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Summary

The Clp family of proteases is responsible for controlling both stress responses and normal 

growth. In Caulobacter crescentus, the ClpXP protease is essential and drives cell cycle 

progression through adaptor-mediated degradation. By contrast, the physiological role for the 

ClpAP protease is less well understood with only minor growth defects previously reported for 

ΔclpA cells. Here, we show that ClpAP plays an important role in controlling chromosome content 

and cell fitness during extended growth. Cells lacking ClpA accumulate aberrant numbers of 

chromosomes upon prolonged growth suggesting a defect in replication control. Levels of the 

replication initiator DnaA are elevated in ΔclpA cells and degradation of DnaA is more rapid in 

cells lacking the ClpA inhibitor ClpS. Consistent with this observation, ClpAP degrades DnaA in 
vitro while ClpS inhibits this degradation. In cells lacking Lon, the protease previously shown to 

degrade DnaA in Caulobacter, ClpA overexpression rescues defects in fitness and restores 

degradation of DnaA. Finally, we show that cells lacking ClpA are particularly sensitive to 

inappropriate increases in DnaA activity. Our work demonstrates an unexpected effect of ClpAP in 

directly regulating replication through degradation of DnaA and expands the functional role of 

ClpAP in Caulobacter.
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Introduction

Regulated proteolysis helps maintain correct intracellular protein levels and controls many 

essential biological processes. In bacteria, proteolysis of intracellular proteins is achieved by 

diverse members of the AAA+ (ATPases Associated with diverse cellular activities) family 

of oligomeric proteases (Neuwald et al., 1999; Sauer and Baker, 2011). Those proteases 

share similar structural composition of an ATP hydrolysis powered unfoldase coordinating 

with a nonspecific peptidase (Gottesman et al., 1997; Baker and Sauer, 2006). Some 

proteases are encoded by two polypeptides that form a fully functional protease (such as 

ClpXP and ClpAP) that encodes ATPase domain and peptidase domain separately, while 

others are defined by single polypeptides (Lon or FtsH). Unlike in eukaryotes, where one 

proteasome is sufficient for all ubiquitin-based degradation, bacterial proteases have more 

specialized substrate preferences that often rely on unique sequence motifs or additional 

adaptor proteins (Ciechanover, 1994; Dougan et al., 2003; Chien et al., 2007; Mukherjee et 

al., 2015; Lau et al., 2015; Joshi et al., 2015). This specificity allows for accurate special and 

temporal regulation of multiple cellular factors and coordination between protein level and 

cell development stages (Dougan et al., 2002; Inobe and Matouschek, 2008).

ClpA is a chaperone that forms a hexameric ring structure that unfolds and translocates 

substrate through its central pore to the ClpP proteolytic chamber. In many bacteria ClpA is 
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co-transcribed from the same operon as the adaptor protein ClpS, which binds ClpA N-

terminus and helps degrade N-end rule substrate (Guo et al., 2002; Zeth et al., 2002; Erbse et 
al., 2006; De Donatis et al., 2010). ClpS appears to tether N-end rule substrates to ClpA to 

form high affinity complexes where ClpA engages an unstructured ClpS N-terminal 

extension to transfer substrates through the same pore (Román-Hernández et al., 2011; 

Rivera-Rivera et al., 2014). ClpA can also recognize a number of substrates on its own, such 

as ssrA-tagged proteins and RepA (Gottesman, et al. 1998; Herman et al. 1998; Pak and 

Wickner, 1997; Hoskins et al. 2000; Hoskins et al. 2002). In many of these cases where 

ClpAP can act on its own, ClpS inhibits proteolytic activity, demonstrating a dual role for 

ClpS in ClpA mediated protein degradation (Dougan, et al. 2002; Wang, et al. 2007).

