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12 Abstract

13 In this study we analyse the spatial distribution of potential lahar sources during long-lasting eruptions 

14 using two slope stability models (SHALSTAB and TRIGRS). The analysis is based on observed deposit 

15 grain-size and thickness, rainfall data and slope angle of the lahar events, in the area surrounding the 

16 Cordón Caulle volcano, Chile, that occurred during the 2011 eruption. The main phase of the eruption 

17 (4-7 June) was characterized by eruptive plumes from 7 to 11 km high which dispersed most of the 

18 tephra eastward toward Argentina, with a total estimated volume of about 1 km3. Tephra fall blanketed 

19 the region from ESE to ENE of the volcano with the thickness of the tephra layers between 

20 approximately 1 m (15 km from vent) and 0.06 m (240 km from the vent). On 10 June 2011, a major 

21 lahar occurred close to the Argentina-Chile border that reached the National road 231 (28 km from the 

22 vent). Three field campaigns were undertaken to collect samples and data from tephra deposits and 

23 triggering mechanisms in the lahar source area. Model input parameters were obtained from 

24 geotechnical test and field measurements. Several metrics are used for model evaluation and best fit to 

25 the data are obtained for simulations considering non-cohesive ash layers for SHALSTAB and a 

26 cohesion of 0.5 kPa for TRIGRS. Both models are sensitive to the physical properties of the tephra 

27 deposit and the hydraulic and materiel strength properties of the study area. They both also show good 

28 agreement with field data but provide different information: TRIGRS provides an estimate of the timing 

29 (based on a storm event) and location of a potentially unstable area, while SHALSTAB simulations 

30 result in landslide susceptibility classes based on critical rainfall value. These outcomes provide 

31 fundamental insights into lahar triggering during long-lasting volcanic eruptions and are crucial to the 

32 compilation of lahar hazard maps and emergency management plans in the South Andes volcanic region.

33
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38 Lahars are widespread phenomena in volcanic areas that can severely affect people and infrastructure 

39 (Pierson et al., 1990; Pierson et al., 1992; Janda et al., 1996; Scott et al., 2005; Scott et al., 1996; Lavigne 

40 et al., 2000a). Historical cases of deadly lahars such as Mt Pinatubo, Philippines (Pierson et al., 1992), 

41 Nevado del Ruiz, Colombia (Pierson et al., 1990), Casita Volcano, Nicaragua (Scott et al., 2005), and 

42 Panabaj, Guatemala (Charbonnier et al., 2018), demonstrate that they represent one of the most 

43 significant hazards to people living in volcanic areas. The lahars generated years after the 1991 eruption 

44 of Mt. Pinatubo (Janda et al., 1996) constitute the most voluminous and devastatingly widespread, as 

45 well as one of the most long-lasting lahar episodes, ever recorded.

46 “Lahar” is an Indonesian term for a mixture of rock debris and water that flows downslope, beyond 

47 normal streamflows (Smith, 1986; Smith and Lowe, 1991; Vallance, 2000). The term is genetic rather 

48 than descriptive, encompassing a wide spectrum of sediment to water ratios and flow rheologies 

49 (Manville et al., 2009). Lahars can be caused directly by eruptive activity or during post-eruptive or 

50 quiescent periods. They are mainly generated by the remobilization of tephra-fallout and Pyroclastic 

51 Density Current (PDC) deposits, but may also form from a previously emplaced debris avalanche 

52 produced by the gravitational collapse and disintegration of the volcano edifice (Pierson et al. 2014). 

53 After explosive volcanic eruptions, PDC deposits fill valleys and tephra-fallout deposits may blanket 

54 the volcano flanks and, when the intensity of the explosive eruption is high enough, topographic reliefs 

55 even hundreds of kilometres from the source. 

56 Tephra-fallout deposits are unconsolidated, loose and highly erodible during rainstorms (Pierson and 

57 Major, 2014). It is well documented that explosive eruptions can drastically alter drainage basin 

58 hydrology and erosion processes (Pierson and Major, 2014). Many researchers have also reported poor 

59 infiltration capacity of freshly deposited tephra following volcanic explosions, producing surface flow 

60 over barren hillslopes (Collins and Dunne 1986; Leavesly et al. 1989; Major et al., 2000; Pierson et al., 

61 2013; Major and Yamakoshi, 2005; Yamakoshi and Suwa, 2000; Yamamoto 1984). 

62 Most of the available lahar-hazard assessments are based on the analysis of lahar spreading areas 

63 (Manville et al., 2013). Models routinely used include the empirical model LAHARZ (Iverson et al., 

64 1998) and the more complex Titan 2D model (Sheridan et al., 2005). Numerical models based on depth-

65 averaged continuum flow equations are also used for lahar hazard evaluation, such as FLO-2D (O´Brian 

66 et al., 1993) at Nevado del Huila, Colombia (Worni et al., 2012), Popocatépetl, Mexico (Caballero and 

67 Capra, 2014; Caballero et al. 2016) and Panabaj, Guatemala (Charbonnier et al., 2018). Haddad et al. 

68 (2010) also used a Smoothed Particle Hydrodynamics (SPH) depth-integrated model for simulating 

69 lahar spreading on Popocatépetl volcano. Besides, analysis of rainfall intensity and duration thresholds 

70 for lahar triggering mechanisms have been performed at many volcanoes, e.g. Mount Pinatubo (Van 

71 Westen and Daag, 2005), Indonesia (Lavigne et al., 2000a; Lavigne et al., 2000b; Lavigne and Suwa, 

72 2004), Mexico (Capra et al., 2010), and Montserrat (Barclay et al., 2007). 

73 Predicting the initiation area is crucial to assessments of rainfall triggered lahar volumes and potential 

74 runout (Iverson, 1997). Rain-triggered lahars are associated with two main mechanisms: sheet and rill 
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75 erosion by Hortonian overland flow due to deposit saturation (Collins and Dunne, 1986; Cuomo et al., 

76 2015) and rain infiltration that can induce shallow landslides (Iverson and Lahusen, 1989; Manville et 

77 al., 2000; Crosta and Dal Negro, 2003; Zanchetta et al., 2004;Volentik et al., 2009; Cascini et al., 2010).  

78 Spatially distributed simulations of unsaturated tephra-fallout deposit failure is usually performed using 

79 hydrological models coupled with infinite slope stability.  Such models have been developed following 

80 the catastrophic landslides and flow events in Sarno, 1998 and similar areas in the Campania region in 

81 South Italy (Cascini et al., 2010; Frattini et al., 2004; Crosta and Dal Negro, 2003; Cuomo and Iervolino, 

82 2016; Cuomo and Della Sala, 2016; Cascini et al., 2011; Sorbino et al. 2007, 2010). In addition, Volentik 

83 et al. (2009) proposed an infinite slope failure criterion (Iverson, 2000) for the evaluation of lahar source 

84 areas at Mt Natib volcano, Indonesia, and Mead et al. (2016) presented a study on rain triggered lahar 

85 susceptibility using shallow landslide and erosion models.

86 Nevertheless, even if the main parameters for lahar triggering have been identified, how failure 

87 mechanisms vary during long lasting eruptions, i.e. those lasting from a few days to several months or 

88 years, remains an open question. In fact, the effect of the variation of parameters, such as the thickness, 

89 grainsize and composition of tephra layers and of the rainfall intensity and frequency over long periods 

90 of time, on slope stability is difficult to model accurately. For this reason, analysis of well-documented 

91 case studies is crucial for understanding such complex process, and for empirical assessment of the 

92 above-mentioned thresholds.

93 In this paper, we present a detailed study of events that occurred during the 1 year eruption of Cordón 

94 Caulle (Chile) in 2011-2012, and we have analyse factors that may influence the triggering of rainfall 

95 induced lahars in such a variable and complex system. We take into account several different parameters, 

96 including the extension of the source areas, amount of water, slope gradient, and the physical 

97 characteristics and thickness of the source deposit.  Two watersheds with recorded lahar events, located 

98 50 km from the Cordón Caulle vent area, have been studied in the field and used for back analysis using 

99 two shallow stability models, SHALSTAB and TRIGRS. In particular, variations in the number of 

100 layers, layer thickness and composition, and rainfall intensity and duration were considered in the 

101 numerical simulations. 

102 This combination of detailed field and laboratory studies, and back analysis of well constrained events 

103 with two distinct numerical models has thus contributed in improving our understanding of the triggering 

104 processes of these extremely dangerous phenomena and has helped us improve the related hazard 

105 assessment in the variable and complex environment provided by long-lasting volcanic eruptions. 

