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Abstract

Cells of the immune system routinely respond to cues from their local environment and feedback 

to their surrounding through transient responses, choice of differentiation trajectories, plastic 

changes in cell state, and malleable adaptation to their tissue of residence. Genomic approaches 

have opened the way for comprehensive interrogation of such orchestrated responses. Focusing on 

genomic profiling of transcriptional and epigenetic cell state, we discuss how they are applied to 

investigate immune cells faced with various environmental cues. We highlight some of the 

emerging principles, on the role of dense regulatory circuitry, epigenetic memory, cell type 

fluidity, and reuse of regulatory modules, in achieving and maintaining appropriate responses to a 

changing environment. These provide a first step toward a systematic understanding of molecular 

circuits in complex tissues.

Introduction

Homeostasis is a hallmark of biological systems that actively maintain a near-constant 

function in the face of a changing environment. In most animals, multiple systems, from the 

cellular to the organismal level, including the immune system, the nervous system and 

fibroblasts in connective tissue, play crucial homeostatic roles, as they sense, respond and 

adapt to an ever-changing environment – both external and intra-organismal – in different 

tissues in the body. In particular, the immune system achieves tunability, plasticity and 

adaptability to the environment at several levels (Figure 1). First, immune cells have 

transient responses to diverse factors, such as microbes, vaccines, tissue damage, or cancer 

cells (1). Second, controlled differentiation from progenitor cells generates different cell 

type balances (2). Furthermore, cells exhibit plasticity, such that certain immune cells can 

change their identity in the context of new signals (3, 4). Finally, cells can locate and 

relocate throughout the body, adapting their identity to their locale (1, 5).
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These abilities are controlled by a complex molecular circuitry, both intra-cellular (within 

immune cells) and through interaction amongst immune cells, or between immune cells and 

other cell types, including cells of the nervous system or fibroblasts. Malfunction in each of 

these mechanisms can contribute and give rise to disease. Manipulating them, in turn, 

provides important avenues for therapies, as has been the case in autoimmune disease and 

cancer. However, given the diversity of molecules, cell types and tissues, as well as the 

inherent uncertainties and noise in both molecular systems and measurement techniques, 

systematic dissection of these intra- and inter- cellular circuitries is remarkably challenging.

Genomics approaches have opened unique opportunities to address this challenge (Figure 2). 

Profiling of the genome, epigenome, transcriptome, proteome, and metabolome has been 

instrumental in defining cell types and states and characterizing the molecular changes that 

occur as cells respond to their surroundings. Recently, single cell genomics can distinguish 

these with remarkable resolution, even when the types and states of immune cells are not 

necessarily known (6–8), and when they are embedded in complex tissues (6, 9, 10) with 

spatial resolution (11–13). Profiling assays, especially of molecular interactions with ChIP-

Seq (14) and interaction proteomics help identify key aspects of the underlying molecular 

mechanisms – such as key transcription factors (TFs) and regulatory regions. To determine 

causality, large-scale perturbations, either engineered with RNAi and CRISPR-based 

genome editing (15), or natural variation between individuals in a population (16–19), 

provide a systematic mean to assess the causal role of different circuit components, 

including the context of disease in vivo.

While these assays can be applied in principle to many systems, analysis of immune cell 

responses has been at the forefront, providing a paradigm for other systems. First, the 

identity of many immune cell sub-types is known, and they can be isolated for analysis from 

both humans and mice; this has been critical, especially prior to the advent of single cell 

genomics. Furthermore, many primary immune cells can be studied both ex vivo and in vivo, 

including adoptive transfer of cells, bone marrow transplants and lineage tracing in animal 

models (6, 20, 21). Finally, immune cells are present throughout the body, differentiate 

continuously, and are implicated in many diseases, thus providing a broad lens into 

organismal physiology.

Here, we highlight the power of genomics to dissect environmental responses in immune 

cells. We focus on assays related to the regulation of mRNA expression, especially 

transcriptional and epigenetic profiling. Using macrophages and T cells as case studies, we 

illustrate the types of features that are underscored with different profiles, the resulting 

testable hypotheses that can be followed up in dedicated low-throughput experiments, and 

the emerging organizing principles (Figure 3). Finally, we discuss how these lessons, learned 

in immune cells, can be extended to develop approaches to dissect the overall function of 

diverse cells in maintaining homeostasis.
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Molecular responses of the immune system through transient intracellular 

circuits

Macrophages, innate immune cells of the myeloid lineage serve key immune defense 

functions through phagocytosis, and by communicating with adaptive immune cells through 

antigen presentation and secretion of and response to cytokines and chemokines (22–24). 

Mononuclear phagocyte subpopulations are located in the circulatory system and spleen and 

can differentiate into macrophages, but macrophages also reside in other tissues where they 

acquire specific characteristics and contribute to local hemostasis (1, 22, 23).

In their role as immune sensors, macrophages express pattern recognition molecules (e.g., 
Toll like receptors (TLR)), which detect conserved pathogen-associated or tissue damage-

associated molecular patterns, and mount the appropriate response. Genomic analysis of 

macrophages provided key insights on how these transient responses (Figure 1a) are carried 

out. For instance, transcriptional profiling along a time course following TLR4 activation 

with bacterial lipopolysaccharide (LPS), an inducer of inflammation, showed that genes are 

induced in several consecutive “waves” (25), a phenomenon observed in many other 

response systems (26) (Figure 3). The response waves are regulated through successive 

activation of transcriptional regulators (27, 28), whose identity can be predicted from DNA-

binding motifs enriched in the 5’ regions. This approach helped identify activating TF 3 

(ATF3) as an early regulator of the LPS response in macrophages (25). ATF3 was then 

shown to recruit histone deacetylase to repress its target genes – thus forming a negative 

feedback. This mechanism may be essential for controlling the extent and duration of TLR-

induced inflammation during infection, avoiding rampant inflammation and tissue damage.

