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Abstract 13 

 14 

The globally-observed relationship between oceanic barium and the macronutrient 15 

silicic acid results from the shared influence of large-scale ocean circulation and mixing on the 16 

two elements, and the inherent link between barium and organic matter formation and 17 

dissolution. A detailed examination of deviations from barium-silicon correlations can reveal 18 

variations in non-conservative processes within the marine barium cycle. Here, we present a 19 

high-resolution dataset of dissolved barium and macronutrients from the Drake Passage and the 20 

Scotia and Weddell Seas. Our new results highlight the influence of Southern Ocean frontal 21 

zones on barium cycling and the deviations of barium and macronutrient distributions as a result 22 

of spatial variations in phytoplankton assemblages and in barite formation processes. These new 23 

data also reinforce findings that water mass mixing and ocean circulation, in particular the 24 

location of oxygen minima, play a key role in barium distribution. Our findings have implications 25 

for the use of sedimentary barium as a proxy for export production, which may be complicated 26 

by physical water circulation changes or shifts in plankton community structure. 27 

 28 

1. Introduction  29 

The oceanic barium cycle has inherent links with biological activity and carbon cycling. 30 

There is a strong positive correlation between dissolved barium (Bad) and silicic acid throughout 31 

the global ocean, and a similar trend between Bad and alkalinity (e.g. Hoppema et al., 2010; 32 

Jacquet et al., 2005; Jacquet et al., 2007; Jacquet et al., 2008; Jeandel et al., 1996; Jullion et al., 33 

2017; Thomas et al., 2011), likely a result of relatively deep release of Ba during particulate 34 
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organic matter remineralization, coupled with large scale ocean circulation (Bates et al., 2017; 35 

Horner et al., 2015; Jeandel et al., 1996; Lea, 1993). Water column, sediment trap, and core top 36 

studies have also revealed a relationship between excess barium in the particulate phase (total 37 

barium corrected for lithogenic input, Baxs) and particulate organic carbon (POC) (Cardinal et al., 38 

2005). Despite the lack of a known biological requirement for Ba, high concentrations of Ba are 39 

found in phytoplankton of many taxa (Fisher et al., 1991), and barite precipitation in the water 40 

column is thought to be biologically mediated (Bishop, 1988; Collier and Edmond, 1984; Dehairs 41 

et al., 1980; Dymond et al., 1992). In microenvironments formed by phytoplankton cell walls and 42 

shell material, Ba binds with transparent exopolymer particles (TEP), cell wall associated 43 

polysaccharides or bacterial biofilm extracellular polymeric substances (EPS) (Martinez-Ruiz et 44 

al., 2018), before reacting with sulphate derived largely from seawater, to form barite (e.g. 45 

Ganeshram et al., 2003 and references therein). This organic aggregate model of barite 46 

precipitation in supersaturated microenvironments associated with decaying organic matter 47 

accounts for the distributions of barite microcrystals in mesopelagic waters (Dehairs et al., 2008; 48 

Sternberg et al., 2005), and its correlation with organic carbon in underlying sediments (Cardinal 49 

et al., 2005; Dymond et al., 1992). However, there are still unanswered questions concerning the 50 

initial associations of barium with POC in surface waters, the importance of basin-scale 51 

correlations between Bad and silicic acid in comparison to relationships to other macronutrients, 52 

and the mechanisms of initial Ba uptake into euphotic zone organic matter.  53 

The Southern Ocean is of particular interest in developing our understanding of the 54 

oceanic barium biogeochemical cycle, as a climatically-important region with a large role in 55 

ocean carbon storage (Marinov et al., 2008). The potential applications of marine barite and 56 

biogenic calcite Ba/Ca as palaeo-proxies for export production and deep water circulation 57 

respectively in this region (Jacquet et al., 2007; Jacquet et al., 2008; Lea and Boyle, 1989; 58 

Nurnberg et al., 1997) make it crucial that the controls on the barium cycle in these waters are 59 

better understood. The heterogeneity of the Southern Ocean, exemplified by the 60 

biogeographical zonation caused by the convoluted and meandering circumpolar frontal zones, 61 

also offers an opportunity to investigate the various potential effects of different ecological 62 

communities on barium distributions, and the interactions of large and small scale water-mass 63 

mixing. In the Scotia Sea, the compression of the frontal zones by the physical restrictions of the 64 

Drake Passage, and the influence of the North and South Scotia Ridges on the movement of 65 

water masses and biological activity, makes this an ideal region in which to examine the barium 66 

biogeochemical cycle. Here, we investigate the variability in the Bad distribution and its 67 

relationship to biological activity across the biogeochemical divide of the Polar Frontal Zone, and 68 
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use these data to inform interpretations of the widely observed correlation observed between 69 

Bad and silicic acid. Our results reveal that site-specific deviations from a regional Bad/Si(OH)4 70 

regression can be used to trace distinct water masses, and potentially to assess the degree of 71 

barite precipitation and dissolution occurring in different regions.  72 

 73 

 74 

2. Methods and materials 75 

 76 

2.1. Oceanographic Setting  77 

The circulation of the Scotia Sea is dominated by the Antarctic Circumpolar Current (ACC), 78 

a wind-driven current that flows eastwards around the Antarctic continent, transporting 79 

approximately 130–140 Sv (Cunningham et al., 2003). The transport enabled by the ACC is 80 

dominated by several frontal jets identified by large horizontal gradients in oceanic properties, 81 

namely (north to south) the Subantarctic Front, the Polar Front, the Southern ACC Front and the 82 

Southern Boundary (Orsi et al., 1995) (Fig. 1). Whilst these fronts are consistently observed in 83 

the narrow constriction of the Drake Passage, at other longitudes there is more complexity, with 84 

sub-branches and re-circulations of the fronts observed (Graham et al., 2012; Kim and Orsi, 85 

2014). In the Drake Passage and Scotia Sea these fronts partition the ocean into three major 86 

zones (Fig. 1): the Subantarctic Zone (SAZ), the Polar Front Zone (PFZ) and Antarctic Zone (AAZ) 87 

divided by the Subantarctic and Polar Fronts, as well as the Antarctic Continental Zone south of 88 

the Southern Boundary (Orsi et al., 1995; Pollard et al., 2002).  89 

 90 

This physical zonation of the Scotia Sea and its control on the distribution of 91 

macronutrients creates a biogeochemical zonation, reflected in spatial variations in 92 

phytoplankton biomass and community structure (e.g. Holm-Hansen et al., 2004; Whitehouse et 93 

al., 2012). The poleward shoaling of density surfaces, which supports the horizontal geostrophic 94 

flow of the ACC, also brings nutrient-rich waters closer to the surface, producing positive 95 

gradients in seawater nitrate, phosphate, and silicic acid concentrations from north to south. In 96 

addition to this, seawater silicic acid concentrations increase southwards along density surfaces, 97 

most likely due to diapycnal mixing with deeper waters that are enriched in Si by deep 98 

remineralisation of biogenic silica (Ridgwell et al., 2002). 99 

Around the Southern Ocean as a whole, deeper (1000 to 2000 m) waters moving 100 

southwards across the ACC are balanced by an equatorward flow of 1) newly-formed dense 101 

deep and bottom waters from the Weddell Sea (Sloyan and Rintoul, 2001), and 2) lower density 102 
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Antarctic Surface Water (AASW) and Winter Water (WW) in the upper layers. The AASW and 103 