106

107 2. The study area 

108

109 2.1 The 2011 eruption of Cordón Caulle 

110 The case study includes several lahar-prone basins near the Argentina-Chile border and in Villa La 

111 Angostura, Argentina. The area is in the Southern Andes, east of the Cordón Caulle volcano, along the 
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112 main ash dispersal axis and road N. 231 and between 28 and 50 km from the vent area (Fig. 1). Here, 

113 the southern Andes have an average elevation of about 1500 m. The landscape is characterized by 

114 glacially sculpted steep slopes, glacial and tectonic lakes, and flat valley floors of fluvial and glacio-

115 fluvial outwash. During the Pleistocene a lobe of the Cordilleran ice sheet occupied the study area. U-

116 shaped valleys, many cirques, moraine and erosive glacial features (roches moutonnées) are evidence 

117 of the Pleistocene glaciation. Most of the post-glaciation erosive surfaces are covered by Holocene 

118 tephra sequences with ages ranging from 10 to 1.1 ka (Singer et al., 2008; Naranjo et al., 2017). Naranjo 

119 et al. (2017) described a Holocene tephra succession, near Villa La Angostura, composed mainly of 

120 lapilli pumice, lapilli scoria, ash and paleo-soils with a total thickness of 4.6 m. The old basement 

121 consists of Cretaceous volcanic rocks (diorites, granodiorites) and outcrops on the summit of Cerro 

122 Bayo. The whole area is densely vegetated, covered by the Valdivian rain forest composed mainly of 

123 trees from the Nothofagus genus (lengas and ñires). The climate is cold with an average temperature of 

124 10° C and annual precipitation varying between 800 and 2500 mm. 

125

126 On 4 June 2011, the Puyehue-Cordón Caulle volcanic complex (Central Andes, Fig.1) erupted from 

127 multiple vents along a NW-SE fracture in the Cordón Caulle system (CC) system (Castro et al., 2013; 

128 Pistolesi et al., 2015). The main phase (4-7 June), characterized by plumes heights of 7 to 11 km, 

129 dispersed about 1 km3 of tephra towards Argentina and deposited between 1 m (15 km from vent) and 6 

130 cm (240 km from the vent) of tephra on the ground (Fig. 1). The eruption continued for several months 

131 with lava effusion and low intensity ash emissions. A red alert was lowered to orange in March 2012, 

132 10 months after the main phase (Elissondo et al., 2016). 

133 The eruptive sequence was divided into 3 main tephra units: I, II, and III (Pistolesi et al., 2015). At 

134 outcrops 25 to 50 km from the vent, the sequences appear as two, stratified, fine lapilli bearing 

135 depositional units (I and II), covered by a third unit composed of multiple fine ash layers interbedded 

136 with thin coarse ash to fine lapilli beds (III) (Fig. 2). Unit I was emplaced during the first 24-30 hours 

137 of the eruption (4 and 5 June) and unit II was emplaced during 5-7 June. Finally, unit III was mostly 

138 emplaced from 7 until 15 June, although millimetres of fine tephra also sedimented during later low 

139 level activity.

140 Tephra fallout produced several impacts on population, animals and vegetation (Elissondo et al., 2016). 

141 After the main explosive phase (4-7 June) a large volume of tephra mantled the steep hillslopes of the 

142 U-shaped valley in the surrounding area of the volcano (Fig. 1a). 

143

144 2.2 Lahars, floods and snow avalanche events following tephra-fallout deposition (2011-2012)

145 In this section we describe lahar, flood and snow avalanche events, including both data obtained from 

146 field campaigns, during and after the eruption, and reports, photos and oral communications made 

147 during the volcanic eruption by the Villa La Angostura Civil Defence and Mountain rescue group.

148 During the wet season, loose and unconsolidated tephra was transported through steep channels, and 



5

149 lahars reached the valley bottom. Many lahars and related flood events were observed between the 

150 Argentina-Chile border and Villa la Angostura (48 km from the vent). The tephra-fallout thickness, as 

151 measured on 10 June was between 30 and 40 cm near the Argentina-Chile border and 12 and 15 cm at 

152 Villa La Angostura (Pistolesi et al., 2015). The eruption and subsequent tephra-fallout coincided with 

153 the beginning of winter. In June, precipitation was falling as rain at 800 m, and as snow at 1,500 m. 

154 Total precipitation accumulated between 7 and 10 June was 116 cm. Figure 3a and b illustrate the daily 

155 rainfall and the timing of lahar and floods events near both the Chile-Argentina Border (Rincon rain 

156 gauge) and Villa La Angostura between June 2011 and June 2012. 

157 The most destructive lahar event occurred on 10 June 2011, during the first week after the eruption 

158 onset, flowing down a channel on Cerro Las Tres Hermanas (28 km form the vent area, Fig. 1b). The 

159 volcanic material coming down the creek blocked the culvert below the road and flowed on to road N. 

160 231, eroding and destroying the asphalt (Red triangle “L2” on Fig. 1b and Fig. 4a). The flow cross 

161 section upstream of the road was estimated at 80 m2. One hundred meters upstream of road N. 231, we 

162 identified 3 main lobes of lahar deposits crossing the forest. A stratigraphic section, of thickness 1.39 

163 m, from an exposure in the main creek revealed 5 beds with 2 different lithofacies. Figure 5a shows the 

164 stratigraphy of the lahar deposit with 2 different lithofacies, types A and B. Type A is an inversely 

165 graded, massive, pumice rich, coarse sand to fine gravel, supported in a fine sand silty matrix. Type B 

166 is massive, medium to fine black sand. 

167 One kilometre from the first creek, “Diana waterfalls” creek crosses road N. 231 under a bridge (red 

168 triangle L1 in Fig 1b). A lahar deposit is preserved at the foot of the waterfall, located 100 m upstream 

169 from the road (Fig. 3b). In outcrop, the material appears to be remobilized Cordón Caulle 2011 tephra. 

170 Figure 5b shows a stratigraphic section with a total thickness of 143 cm and 7 distinct beds of 3 different 

171 lithofacies: C, D and E. Type C is a massive, pumice rich, coarse to fine gravel, clast supported deposit, 

172 with some coarse sand. Type D is a massive, pumice rich, coarse sand with little fine gravel. Type E is 

173 a massive, pumice rich, coarse sand to fine gravel, supported in a fine sand silty matrix.

174  Both lahar deposits from “Diana waterfalls” and “Road 231” are characteristic of hyperconcentrated 

175 flows (Pierson, 2005) which, in our case, is a friable deposit with very little silt and clay. The lack of 

176 large boulders in the deposit is another characteristic of hyperconcentrated flows.  

177  Mud marks found on the top of the bridge (2m above the river bed) suggest the lahar reached the Blanco 

178 River through the bridge. 

179 At the same time lahars occurred in the Totoral basin, located approximately 7 km northeast of “Diana 

180 waterfalls” creek (Fig. 1b). The lahars starting in channels on the valley slopes reached the main river, 

181 causing bank erosion and overbank flows. Flooding and sediment deposition in the Totoral River valley 

182 damaged houses in Paráje Rincón and destroyed trees (Fig. 4c and d).

183 On 10 June, floods were reported in Villa La Angostura. Remobilization of tephra-fallout on the channel 

184 and hillslopes caused flooding and tephra accumulation in Villa La Angostura, which is situated on the 

185 alluvial fan (Fig.1b).
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186 At the end of the winter, on 19 September, a snow avalanche occurred in the Florencia river basin. The 

187 avalanche, of volume ~ 46000 m3, started at the Florencia creek ridge crest and flowed approximately 1 

188 km before stopping in the main river channel at 1200 m (Fauqué et al., 2011).  Earlier observations in 

189 the upper catchment had found a weakness between the lapilli bearing deposit (unit I and II) and the 

190 snowpack. This discontinuity could have been the detachment surface of the slab avalanche. On 14 

191 October, during the snow melting (spring), a natural dam, formed from previous lahars, broke in the 

192 Colorado River, and increased the normal streamflow in the lower watershed (at Villa La Angostura 

193 town) twofold.

194 Six months after the main eruption phase, a small lahar occurred in the Maderera Misiones catchment 

195 and reached road N. 231. Has et al. (2012) reported two landslide scars in the upper catchment at 1400 

196 m, and a natural dam that acted as a barrier and stopped the initial flow. The lahars initiated with the 

197 dam break and flowed through the Maderera Misiones River into the lower catchment, reaching road N. 

198 231. On route down to 1000 m, the flow incorporated material and logs from the river bed and deposited 

199 lateral levees composed of tephra, boulders and logs. The flow cross section at 1000 m was estimated at 

200 20 m2. The flow began to stop at the foot of the slope and the deposit here was estimated to be 10 m 

201 across and 0.8 m high. The travel distance was approximately 2.3 km, but the total lahar volume was not 

202 reported. On 30 January, after 113 mm of rainfall had accumulated in three days, floods and landslides 

203 were reported in Villa la Angostura. The remobilization of volcanic material by surface water and in the 

204 Las Piedritas River clogged the sewer, raising the water level and causing floods in the distal alluvial 

205 plain (low area of the town).