The importance of epigenetic regulation as a way of controlling macrophage activation was 

further demonstrated by investigating the formation of “memory” in antigen-exposed 

macrophages (Figure 3) – where macrophages repeatedly exposed to a specific component 

(e.g., LPS) become tolerant, and selectively produce anti-microbial, but not pro-

inflammatory signals, to avoid tissue damage (27, 28). Profiling of gene expression and 

histone modifications (Figure 3) during the macrophage response to repeated stimulation 

reveals that tolerant genes that are not re-induced in repeated exposure to LPS are enriched 

for pro-inflammatory functions, and are transiently silenced by loss of activating histone 

marks. Conversely, non-tolerant genes are enriched for anti-microbial functions and are 

associated with a faster and stronger transcriptional response upon LPS re-stimulation 

(compared to the primary stimulation), through persistence or rapid acquisition of activating 

histone marks (H3 trimethylation and H4 acetylation respectively) and recruitment of RNA 

polymerase II (Pol II) and chromatin remodeling complexes. These distinct epigenetic 

mechanisms depend on the protein products generated during the first exposure to LPS, 

emphasizing the common role of negative feedback in controlling innate immune response 

(26, 29) (Figure 3).

Depending on their tissue of origin and stimulus, macrophages can acquire distinct 

functional states. Two well-studied states are pro-inflammatory M1 cells, derived in the 

presence of interferon gamma, and immuno-suppressive M2 cells that can be induced with 

interleukin 4 or 13 (30). Profiling the transcriptional response of monocyte-derived 
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macrophages to a more diverse set of stimuli suggests that macrophages can mount diverse 

transcriptional programs beyond these two states, depending on the metabolites, cytokines, 

and ligands to which they are exposed (30). Computational analyses of gene modules that 

are co-regulated across programs suggested that diversity between programs is generated by 

different combinations of active transcriptional regulators (Figure 3). Some of these 

regulators are “re-used” across all programs (e.g., the lineage specifying factor PU.1), 

whereas others are important only in certain contexts (e.g., STAT1 and STAT6, in the 

interferon gamma and interleukin 4 responses, respectively). Mapping the diverse activation 

programs also provided a way to decompose bulk samples into constituent responses, for 

instance, proposing that alveolar macrophages from chronic obstructive pulmonary disease 

patients are depleted in the inflammatory (M1) state, which may explain their poor response 

to anti-inflammatory therapeutics. Such analysis could further benefit from application of 

single-cell genomics (Figure 3).

Systematic perturbations have helped establish the causality of these observations. Causal 

loci were discovered either by associating natural genetic variation with variation in the 

transcriptional response across human individuals (16, 18, 19) or mouse strains (17), or by 

perturbing genes and measuring the effect on the transcriptome (15, 29).

Balanced differentiation from progenitor cells

The diverse cell types of the hematopoietic system are organized in a taxonomy along 

different lineages, and are produced daily from a small pool of stem cells (Figure 1b). The 

composition of hematopoietic cell subsets is tightly controlled, ensuring both homeostatic 

control and responsiveness to environmental cues. As in studies of transient immune 

responses, genomic and epigenomic profiling have shed light on the transcriptional shifts 

during hematopoiesis and the regulatory programs that govern them (Figure 3), primarily 

focusing on unperturbed, homeostatic conditions in humans (2, 31) and mice (14, 32). 

Transcriptional profiling revealed substantial expression changes between hematopoietic cell 

subtypes, comparable to those between different tissues (2). Computational analysis of these 

data, focused on “modules” of co-regulated genes and the regulators associated with them, 

has identified global organizing principles in hematopoiesis that may also apply more 

generally (Figure 3).

First, a large set of predicted transcriptional regulators (across all hematopoietic lineages) 

form a dense inter-connected network of regulatory interactions in each cell type, and with 

the same regulator used in multiple hematopoietic subsets. This organization may confer 

robustness, but could also be liable to dysregulation and cancer (2). This model challenged 

and expanded an earlier hierarchal model of hematopoiesis controlled by a small number of 

TFs, expressed sequentially (33).

Furthermore, there is no simple partitioning of regulatory activity at different lineages. 

Instead, entire modules of co-regulated genes, along with their upstream regulators are re-

used across distinct lineages, either because of shared functional needs in otherwise different 

cells (e.g., mitochondrial and oxidative phosphorylation in erythroid progenitors, 

granulocytes and monocytes (2)), or due to shared developmental descent. This latter pattern 
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is often reflected in “transitional” cases (Figure 3), with a gradual onset and offset of 

programs along the hematopoietic cell hierarchy (2). The transitional gene modules could be 

explained by either the presence of cells at different phases of development within 

seemingly pure populations of progenitor cells, or because regulatory programs of a more 

differentiated state are foreshadowed by pre-existing programs at earlier stages. Both models 

are plausible, and non-exclusive, the second model is strongly supported by profiling of TF 

binding in humans (2) and of chromatin organization in hematopoiesis in mice (14) and 

humans (31), where a large portion of the enhancers exhibited a “transitional” behavior – 

already established in the precursor cells, possibly in a poised (and transcriptionally 

inactive) state. Single cell RNA-Seq studies can help further address how transition to 

multiple lineages is concomitantly encoded in progenitor cells. To date, some studies 

suggested there may be distinct subsets within myeloid progenitor cells that are partially 

skewed towards distinct functional fates by the expression of key sub-lineage regulators 

(34), whereas others emphasized evidence for obligatory mixed-lineage states within the 

same single progenitor cell (35).

While it is tempting to think of hematopoiesis as stereotypic, differentiation is affected and 

driven by the environment, including not only the stromal niche and other immune cells, but 

also stress and pathogens (27, 36). For example, stress signals can lead to production of 

more innate immune myeloid cells at the expense of other lineages, especially lymphoid 

cells (36). Furthermore, distinct subpopulations of stem and progenitor cells can be activated 

(37) to produce cytokines that affect core immune responses. Genomic analysis, including at 

the single cell level, will shed more light on the regulation of hematopoiesis by such signals.