WW subduct at the Polar Front and contribute to the formation of Antarctic Intermediate Water 104 

(AAIW), marked by a subsurface salinity minimum. Within the Scotia Sea, Circumpolar Deep 105 

Water (CDW) is introduced by the ACC, comprising Lower CDW (LCDW) derived from North 106 

Atlantic Deep Water (NADW) and the less dense, older Upper CDW (UCDW) sourced from the 107 

Indian and Pacific Oceans. A colder, slightly less saline variety of LCDW referred to as Southeast 108 

Pacific Deep Water (SPDW) has also been observed in the Scotia Sea, with a distinctive silicate 109 

maximum resulting from mixing with Ross Sea deep waters (Garabato et al., 2002).  110 

In the location of the Weddell Gyre, the cold, Weddell Sea Bottom Water (WSBW) mixes 111 

upwards with warmer CDW to form Weddell Sea Deep Water (WSDW), added to by lateral 112 

advection of recently-ventilated waters from outside the Weddell Sea (Meredith et al., 2000; 113 

Ohshima et al., 2013). WSDW also forms directly from the descent and mixing of shelf waters in 114 

the Weddell Sea. WSDW is then able to exit into the Scotia Sea through deep gaps in the South 115 

Scotia Ridge, as well as flowing around the South Sandwich Islands and into the Atlantic through 116 

the Georgia Basin. This outflow represents the densest contribution to the equatorward-flowing 117 

Antarctic Bottom Waters (AABW) (Meredith et al. 2000).  118 

 119 

2.2. Sampling and analytical methods 120 

Samples were collected during the RRS James Clark Ross cruise JR299 in the austral 121 

autumn (March to April) 2014 and from an additional transect (JR273b) along the North Scotia 122 

Ridge (Fig. 1). Unfiltered seawater samples were collected in acid-cleaned low-density 123 

polyethylene bottles for dissolved barium, silicic acid, and nitrate and phosphate analysis using 124 

standard Niskin bottles deployed on a CTD (Conductivity-Temperature-Depth) rosette. Samples 125 

for nutrient analysis were frozen at -20°C (or at 4°C for the silicic acid samples). Samples for Ba 126 

analysis were acidified (0.1% v/v Romil UpA hydrochloric acid) and stored in cool and dark 127 

conditions.  128 

Standard Niskin bottles are not expected to cause contamination for Ba. Additional blank 129 

samples of 18MΩ.cm Milli-Q water were processed on board under the same conditions as 130 

samples for testing purposes: the blanks were exposed to the air of the ship for the same length 131 

of time, handled similarly around the CTD rosette and in the laboratory, acidified, and stored 132 

under the same conditions. The blanks were diluted with 3% HNO3 (Romil UpA) and measured 133 

via ICP-MS, yielding signals of 0.2% and 2.5% of average spiked seawater counts (135Ba and 138Ba 134 

respectively). Whilst there is a possibility that some Ba could be released into solution from 135 

suspended particles or barite crystals dissolved during storage, the maximum possible 136 
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particulate contribution is still below 1% of the dissolved fraction, assuming maximum 137 

particulate Ba of 500 pmol/L in the upper water column  (top ~200m) of this region of the 138 

Southern Ocean (Dehairs et al., 1997) and all particulate Ba is dissolvable. 139 

 140 

2.2.1. Dissolved barium 141 

The barium concentrations of unfiltered seawater samples were analysed by isotope 142 

dilution inductively coupled plasma mass spectrometry (ID ICP-MS) at the University of Bristol, 143 

using a Thermo-Finnigan Element-2 (Bristol Isotope Group, Earth Sciences Department). 144 

Subsamples of seawater and reference standards were spiked with a 135Ba-enriched solution 145 

(10µg/mL 135Ba, Inorganic Ventures, Christiansburg, VA, USA) to a 138Ba/135Ba ratio of 0.65 to 1, in 146 

order to minimize error magnification, and diluted 20-fold in 18MΩ.cm Milli-Q deionized water 147 

(to produce a final solution of approximately 3-5 nmol/kg Ba) (Pyle et al., 2017).  148 

A mass bias correction coefficient was calculated each analysis run by measuring the ratio 149 

of 138Ba/135Ba in a 1 ppb Ba natural standard solution prepared in 5 % (v/v in 18MΩ.cm Milli-Q 150 

water) seawater (NASS-6), which was then compared to the average natural ratio (10.88 ± 0.02) 151 

(de Laeter et al., 2003). Blank solutions of 3 % (v/v of concentrated reagent) HNO3 in 18.2MΩ∙cm 152 

water were analysed to correct for background Ba signal from the introduction system of the 153 

ICP-MS (135Ba blank counts <0.15 % of spiked seawater sample counts; 138Ba blank counts <0.5 % 154 

of seawater sample counts), and a set of consistency standards were measured at regular 155 

intervals to quantify the long-term reproducibility of the measurements (Table 1). A correction 156 

for any seawater matrix effects was applied to the blank measurements by monitoring the 157 

sensitivity of a natural standard solution in 3% HNO3 vs. a natural standard solution in 5 % 158 

seawater, before the blanks were subtracted from sample counts. 159 

Standard: 
In-house 

Standard 1 
NASS-5 NASS-6 

 

2RSD 1.34% 3.26% 1.73% 

n 72 33 70 

Average 
[Ba] (nM) 

73.5 37.4 49.3 

 160 
Table 1: Reproducibility of standards measured in Bristol from March to November 2016. 161 

Values given are twice relative standard deviation (2RSD). Determined values were corrected 162 
from moles per mass of seawater to nM assuming a seawater density of 1.025 kg/L. Errors from 163 
In-house Standard 1 (from the Scotia Sea, 100m depth) are considered applicable to the higher 164 
range of Scotia and Weddell Sea samples, whilst errors from NASS-6 can be applied to the lower 165 
range, as the average dissolved barium concentrations are the most comparable. For 166 
consistency, the most conservative uncertainty of 1.7 % (2RSD, from the NASS-6 standard) is 167 
applied to all samples.  168 



   
 

