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Summary

Actomyosin networks generate contractile force that changes cell and tissue shape. In muscle 

cells, actin filaments and myosin II appear in a polarized structure called a sarcomere, where 

myosin II is localized in the center. Nonmuscle cortical actomyosin networks are thought to 

contract when nonmuscle myosin II (myosin) is activated throughout a mixed-polarity actin 

network. Here, we identified a mutant version of the myosin-activating kinase, ROCK, that 

localizes diffusely, rather than centrally, in epithelial cell apices. Surprisingly, this mutant inhibits 

constriction, suggesting that centrally localized apical ROCK/myosin activity promotes 

contraction. We determined actin cytoskeletal polarity by developing a barbed end incorporation 

assay for Drosophila embryos, which revealed barbed end enrichment at junctions. Our results 

demonstrate that epithelial cells contract with a spatially organized apical actomyosin cortex, 

involving a polarized actin cytoskeleton and centrally positioned myosin, with cell-scale order that 

resembles a muscle sarcomere.
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Introduction

Cell and tissue shape changes emerge from forces generated by myosin II and actin 

filaments. At the molecular scale, myosin II forms bipolar filaments with motor domains at 

both ends of a rod, which bind and move towards actin filament barbed ends (Sellers, 1991) 

(Fig. 1A). In muscle sarcomeres, this molecular apparatus is arranged and repeated at a 

larger scale, with actin filament barbed ends anchored at the sarcomere edges, and pointed 

ends oriented inward. Bipolar myosin II filaments overlap with actin filament pointed ends 

and, when the muscle is stimulated, pull in the actin filament arrays, shortening the 

sarcomere and contracting the muscle (Huxley and Hanson, 1954).

In cortical nonmuscle contexts, like individual cells (Charras et al., 2006; Flanagan et al., 

2001), cell-cell epithelial interfaces (Simoes et al., 2014; Simões et al., 2010), and the apical 

surface of epithelial cells (Barrett et al., 1997; Clay and Halloran, 2013; Dawes-Hoang et al., 

2005; Lee and Harland, 2007; Wójciak-Stothard et al., 2001), the contractile molecular 

actomyosin apparatus is still responsible for force generation, but actin filament networks 

are not thought to exhibit well-defined polarity. In these contexts, mixed-polarity actin 

networks are thought to contract from activation of nonmuscle myosin II (myosin) 

throughout the network (Fig. 1A). This myosin activation often occurs downstream of RhoA 

(Ridley and Hall, 1992) and its effector, the myosin-activating kinase, Rho associated coiled-

coil kinase (ROCK, rock) (Amano et al., 1996; Mizuno et al., 1999; Winter et al., 2001). 

Interestingly, actin networks reconstituted in vitro also begin with a mixed-polarity actin 

network, but contract into actomyosin asters after global activation of myosin in the network 

(Backouche et al., 2006; Köster et al., 2016; Murrell and Gardel, 2012; Stachowiak et al., 
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2012). Based on these cases and other work, it has been proposed that nonmuscle cortical 

actin networks generate and orient forces through intrinsic properties of a uniformly 

activated actomyosin network (Murrell et al., 2015; Vignaud et al., 2012), emerging possibly 

from the asymmetry in actin filament response to tension and compression (Stachowiak et 

al., 2012) or from actomyosin advection that carries upstream regulators of contractility 

(Munjal et al., 2015). In epithelia undergoing morphogenesis, the polarity of actin filament 

networks has not been determined, limiting our understanding of the mechanism of 

epithelial contractility (Mason et al., 2013; Munjal et al., 2015; Röper, 2012).

We investigated the importance of cell-scale actomyosin polarity in the columnar epithelial 

cells of the Drosophila ventral furrow. Apical constriction in these cells promotes 

invagination of the prospective mesoderm, and leads to the formation of the ventral furrow 

(Martin et al., 2009; Polyakov et al., 2014; Rauzi et al., 2015). We have previously shown 

that ROCK is enriched in the center of the apical domain (medioapical), displaying a type of 

cell polarity we termed radial cell polarity, in which proteins are polarized along the radial 

axis from the centroid to cell edge (Mason et al., 2013; Vasquez et al., 2014). Mutation or 

depletion of the ventral furrow transcription factor Twist disrupts medioapical ROCK 

polarization and disrupts apical constriction (Mason et al., 2013; Xie and Martin, 2015). As 

a transcription factor, Twist is several steps removed from the mechanism of actomyosin 

contractility and could have pleiotropic effects. Demonstrating the importance of ROCK 

localization in apical constriction therefore requires a direct perturbation of ROCK 

localization.

We identified a ROCK mutant that fails to polarize within the medioapical domain and 

demonstrated that medioapically polarized ROCK and myosin activity are required for 

apical constriction and tissue folding. We also determined that the apical actin network 

exhibits a cell-scale actin filament polarity, with pointed ends in the center of the apex and 

barbed ends around the apical periphery, suggesting that apical myosin binds and pulls 

inward on actin filament networks with barbed ends oriented towards the cell junctions. 

Finally, we show that the actin cytoskeleton is required to polarize ROCK within the apical 

domain, consistent with the idea that actomyosin feedback reinforces contractility (Munjal et 

al., 2015; Priya et al., 2015).

Results

Apically diffuse ROCK is insufficient for epithelial folding

To determine the function of medioapical ROCK polarization, we screened a collection of 

Venus-tagged and UAS-driven ROCK truncation mutants (rockwt = 

UASp>Venus::rock1-1391, see Supplementary Experimental Procedures, Fly Stocks) (Simoes 

et al., 2014) for alleles that failed to localize in a radially polarized focus in the apical 

domain of ventral furrow cells. Our screen revealed that any construct including the coiled-

coil domain was capable of exhibiting a medioapical polarization (Fig. 1B, columns 1-3 and 

5). In contrast, deleting a portion of the coiled coil domain resulted in a mutant 

(ROCKΔ547-923) that localized across the apex (Fig. 1B, column 6). ROCKΔ547-923 retains 

the N-terminal kinase domain and a C-terminal RhoA-binding domain, but removes a 

portion of the Shroom-binding domain, which interacts with the actin-ROCK scaffold 
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protein, Shroom (Hildebrand and Soriano, 1999; Mohan et al., 2012; Nishimura and 

Takeichi, 2008). However, we confirmed previous work showing that shroom knock-down 

does not disrupt ventral furrow formation or ROCK localization (Fig. S1A,B) (Simoes et al., 

2014). This is consistent with the fact that ROCKΔ835-937, which lacks only the Shroom-

binding domain, exhibits normal ROCK localization (Fig. 1B, column 5).

