
 Matsuda, K., & Wang, M. (2018). FliPpr: A System for Deriving Parsers
from Pretty-Printers. New Generation Computing, 36(3), 173-202.
https://doi.org/10.1007/s00354-018-0033-7

Peer reviewed version

Link to published version (if available):
10.1007/s00354-018-0033-7

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via Springer at https://link.springer.com/article/10.1007%2Fs00354-018-0033-7 . Please refer to any applicable
terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/159113139?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/s00354-018-0033-7
https://doi.org/10.1007/s00354-018-0033-7
https://research-information.bris.ac.uk/en/publications/flippr(b6ea87c0-5c4e-40c4-aed3-cbee233d18e2).html
https://research-information.bris.ac.uk/en/publications/flippr(b6ea87c0-5c4e-40c4-aed3-cbee233d18e2).html

Noname manuscript No.
(will be inserted by the editor)

FliPpr: A System for Deriving Parsers from
Pretty-Printers

Kazutaka Matsuda · Meng Wang

the date of receipt and acceptance should be inserted later

Abstract When implementing a programming language, we often write a
parser and a pretty-printer. However, manually writing both programs is not
only tedious but also error-prone; it may happen that a pretty-printed result
is not correctly parsed. In this paper, we propose FliPpr, which is a program
transformation system that uses program inversion to produce a CFG parser
from a pretty-printer. This novel approach has the advantages of fine-grained
control over pretty-printing, and easy reuse of existing efficient pretty-printer
and parser implementations.

1 Introduction

In this paper, we will discuss the implementation of a programming language,
say the following one

prog ::= rule1; . . . ; rulen
rule ::= f p1 . . . pn = e
p ::= x | C p1 . . . pn
e ::= x | C e1 . . . en | e1 ⊕ e2 | f e1 . . . en

This work was mainly done when the first author was at University of Tokyo, and the
second author was at Chalmers University of Technology. We thank Nils Anders Daniels-
son for his critical yet constructive comments on an earlier version of this work, without
which the surface language probably would not exist. We also thank Janis Voigtländer and
Akimasa Morihata for their insightful comments on deforestation. This work was partially
supported by JSPS KAKENHI Grant Numbers 24700020, 15K15966, and 15H02681. Part
of this research was done when the first author was visiting Chalmers Univeristy of Tech-
nology supported by Study Program at the Overseas Universities by Graduate School of
Information Science and Technology, the University of Tokyo.

K. Matsuda
Tohoku University. 6-3-09, Aza Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, JAPAN.

M. Wang
University of Bristol. Merchant Venturers Building, Woodland Road, Bristol, BS8 1UB, UK.

2 Kazutaka Matsuda, Meng Wang

which is a standard first-order functional language with data constructors C,
functions f and binary operators ⊕. Ignoring the semantics of the language for
the time being, we start with writing a parser and a pretty-printer to deal with
the syntax: the parser converts textual representations of programs into the
AST, and the pretty-printer converts the AST to nicely laid-out programs.
Though not often measured objectively, the prettiness of printing results is
important: a pretty-printer is central to the communication between a com-
piler and the programmers, and the quality of it directly contributes to the
productivity and satisfaction of the users of the language.

Despite being developed separately, the parser and the pretty-printer are
always expected to be consistent with each other: very informally, parsing a
pretty-printed program should succeed, and produce the same AST that is
pretty-printed. It is common knowledge that consistency properties like this
between a pair of tightly-coupled programs are hard to produce and maintain;
and perhaps less widely known that they are difficult to be tested effectively
too, due to the complexity of AST data [?].

In this paper, we are going to discuss the implementation of a language,
which has a more elaborated version of the above-presented syntax. The lan-
guage can be used to program pretty-printers, and at the same time through
program inversion techniques, obtain a consistent parser. We, as usual, manu-
ally implemented a parser and a pretty-printer for the language, but with the
hope that we, and many others who read this paper, will not need to do it
again for their own language implementations.

Prior to this work, there has been a rich body of literature on exploring
correctness-by-construction techniques to automatically generate one or both
programs of the printer/parser pair, notably [?, ?, ?] . We have intentionally
omitted the prefix “pretty-” from the mentioning of printers here because few
of the existing work actually produce pretty-printers in the sense of Hughes [?]
and Wadler [?].1

To be more precise about what we mean by prettiness, let us consider a
subtraction language e ::= 1 | e1 − e2 that has a constant (1) and a left-
associative binary operator (−). We represent the syntax with the following
AST datatype.

data E = One | Sub E E

As an example, let’s consider the expression Sub (Sub One One) (Sub One One).
A not so good printer that performs a simple traversal of the tree may pro-
duce (1 - 1) - (1 - 1), while a higher-quality printer may be able to spot
the redundancy of parentheses on the left and produce 1 - 1 - (1 - 1). To
be considered as a pretty-printer in the sense of Hughes [?] and Wadler [?], a
printer is additionally required to have refined behaviour during line-wrapping.
For example the above expression shall be pretty-printed as

1 The Syn system [?] is capable of handling non-contextual layouts, which can be seen as
a limited form of prettiness.

FliPpr: A System for Deriving Parsers from Pretty-Printers 3

1 - 1 - (1 - 1) or
1 - 1

- (1 - 1)
or

1 - 1

- (1

- 1)

depending on the screen width that is used to render the result. This fine-
grained control from users over bracketing, spacing and indentation is clearly
beyond any technique based on mechanical traversals of ASTs, which is likely
to rigidly produce 1 - 1 - (1 - 1) (with arbitrary line-wrapping) or even
(1 - 1) - (1 - 1) as the only printing result.

Knowing that prettiness cannot be generated automatically, various li-
braries have been developed for programming pretty-printers, most notably
Hughes’s [?] and Wadler’s [?]. In this paper based on Wadler’s library [?], we
propose a novel system FliPpr (pronounced as “flipper”). In FliPpr, a program-
mer provides a pretty-printer carefully tuned for prettiness (which is slightly
annotated with some additional information for parsing), and then the system
inverts it to obtain a consistent parser. For example, a pretty-printer exhibiting
the above behaviour can be defined as below.

ppr One = text "1"
ppr (Sub e1 e2) = group (ppr e1 <> nest 2 (line <> text "-" <> text " " <> pprP e2))

-- The suffix P in pprP stands for parentheses.
pprP One = text "1"
pprP (Sub e1 e2) =

text "(" <> group (ppr e1 <> nest 2 (line <> text "-" <> text " " <> pprP e2)) <> text ")"

The pretty-printing library functions are shown in slant sans serif. As a general
rule, infix operators binds looser than prefix applications. Roughly speaking,
text s converts a string s to a layout, d1 <> d2 is an infix binary operator that
concatenates two layouts d1 and d2. The nullary function line starts a new
line, but its behavior can be affected by surrounding nest and group appli-
cations: nest n d inserts n-spaces after each lines in d, and group d smartly
chooses between the layout d and other layouts derivable from d by selectively
interpreting lines as single spaces.2

We claim the following benefits of our approach:

– Fine-Grained Control over Pretty-Printing. Our language based on
Wadler’s library [?] offers the possibility of refined control over different
aspects of pretty-printing: spacing can be tuned; redundant bracketing can
be eliminated through the passing of fixity and precedence information;
indentation can be designed by nesting lines; and wrapping of lines can be
performed smartly.

– Efficiency. FliPpr is efficient in the sense that we can reuse existing efficient
implementation of pretty-printers and parsers. For pretty-printing, we can
use Wadler’s library [?] and other refined pretty-printing algorithms [?,?].

2 In this paper, we write “space” for the space character and write “whitespace” for the
space character and the new-line character. Other kinds of spaces such as horizontal tabs
are not discussed as they do not yield new insight.

4 Kazutaka Matsuda, Meng Wang

For parsing, we can use any parser generator that supports CFG without
restriction.

The technique of program inversion used in FliPpr is not new; it is a di-
rect consequence of our previous work [?]. The novelty of this paper lies in
the design of the pretty-printing system, which makes the program inversion
possible. Specifically, in this work:

– We propose an invertible pretty-printing technique based on grammar-
based inversion [?], by which we can obtain a consistent parser from a
pretty-printer.

– We give a surface language such that a pretty-printer written in it can be
converted to a linear and treeless form by deforestation [?] which is suitable
for inversion [?].

– We implemented our idea as a program transformation tool that generates
parsers in Haskell3

In the sequel, we will give an overview of FliPpr (??) and then formally present
the semantics and inversion firstly of a core language (??) and then a surface
language (??) for FliPpr. After that we show how different pretty-printer combi-
nators can be incorporated into FliPpr (??), and present a larger programming
example (??). Finally, we discuss possible extensions (??) and related work
(??), and conclude in ??.