Plasticity of cell differentiation

As immune cells become more committed, differentiation and balancing between sub-

lineages become even more intertwined with environmental responses. For example, naïve T 

helper (Th) cells can differentiate into multiple specialized cell types, including conventional 

(Tconv) Th cells (e.g., Th1, Th2, Th17, Th9 cells) and regulatory Th cells (e.g., Treg, Tr1) 

(4). Given the diverse, and partially opposing functions of different Th cells (4), it is critical 

to maintain their correct blend, in a manner sensitive to and controlled by environmental 

signals. First, the relative proportion of Th subtypes that will develop from a limited pool of 

naive Th cells is regulated by the blend of cytokines to which a naive cell is exposed, often 

produced by antigen presenting cells (e.g., to Treg cells in the presence of TGF-s, but 

skewed to Th17 cells if interleukin 6 is also present). Second, while differentiated Th cell 

sub-types can be maintained stably over time, including in the memory pool (38), some can 

also transition into other, parallel sub-types (Figure 1c), depending on extra-cellular signals, 

from cytokines, to oxygen or nutrients (39), to components of the microbiome (3). The 

process leading to these diverse types is often called polarization, rather than terminal 

differentiation, and the change between the types is referred to as plasticity (1, 4), and can 

play critical physiological roles. For example, plastic polarization of tissue-resident 

macrophages helps fulfill changing functional demands from the tissue in which they reside 

(1, 40); Th cell plasticity could allow an organism to respond to a changing environment 

even if cells were originally committed to the memory pool in a different state (20).
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The distinction between a permanent and plastic state can be defined in principle, but 

challenging to identify in practice (41) because it can be hard to determine whether a stable 

state is permanent, and whether a cell’s expression of a marker of one type and functions of 

another is not mere noise (41). Genomic profiling coupled with lineage tracing and 

functional studies were instrumental in addressing these questions by defining the spectrum 

of cell states that can be attained by Th cells, the transition between states through 

differentiation and polarization, and the underlying regulatory mechanism (Figure 3).

Using the RNA profile of the cell as it’s functional identity, and coupled it to lineage tracing 

has helped identify both how a cell state it stably maintained and when it shifts plastically 

((20, 38, 42), reviewed in (4)). For example, Th17 cells can begin to express both cytokines 

and seminal TFs of other Th cells (20), but these could reflect either transition to another 

type, or a transient functional deviation. Lineage tracking of Th17 cells in the gut followed 

by RNA-Seq, showed that they can adopt a transcriptional signature of regulatory T cells 

and anti-inflammatory capacity. Conversely, tracing Th17 cells in a melanoma mouse model 

showed that while they can acquire transcriptional features of Th1 cells, they remain distinct 

from similarly traced Th1 cells, acquiring a stem-cell like signatures and longevity, with 

increased tumor eradication capacity (38).

While these studies profiled cell populations defined by cell surface, cytokine or TF 

expression, recent single cell genomic studies (6, 43) have increased the resolution at which 

we characterize cellular populations and their fluidity. For example, Th17 cells were shown 

to span a continuum of states, from higher expression of a program associated with 

pathogenic effect to one characteristic of regulatory cells, with distinct regulators for each 

program (6). Single cell RNA-Seq also provides a way for lineage tracing, by capturing the 

sequence of the T cell receptor transcript (10, 44, 45).

Profiling of chromatin organization, especially histone marks, across different Th cell types 

highlighted how epigenetic memory maintains cell state stably, while remaining sufficiently 

malleable to allow for plasticity (Figure 3). While signature cytokines often have a 

chromatin pattern congruent with strict cell type definitions, chromatin at other key signature 

genes of one lineage is not always repressed in other Th lineages, offering a possible basis 

for future plasticity. Indeed, chromatin marks and accessibility can change even for signature 

cytokines or TFs following stimulation (46). Conversely, DNA de-methylation and stable 

chromatin organization, with contribution from chromatin regulators and long non-coding 

RNAs, play an important role in stability. For instance, de-methylation of specific regulatory 

elements in a CpG island in the locus of Foxp3, a key regulator of Treg cells, helps 

stabilizing the cells’ identity, further reinforced by a transcriptional positive feedback loop 

(47). The ability of chromatin organization to function as a malleable memory device, is 

reflected by the preponderance of DNA variants associated with autoimmune disease that 

map to enhancer and other regulatory regions in Th cells (48).

Finally, RNA and TF ChIP-seq profiles, combined with genetic perturbations, have shed 

light on the intricate intracellular circuits controlling these processes in Treg (49) and 

inflammatory Th17 cells (50, 51). For example, in Th17 cells they revealed a “Yin-Yang” 

network of TFs, with two densely connected self-reinforcing, but mutually antagonistic, 
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modules: a larger module promotes the Th17 cell fate and suppresses alternative fates, and a 

smaller module has an opposite function. The dense, interconnected positive module 

provides stability; as has also been proposed for other Th lineages (42, 49). The smaller 

negative module could promote alternative plastic fates.

Malleable cell states mirror tissue location

Immune cells sense, adapt, respond to and affect their environment in the context of the 

tissue (Figure 1d). Tissue-resident immune cells, sometimes life-long sessile inhabitants, 

play critical roles in homeostasis and pathology, well beyond responses to pathogens. 

Tissue-resident macrophages perform unique functions as “accessory cell types” (1) that 

serve “client” primary cells defining the respective tissue. For example (1, 23), alveolar 

macrophages are critical for surfactant homeostasis in the lungs, microglia are essential for 

synaptic pruning in the brain, osteoclasts are critical for the dynamic balance of bone, and 

splenic red-pulp macrophages help manage heme and iron from aging red blood cells. 

Tissue-resident Tregs (5) have been identified in visceral adipose tissue (VAT) (52, 53), the 

intestine (54), muscle (55), and lung (56), with roles from metabolic homeostasis to tissue 

repair and regeneration.

Genomic analysis has played a critical role in identifying tissue-resident immune cells, 

characterizing their unique features, determining their tissue-specific functions, and inferring 

the principles and mechanisms by which they adapt to the diversity of tissues in the body 

and their changing local conditions.

