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Abstract: The mass change information from the Gravity Recovery And Climate Experiment (GRACE)
satellite mission is available in terms of noisy spherical harmonic coefficients truncated at a maximum
degree (band-limited). Therefore, filtering is an inevitable step in post-processing of GRACE fields to
extract meaningful information about mass redistribution in the Earth-system. It is well known from
previous studies that a number can be allotted to the spatial resolution of a band-limited spherical
harmonic spectrum and also to a filtered field. Furthermore, it is now a common practice to correct
the filtered GRACE data for signal damage due to filtering (or convolution in the spatial domain).
These correction methods resemble deconvolution, and, therefore, the spatial resolution of the
corrected GRACE data have to be reconsidered. Therefore, the effective spatial resolution at which we
can obtain mass changes from GRACE products is an area of debate. In this contribution, we assess
the spatial resolution both theoretically and practically. We confirm that, theoretically, the smallest
resolvable catchment is directly related to the band-limit of the spherical harmonic spectrum of the
GRACE data. However, due to the approximate nature of the correction schemes and the noise present
in GRACE data, practically, the complete band-limited signal cannot be retrieved. In this context,
we perform a closed-loop simulation comparing four popular correction schemes over 255 catchments
to demarcate the minimum size of the catchment whose signal can be efficiently recovered by the
correction schemes. We show that the amount of closure error is inversely related to the size of the
catchment area. We use this trade-off between the error and the catchment size for defining the
potential spatial resolution of the GRACE product obtained from a correction method. The magnitude
of the error and hence the spatial resolution are both dependent on the correction scheme. Currently,
a catchment of the size ≈63,000 km2 can be resolved at an error level of 2 cm in terms of equivalent
water height.

Keywords: GRACE; filtering; signal leakage; spatial resolution; hydrology

1. Introduction

The Gravity Recovery And Climate Experiment (GRACE) satellite mission has provided valuable
information towards understanding the continental to regional scale hydrology [1,2]. The time-variable
gravity field of the Earth from the GRACE satellite mission can be obtained from various organizations,
at various levels of complexity and time resolution. Monthly, weekly and even daily fields are
provided either in terms of band-limited spherical harmonic coefficients or global grids of mass change
from Center for Space Research (CSR), GeoForschungZentrum (GFZ), Jet Propulsion Laboratory (JPL),
and several other processing centers. The most commonly used GRACE products are the monthly
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fields in terms of spherical harmonic coefficients up to a certain degree and order [3,4], which can
then be processed to obtain global grids of Equivalent Water Height (EWH) at a desired grid size (for
example a half degree, 1 degree, 2 degrees). These global fields are noisy; therefore, we first filter them
and then perform spatial integration over a region of interest to obtain meaningful information [5–7].
The limits of spatial integration are decided by our region of interest (e.g., catchment boundary).

Wahr et al. [8] demonstrated that filtering of GRACE products is inevitable and will cause signal
leakage between ocean and land. Therefore, after the launch of GRACE satellites, a number of filtering
methods were developed with an aim to reduce signal leakage [9–14]. However, soon it was realized
that sophisticated filtering algorithms may reduce signal leakage but would introduce biases that vary
in space and in time [11,15,16]. Furthermore, filtering affects the spatial resolution [17] and damages
the signal via leakage and attenuation [8,10,18–21]. Therefore, many research contributions developed
dedicated correction methods for repairing the signal damage due to filtering [14,22,23]. Signal damage
and decay in the spatial resolution are related. Therefore, ideally, correction methods are supposed to
improve the effective spatial resolution of GRACE products. Although there have been several studies
that compare the efficacy of correction methods [22,24,25], the impact on the spatial resolution has not
been investigated at a global scale.

The correction methods can be classified in terms of the application for which they were developed
(for example: for ice sheets, for hydrology, and for land-ocean signal leakage), or in terms of the source
of the correction quantity (for example: model-dependent and data-driven) [6,19–21,24–29]. Since in
this article we are focusing on land-hydrology from GRACE, we choose the correction methods relevant
for hydrological investigations only. Furthermore, we would like to classify the selected correction
approaches based on their source of correction terms: model-dependent and data-driven. Since our
aim is to understand how the application of correction methods affects the spatial resolution, we first
need to discuss the idea behind the spatial resolution of GRACE products.

The mass change fields from GRACE satellite mission are outcomes of geophysical inversion of
the satellite observations, which is in stark contrast to the products of optical/microwave remote
sensing. Therefore, the idea of spatial resolution for GRACE fields is strongly tied to the geophysical
inversion process. In fact, at the level of satellite observations (satellite to satellite tracking data in
GRACE parlance), the concept of gravimetric resolution is more relevant. It is defined as the capability of
GRACE satellites to detect a given mass change of any size [30]. However, for scientific applications,
the GRACE spherical harmonic coefficients are processed and synthesized as maps of a preferred grid
size in the spatial domain. Therefore, while communicating GRACE products to the hydrology and
the remote sensing community, it is more relevant and practical to discuss the spatial resolution of
GRACE products and how it is affected due to post-processing [17]. It is to be noted here that users
may prefer half degree gridded fields over two-degree gridded fields by synthesizing a given set of
GRACE spherical harmonic coefficients, but this will not improve the information content because the
former is akin to an interpolated version of the latter. Therefore, one must be careful when carrying
out point-based analysis over finely gridded GRACE datasets and usually we prefer catchment scale
analysis. To this end, it is intuitive to comprehend that the catchment size should not be less than the
spatial resolution of the GRACE products.