A preliminary version of this paper appeared in ESOP’13 [?]. The major
difference to the preliminary version is ??, which extends the back-end of FliPpr
by adding more pretty-printing combinators. Also, ?? in addition discusses the
applicability of FliPpr to other types of pretty-printing libraries, specifically
Hughes’ [?] and Bernardy’s [?] that follow a different principle from Wadler’s.
In addition, ?? contains more discussions, especially on program inversion.

2 Overview

In this section, we present an overview of our technique using the subtraction
language from the introduction as the running example.

2.1 Overall Architecture

Surface Language (FliPpr)

❄(Sect. ??)
Core Language (FliPpr Core)

❄(Sect. ??)
CFG with Actions

Core
System

Fig. 1 Architecture of FliPpr

Figure ?? shows the overall picture
of FliPpr. A user of our system pro-
grams a pretty-printer in a surface
language FliPpr, which is trans-
lated to a core language FliPpr
Core that can be inverted. The ex-
ample pretty-printer for the subtrac-
tion language is simple enough not

3 Available at https://bitbucket.org/kztk/flippr/

FliPpr: A System for Deriving Parsers from Pretty-Printers 5

to require any advanced features that the surface language provides, and the
translation from the surface language to the core language is the identity op-
eration in this case. Therefore, we focus on the core system in this section and
postpone the discussion of the surface language to Sect. ??.

2.2 Introducing Ugliness

Let us revisit the pretty-printer ppr defined in the previous section. If the
function is inverted as it is, we can hope for no more than a parser that only
recognizes pretty strings. This is neither the fault of function ppr nor of the
inverter: a pretty-printer ppr (correctly) produces only pretty layouts, and an
inverter cannot invent information that is not already carried by the func-
tion to be inverted. To remedy this information mismatch, we instrument the
pretty-printer with additional information about non-pretty but nevertheless
valid layouts.

Reinterpretation of line. A common source of prettiness is the clever interpre-
tation of lines either as a single space or a nicely indented new line depending
on the environment. This effect can be simply eliminated by reinterpreting line
as one or more whitespaces. Using this new interpretation in the derivation of
a parser enables us to parse certain non-pretty layouts. For example, now the
inverse of the pretty-printer can parse the following strings.

1 - 1 or
1

- 1

These strings do not satisfy our notion of prettiness defined by ppr, and will
not be produced by the pretty-printer, but will be accepted by the generated
parser through the reinterpretation of lines. Also note that this reinterpretation
also means that we can safely ignore group and nest during inversion, because
their sole purpose is to affect the behavior of lines.

Still, this solution alone is not enough. Strings like 1 - 1 and (1)-

((1)) remain unparsable: the pretty-printer has dictated that there is only a
single space between the operator and the second operand by using text " "

instead of line, and that there shouldn’t be redundant parentheses. We need to
find a way to alter these behaviors in parsing without losing pretty-printing.

Biased Choice. To annotate pretty-printers with information about non-pretty
layouts, we introduce the choice operator <? . In pretty-printing the operator
behaves as e1 <? e2 = e1, ignoring the non-pretty alternative e2; in parser
derivation the operator is interpreted as a nondeterministic choice, which ac-
cepts both branches. The operator <? binds looser than <> and has the fol-
lowing algebraic properties.

Associativity e1 <? (e2 <? e3) = (e1 <? e2) <? e3
Distributivity-L (e1 <? e2) <> e3 = e1 <> e3 <? e2 <> e3
Distributivity-R e1 <> (e2 <? e2) = e1 <> e2 <? e1 <> e3

6 Kazutaka Matsuda, Meng Wang

For example, one can define variants of (white)spaces with the choice operator
as follows.

nil = text "" <? space -- zero-or-more spaces in parsing
space = (text " " <? text "\n") <> nil -- one-or-more spaces in parsing

Here, nil and space pretty-print "" and " " respectively, but represent zero-
or-more and one-or-more whitespaces in parsing. We can now refactor our
pretty-printer ppr with the aim of obtaining more robust parsers.

ppr x = ppr x <? text "(" <> nil <> ppr x <> nil <> text ")"
ppr One = text "1"
ppr (Sub e1 e2) = group (ppr e1 <> nest 2 (lineN <> text "-" <> spaceN <> pprP e2))

pprP x = pprP x <? text "(" <> nil <> pprP x <> nil <> text ")"
pprP One = text "1"
pprP (Sub e1 e2) =

text "(" <> group (ppr e1 <> nest 2 (lineN <> text "-" <> spaceN <> pprP e2)) <> text ")"

spaceN = space <? text ""-- A variant of space that works as nil in parsing
lineN = line <? text "" -- A variant of line that works as nil in parsing

Note that we have separated the original definitions of ppr and pprP into two
parts: the top level definitions introduce annotations for optional parentheses,
and the actual pretty-printing is handled by worker functions that are sub-
scripted. Optional whitespaces are also introduced by replacing text " " and
line with spaceN and lineN respectively in the definitions.

This refactoring is semantic preserving with respect to pretty-printing,
and at the same time brings in necessary information for robust parsing. For
example, we can now expect the inverse program to parse strings like 1 - 1,
(1)- ((1)), and (1 - (1)) correctly.4

2.3 Construction of CFG with Actions

So far, we have discussed how a user can provide a refactored pretty-printer
that behaves like the original, but with additional information for non-pretty
strings embedded. Our system FliPpr further transforms the program by re-
moving the layouting and replacing <? with a nondeterministic choice ? to
create an ugly-printer solely for inversion.

ppr x = ppr x ? "("++ nil ++ ppr x++ nil ++ ")"

ppr One = "1"

ppr (Sub e1 e2) = ppr e1 ++ line ′ ++ "-"++ space ′ ++ pprP e2
. . .

We postpone a detailed discussion of the transformation to Sect. ??. For now,
it is sufficient to know that the above program nondeterministically produces
a string that is valid for parsing, but not necessarily pretty.

4 To also make strings like " 1-1" parsable, we can add a declaration f x = nil <>ppr x <>

nil . However this addition does not give any new insight, and is omitted for simplicity.

FliPpr: A System for Deriving Parsers from Pretty-Printers 7

prog ::= rule1; . . . ; rulen
rule ::= f p1 . . . pn = e
p ::= x | C p1 . . . pn
e ::= text s | e1 <> e2 | line | nest n e | group e (Wadler’s Combinators)

| e1 <? e2 (Biased Choice)
| f x1 . . . xn (Treeless Call)

Fig. 2 Syntax of FliPpr Core: f ranges over function, C ranges over constructors, x and
xis range over variables, s ranges over strings and n ranges over natural numbers.

Then, using our previous work on grammar-based inversion [?], the pro-
gram can be inverted to construct the following grammar with actions (sim-
plified for presentation).

Ppr → Ppr {$1}
| "(" Nil Ppr Nil ")" {$3}

Ppr → 1 {One}
| Ppr Line ′ "-" Space ′ PprP {Sub $1 $5}

. . .

The correctness of the parser construction comes from our previous work [?].
Since FliPpr produces a CFG with actions, users have the choice of using any

parser generator as long as it supports CFG. Although many existing parser
generators and parsing combinators only support some subclasses of CFG such
as LALR(1) and LL(1), algorithms (such as GLR [?], GLL [?], and derivative-
based parsing [?]) and tools (such as GNU bison5, happy6, and Elkhound [?])
that support CFG are becoming popular now. Although those algorithms are
generally slower than LALR(1) parsers for LALR(1) grammars, it has been
reported that the overhead is only about 10% for a certain LALR(1) grammar
in Elkhound thanks to its hybrid algorithm [?]. In our implementation, we use
Frost et al. [?]’s top-down parser because of its simplicity.

3 Core Language and Parser Construction

In this section, we give the formal definition of the core language of FliPpr,
FliPpr Core, and discuss parser construction by program inversion.

3.1 Syntax and Semantics

?? shows the syntax of FliPpr Core, a first-order functional language sim-
ilar to one found in the introduction. We include Wadler’s pretty-printing
combinators [?] and the biased choice as primitive operators, and place two
restrictions for later inversion:

– Function calls must be treeless [?]: they take only variables as arguments.

5 https://www.gnu.org/software/bison/
6 https://www.haskell.org/happy/

8 Kazutaka Matsuda, Meng Wang

∃(f 󰁨p = e). 󰁨pσ′ = 󰁨xσ σ′ ⊢ e ⇓ v

σ ⊢ f 󰁨x ⇓ v

σ ⊢ e1 ⇓ v1

σ ⊢ e1 <? e2 ⇓ v1 σ ⊢ text s ⇓ text s

{σ ⊢ ei ⇓ vi}i=1,2

σ ⊢ e1 <> e2 ⇓ v1 <> v2 σ ⊢ line ⇓ line

σ ⊢ e ⇓ v

σ ⊢ nest n e ⇓ nest n v

σ ⊢ e ⇓ v

σ ⊢ group e ⇓ group v

Fig. 3 The call-by-value pretty-printing semantics of FliPpr Core.

