps capable of complex visual system modulation and downstream 101 

processing.  102 

 103 

Materials and Methods 104 

RT-PCR (3’RACE) of S. empusa opsins mRNA and sequence analysis 105 

S. empusa eyes were homogenized in TRIzol (Invitrogen) and RNA was extracted as per the 106 

TRIzol Reagent protocol (Invitrogen). Single strand cDNA was synthesized from isolated total RNA 107 

using the SuperScript RT III protocol (Invitrogen) and primers designed from published S. empusa opsin 108 

partial sequences (Porter et al. 2009; Table S1). After first strand synthesis, PCR was performed using 109 

Taq DNA polymerase (ThermoFisher Scientific) and specific primers for each of the six opsins identified 110 

in Porter et al. (2009) (Supplemental Table 1) to amplify opsin transcripts from the cDNA as per 111 

manufacturer’s protocol (ThermoFisher Scientific). PCR amplicons were ligated into the pGEM-T Easy 112 

plasmid (Promega) via TA cloning using the manufacturer’s protocol. Opsin sequences ligated into the 113 

plasmid were then sequenced (Genewiz). Partial opsin mRNA sequences obtained in Porter et al (2009) 114 

(GenBank accession numbers are the following: Se1-GQ221751.1, Se2-GQ221753.1, Se3-GQ221754.1, 115 

Se4-GQ221755.1, Se5-GQ221756.1, Se6-GQ221752.1) were aligned with sequences obtained through 116 

RT-PCR (3’RACE) using Geneious software, version R10 (Biomatters Limited) to complete the opsin’s 117 

sequence.  The mRNA sequences were then translated and aligned using Geneious software to facilitate 118 

the identification of non-conservative amino acid substitutions and other analyses. 119 

 120 

Structural modelling and analysis of S. empusa opsins 121 
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 The amino acid sequence for S. empusa opsin Se5 was used for homology-based three-122 

dimensional structural modeling using LOMETS software (Wu & Zhang, 2007). The S. empusa opsin 123 

model was generated using squid (Todarodes pacificus) rhodopsin as a template (PDB ID 2ZIY) 124 

(Shimamura et al. 2008).  In combination with an amino acid alignment of the five analyzed opsins 125 

(Figure 1), the model was used to identify amino acids proximal to the chromophore and potentially able 126 

to alter visual pigment spectral tuning.  While it is possible to spectrally tune an opsin without a non-127 

conservative amino acid substitution (Fasick & Robinson, 1998; Fasick & Robinson, 2000), charged 128 

amino acids can alter spectral properties of the chromophore (Wang et al. 2014) and are identifiable 129 

though bioinformatics.  For our analysis, we considered non-conservative amino acid replacements, i.e. 130 

i.e. positions in the amino acid alignment where the charged/non-charged property of the amino acid has 131 

changed between opsins, within a 15Å (1.5 nm) distance capable of altering chromophore binding 132 

chemistry. To generate the models of S. empusa opsin in complex with G-protein and arrestin, the S. 133 

empusa opsin structural model was aligned with the crystal structure of human rhodopsin in complex with 134 

mouse visual arrestin (PDB 4ZWJ) (Kang et al. 2015) and the crystal structure of human beta-2 135 

adrenergic receptor in complex with bovine Gαs, rat Gβ, and bovine Gγ (PDB ID 3SN6) (Rasmussen et 136 

al. 2011) using the cealign tool using Pymol software (Schrodinger). This was done to position S. empusa 137 

opsin in complex with the signaling molecules. All amino acid numbering in this article is based on the S. 138 

empusa opsin alignments (see Figure 1).  139 

 140 

Synthesis of riboprobes for in situ hybridization 141 

Riboprobes were synthesized for visual opsins Se1, Se5, and Se6, which represent representative opsins 142 

from all three of the identified S. empusa opsin evolutionary clades identified in Porter et al. (2009). To 143 

synthesize both sense and antisense probes, pGEM-T Easy plasmid DNA containing the 3’UTR of the 144 

visual opsin transcripts were digested with one restriction enzyme (SalI or NotI) to create linear plasmids. 145 