6 
 

Seawater standards of comparable barium concentration to the samples show a long-169 

term external reproducibility of ± 1.7 % (2RSD) or better across all analytical runs from March to 170 

November 2015 (Table 1). Within each analytical run, reproducibility of these seawater 171 

standards was ± 1.1 % (2RSD) or better. Additional details on the analytical methods for 172 

dissolved Ba are provided in Pyle et al. (2017). 173 

 174 

2.2.2. Dissolved inorganic nutrients 175 

Dissolved inorganic nutrients (silicic acid, phosphate, and nitrate + nitrite) were analysed 176 

at the University of East Anglia using a San++ Gas Segmented Continuous Flow Analyser (Skalar, 177 

Breda, The Netherlands). The accuracy of the measured nutrient concentrations was assessed by 178 

performing a six-point calibration, using a mixed standard containing silicate, nitrate, and 179 

phosphate. Standards and wash solution were made in a saline solution containing 35 g reagent 180 

grade NaCl/L in ultrapure water. Prior to the preparation of the standards and wash solution the 181 

NaCl was baked at 400 °C to remove any nitrate contamination. The reproducibility of nitrate 182 

and nitrite (NOx), phosphate (PO4) and silicic acid (Si(OH)4) concentrations was ± 1.70 µM, ± 0.18 183 

µM and ± 1.64 µM (1SD) respectively, calculated by analysing eighteen sets of duplicate samples. 184 

Further details of nutrient analyses are given in the Supplementary Information. 185 

 186 

2.2.3. Temperature, salinity and oxygen concentrations 187 

Temperature, salinity, and oxygen concentrations were recorded for each CTD cast using 188 

a SBE911Plus unit with dual SBE3Plus temperature and SBE4 conductivity sensors and a 189 

Paroscientific pressure sensor, and an SBE43 oxygen sensor, and used to characterise the water 190 

masses present and identify the positions of the frontal zones (Supplementary Information).  191 

Conductivity measurements were processed and converted to salinity, and calibrated by 192 

the regular collection of discrete seawater samples from CTD casts, analysed for salinity on 193 

board using a Guildline Autosal 8400B salinometer. Discrete samples were also collected at five 194 

CTD stations for on board measurement of dissolved oxygen concentrations via Winkler 195 

titration, which was used to calibrate the CTD oxygen probes. 196 

 197 

2.2.4. Quantifying deviation from Bad/Si(OH)4 trends 198 

Where linear correlations exist between Bad and silicic acid, deviation above and below 199 

the line of best-fit regression is quantified by calculating Bad
Si residual values (Equation 1) for each 200 

profile. These systematic deviations from the observed linear relationship between Bad and 201 

silicic acid could result from non-conservative processes such as barite formation or dissolution 202 
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that do not affect the silicon cycle. Positive Bad
Si residual values indicate that the Bad measured is 203 

higher than predicted by silicic acid values, whilst negative Bad
Si residual values signify that Bad is 204 

lower than predicted.  No direct mechanistic associations are implied between the two 205 

elements, only correlation and deviation from that correlation. Note also that the uncertainty in 206 

the residual value will be location-specific, largely determined by the number of samples in each 207 

station profile. 208 

 209 

Bad
Si residual = Bad

Measured  -  (m x Si(OH)4
Measured + c)     (1) 210 

 211 

 212 

3. Data and results 213 

The full range of Ba concentrations in this study varied between 42 nmol/kg and 100 214 

nmol/kg (Fig. 2, 3). Estimates of barite saturation of surface waters (Supplementary Information) 215 

suggest near surface waters are generally undersaturated north of the Polar Front (PFZ and SAZ 216 

barite saturation index approximately 0.8, with higher values of approximately 1.0 near to 217 

islands), becoming generally more saturated towards the south (AAZ barite saturation index 218 

approximately 1.0-1.1; Weddell Sea barite saturation index approximately 1.1-1.2). There are 219 

significant positive linear correlations between Bad and NOx (Bad  = 2.4*NOx + 6.6; R2 = 0.58; p 220 

<0.001), Bad and PO4 (Bad = 28.6*PO4 + 19.8; R2 = 0.44; p < 0.001) and Bad and silicic acid (Bad  = 221 

0.38*Si(OH)4 + 53.9; R2 = 0.92; p <0.001; Supplementary Information). 222 

Applying a multivariate linear regression analyses of the whole dataset (Scotia and 223 

Weddell Seas and all available parameters; Fig. 2, 3) the best model fit to the data (p value 224 

<0.01) suggests that Bad concentrations could be significantly related to processes also linked to 225 

potential temperature, salinity, and silicic acid concentrations (Table 2). Separating the dataset 226 

into regions reveals more nuanced information about the role of frontal zones and water masses 227 

in the biogeochemical cycling of dissolved barium. 228 

  Coefficient Standard Error t Stat P-value 

     

Nitrate (uM) -0.095 0.106 -0.894 0.372 

Phosphate (uM) 0.524 1.128 0.464 0.643 

Silicate (uM) 0.188 0.017 11.153 <0.001 

Oxygen (mol/kg) -0.003 0.008 -0.327 0.744 

Potential Temp -2.530 0.238 -10.625 <0.001 

Salinity 14.774 1.815 8.138 <0.001 

 229 
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Table 2: Table of results from multivariate linear regression model applied to the whole 230 
Bad dataset. Model statistics: R2 = 0.94; p <0.001. Bold values show statistically significant 231 
relationships. 232 

 233 

3.1. Dissolved barium and macronutrients in the Scotia and Weddell Seas 234 

3.1.1. North of the Polar Front (PFZ and SAZ) 235 

In the top 200 m Bad increases rapidly with depth, more closely following the behaviour 236 

of NOx and PO4 than silicic acid, which remains fairly constant with depth (Supplementary 237 

Information; Fig. S6). The NOx and PO4 concentrations continue to increase below 200 m at a 238 

slower rate until reaching maximum levels at approximately 1500 m, which are maintained 239 

throughout the deeper waters. In contrast, both silicic acid and Bad are broadly invariant 240 

between 200 and 500 m, before increasing at a similar pace until 1500 m (Fig 4a-d). The Bad 241 

concentrations reach maximum levels at approximately 2500 m, and silicic acid concentrations 242 

continue to rise at the deeper stations until close to bottom depths of 4000 m. 243 

The similarity of behaviour between Bad, NOx, and PO4 in PFZ and SAZ surface waters (0 244 

to 200 m) is replaced in intermediate waters by a more dominant similarity between Bad and 245 

silicic acid. Despite the marked similarity in their surface water behaviour, the overall 246 

relationships between Bad and NOx/PO4 are distinctly non-linear, whilst a significant overall 247 

positive linear correlation between Bad and silicic acid is identified (Bad = 0.46 * Si(OH)4 + 50.9; n 248 