∃(f 󰁨p = e). 󰁨pσ′ = 󰁨xσ σ′ ⊢ e ⇓ND s

σ ⊢ f 󰁨x ⇓ND s

σ ⊢ ei ⇓ND si

σ ⊢ e1 <? e2 ⇓ND si
i = 1, 2

σ ⊢ text s ⇓ND s

{σ ⊢ ei ⇓ND si}i=1,2

σ ⊢ e1 <> e2 ⇓ND s1 ++ s2

s ∈ White+

σ ⊢ line ⇓ND s

σ ⊢ e ⇓ND s

σ ⊢ nest n e ⇓ND s

σ ⊢ e ⇓ND s

σ ⊢ group e ⇓ND s

Fig. 4 Nondeterministic printing semantics of FliPpr Core.

– Variable use must be linear : every bound variable in a rule is used exactly
once on the right-hand side. An exception is with <? . For e1 <? e2, the two
branches are supposed to be both linear. Thus, they contain the same set
of free variables. For example, assuming f is linear, then g x = f x <? f x
is linear, but h x = line <? f x and k x = line <? text "s" are not.

For simplicity, we often omit the rule separator “;” if no confusion would arise.
We use vector notation 󰁨x for a sequence x1, . . . , xn, and abuse the notation to
write f 󰁨x for f x1 . . . xn.

The formal pretty-printing semantics of the language is shown in Fig. ??.
We write σ ⊢ e ⇓ v if under environment σ, expression e evaluates to value v.
Values are closed expressions that only consist of Wadler’s combinators (i.e.,
we do not evaluate Wadler’s combinators). The environment σ is a mapping
from variables to terms (i.e., expressions or patterns). We write tσ for the
term obtained from t by replacing free variables x in t with σ(x). Notice that
󰁨xσ in the first rule represents the actual arguments of f ; recall that a variable
is not an expression in this language. Pattern matching is nondeterministic in
this semantics.

We do not define formally the semantics of Wadler’s combinators, as our
discussion in this paper does not depend on it. However, we define the rein-
terpretation of the combinators and the biased choice <? for parser gen-
eration (firstly mentioned in Sect. ??, where lines are seen as one-or-more
whitespaces and <? as a true nondeterministic choice). As shown in Fig. ??,
the reinterpretation is defined similarly to the pretty-printing semantics; the
main difference is that it returns a string nondeterministically, pretty or not.
We write σ ⊢ e ⇓ND s if, under the environment σ, e nondeterministically
evaluates to a string s. Here, ++ is string concatenation, and White+ is
the set of non-empty strings that consist only of " " and "\n". That is,
White+ =

󰁖
1≤i Si where Si is defined inductively by: S1 = {" ", "\n"} and

Sn+1 = {s1 ++ s2 | s1 ∈ S1, s2 ∈ Sn}. The possible evaluation results of the
nondeterministic semantics, which covers both pretty and non-pretty strings,
is a super set of what Wadler’s combinators may produce if evaluated in the
original semantics. Thanks to treelessness and linearity, the sets of strings de-

FliPpr: A System for Deriving Parsers from Pretty-Printers 9

fined by Le = {s | ∃σ. σ ⊢ e ⇓ND s} for expressions e are exactly those that
are expressible by CFGs. This fact enables us to use CFG-parsers for inverses,
which will be shown in the following. Also note that due to linearity, call-by-
value and call-by-name coincide for the language, even with nondeterminism
(assuming that Wadler’s combinators and string operations are strict). This
is handy later when we require a call-by-value semantics for program inver-
sion [?], and a call-by-name semantics for fusion [?] in the surface language
(Sect. ??).

3.2 Parser Construction by Inversion

To invert programs written in the core language, we firstly perform a semantic-
preserving transformation to remove the pretty-printing combinators, and ob-
tain a syntax that is recognizable by our grammar-based inversion system [?].

3.2.1 Converting to Nondeterministic Programs

This step is done by “forgetting smart layouting mechanism”, through the
following rewriting rules.

text s −→ s
nest n e −→ e

group e −→ e
line −→ space

e1 <> e2 −→ e1 ++ e2
e1 <? e2 −→ e1 ? e2

Here, space is a rewritten version (according to the rules above) of its definition
in Sect. ?? defined as the following (the operator ? is nondeterministic choice).

space = (" " ? "\n") ++ nil nil = "" ? space

The formal semantics of the obtained nondeterministic programs is defined
straightforwardly by adding the following rules.

σ ⊢ s ⇓ s

σ ⊢ ei ⇓ v

σ ⊢ e1 ? e2 ⇓ v
i = 1, 2

{σ ⊢ ei ⇓ vi}i=1,2

σ ⊢ e1 ++ e2 ⇓ v1 ++ v2

The behaviors of s, ? and ++ are the same as the reinterpretations of text s,
<? and <>, respectively; we use different symbols to clarify that the conver-
sion discards the pretty-printing semantics. Note that due to linearity and
treelessness, the call-time (or call-by-value or IO) choice and the run-time (or
call-by-name or OI) choice [?] coincide.

We write f and e as the rewritten version of f and e. The following lemma
states that the rewriting is semantic preserving.

Lemma 1 (Semantic Preservation) σ ⊢ e ⇓ND s iff σ ⊢ e ⇓ s. ⊓⊔

10 Kazutaka Matsuda, Meng Wang

Rules of Ff . For function f , we generate:

Ff → Ee1 {let σ = $1 in (󰁨p1)σ}
. . .
| Een {let σ = $1 in (󰁨pn)σ}

if f has rules f 󰁨p = e1; . . . ; f 󰁨pn = en.

Rules of Ee. For expression e, we generate:

Ee → Ff

󰀝
let (t1, . . . , tn) = $1
in {x1 󰀁→ t1, . . . , xn 󰀁→ tn}

󰀞
if e = f x1 . . . xn

Ee → Ee1 Ee2 {$1 ⊎ $2} if e = e1 ++ e2
Ee → s {∅} if e = s

Ee → Ee1 {$1}
| Ee2 {$1} if e = e = e1 ? e2

Here, ⊎ merges two environments assuming that their domains are disjoint. Note that
this disjoint property is guaranteed by linearity.

Fig. 5 Construction of CFG with actions.

3.2.2 Grammar-Based Inversion

Grammar-based inversion [?] is an inversion method that reduces the problem
of finding x such that f(x) = y for a given y to that of parsing based on a
grammar corresponding to the set {y | ∃x.y = f(x)} together with transfor-
mations on the parse trees. The original paper [?] mainly discussed regular
tree grammars [?]. This paper, instead, considers CFG as a variant.

Specifically, we convert the rewritten program to a context-free grammar
with actions7 that computes the inverse of the rewritten program. The basic
idea of this grammar construction is to read a rule of a program as a production
rule of a grammar, and to use semantic actions to track how variables (i.e.,
inputs) are passed.

In the inversion, we construct two sorts of non-terminals: Ff for functions
f and Ee for expressions e. For a function f that takes t1, . . . , tn and returns
s, Ff is used to parse string s, and the semantic action returns the original
inputs (t1, . . . , tn). For an expression e such that σ ⊢ e ⇓ s, Ee is used to
parse string s, and the semantic action returns the original environment σ.
The generation of the production rules and semantics actions are presented
in Fig. ??. The grammar in Sect. ?? is a simplified version of the grammar
obtained by this generation.

We write 󰌻N󰌼P(s) for the set of results returned by the semantics actions,
when s is parsed with start symbol N (the subscript P means “parse”). The
following lemma holds.

Lemma 2 (Correctness of Inversion)

– σ ⊢ e ⇓ s and dom(σ) = fv(e) iff σ ∈ 󰌻Ee󰌼P(s),
– {x1 󰀁→ t1, . . . , xn 󰀁→ tn} ⊢ f x1 . . . xn ⇓ s iff (t1, . . . , tn) ∈ 󰌻Ff 󰌼P(s).

Proof Similar to [?]. ⊓⊔
7 As a slight difference, the original paper [?] uses transformations on parse trees (or more

precisely, derivation trees of productions), instead of semantic actions.

FliPpr: A System for Deriving Parsers from Pretty-Printers 11

Let ppr be a single-argument function defined in FliPpr Core, and parse
be a function defined by parse s = 󰌻Fppr 󰌼P(s). Then, the following theorem is
a special case of the above lemma.

Theorem 1 {x 󰀁→ t} ⊢ ppr x ⇓ND s iff t ∈ parse s. ⊓⊔

The set parse s contains at most one element if ppr is injective. Note that
the inversion can produce arbitrary CFGs, and this is the reason why FliPpr
requires parser generators that support CFG without restriction.