206 Finally, starting on 2 June 2012, 223 mm rain fell in one week (Fig. 3b) causing several flood events in 

207 the Villa La Angostura area. At the same time, heavy rain (120 mm in 24 hours measured at the Paráje 

208 Rincon station, Fig. 3a) produced flooding in the Totoral drainage basin, damaging several houses 

209 located in the alluvial plain. During our 2016 survey, we observed lahar-deposit levees in two small 

210 channels of the catchment La Ponderosa at 1360 meters. 

211

212 3. Methods 

213

214 3.1 Field campaign and data acquisition

215 Three field campaigns were conducted to examine and collect samples in the lahar prone watersheds 

216 near both the Chile-Argentina border and Villa La Angostura (Fig. 1b). Observations in the source areas 

217 around Villa La Angostura were performed at separate intervals during the eruptive period. Due to 

218 rugged terrain, narrow channel and dense vegetation, the upper catchments near the Chile-Argentina 

219 border were inaccessible. The first campaign was in September 2011 (end of winter), the second in 

220 November 2011 (spring), and the third in November 2016 (spring). During the 2016 field campaign we 

221 collected 21 undisturbed tephra-fallout samples for geotechnical tests. Sampling was performed by 

222 pushing a steel tube of height 15 or 30 cm (depending on the deposit thickness) and diameter 10 cm into 
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223 the ground. The samples were collected from preserved 2011 tephra fallout deposits in forested areas 

224 near the “Diana waterfalls” watershed (Fig 1b, S1and S2) and on the east hillslope of Cerro Bayo, at 

225 1530 m (Fig. 1b, S3 an S4). We also make use of reports, photographs and oral communications by the 

226 Villa La Angostura Civil Defence and Mountain Rescue group regarding lahar and flood events during 

227 the volcanic eruption. Immediately after the main tephra fallout and during the following week, 

228 volunteers from “Comité de montaña”, Civil Defence and SEGEMAR surveyed the upper catchment 

229 collecting data from snow pits. Rainfall data, acquired from 3 rain gauges (Cerro Mirador, Rincón and 

230 Villa La Angostura) for the period 2000-2015, has been provided by the Interjurisdictional Watershed 

231 Authority from Neuquén Province (AIC). The stations are in the study area at altitudes between 700 and 

232 1000 m on a west-east trend (Fig. 1b). All of the gauges supply daily rainfall. A geomorphological map 

233 for 6 watersheds in Villa la Angostura was compiled in ArcGIS using on field data, satellite imagery 

234 (Spot and Aster) and a digital elevation model (DEM). A DEM with a 10 m resolution provides the 

235 topographic basis for the triggering modelling. The DEM was built from a stereo pair of satellite images 

236 from World View 2, taken on the 24 December 2011 (CONAE, Argentina, 2011).

237

238 3.2 Slope stability models

239 Two stability models, namely SHALSTAB (Shallow Slope Stability Model; Montgomery and Dietrich, 

240 1994) and TRIGRS (Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability Model; 

241 Baum et al., 2008) were applied to identify unstable areas along the slopes, and their results compared. 

242 The test area comprises 2 upper catchments located in Villa La Angostura (Fig. 1b).

243

244 3.2.1 SHALSTAB model   

245 SHALSTAB is a quantitative model for assessing topographic influence on shallow landslides, 

246 combining a steady-state hydrological model with a simple slope stability model (Montgomery and 

247 Dietrich, 1994). The authors use steady-state shallow subsurface flow equations, based on the work of 

248 O´Loughlin (1986), to model hydrologic controls on h/z, where z is the soil depth, and h the water table 

249 above the failure plane. The catchment is divided into topographic elements defined by elevation 

250 contours orthogonal groundwater flow direction. The net rainfall (rainfall minus evapotranspiration) in 

251 each topographic element becomes groundwater flow. The hydrological model thus reduces to the 

252 calculation of a so-called wetness W, which is the ratio of local groundwater flux at a given steady state 

253 rainfall to that at soil profile saturation

254

255  , (1)𝑊 =  
𝑞𝑎

𝑏𝑇sin𝛽

256                                                                                                                                        

257 where q is the net rainfall intensity, a the upslope contributing area draining across b, which is the 

258 cumulative drainage area of all topographic elements draining into an element, T soil transmissivity 
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259 when saturated, and β the local slope in (degrees) of the ground surface. The parameters a, b, and β are 

260 obtained from the DEM used in the analysis. There is a model assumption that for W > 1 excess water 

261 runs off as overground flow.

262 SHALSTAB is based on an infinite slope model including a Mohr-Coulomb soil failure criterion, which 

263 compares the destabilizing force of gravity, to the soil shear resistance forces of friction and cohesion 

264 along a failure plane parallel to the ground surface. Edge effects are neglected (Tarolli and Tarboton, 

265 2006).

266 Initially, Montgomery and Dietrich (1994) considered cohesion cˊ to be zero, which is realistic for air-

267 fall cohesionless volcanic materials. After neglecting cohesion, the infinite slope stability model can be 

268 solved for h/z, which is the proportion of the soil column that is saturated at failure

269

270  , (2)
ℎ
𝑧 =

𝜌𝑠

𝜌𝑤
[1 ‒

tan𝛽
tan𝜙]

271                                                                                                                                 

272 where ρs and ρw are the soil and water bulk density respectively and ˊ is the soil friction angle.

273 Combining the slope stability hydrological models (Eqs. 1-2), we obtain the critical steady-state 

274 precipitation event q/T required to cause instability for cohesionless soils 

275

276 . (3)
𝑞
𝑇 = (𝑏sinβ

𝑎 )(𝜌𝑠

𝜌𝑤)⌈1 ‒
tan𝛽
tan 𝜙⌉

277

278 Later, Montgomery et al. (1998) provided the equation for the case of soils with cohesion and the q/T 

279 required to cause instability is

280                                                                                                      

281  (4)
𝑞
𝑇 = (𝑏sin𝛽

𝑎 )[ 𝑐´
𝜌w𝑔𝑧cos2𝛽tan𝛽

+
𝜌s

𝜌w
 (1 ‒

tan𝛽
tan 𝜙)]

282

283 Further details for the model with cohesion can be found in Montgomery et al. (1998). Both model with 

284 and without cohesion have been used in this work.

285 SHALSTAB classifies landslide susceptibility as: “unconditionally stable”, “potentially unstable” and 

286 “unconditionally unstable”. Slopes that are stable even when W=1 (wet) are classified as unconditionally 

287 stable, and excess pore pressure is needed to generate slope instability. Similarly, slopes predicted to be 

288 unstable even when dry (W=0) are unconditionally unstable. Landslide susceptibility is calculated using 

289 equations 3 and 4, obtaining a range of values for q/T. Since T is much greater than q, q/T is very small, 

290 meaning it is helpful to convert these values to log(q/T), which are found to range from -10 and 10. 

291 Then, a range of log(q/T) is defined for each landslide susceptibility class.  Critical rainfall values can 

292 be calculated for each class, if the transmissivity is estimated. A fundamental premise of the model is 

293 that areas found to have the lowest q/T values (least amount of precipitation required) represent the least 
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294 stable areas and have the greatest potential for shallow landslides. Thus, the general scope of such 

295 analysis is to attribute the q/T values as “instability descriptors” to each single cell of the DEM (Digital 

296 Elevation Model).

297

298 3.2.2 TRIGRS model

299 The Fortran Program TRIGRS was developed by Baum et al. (2002) for computing transient pore 

300 pressure changes and subsequent changes in safety factors due to rainfall infiltration. They extended the 

301 method of Iverson (2000) by implementing a complex time sequence of rainfall intensity, an 

302 impermeable basal boundary at infinite depth and an optional unsaturated zone above the water table 

303 (Baum et al. 2002). They also, added a simple runoff-routing scheme to disperse excess water from cells 

304 where the rainfall intensity exceeds the infiltration capacity, according to the vertical Darcy flow 

305 velocity (product of soil conductivity and vertical hydraulic gradient), where “the infiltration (I) at each 

306 cell is the sum of precipitation (P) plus any runoff from upslope cells (Ru). When P+Ru exceeds Ksat, the 

307 excess is considered runoff and is diverted to upslope adjacent cells”. TRIGRS combines models for 

308 infiltration and groundwater flow due to rainfall, routing of runoff, and slope stability to calculate the 

309 effects of storms on the stability of slopes over large areas.