This brings us to questions such as, what resolution in the spatial domain is appropriate so
that it corresponds to the band-limited information in the spectral domain? What is the limit on the
minimum catchment size that can be observed effectively with filtered GRACE fields? How is the
spatial resolution affected by the correction approaches that are used to negate the impact of filtering
on the signal? Or one may sum up all these questions to ask, what is the current spatial resolution of
the GRACE satellite products for hydrological investigations?

Several studies put a limit on the minimum area of a region that can be effectively investigated
with GRACE products, but these numbers vary from one study to the other, which increases the
ambiguity. For example, Longuevergne et al. [19] suggested that the spatial resolution of GRACE fields
is ≈200,000 km2 and we should develop superior methods for observing mass changes at finer spatial
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scales. Rowlands et al. [31] proposed a limit of ≈150,000 km2. On the other hand, Lorenz et al. [7]
demonstrated that many catchments smaller than these limits were well observed by GRACE provided
they have a strong seasonal cycle in terms of water storage changes. Tourian et al. [32] showed
that GRACE was able to capture the water loss in Urmia basin, which has an area of ≈52,000 km2.
In a recent study, Khaki et al. [33] proposed a two-step Kernel Fourier Integration (KeFIn) filter to
reduce errors in high-frequency mass changes and also to decrease spatial leakage errors. While authors
show that the filter reduces mass estimation errors in many small and medium size river basins, they do
not evaluate the spatial resolution of GRACE data.

In this contribution, we discuss the ideal spatial resolution of the GRACE product and how it
changes with the post-processing strategy we choose. We use popular methods and tools developed in
the past decade by fellow researchers to help us set a limit to the catchment size that can be observed
with an accuracy better than a certain limit. We carry out the investigation in a closed-loop simulation
environment that emulates GRACE satellite products. In order to be comprehensive in our analysis,
we analyze the error behaviour with respect to the catchment size for four popular repairing strategies
over 255 catchments. In general, we find that the error increases as the catchment size decreases,
but we observe that the amount of error varies from one correction method to the other. We also find
that one can obtain better GRACE time-series over smaller catchments with the data-driven correction
scheme by Vishwakarma et al. [25].

2. Spherical Harmonic Coefficients and Their Corresponding Spatial Resolution

In this section, we will revisit the idea of spatial resolution of a field given in the form of spherical
harmonic coefficients by recapitulating the state-of-the-art in this domain. We will start with a continuous
field f (θ, λ) and its representation in terms of spherical harmonics

f (θ, λ) =
∞

∑
l=0

l

∑
m=0

P̄lm(cos θ) (C̄lm cos mλ + S̄lm sin mλ) , (1)

{
C̄lm
S̄lm

}
=

1
4π

π∫
θ=0

2π∫
λ=0

f (θ, λ) P̄lm(cos θ)

{
cos mλ

sin mλ

}
sin θ dθ dλ, (2)

where θ, λ are the co-latitude and longitude of a point in the field f (·) and P̄lm(cos θ) are the fully
normalized associated Legendre functions of degree l and order m normalized [34]. The computation
of f (θ, λ) from the spherical harmonic coefficients C̄lm, S̄lm is called spherical harmonic synthesis (1) and
the computation of C̄lm, S̄lm from the field is called spherical harmonic analysis (2).

2.1. Sampling and Half-Wavelength of the Field

Practically, a continuous field is always discretely sampled, where sampling controls the
information content that can be ascertained about the field. Spherical harmonic coefficients computed
from a discretely sampled dataset are band-limited, i.e., the spectrum is limited to a finite degree L.
Thus, Equation (1) becomes

f̃ (θ, λ) =
L

∑
l=0

l

∑
m=0

P̄lm(cos θ) (Clm cos mλ + Slm sin mλ). (3)

In the case of the GRACE time-variable gravity field, data are conventionally disseminated in terms
of spherical harmonic coefficients that have been analysed from the GRACE range-rate observables.
The maximum degree and order of the spherical harmonic expansion is dictated by the modified
Colombo–Nyquist sampling rule for satellite gravimetry [35]. On the other hand, if the spherical
harmonic coefficients are computed from a regularly gridded dataset, then the sampling in the latitude
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direction must be Nθ ≥ L + 1 and that in the longitude direction must be Nλ ≥ 2L + 1 [36,37]. It is this
sampling that gives us the first idea of resolution, the half-wavelength of a field:

ψ 1
2

=
π

Nθ − 1
=

2π

Nλ − 1
=

π

L
. (4)

It should be clear from Equation (4) that the half-wavelength describes the sampling distance
and not the resolution itself. This is all the more obvious along the longitude as it clearly follows the
Shannon–Nyquist rule in signal processing.

The half-wavelength of a field has been used as the de facto value for describing the resolution
of a field. Since it is derived from sampling on an equiangular grid [36], the spatial resolution of a
band-limited field is also interpreted in terms of the equiangular grid, especially in terms of its pixel
size. A complication in using the pixel area/size as the spatial resolution value is that, due to the
convergence of the spherical coordinates at the poles, the pixel size along the latitude circles becomes
smaller as we go closer to the poles, and finally vanishes at the poles. Due to this reason, the pixel
size cannot be treated as the resolution homogeneously throughout the sphere. Furthermore, if the
half-wavelength value is treated as the resolution, it will be a highly optimistic value (cf. Table 1)
because it is just the minimum spatial sampling required on an equiangular grid to estimate the
spherical harmonic coefficients up to a certain harmonic degree:

L =
π

ψ 1
2

. (5)

It is worthwhile to note here that the sampling theorem on the sphere is not unique [38].