Next, the following in vitro transcription reaction was prepared: linear plasmid DNA, DIG-RNA 146 
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Labelling Mix (Roche), Polymerase buffer (Roche), RNase OUT (Invitrogen), and either T7 RNA 147 

polymerase or SP6 RNA polymerase (Roche). The transcription reaction was carried out as per the RNA 148 

polymerase protocol (Roche). Following transcription, reaction buffer with MgCl2 (ThermoFisher 149 

Scientific) and 0.1 u/μL RNase-free DNase I, (ThermoFisher Scientific) was added to the mixture. The 150 

reaction was carried out as described in the RNase-free DNase I protocol (ThermoFisher Scientific). 151 

Riboprobes were purified using the RNeasy Minelute Cleanup Kit (QIAGEN). 152 

 153 

Preparation of S. empusa tissue for in situ hybridization 154 

S. empusa mantis shrimp were sedated on ice upon arrival. Specimens were decapitated by 155 

making a transverse cut to sever the nerve cord between the cerebral ganglion (CG) and subesophageal 156 

ganglion. Once the anterior portion of the cephalothorax was separated from the body, appendages were 157 

removed from the ophthalmic and antennular somites. The eyestalks (which include the optic lobes 158 

within) were cut away from the cephalothorax. The eyestalks and cephalothorax were fixed in 4% 159 

paraformaldehyde with 12% sucrose in 0.1% diethyl pyrocarbonate (DEPC) 1X phosphate-buffered saline 160 

(PBS) overnight at 4C.  For retinal only in situ hybridization studies, eyes were frozen and sectioned at 161 

12-14 m using a cryostat.  Because of potentially lower signals expected from opsins expressed in neural 162 

tissues, isolated optic lobe and CG tissues were dehydrated using an ethanol gradient and propylene 163 

oxide, and then rehydrated, before being embedded in albumin gelatin. Then, the gelatin blocks were 164 

fixed overnight in 4% PFA in 0.1% DEPC 1X PBS, transferred to 0.1% DEPC 1X PBS, and sectioned at 165 

60 m using a vibratome.  166 

 167 

In situ hybridization (ISH) of S. empusa tissue sections 168 

 Our protocol is based originally from Ishii et al. (2003), and was also used in Bok et al. (2014) 169 

and Cronin et al. (2010) for stomatopod retinas.  For all probes, no probe and sense probe controls were 170 

run alongside antisense probes (Figures S3, S4). S. empusa sections on microscope slides were fixed in 171 
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4% PFA in PBS for 10 minutes. Next, the slides were washed three times in 0.1% (v/v) DEPC-1X PBS, 3 172 

minutes per wash. The slides were then acetylated for 10 minutes in a solution containing 0.1% (v/v) 173 

DEPC-H2O, triethanolamine, 0.02N HCl, and acetic anhydride, followed by three washes in 1X PBS, 5 174 

minutes per wash. Hybridization solution (50% (v/v) formamide, 5X saline-sodium citrate (SSC) buffer, 175 

5X Denhardt’s solution, 250 μg/mL herring sperm DNA) was then added to the retina sections and the 176 

slides were incubated in a humidified chamber for 1 hour. Riboprobes were added to hybridization 177 

solution (150-200 ng riboprobe per 100 μL of hybridization solution for retinal tissue, and 100 ng 178 

riboprobe per 100 μL of hybridization solution for extraocular tissue) and were incubated at 70˚C for 10 179 

minutes. The hybridization solution on the tissue was poured off and hybridization solution with 180 

riboprobe was added to the tissue sections. The slides were incubated at 75˚C overnight. The next day, 181 

slides were incubated in 0.2X SSC at 65˚C three times for 20 minutes to remove unbound probes. The 182 

slides were then incubated in Buffer B1 (0.1 M Tris pH 7.5 and 0.15M NaCl) for 5 minutes, and then in 183 