Regulated proteolysis is critical in the gram-negative bacterium Caulobacter crescentus to 

control cell cycle progression, DNA replication, division and stress responses (Quardokus et 
al., 1996; Domian et al., 1997; Jenal and Fuchs, 1998; Tsai and Alley, 2001; Abel et al., 
2011). ClpAP was recently reported to degrade the cell divisome proteins FtsZ and FtsA to 

promote asymmetric cell division. This degradation occurs both in vivo and in vitro, with in 
vitro results showing no requirement for ClpS (Williams et al., 2014). Similarly, the FliF 

protein was shown to be cyclically degraded by ClpA in a ClpS independent manner 

(Grünenfelder et al., 2004). Despite these known substrates, loss of ClpA was originally 

reported to result in only slightly slower growth and moderate morphological defects 

(Grünenfelder et al., 2004). However, the need for ClpA may be more accentuated during 

different growth conditions, during stress, or when known ClpA substrates are misregulated 

(Williams et al., 2014).

In this study we show an unexpected ClpA-specific cell growth defect in Caulobacter 
crescentus that links ClpA with chromosome regulation. We show that the replication 

initiator DnaA is directly recognized by ClpAP and characterize this activity both in vivo 
and in vitro. ClpS inhibits DnaA degradation by ClpAP in vitro and suppresses ClpAP 

degradation of DnaA during normal growth. DnaA levels fall during entry into stationary 

phase and ClpAP activity is needed for the complete removal of DnaA during this transition. 

Although our previous work showed that Lon is the dominant protease for DnaA during 

exponential growth (Jonas, et al. 2013), we find that upregulation of ClpAP can prevent the 

toxic accumulation of DnaA in cells lacking Lon. Interestingly, Lon is deficient for 

degrading an active ATP-bound form of DnaA, while ClpAP retains similar proteolytic 

kinetics for this variant. Consistent with this, cells lacking ClpA are especially sensitive to 

aberrant increases in DnaA activity. Together, these results suggest that ClpAP mediated 

degradation may be controlling levels of active DnaA species in concert with Lon to regulate 

DNA replication during cell growth and development.

Results

Loss of ClpA results in cellular defects that link to aberrant DnaA accumulation

During our exploration of the roles of AAA+ proteases in Caulobacter replication and 

development, we found that cells lacking ClpA were defective upon extended growth in 

complex media. In particular, initial growth of ΔclpA cells by standard inoculation into 

liquid complex media from agar plates showed similar growth to wildtype cells during the 
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initial stages (<12 hours). However, growth of this strain for another 24 hours revealed clear 

defects. For example, ΔclpA cells were elongated relative to wildtype cells (Fig. 1A,B), 

failed to grow as readily from stationary phase upon dilution into fresh media (Fig. 1C), and 

aberrantly accumulated chromosomes (Fig. 1D).

We reasoned that this chromosome accumulation defect might be linked to misregulation of 

the replication factors. Among these factors, the replication initiator DnaA was of particular 

interest, as DnaA levels are controlled partly through proteolysis and are growth phase 

regulated (Gorbatyuk and Marczynski, 2005; Jonas et al., 2013; Leslie et al., 2015). 

Interestingly, it was initially reported that the turnover of DnaA might involve ClpP related 

protease (Gorbatyuk and Marczynski, 2005). However, later work showed that the dominant 

protease for DnaA was Lon, which degrades DnaA both in exponential growth and in 

stationary phase (Jonas et al., 2013; Leslie et al., 2015). To determine if ClpA could be 

involved in DnaA regulation, we first compared levels of DnaA protein in wildtype and 

ΔclpA cells growing in complex media. Although DnaA levels were only slightly higher in 

ΔclpA cells compared to wildtype cells during exponential growth, this difference became 

more pronounced upon entry into stationary phase (Fig. 2A). Interestingly, we found ClpA 

levels increased when cells entering stationary phase, supporting an increased role for 

ClpAP dependent proteolysis in this growth stage (Fig. S1). We also examined other 

protease-regulated factors and found that CtrA (a ClpXP substrate) and FtsZ (a ClpX/AP 

substrate) levels were not ClpA dependent (Fig S2). Levels of the Lon substrate SciP were 

surprisingly reduced in cells lacking ClpA regardless of growth phase, which might 

contribute to the phenotype of ΔclpA cells.