= 76; R2 = 0.95; p <0.001). 249 

These offsets from the linear relationship between Bad and silicic acid are shown in the 250 

Bad
Si residual values, which are negative in surface waters and rise to values around zero over the 251 

upper 200 m. At two stations (Stations 33 and 35; Sta. 35 displayed in Fig. 4a-d) that exhibit the 252 

most depleted surface Bad concentrations, Bad
Si residual values are negative at the surface and 253 

increase over the upper 200m.  The Bad
Si residual values then increase to an anomalously high 254 

maximum at 300m, decreasing thereafter to near zero at 1000m. These values then remain close 255 

to zero through the oxygen minimum zone until they begin to increase again at ~2000m in the 256 

transition to UCDW, then decrease from 3000m to negative values again in the deepest water. 257 

 258 

3.1.2. The Antarctic Zone (AAZ) 259 

Bad concentrations in the AAZ display a steady rate of increase from lower surface values 260 

(approximately 70 nmol/kg) to maximum concentrations of 95 nmol/kg at approximately 2000 m 261 

(Fig. 4e-h). Shallow sites within the ACC (top 150 m) record higher Bad values relative to silicic 262 

acid than the overall single-station linear regression would predict (Fig. 4f), and these samples 263 
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record a shallower Bad/Si(OH)4 trend, indicating that Bad varies less with respect to silicic acid at 264 

these shallow ACC sites than it does in the intermediate depth ACC waters.  265 

Variations in the behaviour of silicic acid and Bad with depth are observed in more detail 266 

in the Bad
Si residual values calculated from the individual Bad/Si(OH)4 regression at each station, 267 

which are positive in surface waters before decreasing to a negative subsurface minimum 268 

between 200 and 800 m, returning to positive values below 1000 m, and decreasing to values 269 

near zero by the bottom of the water column. The sub-surface minimum of Bad
Si residual values 270 

corresponds to the oxygen minimum zone, denoting both a transition into the UCDW and the 271 

depth range of maximum NOx and PO4 remineralisation (Fig. 4). A transition to a sub-surface 272 

maximum deeper in the water column but within the UCDW water mass occurs in all profiles, 273 

with the depth of that maximum increasing northwards (800 m in the south to 2200 m in the 274 

north; Fig. 4e-h). 275 

 276 

3.1.3. The North Scotia Ridge 277 

Stations to the west of the Polar Front, as its path curves north through Shag Rocks 278 

Passage in the North Scotia Ridge, follow a similar distribution of variables to the PFZ/SAZ and 279 

AAZ stations across the Drake Passage. Positive Bad
Si residual values are associated with the deeper 280 

UCDW whilst intermediate waters exhibit less scatter around the strong positive Bad/Si(OH)4 281 

correlation, displaced above the global trend line. East of the Polar Front, the shallowing of 282 

UCDW and re-establishment of a strong salinity gradient are accompanied by stronger Bad
Si residual 283 

gradients, with positive values in surface waters and negative values from the transition to 284 

UCDW/oxygen minimum zone at 200 to 300 m, underlain by a return to positive values in the 285 

lower part of the UCDW at 1000 m (Fig. 3). 286 

 287 

3.1.4. Antarctic continental shelf waters 288 

Surface water Bad concentrations in this near-Antarctic region are relatively high compared to 289 

those in the open Southern Ocean, with the shallowest station on the continental slope reaching 290 

maximum concentrations (86 nmol/kg) in the sub-surface by 500 m, and the deeper Station 7 291 

reaching maximum values (95 nmol/kg) at the base of the oxygen minimum zone). The NOx and 292 

PO4 concentrations increase with depth throughout the upper 500 m and are then largely 293 

invariant throughout the rest of the water column, whilst silicic acid largely mimics the 294 

behaviour of Bad with depth (Fig. 5, S7). There are significant positive linear correlations 295 

between Bad and NOx (Bad = 1.94*NOx + 26.8; R2 = 0.52; p <0.001) and Bad and silicic acid (Bad = 296 

0.30*Si(OH)4 + 60.1; R2 = 0.96; p <0.001), and a weaker relationship between Bad and PO4 (R2 = 297 
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0.17; p = 0.007) reflecting a generally weaker N-P relationship in this region. There is very little 298 

scatter in the correlation of Bad and silicic acid, reflected in the small variations from zero in the 299 

Bad
Si residual values with depth (Fig. 5a-d). 300 

 301 

3.1.5. The Weddell Sea 302 

Stations 44 and 45 lie on the edge of the Weddell Gyre, where Bad concentrations are 303 

consistently higher than at the Scotia Sea stations, with even the surface minima at 304 

approximately 80 nmol/kg (Fig. 5e-h). The majority of macronutrient variation is seen in the low 305 

temperature (-2 to -1 °C) waters of the upper 200 m, with both NOx and PO4 increasing from low 306 

surface values to sub-surface maxima across a sharp salinity gradient (33.5 salinity at the 307 

surface, 35 salinity at 200 m), below which they decrease slightly throughout the bulk of the 308 

water column. Silicic acid and Bad concentrations do not reach sub-surface maxima until 309 

approximately 1000 m, with these values sustained over the next 2000 m until a slight decline in 310 

concentrations below depths of 3000 m. At Station 44, Bad
Si residual values are negative at the 311 

surface, then maintain slightly positive values from 500 to 4500 m. Station 45 exhibits more 312 

variable Bad
Si residual values, with zero values at the surface, negative values by 200 m that steadily 313 

rise with depth until 3500 m, remaining at consistent positive values until 4500 m. The Bad
Si residual 314 

values at both stations show sharp variations at the very base of the water column (4500 to 315 

4750 m; Fig. 5e-h).  316 

 317 

4. Discussion  318 

Although the Bad distributions from our study are in general agreement with the global 319 

distributions of macronutrients, when examined in detail these relationships are revealed to be 320 

more complex. The deviations from the linear correlation between Bad and silicic acid in surface 321 

waters (Fig. 4-5), and the co-variation of Bad and NOx/PO4 north of the Polar Front (Fig. S6), 322 

implies that the surface cycling of barium depends on factors that also influence dominant 323 

phytoplankton ecology. In intermediate and deeper waters, the departures from the linear 324 

relationship of Bad and silicic acid offer insight into the barium and barite cycling, and the 325 

transitions between characteristic water masses (Fig. 4-5). 326 

 327 

4.1. Linking the distributions of Bad and macronutrients: a global view 328 

4.1.1. Non-linear global relationship between Bad and NOX or PO4 329 

Throughout the global ocean there is a non-linear positive correlation between Bad and the 330 

macronutrients NOx and PO4, with three broad observations: (1) NOx and PO4 show consistent 331 
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drawdown in surface waters, whilst the behaviour of Bad in surface waters varies between 332 

regions; (2) NOx and PO4 quickly reach subsurface maxima which they usually sustain through 333 

intermediate depth waters, whilst the Bad maximum is both deeper  and more variable in depth ; 334 