Buffer B2 (Buffer B1 and 10% normal goat serum) for 1 hour. Anti-digoxigenin-alkaline phosphatase 184 

(AP) (Roche) was diluted 1:5000 in Buffer B2 and was placed on the tissue sections, and the slides were 185 

incubated for 1-2 days at 4˚C. Slides were next washed with Buffer B1 4 times for three minutes each. 186 

Buffer B3 (0.1M Tris pH 9.5, 0.1M NaCl, 50 mM MgCl2) was added to the slides and incubated for 5 187 

minutes. Buffer B4 (NBT/BCIP tablet (Roche), 24 mg/mL levamisole) was then applied to the slides and 188 

left to incubate for several hours (retina sections) to overnight (extraocular tissue sections).  Slides were 189 

then mounted and photographed via light microscopy.   190 

 191 

Results 192 

Amino acid sequence analysis of S. empusa opsins 193 

 Using RT-PCR of S. empusa eyes, we completed the 3’ end of five of the six S. empusa opsin 194 

transcript sequences initially described by Porter et al (2009) (Figure 1).  We were unable to amplify the 195 

3’ end of one of the six opsins (Se1), which is missing sequence data for part of TM6 and all of TM7, and 196 
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so was excluded from further analysis.  Based on amino acid translations, these transcript sequences 197 

encode for seven-transmembrane (TM) opsins with a mean predicted molecular weight of 37.5 kDa.  198 

Also, the opsins contain the critical chromophore attachment site at K272 (numbering based on Figure 1 199 

alignment), extended TM5 and TM6 helices (compared to bovine rhodopsin, Palczewski et al. 2000), a C-200 

terminus region containing 9 or 10 putative sites of phosphorylation (Table 2), and important rhodopsin-201 

class GPCR domains such as the (E)DRY motif on TM3 and NPXXY motif on TM7 (Figure 1).  202 

Among the opsins analyzed there was high amino acid sequence similarity, with the sequence 203 

identity between opsins ranging from 76.6% to 93.7% (Figure S1). The percent identity across all opsins 204 

is 71.2%, with an average pairwise identity of 83.4%. Transmembrane domains also have a high degree of 205 

similarity, with percent identity of 76.3% and an average pairwise identity of 86.0%. Despite the high 206 

level of sequence identity we identified several sites of non-conservative amino acid substitution. 207 

Specifically, non-conservative substitutions exist at functionally relevant locations, including positions 74 208 

on TM3; 112 on intracellular loop (ICL) 2; 189, 192, 199 on TM5; and 258 on TM7 (Table 1, Figure 1 209 

and Figure 2A, 2B).  210 

 211 

Structural modeling and analysis of a S. empusa opsin  212 

 A three-dimensional structural model was constructed for the amino acid sequence of opsin Se5, 213 

using homology to Todarodes pacificus rhodopsin, a rhabdomeric visual opsin, to predict the likely 214 

molecular conformation of opsins in S. empusa. The predicted structure of Se5 (Figure 2A, 2B)reveals a 215 

7-transmembrane opsin with structured cytoplasmic protrusions. Specifically, the cytoplasmic protrusions 216 

of the extended TM5 and TM6 helices likely form a structural determinant for G-protein binding 217 

specificity, namely to Gαq (Porter et al. 2013, Donohue et al. 2017). The model also predicts a compact 218 

chromophore binding pocket (Figure 2C) comprised of all TM helices, and a chromophore binding site at 219 

K272 on TM7. The portions of the TM helices proximal to the extracellular space, and the ECLs 220 
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(particularly ECL2) form the opsin chromophore ‘plug,’ stabilized by a disulfide bond formed between 221 

C76 and C153.  222 

To address the possibility that S. empusa opsins are spectrally distinct, we analyzed the identities 223 

of the amino acids proximal to the site of chromophore attachment on TM7, K272. Specifically, we 224 

considered non-conservative amino acid substitutions between opsins as possible sites of spectral tuning. 225 