Next we monitored protein turnover rate by measuring levels of DnaA following antibiotic 

induced arrest of translation. Loss of ClpA did not dramatically change bulk DnaA 

degradation during the course of the assay, but loss of ClpS yielded a modest stimulation of 

DnaA degradation (Fig. 2B). These results suggest that endogenous levels of ClpS inhibit 

most of the ClpAP dependent DnaA degradation during normal growth, similar to how ClpS 

inhibits ssrA-tagged protein degradation by ClpAP (Dougan, et al. 2002). This inhibitory 

effect may explain why the ability of ClpAP to degrade DnaA was originally overlooked 

(Gorbatyuk and Marczynski, 2005; Jonas et al., 2013)

Upregulation of ClpAP restores DnaA degradation to cells lacking Lon

Because Lon plays a major role in DnaA degradation, we were concerned that ClpAP 

proteolysis of DnaA may be masked by Lon activity during normal growth conditions. 

Therefore, we next asked if the role of ClpAP in DnaA regulation would be accentuated in 

the absence of Lon. We deleted lon in a strain lacking the clpS-clpA operon to generate a 

triple deletion strain (ΔlonΔclpS-clpA). As expected, these cells grew poorly and showed 

elongated morphologies even under exponential growth conditions (Fig. 3A). All these 

effects were suppressed upon induction of ClpA expression, including a dramatic reversal of 

the abnormal chromosome accumulation (Fig. 3A–3C). Western blotting showed that 

increased ClpA levels were correlated with reduced steady-state levels of DnaA in this 

background (Fig. 3B). Most importantly, DnaA degradation was increased upon 

overexpression of ClpA (Fig. 3D). Taken together, these data suggest that ClpAP can 
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degrade DnaA and shield cells from the deleterious effects of DnaA accumulation when Lon 

activity is compromised and/or when ClpS is absent.

ClpAP degrades DnaA in vitro

We next used purified components to reconstitute ClpAP degradation of DnaA. In these 

experiments we used a truncated ClpA that does not degrade itself like wildtype ClpA, but 

has otherwise wildtype activity (Maglica et al., 2008). Using purified proteins, we found that 

ClpAP alone was able to degrade DnaA and, consistent with the in vivo results, ClpS 

inhibits this activity (Figure 4A). A full kinetic characterization (Fig. 4B) shows that ClpAP 

degrades DnaA (turnover rate = 1.1 +/− 0.3 min−1; KM = 13 +/− 6 μM) with lower activity 

than Lon (turnover rate = 1.6 +/− 0.1 min−1; KM = 2.9 +/− 0.7 μM), supporting the stronger 

intracellular role for Lon in regulating DnaA levels.

We wondered if the differences in DnaA degradation by these proteases could be due to 

differences in recognition determinants dependent on the specific protease. The Lon protease 

is known to degrade damaged proteins upon recognizing their misfolded state, and we 

reasoned that Lon recognition might be more sensitive to DnaA conformational changes. We 

tested this hypothesis by denaturing DnaA with urea prior to the proteolysis assays. The two 

proteases appear to recognize DnaA in different ways: denaturation of DnaA reduced 

recognition by Lon, while denaturation of DnaA did not affect ClpAP degradation (Fig. 4C). 

Note that the small amount of urea carried over from denaturation did not abolish Lon 

activity (Figure S3). This result was surprising given that Lon is generally thought to 

recognize misfolded proteins and implies that a specific structural motif from the natively 

folded DnaA is recognized by Lon protease. By contrast, we speculate that ClpAP 

recognizes DnaA via sequence determinant(s) accessible in both folded and denatured form. 

These results suggest that although DnaA is degraded through redundant proteolytic 

pathways, these pathways may serve different purposes of DnaA regulation under different 

conditions

Degradation of DnaA appears linked to its activity or nucleotide bound state

Our overexpression data suggest the ClpAP can degrade DnaA, but that ClpS is normally 

inhibiting this activity. If there is truly so little DnaA degradation via ClpAP in vivo, why 

would loss of ClpA result in any aberrant chromosome accumulation? One possibility stems 

from the fact that DnaA regulation is highly complex and DnaA activity depends on both its 

levels and nucleotide bound state. ATP-bound DnaA is the active conformation with higher 

affinity for weak DnaA binding boxes in the replication origin than the ADP-bound state. 