4 Surface Language: Making it More Flexible

The core language, FliPpr Core, is restricted to be linear and treeless, which
is expressive enough for CFG parsing, but may be cumbersome to program in
at times. In this section, we present a surface language name FliPpr that has
a relaxed form of the restrictions, and through fusion techniques (specifically
deforestation [?] or supercompilation [?]), programs written in the surface
language are transformed to treeless and linear programs in the core language.

4.1 Problems with Programming in the Core Language

Let us consider extending the subtraction language with division and variables.

data E = · · · | Div E E | Var String

Recall that we used two mutually recursive functions ppr and pprP to control
bracketing issues around “-”. In general, when there are many operators with
different precedence levels, it suffices to use a function for each precedence level.
For example, assuming “-” has precedence-level 6 and “/” has precedence-
level 7 as they do in Haskell, a pretty-printer can be written as follows.

ppr x = ppr5 x -- 5 is the lowest precedence level
. . .
ppr 5 (Sub x y) = . . . ppr5 x . . . text "-" . . . ppr6 y . . . -- (1)
ppr 5 (Div x y) = . . . ppr6 x . . . text "/" . . . ppr7 y . . . -- (2)
. . .
ppr 6 (Sub x y) = text "(" <> nil <> . . . {- the RHS of (1) -} . . . <> nil <> text ")"
ppr 6 (Div x y) = . . . {- the RHS of (2) -} . . .
. . .
ppr 7 (Sub x y) = text "(" <> nil <> . . . {- the RHS of (1) -} . . . <> nil <> text ")"
ppr 7 (Div x y) = text "(" <> nil <> . . . {- the RHS of (2) -} . . . <> nil <> text ")"

The various auxiliary functions are subscripted by numbers which are the
precedence levels of the contexts the expressions are being printed. For example
in ppr 6, Sub is printed with added parentheses as its precedence-level 6 is not
higher than the context; on the other hand, there is no parentheses for Div as
its precedence-level 7 is higher than the context’s level 6. Astute readers may
have noticed that there are a lot of repetitions in the above definition largely
due to the treeless restriction.

12 Kazutaka Matsuda, Meng Wang

Another problem that it is non-trivial to separate variable names from
predefined names. For example, let us consider pretty-printing for Var x. One
may be tempted to write ppr (Var x) = text x but a parser derived from
the above will parse “-” as Var "-", because there is no information in the
above definition that specifies valid variable names. We can improve the pretty-
printer as follows.

ppr (Var x) = f x
f (’a’ : x) = text "a" <> g x
. . .
f (’z’ : x) = text "z" <> g x

g [] = text ""
g (’a’ : x) = text "a" <> g x
. . .
g (’z’ : x) = text "z" <> g x

Note that strings are represented as lists of characters. This function ppr is
intentionally partial (undefined for Var "-"). We have successfully restricted
variable names to range over lower-case alphabets, but in a cumbersome way.

4.2 An Overview

To reduce the programming effort, we propose a surface language FliPpr,
which has relaxed linearity and treelessness restrictions, and is equipped with
a shorthand notation for expressing name ranges. In this language, a pretty-
printer for the extended subtraction language can be written as follows.

ppr x = go 5 x
go i x = manyPars (go i x)
go i One = text "1"
go i (Var x) = text x as [a-z]+
go i (Sub e1 e2) =

parIf (i ≥ 6) (group (go 5 e1 <> nest 2 (line′ <> text "-" <> space′ <> go 6 e2)))
go i (Div e1 e2) =

parIf (i ≥ 7) (group (go 6 e1 <> nest 2 (line′ <> text "/" <> space′ <> go 7 e2)))

Here, manyPars and parIf are defined as:

parIf b d = if b then par d else d
manyPars d = d <? par (manyPars d)
par d = text "(" <> nil <> d <> nil <> text ")"

This program differs from the one in the core language in the following ways:

1. The auxiliary functions manyPars, parIf and par are used and applied
to non-variable arguments, enabling users to avoid duplicating frequently-
occurring patterns such as text "(" <> nil <> · · · <> nil <> text ")".

2. Instead of embedding precedence-levels into function names, we pass them
as arguments and inspect them by if and ≤ for bracketing. (These were
previously impossible due to the linearity and treelessness restrictions.)

3. A new construct text x as r is used to avoid explicit recursion on strings.

Item 3 of the above is rather easy to deal with. For Item 1, we borrow the
idea of program fusion [?,?,?] to make sure that these auxiliary functions are
fused away. For Item 2, we use partial evaluation to erase statically-computable
arguments such as precedence-levels. The statically-computable arguments are
separated from the rest through types.

FliPpr: A System for Deriving Parsers from Pretty-Printers 13

prog ::= rule1 . . . rulen
rule ::= f p1 . . . pn = e
e ::= text s | e1 <> e2 | line | nest n e | group e | e1 <? e2 (Combinators)

| text x as r (Annotated Text)
| x (Variable)
| f e1 . . . en (Call)
| if pred e1 . . . en then et else ef (Static Branching)
| c (Constant)

p ::= x | C p1 . . . pn
c ::= . . . any constants . . .
r ::= . . . regular expression . . .

Fig. 6 Syntax of FliPpr: pred are Boolean predicates.

Θ,Γ,∆ ⊢ e : τ

Θ,Γ, {x : τ} ⊢ x : τ Θ,Γ, ∅ ⊢ x : Γ (x) Θ,Γ, ∅ ⊢ c : St

Θ,Γ,∆ ⊢ e : Doc

Θ,Γ,∆ ⊢ nest n e : Doc

{Θ,Γ,∆i ⊢ ei : Doc}1≤i≤n op= text "s", group, (<>), line

Θ,Γ,
󰁘

1≤i≤n ∆i ⊢ op e1 . . . en : Doc

{Θ,Γ,∆ ⊢ ei : Doc}i=1,2

Θ,Γ,∆ ⊢ e1 <? e2 : Doc Θ,Γ, {x : AST} ⊢ text x as r : Doc

{Θ,Γ, ∅ ⊢ ei : St}1≤i≤n {Θ,Γ,∆ ⊢ eb : τ}b=t,f

Θ,Γ,∆ ⊢ if pred e1 . . . en then et else ef : τ

{Θ,Γ,∆i ⊢ ei : τi}1≤i≤n Θ(f) = τ1 → · · · → τn → Doc

Θ,Γ,
󰁘

1≤i≤n ∆i ⊢ f e1 . . . en : Doc

Θ ⊢ f p1 . . . pn = e
Θ(f) = τ1 → · · · → τn → Doc

∃Γ,∆1, . . . ,∆n {Γ,∆i ⊢ pi : τi}1≤i≤n dom(Γ) ⊆
󰁘

1≤i≤n fv(pi)

Θ,Γ,
󰁘

1≤i≤n ∆i ⊢ e : Doc

Θ ⊢ f p1 . . . pn = e

Γ,∆ ⊢ p : τ

Γ (x) = St

Γ, ∅ ⊢ x : St

τ ∈ {AST,Doc}
Γ, {x : τ} ⊢ x : τ

{Γ,∆i ⊢ pi : τ}1≤i≤n τ ∈ {AST, St}
Γ,

󰁘
1≤i≤n ∆i ⊢ C p1 . . . pn : τ

Fig. 7 Typing rules: here ⊎ represents disjoint union.

4.3 Surface Language: FliPpr

Figure ?? shows the syntax of the surface language FliPpr. The treeless
restriction is replaced by a relaxed one that will be discussed towards the
end of this subsection. The language has constants as expressions, such as
the precedence levels of operators found in the previous subsection. Used as
arguments, such constants can be eliminated at compilation time through
partial evaluation; we call such constants static information. The if branchings
inspect static information, and are eliminable statically as well.

We use a type system to distinguish static information (of type St) from
other kinds of values such as the input ASTs (of type AST) and the pretty-
printing results (of type Doc). The type system ensures that static information
are eliminable through (offline) partial-evaluation [?], and variable uses are

14 Kazutaka Matsuda, Meng Wang

linear. Formally, primitive types τ and function types σ are defined by:

τ ::= AST | St | Doc σ ::= τ1 → · · · → τn → τ

Typing judgment Θ,Γ,∆ ⊢ e : τ reads that under function-type environment
Θ, non-linear type environment Γ and linear type environment ∆, e has type
τ . Similarly, we define Γ,∆ ⊢ p : τ and Θ ⊢ f p1 . . . pn = e for patterns
and declarations. Figure ?? shows the typing rules, which are mostly self-
explanatory. Notably, the uses of variables of type AST and Doc have to be
linear, as dictated by the rules. The linearity restriction of AST variables is
inherited from the core language, while that of Doc variables is required for
the correctness of fusion; it is known that the deforestation is not correct for
non-linear and non-deterministic programs [?]. A program is assumed to have
a distinguished entry point function of type AST → Doc. The type Doc is
treated as a black box in the language; nothing except Wadler’s combinators
can handle Doc data. Only variables can have type AST.