We next determined whether the apically enriched but diffuse ROCKΔ547-923 disrupted 

myosin localization. We expressed Venus-tagged rockwt and rockΔ547-923 in the rock2 null 

mutant background, with rockΔ547-923 being expressed at a level close to that of wild-type 

GFP-tagged rock expressed with its endogenous promoter (Fig. S1C). The localization of 

both proteins in the rock null background recapitulated the localization of the overexpressed 

proteins in our screen, including ventral-specific apical localization, and the more dispersed 

apical localization of ROCKΔ547-923 (Fig. 1C,D). In contrast to the rock2 mutant, which 

lacks apical myosin in the ventral furrow (Dawes-Hoang et al., 2005), both rockwt and 

rockΔ547-923 result in apical myosin, suggesting that the in vivo ROCK kinase activity of 

rockΔ547-923 is normal (Fig. 1E). Moreover, the reduction in basal myosin in ventral cells 

occurred normally in both rockwt and rockΔ547-923 mutants, demonstrating that the 

rockΔ547-923 mutant does not lead to inappropriate regulation of basal myosin (Fig. 1E). In 

surface views of ventral cells, myosin localization mirrored that of ROCK, such that in 

rockΔ547-923, myosin localized across the apical surface instead of concentrating into a 

medioapically-centered network (Fig. 1F). Thus, the rockΔ547-923 mutant appears to retain in 
vivo myosin-activating activity, but ROCK and myosin exhibit a more uniform distribution 

across the apical cortex. Consistent with this interpretation, a recent study showed that the in 
vitro kinase activity of a rock mutant similar to rockΔ547-923 was identical to that of wild-

type ROCK (Truebestein et al., 2015).

Despite exhibiting apical ROCK and myosin localization, the rockΔ547-923 mutant failed to 

rescue ventral furrow formation in rock2 germline clones (Fig. 1D, Movie S1). The 

rockΔ547-923 mutant did cause an initial flattening of the ventral domain, but failed to make a 

furrow. To determine whether the rockΔ547-923 mutant promoted tissue-level tension, we 

performed laser cutting experiments in the ventral tissue of rock2 mutants expressing rockwt 

or rockΔ547-923. To determine recoil velocities, we tracked the displacement of fluorescent 

ROCK away from the laser cut. We found that both conditions resulted in similar initial 

recoil velocities, suggesting that both alleles generated epithelial tension (Fig. 1G,H; 

S1D,E). In wild-type embryos expressing fluorescently-tagged myosin, we measured recoil 

velocities before and after the accumulation of a myosin network, and we found that rockwt 

and rockΔ547-923 generate more tension than the ventral epithelium prior to apical 

contractility onset, and slightly less than the wild-type myosin network condition (Fig. 

1G,H). The ability of rockΔ547-923 to rescue tension argues that the in vivo kinase activity of 

ROCKΔ547-923 is not affected and that its furrow phenotype resulted from another property 

of the mutant protein. One possibility is that ROCK needs to be medioapically localized to 

efficiently contract cells.
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Diffuse apical ROCK kinase activity dominantly inhibits apical constriction

To further investigate the importance of proper ROCK localization, we expressed 

rockΔ547-923 in the presence of endogenous rock (Fig. S1F). We found that expressing 

rockΔ547-923, but not rockwt, blocked apical constriction and tissue folding even in the 

presence of endogenous wild-type ROCK (Fig. 2A-C; Movie S2). If reduced kinase activity 

or lower expression of ROCKΔ547-923 and thus, loss-of-function, were the reason for the 

failure of rockΔ547-923 to promote tissue folding, expressing rockΔ547-923 in the presence of 

endogenous rock would not be expected to cause a folding defect. Because ectopic rockwt 

was expressed more strongly than rockΔ547-923 and did not perturb apical constriction and 

folding, increased ROCK protein amount was not the reason for the rockΔ547-923 tissue 

folding phenotype (Fig. S1F). The differences in expression levels indicate that 

ROCKΔ547-923 is probably less stable than ROCKwt.

To determine if the dominant negative effect of rockΔ547-923 expression was the result of 

mislocalized kinase activity, we examined whether a kinase-dead mutation K(116)A 

suppressed the rockΔ547-923 phenotype (Fig. 2A-C, Movie S2). ROCKK(116)A,Δ547-923 was 

expressed at a greater level than ROCKΔ547-923 (Fig. S1F), and the K(116)A substitution 

suppressed the dominant negative ROCKΔ547-923 phenotype, suggesting that rockΔ547-923 

inhibited contraction through incorrect kinase localization. By expressing the various rock 
alleles with labeled membranes, we were also able to quantify the radial distribution of 

ROCK fluorescence in each case, and found that whereas ROCK expressed via an 

endogenous promoter (Fig. S1G) and ectopic ROCKwt are radially polarized around the cell 

geometric centroid, both ROCKΔ547-923 and ROCKK(116)A,Δ547-923 exhibited a flat 

distribution on the radial axis (Fig. 2D). Thus, the dominant effect of rockΔ547-923 requires 

kinase activity and is associated with a flat distribution of ROCK localization across the 

apical surface. We propose that inhibition of apical constriction and tissue folding upon 

ectopic rockΔ547-923 expression is a result of ROCK kinase activity localized across the 

apical domain. Expressed in the wild-type rock background, rockΔ547-923 also caused 

myosin to localize more diffusely across the apex, rather than in a polarized manner, as was 

observed with rockwt overexpression (Fig. 2E). We found similar localization patterns for 

ROCKwt and ROCKΔ547-923 in the squamous epithelium of the amnioserosa (Fig. S1H), 

suggesting that medioapical ROCK activity and localization could play a role in 

concentrating myosin in the apical domain of other nonmuscle epithelial cells.