RNA profiling has identified the level at which immune cells of a single “type” vary given 

their tissue-of-residence (Figure 3). In addition to a core set of macrophage-associated 

genes, tissue resident macrophages (18, 21, 40, 57) express distinct gene modules in each 

tissue type. For example, brain-resident microglia (which are deposited prenatally), develop 

lock-step with the rest of the CNS during brain development and are susceptible to 

environmental signals pre-natally (58). Tregs isolated from different tissues have shown a 

similar distinctions (52–55). The profiles and derived signatures then become the fingerprint 

of the cell’s identity, and – when coupled to transfer, chimera or lineage tracing experiments 

– can establish if a cell is stably resident in a tissue (52). They also allow us to follow their 

clonal expansion in response to stimulus. It is possible that other immune lineages may also 

follow such principles; single cell profiling of entire tissues (9, 10) will help determine this.

Individual genes expressed in these tissue-specific modules – including TFs, cytokines, 

chemokines and receptors – provide critical starting points to determine the cells’ functions 

(e.g., lipid metabolism in Tregs in VAT (53), regulatory mechanisms (e.g., Gata6 in 

peritoneal macrophages (57)), and interaction with other tissue cell (e.g., Treg-adipocyte 

interaction through IL10 (53)). The exquisite tunability reflected by these programs, led in 

turn to the exploration of how they are diversely yet stably imprinted on a cell type based on 

its local environment (1). Two distinct mechanisms (or a blend thereof) can in principle 

underlie this phenomenon: a pre-programmed set of states, both preceding and succeeding 

tissue residence; and/or an environmentally-directed process, either permanent (tissue-

resident differentiation) or signal-dependent (plasticity).
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Epigenomic analysis of macrophages from different tissues strongly supports the signal-

dependent model. Tissue resident macrophages have distinct enhancer landscapes compared 

to promoters, with a large number of unique, tissue-specific, poised and active enhancers. 

These enhancers can be substantially – albeit not completely – reprogrammed by 

environment-specific signals in either bone marrow transplant, tissue transfer experiments or 

ex vivo manipulations (18, 21). As for Th cell plasticity, differential enhancer usage may 

underlie the preponderance of genetic variants associated with human immune disease in 

enhancer regions (48).

Combinatorial regulation by TFs helps in turn to establish transcriptional programs for tissue 

resident macrophages. During differentiation, a first layer of lineage determining “pioneer” 

factors delineates cell-type specific enhancers through nucleosome repositioning and 

recruitment of histone modifying enzymes; after differentiation, a second layer of signal-

dependent factors binds in those pre-existing loci. Some enhancers are shared across all 

tissue resident macrophages (18, 21), but are only poised, and signal-dependent factors 

modulate the activity of this pre-existing enhancer repertoire to achieve context-dependent 

gene expression. Other enhancers are formed “de novo” to create epigenetic memory of 

tissue-residence. Thus, signal-dependent (40), tissue-specific TFs can either work 

cooperatively with the macrophage pioneer factor PU.1 to form new enhancers or can 

activate poised enhancers that have been formed and pre-bound by Pu.1. This mechanism 

can also account for transient tissue-resident programs.

Tissue-specific Tregs also exhibit cooperation between tissue-specific and lineage-specific 

factors (18, 21, 40, 53). For example, PPARγ, the master regulator of adipocyte 

differentiation, is the key regulator of the tissue specific program in visceral adipose tissue 

(VAT) Tregs (53). PPARγ in adipose tissue Tregs responds to the tissue’s signal of insulin 

and orchestrates the relevant metabolic response, mediated through the same biochemical 

and molecular mechanisms as in adipocytes. It is tempting to speculate that this intracellular 

“molecular mirroring” between two different cell types in a single tissue, could help 

synchronize not only their response to signal but also how this signal is precisely processed 

and affects the same output modules, beyond what could be achieved by inter-cellular 

communication alone. Such mirroring could exist between other cell types in tissue, immune 

and non-immune.

Perspective: Towards a tissue circuit

The cellular environment is interwoven into a single integrated whole in tissues, bringing 

together diverse cell types – epithelial, immune, neurons, stromal and more – as they 

differentiate and respond to each other, microbes, nutrients, and other stimuli. These 

responses can be transient, permanent or plastic, and include migration. Every aspect of this 

“tissue circuit”, including the proportion of cell types, and their states, function and 

interactions, changes as the local environment varies.

Dissecting how cells interact to maintain tissue function requires knowing the census of cell 

types and states, their biological roles in the tissue, the signals received and emitted by each 

cell and their effects, and the cascade of events underlying dynamic tissue processes. 
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Addressing these questions requires the ability to profile the individual cells that comprise 

the tissue, consider their spatial position and physical interactions in faithful biological 

samples, have computational means to reconstruct molecular-level quantitative models that 

combine intra-cellular with inter-cellular circuits, and functional means to test them. Recent 

technological breakthroughs – in single cell genomics (59) spatially resolved profiling (12, 

13), systematic genetic perturbations (15), and access to tissue biopsies and orgnaoids 

provide promising steps in that direction.

Analysis at a whole-tissue level should provide an unprecedented view into the cellular and 

molecular composition of tissues and an understanding of the molecular and functional 

interactions by which cells cooperate to fulfill tissue function and maintain homeostasis. 

Ultimately, such an understanding will have the potential to be translated to exceptionally 

effective new therapies that can restore tissue function and human health.

Acknowledgments

AR was supported by the Howard Hughes Medical Institute. NY was supported by NIH grants U01MH105979 and 
U01HG007910.