(McGarry et al., 2004; Camara et al., 2005; Erzberger et al., 2006). Conversion between the 

two states is slow, requiring either exchange of nucleotide or hydrolysis of the ATP by 

DnaA, a normally slow process that can be accelerated by certain cellular factors. Based on 

our in vitro results, we hypothesized that ClpAP and Lon might recognize different DnaA 

conformations that might correspond to different nucleotide bound versions of DnaA. To test 

this hypothesis, we used a previously characterized active constitutively ATP-bound DnaA 

mutant, DnaAR357A, which induces replication over-initiation and aberrant chromosome 

accumulation in Caulobacter (Collier and Shapiro, 2009; Jonas et al., 2011).
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DnaAR357A variant was degraded poorly by Lon in vitro, but ClpAP was still able to 

degrade this variant with kinetics similar to wildtype DnaA (Fig. 5A). The decreased Lon-

specific degradation of DnaAR357A is not because it is poorly structured when purified as it 

retains specific DNA binding similar to wildtype DnaA (Fig. S4). Moreover, denaturation of 

DnaAR357A reduced its degradation by Lon to the comparable rate as denatured DnaA, 

indicating that once the substrate is denatured, the R357A mutation does not have an 

additional effect on degradation (Figure 5B). Consistent with this in vitro result and the 

major role of Lon in DnaA degradation in vivo, DnaAR357A was degraded more slowly 

than wildtype DnaA when expressed in the cell (Fig. 5C), similar to what has been recently 

reported (Wargachuk and Marcynski, 2015). Our working model is that while ClpAP does 

not dramatically affect bulk DnaA turnover, it is particularly well suited for degrading the 

active ATP-bound DnaA conformation. If this is true, then the inappropriate retention of 

active DnaA may explain the reduced viability of cells lacking ClpA upon extended growth.

Loss of ClpA sensitizes cells to increased DnaA activity

Our results so far indicate a role for ClpAP in regulating functional levels of DnaA in the 

cell. Because an excessive amount of DnaA is toxic (Jonas et al., 2011), we hypothesized 

that ΔclpA cells would be even more sensitive to increased DnaA activity. Transient 

overexpression of wildtype DnaA from a medium copy plasmid was more toxic to strains 

that lacked ClpA (Fig. 6A). However, no substantial changes in DnaA levels were observed 

between strains using this overexpression system (Fig. 6B). We speculated that excessive 

overexpression of DnaA may result in so much substrate that the role of ClpA is masked in 

these circumstances and hypothesized that milder chronic upregulation of DnaA activity 

may better reveal the regulation of ClpA. Mild upregulation of wildtype DnaA from a low 

copy plasmid did not affect growth of either wildtype or ΔclpA strains (Fig. 6C). By 

contrast, this level of expression of the active ATP-bound DnaAR357A variant resulted in 

poor growth for ΔclpA strains (Fig. 6C) and increased levels of DnaA in extended growth 

conditions (Fig 6D). Taken together with the increased accumulation of DnaA seen with 

ΔclpA strains (Figure 2), these data support a model where ClpA works in concert with the 

Lon protease to protect cells from the toxic consequences of excessive DnaA activity.

Discussion

Our study identifies DnaA as a ClpAP substrate in Caulobacter crescentus. Degradation of 

DnaA by ClpAP in vitro is inhibited by the ClpS regulator and loss of ClpS accelerates loss 

of DnaA in vivo, supporting a role for ClpS in inhibiting ClpAP activity under normal 

conditions. Our triple deletion results suggest that ClpA plays an important role in regulating 

DnaA when Lon is absent or Lon activity is compromised. One possible scenario is that 

under conditions where the Lon protease is occupied by high levels of other substrates, 

ClpAP can serve to support DnaA degradation to prevent unwanted accumulation. This type 

of saturation has been seen in E. coli, where RpoS degradation by ClpXP is reduced upon 

upregulation of other ClpXP substrates (Fredriksson et al., 2007; Cookson et al., 2011). 