310 The infiltration models in TRIGRS for wet initial conditions are an extension of Iverson’s (2000) 

311 linearized solution of the Richards equation for Darcian flow of groundwater in response to rainfall on 

312 the slope(Baum et al., 2002; Savage et al., 2003, Savage et al., 2004). The solution is valid only where 

313 transient infiltration is vertically downward and transient lateral flow is relatively small. The equation 

314 for the transient vertical groundwater flow is

315

316 , (5)
∂𝜓
∂𝑡 𝐶(𝜓) =

∂
∂𝑍[𝐾(𝜓)(∂𝜓

∂𝑍 ‒ sin 𝛽)]
317

318 where ψ is the pressure head, K(ψ) is the pressure- head dependant hydraulic conductivity, C(ψ) = dθ/dψ 

319 is the specific moisture capacity, θ is the volumetric water content, β is the slope angle of the ground 

320 surface, and Z is the vertical depth (Philip, 1991). For wet initial conditions the pressure dependent 

321 quantities K(ψ) and C(ψ) become constant values, Ksat and C0, where C0 is the minimum slope of the soil 

322 water retention curve, which is the relationship between θ matric suction used to describe unsaturated 

323 soil behaviour (Fredlund and Xing 1994). Equation 5 then reduces to a linear diffusion equation

324

325 ,                (6)
∂𝜓
∂𝑡 = 𝐷1

∂2𝜓
∂𝑍2

326 where D1= D0/cos2 β  and D0 = Ksatz/C0.

327 An analitical solution to Eq. (6) is proposed by Baum et al. (2002) and implemented in a Fortran code.

328 Additionally, TRIGRS is applicable to unsaturated initial conditions with a two layer system consisting 

329 of a saturated zone with a capillary fringe above the water table, overlain by an unsaturated zone 
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330 extending to the ground surface. The unsaturated zone acts like a filter that smoothes and delays the 

331 surface infiltration signal at depth. The model utilises the soil-water characteristic curve for wetting of 

332 the unsaturated soil as proposed by Gardner (1958) and approximates the infiltration process as one-

333 dimensional vertical flow (Srivastava and Yeh, 1991, Savage et al., 2004). 

334 Following Iverson (2000), slope stability is calculated using an infinite-slope stability analysis. Incipient 

335 failure of infinite slopes is decribed by an equation that balances the downslope component of 

336 gravitational driving stress against the resisting stress due to basal Coulomb soil friction, incorporating 

337 the influence of groundwater (Iverson, 2000). The Factor of Safety (FS) is calculated at a depth Z by

338  

339        ,                                                                                          (7)𝐹𝑆 (𝑍,𝑡) =
tan𝜙’
tan𝛽 +

𝑐’ ‒ 𝜓 (𝑍,𝑡)𝑤tanϕ’

𝑠𝑍sin𝛽cos𝛽

340

341 where t is time, c’ is the effective soil cohesion, ˊ’ the effective friction angle,  ˊw is the unit weight of 

342 groundwater and ˊs is the unit weight of soil. The pressure head ψ (Z, t) in (7) is obtained from various 

343 formulae depending on the particular conditions modelled.

344 FS is calculated for pressure heads at multiple depths (Z). The slope is predicted to be unstable where 

345 FS< 1, in a state of limiting equilibrium where FS=1 and stable where FS>1. Thus, the depth Z of 

346 landslide initiation is where FS first drops below 1. 

347

348 3.2.3 Simulation parameters, slope stability scenarios and comparison with field data

349 We chose two representative upper basins (Colorado and Florencia), where the recent tephra-fallout 

350 deposit located on the bare slopes were partially remobilised by shallow landslides, as locations where 

351 to apply the SHALSTAB and TRIGRS models. 

352 For both SHALSTAB and TRIGRS, the thickness of the tephra-fallout deposit was taken to be 15 cm, 

353 in agreement with the corresponding isopach map (Fig. 1a) (Pistolesi et al., 2015). However, the tephra-

354 fallout deposit in this area consists of two very different layers with contrasting grain sizes: Unit I+II, 

355 and Unit III of Pistolesi et al. (2015). In Villa La Angostura (48 km from vent) the typical sequence is a 

356 5 cm upper ash layer, with a median grain diameter of 0.25 mm (Unit III), and a 10 cm lower layer with 

357 a median grain diameter of 1 mm (Unit I and II). As the model SHALSTAB and TRIGRS are designed 

358 for homogenous deposits or soil, the modelled tephra-fallout deposit was simplified, and two different 

359 scenarios were considered. The first scenario (S1) considers a homogenous ash layer of 15 cm (i.e. 

360 UnitI+II+III) (Fig. 4). For the second scenario (S2), we considered a 10-cm thick lapilli layer (Fig. 6). 

361 For locations 28 km from the vent area we used a tephra-fallout deposit thickness of 30 and 20 cm for 

362 scenarios 1 and 2 respectively. 

363 The soil mechanical features, as well as the slope angle are reported in Tab. 1-2. Hydraulic conductivity 

364 (Ksat) for lapilli was measured in the field by filling a plastic tube with an undisturbed sample and 

365 saturating the material with water. We then measured the time taken for the water to drain to estimate 
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366 the hydraulic conductivity (Tab. 2). As long term and short-term pressure head responses can be 

367 described with the simplified forms of Richards equations, where the ratio ɛ=Z/  , we obtained 𝑎 ≪ 1

368 the upslope contributing area (a) for the lahar source zones using Taborton´s (1997) D  algorithm ‒ ∞

369 and calculated ɛ for a depth of 0.15 m. Values of ɛ are between 0.015 and 0.004. 

370  For initial conditions in TRIGRS, we considered the water table to be located at the bottom of the tephra 

371 sequence (lower boundary) and an impermeable layer below the tephra sequence, which were emplaced 

372 on cretaceous rock outcrops, debris mantled slopes and volcanic soils.

373 The rainfall intensity I was determine according to daily rainfall data from the “Villa La Angostura” 

374 station (AIC, Autoridad Interjuridiccional de Cuencas, 2016). The provided rainfall data were daily 

375 totals. Therefore, in order to test the effect of different rainfall intensities on landslide processes in the 

376 upper catchment, we ran (with TRIGRS) both scenarios for three different rainfall duration and 

377 intensities (Tab. 3). Since parts of the upper basin areas are forested, mainly by Nothofagus pumilio, a 

378 fraction of the rainfall is intercepted by the canopy. We thus considered a rain interception of 25 % 

379 based on the study of Martinez Pastur et al. (2011). The rainfall intensities for both bare soil area and 

380 forested area are given in Tab. 3. For SHALSTAB, a critical rainfall intensity of 5 mm/day was 

381 considered, corresponding to the mean rainfall intensity for 2011 (Sorbino et al., 2010). 

382 To investigate the sensitivity of TRIGRS to cohesion variations in scenario 1, we perform calculations 

383 for cohesion values between 0 and 1.5 kPa, for two different tephra thicknesses 0.15 m and 0.30 m (Fig. 

384 7). As the result obtained with zero cohesion for scenario 1 overestimated the unstable area (80% for 

385 0.15 m thickness, 46% for 0.3 m), we took cohesion to be equal to 0.5 kPa for the soil thickness of 0.15 

386 m and 1 kPa for 0.30 m.

387 The results from the different models and scenarios were compared with the field observations collected 

388 during the eruption and 5 years later in the upper catchment Florencia. Particularly, we measured the 

389 2011 tephra sequence in the different geomorphologic units and described the remobilization by rill 

390 erosion and shallow landslides. Based on field observation, measurements of 2011 tephra deposits and 

391 description on remobilization by rill erosion and shallow landslides, a map of the observed lahar source 

392 areas was created for the Florencia river upper catchment. Finally, the unstable volume for of bare soil 

393 area was calculated in each case. 

394 Three metrics are used to compare the observed and simulated lahar source areas: the Jaccard similarity 

395 coefficient (Levandowsky and Winter, 1971), and two metrics derived from Bayes ɛTheorem, model 

396 sensitivity and model precision (Charbonnier et al., 2018).

397 We quantified the quality of model fitting to the field evidence through the Jaccard similarity coefficient 

398 ( ) (Kubanek et al. 2015) by dividing the intersection of the observed source areas Aobs and unstable 𝑅𝐽

399 modelled areas Asim by their union. Observed source areas determined unstable by the model (𝐴obs ∩

400 ) are classified as true positive (TP), and those computed as unstable by the models, but not observed 𝐴sim

401 as source areas are false positive (FP). Conversely, observed source areas that are simulated to be stable 

402 are false negative (FN) and true negative (TN) areas are those observed to be stable in reality and the 
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403 simulation (Fig. 8).