The apical F-actin cortex is polarized with junctional barbed ends and medial pointed ends

We next wanted to determine why a polarized distribution of ROCK and myosin was 

important for apical constriction. Because actin filament orientation influences contraction 

(Murrell et al., 2015; Reymann et al., 2012), we determined whether actin networks are also 

polarized in the apical cortex. Labeling actin networks with a protein that binds the sides of 

actin filaments does not detect polarity because the apical actin cortex forms a dense actin 

network. We therefore analyzed the localization of proteins that bind either the pointed or 

barbed ends of actin filaments. Surprisingly, we found that different end-binding proteins 

exhibited distinct localization patterns. Barbed end-binding proteins, such as adducin 

(Kuhlman et al., 1996; Xu et al., 2013) and capping protein α (Cap-α) (Amândio et al., 

2014; Isenberg et al., 1980; Wear et al., 2003), were enriched at the junctional domain (Fig. 
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3A). We quantified this enrichment by determining the difference in fluorescence intensity 

between medioapical and junctional domains and normalizing this value to total 

fluorescence intensity. Using this metric, junctional proteins, such as E-cadherin, exhibit a 

negative value. The intensity distribution of adducin and Cap-α also exhibited strong 

negative values, demonstrating junctional enrichment (Fig. 3B, S2A). In contrast, we found 

that the pointed end capping protein, tropomodulin (tmod), was localized in the center of the 

apical domain (Fowler et al., 1993; Weber et al., 1994), and MBS, a myosin binding protein 

that localizes to the center of the apical domain (Vasquez et al., 2014), colocalized with 

tmod (Fig. 3A). We quantified colocalization between tmod and MBS with the Manders 

Overlap Coefficient, which measures the amount of overlap between two signals in 

thresholded images, which were generated using the Costes method for rigorous and 

reproducible thresholding (Costes et al., 2004; Manders et al., 1993). We calculated a 

Manders Overlap Coefficient of 0.61 indicating that 61% of MBS signal colocalizes with 

tmod signal, and suggesting that pointed ends are enriched in the zone containing myosin at 

the apical center. The apical enrichment of tmod is specific to the ventral furrow, and 

adducin and Cap-α localize to junctions in cells adjacent to the ventral furrow region (Fig. 

S2B,C). Thus, specifically in contractile ventral furrow cells, barbed and pointed end-

binding proteins exhibit distinct distributions, suggesting that actin networks have barbed 

ends enriched at apical junctions and pointed ends enriched in the apical center with myosin.

To independently determine the position of actin filament barbed ends we injected 

fluorescently-labeled actin monomers into embryos and fixed the embryos to identify the 

position of actin incorporation (Symons and Mitchison, 1991; Tang and Brieher, 2012). To 

ensure actin incorporated only at barbed ends, we injected an equimolar mixture of 

actin-488 and purified recombinant Drosophila profilin (chickadee) (Fig. S2D,E). Proflin-

actin heterodimers can only bind to actin filament barbed ends because profilin inhibits 

spontaneous nucleation and pointed end assembly (Pollard and Cooper, 1984; Schutt et al., 

1993), and because profilinactin is recruited to growing barbed-ends by the formin, Dia 

(Goode and Eck, 2007). We fixed embryos within minutes of injection, and measured the 

intensity distribution of actin fluorescence incorporation in the apical cortex of ventral 

furrow cells. Compared to the distribution of total F-actin, labeled barbed ends were 

enriched at junctions (Fig. 3C,D, S2F), with some observed cases of medioapical 

incorporation, which could be the result of de novo assembly by medioapical Dia (Mason et 

al., 2013). Actin incorporation at junctions was reduced by dia RNAi, suggesting that 

junctional actin assembly was partially dependent on Dia (Fig. 3D, S2G). This result was 

consistent with previous reports of actin assembly at epithelial cell junctions (Kobielak et al., 

2003; Kovacs et al., 2002; Leerberg et al., 2014; Verma et al., 2012), and confirmed that the 

apical cortex of ventral furrow cells has a biased polarity with actin filament barbed ends 

enriched at junctions.

We next examined what happens to apical cortex organization upon treatment with 

Cytochalasin D (CytoD), which disrupts apical constriction and the attachment of the actin 

network to the junctions (Mason et al., 2013). Normally, myosin is enriched in the apical 

center with Cap-α enriched at the junctions. Injecting embryos with CytoD, but not DMSO, 

caused Cap-α to abnormally colocalize with myosin structures (Fig. 3E,F, S2H). 

Quantifying colocalization with the Manders Overlap Coefficient, we found that there is low 
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colocalization between myosin and Cap-α in DMSO control injections, indicating Cap-α 
and myosin localize to distinct structures. In contrast, after CytoD injection, the overlap 

coefficient was high, indicating that myosin and Cap-α colocalize strongly (Fig. 3F). The 

change in myosin/Cap-α colocalization indicated that CytoD inverts the cellular actin 

organization, which is also associated with a lack of force on cell junctions and a failure to 

apically constrict (Martin et al., 2009; Mason et al., 2013).