Treeless Restriction We replace the universal treeless restriction of the core
language by a typed one: only arguments of type AST or Doc are restricted to
be variables. Moreover, we view programs in FliPpr as multi-tier systems [?]:
every function is associated to a natural number called tier, and every function
call occurring in the body of a tier-i function must be to a tier-j (≤ i) function.
Tiers of functions are easily inferred by topological sorting of the call-graph. A
program is called tiered-treeless if for every call of a tier-k function f occurring
in the body of a tier-k function, the arguments (of type AST or Doc) passed
to the call must be variables. The pretty-printer defined in Sect. ?? is tiered-
treeless: functions ppr , go and go belong to tier 3, function manyPars belongs
to tier 2, and other functions belong to tier 1.

We omit a formal semantics of FliPpr, as it is a straightforward extension
of FliPpr Core. Similar to the case of FliPpr Core, the evaluation results
of the call-by-value and the call-by-name semantics coincide in the surface
language due to linearity.

4.4 Conversion to FliPpr Core

FliPpr is elaborated to FliPpr Core through a number of program trans-
formations: (1) desugaring expressions of the form text x as r, (2) partial-
evaluating static information, (3) fusing higher-tier functions. Steps (1) and
(2) above are straightforward adaptation of existing technologies, while step
(3) is new and uses a property specific to our surface language. In what follows,
we discuss the steps one by one.

4.4.1 Desugaring text x as r

We firstly convert r to a deterministic automaton. Then, we replace text x as r
with fq0 x where q0 is an initial state of the automaton, and, for each state q,

FliPpr: A System for Deriving Parsers from Pretty-Printers 15

a function fq is defined as follows: function fq has a rule fq (’a’ : x) = fq′ x
if the automaton has a transition rule (q, a, q′), and has a rule fq [] = text ""
if q is a final state of the automaton. For the example in Sect. ??, the regular
expression [a-z]+ can be expressed in a deterministic automaton with two
states, and the functions f and g correspond to the two states.

4.4.2 Partial-Evaluating St-Expressions

A role of our type system is to perform binding-time analysis [?]; the ex-
pressions of type St can be statically evaluated, assuming that predicate ap-
plications are terminating. Thus, standard offline partial evaluation (see [?])
suffices to eliminate all the St-expressions and thus we omit the details. For
the example in Sect. ??, we obtain the partially evaluated functions as below.

ppr x = go5 x
. . .
go 5 (Sub x y) = . . . go5 x . . . go6 y . . .
go 5 (Div x y) = . . . go6 x . . . go7 y . . .
. . .

go 6 (Sub x y) = . . . go5 x . . . go6 y . . .
go 6 (Div x y) = par (. . . go6 x . . . go7 y . . .)
. . .
go 7 (Sub x y) = par (. . . go5 x . . . go6 y . . .)
go 7 (Div x y) = par (. . . go6 x . . . go7 y . . .)

Roughly speaking, thanks to the type AST → Doc of the entry point function,
the type system guarantees that every St-type expression must be a constant
itself or a part of some constant obtained by pattern-matching, and thus can
eliminated by partial-evaluation.

4.4.3 Fusing Functions to Obtain 1-tier Programs

We show the transformation of 2-tiered programs to 1-tiered programs, with
the understanding that the procedure can be applied iteratively to transform
m-tiered programs to 1-tiered programs.

The transformation is done by deforestation [?]. Roughly speaking, defor-
estation (or, supercompilation [?]8) performs call-by-name evaluation of ex-
pressions; but instead of computing a value, it produces a new expression that
has the same behavior as the original one but with intermediate data struc-
tures eliminated. Without loss of generality, we assume that AST arguments
appear before Doc arguments in function calls. The deforestation procedure
D󰌻e󰌼 is defined as follows.

– D󰌻op e1 . . . en󰌼 = op D󰌻e1󰌼 . . . D󰌻en󰌼, where op ranges over text "s",
(<>), line, nest i, group and (<?).

8 Because of the linearity, Wadler’s deforestation [?] and (positive) supercompilation [?]
coincide for the surface language FliPpr. Also notice that we assume non-deterministic
pattern-matching and thus need not convey negative information in the deforestation pro-
cess. Thus, generalized partial computation (GPC) [?,?] also coincide with the above two
for FliPpr [?].

16 Kazutaka Matsuda, Meng Wang

– D󰌻f 󰁨x 󰁨e󰌼 = f󰁨e 󰁨x 󰁨z. Assuming 󰁨x have type AST (recall that only variables
have type AST), 󰁨e have type Doc, and {󰁨z} are the free variables in 󰁨e,
the newly generated function f󰁨e is defined as f󰁨e 󰁨p 󰁨z = D󰌻e[󰁨y 󰀁→ 󰁨e]󰌼 for
each corresponding rule f 󰁨p 󰁨y = e in the definition of f (with proper
α-renaming). Here, we do not repeatedly generate rules of f󰁨e if they are
already generated (up to renaming of the free variables in 󰁨e).

The above procedure follows from the original one [?], and is simplified to suit
the restricted surface language. The procedure terminates if the number of
functions f󰁨e generated in the latter case is finite. By using D󰌻e󰌼, we replace
every tier-2 rule f 󰁨p 󰁨y = e with f 󰁨p 󰁨y = D󰌻e󰌼.

Example 1 We deforest the pretty-printer defined in Sect. ??.
The tier-2 function manyPars is transformed into the following.

manyPars d = d <? parmanyPars d d

parmanyPars d d = text "(" <> nil <>manyPars d <> nil <> text ")"

And iteratively, we can now apply the procedure to the function go5 (repro-
duced below), which is in tier-2 after the above transformation.

go5 x = manyPars (go 5 x)

After renaming parmanyPars d to parMP , we have the following tier-1 functions

go5 x = manyParsgo 5 x x

manyParsgo 5 x x = go 5 x <? parMPgo 5 x x

parMPgo 5 x x = text "(" <> nil <> go 5 x <> nil <> text ")"

assuming calls go5 x are transformed too. This is similar to inlining except
that the deforestation handles recursive functions such as manyPars. ⊓⊔

Note that in the deforestation process, we treat Wadler’s combinators as
constructors because Doc-values are black boxes. This is key to termination; if
we allow pattern-matching on Doc-values, then we can make a tiered-treeless
program for which deforestation runs infinitely. As a result, Theorem ?? can
be generalized and D󰌻e󰌼 terminates for tier-n expression e.

Theorem 2 (Termination) For tier-2 expression e, D󰌻e󰌼 terminates.

Proof (Sketch) All expressions 󰁨e in D󰌻f 󰁨x 󰁨e󰌼 must be tier-2 expressions in the
original program or just variables, which implies the finiteness of the number
of functions f󰁨e generated in the deforestation process. ⊓⊔

Theorem 3 The resulting tier-1 program is treeless and linear. ⊓⊔

The correctness of the deforestation is known for call-by-name languages [?].
Note that call-by-value and call-by-name coincide in our surface language.

It is worth remarking that deforestation (supercompliation, or generalized
partial computation [?,?]) is known to be an extension of online partial evalua-
tion [?]; and online partial evaluation that classifies static and dynamic inputs

FliPpr: A System for Deriving Parsers from Pretty-Printers 17

in the transformation time, is more powerful than offline partial evaluation
that classifies static and dynamic inputs ahead of the transformation [?]. This
suggests that we could remove the step (2) above on partial evaluation. Nev-
ertheless, we prefer to keep the separate step with the binding-time analysis
by types, so that the set of input programs for FliPpr is made clear by types,
and deforestation process may focus on handling multi-tier programs.

5 Back-end Extensions: Enriching Combinators

Extensions to Wadler’s pretty-printer combinators [?] can be incorporated into
FliPpr. In this section, we demonstrate the inclusion of additional combinators
together with some post-processing for the language.

5.1 Primitive Combinators

Leijen extended Wadler’s combinators [?] with a number of primitives (namely
linebreak, align, fill and fillBreak) in the library wl-pprint9. They can be in-
cluded in FliPpr. Specifically, the syntax of expressions both in the core and
the surface languages is extended as:

e ::= · · · | linebreak | align e | fill n e | fillBreak n e

In what follows, together with brief explanations of their behaviors, we show
how the combinatiors are translated to nondeterministic programs in parser
construction.

linebreak is a variant of line; it represents a newline with indentation similar to
line, but when placed under group it may be rendered as the empty string in-
stead of a single space. This would be useful for rendering punctuation symbols
such as opening braces “{” for grouping statements.

