
Measurement of the parity violating asymmetry in the quasielastic
electron-deuteron scattering and improved determination of the magnetic

strange form factor and the isovector anapole radiative correction

D. Balaguer Ríos,1,† K. Aulenbacher,1 S. Baunack,1 J. Diefenbach,1 B. Gläser,1 D. von Harrach,1 Y. Imai,1 E.-M. Kabuß,1

R. Kothe,1 J. H. Lee,1 H. Merkel,1 M. C. Mora Espí,1 U. Müller,1 E. Schilling,1 C. Weinrich,1 L. Capozza,2 F. E. Maas,2

J. Arvieux,3,* M. A. El-Yakoubi,3 R. Frascaria,3 R. A. Kunne,3 S. Ong,3 J. van de Wiele,3 S. Kowalski,4 and Y. Prok4
1Institut für Kernphysik, Johannes Gutenberg-Universität Mainz,

J.J. Becherweg 45, D-55099 Mainz, Germany
2Helmholtz-Institut Mainz, Johannes Gutenberg-Universität Mainz,

J.J. Becherweg 36, D-55099 Mainz, Germany
3Institut de Physique Nucléaire, CNRS-IN2P3, Université Paris-Sud, F-91406 Orsay Cedex, France

4Laboratory for Nuclear Science and Department of Physics, MIT, Cambridge, Massachusetts 02139, USA
(Received 19 April 2016; published 12 September 2016)

A new measurement of the parity-violating asymmetry in the electron-deuteron quasielastic scattering
for backward angles at hQ2i ¼ 0.224 ðGeV=cÞ2, obtained in the A4 experiment at the Mainz Microtron
accelerator (MAMI) facility, is presented. The measured asymmetry is Ad

PV ¼ ð−20.11� 0.87stat�
1.03sysÞ × 10−6. A combination of these data with the proton measurements of the parity-violating
asymmetry in the A4 experiment yields a value for the effective isovector axial-vector form factor of

Ge;ðT¼1Þ
A ¼ −0.19� 0.43 and RðT¼1Þ;anap

A ¼ −0.41� 0.35 for the anapole radiative correction. When
combined with a reanalysis of measurements obtained in the G0 experiment at the Thomas Jefferson
National Accelerator Facility, the uncertainties are further reduced to Gs

M ¼ 0.17� 0.11 for the magnetic

strange form factors, and RðT¼1Þ;anap
A ¼ −0.54� 0.26.
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Themost remarkable feature of the strong interaction at low
energies is confinement. Its effect, however, cannot be
calculated using perturbative methods of the QCD theory.
The QCD degrees of freedom, the quarks, are present as
hadrons—mesons and baryons. Among the baryons, the
proton is the ground state. Its structure can be understood
in terms of the valence quarks and the quark sea, consisting of
quark-antiquark pairs that involve mainly the three light
quarks u, d and s. The strange quark s in the proton is then
apure quark sea effect. Parity-violation experiments havebeen
the tool of choice for exploring the vector-matrix elements of
the strangequark [1]. Theparity-violating asymmetry contains
electroweak radiative corrections that exhibit the same kin-
ematic dependence as the nucleon axial-vector form factor.
These radiative corrections can be large; in particular, the
anapole radiative correction depends strongly on the hadronic
structure, as it arises from the coupling of the virtual photon to
axial-vector currents originating from the internal electroweak
dynamics of the nucleon [2–4].
The contribution of the strange quark (Gs

E;M) to the
nucleon electromagnetic form factors Gp;n

E;M can be deter-
mined from the neutral weak form factors [5]. These form
factors can be obtained by measuring the parity-violating
asymmetry in elastic electron-proton scattering. Through a

combination of two measurements of the parity-violating
asymmetry at the same Q2, the electric and magnetic
strange form factors Gs

E and Gs
M can be separated [1], if

the effective axial-vector form factor Ge;p
A is introduced as

an input [6]. A third measurement of the parity-violating
asymmetry in the quasielastic electron-deuteron scattering
at backward angles will then isolate the effective isovector

axial-vector form factor Ge;ðT¼1Þ
A .

