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Abstract

Mosquitoes in the Anopheles gambiae complex show rapid ecological and behavioral 

diversification, traits that promote malaria transmission and complicate vector control efforts. A 

high-density, genome-wide mosquito SNP-genotyping array allowed mapping of genomic 

differentiation between populations and species that exhibit varying levels of reproductive 

isolation. Regions near centromeres or within polymorphic inversions exhibited the greatest 

genetic divergence, but divergence was also observed elsewhere in the genomes. Signals of natural 

selection within populations were overrepresented among genomic regions that are differentiated 

between populations, implying that differentiation is often driven by population-specific selective 

events. Complex genomic differentiation among speciating vector mosquito populations implies 

that tools for genome-wide monitoring of population structure will prove useful for the 

advancement of malaria eradication.
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Anopheles gambiae is the primary vector of human malaria in sub-Saharan Africa, where 

annual burdens of malaria-induced morbidity and mortality are greatest. Population 

subdivision within A. gambiae is pervasive but has been defined inconsistently and 

incompletely in the past. A. gambiae is composed of at least two morphologically identical 

incipient species known as the M and S molecular forms based on fixed ribosomal DNA 

sequence differences (1). The M and S forms are further divided by inversion karyotype into 

five distinct chromosomal forms, including Mopti (molecular form M), Savanna (molecular 

form S), and Bamako (molecular form S), each of which we examine here, and each of 

which has specialized for different breeding sites (2, 3). Furthermore, A. gambiae belongs to 

a species complex of seven recently diverged, morphologically identical sibling taxa, 

including another major malaria vector, A.arabiensis, which we also examine here. 

Population subdivision can increase disease transmission intensity and duration, as new 

mosquito populations evolve to exploit changing habitats and varied seasonal conditions. 

Vector control efforts can be complicated by population subdivision, because populations 

vary for traits on which interventions depend, such as indoor feeding behavior (4, 5) and 

insecticide susceptibility (6).

Genes underlying epidemiologically relevant phenotypic diversification among vector 

populations must reside within genomic regions that are differentiated among those 

populations. Most previous efforts to detect genetic differentiation between mosquito 

populations have been unable to localize differentiated regions, even when population 

divergence has been detected [for instance, between S and Bamako (7)] or lacked resolution 

to map all but the most highly differentiated regions [for example, between M and S (8, 9)]. 

High-resolution mapping of genomic regions differentiated between vector populations will 

advance our understanding of phenotypic diversification. Furthermore, ongoing assessment 

of gene flow among vector populations is essential for implementation of control measures 

designed for natural genetic variants [for instance, insecticide susceptibility alleles (10)] or 

introduced transgenic variants (11) within mosquito populations, as we strive yet again to 

eradicate malaria.

We used a customized Affymetrix single-nucleotide polymorphism (SNP) genotyping array 

to analyze 400,000 SNPs identified through sequencing of the M and S incipient species of 

A. gambiae (12). We hybridized individual arrays with genomic DNA from each of 20 field-

collected females from the three known sympatric A. gambiae populations in Mali (M, S, 

and Bamako) that exhibit partial reproductive isolation (2, 13–15). We then hybridized DNA 

pooled from the same 20 females from each population to determine the degree to which 

quantitative differences in allele frequencies could be assessed with the use of pooled DNA. 

We also hybridized a pool of DNA from 20 field-collected individuals of the sister species 

A. arabiensis. Results obtained from pooled and individual hybridizations were highly 

correlated (Pearson’s correlation coefficient r2 = 0.96 for M, S, and Bamako comparisons) 

(fig. S1), indicating that the majority of SNPs assayed on the array yield useful quantitative 

information regarding divergence in allele frequencies between pooled samples.

Pooled hybridization data revealed that the greatest differentiation between the recently 

subdivided S and Bamako populations maps within a cluster of inversions on chromosomal 

arm 2R (Fig. 1A). This pattern is concordant with models of speciation in the face of 
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ongoing gene flow, which predict that early in the speciation process, divergence will be 

localized to regions of low recombination, such as inversions (16–20). In partially 

reproductively isolated populations like S and Bamako, these divergent genomic regions are 

most likely to contain genes (table S2) directly responsible for differential niche adaptation 

and reproductive isolation, whereas ongoing gene flow should homogenize the remainder of 

the genome (21–23).

The M and S mosquito populations in Mali exhibit divergence that is much greater and more 

heterogeneous overall than that observed between S and Bamako (Fig. 1B). This might be 

expected given the broader geographic ranges of M and S relative to Bamako and their 

presumed longer divergence time (2). We found that all pericentromeric regions exhibit high 

levels of differentiation between M and S (fig. S2), in accordance with previous observations 

(8, 9, 24). However, we unexpectedly detected shorter regions of substantial differentiation 

at various distances from centromeres along each chromosome. The existence of extensive 

divergence within nonpericentromeric regions suggests that realized gene flow between 

these two incipient species is low, despite the observation of hybrids between M and S at 

frequencies approaching 1% in Mali (25). These findings, which we obtained with the use of 

DNA isolated from field-collected mosquitoes, reinforce patterns observed in the 

sequencing-based SNP analysis of M and S mosquito colonies (12).