References

1. Okabe Y, Medzhitov R. Tissue biology perspective on macrophages. Nature immunology. 2016; 
17:9–17. published online EpubJan. [PubMed: 26681457] 

2. Novershtern N, Subramanian A, Lawton LN, Mak RH, Haining WN, McConkey ME, Habib N, 
Yosef N, Chang CY, Shay T, Frampton GM, Drake AC, Leskov I, Nilsson B, Preffer F, 
Dombkowski D, Evans JW, Liefeld T, Smutko JS, Chen J, Friedman N, Young RA, Golub TR, 
Regev A, Ebert BL. Densely interconnected transcriptional circuits control cell states in human 
hematopoiesis. Cell. 2011; 144:296–309. published online EpubJan 21. [PubMed: 21241896] 

3. Bonelli M, Shih HY, Hirahara K, Singelton K, Laurence A, Poholek A, Hand T, Mikami Y, Vahedi 
G, Kanno Y, O'Shea JJ. Helper T cell plasticity: impact of extrinsic and intrinsic signals on 
transcriptomes and epigenomes. Current topics in microbiology and immunology. 2014; 381:279–
326. [PubMed: 24831346] 

4. DuPage M, Bluestone JA. Harnessing the plasticity of CD4(+) T cells to treat immune-mediated 
disease. Nature reviews. Immunology. 2016; 16:149–163. published online EpubMar. 

5. Panduro M, Benoist C, Mathis D. Tissue Tregs. Annual review of immunology. 2016; 34:609–633. 
published online EpubMay 20. 

6. Gaublomme JT, Yosef N, Lee Y, Gertner RS, Yang LV, Wu C, Pandolfi PP, Mak T, Satija R, Shalek 
AK, Kuchroo VK, Park H, Regev A. Single-Cell Genomics Unveils Critical Regulators of Th17 
Cell Pathogenicity. Cell. 2015; 163:1400–1412. published online EpubDec 3. [PubMed: 26607794] 

7. Shalek AK, Satija R, Adiconis X, Gertner RS, Gaublomme JT, Raychowdhury R, Schwartz S, Yosef 
N, Malboeuf C, Lu D, Trombetta JJ, Gennert D, Gnirke A, Goren A, Hacohen N, Levin JZ, Park H, 
Regev A. Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells. 
Nature. 2013; 498:236–240. published online EpubJun 13. [PubMed: 23685454] 

8. Shalek AK, Satija R, Shuga J, Trombetta JJ, Gennert D, Lu D, Chen P, Gertner RS, Gaublomme JT, 
Yosef N, Schwartz S, Fowler B, Weaver S, Wang J, Wang X, Ding R, Raychowdhury R, Friedman 
N, Hacohen N, Park H, May AP, Regev A. Single-cell RNA-seq reveals dynamic paracrine control 
of cellular variation. Nature. 2014; 510:363–369. published online EpubJun 19. [PubMed: 
24919153] 

9. Jaitin DA, Kenigsberg E, Keren-Shaul H, Elefant N, Paul F, Zaretsky I, Mildner A, Cohen N, Jung 
S, Tanay A, Amit I. Massively parallel single-cell RNA-seq for marker-free decomposition of 
tissues into cell types. Science. 2014; 343:776–779. published online EpubFeb 14. [PubMed: 
24531970] 

Yosef and Regev Page 9

Science. Author manuscript; available in PMC 2016 November 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



10. Tirosh I, Izar B, Prakadan SM, Wadsworth MH 2nd, Treacy D, Trombetta JJ, Rotem A, Rodman C, 
Lian C, Murphy G, Fallahi-Sichani M, Dutton-Regester K, Lin JR, Cohen O, Shah P, Lu D, 
Genshaft AS, Hughes TK, Ziegler CG, Kazer SW, Gaillard A, Kolb KE, Villani AC, Johannessen 
CM, Andreev AY, Van Allen EM, Bertagnolli M, Sorger PK, Sullivan RJ, Flaherty KT, Frederick 
DT, Jane-Valbuena J, Yoon CH, Rozenblatt-Rosen O, Shalek AK, Regev A, Garraway LA. 
Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science. 
2016; 352:189–196. published online EpubApr 8. [PubMed: 27124452] 

11. Angelo M, Bendall SC, Finck R, Hale MB, Hitzman C, Borowsky AD, Levenson RM, Lowe JB, 
Liu SD, Zhao S, Natkunam Y, Nolan GP. Multiplexed ion beam imaging of human breast tumors. 
Nat Med. 2014; 20:436–442. published online EpubApr. [PubMed: 24584119] 

12. Chen KH, Boettiger AN, Moffitt JR, Wang S, Zhuang X. RNA imaging. Spatially resolved, highly 
multiplexed RNA profiling in single cells. Science. 2015; 348:aaa6090. published online EpubApr 
24. [PubMed: 25858977] 

13. Liu Z, Gerner MY, Van Panhuys N, Levine AG, Rudensky AY, Germain RN. Immune homeostasis 
enforced by co-localized effector and regulatory T cells. Nature. 2015; 528:225–230. published 
online EpubDec 10. [PubMed: 26605524] 

14. Lara-Astiaso D, Weiner A, Lorenzo-Vivas E, Zaretsky I, Jaitin DA, David E, Keren-Shaul H, 
Mildner A, Winter D, Jung S, Friedman N, Amit I. Immunogenetics. Chromatin state dynamics 
during blood formation. Science. 2014; 345:943–949. published online EpubAug 22. [PubMed: 
25103404] 

15. Parnas O, Jovanovic M, Eisenhaure TM, Herbst RH, Dixit A, Ye C, Przybylski D, Platt RJ, Tirosh 
I, Sanjana NE, Shalem O, Satija R, Raychowdhury R, Mertins P, Carr SA, Zhang F, Hacohen N, 
Regev A. A genome-wide CRISPR screen in primary immune cells to dissect regulatory networks. 
Cell. 2015 In Press. 

16. Fairfax BP, Humburg P, Makino S, Naranbhai V, Wong D, Lau E, Jostins L, Plant K, Andrews R, 
McGee C, Knight JC. Innate immune activity conditions the effect of regulatory variants upon 
monocyte gene expression. Science. 2014; 343:1246949. published online EpubMar 7. [PubMed: 
24604202] 

17. Gat-Viks I, Chevrier N, Wilentzik R, Eisenhaure T, Raychowdhury R, Steuerman Y, Shalek AK, 
Hacohen N, Amit I, Regev A. Deciphering molecular circuits from genetic variation underlying 
transcriptional responsiveness to stimuli. Nature biotechnology. 2013; 31:342–349. published 
online EpubApr. 