404 The Jaccard similarity coefficient is

405 .  (8)𝑅𝐽 =  
|𝐴𝑜𝑏𝑠 ∩ 𝐴𝑠𝑖𝑚|
|𝐴𝑜𝑏𝑠 ∪ 𝐴𝑠𝑖𝑚| × 100 =  

𝑇𝑃
𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 × 100

406 Charbonnier et al. (2018) identified the similarity of RJ to Bayes ɛTheorem, which describes the 

407 probability of predicted unstable areas, based on the observed source areas and vice-versa. Bayes 

408 ɛTheorem serves as link between simulated and observed unstable areas

409  ,   (9)𝑃𝑟(𝐴obs
𝐴sim)𝑃𝑟(𝐴sim) =  𝑃𝑟(𝐴sim

𝐴obs)𝑃𝑟(𝐴obs)

410 where,  is the probability that an area is unstable according to observations,   the 𝑃𝑟(𝐴𝑜𝑏𝑠) 𝑃𝑟(𝐴𝑠𝑖𝑚)

411 probability that an area is unstable according to the model,    the conditional probability 𝑃𝑟(𝐴𝑠𝑖𝑚
𝐴𝑜𝑏𝑠)

412 of   given    and  the conditional probability of   given . Rearranging 𝐴𝑠𝑖𝑚 𝐴𝑜𝑏𝑠 𝑃𝑟(𝐴𝑜𝑏𝑠
𝐴𝑠𝑖𝑚) 𝐴𝑜𝑏𝑠 𝐴𝑠𝑖𝑚

413 equation 9, we obtain

414 .   (10)𝑃𝑟(𝐴𝑜𝑏𝑠
𝐴𝑠𝑖𝑚) =

𝑃𝑟(𝐴𝑠𝑖𝑚
𝐴𝑜𝑏𝑠)𝑃𝑟(𝐴𝑜𝑏𝑠)

𝑃𝑟(𝐴𝑠𝑖𝑚)

415 We identify Pr (Aobs/ Asim) as the model precision and Pr (Asim/Aobs) as the model sensitivity.Combing 

416 Eqs. 8 and 10. we obtain 

417   , (11)𝑅𝑀𝑃 =  
|𝐴𝑜𝑏𝑠 ∩ 𝐴𝑠𝑖𝑚|

|𝐴𝑠𝑖𝑚| × 100 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

418 and

419 . (12)𝑅𝑀𝑠 =  
|𝐴𝑜𝑏𝑠 ∩ 𝐴𝑠𝑖𝑚|

|𝐴𝑜𝑏𝑠| × 100 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

420 A high model precision   indicates a good match between the model predicted and observed unstable 𝑅𝑀𝑃

421 areas, without taking into consideration observed unstable areas not simulated by the model. The model 

422 sensitivity  gives the percentage of lahar source areas that the model correctly predicts, without 𝑅𝑀𝑆

423 counting the FP areas. A model simulation with high sensitivity agrees well with the observed source 

424 areas, but may predict unstable areas outside the observed sources.

425

426 4. Results

427

428 4.1 Geomorphology of the study area and field observations

429 4.1.1 The watersheds of Villa La Angostura

430 Villa La Angostura is situated on an alluvial fan, at the convergence of six watersheds: Las Piedritas, 

431 Colorado, Florencia, La Ponderosa, Maderera Misiones and El Muerto. Fig. 9 shows the 

432 geomorphological map of all the watersheds.  

433 The Las Piedritas River upper catchment is a U-shaped valley with steep lateral hillslopes. The river 
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434 originates at an elevation of 1450 m in an old glacial cirque and runs through the valley until 1090 m. 

435 At this point, the river makes a 60 m jump (waterfall) and flows through a granitic canyon for almost 

436 0.6 km before reaching the alluvial fan. The river runs between small hills to the south, before crossing 

437 Villa La Angostura and reaching the Nahuel Huapi Lake. The Colorado River also originates in a small 

438 glacier cirque, at an elevation of 1650 m, and is fed by many first order channels which drain the back 

439 and lateral upper catchment slopes (talus debris slope and forested hillslopes). The upper Colorado basin 

440 has an old cirque front slope, with many small channels draining the area. Below 1250 m the stream 

441 flows through a narrow valley with several cascades and reaches the lower catchment at 890 m, near the 

442 Villa La Angostura water plant. The Florencia upper catchment is a small glacial cirque with steep slopes 

443 and debris flow prone channels. The river in the middle catchment is confined and has several waterfalls 

444 before reaching the lower catchment and run into the Colorado River. The back and lateral hillslopes 

445 have been divided in three main geomorphological units:  rock outcrops, talus debris slopes and forested 

446 hillslopes. Two debris-flow prone channels have been mapped, one in the Florencia and the second in 

447 Colorado upper catchment. The summit and valley interfluves are glacially smoothed, with plane and 

448 gentle slopes between 0° and 15°. The middle watershed is located on the regional Nahuel Huapi valley 

449 flank. The proximal alluvial fan area has glacial erosional landforms and 10 m high elongated hillslopes 

450 with some swamps areas filled with volcanic sediments. The distal alluvial fan is flat marshland crossed 

451 by the Piedritas River, which splits into at least two channels before reaching the Nahuel Huapi Lake. 

452 The La Ponderosa, Maderera Misiones and El Muerto watersheds drain the southern Cerro Bayo flank 

453 (Fig. 1b). The upper catchment source area has steep slopes between 15° and 45° and range in area from 

454 0.153 km2 (La Ponderosa) to 0.62 km2 (Madera Misiones). The uppermost part of the hillslopes pertains 

455 to the Cerro Bayo ski field and has been modified with a manmade track. 

456

457 4.1.2 Shallow landslides and erosion in the lahar source areas 

458 Examination of the upper catchment of Villa La Angostura in spring (November 2011) found different 

459 types of erosion and remobilization. Rills formed just below the crest, at slope angle of 25-35°, and 

460 below rock outcrops located on the top or middle hillslope (Fig. 6d). Rills formed were erosion was 

461 focused by flow-concentrating irregularities, such as boulders (Horton, 1945, Mannville et al., 2000), 

462 on the talus debris slope unit. Otherwise shallow landslides occurred where the tephra deposit was lying 

463 either on outcropping rock or the steep talus debris slope (Fig. 9d). The tephra was mobilized into first 

464 order drainage concavities (Fig. 9e), located on the talus debris slope. Measurements, on these mobilized 

465 deposits, performed in November 2011, found a 15 cm primary tephra fall deposit and 15 cm of 

466 remobilized tephra.

467 Observations from December 2016 in the upper catchment of Florencia and Colorado, showed that the 

468 2011 tephra deposit was almost completely eroded from the rock outcrops and bare hillslope since the 

469 old black tephra deposit cropped out in many hillslope areas, as before the 2011 eruption. Nevertheless, 

470 a small fraction of tephra forms the debris slope colluvium, which is a mix of tephra and rock boulders. 
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471 Part of the eroded tephra remains in the first order channels. Figure 10 shows the tephra deposit erosion 

472 stage in the Florencia upper catchment between June 2011 and December 2016. Tephra was first 

473 removed from rock outcrops, which represent 22% of the whole upper catchment (Fig. 10b). At the same 

474 time tephra from hillslopes (31%) was partially removed by rill erosion, shallow landslides and 

475 downslope creep mostly related to snowmelt during the spring (Fig. 10b). Five years later, tephra was 

476 almost completely removed from rock outcrops and unforested hillslopes. Part of the eroded sediment 

477 remained in the first order channel and in the forested areas which represent 8% and 39% of the upper 

478 catchment, respectively (Fig. 10c). The tephra sequence was well preserved on the forested hillslopes.

479

480 4.2 Modelling 

481 Instability scenarios modelled with SHALSTAB for two upper watersheds (Colorado River and 

482 Florencia River) in Villa La Angostura are presented here. Figure 11 shows two maps with different 

483 levels of instability computed with the SHALSTAB model (scenario 1, Tab, 1). Figures 11a and 11b 

484 show the results without and with cohesion respectively. We defined four stability descriptors: 

485 unconditionally unstable, unstable, stable, unconditionally stable. The results for scenario 1 with a 

486 critical rainfall (q) of 5 mm/day are presented in Tab. 4. We also ran SHALSTAB for scenario 2, but 

487 the amount of rain needed for instability is out of range, between 202 and 6000 mm/day, 40 and 1200 

488 times the critical rainfall value calculated for the study area respectively. In this case the unconditionally 

489 unstable area represents approximatively 1% of the total upper catchments.