For this analysis, we considered amino acids within a 15Å (1.5 nm) distance to be proximal, and 226 

potentially able to alter the chromophore binding chemistry. Our structural analysis suggests the opsins 227 

are spectrally identical or similar: no non-conservative amino acid substitutions were found in the within 228 

15Å of K272 . Only one residue, site 74, has non-conservative amino acid substitutions within the 15Å 229 

distance of K272 (Figure 1, Figure 2A, Figure 2B). However, this site is unlikely to cause spectral shifts 230 

between opsins, given its position on TM3 where it’s close to the extracellular space, and its R-group is 231 

almost completely out of the 15Å window (Figure 2A, Figure 2B). Interestingly, this site is placed close 232 

to the extracellular chromophore ‘plug,’ and while it isn’t likely to affect the opsins spectrally, this site 233 

might serve as a tuning site for chromophore binding stability, a mechanism used in the mammalian 234 

rhabdomeric-type opsin, melanopsin (Tsukamoto et al. 2015). Additional analysis (Figure S5) reveals 11 235 

amino acids surrounding the chromophore that are identical in all opsins analyzed in this study, and two 236 

are predicted to make contact with it (Y171 & W242). This analysis suggests a neutrally charged binding 237 

pocket similar to rhodopsin (Sakmar et al. 1989; Zhukovsky & Oprian. 1989), however, amino acids 238 

containing R-groups with hydroxl moieties are present in the pocket (Figure S5), such as Y171 (which is 239 

predicted to contact the chromophore), Y79, and Y245, which support a green shifted visual pigment 240 

(Chan et al. 1992; Asenjo et al. 1994).  241 

We also considered whether or not the multiple opsins might differ functionally, even while 242 

sharing high sequence and structural similarity. Our structural and sequence analyses identified four sites 243 

of non-conservative amino acid substitutions: residues 112 on ICL2, residues 189 and 192 on TM5, and 244 

199 on TM5/ICL3 (Figure 1, Figure 2A-F), located on important regions involved in coupling to 245 
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signaling molecules. Specifically, these regions (ICL2 & ICL3) recognize and bind the opsin’s cognate G-246 

protein, as shown extensively in bovine rhodopsin coupling to transducin (König et al. 1989; Franke et al. 247 

1992; Yamashita et al. 2000; Natochin et al. 2003). We modeled the protein complex consisting of active-248 

state S. empusa opsin and heterotrimeric G-protein (Gs was used in this model) (Figure 2D, Figure 2F). 249 

We observed the expected helical movement of TM5 and TM6 on the opsin and subsequent insertion of 250 

the C-terminus helix of Gα into the newly formed binding pocket in the opsin. Two of our sites, 112 on 251 

ICL2 and 199 on TM5 were particularly close to the binding pocket (Figure 2F). Residue 112 is of 252 

particular interest for two reasons: it is on an unstructured coil, which does not sterically hinder its R-253 

group from potentially interacting with several residues on the G-protein.. Second, the non-conserved 254 

amino acid changes range from a complete switch of charge at that site (Se2 and Se6 are negatively 255 

charged, and Se3 is positively charged) to a loss of charge at that site (Se4 and Se5). Residue 199, while 256 

very close to the binding pocket, is hindered from movement due to its location on the cytoplasmic end of 257 

TM5. However, its proximity to the binding pocket might make it an important site that influences G-258 

protein binding by impacting the overall charge of this region. Sites 189 and 192 are not likely to affect 259 

the G-protein binding pocket, but might affect the flexibility of TM5, and thus the formation of the 260 

binding pocket in the active state (Rasmussen et al. 2011). 261 

We analyzed the C-terminus, specifically for the number of phosphorylation sites and how they 262 

might activate arrestin (Figures 2E and Figure 2G). All opsins had a similar number of possible 263 

phosphorylation sites and negatively charged residues, which work in a synergistic manner to activate 264 

arrestin (Zhou et al. 2017). More important than the total number of possible phosphorylation sites is their 265 

proximity to the positively-charged phosphorylation-sensing domain on arrestins (Table 2 and Figure 266 