Identifying conditions that result in reduction in Lon activity is clearly an interesting 

direction for future work.
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ClpAP appears to play a particularly useful role in eliminating residual DnaA during 

stationary phase, where DnaA levels fall and ClpA levels rise. Interestingly, prior studies 

showed that ClpA levels also increase upon entry into stationary phase in Escherichia coli 
(Farrell et al., 2005). Perhaps increased ClpAP activity in stationary phase is a universal 

feature of bacteria entering this nutrient limiting, potentially stressful condition. In addition, 

the ClpS adaptor can both stimulate and repress substrate degradation, allowing for switches 

in ClpAP activity. A recent study in Agrobacterium tumefaciens found that levels of a ClpS 

paralog increased during entry into stationary phase, which suggests the potential for 

altering degradation by ClpAP in different growth stages (Stein et al., 2016). It will be 

interesting for future studies to explore in Caulobacter crescentus how relative ClpS and 

ClpA activity may vary under different growth conditions to understand the biological range 

of this inhibition. Finally, although we focus on the degradation of DnaA in this current 

work, we note that ClpAP also degrades the cytoskeletal proteins FtsZ and FtsA in 

Caulobacter (Williams, et al. 2014) and this activity may contribute to or even drive the 

cellular defects associated with ClpA loss in stationary phase cells, even though steady-state 

levels of FtsZ are unchanged (Figure S2). In addition, the loss of ClpA may have indirect 

effects, such as the loss of SciP in ΔclpA cells (Figure S2), that might also contribute to the 

over-replication and cellular defects described here.

Our identification of ClpAP as a redundant protease for DnaA may help integrate prior 

observations showing a possible role for the ClpP proteases in DnaA turnover (Gorbatyuk 

and Marczynski, 2005) with recent results illustrating the need for Lon in degrading bulk 

DnaA (Jonas, et al. 2013). Our working model is that during normal growth, Lon is the main 

protease responsible for DnaA degradation in part because ClpAP is inhibited by ClpS. 

When cells enter stationary phase, ClpAP activity increases either due to increased protease 

levels or altering the role of ClpS inhibition. Consistent with this interpretation, DnaA 

degradation seems increased in cells lacking clpS and is reduced in cells lacking lon. Despite 

its secondary role during normal exponential growth, ClpAP limits the toxic consequences 

of DnaA overexpression even during this stage. This is especially clear when overexpressing 

the active ATP-bound DnaA variant, which is resistant to Lon degradation. Together, our 

work suggests that ClpAP may act as a backup proteolysis pathway during stress conditions 

that works in concert with Lon or becomes dominant when the Lon protease is incapable of 

responding to increased DnaA activity.

Experimental Procedures

Strains and growth conditions

Strains and their genotypes in this study are listed in Table S1. Caulobacter crescentus cells 

were grown at 30°C in peptone yeast extract (PYE) media. For protein induction, stock 

solution 20% xylose (in H2O) or 50 mM vanillic acid/NaOH (pH7.5 in H2O) were added to 

liquid culture or agar plate to reach final concentration of 0.2% xylose, or 0.5 mM vanillic 

acid/NaOH. The final concentrations of antibiotics used in this study were: for Escherichia 
coli liquid and solid culture, 30μg/ml chloramphenicol, 100 μg/ml ampicillin, 50μg/ml 

kanamycin, 15μg/ml oxytetracycline or 50 μg/ml spectinomycin; for C. crescentus, 1 μg/ml 

(liquid) or 2 μg/ml (solid) chloramphenicol, 5 μg/ml (liquid) or 25 μg/ml (solid) kanamycin, 
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1 μg/ml (liquid) or 2 μg/ml (solid) oxytetracycline, or 25μg/ml (liquid) or 100 μg/ml (solid) 

spectinomycin.