Here we present the analysis of a new measurement of
the parity-violating asymmetry at hQ2i ¼ 0.224 ðGeV=cÞ2
and an average θ̄ ¼ 145°, obtained in the A4 experiment at
the Mainz Microtron (MAMI). In addition, a recent lattice-
QCD calculation is used to separate the effective isovector
axial-vector form factor Ge;ðT¼1Þ

A from its isoscalar counter-
part, Ge;ðT¼0Þ

A [7]. The combination of the A4 results
presented here with asymmetries measured previously in
the A4 experiment [6,8], and with the asymmetries
obtained in the G0 experiment at the Thomas Jefferson
National Accelerator Facility [9,10], leads to a substantial
reduction of the experimental uncertainty for the values of
Ge;ðT¼1Þ

A and of Gs
M. The anapole radiative correction is

extracted and compared to the theoretical calculations of
Zhu et al. [2]. This radiative correction contains hadronic
effects. The determination of these radiative corrections has
an important role in high-precision determinations of the
weak mixing angle sin2 θW at very low Q2, as is planned in
the P2 experiment in Mainz [11].
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The parity-violating asymmetry can be decomposed into
three terms: APV ¼ AV þ AS þ AA [1], where the subscript
V refers to the vector coupling to the nucleon without
strangeness, S to the vector coupling of the strange quark,
and A to the axial-vector coupling of the nucleon. The
difference between the measured value of APV and the
theoretical expectation for AV gives a term that depends on
Gs

E, G
s
M and Ge;p

A . For the proton,

Ap
PV − Ap

V ¼ a
ϵGp

EG
s
E þ τGp

MG
s
M þ gvϵ0τ0G

p
MG

e;p
A

σrp
; ð1Þ

wherea ¼ GFQ2

4πα
ffiffi
2

p withGF being the Fermi coupling constant,

σrp ¼ ϵðGp
EÞ2 þ τðGp

MÞ2 with ϵ¼ð1þ2ð1þτÞtan2θ=2Þ−1,
τ ¼ Q2=4M2

N with MN being the nucleon mass,

gv ¼ 1 − 4 sin2 θW , ϵ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2

p
, and τ0 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

τð1þ τÞp
.

The radiative corrections in the tree-level equation (1) have
been taken into account; see Ref. [1].
The parity-violating asymmetry in the electron-

deuteron quasielastic scattering separates Ge;ðT¼1Þ
A

from Ge;ðT¼0Þ
A :

Ad
PV − Ad

V ¼ a
ϵðGp

E þ Gn
EÞGs

E þ τðGp
M þ Gn

MÞGs
M þ gvϵ0τ0½ðGp

M −Gn
MÞGe;ðT¼1Þ

A þ ðGp
M þGn

MÞGe;ðT¼0Þ
A �

σrp þ σrn
; ð2Þ

where σrn ¼ ϵðGn
EÞ2 þ τðGn

MÞ2.
Ge;ðT¼0Þ

A and Ge;ðT¼1Þ
A are parametrized as follows:

Ge;ðT¼0Þ
A ¼ ð−gARe;ðT¼0Þ

A þ ΔsÞGD
A ; ð3Þ

Ge;ðT¼1Þ
A ¼ −gA½ð1þ Re;ðT¼1Þ

A Þ�GD
A ; ð4Þ

GD
A ¼

�
1þ Q2

M2
A

�−2
; ð5Þ

where RðT¼0Þ
A and RðT¼1Þ

A are the isoscalar and isovector
electroweak radiative corrections, respectively; MA ¼
ð1.026� 0.021Þ GeV=c2 is the axial mass [12]; gA ¼
1.2723ð23Þ is the nucleon axial coupling due to the neutron
beta decay [13]; and Δs ¼ −0.13� 0.13 is the strange-
quark contribution to the nucleon polarization [14].