2.2. Ideal Spatial Resolution

The problem of spatial resolution can be dealt with by treating the band-limit of the spherical
harmonic spectrum as a spectral filter, and then by ascertaining the ideal spatial resolution of the
filter [17]. Ideal spatial resolution of a filter is defined as the minimum distance required between
two signals of equal magnitude, such that they are still seen as two different signals after filtering.
The spatial resolution is closely tied to the contrast of the field, i.e., the prominence of the signals after
filtering (cf. Figure 1), and, therefore, resolution is not just a number, but it is devised as a function
of contrast (modulation) called the modulation transfer function (MTF) [17]. The MTF is a function of
modulation transfer and separation between two signals of interest (cf. Figure 1):

Modulation transfer (MT) = 1− Modulation
Peak signal

. (6)

The MTF helps us identify the minimum spherical distance (ideal resolution) between two Dirac
pulses above which they are resolved as two distinct signals. Furthermore, from the slope of the MTF,
the level of contrast that will be retained after filtering can also be ascertained—the steeper the slope,
the more the contrast. Essentially, the ideal spatial resolution tells us that below this value any two
signals of interest are indistinguishable. The MATLAB scripts (Mathworks, Natick, MA, USA) to
compute MTF can be downloaded from http://gracebundle.tuxfamily.org.

The band-limited field in Equation (3) can be rewritten as a box-car filtered field as follows
(see Appendix A for details):

f̃ (θ, λ) =
∞

∑
l=0

l

∑
m=0

P̄lm(cos θ) Bl (Clm cos mλ + Slm sin mλ), (7)

Bl =

{
1 , 0 ≤ l ≤ L,

0 , otherwise.
(8)

http://gracebundle.tuxfamily.org
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The degree-dependent spectrum Bl when propagated to the spatial domain becomes the
well-known Shannon kernel [39]. The MTF of the Shannon kernel for the typical GRACE bandwidths
provides their ideal spatial resolution (cf. Figure 2), and, obviously, those numbers are higher than the
half-wavelengths (sampling distance) that are usually used to designate their resolution (cf. Table 1).
Since the Shannon kernel is a homogeneous and isotropic kernel (see Appendix A for definitions of
homogeneous and isotropic), its ideal spatial resolution is also homogeneous and isotropic throughout
the sphere [14]. Thus, with the ideal spatial resolution values, we are able to define the nominal size
of features that can be clearly distinguished without ambiguity, and that they are valid throughout
the sphere.
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Figure 1. Illustration of the ideal spatial resolution computation for filter windows. Two Dirac pulses
(gray lines in (a–e)) are set up at points P and Q and the field is filtered (black lines in (a–e)). For a given
filter, they are resolved as two different signals at a certain separation (c)—the ideal spatial resolution.
However, the signals are more prominent after filtering (contrast), if the distance between the signals is
larger (d,e). The contrast is quantified via the modulation transfer function (MTF), which is a function
of the modulation transfer (cf. (6)) and signal separation (f).
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Figure 2. The modulation transfer functions of the Shannon kernels corresponding to the most common
bandwidths of the GRACE spherical harmonic spectra. A modulation transfer of 0 means that the two
Dirac pulses separated by those distances will not be resolved, and a modulation transfer of 1 means
that the signals are completely resolved and their contrast completely retained. The light-gray lines
indicate the ideal resolution of the corresponding kernels.

Due to their high noise levels, the GRACE monthly solutions are filtered prior to their use.
Filtering suppresses noise, but, at the same time, has a damaging effect on the signal—it attenuates the
signal, introduces leakage and changes the resolution. A Gaussian filter of half-width radius 400 km
(3.6◦) has an ideal resolution of 680 km (6.1◦), which is far higher than the innate resolution of nearly
all the typical band-limited GRACE fields (cf. Table 1). Due to signal attenuation, filtering also reduces
signal contrast, which can be seen from the unfavourably gentle slope of the Gaussian MTF curve
(cf. Figure 2).
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Table 1. Comparison of the half-wavelength and ideal spatial resolution values for typical GRACE

bandwidths. Also shown are the typical area associated with them. The area of an equi-angular grid
cell centered on the equator (Ag) is associated with the half-wavelength, and the spherical area (As) is
associated with the ideal spatial resolution. N/A stands for not applicable.

L Half-Wavelength Ideal Spatial Resolution

ψ 1
2

Ag
√

Ag ψ0 As
√

As

[1000 km2] [km] [1000 km2] [km]

60 3 0◦ 111.5 334 4.33◦ 182.4 427
90 2 0◦ 49.6 223 2.90◦ 81.9 286
96 1 875◦ 43.6 209 2.72◦ 72.0 268
120 1 5◦ 27.9 167 2.18◦ 46.2 215
180 1 0◦ 12.4 111 1.46◦ 20.7 144

Gauss 400 km N/A N/A N/A 6.11◦ 363.2 603

2.3. Catchment Averages, Post-Filtering Corrections and Resolution

Thus far, the spatial resolution has been treated as a spherical distance, but it has to be translated
into an areal quantity. As resolution of a band-limited field is isotropic, the area of the smallest
resolvable feature will be a spherical cap with the diameter of the ideal spatial resolution. The spherical
cap areas for typical GRACE bandwidths are given in Table 1.