We also compared the Mali S pool to a pool of colony-derived M mosquitoes from 

Cameroon to address the possibility that differentiation observed between M and S is 

geographically restricted to Mali. Genetic differentiation is substantially greater between M 

populations from Mali and Cameroon than between S populations from these locations, and 

it has been speculated that another incipient speciation event may be occurring within M 

(26). However, with the exception of the 2La inversion, we find extremely similar patterns of 

differentiation between S and M, regardless of the geographic origin of the M population 

that was analyzed (Fig. 1C and fig. S3). This finding suggests that the genomic regions 

differentiated between M and S are probably similar throughout West and Central Africa and 

may harbor the genes facilitating niche differentiation as well as pre- and postmating 

isolation between these taxa. However, the great extent of genomic divergence also implies 

that identifying the genes involved in the earliest stages of the M and S speciation process 

will prove challenging.

Finally, we compared A. gambiae and its sister species A. arabiensis, between which 

hybridization can occur in nature, although it yields sterile males (27). Because SNPs 

assayed on the array are segregating in A. gambiae but may not be segregating in A. 
arabiensis, we could not compare the overall magnitude of genomic divergence between 

these taxa with the divergence between forms of A. gambiae. To avoid bias, we undertook 

this comparison with a subset (75,750) of the SNPs that were found to exhibit similar allelic 

intensity ratios in the M and S pools. This assay set was sufficient to indicate that the profile 

of relative differentiation between A. gambiae and A. arabiensis is less heterogeneous than 

that in the M versus S comparison (Fig. 1D), even as it echoes some of the same highly 

divergent regions. Chromosomes 2 and 3 exhibit slightly heightened pericentromeric 

differentiation, similar to the pattern we observed between the M and S forms of A. 
gambiae, with additional differentiation across the entire X chromosome, presumably due to 
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the large Xag inversion fixed in A. gambiae and at least one additional inversion fixed in A. 
arabiensis relative to the ancestral X arrangement (28, 29).

Although particular inversion arrangements are not exclusive to any of the A. gambiae 
populations that we profiled, these genomic regions clearly harbor an excess of 

differentiation between populations compared with other regions of the genome (Figs. 1 and 

2). Inversions may be hotspots for differentiation, even when maintained at similar 

frequencies in different populations, if recombination suppression facilitates functional 

divergence of the inverted and wild-type arrangements. Average linkage disequilibrium 

within all three forms of A. gambiae is extremely low, extending no more than a few 

thousand base pairs (fig. S4). Therefore, groups of loci that reside within regions of lower 

recombination in the A. gambiae genome would be more likely to establish consistent 

patterns of cosegregation.

It is important to distinguish a difference in inversion frequency between populations versus 

differentiation of alternative inversion arrangements between populations. Principal 

components analysis (PCA) of SNP genotypes within inversion boundaries indicates that, 

although the S and Bamako populations harbor different frequencies of the 2Rj, 2Rb, 2Rc, 

and 2Ru inversions (table S3), the b arrangement of 2Rb is divergent between S and Bamako 

(Fig. 2). This result indicates that, although this arrangement is frequent in both S and 

Bamako, it is differentiating independently within each population. Similarly, both 

arrangements of 2Rb, as well as the uninverted arrangements of 2La and 2Ru, have 

differentiated between M and S (Fig. 2 and table S3). However, the inverted 2La 
arrangement is an exception to this pattern: M, S, and Bamako mosquitoes homozygous for 

the 2La inversion exhibit much less divergence between the 2La breakpoints than is 

observed in the same three populations for all other inversions (Fig. 2A). The close 

clustering of A. arabiensis (a species fixed for the inverted 2La arrangement) with 

individuals homozygous for 2La from each of the A. gambiae populations (M, S, and 

Bamako) supports earlier hypotheses regarding introgression between species within this 

region (30). Indeed, the region within the 2La inversion breakpoints shows divergence 

between A. gambiae and A. arabiensis that is lower than expected (Fig. 1D). Overall, these 

PCA plots highlight the degree of similarity within each of these partially isolated 

populations. With the exception of 2Rj, no inversion is diagnostic of a particular population 

in our sample. However, the consistently independent clustering of M, S, and Bamako 

mosquitoes by PCA across all inversions except 2La affirms the legitimacy and genetic 

distinctiveness of these groups.

