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Abstract— Sentiment analysis or opinion mining is one of the
major topics in Natural Language Processing and Text Mining.
This paper will provide a complete process of sentiment analysis
from data gathering and data preparation to final classification
on a user-generated sentimental dataset with Naive Bayes and
Decision Tree classifiers. The dataset used for analysis is the
product reviews from Steam, a digital distribution platform.
The performance of different feature selection models and
classifiers will be compared. The trained classifier can be used
to make prediction for unlabeled reviews and help companies
to increase potential profits in global digital product market.

Index Terms: Sentiment Analysis, Naive Bayes, Decision
Tree, Feature Selection, Supervised Machine Learning, Text
mining

I. INTRODUCTION

According to Fang 2015 [1], sentiment is an attitude or
judgment based on feelings or experiences. One special type
of sentiment is people’s opinions after they consumed some
products, such as watching a movie or having a dinner. For
online stores or online market, former reviews can play an
important role in customer’s decision making process [2],
which indicates that an accurate prediction of sentiment from
a certain review can increase potential profit. In this case,
Sentiment analysis can be applied. The one important goal
of sentiment analysis is to measure the sentiment polarity of
text data [3]. On the other hand, social media such as Twitter,
Facebook and Yelp allow people to share their opinions
in a real time manner with each other. The exponential of
information includes an overwhelming amount of informa-
tion about people’s sentiments. For instance, the average
tweets people sent per day is approximately 500 million
referred to Krikorian [4], the VP in Twitter Inc. It makes
Internet a resourceful place to gather sentiment information.
Fortunately, many social media sites released the application
programming interfaces (APIs), which makes data collection
and data cleaning possible. For example, Twitter published
Analytics Tools in 2014 to help users build free interactive
dashboard. It can be used to summary Engagements of a
tweet through Engagement Rate, Number of Link clicks,
Number of Retweets, Number of Likes and Number of
Replies (For more details in https://analytics.twitter.com).
Twitter also provides Twitter Ads Campaigns services based
on the output from Analytics for business partner.

The reviews analyzed are from the global game market.
From Figure 1, there is a large market with more than 100
billion dollars annually and the market is still increasing
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Fig. 1: Global Game Market Report April 2018 by Newzoo.

rapidly. The values after 2018 in Figure 1 are predictions
from Newzoo. Unlike traditional products, digital products
such as games in most of cases can be only purchased online.
People cannot try the product before purchasing them. In
addition, people are less likely to get refund after they make
the purchases. Unlike movies, most of products does not
have trailers. Therefore, reviews may be the only source that
people can know more about the products’ user experience
before they actually buying them. Sentiment analysis can
be very necessary and meaningful for game products. The
data used for this research is the Steam Review Dataset
[5]. It is a binary sentiment classification dataset containing
over hundreds of millions reviews in multiple languages. It
is also well labeled by Steam community members. Steam
community members are providing insightful information
in terms of their opinions on games or other softwares.
Steam Database also provides API to access reviews and
user information. More details about the data can be found
in the Data Gathering section.

II. METHOD

A. Data Gathering

Several methods have been experimented to gather review
data from Steam. Three main methods are listed as following:

1) Steam Database: Real time data has been collected and
processed in several sites such as SteamDB and SteamSpy.
All of them are free third-party tools designed to give better
insight into the applications and packages. It provides more
comprehensive information than Steam official API. Some
digits were calculated and estimated with the algorithms
from other sources. It is one of the most convenient way
to know the data with interactive dashboard. In Figure 2,
it is an instance of estimated daily online player for Dota
2 in past three years. The red line is showing how many
Twitch viewers of this game. Like Youtube, Twitch is a large



online game steaming platform. The interactive dashboard
can be accessed with https://steamdb.info/app/570/graphs/.
It includes past six years data. The vitalizations can be
extremely helpful but they are not used in this study because
the raw data behind those plots were not allowed to be
scrapped. However, the latest updates allow user to download
the csv or XLs format of the data with a provided link. Now,
it may be the most effective way among only a few available
methods to get information on how many real time players
are online, the estimated number of sales and the number of
viewers in direct broadcast.