Each component RðT¼iÞ
A , with i ¼ 0, 1, is the sum of one-

quark and multiquark (anapole) radiative corrections

RðT¼iÞ
A ¼ RðT¼iÞ;1q

A þ RðT¼iÞ;anap
A . The RðT¼iÞ;1q

A values are
calculated from one-quark diagrams within the Standard

Model, whereas RðT¼iÞ;anap
A values are calculated from multi-

quark diagrams using the heavy baryon chiral perturbation
theory (HBχPT) [2,3,15] and the chiral quark model (χQM)

[4]. The calculations of RðT¼iÞ;anap
A are affected by large

theoretical uncertainties related to the lack of knowledge
about the parity-violating meson-nucleon couplings
[2–4,15]. In Eq. (2), we assume the static approximation.
There are calculations that have taken into account the
coherent scattering on the deuteron, including two-body
current operators [16] and parity-violating nucleon-nucleon
interactions [17,18]. The systematic error associated with
assuming the static approximation has been estimated to be
at the level of 1% [19] for the A4 kinematics, and it is
included in the extraction of the form factors and the anapole
radiative correction.

The experimental setup used in the A4 experiment
[6,8,20–27] at MAMI is described in detail in Ref. [8].
In short, the accelerator provides a high-quality, longitu-
dinally polarized electron beam with up to 80% polariza-
tion, a current of 20 μA and a beam energy of 315.1 MeV.
The data were taken alternately with and without insertion
of a λ=2 wave plate in the polarized electron-beam source
(“in”/“out”). The λ=2 wave plate suppresses systematic
effects and serves to systematically test the correct change
of sign for the physical parity-violating asymmetry. False
asymmetries originate from helicity-correlated beam
differences of energy, position, angle and intensity.
Several feedback loops stabilize these beam parameters.
Once the beam reaches the A4 experiment, it passes

with a luminosity of 1.4 × 1038 cm−2 s−1 through a liquid
deuterium target [26]. The scattered electrons are registered
in a homogeneous, segmented, totally absorbing electro-
magnetic PbF2 calorimeter [22] that is mounted on a
rotatable platform and can be operated at both forward
and backward angles. The calorimeter is composed of 1022
crystals arranged in 146 slices and 7 rings. They cover
the 2π azimuthal angle and the polar-angle interval
½140°; 150°�. The energy resolution is 3.9%=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðGeVÞp

,
which is enough to separate elastically scattered from
inelastically scattered electrons. The signals are digitized
using fast electronics with a single-channel dead time of
20 ns and are stored as histograms. Individual events are
counted in the histogram. In the backward configuration, an
additional detector consisting of plastic scintillators dis-
criminates between charged and neutral particles, separat-
ing scattered electrons from photons originating from π0

decays. For each of the 1022 channels, four histograms of
the detected events are stored on disk every five minutes.
For each polarization state ðþ;−Þ, an energy spectrum for
charged particles ðAþ; A−Þ and a spectrum for neutral
particles ðBþ; B−Þ is generated; see Fig. 1.
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In the spectrum ðAþ; A−Þ, the quasielastic peak from
scattering off deuterium is clearly visible (Fig. 1). It is
broadened due to Fermi motion. A Gaussian function is
fitted to the right slope of this spectrum to obtain the mean
value of the peak, μ, and its width, σ. This spectrum
contains background contributions from the conversion of
high-energy photons in the aluminum of the scattering
chamber and in the plastic scintillators in front of the
calorimeter. The parity-violating asymmetry Ae is extracted
from ðAþ; A−Þ through counting the number of scattered
particles under the quasielastic peak, by integrating
between a lower-cut value cl and an upper-cut value cu.
The parity-violating asymmetry of the background Aγ is
obtained from ðBþ; B−Þ. These asymmetries are averaged
over the five inner rings of the detector, weighted by their
respective cross sections. The method for the correction of

the background asymmetry is explained in detail in
Ref. [6]. The correction for the background with a dilution
factor f is

Ai;j;k
PV ¼ Ai;j;k

e − fAi;j;k
γ

1 − f
; Ai;k

PV ¼ 1

N

X

j

Ai;j;k
PV ; ð6Þ

where the superscript i labels the slice, j the five-minute run
and k the 70-hour sample of asymmetries, with and without
insertion of the λ=2 wave plate in the polarized electron-
beam source (“in”/“out”). N stands for the number of runs.
Ai;j;k
PV is averaged over all runs j to obtain Ai;k