(3) NOx and PO4 concentrations decrease with depth through deeper waters whilst Bad remains 335 

constant or continues to increase. With the exception of HNLC regions, NOx and PO4 are limiting 336 

nutrients for primary productivity, with concentrations depleted to nanomolar levels in 337 

subtropical surface waters (Moore et al., 2013). Even in HNLC regions such as large parts of the 338 

Southern Ocean, both NOx and PO4 still experience surface drawdown, but without reaching 339 

fully depleted levels, with phytoplankton growth instead limited by silicic acid, micronutrients, or 340 

the availability of light. In contrast, Bad never reaches surface concentrations lower than 30 341 

nmol/kg, and in some ocean basins (the North Atlantic and the North Pacific) it shows an 342 

invariant profile in the top few hundred metres where macronutrients show strong drawdown 343 

(Hsieh and Henderson, 2017).  344 

A certain degree of surface drawdown of Bad is consistent with uptake of barium by 345 

phytoplankton into an intracellular pool, consistent with observations of labile Ba associated 346 

with spring phytoplankton blooms (Ganeshram et al., 2003; Paytan and Griffith, 2007) and the 347 

observation of high cellular Ba concentrations (Fisher et al., 1991). However, the lack of a 348 

consistent stoichiometric relationship to macronutrients suggests either a highly variable uptake 349 

into organic matter, depending for example on plankton community structure, or differing 350 

degrees and rates of remineralisation between Bad and macronutrients. These differences are 351 

again evident in the depth profiles of Bad compared to NOx and PO4, which show relatively 352 

shallow remineralisation as particulate organic matter is broken down by microbes or 353 

zooplankton in the oxygen minimum zone and NOx and PO4 are remineralised. In contrast, Bad 354 

concentrations, although increasing with depth, generally do so at a slower rate over a much 355 

larger depth range, implying regeneration in parallel with the slower dissolution of 356 

phytoplankton biominerals. 357 

 358 

4.1.2. The positive linear correlation between Bad and silicic acid, and variations between ocean 359 

basins 360 

The positive linear relationship observed between Bad and silicic acid throughout the 361 

global ocean (Fig. 6) is highly significant and overall exhibits modest overall scatter (Ba = 362 

0.58*Si(OH)4  + 39.33; n = 322; R2 = 0.94; p <0.01). However, understanding how and where 363 

deviations in this Bad/Si(OH)4 relationship occur, and variations in the Bad/Si(OH)4 relationship 364 

between different ocean basins, can provide insight into the level of interaction between silicon 365 
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and barium cycling. Although some regions display regressions that deviate little from the 366 

overall relationship (the South Atlantic, South Pacific, and Indian Oceans), others have a 367 

distinctive regional signal (the Equatorial Pacific, the North Atlantic and the North Pacific). The 368 

Southern Ocean has been shown by numerous studies (Jeandel et al. 1996; Jacquet et al. 2007; 369 

Hoppema et al. 2010; data presented here for the Scotia Sea) to exhibit lower slopes and higher 370 

intercepts than are observed in other regions (Fig. 6; Table 3). 371 

 Investigations in the Southern Ocean have suggested that, although barite does form in 372 

non-diatom-dominated regions, its precipitation is favoured where these siliceous organisms 373 

make up a significant fraction of the material exported from the surface layer (Bishop, 1988). 374 

This observation may be explained if enhanced TEP or polysaccharide availability, from the 375 

remains of diatom frustules, provide a more suitable microenvironment for barite precipitation 376 

than the remains of other phytoplankton (Martinez-Ruiz et al., 2018); if the enhanced ballasting 377 

effect of diatom frustules increases settling rates and reduces Ba recycling in surface waters; or, 378 

indeed, because diatom abundance and barite precipitation are coincidentally linked via a third 379 

mechanism e.g. physical water column conditions that favour diatom growth also favour barite 380 

precipitation. However, the role of non-siliceous organic matter in the removal of Bad from the 381 

surface has been observed in the field (Pyle et al., 2017) and confirmed by laboratory production 382 

of barite from axenic coccolithophorid cultures, without the presence of opal or fecal pellet 383 

packaging (Ganeshram et al., 2003). A combination of the possible explanations presented above 384 

may explain why the presence of diatoms tends to be associated with enhanced Bad drawdown 385 

(e.g. Esser and Volpe, 2002): barium and sulphate may be associated equally with all 386 

phytoplankton or their decayed products, but will sink more rapidly when associated with 387 

diatom frustules due to the ballasting of larger or more heavily silicified cells (Tréguer et al., 388 

2018). As this organic matter is exported to the reported depths of barite formation (200 to 389 

2000 m) (Bates et al., 2017; Dehairs et al., 2008; Horner et al., 2015; Van Beek et al., 2007), it 390 

may tend to form aggregates containing microenvironments that are more susceptible to barite 391 

precipitation than organic matter originating from other phytoplankton groups. At greater 392 

depths, or at the sediment surface, both barite and opal dissolve, allowing vertical mixing to 393 

define the Ba-silicic acid relationships. 394 

Location 

Slope co-

efficient R2 P Reference 

North Indian Ocean 0.56 - - Jeandel et al. 1996 

South Indian Ocean 0.25 - - Jeandel et al. 1996 

Indian Ocean 0.63 0.98 <0.001 GEOSECS (MELVILLE) 1978 
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North Pacific 0.66 0.93 <0.001 GEOSECS (MELVILLE) 1973 

Equatorial Pacific 0.74 0.99 <0.001 GEOSECS (MELVILLE) 1973/4 

South Pacific 0.56 0.96 <0.001 GEOSECS (MELVILLE) 1974 

North Atlantic 0.75 0.95 <0.001 GEOSECS (KNORR) 1972 

South Atlantic 0.55 0.86 <0.001 GEOSECS (KNORR) 1972/3 

145°E PFZ-AZ 0.23±0.01 0.72 <0.001 Jacquet et al. 2007 

145°E SAF-PFZ 0.31±0.01 0.91 <0.001 Jacquet et al. 2007 

Prime Meridian 0.2645 0.909 - Hoppema et al. 2010 

Weddell Sea 0.2322 0.806 - Hoppema et al. 2010 

WAP all 0.21 0.716 <0.001 Pyle et al., 2016 

WAP surface 0.14 0.266 <0.001 Pyle et al., 2016 

JR299 all 0.40 0.92 <0.001 This study; JR299 (2014) 

Drake Passage S.PF 0.32 0.90 <0.001 This study; JR299 (2014) 

Drake Passage N.PF 0.46 0.96 <0.001 This study; JR299 (2014) 