Cloning and strain constructions

ClpA or DnaA overexpression strains carrying plasmids were generated by Gibson assembly 

of PCR product and double digested plasmids at NdeI and NheI/SpeI sites. ΔlonΔclpS-clpA 
strains were generated by two-step recombination cloning as described before (Jonas et al., 
2013) with small revisions. The plasmid pNPTS138 with lon gene flanking region was 

transformed into ΔclpA strain or ΔclpS-clpA strains (Grünenfelder et al., 2004), and 

integration was selected by kanamycin resistance. Cells were grown in PYE media with 5 

μg/ml kanamycin overnight, then back-diluted 1:100 into fresh PYE with 3% sucrose in the 

absence of kanamycin, grown for four hours, and plated on PYE + 3% sucrose agar to select 

for the loss of the sacB gene at the integration locus. The recombination was screened by 

colony PCR with primers outside of integration locus, and sequencing the insertion locus 

validated candidate clones with correct insertion size.

Protein purification and modification

Untagged ClpA, untagged Lon, and his-tagged ClpP were purified as before (Levchenko et 
al., 2000; Chien et al., 2007; Micevski and Dougan, 2013; Gora et al., 2013; Williams et al., 
2014), with additional ion-exchange polishing for Lon if necessary. The ClpA* construct 

used for in vitro assays is a stable variant where the c-terminal 9-residue degron has been 

removed, but otherwise retains the same proteolytic activity as wildtype ClpA (Maglica et 
al., 2008). Titin-I27-β20 was purified as described (Gur and Sauer, 2008) using a GE 

superdex 75 size exclusion chromatography column with H-buffer (25mM HEPES PH7.5, 

100mM KCl, 10mM MgCl2, 10% Glycerol (v/v) and 1mM DTT). CMtitin was generated by 

carboxymethylating the two cysteines in Titin-I27-β20 with iodoacetamide under urea 

denaturation condition as described (Jonas et al., 2013). Modified protein was stored at 4°C 

in TK buffer (25mM Tris PH8.0, 100mM KCl, 10mM MgCl2 and 1mM DTT). ClpS, DnaA 

and R357A mutant were purified as his6SUMO tagged protein, followed by tag cleavage as 

described (Wang et al., 2007). Exceptions to this protocol were that DnaA purification was 

carried in S-buffer (20% Sucrose, 25mM HEPES PH7.5, 200mM L-Glutamic acid 

potassium, 10mM MgCl2 and 1mM DTT), and further purified with an additional ion-

exchange column (GE healthcare, MonoS G5/50) using a KCl gradient from 0.1M to 1M in 

MS-S buffer (20% Sucrose, 25mM Tris PH8.5, 2mM DTT). DnaAR357A mutant was 

further purified with a size exclusion chromatography column (GE healthcare, Superdex 200 

10/300 GL) after tag cleavage.

In vitro Degradation assay

Degradation for all constructs were performed at 30°C with the following protease 

concentration except elsewhere indicated: 0.2μM Lon6, 0.2 μM ClpA*6, 0.4 μM ClpP14 and 

1μM ClpS, with 4mM ATP, 15mM creatine phosphate (Sigma) and 75ug/ml creatine kinase 

(Roche) as ATP regeneration components. 10μl aliquots were taken at each time point and 

quenched with SDS loading dye (2% SDS, 6% Glycerol, 50mM Tris PH8.0 and 2mM DTT), 

and examined by SDS-PAGE. Using creatine kinase or ClpP as an internal loading control, 

the degradation rate was determined by protein band intensity change at different time points 
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analyzed with ImageJ 1.47(NIH) software. To perform the degradation on denatured protein, 

urea was added to DnaA to reach 6M final concentrations, and the denaturation was carried 

overnight at room temperature. Denatured proteins were then run through a desalting 

column (Thermo Scientific) to remove excess urea and immediately followed by degradation 

components addition (protease and ATP regeneration system) to initiate the assay.

Sensitivity of strains to elevated DnaA activity

Parent strains containing low copy or medium copy DnaA or DnaAR357A overexpression 

plasmid were grown overnight in PYE with appropriate antibiotics and inoculated into fresh 

media the next day (1:100 dilution). Inoculated cultures were grown for 3 hours to allow 

cells to exit stationary phase, then 0.2% xylose was added to the culture. For low copy 

plasmid expression, cells were diluted to desire OD, and 3 μl of diluted culture were directly 

spotted on PYE + tetracycline agar media containing 0.2% xylose. For medium copy 

plasmid expression, since long-term overexpression of DnaA kills all strains, cells were 

induced for 6 hours at which point 1 ml of cells were taken, pelleted and washed twice with 

fresh PYE without xylose, then resuspended in PYE to reach OD 0.1. Cells were then 

serially diluted to desire OD, and 3 μl culture were spotted on PYE + chloramphenicol agar 

plates without xylose. Plates were incubated at 30 °C for 3 days and imaged under white 

light (G-box; Syngene).