2G). To model opsin C-terminus-arrestin interaction and predict critical opsin C-terminus 267 

phosphorylation sites, we coupled active-state opsin to visual arrestin (crystal structure PDB 4ZWJ) 268 

(Figure 1, Figure 2E, G) and determined that opsin residues 308 to 322 were proximal to the positively-269 

charged region on arrestin. These data suggest that possible phosphorylation sites within this region on 270 
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the opsin C-terminus are likely to be critical for signaling deactivation. Most opsins have a similar 271 

amount of possible phosphorylation sites in this region, except for Se3, which has most of its serines and 272 

threonines concentrated in this predicted critical region of arrestin interaction (Figure 1 and Table 2). 273 

 274 

Expression of opsins in S. empusa retina and extraretinal neural tissue 275 

 Using the newly generated sequence data (Supplemental Figure 3), 3’UTR riboprobes were 276 

designed to hybridize to visual opsin mRNA in tissue sections in situ. Although riboprobes were 277 

synthesized for visual opsins Se1, Se5, and Se6, only Se5 and Se6 showed evidence of hybridization in 278 

our preparations. Expression patterns of S. empusa opsin transcripts Se5 (Figure 3A-D) and Se6 (Figure 279 

3E-H) reveal that both opsins are robustly expressed in all regions of the retina–in both 280 

peripheral/hemispheric regions and in the midband. Expression of opsins Se5 and Se6 are also observed 281 

in transverse retinal sections (Figure 3B and Figure 3F), where riboprobe labeling is observed in all 282 

photoreceptors surrounding the rhabdoms in both hemispheres and in the midband (Figure 3C-D and 283 

Figure 3G-H). The intensity of Se5 labeling is even and robust in all regions of the retina (Figure 3C-D), 284 

and a similar expression pattern is observed for Se6 (Figure 3H). These data indicate that there is no 285 

preferential expression of either Se5 or Se6 in certain photoreceptors around the rhabdom in any region. 286 

Rather, S. empusa opsins Se5 and Se6 are co-expressed at high levels in all photoreceptors in all regions 287 

of the retina. 288 

 Given such robust co-expression of opsins in the retina, we then tested if the Se5 and Se6 opsins 289 

are expressed in extraretinal tissue, which is common in marine crustaceans (Donohue et al. 2017, 290 

Kingston & Cronin, 2016; Kingston et al. 2015) and terrestrial invertebrates such as Papilio xuthus 291 

(Arikawa et al. 2003). Through in situ hybridization of thicker (60 m) tissue sections, we observed 292 

expression of retinal opsins Se5 and Se6 in other neural tissues (Figure 4). Specifically, expression of 293 

both opsin transcripts was observed in optic neuropils including the optic lobe lamina, medulla, and 294 

lobula, as well as the hemiellipsoid body in the lateral protocerebrum. Se6 was more broadly expressed 295 
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than Se5 in all neuropils, especially in the lamina and lobula neuropils (Figure 4). Neither Se5 nor Se6 296 

opsin transcript expression were observed in the ventral eye, but it’s possible that other opsins (not probed 297 

for in this study, such as Se2-Se4) are present. Se5 and Se6 opsin expression was also observed in the 298 

cerebral ganglion, specifically cell bodies that make up the olfactory neuropil (Figure 4). Thus, given all 299 

these results, co-expression of multiple opsins in this stomatopod is not only in photoreceptors, but 300 

surprisingly, also in downstream neurons involved in sensory processing. 301 

 302 

Discussion 303 

 Past MSP analyses suggested that S. empusa, despite having two midband rows, has only a single 304 

photoreceptor spectral class (Cronin, 1985), in contrast to the large number of spectrally-distinct 305 

photoreceptor classes described in other stomatopod species (Cronin et al. 2010; Porter et al. 2009). These 306 

physiological data imply that a simple molecular composition exists in its photoreceptors (e.g. fewer 307 