We next examined the data for signals of natural selection. The genomic regions exhibiting 

greatest divergence (Fst > 0.6) between M and S exhibit significantly reduced polymorphism 

in one or both species (fig. S5) [M: one-tailed t test, P = 1.14 × 10−47 (1.14E-47); S: one-

tailed t test, P = 1.88E-120], as might be expected if differences between populations were 

driven to fixation by polymorphism-eliminating selective sweeps (31). To explore selection 

more deeply, we analyzed SNP calls from individual hybridizations of M, S, and Bamako 

mosquitoes with the use of SweepFinder software (32), an approach that evaluates the 

likelihood of a sweep within a particular genomic region, given the allele frequency 

spectrum of local SNPs. Several genomic regions appear to have experienced recent sweeps 
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within each of the three forms (Fig. 3). The pericentromeric regions of all three 

chromosomes exhibit the strongest signals of selective sweeps for M and S, suggesting that 

the extensive divergence observed in these regions has been driven by selection (Fig. 3). 

Indeed, the degree of concordance between the profiles of selection and differentiation for M 

and S [chi-squared test, P = 2.4E-104 (14)] implies a causal role for selection within some 

genomic regions where differentiation is observed. Additionally, the fact that different 

regions of the genomes of M, S, and Bamako show evidence of selective sweeps suggests 

that these populations are experiencing different selective pressures that shape genetic 

variation independently (Fig. 3).

Analysis for functional enrichment (15) among 68 genes found in candidate sweep regions 

identified two interesting categories of genes significantly overrepresented after correction 

for multiple testing: (i) multicellular organismal development (P = 9.1E-4; five genes), and 

(ii) serine-type endopeptidase activity (P = 2.6E-2; nine genes, five of which occur in a 

pericentromeric cluster on 3L). Of the five genes annotated as being involved in 

development, three encode homeodomain-containing transcriptional regulators 

(AGAP004659, sweep in S; AGAP004660, sweep in S; AGAP004696, sweep in Bamako), 

one encodes a member of the Hedgehog signaling pathway (AGAP004637, sweep in S), and 

one encodes a member of the Wnt signaling pathway (AGAP010283, sweep in M), 

indicating that shifts in developmental regulatory programs may underlie ecological niche 

differentiation and/or reproductive isolation mechanisms that reinforce the ongoing process 

of speciation in these populations. The gene encoding CPF3, a cuticular protein speculated 

to bind sex pheromones (33), is also found in a pericentromeric sweep region in S on 

chromosome 2L. CPF3 is the gene exhibiting the most significant difference in expression 

between M and S (33), and it dramatically changes expression upon mating (34). These 

combined observations motivate further investigation of CPF3 and its potential relation to M 

and S mate discrimination. Table S2 presents a full list of the 536 genes found in 

differentiated and/or sweep regions. Among this set of 536 loci, genes from the X 

chromosome are significantly overrepresented (X total = 173; chi-squared test; P < 2.2E-16).

Our findings demonstrate the power of high-resolution SNP arrays for mapping genetic 

divergence among vector mosquito taxa within the A. gambiae species complex. The ability 

to detect differentiation between distinct populations and selective sweeps within 

populations is valuable for identifying and monitoring alleles that mediate traits critical for 

malaria transmission and vector control. The differentiated genomic regions we have 

identified with these comparisons harbor genes (table S2) of epidemiological importance for 

disease transmission, including loci influencing reproduction, longevity, insecticide 

resistance, aridity tolerance, larval habitat, and other traits that differ among mosquito 

populations (2).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Relative local divergence profiles for pairwise comparisons of mosquito populations, 

represented by z scores (standard deviations) and scaled so that 0 reflects the modal 

divergence for each comparison. Plots represent average difference in allelic intensity ratios 

measured over adjacent 50 SNP stepping windows. The colored regions labeled with letters 

represent chromosomal inversion locations.(A) Divergence between S and Bamako forms of 

A. gambiae from Mali. (B) Divergence between A. gambiae M-form mosquitoes and S-form 

mosquitoes from Mali. (C) Divergence between M-form mosquitoes from Cameroon and S-
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form mosquitoes from Mali. (D) Divergence between A. arabiensis from Burkina Faso and 

A. gambiae from Mali.
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Fig. 2. 
PCA plots of the 2La (A), 2Rj (B), 2Rb (C), 2Rc (D), and 2Ru (E) inversion regions. 

Circled regions indicate groups of mosquitoes homozygous (ii) or heterozygous (i+) for the 

inversion or homozygous for the wild-type arrangement (++).
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Fig. 3. 
Profiles of genomic regions subject to recent selective sweeps in M,S, and Bamako forms of 

A. gambiae. Each point represents the –log P value of a selective sweep for a window of ~20 

SNPs. Windows exhibiting significant signals of selection (P < 0.05 after Bonferroni 

correction) are indicated in red.
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