The gridded GRACE products can be synthesized at a grid spacing smaller than the ideal spatial
resolution. Therefore, it is logical to study the hydrological signal not at point scale, but rather at
catchment scale [5,7,21]. It is common practice to compute a catchment average f̄c from the filtered
field f̄ (θ, λ), which is written as

f̄c =
1

Ac

∫
c

f̄ (θ, λ)dΩ with the area Ac =
∫
c

dΩ. (9)

Since area aggregation is an operation performed over the spatial coordinates, the spherical
harmonic spectrum is not tampered with. Therefore, it can be said with confidence that the minimum
resolvable area does not change with the area aggregation operation.

The catchment average is computed for every epoch to obtain a time-series demonstrating the
hydrological behaviour of the catchment. Since filtering damages the signal, the catchment scale
products from filtered GRACE fields are corrected [5,8,19–21,24,25]. Filtering can be written as a
convolution integral [11,14,21,40], and, loosely speaking, the repair scheme imitates a deconvolution
process. Therefore, if the repair method does a good job, the resolution must improve. However, it is
not a perfect process and that means we will not reach the ideal spatial resolution of the bandwidth,
but it will definitely be better than that of the filtered field.

2.4. Some Exceptions

As mentioned earlier, satellite gravimetry does not image the field like optical/microwave
remote sensing satellites, but provides it via geophysical inversion. Therefore, the values of spatial
resolution are intricately tied to the inversion scheme. In the context of band-limited spherical harmonic
representation of the GRACE observations, some key aspects have to be kept in mind while using or
interpreting the values in Table 1 for catchment aggregated values. Small catchments

1. that have a strong seasonal variation in their water storage [7], or
2. that are similar in magnitude and temporal phase as their neighboring catchments, i.e., without

spatial contrast [23] (it should not be confused with the signal contrast/modulation mentioned
earlier), or

3. that are isolated or dominant in terms of their signal strength, for example huge reservoir volume
changes [41]
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can still be seen despite the resolution limitations of the given bandwidth.
For example, a small but strong signal source will be detected by the GRACE satellites, but, due to

the band-limited nature of the spherical harmonic representation, the signal is spread over the area
equivalent to the corresponding ideal resolution. The area aggregated value over such a catchment
will contain a fair part of the signal from the catchment, and, depending on the above-mentioned
conditions, it might as well be mixed with other sources in the vicinity. Therefore, such signal
sources—catchments—can be studied with GRACE, but a priori information and signal segregation
methods are needed to extract their full signal strength. This might be the reason that, for some very
small catchments, Lorenz et al. [7] observe good correlation between the GRACE data and the mass
change rate from the water balance equation, but with strong bias and significant differences in the
amplitude.

3. Data and Method

In order to use the relation between the accuracy and catchment size for identifying the spatial
resolution of GRACE products in a comprehensive manner, we analyze more than 250 catchments shown
in Figure 3. The largest catchment is the Amazon in South America with an area of≈4,672,876 km2 and
the smallest is Cavally catchment in West Africa with an area of ≈30,744 km2. The study is carried out
in a closed-loop simulation environment used by Vishwakarma et al. [21] and Vishwakarma et al. [25].
It consists of total water storage anomaly from the Global Land Data Assimilation System (GLDAS) Noah
Land Surface Model as the background truth [42]. These global hydrological fields are contaminated
with noise extracted from GFZ GRACE fields [3]. In order to extract noise, we first filter the GFZ GRACE

fields with a destriping and a 400 km Gaussian filter [10], then we subtract the filtered fields from the
corresponding noisy GRACE fields to derive a realistic GRACE-type noise. The GRACE-type noise is
then added to the GLDAS model fields for 72 months to obtain GRACE-type noisy fields with known
truth. Further details about the simulated field can be found in Vishwakarma et al. [21]. We can
process the GRACE-type fields to obtain time-series for a catchment and it can be validated against the
time-series from GLDAS fields. In this setup, we can assess the magnitude of error accurately because
we have control over each component.

Figure 3. Distribution of 255 catchments used in this study. The catchments are filled in light blue with
the boundary in blue. The catchment boundaries were downloaded from Global Runoff Data Centre
(GRDC) website.

We filter the simulated GRACE-type noisy fields f (θ, λ) with a Gaussian 400 km filter and then
compute catchment averages f̄c for 255 catchments to obtain the respective time-series. Let us denote
the corrected time-series by f̂c. The true catchment average f̃c from the band-limited field is not known,



Remote Sens. 2018, 10, 852 8 of 17

but the regional average from the filtered field f̄c is known. One may approach true catchment average,
which is approximately equal to the catchment average from the band-limited field, from catchment
average of the filtered field f̄c with the help of correction methods. Out of many available methods,
we choose four methods: the Multiplicative method by Longuevergne et al. [19], the scaling method
by Landerer et al. [24], the additive method by Klees et al. [20], and the data-driven method by
Vishwakarma et al. [25]. The mathematical relation that helps you correct for the signal damage due
to filtering is given below:

Multiplicative: f̂c = s( f̄c − lm
c ), [19]

Additive: f̂c = f̄c − lm
c + bm

c , [20]
Scaling: f̂c = k f̄c, [24]
Data-driven: f̂c = f̄c − lc − δFc, [25].