expressed opsins), and in combination with past evolutionary studies (Porter et al. 2010) also suggest a 308 

reduction in eye complexity compared to stomatopods with many photoreceptor classes. Our data suggest 309 

quite the contrary, that the monochromatic S. empusa expresses multiple opsins in both retinal 310 

photoreceptor cells and downstream visual processing neurons (Figure 3, Figure 4).  Homology modeling 311 

suggests that these opsins do not differ spectrally, but may differ functionally in phototransduction 312 

cascade interactions. The exact function(s) of these opsins in non-retinal tissue and the function of 313 

multiple opsins in a monochromatic retina remains unclear. It is also unknown whether or not the opsins 314 

expressed in non-retinal neurons bind chromophore and become functional visual pigments. Additionally, 315 

it’s also unclear if these non-retinal neurons have the required signaling molecules to initiate canonical G-316 

protein signaling. Transcripts putatively encoding the components of a Gq-mediated phototransduction 317 

pathway have been identified in other stomatopod species (Porter et al. 2013, Donohue et al. 2017). 318 

However, it is conceivable that opsins expressed in these non-retinal neuropils can initiate G-protein 319 

independent signal transduction, a well described and common mechanism (Heuss & Gerber, 2000; 320 
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Rajagopal et al. 2005; Shenoy et al. 2006). Thus, these findings of opsin expression in non-retinal 321 

neuropils, particularly in visual ones, might implicate these opsins in the inclusion of non-visual 322 

photoreception in visual pathways. 323 

 Co-expression of opsins in the retina, particularly spectrally similar ones, while an interesting 324 

finding, is a seemingly redundant mechanism of light detection in a monochromatic organism. However, 325 

our molecular modeling results also suggest that functional differences likely exist amongst the opsins, 326 

specifically, ‘tuning’ of chromophore, G-protein binding, and arrestin interactions via non-conservative 327 

differences in regions which form the respective binding pockets for each structure.  Should the opsins 328 

differ functionally, as our analysis suggests, this could be an interesting mechanism to maintain stable 329 

visual function in different levels of irradiance. Specifically, our analysis suggests that non-conservative 330 

amino acid substitutions in extracellular residues of S. empusa opsins (74 and 258) might tune the 331 

stability of the ‘chromophore plug’ by affecting the binding affinity of the retinaldehyde chromophore 332 

(Tsukamoto et al. 2015; Janz & Farrens, 2004).   This would alter the duration of the chromophore’s 333 

attachment to the opsin, and thus make some opsins more sensitive to light than others (Tsukamoto et al. 334 

2015). Thus, we propose that co-expression of spectrally identical opsins of varying sensitivity to light, or 335 

varying levels and times of activation, might be a mechanism S. empusa employs to maintain a stable 336 

visual representation of its environment at different times of day or in variable water depths. 337 

 For G-protein binding, comprehensive and comparative structural analysis (Flock et al. 2017) of 338 

GPCR-Gα binding suggest that residues in in ICL2, ICL3, and TM5 are at the interface between these two 339 

proteins. Our analysis has identified four residues of non-conservative amino acid substitution precisely at 340 

these structures in S. empusa opsins, residues 112 on ECL 2 and 189, 192, and 199 on TM5, which 341 

suggests they contribute either to G-protein docking and binding interactions, albeit through different 342 

mechanisms (Rasmussen et al. 2011).  Therefore, we hypothesize that these sites serve as modulators of 343 

G-protein affinity and binding, causing differences in the electrical response of the photoreceptor, either 344 

in changes in strength or duration of light-induced depolarization.  Additionally, the prolonged 345 
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depolarizing afterpotential - typical of invertebrate photoreceptors and induced when an extensive 346 

population of visual pigments is photo-converted into the active state (Johnson & Pak, 1986) - could be 347 

altered in opsins with a more transient or low affinity interaction with its cognate G-protein. Thus, opsin 348 

expressed in light-sensitive cells of the S. empusa retina and neuropils could have different capabilities to 349 

re-sensitize to high intensity light stimuli or have different onset kinetics of phototransduction.  350 