Weddell Sea 0.15 0.60 <0.001 This study; JR299 (2014) 

 395 
Table 3: Summary of studies investigating Bad vs. Si(OH)4 in the global ocean compared to 396 

the Southern Ocean. WAP = West Antarctic Peninsula. 397 

 398 

4.2. Linking the distributions of Bad and macronutrients in the Scotia Sea 399 

4.2.1. Bad and silicic acid in the Scotia Sea 400 

Within different water masses, there are significant changes in Bad
Si residual with depth, 401 

indicating that non-conservative processes are important in most of the study region, in addition 402 

to water mass mixing (Supplementary Information; Fig. S9; Fig. 4, 5). However, it is challenging 403 

to determine the relative impact of the different non-conservative processes, barite 404 

precipitation and silica dissolution, on Bad
Si residual values. Recent measurements of barium 405 

isotopes in the tropical North Atlantic and South Atlantic (Bates et al., 2017; Horner et al., 2015) 406 

have established the utility of combining Bad and silicic acid concentrations with barium isotope 407 

measurements (δ137/134Ba), as the preferential incorporation of light isotopes during barite 408 

formation makes the isotopic signature of the remaining water mass sensitive to barite cycling, 409 

but unaffected by silicate cycling (Cao et al., 2016; Hsieh and Henderson, 2017; Von Allmen et 410 

al., 2010). In the absence of (δ137/134Ba) measurements, useful insights can still be made about 411 

barium cycling in this region by investigating deviation from linearity in Bad - silicic acid 412 

relationships, and the comparison of these trends to global patterns (Fig. 6). 413 

There is a clear shift in the behaviour of Bad in the upper 100m of the water column as 414 

the Drake Passage and North Scotia Ridge transects cross the Polar Front. This is observed not 415 
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only in the near-surface profiles of Bad, but in the changing sign of surface Bad
Si residual values 416 

(negative to positive, travelling from north to south across the PF), indicating a change in the 417 

observed relationship between Bad and silicic acid across this frontal divide (Fig. 4). 418 

North of the Polar Front in the PFZ/SAZ there is noticeable drawdown of Bad in surface 419 

waters despite these waters being likely undersaturated with respect to barite in the majority of 420 

the region, most pronounced at Stations 33 and 35 where fluorescence indicates a high level of 421 

productivity (Fig. S10). These lowered surface concentrations then follow the pattern of NOx and 422 

PO4 concentrations, increasing rapidly over the upper 100m of the water column. This suggests 423 

an association at these stations between Bad and the rapidly remineralised particulate organic 424 

carbon tracked by NOx and PO4. In contrast, in the waters south of the Polar Front in the AAZ, 425 

the enrichment of Bad from surface minimum concentrations down through the water column is 426 

at a much slower rate than for any of the macronutrients (e.g. in the AAZ in the top 1000m, only 427 

approximately 30% of the overall Ba remineralisation is complete compared to 100% of the PO4), 428 

and shows no distinct behaviour in the top 100m (Supplementary Information; Fig S8).  429 

Surveys of the Southern Ocean have established the presence of a clear biogeochemical 430 

divide between the northerly waters of the PFZ and SAZ, and the AAZ waters south of the polar 431 

front (Marinov et al., 2008). There is a distinct change in phytoplankton assemblage across the 432 

Polar Front, with nanoflagellates to the north and diatoms dominating to the south (Hinz et al., 433 

2012; Mengelt et al., 2001), consistent with cross-front differences in the observed distributions 434 

of Bad. In the nanoflagellate-dominated waters north of the divide there appears to be an 435 

association between Bad and the organic matter of the organisms that is not observed elsewhere 436 

in the Scotia Sea, or indeed in any other stations throughout the global ocean. It is difficult to 437 

assess what the nature of this organic matter association might be, as a mechanism for the 438 

active uptake of barium into cells is not known (Paytan and Griffith, 2007). However, cellular Ca 439 

transporters rarely distinguish strongly against co-transport of Ba (Krejci et al., 2011), and we 440 

postulate that barium uptake occurs in these surface waters in association with cells or organic 441 

matter that is not diatom-generated, and is then remineralised at shallow depths. This behaviour 442 

parallels NOx and PO4 only in the upper 100m, below which the Bad distribution resumes a more 443 

silica-like profile, indicating that the generally observed correlation between Bad and skeletal 444 

material still occurs in this region, in layers below this unusual surface activity (Supplementary 445 

Information; Fig. S6).  446 

During the spring and summer months, diatom blooms are prevalent in the silicic acid and 447 

iron limited AAZ waters, consuming silicic acid and causing the silicate front to migrate 448 

southwards (Franck, 2000; Hiscock et al., 2003; Landry et al., 2002). As these samples were 449 
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collected during austral autumn, the background productivity of these diatom-dominated waters 450 

was relatively low, with substantial surface silicic acid concentrations extending northwards to 451 

just south of the polar front. Nevertheless, there is some silicic acid drawdown at the surface, 452 

and while there is also Bad drawdown, the removal is less than predicted by the overall Ba-453 

silicate regression for each station (Fig. 4). The persistence of a slight positive Bad
Si residual signal in 454 

the very surface layer of the AAZ waters highlights this deviation from the observed Ba-silicic 455 

acid relationship over the depth range of maximum primary production. 456 

 457 

4.2.2. Barium in intermediate waters (200-2000m): the overprinting of large scale circulation by 458 

barite cycling 459 

Although intermediate waters tend to agree with the global linear correlation between 460 

Bad and Si(OH)4, there are notable deviations with depth at individual stations. There is a 461 

seasonally-variable transition in phytoplankton communities between the diatom-dominated 462 

colder AAZ waters and the nanoflagellate-dominated warmer waters of the PFZ and the SAZ 463 

(Hinz et al., 2012; Mengelt et al., 2001). However, the Bad signals in intermediate waters 464 

(between 100 to 200m and 2000m) reflect not only the recycling of any biologically related 465 

phases of barium sinking from the surface, but also any vertical mixing between laterally 466 

transported water masses. It is also likely that the majority of biologically-mediated barite 467 

precipitation occurs within this depth range. The changing Bad
Si residual values recorded across 468 

known water mass transitions is a key tool for de-convolving these different signals.  469 

The multivariate linear regression analysis of the whole dataset suggests that the Bad 470 

distribution was most significantly linked to the distributions of salinity, temperature, and silicic 471 

acid. The predictive power of these parameters can be attributed to the distinct variation in Bad 472 

distributions between water masses – not only the horizontal gradient of Bad across the frontal 473 

zones of the Scotia Sea, but the variation with depth as the cores of vertically layered water 474 

masses are sampled.  475 

North of the Polar Front in the PFZ/SAZ, Bad shows a strong linear relationship with 476 

salinity, indicating an important role of water mass mixing (Supplementary Information; Fig. S5). 477 