490

491 Figures 12 and 13 illustrate the evolution of unstable areas for the Colorado and Florencia Rivers upper 

492 watersheds through time calculated with TRIGRS for scenarios 1 and 2. The colour lines represent three 

493 different rainfall intensities and durations (Table 3). Figures 12a, b and 13a, b show that for scenario 1, 

494 a maximum fraction of unstable area was attain for all three rainfall intensities. Conversely for scenario 

495 2, the maximum fraction was only reached for the greatest rainfall intensity (3.3 mm/h). It is also seen 

496 that more time is needed to reach the maximum unstable area when the tephra thickness is doubled (0.30 

497 m). This modified slope response depends on the transient groundwater response time Z2/D0. This 

498 timescale is the minimum time necessary for slope-normal pore pressure to transmit from the ground 

499 surface to depth Z (Iverson and Major, 1987; Haneberg 1991; Reid, 1994). Comparing results for the 

500 Colorado upper watershed (Figs. 12 a-d) with the Florencia upper watershed (Figs. 13 a-d) both show 

501 qualitative agreement for the different scenarios and tephra thicknesses, but there is much greater 

502 potential for unstable areas in the Florencia study case. This large difference is due to the different 

503 topography, since slope angles between 38.4°and 53° cover only 6% of the Colorado upper basin area, 

504 but 20% in the Florencia upper basin. Table 5 list all of the values of unstable area percentage as 

505 calculated with TRIGRS for the Colorado River and Florencia River upper catchments.

506 Model validation metrics (RJ, RMP and RMS) calculated for the upper catchment Florencia River using 

507 both TRIGRS and SHALSTAB are given in Table 2. For scenario 1 (Ash deposits), both SHALSTAB 
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508 (without cohesion) and TRIGRS give the highest Jaccard similarity coefficient, RJ= 48% and 47%, 

509 respectively. These simulations also have high model sensitivities. For scenario 2 (lapilli deposits) the 

510 highest RJ was achieved for the highest rainfall intensity and a duration of 24h. 
511 TRIGRS model S1 determined most of the source areas to be in the bare soil areas (Fig. 14b), but also 

512 predicted a lot of the forested stable areas to be unstable (FP). This is reflected in the model precision 

513 (57%). Figure 14c shows that for the case of the lapilli deposits (scenario 2) and 24h of rainfall, the 

514 model underestimated the fraction of observed source areas, but was more accurate in the forested stable 

515 areas (RMS 62.9%).  Finally, the unstable volumes in both bare soil upper catchment areas, as calculated 

516 from the best fit scenario, are presented in Tab. 7.

517

518

519 5. Discussion

520

521 5.1 Remarks on modelling results
522 The direct investigation of the lahar source areas of the 2011 eruption of Cordón Caulle provided 

523 invaluable insights into lahar triggering mechanisms and the amount of remobilised tephra. Tephra-

524 fallout properties (friction angle, hydraulic conductivity and diffusivity) required by numerical models 

525 and obtained for the ash and lapilli sequences around Cordón Caulle, represent the first data derived for 

526 this region. The 2011 tephra-fallout stratigraphy, with 2 contrasting layers (ash and lapilli), is too 

527 complex to be analysed with the SHALSTAB and TRIGRS models, which are designed for homogenous 

528 deposits. We therefore considered, two different scenarios. Comparing the two models, we found that 

529 TRIGRS provides an estimation of the timing (based on a storm event) and location of a potentially 

530 unstable area, while the topographic effects on shallow landslides can be determined with SHALSTAB. 

531 For both models, results are sensitive to the physical properties of the tephra-fallout sequence and thus 

532 require accurate knowledge of the hydraulic and materiel strength properties at the scale of catchment 

533 area. TRIGRS requires additional parameters such as hydraulic diffusivity and information on initial 

534 water table. The results obtained with TRIGRS demonstrate that shallow landsliding is possible in our 

535 study area for both ash and lapilli bearing sequences. However, the ash sequence (scenario 1), with the 

536 low permeability and diffusivity, has a higher predisposition for instability compared with the high 

537 permeability and diffusivity lapilli sequence (scenario 2). The same maximum unstable areas are found 

538 for the 3 different storms in the case of ash sequences (S1), but the time needed to reach the maximum 

539 is different. For the lapilli sequences (S2), the unstable area percentage decreases as the rainfall intensity 

540 decreases, and the unstable area percentage increases with time.

541 Only having daily rainfall data, instead of more detailed hourly data, was a limitation for the simulations 

542 because the relationship between rainfall intensity (I) and hydraulic conductivity (Ksat) determines the 

543 behaviour of pressure head response. The time required to develop positive pressure and further 
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544 instability (FS<1) decreases with rainfall intensity, as demonstrated in Figs. 12 and 13 where the rate of 

545 growth of the unstable area is faster for higher rainfall intensity. Therefore, we tested different rainfall 

546 intensities and duration according to daily rainfall data in the study area. 

547 As we already described in section 3.1.2, we did not observe shallow landslides in the 2011 tephra 

548 deposit on the forested hillslope. For the TRIGRS model we accounted for rain interception (25%) in 

549 forested areas, but still prediction many unstable areas, which did not match with observations. There 

550 are many reasons for the reduction of shallow landslides in forested areas: root strength, 

551 evapotranspiration, evaporation and preferential drainage via root systems (Phillips and Watson, 1994; 

552 Sidle and Ochiai, 2006). In our case the tree and litter roots at the base of the tephra deposit could have 

553 enhanced the drainage and thus dissipate positive pore water pressure in the tephra section (Uchida et 

554 al., 2001). Several months after deposition, a new litter of leaves and new plants growing on the tephra 

555 deposits further reduced the potential for shallow landslides and sheet erosion.

556

557 5.2. Comparison with previous lahar-triggering models

558 Coupled hydrological and infinite-slope models have previously been used by several authors (Frattini 

559 et al., 2004; Sorbino et al., 2007; Cascini et al., 2011) to perform spatially distributed simulations of the 

560 catastrophic landslides and flow events of Sarno, 1998. The pyroclastic deposits in the landslide source 

561 areas (above Sarno town) consisted of pumice lapilli clasts and ashy layers belonging to at least 5 

562 different eruptions from Somma-Vesuvius volcano. Frattini et al. (2004) used a lateral flux model for 

563 kinematic subsurface storm flow and a vertical flux was simulated through a simplified formulation 

564 derived from Richard´s equation (Iverson 2000). The results showed that both vertical and lateral fluxes 

565 were responsible for landslide triggering. In our study, the results from SHALSTAB demonstrated that 

566 lateral fluxes were responsible for instabilities in ash layers (S1), but not for lapilli layers (S2). Sorbino 

567 et al. (2007) applying the physically based models SHALSTAB, TRIGRS and TRIGRS unsaturated, 

568 show that the most adequate model for analysis of shallow landslide source area in Sarno was TRIGRS 

569 unsaturated. Our result instead indicates that TRIGRS and SHALSTAB models both produced good 

570 results for ash layers, but the best model for the lapilli layers was TRIGRS.

571 Additional strategies for studying lahar triggering exist. For example, Volentik et al. (2009) analysed 

572 the potential hazard of lahars to the Bataan nuclear power plant site (Philippines), focusing on the nature 

573 of tephra fallout and lahar generation. They used the slope stability model, based on an infinite slope 

574 form of the Mohr Coulomb failure criterion following Iverson (2000), to calculate the potential for 

575 gravitationally induced failure of the tephra deposit on the volcano slopes, thus triggering lahars. The 

576 main difference with TRIGRS (which accounts for transient rainfall effects) is that Volentik et al. (2009) 

577 considered the effect of rainfall infiltration on the pressure head, with results from a static infinite slope 

578 analysis assuming two water table conditions. If we were to use the Volentick et al. (2009) model for 

579 the case of an ash layer (scenario 1), the percentage of unstable area would have been similar, but for a 

580 lapilli layer the model would have overestimated the unstable area. The main reason for this is that the 
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581 model does not consider the deposit hydraulic conductivity and the amount of rain needed to saturate it. 

582 In the case of a probabilistic lahar-hazard assessment, with no information on hydraulic conditions and 

583 tephra-fallout properties at the scale of lahar processes, the choice of a simple slope stability model to 

584 calculate potential lahar source region was appropriate. 

585 Mead et al. (2016) also carried out an interesting study on rain-triggered lahar susceptibility using 

586 shallow landslide and erosion models. They used the model developed by Iverson (2000) with an infinite 

587 slope failure criterion and the reduced form of the Richard’s equation. Their shallow landslide and 

588 erosion models were applied to the 1995 lahar of Ruapehu volcano, New Zealand. Here, the volume of 

589 materiel remobilised from the Mangatoetoenui glacier was known and the lahar well documented, but 

590 the hydraulic properties and depth of ash deposits were unknown. Different scenarios were modelled 

591 with the slope stability model, varying diffusivities and infiltration rates to calculate landslide materiel 

592 volume estimates which were compared with the observed volume of the Mangatoetoenui lahar in order 

593 to choose the best hydraulic parameters. The main difference between the approach of Mead et al. (2016) 

594 and our strategy is that we compare different slope stability models (TRIGRS and SHALSTAB) and 

595 two different tephra layers for the estimate of lahars initiation volumes, while Mead et al. (2016) 

596 combined a slope stability model with an erosion model to calculate the lahar initial volume.