ROCK activity continuously sustains apical myosin and constricted cell shape

Given the central position of myosin and the cell-scale polarity of the apical actin cortex, we 

hypothesized that medioapical ROCK stabilizes myosin in the medioapical domain. In this 

position, myosin could sustain tension on polarized actin networks emanating from opposite 

sides of the cell and thus, stabilize cell shape. The requirement of ROCK to sustain a 

contraction is difficult to test, because rock mutants fail to initiate constriction (Dawes-

Hoang et al., 2005). We therefore needed a method to precisely and temporally control 

ROCK activity, allowing us to inhibit ROCK after the onset of myosin contraction. We 

accomplished this by developing a technique to image an embryo under confocal 

microscopy while simultaneously injecting it with a drug or vehicle (Fig. S3A). We first 

determined that embryos can tolerate being pierced by a needle. Despite leaking some yolk 

around the embedded needle, embryos proceeded through early gastrulation (Movie S3). 

When we injected drugs during imaging, we inserted the needle immediately before 

injection, limiting the damage to the embryo. Myosin accumulation and apical area 

reduction proceeded normally in pierced, uninjected embryos (Fig. S3B,C).

We used this technique to determine how apical myosin levels and apical area respond to 

acute inhibition of ROCK with the ROCK inhibitor Y-27632. Injecting embryos with water 

during ventral furrow formation did not impede either myosin accumulation or apical 

constriction (Fig. 4A-C). In contrast, within 15 seconds of Y-27632 injection, apical myosin 

fluorescence faded dramatically, and the apical area relaxed (Fig. 4D-F; Movie S4). The 

rapid decrease in myosin intensity probably reflects the activity of myosin phosphatase, 

which opposes the myosin regulatory light chain phosphorylating activity of ROCK (Ito et 

al., 2004; Piekny and Mains, 2002; Totsukawa et al., 2004; Vasquez et al., 2014). ROCK 

phosphorylates many substrates, so to determine whether the ROCK inhibitor effect 

occurred through ROCK phosphorylation of myosin, we asked whether a mutant myosin 

regulatory light chain (RLCAE) designed to mimic constitutive phosphorylation by ROCK 

would suppress the ROCK inhibitor effects (Vasquez et al., 2014; Winter et al., 2001). 

RLCAE partially suppressed both the loss of myosin fluorescence and apical relaxation (Fig. 

4G-I), showing that at least part of the ROCK inhibitor effect operates through myosin 

regulatory light chain phosphorylation. The incomplete suppression might result from 

improper myosin localization in this mutant (Vasquez et al., 2014), the mutant lacking 

normal motor activity (Kamisoyama et al., 1994), or a complementary role for ROCK 

phosphorylation of other substrates. These data show that in ventral furrow cells, ROCK 

activity is continuously required to maintain apical myosin during apical constriction and 

that cell shape change (i.e. apical constriction) is reversible by acute ROCK inhibition even 

after the initial actomyosin network contraction. This result is consistent with the model that 

polarized ROCK sustains tension across the apical surface by contributing to myosin 
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localization in the center of the apex where it can bind and pull on polarized actin networks 

emanating from opposite sides of the cell.

ROCK localization requires continuous ROCK activity and Dia

Because ROCK polarity is a central feature of establishing this efficient contractile 

organization, we next investigated what is responsible for positioning ROCK in the center of 

the apical cortex. While we speculate that RhoA is important for this process, it is not clear 

how active RhoA would localize to the middle of the cell apex. Importantly, we found that 

within a minute of ROCK inhibition, the radial organization of ROCK was disrupted; rather 

than being polarized, ROCK became distributed into many small puncta spread across the 

entire apical surface, of which some emerged from the original cluster, and others appeared 

after inhibition (Fig. 5A-D; Movie S5). On the same time scale, ROCK inhibition caused F-

actin networks to redistribute to the apical periphery, and decrease in intensity (Fig. 5E-J). 

ROCK inhibition also affected E-cadherin localization, causing it to spread across the apical 

surface but remain apical (Fig. S4A-F). ROCK inhibition did not affect the apical-basal 

localization of Par3, showing that ROCK regulates the apical cortex, but probably not 

through Par3 or apical-basal polarity (Fig. S4G). ROCK activity therefore continuously 

stabilizes the medioapical ROCK polarity, the medioapical F-actin cytoskeleton, and 

junctional E-cadherin.

Because ROCK affects the actin cytoskeleton (Fig. 5H) and because the apical actin cortex 

exhibits a polarity, we tested whether actin was important for ROCK localization. 

Depolymerizing F-actin with injected Latrunculin B, a G-actin sequestering toxin, caused 

ROCK foci to disintegrate or migrate to cell junctions (Fig. 6A,B). This effect was 

associated with the loss of the F-actin cytoskeleton, suggesting that ROCK might be 

physically linked to F-actin (Fig. 6A,B; lower panels). In addition, dia, which is required for 

actin cortex polarity (Fig. 3D) and ventral furrow formation (Homem and Peifer, 2008), was 

also required for ROCK medioapical focus formation. Hypomorphic dia5 mutants failed to 

polarize ROCK in the apical domain (Fig. 6C), despite ROCK being expressed at a similar 

level as in wild-type controls (Fig. S5A). These experiments show that ROCK localization 

depends on its own activity and the actin cytoskeleton, especially dia, and most probably 

RhoA as well.

Discussion

Here, we demonstrated that the apical actomyosin cortex of constricting ventral furrow cells 

is polarized, with barbed ends enriched at the periphery and pointed ends enriched in the 

apical center. We demonstrated this actin polarity in two independent ways: (1) Two barbed 

end binding proteins are enriched at the junctions, whereas the pointed end binding protein 

tropomodulin is enriched in the apical center; (2) Incorporation of actin onto actin filament 

barbed ends is biased to junctions. Interestingly, we also found that a ROCK mutant that 

localizes apically but is dispersed diffusely across the apex does not effectively constrict 

cells. This suggests that enrichment of myosin near the center of the apical domain is 

important for constriction. Finally, the maintenance of apical myosin and cell shape depends 

on the continuous activity of ROCK, suggesting a model in which myosin in the center of 
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the cell apex bridges antiparallel actin networks emanating from opposite sides of the cell to 

sustain and transmit force across the cell apex (Fig. 7A).