The multiplicative method approaches corrected time-series f̂c by first removing leakage lm
c from

catchment aggregate of filtered GRACE field f̄c, and then amplifying it by a scale factor s. Leakage is
obtained from a hydrological model and the scale factor s is obtained from catchment mask and filtered
catchment mask:

s =

∫
Ω

R(θ, λ) dΩ

∫
Ω

R(θ, λ) R̄(θ, λ) dΩ
, (10)

where R(θ, λ) is the catchment mask: 1 inside and 0 outside, R̄(θ, λ) is the filtered catchment mask,
Ω is the domain of the surface of the Earth, and dΩ is the infinitesimal surface element sin θdθdλ.

The additive method approaches corrected time-series f̂c by subtracting leakage lm
c from the

catchment aggregate of filtered GRACE field f̄c and adding bias bm
c , where both leakage and bias

are obtained from a hydrological model. The scaling method approaches corrected time-series by
multiplying GRACE products by a scale factor k that is obtained by estimating a multiplicative factor,
between a hydrological model and its filtered version, via least squares estimation.

The data-driven method corrects time-series by removing leakage lc and deviation integral δFc

from the catchment average of filtered GRACE fields f̄c. To compute the leakage and the deviation
integral, we do not rely on hydrological models, but use the GRACE fields only. Here, one may argue
that the GRACE fields are noisy, thus the leakage and the deviation integral computed from noisy fields
will not be accurate. This is the reason they are computed from filtered GRACE fields. Since we know
that the filtered GRACE fields are not equal to the truth, the leakage and the deviation integral from
these fields are also not accurate. However, Vishwakarma et al. [25] demonstrated that if we multiply
the leakage and the deviation integral from filtered GRACE fields, by a scalar ratio between the leakage
and the deviation integral from once filtered GRACE fields and twice filtered GRACE fields, we can
approach near-truth leakage and deviation integral. Although this approximation works for most of
the catchments, it has limitations over arid regions and the estimated leakage and deviation integral for
these regions is less accurate. Nevertheless, the accuracy of data-driven methods is still either at par or
better than what we can achieve from other methods [25]. Please refer to Vishwakarma et al. [25] and
Vishwakarma et al. [21] for more information. Since the multiplicative, the additive, and the scaling
approach use a hydrological model to estimate corrected time-series, we call them model-dependent
approaches, while the data-driven approach uses GRACE fields only and do not depend on models,
we can also call it model-independent.

Global hydrological models have huge uncertainties that vary in space and in time, which is
responsible for their differences with GRACE fields [43]. Using these models for correcting GRACE

products brings their uncertainty to the final GRACE product. In order to imitate the impact
of using a model for correcting GRACE, we prefer not to use the GLDAS model that is also the
background truth; instead, we use the WaterGAP hydrological model (WGHM model [44]) to compute
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model-dependent correction terms employed by model-dependent methods. The data-driven method
computes its correction terms, leakage lc and the deviation integral δFc, from once filtered and
twice filtered GRACE-type noisy fields. The MATLAB scripts for the data-driven method can
be downloaded from https://www.researchgate.net/publication/324804360_Matlab_scripts_Data_
driven or from Institute of Geodesy, Stuttgart web page http://www.gis.uni-stuttgart.de/research/
projects/DataDrivenCorrection/.

The corrected time-series from the above-mentioned four methods is compared to the truth
obtained from GLDAS model fields for 255 catchments. The following statistical measures are computed
to characterize the behavior of difference (error) between the corrected time-series and the true
time-series with respect to the catchment size:

• Root Mean Square of Error (RMSE):

RMSE =

√
1
m

m

∑
i=1

( fc − f̂c)
2, (11)

• Cyclostationary Nash–Sutcliffe Efficiency (NSEseas) [45,46]:

NSEseas = 1−

m
∑

i=1
( fc − f̂c)2

m
∑

i=1
( fc − f̆c)2

, (12)

where fc represents the true value obtained from GLDAS fields, f̆c is the mean annual behaviour
(mean monthly values) and m is the number of epochs. RMSE can attain any positive value,
a RMSE close to zero represents excellent agreement between fc and f̂c. NSEseas can attain any
value between −∞ and 1. A positive NSEseas value indicates that the difference between the
true signal ( fc) and the corrected time-series ( f̂c) is well below the non-seasonal variations in
the time-series. Typically, hydrological signals have a clear seasonal signal, i.e., change in the
amplitude and/or sign of the signal from the summer months to the winter months. However,
every summer/winter is not the same and there is a random variation in the amplitude of the
signal from year-to-year, which is the non-seasonal variation (the natural variability of the signal).
When the error in corrected time-series is smaller than this natural variability, then we can
conclude that the signal is very well restored. If we were to use the NSE as proposed by Nash and
Sutcliffe [47], without accounting for the cyclostationary seasonal signal, the differences will be
compared to the amplitudes of the annual signal. This will not provide a proper indicator for the
efficacy of the repairing schemes.