Finally, based on the analysis of the number and position of serine and threonine residues in the 351 

C-terminus, deactivation or desensitization kinetics are likely to be similar amongst the opsins, with the 352 

exception of opsin Se3 where serines and threonines were concentrated in the predicted region of arrestin 353 

interaction.  Therefore, we don’t propose this as a common molecular mechanism of modulating 354 

phototransduction. 355 

 Summarizing our unexpected findings, we propose that the monochromatic Atlantic stomatopod 356 

S. empusa has a more complex visual system than predicted, based on its single retinal photoreceptor 357 

class. While we report co-expression of two opsins in the retina, the possibility of additional opsins 358 

should not be discounted. We also cannot discount the possibility of multiple opsins being evolutionary 359 

vestiges from ancestral stomatopods, where the complex eye conformation (ie. six midband rows between 360 

dorsal and ventral hemispheres) was likely the structure. This would represent a loss of molecular 361 

complexity in S. empusa, specifically in the array of opsins, that would mirror its structural eye loss. 362 

Thus, more work is required to ascertain if these multiple opsin transcripts are translated. Additionally, 363 

molecular analysis is needed to verify and substantiate our functional and spectral predictions. While 364 

stomatopod physiology proves difficult to study, electrophysiological studies of opsin expressing cells 365 

would shed light on the larger implications of opsin molecular adaptations. We propose that the 366 

expression of opsins in S. empusa is a flexible and versatile tool of not only mediating image formation in 367 

the retina, but of also adding nonvisual photoreceptive signals to downstream neurons.  Given the 368 

unexpectedly large numbers of expressed opsins in many other species of stomatopods, including those 369 
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with far more complex retinas (Porter et al., 2009, 2013), we hypothesize that many mantis shrimps have 370 

functionally diversified opsins in their photoreceptor arrays. 371 
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TABLES 500 

 501 

Table 1. Summary of non-conservative amino acid substitution amongst S. empusa opsins. Number, 502 

location, and identities of the amino acids are depicted, along with a hypothesized function of each amino 503 

acid of interest. Amino acids marked with (/) in a white cell indicate non-charged residues (includes polar 504 

and non-polar). Amino acids marked with (+) in a grey cell indicate positively-charged residues; and 505 

those marked with (-) in a black cell indicate negatively-charged residues. TM: Transmembrane region, 506 

ICL: Intracellular loop, ECL: Extracellular loop 507 

 508 

Amino Acid of interest 

(Numbering based on 

alignment consensus)

Location on opsin Se2 Se3 Se4 Se5 Se6 Hypothesized Function

74 TM3 Thr (/) Arg (+) Arg (+) Thr (/) Thr (/) Chromophore binding stability

112 ICL2 Glu (-) Lys (+) Thr (/) Thr (/) Glu (-) Modulation of Gα binding

189 TM5 His (+) Phe (/) Phe (/) Tyr (/) His (+) Helical flexibilty

192 TM5 Ser (/) Lys (+) Lys (+) Gln (/) Ser (/) Helical flexibilty

199 TM5 Lys (+) Gln (/) Lys (+) Arg (+) Lys (+) Modulation of Gα binding

258 ECL3 Lys (+) Lys (+) Val (/) Val (/) Lys (+) Chromophore binding stability  509 

 510 

 511 

Table 2. Comparison and summary of C-terminus amino acids predicted to influence signaling 512 

deactivation in S. empusa opsins. 513 

  514 

515 

Squilla empusa  opsin
Possible phosphorylation 

sites (Ser & Thr)

Possible 

phosphorylation sites 

in arrestin interacting 

region

Negatively charged 

amino acids (Asp & 

Glu)

Se2 9 5 8

Se3 10 8 6

Se4 10 5 8

Se5 10 5 8

Se6 9 6 7
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FIGURE CAPTIONS 516 

517 
Figure 1. Amino acid sequence alignment of five S. empusa opsins. Opsin amino acid sequences were 518 

inferred from mRNA nucleotide sequences from Porter et al (2009) and RT-PCR performed in this study. 519 