The translation of this combinator is straightforward.

linebreak −→ nil

where nil nondeterministically prints zero-or-more spaces (Sect. ??). Recall
that line is converted to space.

align adjusts the current indentation level like nest n, but it sets the current
indentation level to the column number of the current rendering position,
instead of a fixed n. This combinator is key to realize relative indentation, like
Hughes’ or Bernardy’s combinators [?,?].

Let us consider rose trees as an example.

data RTree = Node String [RTree]

9 https://hackage.haskell.org/package/wl-pprint

18 Kazutaka Matsuda, Meng Wang

pprRT (Node n ts) = text n as [a-z]+ <> spaceN <> text "[" <> group (align (
nil <> pprRTs ts <> nil <> text "]"))

pprRTs [] = text ""
pprRTs (t : ts) = pprRTs ′ t ts

pprRTs ′ t [] = pprRT t
pprRTs ′ t (t′ : ts) = pprRT t <> nil <> text "," <> lineN <> pprRTs ′ t′ ts

For example, ppr (Node "apple" [Node "orange",Node "banana"]) will be
rendered as

apple [orange, banana] or
apple [orange,

banana]

depending on the screen width. Notice that the indentation of “banana” is
relative to the length of its parent label (i.e., “apple”).

The translation of this combinator is similar to that of nest n:

align e −→ e

fill and fillBreak The expression fill n e inserts spaces after e to make it n-wide
if e is narrower than n, and otherwise returns e; fillBreak is similar to fill, but
behaves as e <> nest n linebreak if e’s wider than n. They can be used for lists
of bindings such as maps, to align the positions of “=” for example.

We can translate these combinator by appending nil .

fill n e −→ e++ nil fillBreak n e −→ e++ nil

In the implementation in wl-print, the rendered width of e can be negative
as it is calculated as the difference of the horizontal position before and after
rendering e, and thus fill n and fillBreak n can insert spaces even when n is
negative. This is why we insert nil in the translation regardless of n.

5.2 Derived Combinators for Spacing and Post-Processing

Recall that, in addition to the usual pretty-printing, FliPpr programs specify
where non-pretty spaces are allowed for effective parsing (Sect. ??). However,
our experience shows that directly inserting nil or space for this purpose is
error-prone. We have observed that it is rather rare to have concatenation
(“<>”) without allowing additional spaces; that is, “<>” is usually used together
with spacing expressions such as nil , space and line. This observation leads to
the design of the following combinators.

x <-> y = x <> nil <> y spacesAround d = nil <> d <> nil
x <+> y = x <> space <> y x </> y = x <> line <> y
x <+>N y = x <> spaceN <> y x </>N y = x <> lineN <> y

For example, pprRT in Sect. ?? can be rewritten as below with the new
combinators (one might notice that this version differs from the previous one

FliPpr: A System for Deriving Parsers from Pretty-Printers 19

by printing nil before, instead of after, group and align, but this makes no
difference in either pretty-printing nor parsing).

pprRT (Node n ts) = text n as [a-z]+ <+>N text "[" <-> group (align (
pprRTs ts <-> text "]"))

. . .
pprRTs′ t (t′ : ts) = pprRT t <-> text "," </>N pprRTs′ t′ ts

The new combinators simply the definition, and are effective in avoiding errors
related to missing spacing expressions.

5.2.1 An Issue: Unnecessary Ambiguity

A caveat with the new combinators is that programmers are now more likely to
write concatenations of spacing expressions, which result in ambiguous gram-
mar.

For example, let us consider the rose-tree example again, but instead of
relative indentation, we insert a linebreak with nesting after printing "[".

pprRT (Node n ts) = text n as [a-z]+ <+>N text "[" <-> group (nest 2 (
linebreak <-> pprRTs ts <-> text "]"))

Notice that “align” is replaced with “nest 2” and “linebreak <-> ” is inserted
before “pprRTs ts”. From the definition, we obtain the following ambiguous
grammar (after some inlining of nonterminals for readability).

PprRT → . . . "[" Nil Nil Nil . . . Nil → "" | Space
Space → S Nil

Here, the nonterminal S is assumed to generate single spaces (e.g., " " and
"\n"). Recall that linebreak is translated to nil for parser construction. This
grammar is ambiguous due to the consecutive occurrences of Nil ; Niln can
produce a k-sequence of “ ” in O(k(n−1)) ways.

This ambiguity is caused by the abstraction offered by the new combina-
tors. Instead of going back to the old ways of writing <> and explicit spacings,
we use post-processing to eliminate the ambiguity.

5.2.2 Post-Processing

We employ post-processing to eliminate ambiguity caused by the concatena-
tion of spacing expressions (especially, nil and space). This is addressed by a
common technique in the formal language theory.

Let S and S∗ be terminals. Intuitively, they represent a single and zero-
or-more space(s) respectively, but are frozen [?] to be atomic terminals for
manipulation. Then we can convert spacing expressions using S and S∗ (for
example, nil and linebreak are converted to S∗, and line and space to S S∗).

Our task now is to eliminate the ambiguity caused by concatenation of
S and S∗ when they are thawed to nonterminals (i.e., S∗ has productions

20 Kazutaka Matsuda, Meng Wang

S∗ → S S∗ | "", and S produces a single space). This is done by canoniz-
ing consecutive occurrences of S and S∗ in strings generated by a grammar,
leveraging the equations S∗S∗ = S∗ and SS∗ = S∗S. For example, SS∗SS∗ is
canonized to SSS∗.

This canonization can be implemented by the following transducer, pre-
sented as a Haskell-like program traversing a list of terminals.

q0 [] = []
q0 (S : x) = q1 x
q0 (S∗ : x) = q2 x
q0 (a : x) = a : q2 x

q1 [] = S : []
q1 (S : x) = S : q1 x
q1 (S∗ : x) = S : q2 x
q1 (a : x) = S : a : q0 x

q2 [] = S∗ : []
q2 (S : x) = S : q2 x
q2 (S∗ : x) = q2 x
q2 (a : x) = S∗ : a : q0 x

Here a denotes a terminal except S or S∗, i.e., a character. Intuitively q0, q1
and q2 are the states to traverse strings after ordinary characters, S and S∗

respectively. The states q2 and q3 produce S and S∗ as late as possible, in
order to avoid producing multiple S∗s in a sequence of S and S∗.

Now we fuse the transducer and the original grammar to obtain a new
grammar in which S∗ occurs at most once in every sequence of S and S∗ in the
generated strings. This is done by fusing a (linear) top-down tree transducer to
a macro tree transducer [?], viewing a grammar as a transformation from parse
trees (not as semantic action results) to strings represented as cons-list. We
do not go into the details of this fusion, but briefly explain the fusion methods
on the generated grammar in Fig. ??. The idea is that, for each nonterminal
N in the original grammar, we prepare nonterminals N ij (i, j ∈ {0, 1, 2}) that
generates a string w′ if and only if N generates w and qi (w++x) = w′++qj x.

The nonterminals N ij have productions N ij → αij
k {A} if there is a production

N → α {A} in the original grammar, where {αij
1 , . . . ,α

ij
n } = conv ij(α) for each

i, j ∈ {0, 1, 2}. The function conv ij is defined as:

conv ij(s) =

󰀫
{s′} if qi(s) = s′ ++ qj []

∅ otherwise

conv ij(N) = {N ij}
conv ij(N1 N2) = {N ik

1 Nkj
2 | k ∈ {0, 1, 2}}

Notice that we assumed an input grammar that is constructed as in Fig. ??;
thus a right-hand side of a production is either a string, a single non-terminal
or a concatenation of two nonterminals. After this generation, for the start
symbolN0, we generate the start symbolN ′

0 that has the following productions

N ′
0 → N00

0 {$1} | N01
0 S {$1} | N02

0 S∗ {$1}

together with the obvious rules for S and S∗. The resulting grammar can be
at most nine-times bigger than the original one. But since most of the nonter-
minals do not produce any strings, removing rules involving such nonterminals
would reduce the grammar size effectively.

The fusion is harmless; it does not introduce any additional ambiguity.
This is because q0 only affects the sequence of S and S∗ and leaves other
characters untouched, while keeping the “semantics” (i.e., the set of produced

FliPpr: A System for Deriving Parsers from Pretty-Printers 21

strings) of the S/S∗-sequences. For example, suppose that the sets of strings
produced from N01

0 and N02
0 S∗ overlap. We first state that, when S and S∗

are “frozen” to be terminals, the sets of strings produced from N00
0 and N02

0 S∗

are disjoint, as the former set contains only the empty string and strings ended
with a normal character while the latter contains only strings ended with S∗.
This means that the inverse images of these sets for q0 are disjoint, and thus
the original grammar has different ways to produce a string from the former
set and a string from the latter set. Recall that q0 keeps the semantics of S and
S∗, and thus having an overlap between N00

0 and N02
0 S∗ after thawing S and

S∗ to nonterminals means that the inverse images overlap after thawing, which
indicates the ambiguity of the original grammar. In general, assuming that a
string has two parse trees, we consider their “intermediate” parse trees where
S and S∗ are not expanded. Then, we can safely assume that the intermediate
parse trees are different as q0 removed ambiguity caused by S/S∗ sequences,
and the rest of the discussion is similar to the above.