18. Gosselin D, Link VM, Romanoski CE, Fonseca GJ, Eichenfield DZ, Spann NJ, Stender JD, Chun 
HB, Garner H, Geissmann F, Glass CK. Environment drives selection and function of enhancers 
controlling tissue-specific macrophage identities. Cell. 2014; 159:1327–1340. published online 
EpubDec 4. [PubMed: 25480297] 

19. Lee MN, Ye C, Villani AC, Raj T, Li W, Eisenhaure TM, Imboywa SH, Chipendo PI, Ran FA, 
Slowikowski K, Ward LD, Raddassi K, McCabe C, Lee MH, Frohlich IY, Hafler DA, Kellis M, 
Raychaudhuri S, Zhang F, Stranger BE, Benoist CO, De Jager PL, Regev A, Hacohen N. Common 
genetic variants modulate pathogen-sensing responses in human dendritic cells. Science. 2014; 
343:1246980. published online EpubMar 7. [PubMed: 24604203] 

20. Gagliani N, Amezcua Vesely MC, Iseppon A, Brockmann L, Xu H, Palm NW, de Zoete MR, 
Licona-Limon P, Paiva RS, Ching T, Weaver C, Zi X, Pan X, Fan R, Garmire LX, Cotton MJ, 
Drier Y, Bernstein B, Geginat J, Stockinger B, Esplugues E, Huber S, Flavell RA. Th17 cells 
transdifferentiate into regulatory T cells during resolution of inflammation. Nature. 2015; 
523:221–225. published online EpubJul 9. [PubMed: 25924064] 

21. Lavin Y, Winter D, Blecher-Gonen R, David E, Keren-Shaul H, Merad M, Jung S, Amit I. Tissue-
resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell. 2014; 
159:1312–1326. published online EpubDec 4. [PubMed: 25480296] 

22. Amit I, Winter DR, Jung S. The role of the local environment and epigenetics in shaping 
macrophage identity and their effect on tissue homeostasis. Nature immunology. 2016; 17:18–25. 
published online EpubJan. [PubMed: 26681458] 

23. Lavin Y, Mortha A, Rahman A, Merad M. Regulation of macrophage development and function in 
peripheral tissues. Nature reviews. Immunology. 2015; 15:731–744. published online EpubDec. 

Yosef and Regev Page 10

Science. Author manuscript; available in PMC 2016 November 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



24. Wynn TA, Chawla A, Pollard JW. Macrophage biology in development, homeostasis and disease. 
Nature. 2013; 496:445–455. published online EpubApr 25. [PubMed: 23619691] 

25. Gilchrist M, Thorsson V, Li B, Rust AG, Korb M, Roach JC, Kennedy K, Hai T, Bolouri H, 
Aderem A. Systems biology approaches identify ATF3 as a negative regulator of Toll-like receptor 
4. Nature. 2006; 441:173–178. published online EpubMay 11. [PubMed: 16688168] 

26. Yosef N, Regev A. Impulse control: temporal dynamics in gene transcription. Cell. 2011; 144:886–
896. published online EpubMar 18. [PubMed: 21414481] 

27. Foster SL, Hargreaves DC, Medzhitov R. Gene-specific control of inflammation by TLR-induced 
chromatin modifications. Nature. 2007; 447:972–978. published online EpubJun 21. [PubMed: 
17538624] 

28. Hargreaves DC, Horng T, Medzhitov R. Control of inducible gene expression by signal-dependent 
transcriptional elongation. Cell. 2009; 138:129–145. published online EpubJul 10. [PubMed: 
19596240] 

29. Amit I, Garber M, Chevrier N, Leite AP, Donner Y, Eisenhaure T, Guttman M, Grenier JK, Li W, 
Zuk O, Schubert LA, Birditt B, Shay T, Goren A, Zhang X, Smith Z, Deering R, McDonald RC, 
Cabili M, Bernstein BE, Rinn JL, Meissner A, Root DE, Hacohen N, Regev A. Unbiased 
reconstruction of a mammalian transcriptional network mediating pathogen responses. Science. 
2009; 326:257–263. published online EpubOct 9. [PubMed: 19729616] 

30. Xue J, Schmidt SV, Sander J, Draffehn A, Krebs W, Quester I, De Nardo D, Gohel TD, Emde M, 
Schmidleithner L, Ganesan H, Nino-Castro A, Mallmann MR, Labzin L, Theis H, Kraut M, Beyer 
M, Latz E, Freeman TC, Ulas T, Schultze JL. Transcriptome-based network analysis reveals a 
spectrum model of human macrophage activation. Immunity. 2014; 40:274–288. published online 
EpubFeb 20. [PubMed: 24530056] 

31. Corces MR, Buenrostro JD, Wu B, Greenside PG, Chan SM, Koenig JL, Snyder MP, Pritchard JK, 
Kundaje A, Greenleaf WJ, Ravindra M, Chang HY. Lineage-specific and single cell chromatin 
accessibility charts human hematopoiesis and leukemia evolution. Nature genetics. 2016 In press. 

32. Jojic V, Shay T, Sylvia K, Zuk O, Sun X, Kang J, Regev A, Koller D, Immunological Genome 
Project C, Best AJ, Knell J, Goldrath A, Joic V, Koller D, Shay T, Regev A, Cohen N, Brennan P, 
Brenner M, Kim F, Rao TN, Wagers A, Heng T, Ericson J, Rothamel K, Ortiz-Lopez A, Mathis D, 
Benoist C, Bezman NA, Sun JC, Min-Oo G, Kim CC, Lanier LL, Miller J, Brown B, Merad M, 
Gautier EL, Jakubzick C, Randolph GJ, Monach P, Blair DA, Dustin ML, Shinton SA, Hardy RR, 
Laidlaw D, Collins J, Gazit R, Rossi DJ, Malhotra N, Sylvia K, Kang J, Kreslavsky T, Fletcher A, 
Elpek K, Bellemarte-Pelletier A, Malhotra D, Turley S. Identification of transcriptional regulators 
in the mouse immune system. Nature immunology. 2013; 14:633–643. published online EpubJun. 
[PubMed: 23624555] 