Fig. 2: Interactive dashboard for Players every day for Dota 2 in
past three years

2) Data Scrapping: In Github, some scrapper were devel-
oped to scrap reviews data directly from the official website.
Most of scrappers were built with Scrapy in Python. Both
products information and user reviews information can be
scrapped. The advantage of this method is the reviews are
most complete and updated. The disadvantage is very time
consuming. Error may occur if the scrapping speed or the
number of scrappers exceed the maximum limits. However,
the maximum limits are not indicated clearly. The scrapping
process is done by iterations. 20 reviews can be found from
each iteration. However, one error in one iteration can lead
to the fails of all the subsequent iterations. Moreover, it may
take a few days to scrap all reviews from Steam using this
method.

3) API: This is the finally chosen method. The first step
is to get all IDs and names for all products and the IDs were
saved to a list. The second step is to pull all the product
information with a product API by each ID obtained from
the step 1. The file obtained from API are json files. It is
saved after transforming to a csv data table. The next step is
using the ID again with a review API by each ID to get all the
reviews. Each product generates one json file. By merging all
the reviews together, a csv file is retained for analysis. The
reviews got from API are not in a real time manner but they
are updated regularly. Additionally, user information can be
download with user information API. An API key is needed
to use that API. There are lots of missing values so they are
removed from the final dataset.

Fig. 3: An example of review from Steam API

In Figure 3, it shows an example of raw data from Steam
Review Dataset. Areas in red boxes are the areas API can
access. More details about columns can be got from API can
be found in the Code & Data section.

B. Data Processing

1) Remove special characters and digits: Punctuations
were removed first. Even though the majority of reviews are
in English, there are still a small portion of reviews are in
Russia, Chinese, and other languages. Special characters and
digits were removed by only keeping the lower and upper
cases of English letters.

2) Lower case: From the last step, all texts other than
letters have been removed. Then it is necessary to transform
all the letters appeared in the reviews to lower case so as to
reduce the size of words.

3) Remove stop word: The stop words lists are from
NLTK package in Python. Other stop words are selected
manually based on the world cloud plot. For example, ”get”
is not a word in the original NLTK package but actually
appeared lots of times in the text and should be safely
ignored, it is treated as a stop word.

4) Stemming: Stemming was used to reduce the size of
words. The stemmer used is Porter Stemmer in NLTK.

5) Remove links: Links are removed because links may
not include sentiment information. Links are removed with
regular expression. If a string matches the form ”http://”, it
is removed.

6) Remove most frequently words: The threshold N is
defined as if a word appeared more than N reviews, this
word is removed. Words appear too frequently may contain
less information for sentiment analysis. The threshold N is
chosen with cross validation.

7) Remove most infrequently words: The threshold N is
defined as if a word appeared less than N reviews, this
word is removed. Words appear too infrequently may contain
less information for sentiment analysis. Most of the time
those words are misspelled or crated by a user. Such as
”Yaaaaaaaaaaaaaaaaaaaaaa”. The threshold N is chosen with
cross validation.

8) Correct misspelled word: Since there are some mis-
spelled words, methods have been attempted to correct them.
Packages in Python such as Hunspell and autocorrect have
been tried. Packages such as PyEnchant can also help to
check whether a word exists in English. However, there are
two reasons to explain why those methods may not be very
effective: (1) All of them are time-consuming. The basic idea
of Hunspell and autocorrect are calculating the distance of
possible misspelled worlds and correct words in a dictionary



based on some distance function then output the most similar
one . The whole process will take a long time for a large
amount of text since it takes some time to compute each word
in it. And it may still not reduce much word size compared
lower case and stemming. (2) Now automatic correcting tools
are almost everywhere. Most of the input method editors
(IME) can underline the misspelled words with a red line.
As a result, the remaining majority of misspelled words may
be misspelled on purpose, or in a more complex case, be
automatically corrected to another correct word by input
method editor. (3) All of those methods do not consider
the context. The correction is not accurate by ignoring the
context. So finally, this step is skipped.