Although the fusion removes ambiguity caused by concatenation of nil and
space, it leaves some ambiguity due to spaces. For example, the result is am-
biguous if we use space ′ and line ′ more than once in space sequences, where
both will be converted to a nonterminal N with the rules N → "" | S S∗. The
concatenation N N produces “ ” in two ways, but this ambiguity cannot be
removed by q0 because it comes from the different choices in the production
of two Ns instead of concatenation of S and S∗. For example, when the start
symbol has a production rule N0 → N N , the fusion generates obviously am-
biguous productions N ′

0 → "" | S S∗ | S S∗ | S S S∗ (after inlining). An easy
workaround is to normalize N → "" | S S∗ to N → S∗ before the fusion. An-
other remedy is to treat space ′ and line ′ as primitives that will be converted
to S∗ for parser construction.

It is worth noting that this post-interpretation of S (and S∗) has another
advantage. So far, the translation of some combinators such as line is hard-
wired. As programming languages usually have syntax for comments, one way
to handle them in FliPpr is to treat comments as single spaces so that line will
be able to skip them in parsing just like spacing characters. Post-interpretation
of S enables this adjustment to the interpretation of line.

6 A Larger Example

In the introduction, we advertised that “we, and many others who read this
paper, will not need to do it [writing both parser and pretty-printer] for their
own language implementations.”. In this section, we demonstrate the feasibility
of this goal by writing a pretty-printer for FliPpr Core in FliPpr, which,
if fed to the FliPpr system, will generate a parser for the core language.

The ASTs of the core language can be expressed by the following datatype.

type Prog = [Rule]
data Rule = Rule String [Pat] Exp
data Exp = ECon String [Exp] | EOp Op Exp Exp | EVar String [Exp]

22 Kazutaka Matsuda, Meng Wang

data Pat = PVar String | PCon String [Pat]
data Op = OCat | OAlt -- <> and <?

We leave out nest and text for simplicity. In the datatype, we use EVar both
for variables and function calls to avoid ambiguity in grammars.

The overall principle of our pretty-printing is to insert breaks after =, and
before <> and <+, with 2-space indentation. We start with lists of rules, and
insert separators with optional whitespaces nil <> text ";" <> line ′ between
individual rules.

ppr x = spacesAround (pprRules x)

pprRules [] = text ""
pprRules (r : rs) = pRules r rs

pRules r′ [] = pprRule r′

pRules r′ (r : rs) = pprRule r′ <-> text ";" </>N pRules r rs

For each rule, its right-hand side may start a new line.

pprRule (Rule f ps e) =
group (var f <+> pprPats ps <-> text "=" <-> nest 2 (line′ <-> pprExp e))

var x = text x as [a-z][a-zA-Z0-9’]*

A list of patterns is treated in a similar but simpler way to a list of rules.

pprPats [] = text ""
pprPats (p : ps) = pprPat p <+> pprPats ps

Redundant parentheses in patterns are admissible for the generated parser,
but will not be produced by the pretty-printer.

pprPat p = manyPars (pprPat p)

pprPat (PVar x) = var x
pprPat (PCon c []) = con c
pprPat (PCon c (p : ps)) = par (con c <+> pPats p ps)

con f = text x as [A-Z][a-zA-Z0-9’]*

Expressions are printed according to the precedence-levels and associativ-
ities of the operators.

pprExp e = go 4 e

go i e = manyPars (go i e)
go i (ECon c []) = con c
go i (ECon c (e : es)) = parIf (i ≥ 9) (con c <+> pExps e es)
go i (EOp OAlt e1 e2) =

parIf (i ≥ 5) (group (go 5 e1 <-> nest 2 (line′ <-> text "<+" <+>N go 4 e2)))
go i (EOp OCat e1 e2) =

parIf (i ≥ 6) (group (go 6 e1 <-> nest 2 (line′ <-> text "<>" <+>N go 5 e2)))
go i (EVar f []) = var f
go i (EVar f (e : es)) = parIf (i ≥ 9) (var f <+> pExps e es)

Finally, a list of expressions is printed in a similar way to a list of patterns.

pExps e′ [] = go 9 e′

pExps e′ (e : es) = go 9 e′ <+> pExps e es

FliPpr: A System for Deriving Parsers from Pretty-Printers 23

7 Discussion

We discuss aspects of FliPpr including possible extensions and limitations.

Non-Structured Values in AST ASTs may contain non-structured values such
as Int. It is easy to extend the core system to handle the issue. For example,
our implementation supports the syntax text f x as r where f is a bijection
between a non-structured value and a string representation of it. The bijections
can be read bidirectionally for either pretty-printing or parsing.

Higher-Order Functions Higher-order functions, such as map and foldr are
useful in writing pretty-printers. For example, pprPats and pprExps in ?? can
be conveniently implemented by foldr. However, general use of higher-order
functions in pretty-printing may produce grammars that go beyond CFG.
The syntactic linearity restriction has to be lifted, as most of the higher-order
functions use the functional arguments more than once on the right-hand sides.
We may need to consult some linear type system.

In line with the spirit of the surface language, a way forward is to use
higher-order functions only when they can be fused away. A sufficient condi-
tion for fusion is the absence of λ-abstractions and partial-applications. Along
the line, the authors recently, based on staged-computation, proposed a pro-
gramming language that allows one to write bidirectional [?]/invertible trans-
formations in a similar style to unidirectional transformations together with
higher-order functions [?]. We leave the combining of the idea to FliPpr as
future work.

Spacing We have demonstrated that careful use of whitespaces in the defini-
tion of the pretty-printer is an effective way to control the behavior of the gen-
erated parser. For example, for pretty-printing constructor application in ??,
we wrote (con c<+>pExps e es); the use of <+> (concatenation with one-or-more
whitespaces) allows us to parse “S Z” or “S Z” as valid strings. However, it
is difficult to express the use of spaces that are dynamically dependent on the
printing results of adjacent expressions, especially with nondeterminism. In
the above example, if we were to know that the argument of the application
is printed in parentheses as “(Z)”, then in some syntax the space between
the constructor and the argument can be omitted as in “S(Z)”. On the other
hand, we cannot simply replace space with space ′, because we don’t want to
accept “SZ” as a valid constructor application. One possible solution to the
problem is to try to extend the generate parsers with a lexing phase. However,
it may require some major surgery to the current system.

Non-Linearity In the literature of tree transducers [?], the discussion of lin-
earity can be separated into input- and output-linearity. In our case, variables
of AST type can be seen as inputs, and those of Doc type as outputs.

Regarding the non-linearity of AST-typed variables, sometimes we want
to pretty-print the same AST twice; for example, an element e in XML is

24 Kazutaka Matsuda, Meng Wang

printed as <e>...</e>. A naive solution to admit this behavior is to check
the equivalence of values of duplicated variables in semantic actions. More
concretely, we relax ⊎ to allow overlapping domains in the operands, and
define {x 󰀁→ v} ⊎ {x 󰀁→ v} = {x 󰀁→ v}. This naive solution works effectively
for XML, because the number of possible ASTs is usually finite. However, in
general parsing becomes undecidable with non-linear use of AST variables, as
shown in [?] (Theorem 4.4). Thus, for this kind of non-linear uses, a method
that checks the finiteness of parse trees is required.

The non-linearity of Doc values has non-trivial interaction with nondeter-
minism. Without linearity, the call-by-value and the call-by-name semantics
may cease to coincide. This is a problem because call-by-value is suitable for
grammar-based inversion [?], but call-by-name is suitable for deforestation [?].
We also need to resort to grammars beyond CFGs, which may pose difficulties
in inversion. It is a challenging problem to find a sweet spot between obtaining
efficient inverses and supporting fusion in the surface language.

Pretty-Printing Combinators Other Than Wadler’s Other than Wadler’s com-
binators and extensions that we have seen, Hughes’ pretty-printing combina-
tors [?], which have a different design, are also popular among Haskell program-
mers. More recently, Bernardy [?] developed a pretty-printing combinators for
slower but prettier printing. These libraries follow a different principle from
Wadler’s. Especially, there are multiple combinators for handling layouting
(i.e., inserting spaces or newlines).