Amino acid residues are colored according to their property—yellow: non-polar, green: polar and 520 

uncharged, and red and blue: charged (negatively and positively charged, respectively). High levels of 521 

sequence identity are observed throughout, particularly in the transmembrane regions (indicated by red 522 

annotations above the alignment) and in residues predicted to be in close proximity (≤15 Å) to the 523 

chromophore attachment site, K272 (indicated by blue annotations above the alignment). Sites of non-524 

conservative amino acid substitutions amongst the opsins are denoted by the yellow annotations above the 525 

alignment. The green annotation above the alignment corresponds to residues predicted to be sites of 526 

phosphorylation and subsequent arrestin interaction. 527 
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 528 

Figure 2. Structural modeling of S. empusa opsins suggests amino acids sites of non-conservative 529 

substitution function as modulators of G-protein binding and chromophore attachment stability. 530 

Front (A) and rear (B) view of structural model of S. empusa opsin Se5, labeling the predicted position of 531 



Opsins in Squilla empusa 

25 

 

the sites of non-conservative substitution on the opsin’s tertiary structure (refer to Figure 1 for position of 532 

these sites on the opsin amino acid sequences). (C) Transmembrane helices form a compact binding 533 

pocket around the chromophore, 11-cis retinal (in red). No non-conservative amino acid substitutions are 534 

found within this binding pocket. (D) Model of active-state opsin bound to heterotrimeric G-protein (Gαs 535 

used in this model). (E) Model of active-state opsin in complex with arrestin (β-arrestin-1 used in this 536 

model). Surface charges plotted on arrestin—blue denotes positive charges and red denotes negative 537 

charges.  (F) Four non-conservative amino acids substitutions are predicted to be proximal to the G-538 

protein binding pocket, particularly amino acids 112 and 199, found on intracellular loops 2 and 539 

transmembrane helix 5, respectively. (G) The opsin’s C-terminus is in close proximity to the positively-540 

charged phosphate-sensing domains on arrestin. Acidic/negatively charged residues, serines, and 541 

threonines are concentrated in this region of the opsin’s C-terminus. 542 

 543 
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544 
Figure 3. Robust transcript co-expression of M/LWS opsins Se5 and Se6 throughout the entire S. 545 

empusa retina. Sagittal (A & E) and transverse (B & F) retina sections labeled with Se5 (A-D) and Se6 546 

(E-H) antisense riboprobes. Robust expression is observed in retina sections incubated with Se5 antisense 547 

riboprobes (A & B) including strong expression in all photoreceptors surrounding the rhabdom in the 548 

midband region (C) and periphery (D). Labeling with Se6 antisense riboprobes (E & F) also suggests 549 

robust expression of this opsin throughout the retina, with robust expression in all photoreceptors 550 

surrounding the retina in the midband region (G), and to a lesser degree in the periphery (H). DH: Dorsal 551 

hemisphere; MB: Midband; VH: Ventral hemisphere. Scale bars: A, B, E, F: 500 μm; C, D, G, H: 100 552 

μm. 553 

 554 
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 555 

Figure 4. Se5 and Se6 opsin transcripts are co-expressed the optic lobes and cerebral ganglion (CG) 556 

of S. empusa. Sagittal eyestalk sections (top row) suggest that Se5 and Se6 transcripts appear to trace the 557 

lamina (La), medulla (Me), lobula (Lo), and hemiellipsoid body (HB) neuropils. As in Figure 3, both 558 

transcripts are also co-expressed in retinal photoreceptors throughout the retina. Additionally, Transverse 559 

CG sections show that Se5 and Se6 are co-expressed in the periphery of the olfactory lobes (OL). 560 

Antennal neuropil, AnN; lateral antennal neuropil (LAN); olfactory-glomeruli tract (OGT); dorsal 561 

hemisphere (DH); two equatorial midband rows (MB); and ventral hemisphere (VH).  562 
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