33. Iwasaki H, Akashi K. Myeloid lineage commitment from the hematopoietic stem cell. Immunity. 
2007; 26:726–740. published online EpubJun. [PubMed: 17582345] 

34. Paul F, Arkin Y, Giladi A, Jaitin DA, Kenigsberg E, Keren-Shaul H, Winter D, Lara-Astiaso D, 
Gury M, Weiner A, David E, Cohen N, Lauridsen FK, Haas S, Schlitzer A, Mildner A, Ginhoux F, 
Jung S, Trumpp A, Porse BT, Tanay A, Amit I. Transcriptional Heterogeneity and Lineage 
Commitment in Myeloid Progenitors. Cell. 2015; 163:1663–1677. published online EpubDec 17. 
[PubMed: 26627738] 

35. Olsson A, Venkatasubramanian M, Chaudhri VK, Aronow BJ, Salomonis N, Singh H, Grimes HL. 
Single-cell analysis of mixed-lineage states leading to a binary cell fate choice. Nature. 2016 
published online EpubAug 31. 

36. Zhao JL, Ma C, O'Connell RM, Mehta A, DiLoreto R, Heath JR, Baltimore D. Conversion of 
danger signals into cytokine signals by hematopoietic stem and progenitor cells for regulation of 
stress-induced hematopoiesis. Cell Stem Cell. 2014; 14:445–459. published online EpubApr 3. 
[PubMed: 24561084] 

37. Baldridge MT, King KY, Goodell MA. Inflammatory signals regulate hematopoietic stem cells. 
Trends in immunology. 2011; 32:57–65. published online EpubFeb. [PubMed: 21233016] 

38. Muranski P, Borman ZA, Kerkar SP, Klebanoff CA, Ji Y, Sanchez-Perez L, Sukumar M, Reger RN, 
Yu Z, Kern SJ, Roychoudhuri R, Ferreyra GA, Shen W, Durum SK, Feigenbaum L, Palmer DC, 
Antony PA, Chan CC, Laurence A, Danner RL, Gattinoni L, Restifo NP. Th17 cells are long lived 

Yosef and Regev Page 11

Science. Author manuscript; available in PMC 2016 November 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and retain a stem cell-like molecular signature. Immunity. 2011; 35:972–985. published online 
EpubDec 23. [PubMed: 22177921] 

39. Wang C, Collins M, Kuchroo VK. Effector T cell differentiation: are master regulators of effector 
T cells still the masters? Current opinion in immunology. 2015; 37:6–10. published online 
EpubDec. [PubMed: 26319196] 

40. Okabe Y, Medzhitov R. Tissue-specific signals control reversible program of localization and 
functional polarization of macrophages. Cell. 2014; 157:832–844. published online EpubMay 8. 
[PubMed: 24792964] 

41. Sakaguchi S, Vignali DA, Rudensky AY, Niec RE, Waldmann H. The plasticity and stability of 
regulatory T cells. Nature reviews. Immunology. 2013; 13:461–467. published online EpubJun. 

42. Fu W, Ergun A, Lu T, Hill JA, Haxhinasto S, Fassett MS, Gazit R, Adoro S, Glimcher L, Chan S, 
Kastner P, Rossi D, Collins JJ, Mathis D, Benoist C. A multiply redundant genetic switch 'locks in' 
the transcriptional signature of regulatory T cells. Nature immunology. 2012; 13:972–980. 
published online EpubOct. [PubMed: 22961053] 

43. Proserpio V, Piccolo A, Haim-Vilmovsky L, Kar G, Lonnberg T, Svensson V, Pramanik J, 
Natarajan KN, Zhai W, Zhang X, Donati G, Kayikci M, Kotar J, McKenzie AN, Montandon R, 
Billker O, Woodhouse S, Cicuta P, Nicodemi M, Teichmann SA. Single-cell analysis of CD4+ T-
cell differentiation reveals three major cell states and progressive acceleration of proliferation. 
Genome biology. 2016; 17:103. [PubMed: 27176874] 

44. Stubbington MJ, Lonnberg T, Proserpio V, Clare S, Speak AO, Dougan G, Teichmann SA. T cell 
fate and clonality inference from single-cell transcriptomes. Nature methods. 2016; 13:329–332. 
published online EpubApr. [PubMed: 26950746] 

45. Afik S, Yates KB, Bi K, Darko S, Godec J, Gerdemann U, Swadling L, Douek DC, Klenerman P, 
Barnes EJ, Sharpe AH, Haining WN, Yosef N. Targeted reconstruction of T cell receptor sequence 
from single cell RNA-sequencing links CDR3 length to T cell differentiation state. bioRxiv. 2016 
http://dxdoiorg/101101/072744. 

46. Mukasa R, Balasubramani A, Lee YK, Whitley SK, Weaver BT, Shibata Y, Crawford GE, Hatton 
RD, Weaver CT. Epigenetic instability of cytokine and transcription factor gene loci underlies 
plasticity of the T helper 17 cell lineage. Immunity. 2010; 32:616–627. published online EpubMay 
28. [PubMed: 20471290] 

47. Feng Y, Arvey A, Chinen T, van der Veeken J, Gasteiger G, Rudensky AY. Control of the 
inheritance of regulatory T cell identity by a cis element in the Foxp3 locus. Cell. 2014; 158:749–
763. published online EpubAug 14. [PubMed: 25126783] 

48. Farh KK, Marson A, Zhu J, Kleinewietfeld M, Housley WJ, Beik S, Shoresh N, Whitton H, Ryan 
RJ, Shishkin AA, Hatan M, Carrasco-Alfonso MJ, Mayer D, Luckey CJ, Patsopoulos NA, De 
Jager PL, Kuchroo VK, Epstein CB, Daly MJ, Hafler DA, Bernstein BE. Genetic and epigenetic 
fine mapping of causal autoimmune disease variants. Nature. 2015; 518:337–343. published online 
EpubFeb 19. [PubMed: 25363779] 