597

598 5.3. Implication for the compilation of lahar-hazard maps 

599 During the first 6 months of the 2011 eruption of Cordón Caulle, an estimate of the unstable tephra-

600 fallout volume in the Villa La Angostura upper catchments was made by the Argentinian Geological 

601 Survey (SEGEMAR), assuming that 100% of the unforested, fallout covered areas would be eroded. 

602 These estimates were used by Córdoba et al. (2015) to calculate the runout and thickness of a potential 

603 lahar event in Villa la Angostura. They assumed 75% and 90 % of the deposited tephra as a high initial 

604 volume for the Colorado and Florencia upper catchment respectively. Our simulation results for the 

605 same bare soil upper catchments were similar with SHALSTAB and lower with TRIGRS both for ash 

606 layer (Table 7). In the case of Colorado bare soil upper catchment TRIGRS model simulated that only 

607 27.2% and 12.9% would be unstable for scenario 1 and scenario 2 respectively (Table 7).

608 An evaluation of potential mobilised volumes is fundamental to the modelling of both lahar spreading 

609 and inundation that is required for the compilation of lahar-hazard maps. Our results demonstrate the 

610 importance of using physical models (e.g. TRIGRS) combined with geotechnical data (when available) 

611 so to provide accurate estimates of remobilised tephra volumes. Our results also show the potential of 

612 using the SHALSTAB and TRIGRS models to predict the solid fraction of a lahar triggered by rainfall. 

613 As an example, our new data on rain-triggered lahars for the 2011 eruption of Cordón Caulle can be 

614 used as input for lahar-hazard assessments. The results obtained with shallow landslide models using 

615 rainfall intensity, duration and frequency thresholds (IDF), could be used to create a rain-triggered lahar 

616 susceptibility map (Mead et al., 2016). To assess the lahar hazard we could combine the unstable area 

617 results for variable rainfall IDF (rain triggered lahar susceptibility map) with a lahar run-out model. The 
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618 total unstable area in each river upper catchment is the potential mobilised sediment volume used as 

619 input in lahar run-out models. In addition, the evaluation of unstable area obtained with physically based 

620 models such as TRIGRS or SHALSTAB provide important inputs for compiling dynamic lahar-hazard 

621 maps of long-lasting eruptions, that can be adapted through time according to the varying eruptive 

622 dynamics (variation of tephra thickness and grainsize, rainfall, etc.).   

623

624 6. Conclusions
625 We have presented a detailed analysis of rain-triggered lahars combining geomorphological 

626 observations and geotechnical data with numerical studies based on two slope-stability models: 

627 SHALSTAB and TRIGRS. We applied our methodology to events that occurred after the main phase of 

628 the 2011 eruption of Cordón Caulle volcano, Chile. SHALSTAB mostly describes topographic influence 

629 on shallow landsliding, while TRIGRS accounts for rain infiltration to assess unstable areas. Due to the 

630 heterogeneity of the tephra-fallout deposits that generated the lahars (i.e. combination of ash and lapilli 

631 layers), different initial conditions have been tested. Tests consisted of two main scenarios with different 

632 soil and hydraulic parameters. In addition, different rainfall intensities and durations and two values of 

633 tephra-fallout thicknesses have been used in TRIGRS for the analysis of shallow landsliding. The 

634 comparison between field observations and model outcomes shows that:

635 1) both SHALSTAB and TRIGRS provide a goodness of fit of nearly 50% for ash layers (scenario 1) 

636 and also a high model sensitivity. The SHALSTAB model for lapilli layers (scenario 2) was not realistic, 

637 but scenario 2 simulated with TRIGRS had a fit of 40 % and high precision in the case of high rain 

638 intensity; 

639 2) results from both models are sensitive to the physical properties of the tephra-fallout deposit and to 

640 the hydraulic properties and strength of the material in the study area. TRIGRS requires more parameters 

641 than SHALSTAB, such as hydraulic diffusivity and information on initial water table;

642 3) TRIGRS provides estimates of the timing (based on a storm event) and location of a potentially 

643 unstable area, while SHALSTAB provides landslide susceptibility classes based on critical rainfall 

644 values.

645

646 The comparison between the different scenarios modelled with TRIGRS shows that:

647 1) an increase in rainfall intensity increases the extent of unstable areas for lapilli layers (scenario 2). 

648 Conversely, the extent of unstable areas is not affected by rainfall intensities for ash layers (scenario 1);

649 2) the time taken for positive pore pressure to develop is larger for larger values of tephra-fallout 

650 thickness (ground surface to depth H) and depends on the transient groundwater response time H2/D0. 

651 The shallow landsliding process modelled with SHALSTAB and TRIGRS provides important data of 

652 lahar initiation processes from recent tephra fallout sequences, emphasising in particular the importance 

653 of considering the presence of different ash layers and associated geotechnical data in the susceptibility 

654 of a slope. 
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671 Appendix A

672

673 Notation

674

Symbol Description Units

a upslope contributing area m2

b grid cell width m
c cohesion kPa
c´ effective soil cohesion kPa
C (ψ) moisture capacity 1/kPa

D0 hydraulic diffusivity m2/s
d depth of the steady state water table m
dlb vertical depth to the lower boundary m
FS factor of safety for a hillslope
h water level above the failure plane m
Iz long term (steady state) rainfall flux at the ground surface mm/h
K hydraulic conductivity m/s
Ksat saturated hydraulic conductivity m/s
Kz hydraulic conductivity in the Z direction m/s
q net rainfall rate mm/day
T soil transmissivity m2/s
W wetness
z soil depth m
Z depth of landslide initiation m
β local slope deg
φ angle of internal friction deg
φ´ affective angle of internal friction deg

ρs soil bulk density tonne/m3

ρw water bulk density tonne/m3

γs unit weight of soil kN/m3

γw unit weight of water kN/m3

ɛ ground-water pressure head kPa
θs saturated volumtric water content %
θr residual volumetric water content %
α pore size distribution index; SWCC modeling constant
ɛ Time scale ratio

675

676

677
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903 Figure captions

904 Figure 1: A) Isopach map on shaded relief of the cumulative Cordón Caulle 2011 tephra fall deposit in 

905 the proximal and medial area, after Pistolesi et al. (2015). Isolines between 0.2 and 3 cm from Gaitan et 

906 al. (2011). Black dots represent the tephra outcrops measured in 2012 and 2013 field campaign (Pistolesi 

907 et al., 2015). The red square indicates the study area between the Argentina-Chile border and Villa La 

908 Angostura. B) Map of study area along the Road n. 231. The green hexagons indicate the 2016 sample 

909 locations. The blue squares are the meteorological stations: M1, Paráje Rincon; and M2, Villa La 

910 Angostura. The red triangles represent the locations of observations of 2011 and 2012 lahar deposits: 

911 L1, Diana waterfalls; L2, 231 road; and L3, Maderera Misiones. The light brown line delimitates the 

912 watershed of Villa la Angostura.

913

914 Figure 2: A) Tephra sequence on April 2012 in the town of Villa La Angostura. Unit I = 4 cm; Unit II 

915 = 3cm; Unit III = 5,5 cm. B) Tephra sequence on December 2016 located in Cerro Bayo (fig 1, S3), in 

916 a small Nothofagus forest at 1530 m, with a slope inclination of 35 ° (Fig.1b, S3). Unit I = 4 cm; Unit 

917 II = 1cm; Unit III = 6 cm; and remobilized tephra on the top.

918

919 Figure 3: Timeline between June 2011 and June 2012 showing the daily rainfall data measured at A) 

920 Rincón rain gauge, near Chile- Argentina border, and B) Villa La Angostura. Occurrences of lahar and 

921 flood events during this time are marked.

922
923 Figure 4: A) Photograph of a big ditch formed through road N. 231 during the 10 June 2011 lahar event 

924 near the Chile-Argentina border (photo Diario de Villa La Angostura, 

925 https://www.diarioandino.com.ar/). B) Lahar deposit at the foot of the “Diana” waterfall, located 100m 

926 upstream from road N. 231. C) Photograph of the 2 June 2012 flood event which damaged a house on 

927 the Totoral River alluvial plain (photo Diario de Villa La Angostura https://www.diarioandino.com.ar/) 

928 D) Photograph of the Totoral River and terrace with dead trees and flooding volcanic sediment deposit. 

929 The red line indicates the flood deposit. 

930 Figure 5: 1) Photograph of the 10 June lahar deposit, 100 m upstream from road N. 231 (L2 in Fig. 1b). 

931 The stratigraphic section represents 5 beds of alternating type A and type B lithofacies. 2) Photograph 

932 of an exposure of lahar deposit in “Diana waterfalls” creek (L2 in Fig 1b). The stratigraphic section 

933 shows a sequence of 7 beds with 3 different types of lithofacies (C, D and E). 