9) Remove short reviews: After all of the steps above,
some reviews only have a few words. They are too short
and may bring noise to the classifier. The threshold N is
defined as once the number of words in the cleaned review
is less than N, then that review is removed.

After precessing, data is converted to a sparse two-
dimensional matrix. The rows and reviews have the same
number, the columns and unique words have the same
number as well. Each element represents the number of
appearances of each word in each review.

C. Feature Selection and Vectorizer

According to Forman, feature selection is essential to make
an efficient and more accurate classifier. Sharma in 2012 [8]
investigated the performance of different feature selection
methods for sentiment analysis. It shows that information
gain gives consistent results while gain ratio performs best
overall. This result is from a movie reviews data with 2000
documents. This experiment will be repeated for the Steam
Dataset.

1) N-gram: N-gram is a way to generate feature. Dave [7]
found that in some settings bigram and trigram perform better
than unigram. For bigram, every pair of words (w1,w2) next
to each other in the document is selected as a feature. In this
representation, a feature is associated with all the bigrams in
the document. The feature value is defined as the number
of times the bigram occurs in the document. For bigram
features, features in the unigram are also included. This is
the same for trigram, features from both bigram and unigram
are also included. The performance of unigram, bigram, and
trigram are tested with cross validation.

D. Popularity score

The number of positive, negative and neutral words can be
sat in three extra columns. However, they are removed from
the final model because they are accurate for stemmed word
in SentimentIntensityAnalyzer in Python’s NTLK package.
For example, awesome is a positive word with polar-
ity scores greater than 0.5, but the stemmed version of
awesome, which is awesom is a neutral word. Also, like
and likes have different polarity scores. So popularity score
was not used.

E. Information Gain

Information Gain (IG) is a measure of information gained
(in bits) for classifying a text document by evaluating the
presence or absence of a feature in a text document. A useful
feature should decrease more entropy than a useless feature.
For a binary classification problem, the entropy of a partition
D is given by

Info(D) = −
2∑

i=1

(Pi)log2(Pi)

where pi is the proportion of instances of each class or cat-
egory. For example, P1 represents the proportion of positive
reviews and P2 represents the proportion of negative reviews.

To classify the documents in D on some feature with
attributes A{a1, ...av}, the whole documents D will be split
into v partitions {D1, D2, ..., Dv}.The memory need to store
those small partitions are the entropy after splitting:

InfoA(D) = −
v∑

j=1

|Dj |
|D|
× Info(Dj)

where |Dj | is the number of documents in Dj and
Info(Dj) can be calculated the same way as the formula
above.

The formula for IG is simple but it may take a long time
to compute for a large dataset. IG for each word need to be
computed separately. For my dataset, the word vectorization
is saved to a sparse matrix in python and the label is saved to
another dataframe. It is time-consuming to count how many
instances in each label by summarizing columns in a sparse
matrix one by one. To simply the computation, the word
vectorization is transformed to a binary matrix rather than
the times of appearance. Each element is a binary variable
indicating the present of the word in the review. So v in
the above formula should always equal to 2. Also, only one
hundred thousand reviews are randomly selected for the IG
part. The number of features used for the final model is
selected with cross validation.

F. TF-IDF

TF-IDF is the short for term frequencyinverse document
frequency. It is a vectorizer and TFIDF-transformed data
can be used directly for the classifier. The term frequency
is calculated for each term in the review as

TF (t, d) =
number of times terms t appears in document d

total number of terms in documentd

where t is the term and d is the document.
The Inverse Document Frequency is calculated by

IDF (t, d) = log(
total number of documents D

number of documents wth the term in it
)

After calculating TF and IDF with the two formulas above,
the TFIDF is calculated by

TFIDF (t, d,D) = TF (t, d)× IDF (t,D)

TFIDF can be used as a feature selection method to select
top n features from all features with the largest weights. The



weight for each term is defined by taking average of that
term in all documents. The number of features selected for
the final model is chosen by cross validation.