In vivo protein level determination, in vivo degradation assay and flow cytometry

The degradation of in vivo protein was monitored by inhibiting protein synthesis upon 

addition of 30 μg/ml chloramphenicol into cells growing in exponential phase (OD 0.2–0.6). 

At each time point, 1ml of culture was taken, centrifuged at 15k rpm for 2 minutes and 

supernatant was removed. 100μl 2x SDS loading dye per 0.2 OD was added to the pellet, 

and the sample was frozen in liquid nitrogen. Samples in 2x SDS dye were then thawed, 

resuspended and boiled for 5 minutes for complete cell lysing. Following centrifugation to 

remove insoluble material, extracts were then resolved on 10% Bis-Tris gels by running at 

150 V for 1 hour at room temperature to be transferred to PVDF membrane. Membrane was 

blocked with 3% milk in 1x TBST (Tris-based-saline with 0.05% Tween-20) for 15 minutes, 

then probed with primary antibody in 1x TBST at 4°C overnight with following dilution 

factors: 1:5,000 dilution of DnaA antibody, 1:2,000 dilution of ClpA antibody, 1:2,000 

dilution of SciP antiserum, 1:2,000 dilution of Lon antibody, 1:2,000 dilution of CtrA 

antiserum, 1:5,000 antiFtsZ antibody or 1:20,000 ClpP antiserum. Membranes were washed 

with 1x TBST for 10 minutes twice, and then probed with goat-anti-rabbit HRP conjugated 

secondary antibody (Millipore) with 1:50,000 dilution in 1x TBST at room temperature for 2 

hours and excess secondary antibody was washed away. The protein was visualized by the 

luminescence from HRP substrate (Millipore) on G-box (Syngene). Flow cytometry to 

measure chromosomal content in rifampicin-treated cells was performed as described (Chen 

et al., 2009) and analyzed by FlowJo v. 10.1 software.

Limited proteolysis and electrophoretic mobility shift assay

To perform limited trypsin digestion, a serial titrations of trypsin with concentration from 

10μg/ml were added to 10μM DnaA in S-buffer, and the reactions were kept at 25°C for half 
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an hour. To stop the reaction, 5mM protease inhibitor phenylmethylsulfonyl fluoride (PMSF) 

was added to the reactions, and the resulting fragments were separated by SDS-PAGE.

The electrophoretic mobility shift assays were performed with 5′ 6-FAM fluorophore 

labeled oligos. G1 DnaA box has the sequence AACGGATGATCCA CAGGAGAG 

(underline highlights G1 box) from Caulobacter crescentus origin and annealed with its 

reverse complement strand by heating at 95 °C and slow cooling (TK buffer). 0.5 μM 

annealed G1 DnaA box containing dsDNA or dT25 and various concentration of DnaA or 

DnaAR357A (2-fold dilution from 8μM) were incubated in TK buffer containing 1mM ATP 

for 10 minutes, and run on 0.8 % agarose gel in TAMK buffer (40mM Tris, 20mM acetic 

acid, 10mM MgCl2 and 100mM KCl, PH 8.5) at 80 volts for 30 minutes. Gels were scanned 

by a Typhoon 7000 scanner (GE health Life Sciences) and analyzed by Image J software.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviated Summary

• ClpA affects chromosomal content in Caulobacter crescentus.

• The replication initiator DnaA is recognized by the ClpAP protease.

• ClpAP degradation of DnaA is inhibited by the ClpS adaptor.

• ClpA has a stronger effect on regulating DnaA levels in stationary 

phase.

• Loss of ClpAP sensitizes cells to excess DnaA activity.