4. Results and Discussion

In Figures 4 and 5, we have plotted the RMSE and the NSEseas for four corrected time-series and
time-series from filtered fields over 255 catchments. The catchments are sorted by their area. Since the
scatter of these statistical measures is wide, we fit a smooth line, obtained by using locally weighted
scatter-plot smoothing (LOESS), to identify the general pattern. LOESS is a non-parametric method
that uses iterative locally weighted regression to fit a second degree polynomial through points in a
scatter plot [48]. Since the number of large catchments is smaller than the number of small catchments,
the data points on the x-axis, i.e., catchment area, suffer from unequal intervals. Therefore, we have
defined bins to counter this irregular data distribution. The first bin is for catchments from 30,000 km2

to 100,000 km2 with sample points every 1000 km2, the next bin is for catchments from 100,000 km2 to
1,000,000 km2 with sample point every 10,000 km2, and the last bin is for catchment from 1,000,000 km2

to 4,000,000 km2 with sample points every 100,000 km2. A window size of 51 is used for smoothing.

https://www.researchgate.net/publication/324804360_Matlab_scripts_Data_driven
https://www.researchgate.net/publication/324804360_Matlab_scripts_Data_driven
http://www.gis.uni-stuttgart.de/research/projects/DataDrivenCorrection/
http://www.gis.uni-stuttgart.de/research/projects/DataDrivenCorrection/
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We have chosen these parameters to obtain a smooth fit that would represent the general behaviour of
the scatter.

We can observe that the error, in general, increases as the area of the catchment decreases,
irrespective of the correction method used. However, the rate at which the error increases varies
from one method to the other. The multiplicative approach, due to a larger scale factor for smaller
catchment, experiences a steep decay in performance. The additive approach, the scaling approach
and the time-series from filtered fields are competitive. However, the data-driven method is able to
provide better mass change estimates at all catchment scales.

Although, in general, the disagreement between the corrected and the true time-series increases
as the catchment size decreases, several small catchments exhibit less error in comparison to a few
relatively large catchments. The magnitude of error corresponding to a catchment is pertinent to this
simulation setup, and it will change a little bit if we change the background models and simulation
setup. Nevertheless, the general pattern that error increases as catchment size decreases will hold.

Ideally, with no noise and no approximations, we expect to recover the full band-limited signal
after applying the data-driven method (see Figure 3, Vishwakarma et al. [25]). However, in reality,
we lose some accuracy and the error is not zero even for the largest catchment Amazon. The error in
the corrected time-series, for catchments smaller than the resolution of the filtered field and larger
than the ideal resolution of band-limited GRACE data, should be close to the error in time-series from
filtered fields for larger catchments. We can use the trade-off between accuracy and the catchment size
to discuss the potential GRACE resolution: those catchments with an error less than a defined threshold
can be categorized as resolvable.

Let us say we can accept the GRACE products for all the catchments with an RMSE better than
a certain value, say 1 cm or 2 cm. We leave it to the user to define the maximum tolerable error for
their application and then decide whether the catchment or region of interest is suitable for analysis
with GRACE products corrected with a certain repair scheme. For example, if we choose 1 cm as
the error limit, then filtered products can be used to monitor catchments larger than ≈750,000 km2,
a multiplicative approach can be used for catchments larger than≈1,563,000 km2, an additive approach
for catchments larger than≈1,103,000 km2, a scaling approach for catchments larger than≈563,000 km2

and the data-driven method for catchments larger than ≈250,000 km2. If the tolerable error is
2 cm, then the limit is ≈152,000 km2 for filtered and additive, ≈810,000 km2 for multiplicative and
≈63,000 km2 for both scaling and the data-driven method. In Table 2, we have summarized the
resolvable catchment corresponding to an error level.

Table 2. The approximate resolvable catchment size (in 1000 km2) for a repair method performing
better than a given RMSE. The values given here are obtained from the fit, and one should be more
careful while carrying out studies for catchments close to the limit as the scatter is wide. Our suggestion
is to avoid any interpretation after the fit tends to become noisy. When the fit for a method becomes
noisy, we represent it by writing N/A.

RMSE (cm) Filtered Multiplicative Additive Scaling Data-Driven

1 750 1563 1103 563 250
1.5 337 1323 360 260 152
2 152 1103 152 90 63

2.5 90 951 1223 76 N/A
3 N/A 810 N/A N/A N/A

Since NSEseas accounts for both the difference in the magnitude and the correlation between the
corrected and the true time-series, it is a powerful indicator and popularly used in time-series analysis.
One may choose an acceptable NSEseas value for their application to determine the corresponding
spatial resolution. For example, if we choose 0.8 as an acceptable limit, then filtered products
can be used to monitor catchments larger than ≈1,100,000 km2, a multiplicative approach can be
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used for catchments larger than ≈1,750,500 km2, an additive approach for catchments larger than
≈1,100,500 km2, a scaling approach for catchments larger than ≈600,000 km2 and the data-driven
method for catchments larger than≈200,000 km2. In Table 3, we have provided the approximate spatial
resolution corresponding to a NSEseas value. It is to be noted that the LOESS fit for the multiplicative
approach and for the additive approach never attain NSEseas value of 0.9. Furthermore, the spatial
resolution improves with increasing NSEseas values, while the corresponding RMSE decreases.

Table 3. The approximate resolvable catchment size (in 1000 km2) for a repair method performing
better than a given NSEseas. The values given here are obtained from the fit, and one should be more
careful while carrying out studies for catchments close to the limit as the scatter is wide. Our suggestion
is to avoid any interpretation after the fit tends to become noisy. When the fit for a method becomes
noisy, we represent it by writing N/A.