Surface waters in the PFZ subduct to form AAIW, with initially invariant silicic acid and Bad 478 

concentrations that mix at its base with the higher concentrations of UCDW. South of the Polar 479 

Front, the oxygen-poor UCDW lies directly below the surface waters, deepening from south to 480 

north, and recording a steady increase in silicic acid and Bad concentrations with depth. The Bad 481 

and silicic acid gradients within this water mass, and the shift towards positive Bad
Si residual values 482 

(Supplementary Information; Fig. S9), indicates the occurrence of in-situ dissolution of barite co-483 
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occurring with diatom frustules, potentially with a depth-gradient in input from deep Pacific 484 

waters that carry a notable excess of Bad relative to silicic acid. 485 

There appear to be two different types of Bad/Si(OH)4 deviations occurring within the 486 

UCDW. This is most distinct south of the Polar Front, where there is a large negative Bad
Si residual 487 

signal recorded between 100 and 1000m (Fig. 4f), denoting a relative depletion in Bad as surface 488 

waters transition to UCDW. As the surface waters here also have a relative Bad excess due to 489 

silicic acid uptake by diatoms, this cannot be a result of the mixing of UCDW and surface waters, 490 

but must instead reflect a separate process. The co-location of this Bad depletion horizon with 491 

the oxygen minimum zone, and the subsurface maxima of NOx and PO4 is highly suggestive that 492 

this Bad depletion relative to silicic acid results from microbially-mediated barite precipitation 493 

(Dehairs et al., 1997; Gonzalez-Muñoz et al., 2012; González-Munoz et al., 2003; Jacquet et al., 494 

2007). This precipitation would transfer barium from the dissolved to the particulate pool, and 495 

although the concentrations concerned are likely to be too small to show up as a localised 496 

minimum in Bad
Si residual

 (Jacquet et al., 2007), the fact that this process does not involve any 497 

change in the silicic acid pool could potentially cause the negative swing in Bad
Si residual values 498 

within the upper few hundred meters (Fig. 4-5). 499 

Whilst this feature is clear in the AAZ waters, north of the Polar Front the pattern of Bad
Si 500 

residual values is more complex. The negative residual signatures in surface waters (particularly at 501 

the highly productive Stations 33 and 35) are underlain here by the broadly uniform AAIW, 502 

within which Bad and silicic acid appear to become correlated again once the surface drawdown 503 

of Bad has been returned to the dissolved pool by dissolution of sinking barite. At Stations 33 and 504 

35, there is suggestive evidence of the profiles tending towards negative residual values at the 505 

oxygen minimum zone, where the rate of organic matter remineralization and potential Ba-506 

binding to phytoplankton TEP, polysaccharides, or bacterial EPS is at a maximum rate. Generally, 507 

however, the intermediate waters are dominated by the positive UCDW signal.  508 

This could be an indication of reduced barite formation at mesopelagic depths in waters 509 

north of the Polar Front relative to south, which could be directly linked to the shift in overlying 510 

phytoplankton assemblages and to the magnitude of export production and rate of sinking in the 511 

two regions. The surface water drawdown of Bad north of the Polar Front does not seem to 512 

translate to a higher formation of barite at depth, with much of the Bad instead being recycled 513 

initially at shallower depths in the water column. This shallower remineralisation could also be 514 

aided by the lower barite saturation state within the surface waters of the SAZ and PFZ. It 515 

appears that the specific association of Bad with siliceous organisms, coupled with the ballasting 516 
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power of the large or heavily silicified diatom frustules (Tréguer et al., 2018), enables the 517 

transport of Ba to depths greater than in areas dominated by other sinking phytoplankton. 518 

 519 

4.2.3. Deep waters of the Scotia Sea 520 

In deeper waters (2000 to 4000 m) Bad concentrations reach an asymptotic value and then 521 

show little variation down to the base of the water column in all of the regions investigated. 522 

Deeper stations in the Drake Passage record a slight decrease in Bad values at the base of the 523 

water column, with a simultaneous increase in silicic acid concentrations and resulting negative 524 

excursion in Bad
Si residual values that marks the presence of Southeast Pacific Deep Water (SPDW; 525 

Fig. 2). The distinctive silicate maximum associated with this colder, slightly fresher sub-set of 526 

LCDW is thought to originate from mixing with Ross Sea deep waters (Garabato et al., 2002), and 527 

it appears that these waters may also inherit relatively low Bad concentrations, possibly due to a 528 

low Ba content in sinking organic particles (DeMaster et al., 1992; McManus et al., 2002). Both 529 

north and south of the Polar Front, the preservation of a consistent Ba maximum indicates that 530 

at these depths the exchange between the particulate and dissolved barium pools is at steady 531 

state, in contrast to silicic acid concentrations, which generally continue to increase until the 532 

base of the water column. This observation could be explained by i) different relative saturation 533 

states of barite within organic matter micro-environments or in seawater (as barite saturation 534 

state increases with depth) and silica in deepwater (undersaturated globally in the oceans), or ii) 535 

because the more soluble barite particles have already dissolved from sinking aggregates at 536 

shallower depths in the water column, leaving only the more massive or less soluble particles, 537 

while biogenic silica continues to dissolve even within the upper sediments. The latter 538 

interpretation is supported by the observation that biogenic barite preserved in sediments is less 539 

soluble in acid digestions than barite in water column samples (Bridgestock et al., 2018; Dymond 540 

et al., 1992; Eagle et al., 2003). 541 

 542 

4.3. The Weddell Sea: a region of barite supersaturation? 543 

In most regions of the global oceans, near-surface seawater is undersaturated with respect 544 

to barite, as saturation state is a function of barium and sulphate concentrations, temperature, 545 

salinity and pressure (Monnin et al., 1999; Rushdi et al., 2000). Our estimates of barite 546 

saturation index for the surface waters of the Weddell Sea may be a notable exception, where 547 

open ocean surface waters may become supersaturated with respect to pure barite (saturation 548 

index approximately 1.1-1.2, likely reaching a maximum at Station 44; Supplementary 549 

Information; Fig. S10), in agreement with previous findings (Jeandel et al., 1996; Monnin et al., 550 
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1999). Barite precipitation from solution, without the need for biologically-derived micro-551 

environments, may explain the excursions in Bad
Si residual values in the upper 200 m of the 552 

southern-most Weddell Sea Station 44 (Fig. 5e-h).  553 

 554 

5. Summary and conclusions 555 

There is a positive linear correlation between Bad and silicic acid throughout the global 556 

ocean water column, a link which is not seen between Bad and the other macronutrients. An 557 

exception to this general rule is observed in the surface waters of the Scotia Sea north of Polar 558 