One of the key combinators in these libraries is <|>; by writing d1 <|>

d2, we can choose the prettier result from d1 and d2 depending on different
criteria [?,?]. However, this is not the only place that affects layouting. The
combinator $$ vertically stacks the layouts: d1$$d2 places d2 beneath d1. This
placement is relative in the sense that d2 starts at the same column with d1. For
example, by writing text " " <> (d1 $$d2), both d1 and d2 are indented. Unlike
Wadler’s, the nesting combinator nest n directly affects layouting in different
ways in these libraries. In Hughes’, nest k d indents d by k, but its effect can
be canceled by concatenation, as d′ <> nest k d = d′ <> d. In Bernardy’s, nest n
is a derived combinator defined by nest n d = text (replicate n " ") <> d, but
expected to be used only in the function hang n x y = (x<>y)<|>(x$$nest k y).

Taking these behavors into account, a possible reinterpretation of these
combinators in nondeterministic (ugly) printing is as follows.

e1 <|> e2 −→ e1 ? e2 e1 $$ e2 −→ e1++ space++ e2 nest n e −→ nil ++ e

However, the above conversions usually lead to ambiguous grammars when
derived combinators involving <|> are used, for example sep [d1, . . . , dn] =
(d1 <> text " " <> · · · <> text " " <> dn) <|> (d1 $$ · · · $$ dn). To avoid such
ambiguity, derived combinators will have to be reinterpreted individually.

Indentation Sensitivity Recall that the FliPpr produces CFGs with actions,
which puts the limit on the obtained parser. For example, FliPpr cannot pro-
duce parsers for indentation sensitive languages such as Haskell and Python.

FliPpr: A System for Deriving Parsers from Pretty-Printers 25

It is worth noting that the CFG restriction can actually be circumvented in
some indentation sensitive languages. For example, GHC, a Haskell compiler,
and Python deal with indentation at the lexing phase by inserting special
tokens based on indentation levels. This suggests that having a separate lexing
phase may enable FliPpr to handle indentation sensitive languages.

Another approach to solve the issue is to use more elaborated interpretation
of nest to produce indentation-sensitive extension of context-free grammars [?].
This would also require major surgery to our system.

8 Related Work

Different approaches have been proposed to simultaneously derive a parser and
a printer from some intermediate descriptions. In particularly, one could start
from an annotated CFG specification to derive both a parser and a pretty-
printer [?]. Compared to these systems, FliPpr offers finer control over pretty-
printing. In particular, we are able to deal with contextual information and
to define auxiliary functions like par in printing, which is made conveniently
available by the surface language. Other approaches include invertible syntax
descriptions [?] based on invertible programming, and BNFC-meta [?] based
on meta programming. Both work recognizes the importance of good printing,
but is not able to support pretty-printing.

Another approach to guarantee the correctness (in the sense of ??) of a
parser and pretty-printer pair is to develop the pair with a correctness proof
by certified programming. In Danielsson [?]’s framework in Agda, a user writes
a grammar and a pretty-printer, but the correctness of the pretty-printer with
respect to the grammar is guaranteed by construction with the help of depen-
dent types, as his pretty-printing combinators convey proofs together. Since his
framework targets coinductive monadic parsers, it can handle more expressive
grammars beyond CFG. However, as the grammar and its pretty-printer are
programmed separately, there is a maintenance problem: a grammar change
may trigger non-trivial change to the pretty-printer.

There are also general-purpose bidirectional/invertible languages [?, ?, ?,
?, ?] that in theory can be used to build the printer/parser pair from the
definition of one of them. Notably quotient lenses [?] are designed to include
a representative of a quotient before performing bidirectional conversions; in
our case, roughly speaking this quotient operation is the erasure of redundant
whitespaces and parentheses. However, there is a gap between the theoretical
possibility and practical execution. In particular, the pretty-printing libraries
of Wadler [?] and Hughes [?] are not only user-friendly but also highly op-
timized. Moreover, for efficient parsing we have to perform whole-program
analysis (as in conventional parsing algorithms like LR-k) or use sophisticated
data structures and memoization [?, ?]. It is not obvious how these sophis-
ticated implementations can be packed into a bidirectional program. In our
approach, we avoid this problem by using grammar-based inversion [?], which

26 Kazutaka Matsuda, Meng Wang

generates grammars and outsources the parsing algorithms to selected parser
generators.

It is, however, worth mentioning that using bidirectional transformations [?]
has an advantage that FliPpr does not have. Since bidirectional transforma-
tions allow one data to contain some information that the other data does
not have and keep the information as possible in updating, we can make a
printer/parser pair where the printer keeps the original syntactic sugars and
layout information as possible when AST changes [?, ?], which is useful for
refactoring and converting the core language’s evaluation steps to the sugared
language’s evaluation steps for debugging. In addition to transformations be-
tween strings to ASTs, bidirectional transformations between several artifacts
such as concrete parse trees and tokens with or without layout information
have several benefits including visual editing, code formatting and layout-
preserving transformations [?]. It is an interesting future direction how to
make FliPpr bidirectional while keeping its efficiency.

FliPpr uses a variant of grammar-based inversion [?] to produce parsers
represented in CFG with actions. This is not the only research using formal
grammars in program inversion or inverse computation.10 Yellin [?] discusses
inversion of a class of string-to-string attribute grammars [?]. The method
can be seen as an extension of synchronous grammars [?]—transformations
by two CFGs that share the same parse tree module permutation of children.
XSugar [?] is also based on synchronous grammars, but it is more designated
for transformations between XML and plain text representations. Glück and
Kawabe [?] use LR(0) parsing method for post-processing of the inverted pro-
gram so that they can obtain more deterministic inverse programs also for
accumulative tail-recursive functions. Matsuda et al. [?, ?] adopt the idea of
grammar-based inversion for polynomial-time inverse computation of a class
of functional programs that can have multiple data traversals and accumula-
tive computations, namely parameter-linear macro-tree transducers [?]. The
method uses a variant of the Cocke-Younger-Kasami (CYK) algorithm for
trees. Although the grammars are implicit in the method, if restricted to
monadic trees, they can be seen as a non-linear extension of linear context-
free rewriting systems [?] and multiple context-free grammars [?]. Recently,
Hu and D’Antoni [?] proposed an inversion method for symbolic transducers.
Symbolic transducers, unlike the usual transducers that transit states based
on one input symbol, transit states based on predicates for a fixed number
of symbols. This enables one to describe transformations on lists of which
elements comes from an infinite domain, or even for finite cases reduces the
number of states of a transducer. Thanks to the advantage, although its re-
cursion structures are restricted compared with any of the above, the method

10 Strictly speaking, program inversion and inverse computation are different notions; the
former is a transformation to yield an inverse program while the latter is an interpreta-
tion method to run a program in an inverse way. The difference between the two become
rather unimportant for grammar-based inversion that produces grammars with additional
transformations, as whether we transform (as parser generators) or interpret (as the most
of parser combinators) the grammars is left for the later process.

FliPpr: A System for Deriving Parsers from Pretty-Printers 27

can effectively handle practical examples such as Base64 encoding and utf-8
encoding.

There are a lot of discussions on how to make deforestation (supercompila-
tion) terminating (e.g., [?]) for Turing-complete languages. These approaches
use conditions to give up fusion, and reuse the already-generated deforested
functions. As a result, these approaches may fail to fuse some functions, and
thus are not suitable for our purpose. The completeness of deforestation, in the
sense whether all nested calls are fused away, has not been the focus of study
in the literature. Notable exceptions are Wadler’s original work [?] and tree
transducer fusion [?,?,?]. However, there is a gap between treeless functions
and tree transducers; especially, treeless functions can take multiple inputs. It
is not obvious how existing results can be directly applied in our case.

In the design of FliPpr, we used deforestation/supercompilation to have a
more user-friendly syntax (FliPpr) for the invertible core (FliPpr Core).
The connection between supercompilation and program inversion is also found
in other contexts. There is an inverse computation method called the universal
resolving algorithm [?] which is based on driving [?] in supercompilation. A
similar idea is known as needed narrowing [?], which is now served as a basis
of the functional logic programming language Curry [?].

9 Conclusion

In this paper, we proposed a method to derive parsers from pretty-printers.
We start with a program written in a language equipped with Wadler’s pretty-
printing combinators [?], and an additional “choice” operator. The choice op-
erator allows us to enrich the pretty-printer with information about valid but
yet non-pretty strings, without changing the pretty-printing behavior. This
enriched pretty-printer can be transformed and inverted using grammar-based
inversion [?] to produce a CFG parser. For the inversion to be possible, the
language is restricted to be linear and treeless [?]. We also provide a surface
language that has relaxed restrictions, which eases programming. The surface
language is transformed into the linear and treeless language through fusion.

We feel that the specific problem we addressed in this paper has much wider
implications. It suggests a general framework for program inversion problems
with “information mismatch”. A compression/decompression pair is another
example of this kind. For example in runlength encoding, we want to decode
both A3B1 and A1A2B1 as AAAB, but an encoder “prefers” the former. It is an
interesting problem to see how our technique may apply in these contexts.