• ClpAP is not the dominant protease for bulk DnaA degradation, but is 

particularly useful for degrading active DnaA.
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FIGURE 1. ClpA influences long-term growth of C. crescentus
A. Morphology of wildtype or ΔclpA cells in nutrient rich liquid media (PYE) for short (1 

day) or prolonged growth (2 days). Cells have reached stationary phase (OD~ 1.8) in these 

conditions. B. Quantifications of cell length after 1 or 2 days (n=200; error bars represent 

95% CI). C. Doubling time of strains inoculated into fresh media from stationary phases 

after either 1 or 2 days of growth (n=2; error bars represent SD). D. Flow cytometry profiles 

showing chromosome content of strains after 1 or 2 days growth in liquid PYE media. Sytox 

Green fluorescence is used as a measure of DNA content (see methods for details).
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FIGURE 2. ClpA reduces DnaA levels in C. crescentus
A. Levels of DnaA, Lon and ClpP in wildtype, ΔclpS and ΔclpA strains during exponential 

growth (3 hrs) or entering stationary phase (12 hrs) as shown by western blotting. 

Quantification of DnaA levels shown below (n= 3; error bars represent SD). P<0.05 (*) or 

P<0.01 (**). B. DnaA degradation following translational shutoff by chloramphenicol in 

wildtype, ΔclpS and ΔclpA strains during exponential growth. ClpP levels shown as 

controls. Quantification of DnaA is shown below (n=3; error bars represent SD).
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FIGURE 3. ClpAP degradation of DnaA is crucial when Lon is compromised
A. Morphology and doubling time of cells lacking ClpS, ClpA and Lon (ΔlonΔclpS-clpA), 

either without (−van) or with (+van) vanillate induced expression of ClpA from a low copy 

plasmid (pRVMCS-2 Pvan-clpA). B. Steady state levels of ClpA, DnaA and ClpP in these 

strains. *: cross-reacting band. **: ClpA (note leaky expression in absence of inducer) (n = 

2; error bars represent SD). C. Flow cytometry profiles showing chromosome content of 

ΔlonΔclpS-clpA, with or without vanillate induced expression of ClpA. D. DnaA 

degradation upon translation shutoff in ΔlonΔclpS-clpA cells either with or without vanillate 

induced expression of ClpA.
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FIGURE 4. ClpAP degrades DnaA in reconstituted in vitro assays
A. DnaA degradation by 0.2 μM Lon and 1 μM ClpAP in the absence or presence of ClpS. 

B. Kinetics of Lon or ClpAP dependent DnaA degradation at various DnaA concentrations. 

Fits are to the Michaelis-Menten equation. C. Comparing degradation of native and 

denatured DnaA by Lon and ClpAP (n= 3; error bars represent SD). n.b. the remnant amount 

of urea in the final reactions do not affect global Lon activity (Figure S4).
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FIGURE 5. Lon degrades DnaAR357A poorly
A. Comparison of DnaA and DnaAR357A degradation by Lon and ClpAP (n= 3; error bars 

represent SD). B. Degradation of denatured DnaA and DnaAR357A by Lon and ClpAP (n= 

3; error bars represent SD). C. In vivo degradation of DnaA or DnaAR357A following 

translation shutoff by chloramphenicol. DnaAR357A was expressed in a strain harboring a 

functional DnaA-YFP fusion to allow for resolution of wild type and mutant variants.
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FIGURE 6. ClpA protects cells from over-activation of DnaA
A. Wildtype or mutant strains carrying inducible dnaA on a medium copy plasmid were 

induced for 6 hours (0.2% xylose). Cells were serially diluted, then plated on PYE agar 

without inducer. B. Protein levels in wildtype, ΔclpS and ΔclpA strains after 6 hours of 

DnaA induction and after an additional 6 hours following removal of the inducer. C. 

Wildtype or mutant strains carrying dnaA or dnaAR357A on a low copy plasmid were 

serially diluted and plated on PYE agar with 0.2% xylose. D. Levels of DnaA in wildtype, 

ΔclpS and ΔclpA strains during growth where DnaAR357A is continuously induced from a 

low copy plasmid. Inset compares DnaA levels directly across all three strains and shows 

ClpP as a control.
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