49. Rudra D, deRoos P, Chaudhry A, Niec RE, Arvey A, Samstein RM, Leslie C, Shaffer SA, Goodlett 
DR, Rudensky AY. Transcription factor Foxp3 and its protein partners form a complex regulatory 
network. Nature immunology. 2012; 13:1010–1019. published online EpubOct. [PubMed: 
22922362] 

50. Yosef N, Shalek AK, Gaublomme JT, Jin H, Lee Y, Awasthi A, Wu C, Karwacz K, Xiao S, Jorgolli 
M, Gennert D, Satija R, Shakya A, Lu DY, Trombetta JJ, Pillai MR, Ratcliffe PJ, Coleman ML, 
Bix M, Tantin D, Park H, Kuchroo VK, Regev A. Dynamic regulatory network controlling TH17 
cell differentiation. Nature. 2013; 496:461–468. published online EpubApr 25. [PubMed: 
23467089] 

51. Ciofani M, Madar A, Galan C, Sellars M, Mace K, Pauli F, Agarwal A, Huang W, Parkurst CN, 
Muratet M, Newberry KM, Meadows S, Greenfield A, Yang Y, Jain P, Kirigin FK, Birchmeier C, 
Wagner EF, Murphy KM, Myers RM, Bonneau R, Littman DR. A validated regulatory network for 
Th17 cell specification. Cell. 2012; 151:289–303. published online EpubOct 12. [PubMed: 
23021777] 

52. Kolodin D, van Panhuys N, Li C, Magnuson AM, Cipolletta D, Miller CM, Wagers A, Germain 
RN, Benoist C, Mathis D. Antigen- and cytokine-driven accumulation of regulatory T cells in 

Yosef and Regev Page 12

Science. Author manuscript; available in PMC 2016 November 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



visceral adipose tissue of lean mice. Cell metabolism. 2015; 21:543–557. published online 
EpubApr 7. [PubMed: 25863247] 

53. Cipolletta D, Feuerer M, Li A, Kamei N, Lee J, Shoelson SE, Benoist C, Mathis D. PPAR-gamma 
is a major driver of the accumulation and phenotype of adipose tissue Treg cells. Nature. 2012; 
486:549–553. published online EpubJun 28. [PubMed: 22722857] 

54. Schiering C, Krausgruber T, Chomka A, Frohlich A, Adelmann K, Wohlfert EA, Pott J, Griseri T, 
Bollrath J, Hegazy AN, Harrison OJ, Owens BM, Lohning M, Belkaid Y, Fallon PG, Powrie F. 
The alarmin IL-33 promotes regulatory T-cell function in the intestine. Nature. 2014; 513:564–
568. published online EpubSep 25. [PubMed: 25043027] 

55. Burzyn D, Kuswanto W, Kolodin D, Shadrach JL, Cerletti M, Jang Y, Sefik E, Tan TG, Wagers AJ, 
Benoist C, Mathis D. A special population of regulatory T cells potentiates muscle repair. Cell. 
2013; 155:1282–1295. published online EpubDec 5. [PubMed: 24315098] 

56. Arpaia N, Green JA, Moltedo B, Arvey A, Hemmers S, Yuan S, Treuting PM, Rudensky AY. A 
Distinct Function of Regulatory T Cells in Tissue Protection. Cell. 2015; 162:1078–1089. 
published online EpubAug 27. [PubMed: 26317471] 

57. Gautier EL, Shay T, Miller J, Greter M, Jakubzick C, Ivanov S, Helft J, Chow A, Elpek KG, 
Gordonov S, Mazloom AR, Ma'ayan A, Chua WJ, Hansen TH, Turley SJ, Merad M, Randolph GJ. 
C. Immunological Genome, Gene-expression profiles and transcriptional regulatory pathways that 
underlie the identity and diversity of mouse tissue macrophages. Nature immunology. 2012; 
13:1118–1128. published online EpubNov. [PubMed: 23023392] 

58. Matcovitch-Natan O, Winter DR, Giladi A, Vargas Aguilar S, Spinrad A, Sarrazin S, Ben-Yehuda 
H, David E, Zelada Gonzalez F, Perrin P, Keren-Shaul H, Gury M, Lara-Astaiso D, Thaiss CA, 
Cohen M, Bahar Halpern K, Baruch K, Deczkowska A, Lorenzo-Vivas E, Itzkovitz S, Elinav E, 
Sieweke MH, Schwartz M, Amit I. Microglia development follows a stepwise program to regulate 
brain homeostasis. Science. 2016 published online EpubJun 23. 

59. Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, Tirosh I, Bialas AR, Kamitaki 
N, Martersteck EM, Trombetta JJ, Weitz DA, Sanes JR, Shalek AK, Regev A, McCarroll SA. 
Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets. 
Cell. 2015; 161:1202–1214. published online EpubMay 21. [PubMed: 26000488] 

Yosef and Regev Page 13

Science. Author manuscript; available in PMC 2016 November 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Key modes of immune-environment interaction
A) Transient responses to signals. (B) Balanced differentiation along hematopoiesis; (C) 

Stable yet plastic cell type polarization; (D) Malleable adaptation of tissue resident cells.
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Figure 2. Genomic tools for dissecting immune-environment interactions
Shown are key components of the current genomic tool box, including profiling of RNA, 

protein and protein modification levels in bulk samples (A) and single cells (B), epigenomic 

measurements of TF binding, histone modification, DNA methylation, and chromatin 

accessibility (C), the ability to systematically perturb genes through genome engineering (D) 

or natural variation, tracing of cells with engineered molecular barcodes or TcR and BcR 

clonality (E), and computational algorithms that use profiling and perturbation data to infer 

genetic causality and molecular mechanisms (F).

Yosef and Regev Page 15

Science. Author manuscript; available in PMC 2016 November 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Key features, hypotheses and principles revealed by genomic studies of immune-
environment interactions
Three key genomic tools used to analyze transcription and epigenetic mechanisms that 

participate in immune cell responses. Bottom: The main features characterized by each tool, 

testable hypotheses derived by computational analysis; and current emerging principles from 

such studies.
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