NSEseas Filtered Multiplicative Additive Scaling Data-Driven

0.9 2000 – – 750 450
0.8 1100 1750 1100 600 200
0.7 380 1200 450 500 150
0.6 280 900 250 250 90
0.5 200 480 180 180 N/A
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Figure 4. RMSE and corresponding fit with respect to the catchment area for different correction
methods. Subplots (a) to (e) show RMSE and corresponding fit for one method in colour and others in
gray. Subplot (f) compares the fit for different methods.

These limits on the spatial resolution are obtained, from Figures 4 and 5, by observing the point
at which the fit crosses a RMSE value or a NSEseas value for the first time. Thus, the values in
Tables 2 and 3 are only meaningful if the LOESS fit is smooth; as soon as the fit seems noisy, we should
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be careful in interpreting the resolvable catchment size. Therefore, in this analysis, we have ignored all
the catchments for which the fit tends to be noisy—for example, the fit for the data-driven method
becomes noisy for catchments below ≈600,000 km2. We can find a lower resolvable catchment area
for the data-driven method corresponding to an RMSE level of 2.5 cm, but this part of the fit is noisy
and we avoid any interpretation. Please note that, within these suggested spatial resolution limits,
where one can choose from many methods, one method may perform better than the others as per
the fit. Such a general rule can be used but with the understanding that individual catchments may
deviate from the defined error behaviour. This is shown by the disagreement between the scatter and
the fit.
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Figure 5. NSEseas and corresponding fit with respect to the catchment area for different correction
methods. Subplots (a) to (e) show NSEseas and corresponding fit for one method in colour and others
in gray. Subplot (f) compares the fit for different methods.

5. Conclusions

The GRACE satellite mission has helped us observe continental scale hydrology. Moreover,
with improved data processing skills, we have been able to use GRACE products for monitoring
catchment scale hydrology. Although the spatial resolution of GRACE is accepted to be coarse, it was
necessary to put a number to the spatial resolution of the band-limited GRACE fields and of the filtered
GRACE fields. It was established by previous contributions that ideal spatial resolution can be used to
define their spatial resolutions.

Notwithstanding this, there have been many attempts to identify the potential spatial resolution
of the GRACE products in terms of catchment size, but every attempt concluded with a different
number. The difference in the research findings can be attributed to usage of different processing
methods and selective regional analysis. For example, one can choose a filter out of many available
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ones and then a corrective method for repairing the signal damage due to the filtering. Thus, the end
product is influenced by combined effects of different processes and it is hard to quantify whether
the final product is able to resolve a catchment efficiently. With developments in post-processing
algorithms for GRACE data, it was necessary to understand the contemporary spatial resolving power
of GRACE products. This study provides a comprehensive analysis of GRACE products corrected with
different repairing schemes to demarcate the catchment size that can be effectively observed. We have
carried out such an analysis for 255 catchments of small to very large size in a closed-loop simulation
environment, in order to answer the question of what is the minimum size of catchment that can be
observed with the help of improved GRACE products.

We found that in general the error increases as the catchment size decreases, but the error level
varies from one repair method to the other. GRACE time-series corrected with multiplicative approach
shows the highest amount of error and the GRACE time-series from the data-driven approach has the
lowest amount of error. We discussed the effective resolution of corrected GRACE products with respect
to an acceptable error threshold. We found that the data-driven method and scaling method were able
to approach the ideal GRACE resolution with an acceptable error RMSE level of 2 cm. The data-driven
method has minimum divergence in terms of the spatial resolution with respect to the performance
indicators (RMSE and NSEseas).

Therefore, based on our investigation and its findings, we recommend the following:

1. The spatial resolution of the band-limited GRACE spherical harmonics is not the half-wavelength
at the equator, but the ideal spatial resolution. The spatial resolution of filtered GRACE data can
also be described by the ideal spatial resolution.

2. The users have to be wary that the spatial resolution of the corrected dataset is dependent on
the adopted method. Furthermore, the spatial resolution is associated with the error tolerance
required by the application and it has to be defined by the user.

3. Given the fact that with enhanced processing techniques GRACE is able to see some catchments
smaller than the spatial resolution and many catchments close to the band-limit resolution, it is
worthwhile to provide spherical harmonics up to a maximum degree of 120 or higher.

The impending launch of the GRACE-Follow On mission, which is a near replica of the GRACE

mission with only the Laser Ranging Instrument as the additional instrument, raises the question of
the relevance of this study for GRACE-FO data. Recently, a simulation study by Flechtner et al. [49]
indicated that the expected improvement from GRACE-FO is rather moderate, in which case we expect
our quantitative results to hold even for GRACE-FO data. Having said that, the mathematical foundation
and the understanding of the idea of spatial resolution developed in this study will always be relevant
for data disseminated in terms of spherical harmonic coefficients.

Author Contributions: B.D.V. conceived the project. B.D.V. and B.D. designed the study. B.D.V. simulated the
data and computed the results. B.D.V. and B.D. wrote the manuscript. All the authors discussed the results and
commented critically on the manuscript.