Similarities and Differences with Muscle Sarcomeres

The cortex of ventral furrow cells resembles a sarcomere in two ways: (1) actin filaments are 

arranged with barbed ends at the edge of the contractile unit and pointed ends in the center, 

and (2) myosin is localized to the center of the contractile unit where it can bridge and 

contract actin filaments (Fig. 7A). These results were surprising given the prevailing view 

that some nonmuscle cells contract through global activation of myosin across a mixed-

polarity actin cytoskeleton (Murrell et al., 2015). On the spectrum of actin network order 

ranging from isotropic/mixed-polarity to muscle sarcomere order, the contractile actomyosin 

structure in ventral furrow cells is more like a muscle sarcomere than previously appreciated. 

One reason apically constricting epithelial cells might use sarcomere-like actomyosin to 

contract is that the contractile network must attach to and sustain tension on intercellular 

junctions to prevent relaxation of cell shape changes, just as muscle myosin pulls on actin 

filaments attached to sarcomere boundaries to contract the sarcomere. As in a muscle 

sarcomere, centrally activated myosin in epithelial cells is positioned, with its barbed end-

directed motor activity, to pull on both sides of the cell, and to bridge contractile forces 

across the apical domain; indeed, when mechanical coupling to one side fails, the central 

myosin travels away from the center, which suggests that myosin indeed bridges actin 

networks from opposite sides of a cell (Jodoin et al., 2015). In vitro models of actomyosin 

contractility lack the boundary condition of a sarcomere Z-band or epithelial cell junction, 

limiting comparisons of in vitro and in vivo network organization. However, in vitro 
actomyosin networks contract in a manner that leads to barbed end accumulation at the 

center of contracted actomyosin foci (Köster et al., 2016). We were able to obtain this 

inverted, barbed ends-in, orientation of in vitro actomyosin gels by slowing actin 

polymerization and decoupling the actomyosin network from the junctions with cytochalasin 

D. In this case the actomyosin network contracts, but without pulling on the cell junctions, 

and apical constriction does not happen (Mason et al., 2013). This suggests that the proper 

orientation of actin filaments is necessary for the transmission of force from the contracting 

network to the peripheral junctions, and that without this coupling and proper actin filament 

orientation, contraction of the network proceeds like an in vitro actomyosin network, and 

without pulling on the apical junctions to contract the apical area.

In addition to differences in the degree of actin filament order, we note several contrasts 

between muscle sarcomeres and the organization of the apical actin cortex of ventral furrow 

cells. First, muscle sarcomeres are thought to be stable structures, although there is some 

evidence that thin filament turnover affects sarcomere length (Bai et al., 2007; Littlefield et 

al., 2001). In contrast, the actomyosin structure in ventral furrow epithelial cells is highly 

dynamic, appearing and disappearing over the course of minutes, with myosin, ROCK, and 

actin pulsing (Martin et al., 2009; Mason et al., 2013; Vasquez et al., 2014) and remodeling 

(Jodoin et al., 2015). Perhaps related to this dynamic behavior, actin cytoskeletal polarity 

and medioapical myosin localization are less pronounced in the apical cortex of ventral 

furrow cells, with cytoskeletal polarity markers showing an enrichment, rather than total 

exclusion from complementary domains, and with myosin structures sometimes projecting 
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to the cell periphery. We speculate that the requirement for medioapical ROCK may reflect a 

need for rapid assembly of a contractile structure, and to maintain contractile forces during a 

transient and dynamic contractile process. It may also reflect the ability of ventral furrow 

epithelial cells to contract ~90% of their apical area (Martin et al., 2009), compared to 

sarcomeres which contract only ~30% of their length (Huxley and Niedergerke, 1954). In 

slower nonmuscle contractile processes, order may be capable of emerging spontaneously 

through self-organization. We note, however, that ROCK localization has not been 

determined in smooth muscle where ROCK is known to play a role in calcium sensitization 

and force maintenance (Lan et al., 2015; Uehata et al., 1997). Our data suggests that ROCK 

localization could support its function in other contexts.

A second distinction between ventral furrow cells and muscle cells is that muscle myofibrils 

are comprised of one-dimensional arrays of sarcomere contractile units (Fig. 7B), whereas 

actomyosin in the ventral furrow is organized in a two-dimensional array. One could 

therefore think of the ventral furrow as a collection of “radial sarcomeres” linked together in 

a 2-dimensional grid to contract the epithelial sheet (Fig.7C). We speculate that the 

sarcomere-like organization in a two-dimensional contractile tissue is required to allow 

tension to reduce the apical area of cells and fold the sheet, possibly by reducing 

compressional and bending stiffness of the apical domain. Interestingly, ROCKwt and 

ROCKΔ547-923 produce comparable levels of epithelial tension as inferred by tissue recoil 

following laser cutting, but ROCKΔ547-923 does not invaginate, which could reflect increased 

stiffness in the epithelium. In addition, the ROCKΔ547-923 mutant flattens the tissue, 

suggesting that diffuse apical myosin is able to generate tension that flattens the tissue, but is 

unable to efficiently contract and fold the tissue. This interpretation agrees with models of 

ventral furrow formation in which contraction of the apical area propagates changes to the 

rest of the cell, leading to the acquisition of a wedge-shaped cells and tissue folding (He et 

al., 2014; Polyakov et al., 2014).

ROCK pattern formation

An important outstanding question is how ROCK becomes polarized in the middle of the 

apical surface, which is a basis for the formation of this polygonal grid of contractile units. 