Front, where the distribution of Bad appears more similar to that of NOx and PO4 than silicic acid 559 

in the upper 100 m, suggesting an unusual association between Bad and primary production in 560 

surface waters in this region. This could be explained by near-surface Ba uptake by adsorption, 561 

cellular incorporation or potentially barite formation, which is rapidly dissolved as it sinks out of 562 

the surface layer.  563 

The globally-observed linear relationship between silicic acid and Bad may result solely 564 

from co-location in the formation and recycling of separate and distinct carrier phases, coupled 565 

with the effects of large-scale ocean circulation. In support of this, the data presented here 566 

suggest that the Bad distribution in the Scotia Sea is largely controlled by transitions between 567 

distinct water masses, each with slightly differing relationships between Bad and silicic acid. 568 

However, the signature of barite formation at mesopelagic depths, and dissolution in the deeper 569 

water column, can also be distinguished in Bad/Si(OH)4 deviations that overprint these larger 570 

scale circulation patterns. Variation in the degree of implied biogenic barite formation across the 571 

Polar Front suggests a correlation between phytoplankton assemblage and barium cycling, as 572 

enhanced barium drawdown in subsurface waters is observed south of the Polar Front, where 573 

the phytoplankton community shifts to one dominated by diatoms. This could be a significant 574 

consideration in the application of the Baexcess proxy for past export production (Paytan and 575 

Griffith, 2007), as increases in sedimentary barite concentrations may be related to changes in 576 

phytoplankton community structure as well as absolute increases in the export  of organic 577 

matter produced in surface waters.  578 

These insights into the effects of surface phytoplankton community structure on the 579 

formation of barite in the subsurface could be investigated further through barium isotope 580 

analysis. Such isotopic measurements could verify whether or not deviations in the observed 581 

Bad/Si(OH)4 relationship observed in intermediate waters are the result of changes in barite 582 

precipitation,  re-dissolution and water mass mixing (e.g. Bates et al., 2017). If rates of biogenic 583 

barite precipitation are controlled more by community structure than by net primary 584 
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productivity, as indicated here, then this could have important consequences for the use of 585 

sedimentary barite as a  proxy for export production. 586 
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 594 

Figure captions: 595 

Figure 1: Sites of depth profiles collected during cruise JR299 in the Scotia Sea and Weddell Sea 596 

(Bathymetry etopo1). Approximate positions of fronts marked by dashed lines: Subantarctic 597 

Front (SAF), Polar Front (PF), Southern ACC Front (SACCF) and Southern Boundary (SB). Stations 598 

north of the Polar Front (Subantarctic Zone SAZ and Polar Front Zone PFZ; JR299 Stations 30-40 599 

from the Drake Passage Section and Stations 101-132 from the North Scotia Ridge Section) are 600 

marked with yellow squares. Stations south of the Polar Front are marked with red diamonds 601 

(Antarctic Zone AAZ; Stations 95-100 from the North Scotia Ridge Section). Stations south of the 602 

Southern Boundary are marked by green triangles (continental shelf waters adjacent to the 603 

Peninsula; stations 2-7) and white circles (Weddell Sea; Stations 44-45). White numbers show 604 

station numbers of examples plotted in profile in Figures 4 and 5. 605 

Figure 2: Drake Passage section. Colour scale represents labelled parameters in each panel; 606 

locations of Southern Boundary (SB) and Polar Front (PF) marked by vertical dotted purple lines. 607 

Stations and sampling events are marked with black dots; station numbers are labelled along the 608 

top of the top panel. Delineation of water masses schematically marked for reference: Weddell 609 

Sea Deep Water (WSDW), South Pacific Deep Water (SPDW), Lower and Upper Circumpolar 610 

Deep Water (LCDW and UCDW), Antarctic Intermediate Water (AAIW), and Antarctic Surface 611 

Water (AASW). a. Bad concentrations (nmol/kg); b. Bad
Si residual values (nmol/kg); c. dissolved 612 

oxygen concentrations (mol/kg); d. salinity; e. potential temperature (°C). 613 

Figure 3: North Scotia Ridge section. Colour scale represents labelled parameters in each panel; 614 

a. Bad concentrations (nmol/kg); b. Bad Si residual values (nmol/kg); c. dissolved oxygen 615 

concentrations (mol/kg); d. salinity; e. potential temperature (°C). Stations and sampling events 616 

are marked with black dots; station numbers are labelled along the top of the top panel. 617 
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Figure 4: a-d. Example depth profiles of Drake Passage waters north of the Polar Front in the 618 

SAZ/PFZ (Station 30 black circles; Station 35 red triangles; Station 40 green squares) a. Dissolved 619 

oxygen concentrations (mol/kg); b. Bad
Si residual values (nmol/kg); c. Dissolved barium 620 

concentrations (nmol/kg); d. Silicic acid (µM). Shaded area represents the oxygen minimum 621 

zone. e-h. Example depth profiles of ACC waters south of the Polar Front in the AAZ (Station 11 622 

black circles; Station 13 red triangles; Station 26 green squares) e. Dissolved oxygen 623 

concentrations (mol/kg); f. Bad
Si residual values (nmol/kg); g. Dissolved barium concentrations 624 

(nmol/kg); h. Silicic acid (µM). Shaded area represents the oxygen minimum zone (note OMZ 625 

marginally deeper at Station 26). 626 

Figure 5: a-d. Example depth profiles of Antarctic continental shelf waters south of the Southern 627 

Boundary (Station 3 black circles; Station 5 red triangles; Station 7 green squares) a. Dissolved 628 

oxygen concentrations (mol/kg); b. Bad
Si residual values (nmol/kg), zero line marked by black 629 

dotted line for reference; c. Dissolved barium concentrations (nmol/kg); d. Silicic acid (µM). e-h. 630 

Depth profiles of Weddell Sea stations (Station 44 black circles; Station 45 red triangles) e. 631 

Dissolved oxygen concentrations (mol/ kg); f. Bad
Si residual values (nmol/kg); g. Dissolved barium 632 

concentrations (nmol/kg); h. Silicic acid (µM). Shaded area represents the oxygen minimum 633 

zone. 634 

Figure 6: Scatter plots of dissolved barium (nmol/kg) vs. silicic acid (µmol/kg) for biogeographical 635 

divisions of the dataset, superimposed upon the global GEOSECS dataset (Ostlund, 1987), 636 

plotted in grey circles. Note our new data are in good agreement with the GEOSECS dataset. 637 

Data from the Drake Passage Transect a. Stations south of the Southern Boundary (yellow 638 

circles), ACC stations south of the PF (green circles); b. Stations north of the PF (blue circles). c. 639 

Data from the Weddell Sea (red circles). d. Data from the North Scotia Ridge Transect (cyan 640 

circles). 641 

 642 
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