Acknowledgments: In this work, we have made use of catchment boundaries from GRDC (http://www.bafg.de/
GRDC/EN/02_srvcs/22_gslrs/221_MRB/riverbasins_node.html). We have also used the hydrological model
GLDAS from ldas.gsfc.nasa.gov/gldas/, which used the Goddard Earth Sciences Data and Information Services Center.
We are thankful to Döll et al. [44] for providing us with WGHM hydrological model data. Balaji Devaraju would
like to thank the DFG Sonderforschungsbereich (SFB) 1128 Relativistic Geodesy and Gravimetry with Quantum Sensors
(geo-Q) for financial support.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A. Filtering on the Sphere

The dominance of noise in the GRACE monthly solutions is suppressed by applying low-pass
filters. The central idea behind these filters is the weighted averaging using weighting windows
defined on the sphere, and it is expressed in mathematical form as follows [8]:

http://www.bafg.de/GRDC/EN/02_srvcs/22_gslrs/221_MRB/riverbasins_node.html
http://www.bafg.de/GRDC/EN/02_srvcs/22_gslrs/221_MRB/riverbasins_node.html


Remote Sens. 2018, 10, 852 14 of 17

f̄ (θ, λ) =
1

4π

∫
Ω′

f (θ′, λ′) b(θ, λ, θ′, λ′) dΩ′ (A1)

=
L

∑
l,m

P̄lm(cos θ)
N

∑
n,k

[(
Bnkc

lmc C̄nk + Bnks
lmc S̄nk

)
cos mλ+(

Bnkc
lms C̄nk + Bnks

lms S̄nk

)
sin mλ

]
, (A2)

b(θ, λ, θ′, λ′) =
∞

∑
l,m

∞

∑
n,k

[
P̄lm(cos θ) cos mλ Bnkc

lmc P̄nk(cos θ′) cos kλ′+

P̄lm(cos θ) cos mλ Bnks
lmc P̄nk(cos θ′) sin kλ′+

P̄lm(cos θ) sin mλ Bnkc
lms P̄nk(cos θ′) cos kλ′+

P̄lm(cos θ) sin mλ Bnks
lms P̄nk(cos θ′) sin kλ′

]
, (A3)

where f (θ′, λ′) is the noisy field; b(θ, λ, θ′, λ′) is the filter kernel;
{

C̄nk , S̄nk
}

and{
Bnkc

lmc , Bnks
lmc , Bnkc

lms , Bnks
lms

}
are the corresponding spectra of the field and the filter; P̄lm(cos θ)

are the normalized associated Legendre functions; and f̄ (θ, λ) is the filtered field [8].

Inhomogeneous anisotropic filters

b(θ, λ, θ′, λ′)
{

Bnkc
lmc , Bnks

lmc , Bnkc
lms , Bnks

lms

}

−→

l,
m

n,k

Homogeneous isotropic filters

b(ψ) Bl

−→ l

n

Figure A1. The concepts of homogeneity/inhomogeneity and isotropy/anisotropy of the filter weights
is illustrated here with the most general form of the filter function (inhomogeneous and ansiotropic) in
the top row and the simplest form of the filter function (homogeneous and isotropic) in the bottom row.
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The filter function b(θ, λ, θ′, λ′) is a two-point function that describes the relative weight between
the calculation point (θ, λ) and the data point (θ′, λ′). The calculation point is where we want the filtered
f̄ (θ, λ), which is computed by averaging all the data points by applying the weights b(·, ·) on the data
points. The filter function can also be represented in polar co-ordinate system b(θ, λ, ψ, A), where the
pole is the calculation point, and the data points are related to the calculation point by ψ the angular
distance and A the azimuth.

The filter function described in Equation (A3) is the most general form of the filter, where the
weights of the data points depend on the location of the calculation point, the angular distance as
well as the azimuth. However, in the case of the GRACE data processing, the most commonly used
Gausssian filter is a special type of filter that is classified as homogeneous isotropic filter. The weights
of such special filters depend only on the spherical distance between the calculation and data points.
They are independent of the location of the calculation point (homogeneous) and also of the azimuth
(isotropic) (cf. Figure A1).

The spectrum of the homogeneous isotropic filters, due to their dependence only on the spherical
distance, becomes dependent only on the spherical harmonic degree [14,50]:

b(θ, λ, θ′, λ′) = b(ψ) =
∞

∑
l
(2l + 1) Pl(cos ψ) Bl , (A4)

where Pl(cos ψ) are the unnormalized Legendre polynomials of spherical harmonic degree l and
Bl are the coefficients of the homogeneous isotropic filter. Notice that there is only one index as
opposed to four in Equation (A3). A field filtered with a homogeneous isotropic filter will have the
following spectrum:

f̄ (θ, λ) =
∫
Ω

f (θ′, λ′) b(ψ)dΩ =
∞

∑
l,m

P̄lm(cos θ) Bl (C̄lm cos mλ + S̄lm sin mλ) , (A5)

where we see that the unfiltered spectrum
{

C̄nk , S̄nk
}

is scaled by the filter spectrum Bl for every
spherical harmonic degree, as opposed to the general form of the filter (cf. (A2)). Equation (A5) is the
same as Equation (7), and, therefore, all the band-limited fields have the properties of a field filtered
with a homogeneous and isotropic filter. Since the fields filtered with a homogeneous isotropic filter
have a homogeneous and isotropic spatial resolution, the spatial resolution of the band-limited fields
is also homogeneous and isotropic.
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