Other improved version of TFIDF has been developed
to improve the performance. Wang 2010 [10], distribution
information among classes and inside a class is used to
develop the weights function. Moreover, Martineau in 2011
proposed Delta TFIDF [11] and the accuracy has dramati-
cally improved with SVM classier.

III. MODEL

A grid search is performed to find the best combination
of hyperparameters. The possible parameters can be tuned
including review minimum length, maximum of number of
reviews appeared, minimum of number of reviews appeared,
gram range, number of features, feature selection method,
include additional features or not, and model. The space of
paymasters are listed in the TABLE I:

TABLE I: Grid Search of hyperparameter space

Minimum Length 5,10
Minimum Appearance 10,50
Maximum Appearance 20,000,100,000

Gram Range (1,1),(1,2),(1,3)
Number of Features 100,500

Feature selection method IG, TFIDF
Include Additional Feature or not YES, NO

Model Tree, Gaussian Naive Bayes

The binary variable Include Additional Features is whether
include extra features from the Steam Review Dataset. The
whole list of additional features can be accessed with the
shared files in the Code & Data section. The six additional
features selected are viewer’s playtime forever, viewer’s
playtime in last two weeks, viewer number of games owned,
number of reviews viewer made in total, how many other
viewers votes up this review, and how many other reviewers
think this review is funny.

Cross validation is used for model evaluation, 75% of
all the data are randomly selected as training data and the
remaining 25% are testing data.

IV. RESULT

In gathered data, there are 7,705,997 reviews from 22,548
games are collected. Among those reviews, 6,410,832 re-
views are positive and 1,295,165 reviews are negative. Data
was balanced by keeping all the negative reviews and ran-
domly subset the same number of positive reviews from the
data. After gathering and cleaning the data, a world cloud is
showed in Figure 5.

Fig. 4: How many positive and negatives reviews for each game?

The red parts in the histogram in Figure 4 are the number of
positive reviews and the blue parts are the number of negative
reviews. Most of games have less than 20 reviews. On the
other hand, the top five most popular games got about 30%
of all reviews.

Fig. 5: Word Cloud for all words

The size of the word in this word cloud indicates the
frequency. This plots includes the frequency of all the
unigrams and bigrams. In this plot, there are some positive
words such as really fun, highly recommended, good story
and spend hours. Also, there are some negative words such
as waste of money, waste of time, unfortunately, and mean.
All the words here are stemmed format because the data used
was cleaned. This word cloud can also help to identify stop
word.

Fig. 6: Word Cloud for all words in positive reviews

In Figure 6, it shows the word cloud for all words appeared in
positive reviews. The word mean should be a negative word
but it seems to appear a lot of times in the positive reviews.
Other than mean, most words are positive and neutral.



Fig. 7: Word Cloud for all words in negative reviews

In figure 7, it shows the word cloud for all words appeared
in negative reviews. Most of those words are negative other
than some verbs such as know, tell, and turn.

Finally, 196 different model were fitted. 192 out of 196
models are fitted with TFIDF and only four models are fitted
with IG for comparison. Marginal distribution and density
plot is applied to visualize the results for the 192 models with
TFIDF. The assumption behind this marginal distribution is
due to the balance design of this grid search, the influence
of other factors can be safely ignored when studying the
marginal distribution of one variable. Figure 8 compares the
accuracy with or without six extra features. It is not clear
to see any pattern from this plot. This distribution may be
influenced by other variables.

Fig. 8: The Density Distribution of Accuracy: With or Without
Extra Feature

In Figure 9, it shows the comparison of how accuracy varies
among different number of features selected. The red line
is the density distribution of 100 features and the blue line
is the density distribution of 500 features. It is clear to see
that overall the blue line is on the right side of the red line,
which indicates that overall models with 500 features are
more accurate than the models with only 100 features. The
100 variables models may underfitting the data.

Fig. 9: The Density Distribution of Accuracy: 100 Features and
500 Features

Figure 10 compares the accuracy of Decision Tree Model
and Gaussian Naive Bayes Model. The Decision Tree Model
performs much better overall than the Gaussian Naive Bayes
Model. The reason to explain this may be the feature
selection method is TFIDF. The results should be different
if the feature selection method is IG.