934 Figure 6: Sketch of tephra sequence and thicknesses for scenarios 1 and 2.
935
936 Figure 7: Plot of the percentage of unstable area against a range of cohesion from 0 to 1.5 kPa. Calculated 

937 with TRIGRS for scenario 1 and Colorado River upper catchment 

938
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939 Figure 8: Sketch illustrating the relationship between True positive (TR), False positive (FP), False 

940 negative and True negative. Simulated unstable area: Asim; observed source area: Aobs.

941 Figure 9A) Geomorphological map of six catchments in Villa la Angostura. River and catchment names: 

942 I-Las Piedritas, II-Colorado, III-Florencia, IV-La Ponderosa, V-Maderera Misiones, VI-El Muerto. B) 

943 Florencia river upper catchment on November 2011. On the left-side, rills formed just below the hillside 

944 crest, transporting tephra and rock boulder. On the right-side, tephra is removed by shallow landslides 

945 on the steep hillslope. C) Remobilized tephra deposit in a first order channel depression, located in the 

946 upper Colorado catchment.

947

948 Figure 10: Schematic evolution of tephra erosion between June 2011 and December 2016 in the 

949 Florencia River upper catchment. Arrows in figures A, B and C indicate the location of the photographs.

950

951 Figure 11: Instability maps obtained with SHALSTAB for scenario 1 with a critical rainfall of 5 mm/day 

952 and A) no cohesion and B) cohesion included. Different colours correspond to ranges of log(q/T) (Un. 

953 (un)stable: Unconditionally (un)stable).

954

955 Figure 12:  Time evolution of the percentage of unstable areas in the Colorado upper watershed 

956 calculated with TRIGRS for scenario 1, with layer thicknesses of a) 0.15 m and b) 0.2 m, and scenario 

957 2 with thicknesses of c) 0.1 m and d) 0.2 m. Simulations were performed with 3 different rainfall 

958 intensities and durations (3.3 mm/h, 24h; 1.6 mm/h, 48h; 0.83 mm/h, 72h). 

959

960 Figure 13:  Time evolution of the percentage of unstable areas in the Florencia Rivers upper watershed 

961 calculated with TRIGRS for scenario 1, with layer thicknesses of a) 0.15 m and b) 0.2 m, and scenario 

962 2 with thicknesses of c) 0.1 m and d) 0.2 m. Simulations were performed with 3 different rainfall 

963 intensities and durations (3.3 mm/h, 24h; 1.6 mm/h, 48h; 0.83 mm/h, 72h).

964

965 Figure 14: A) Map of observed lahar source areas in Florencia upper catchment. B, C) Instability maps, 

966 obtained with TRIGRS, for B) scenario 1 and C) scenario 2, with a constant rainfall flux of 3.3 mm/h 

967 for 24 hours The black line in B) and c) separates forested area on the lower side from bare soil area on 

968 the upper side.

969
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Table 1: Input parameters for SHALSTAB and TRIGRS (scenario 1: ash layer, unit III). Z: tephra 
fallout deposit thickness. Ksat was taken from literature. D0 was computed referring to the procedure 
reported by Rossi et al. (2013). T = Ksat* Z. φ´ and c´ were obtained from standard direct shear tests in 
the geotechnical laboratory of University of Salerno. γsat was investigated in the laboratory. α, θr and 
θs were estimated through analytical procedure. 

Z Ks  Do (1) T φ´ ϒs c´ θs θr α
(m) (m/s)  (m2/s)  (m2/s) (deg) kN/m3 (kPa) ths thr alp

0.15 5 x 10-5 5 x 10-5 7.5 x 10-6 38.4 15.6 0.5 0.62 0.06 0.08

Table 2: Input parameters for SHALSTAB and TRIGRS (scenario 2: lapilli layer, units I and II) Ksat 
was measured in the field. D0 was computed referring to the procedure reported by Rossi et al. (2013). 
T. φ´ and c´ were obtained from standard direct shear tests in the geotechnical laboratory of University 
of Salerno. γsat was investigated in the laboratory.

Z Ks  Do (1) T φ´ ϒs c´
(m) (m/s)  (m2/s)  (m2/s) (deg) kN/m3 (kPa)

0.1 3.9 x 10-2 1.8 x 10-2 5.8 x 10-3 53 13 0

Table 3: Rainfall intensities and duration used in TRIGRS simulations. We assumed that a constant 
rainfall flux of 3.3 mm/h for 24 hours represent a high intensity rainfall. As well, a medium intensity 
of 1.6 mm/h and a low intensity of 0.83 mm/day were considered for 48 hours and 72 hours, 
respectively. For forested area we considered a rainfall interception of 25% and calculated the 
intensities according to this.

Duration Rainfall intensity
 bare soil forested
h mm/h mm/h

24 3.30 2.50
48 1.60 1.25
72 0.83 0.63



Table 4: Percent of catchment area in each critical rainfall range for scenario 1 with SHALSTAB for 
the upper catchments Colorado and Florencia River

basin    Colorado Florencia Colorado Florencia
cohesion 0kPa 0kPa 0.5kPa 0.5kPa
class log (q/T) T q area area area  area 

  (m2/day) (mm/day) % % % % 
Un. unstable -10 0.648 0.3 7.3 21.6 0.5 0.3
unstable <-3.1 0.648 0.5 24.8 28.7 2.3 6.1
unstable -2.8 0.648 1.0 19.6 14.9 3.2 8.4
unstable -2.5 0.648 2.0 17.4 16.1 6.9 16.8
unstable -2.2 0.648 4.1 8.7 10.3 6.5 21.3
stable >1.9 0.648 8.2 4.3 5.7 4.6 14.4
Un. Stable 10 0.648  18.0 2.9 76.0 32.6
T: Transmissivity; q: critical rainfall; Un.: unconditionally    

Table 5: Summary of unstable percentage area for Colorado River and Florencia River upper 
catchment calculated with TRIGRS model for scenario 1 and 2, for 3 rainfall intensities and duration 
(3.3, 24h; 1.6, 48h; 0.83 mm/h, 72h) and two different tephra deposit thicknesses for each scenario.

model percentage of unstable area 
TRIGRS C (15cm) F (15cm) C (30 cm) F  (30cm)
S1, 24h 24.2% 68.0% 24.2% 68.0%
S1, 48h 24.2% 68.0% 24.2% 68.0%
S1, 72h 24.2% 68.0% 24.2% 68.0%
TRIGRS C (10cm) F (10 cm) C (20cm) F  (20cm)
S2, 24h 11.9% 44.6% 4.0% 11.0%
S2, 48h 6.5% 23.6% 2.9% 6.3%
S2, 72h 3.6% 9.2% 2.1% 3.7%

C: Colorado River upper catchment; F: Florencia River upper catchment; (15 cm): tephra deposit 
thickness; S1: scenario 1; s2: scenario 2.



Table 6: Performance evaluation for results from two scenario and three rainfall intensity and duration 
for TRIGS model and one scenario with and without cohesion for SHALSTAB model, based on 
Jaccard fit, model precision and model sensitivity.
 Validation metrics Bayesan metrics
Model and 
scenario Jaccard fit (RJ) Precision (RMP) Sensitivity (RMS)
TRIGRS S1, 24h 47.1% 56.9% 73.2%
TRIGRS S1, 48h 47.1% 56.9% 73.2%
TRIGRS S1, 72h 47.1% 56.9% 73.2%

TRIGRS S2, 24h 40.5% 62.9% 53.1%
TRIGRS S2, 48h 23.4% 61.3% 27.4%
TRIGRS S2, 72h 9.0% 55.7% 9.7%

SHALSTAB S1 48.0% 51.2% 88.6%
SHALSTAB S1 c 35.7% 52.5% 52.7%

S1: scenario 1; S2: scenario 2; c: cohesion; (RMP): Model Precision; (RMS): Model sensitivity

Table 7: Summary of unstable areas percent and volume for open land (bare soil) located in the 
Florencia and Colorado upper basin, for 2 scenarios with the models SHALSTAB and TRIGRS.

% of instable area
 Florencia UC Colorado UC
 SHALSTAB TRIGRS SHALSTAB TRIGRS
scenario S1 S1 S2 S1 S1 S2
Bare soil Hillslope 91.0 73.6 55.3 77.9 27.2 12.9
volume m3 33180.0 26970.0 13770.0 160140.0 44010.0 15760.0

S1: scenario 1; S2: scenario 2; UC: upper catchment; 