Here, we provide evidence that the coiled-coil domain of ROCK, ROCK kinase activity, the 

actin cytoskeleton, and Dia are all required for ROCK focus formation. Because Dia is 

required for robust apical actin network polarity, it is possible that the polarity of the actin 

network is important to localize ROCK to the apical center. ROCK could be important to 

localize itself through myosin-induced flows, as suggested in earlier work (Munjal et al., 

2015). Future work is needed to establish the link between actin and ROCK polarization and 

the importance of the coiled-coil domain. Interestingly, ROCK has been shown to interact 

with stress fibers in other systems (Chen et al., 2002; Katoh et al., 2001; Newell-Litwa et al., 

2015), which resemble the fibrous actomyosin cytoskeleton in ventral furrow cells and may 

represent a conserved role for ROCK localization to polarized actin structures.
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Experimental Procedures

Image Processing and Quantitative Analyses

All images were processed using Fiji (http://fiji.sc/wiki/index.php/Fiji) and MATLAB (The 

MathWorks). Displayed images were processed with a Gaussian filter (σ = 0.7). All still and 

movie frames are Z-projections through 2–5 μm of apical depth. For myosin, projections are 

maximum intensity, and for all other fluorescent proteins, projections are summed intensity. 

To display differences in ROCK distribution, image display parameters were sometimes 

(Fig. 1B,C,D; 2A,C,E; Movies S1, S2, S5) optimized for each image to effectively display 

the distribution of ROCK fluorescence intensity across the apical area. Membrane images 

are single sections at the bottom of the apical projection. For analyzing myosin intensity, 

images were background subtracted by determining the mean pixel intensity in a region >5 

μm below the apical surface, and subtracting that value from all pixels in the maximum 

intensity projection. In Figures, asterisks indicate significance threshold α, i.e. * = 

significant at α = 0.01, ** = significant at α = 0.001, etc.

Expressions for junctional and medioapical intensity were also used for quantifying 

medioapical polarity, ρ, of actin polarity markers and fluorescent actin incorporation (Fig. 

3B,D; S2C). In this case, the peripheral domain was defined as the 0.4 μm outermost shell of 

the cell apex to reflect junctional rather than peripheral localization. We calculated ρ as the 

difference between mean medioapical intensity and mean junctional intensity, normalized by 

the mean total intensity (Vasquez et al., 2014):

In Fig. 3B and Fig. 3D, the medioapical polarity was calculated as above with normalization 

by mean pixel intensity in the cell in order to ignore differences in the measurement due to 

overall intensity of the probe. This was important because fluorescence from different 

reagents and different embryos was being compared, and different reagents and embryos had 

different mean fluorescent intensity profiles.

Radial intensity profiles (Fig. 2D; S1G; S2F) were calculated by representing a cell apical 

area in polar coordinates, where the origin of the coordinate plot is the cell geometric 

centroid, and each pixel occupies a coordinate position defined by its radial distance from 

the origin, r, and its angular position,Θ. We generated the radial intensity profile by 

determining the mean pixel intensity as a function r, where Θr is the number of pixels at 

radius r:

To analyze embryos injected with fluorescently labeled actin (Fig. 3D), we generated an 

image mask to select the surface of the embryo for further analysis. In x-z cross-sections of 

the image volume, we applied a Sobel edge detection algorithm to the summed signal of all 
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fluorescent channels to find the surface of the embryo. We dilated this edge ~2 μm into the 

surface of the tissue. Next, viewing the masked pixels in the x-y plane, we closed the image 

to eliminate holes in the mask. We projected the brightest 2 pixels in each z dimension from 

the mask for each channel of the underlying image, and projected the sum of these pixels 

onto an x-y plane. This approach allowed us to identify the apical 2 μm of tissue across the 

imaged embryo, regardless of position in z. Code for surface masking is available here: 

https://github.com/jcoravos/surface_embryo. For additional information on quantitative 

image analayses, see Supplemental Experimental Procedures.

Imaging

All imaging was performed with a Zeiss LSM 710 confocal microscope. A 40x/1.2 

Apochromat water objective was used for live imaging, and a 63x/1.4 Apochromat was used 

for fixed imaging (Carl Zeiss). An argon ion, 561nm diode, 594nm HeNe, and 633nm HeNe 

lasers were used for fluorophore excitation. Pinhole settings ranged from 1-2 airy units. We 

used the following approximate band pass filters, adjusting to minimize channel bleed 

through: For Venus: 519-578 nm, for GFP and AF-488: 488-558 nm, for Cherry and 

AF-568: 580-696 nm, and for AF-647 675-700 nm.

Embryo Injection

Embryos were injected with dsRNA in water, or profilin:actin-488 (10 μM each) in G-Buffer 

(2mM Tris pH 8, 0.2 mM ATP, 0.5 mM DTT, 0.1 mM CaCl2, 1 mM NaN3), or Y-27632 (50 

mM) in water, Latrunculin B (5 mg/mL) in DMSO, or Cytochalasin D (0.25 mg/mL) in 

DMSO (Enzo Life Sciences, Farmingdale, NY). For all injections, embryos were first 

dechorionated in 50% bleach and washed with water, and mounted with embryo glue, and 

desiccated for 5 minutes with Drierite (Drierite Company). Before injection, halocarbon 700 

and 27 oil (3:1 ratio) was layered over embryos.

To inject profilin:actin and label actin filament barbed ends (Fig. 3C,D; S2D-G), we purified 

Drosophila profilin (chickadee) (see Supplemental Experimental Procedures), and verified 

its activity by determining its effect on actin filament assembly in a pyrene-actin assembly 

assay. We centrifuged fluorophore-labeled actin to pellet and discard actin filaments, and 

mixed active profilin with fluorophore-labeled actin monomers to a final concentration of 10 

μM each in G buffer (5 mM Tris-HCl pH8, 0.2 mM ATP, 0.5 mM DTT, 0.2 mM CaCl2, and 

1 mM NaN3). We let the mixture stand for 10 minutes at 4°C, and proceeded to inject 

profilin actin as described below. Embryos injected with profilin:actin-488 were incubated 

for <1 minute to allow incorporation, but to prevent saturation of the apical actin meshwork 

with fluorescent actin, and then removed from the embryo glue in a petri dish with heptane 

and fixed in PFA.