Fig. 10: The Density Distribution of Accuracy: Decision Tree
Model and Gaussian Naive Bayes Model

Of course more density plots can be draw with the results
from the 192 models. Performance can be also measured
with precision and recall rather than accuracy alone.

Next, it is better to take a closer look at each model and
focus on one of the best models by ranking the accuracy,
precision and recall. A screen shot of top models is listed
in Figure 12. This is only the head of the performance table
with subset columns. The full table can be found in files in
the Code & Data section.In Figure 11, it shows the Receiver
Operating Characteristic Curve of the top model.

Fig. 11: ROC curve of the best model

The accuracy of the top model is about 74.95% with 70.25%
recall. Among top models, the minimum length for reviews
with 10 is better than 5. The minimum number appearance
of reviews most are 10 rather than 50. Also, trigram and
bigram perform a little better than the unigram but with a
overall similar average. Models with 500 features perform
totally better than models with 100 features. Decision Tree
model also performs better than the Gaussian model. Models
with extra features always perform better than the models
without extra features.

The accuracy of the models with features selected by IG
is about 60%. This is not comparable with TFIDF because
model with TFIDF uses all the reviews data but models



with IG only use ten thousand reviews for limited computing
power.

Fig. 12: Parameters for the best models

Compared with Decision Tree, Gaussian Naive Bayes re-
quires the assumption class conditional independence else
loss of accuracy. Also, by controlling the tee height, max-
imum leaf node size, and maximum number of features,
Decision Tree at each node can make feature selection again
by Information Gain or Gini Index. However, Gaussian Naive
Bayes can only use the features selected from the former
steps. Also, for a term, if there is no occurrences of a class
label then the frequency-based probability estimate will be
zero. Those are all disadvantages of Gaussian Naive Bayes
and they can lead to lower accuracy compared with Decision
Tree.

Fig. 13: What are terms in the best model?

In Figure 13, it shows the features selected by the best
model. Some terms have very strong sentiment, such as
waste, highly, fine, and really. The terms selected by TFIDF
do make sense.

Fig. 14: What terms selected by IG?

In Figure 14, it shows what words are selected by IG. It may
not agree with words selected by TFIDF because different
datasets are used for those methods. Also, for IG, only
unigram is used without bigram and trigram.

V. CONCLUSION

The aim of this study is to evaluate the performance for
sentiment analysis in terms of accuracy, precision, and recall.
We compared two supervised machine learning algorithms
of Decision Tree and Gaussian Naive Bayes for sentiment
analysis of the large scale Steam Review Dataset. The
experimental results show that for the Steam Review Dataset,
Decision Tree outperformed the Gaussian Naive Bayes and
achieved around 75% accuracy. It also proves that extra
features in Review dataset can help the Decision Tree to
get better performance.

VI. CODE & DATA

Code can be found in https://github.com/
zhenzuo2/IS_590_Final. All the ipython notebooks
are in knitted version. Also a script shell file is prvided to
run the py files. The folder Gather Data includes all the
codes needed to gather data in Python. The code should be
run with the following order (1) get detail.ipynb: Get all
products ID and product details. Product details are optional.
(2) getreview.ipynb: It can be run after getting the ID list
from the first file. Review data will be save to json files. (3)
to csv.ipynb: Convert the json review files to csv format. (4)
game detail.R: This is optional. Convert the json product
detail files to csv format.

The folder Classifier includes code to run the classifier. IG
and TFIDF are saved to separate files.

Output results are saved to the result folder.
The raw data and processed data can be found

in the Box folder https://uofi.box.com/s/
z6enk2qdl2dmgqau9wyp77jnr9cmqgil. Four files
are in this folder totally. (1) RawData.csv: the raw data from
Steam API. (2) CleanData.csv: processed data. The specific
processes are described in the data preparation section. (3)
BalanceData.csv: A balanced dataset wit equal amount of
positive reviews and negative reviews. (4) GameDetail.csv:
A detailed information of each game.
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