For simultaneous imaging and injection of Y-27632 or Latrunculin B, embryos were 

mounted on a No. 1 coverslip ventral side down over a window scraped in the embryo glue 

with a razor blade. The window in the embryo glue allows the embryo to be image with an 

inverted objective, while still holding the embryo in place as it is pierced with the needle and 

injected during imaging.
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Laser Cutting and Recoil Analysis

Laser ablations (Fig. 1G,H; S1D,E) were performed using a 2-photon Mai-Tai laser set to 

800 nm on a LSM710 confocal microscope (Zeiss) through a 40x/1.2 objective. Laser power 

set between 25% to produce sufficient power to ablate, rather than bleach, the tissue, but not 

so much as to boil the embryo. Ablations were performed in a 1-pixel wide and 50-pixel 

long line (0.08nm × 4μm) parallel to the dorso-ventral axis of the embryo. Recoil distance 

was measured in FIJI by manually measuring the distance across the opening in the frame 

before ablation and every time point after ablation (time resolution was 320 ms per frame). 

In rock mutant embryos, fluorescence from Venus::ROCK was used to determine the 

opening in the tissue. “Pre-network myosin” and “network myosin” ablations were 

performed in y w sqhAX3;P{w+ sqh::GFP}42 embryos, using fluorescence from Sqh::GFP to 

track recoil distance. Pre-network myosin ablations were performed at the onset of myosin 

accumulation, but before the appearance of an intercellular connected myosin network. 

Ablations performed after this network appeared were classified as network myosin 

ablations.

We determined initial recoil velocity by calculating the displacement of the tissue over the 

first 320ms time step and dividing by the elapsed time. Recoil distance was plotted by 

smoothing displacement curves from individual recoil experiments with a kernel of 3 time 

steps and a loess filter. Recoil distance fitting was performed with a non-linear regression fit 

to a Kelvin-Voigt model:

where ε is strain, σ0 is initial stress, E is the elastic modulus, and η is the viscous drag 

coefficient. We report the fitted value of σ0/E for each curve in Supplemental Fig. 1E. Fitting 

parameters are reported in Fig. S1.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Central ROCK in apical actomyosin cortices drives epithelial apical 

constriction

• Constricting apical actin cortices are polarized with junctional plus 

ends

• ROCK continuously maintains apical myosin and sustains contraction

• Tissue folding occurs through apical constriction using sarcomere-like 

actomyosin
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Figure 1. Diffuse apical ROCK is insufficient for tissue folding
(A) Models for actomyosin contraction. (B) Apical surfaces of ventral furrow cells in 

embryos expressing the indicated Venus-tagged rock transgenes in the presence of 

endogenous wild-type ROCK. SBD = Shroom-binding domain, RBD = RhoA binding 

domain, PH = pleckstrin homology. Shaded region indicates deleted region in 

ROCKΔ547-923. (C) Apical surfaces of ventral furrow cells with ROCKwt or ROCKΔ547-923 

expressed in rock2 null mutant background. (D) Cross-section views of the ventral side of 

embryos. Yellow dashed lined represents the embryo surface. Embryos were aligned in time 

by the onset of ROCK accumulation. The ventral domain appears smaller in rockwt because 

cells have contracted their apical area. (E) Cross-sections of fixed embryos stained for 

myosin heavy chain (Myo) and Neurotactin (Membrane). Genotypes are the rock2 null 

mutant or the rock2 mutant expressing either rockwt or rockΔ547-923. Arrowheads indicate 

apical myosin specific for ventral domain. (F) Apical surface views of rockwt or rockΔ547-923 

expressed in rock2 null background and immunostaining of myosin heavy chain. Arrows 

show polarized myosin. (G) Recoil distance of fluorescent ROCK signal away from laser cut 

in ventral furrow epithelium after laser ablation at t = 0. In the pre-network myosin 

condition, the ablation was performed in wild-type embryos expressing RLC::GFP, which 

was used instead of ROCK fluorescence to track recoil distance. n is cuts per condition, and 

bars represent ± 1 s.d. (H) Initial recoil velocity following (~ 300 ms) laser ablation in 

RLC::GFP embryos prior to (pre-network myosin) or after (network myosin) the 

establishment of the supracellular myosin network. Initial recoil velocity was also measured 
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in rock2 germline clones expressing either rockwt or rockΔ547-923. From left to right, n = 7, 6, 

19, 22 cuts. Red bars represent median. Comparisons were performed with the Kruskal-

Wallis test. Images B-D were separately contrast adjusted to illustrate intracellular 

distribution of ROCK. Scale bars = 5 μm (B,C,E,F), 10 μm (D). See also Figure S1.
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Figure 2. Diffuse ROCK dominantly inhibits apical constriction and tissue folding
(A) Apical surfaces of embryos expressing Venus::ROCKwt, Venus::ROCKΔ547-923, or 

Venus::ROCKK(116)A, Δ547-923 transgenes in wild-type rock background. (B) Quantification 

of apical area contraction rate in embryos expressing rock variants from (A) with the 

maternal Gal4 drivers, mat15 or mat67. For each condition, from left to right n = 90, 104, 

122 cells and 2 embryos. Red line is median, box represents 25th-75th percentile, and 

whiskers represent ± 2.7 s.d.. Statistical comparisons were made with the Kruskal-Wallis 

test. (C) Cross-sections of live embryos with the same genotypes as (A). Dashed yellow line 

indicates the apical surface of the embryo. Embryos were aligned in time by onset of ROCK 

accumulation. (D) Quantification of normalized intensity distribution of Venus::ROCKwt, 

Venus::ROCKΔ547-923, and Venus::ROCKK(116)A, Δ547-923 from cell centroid to the cell 

junction (radial distance). Solid lines represent mean, and dashed lines represent ± 1 s.d.. 

Each plot represents cells quantified from one representative embryo. (E) Apical myosin 

localization (RLC::mCherry) in rock mutants expressed in a wild-type background. ROCK 

and myosin colocalize in foci for rockwt and rockK(116)A, Δ547-923 (arrowheads). In A,C,E, 

images were separately contrast adjusted to illustrate intracellular distribution of ROCK, but 

not myosin. Scale bars = 5μm (A,C,E). See also Figure S1.
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Figure 3. The apical actin cortex in ventral furrow cells is polarized with pointed ends enriched 
medioapically and barbed ends enriched at junctions
(A) Apical surfaces of fixed embryos stained with antibodies against indicated proteins or a 

tmod::GFP transgenic line. Arrowheads indicate junctional staining of E-cadherin and Cap-

α structures. Arrows indicate medioapical MBS and tmod. MBS and tmod staining were 

performed in the same embryos to determine relative localization. Junctions were identified 

using subapical E-cadherin or F-actin. (B) Medioapical polarity or mean medioapical 

intensity minus mean junctional intensity (positive value means medioapical enrichment). 

Red crosses represent medians, and the dotted red line indicates no enrichment in either the 

medioapical or junctional domains. Statistical comparisons were made with Kruskal-Wallis. 

emb. = number of embryos analyzed, and cell = total number of cells analyzed. (C) Apical 

surface of embryos that were fixed minutes after injection with mixture of actin-488 and 

profilin. Bottom images show total F-actin (Utr::GFP) for comparison. (D) Medioapical 

polarity in white-RNAi (control) and dia-RNAi knock-down embryos injected with 

actin-488 fluorescence. Red crosses indicate median, and emb. = number of embryos 

analyzed, and cell = total number of cells analyzed. Statistical comparison with Wilcoxon 

Rank Sum, distributions differ significantly, α = 0.01. (E) RLC::GFP embryos fixed and 

stained for Cap-α that were injected with DMSO or CytoD (250 μg/mL in DMSO). White 

dashed circles highlight myosin and yellow dashed lines highlight junctions. (F) Manders 

overlap coefficient for myosin colocalization with Cap-α after Costes thresholding. Each 
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data point corresponds to the ventral domain of 1 embryo. n = 6 embryos for each condition. 

Red line is median, box represents 25th-75th percentile, and whiskers represent ± 2.7 s.d.. 

Statistical comparison with Wilcoxon Rank Sum. Scale bars = 2 μm (A,E), 5 μm (C). See 

also Figure S2.
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Figure 4. ROCK activity continuously stabilizes apical myosin and sustains apical constriction
(A-C) Apical surfaces of cells in a live embryo expressing RLC::GFP (myosin regulatory 

light chain) and Gap43::mCherry (membranes). Water injection occurs at t = 0. (B) Myosin 

fluorescence intensity and apical area for the cell marked in (asterisk, A). Blue vertical line 

indicates the injection time. (C) Mean myosin intensity and apical area (n=164 cells, 3 

embryos). Dark lines are means, and shaded areas are ± 1 s.d. (D-F) Same as (A-C) but with 

ROCK inhibitor (Y-27632, 50 mM). In (F), mean myosin intensity and apical area (n = 259 

cells, 3 embryos). (G) Water injection and (H) ROCK inhibitor injection into embryos 

expressing myosin RLC phosphomutants. RLCTS::GFP and RLCAE::GFP were expressed in 

a RLC hypomorphic mutant background (sqh1 germline clones). RLCTS is the wild-type 

protein, and RLCAE is a possible phosphomimetic mutant. (I) Quantification of contraction 

rate in embryos from the indicated conditions. Red line is median, box represents 25th-75th 

percentile, and whiskers represent ± 2.7 s.d.. From left to right n = 2 embryos and 188 cells, 

3 embryos and 217 cells, 3 embryos and 208 cells, 3 embryos and 195 cells. Statistical 

comparison calculated with Kruskal-Wallis. Scale bars = 2 μm (A,D,G,H). See also Figure 

S3.
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Figure 5. ROCK continuously maintains ROCK medioapical polarity and medioapical F-actin
(A) Surface views of ventral cells in embryo expressing GFP::ROCK and Gap43::mCherry 

injected with water after t = 0. (B) Dark lines represent means, and shaded areas indicate ± 1 

s.d. (n = 90 cells, 2 embryos).. (C,D) Same as (A,B) but with ROCK inhibitor (Y-27632, 50 

mM solution) injection (n = 177 cells, 3 embryos).) (E) Surface views of ventral furrow cells 

expressing Utr::GFP (F-actin), and Gap43::mCherry (membranes) injected with water after 

the t = 0 second frame. (F) Total F-actin intensity and ratio of mean peripheral (1 μm-thick 

outer shell) to mean medioapical F-actin in asterisk-marked cell from (E). Blue vertical line 

indicates the time of injection. (G) Mean F-actin intensity and the ratio of peripheral F-actin 

intensity to medioapical intensity before and after injection (n = 240 cells, 3 embryos). Dark 

lines represent means, and shaded areas indicate ± 1 s.d. (H-J) Same as (E-G) but with 

ROCK inhibitor injection. ROCK inhibitor acutely disrupts medioapical F-actin (asterisk, 

H). In (J), n = 150 cells, 2 embryos. Scale bars = 2 μm (A,C,E,H). See also Figures S3 and 

S4.
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Figure 6. ROCK localization to medioapical foci requires the actin cytoskeleton and Dia
(A) Apical views of ventral furrow cells in embryos expressing ubi-GFP::ROCK, 

Gap43::mCherry (Membrane) or GFP::ROCK, Utr::mCherry (F-actin) and injected with 

DMSO after 0 sec time point. (B) Same as (A) but with Latrunculin B injection. Disrupted 

ROCK polarity (white outline and arrow). (C) Apical ROCK in wild-type and maternal dia5 

mutant ventral cells. Scale bars = 2 μm (A,B), 5 μm (C). See also Figure S5.
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Figure 7. Model of apical constriction mechanism in ventral furrow cells
(A) Illustration of actin filament polarity and ROCK myosin localization during apical 

constriction. We term this organization a “radial sarcomere”. (B) Illustration of muscle fiber 

(or myofibril). (C) Illustration of ventral furrow tissue, where contractile units/cells are 

linked at the junctions (red lines, ROCK image) and operate together to contract and deform 

the epithelium.
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