PV . A
i
PV is

calculated with an error-weighted average over the λ=2
wave plate samples k of Ai;k

PV , changing the sign for the “in”
samples. Finally, APV is obtained by averaging over the
slices i. To optimize statistical precision and minimize
systematic uncertainty from the background, several
cl ¼ μ − κ · σ (κ ¼ 2;…; 0) are tested, with fixed
cu ¼ μþ 3.0σ. An optimal cl with κ ¼ 1.5 minimizes
ΔAPV . APV displays no significant dependence on cl.
The parity-violating asymmetry is corrected for other

sources of background contributions that have their own
asymmetries: the quasielastic scattering on the aluminum
windows possesses parity-violating asymmetry Aa with a
dilution factor g, the random-coincidence events in the
plastic scintillators have Ar with dilution factor h, and the
electron-deuteron elastic scattering exhibits have Aη with
dilution factor η. These background sources have been
corrected globally. The corrections have been calculated
from the difference

APVð1 − fÞ − gAa − hAr − ηAη

1 − f − g − h − η
− APV ð7Þ

as f is dominant. The aluminum background is estimated
from a measurement of the energy spectrum with empty
target. Aa is calculated assuming the static approximation,
using Ap

V and An
V . The random-coincidence background is

determined from ðBþ; B−Þ, and Ar is compatible with zero.
The background from the electron-deuteron elastic

FIG. 1. Upper panel: Experimentally obtained energy spectra of
neutral particles B (dashed line) and charged particles A (solid
line). Lower panel: The spectrum of charged particles A (solid
line), the background from the γ conversion in A (dashed line)
and the spectrum A with subtracted background (dotted line).
Vertical lines mark the positions of the quasielastic peak, the
elastic peak, the upper cut, the lower cuts (dashed lines) and the
pion-production threshold (dot-dashed lines).

TABLE I. Systematic corrections to the asymmetry and their
contribution to the systematic uncertainty.

Scaling factor Error (ppm)
Polarization 0.74 0.75

Correction (ppm) Error (ppm)
Dilution of γ backgr. −3.07 0.67
Helicity corr. beam diff 0.24 0.16
Al windows 0.01 0.06
Random-coinc. events −0.61 0.10
Elastic scattering −0.14 0.04
Target density −0.81 0.06
Sum syst. errors 1.03
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scattering is estimated from the cross section calculated
with a phenomenological parametrization of the three
electromagnetic form factors of the deuteron [28]. Aη

without strangeness is obtained from Ref. [29]. Ai
PV is

corrected for target-density fluctuations and for the false
asymmetries from helicity-correlated beam differences in
the energy, position, angles and current, applying a multi-
linear regression method. The set of systematic corrections
and uncertainties is summarized in Table I.
Several systematic tests show that APV is the physical

parity-violating asymmetry. Ai
PV shows no significant

dependence on the azimuthal angle. Ak
PV exhibits the

change of sign expected for a parity-violating asymmetry
under the insertion of a λ=2 wave plate in the polarized
electron-beam source (Fig. 2). A normal probability dis-
tribution has been fitted to the experimental sample of Aj

PV ;
see Fig. 3.
The three measurements in the A4 experiment at

hQ2i ¼ 0.224 ðGeV=cÞ2, two of Ap
PV at forward and back-

ward angles [6,8] and Ad
PV presented in this paper, are

sufficient to determine Ge;ðT¼1Þ
A and to extract RðT¼1Þ;anap

A by

subtracting RðT¼1Þ;1q
A [2]. We obtain

Ge;ðT¼1Þ
A ¼ −0.19� 0.27stat � 0.31syst � 0.12th;

RðT¼1Þ;anap
A ¼ −0.41� 0.22stat � 0.26syst � 0.08th:

A recent lattice-QCD calculation of Gs
E [7] is used to

determine Gs
M and Ge;ðT¼0Þ

A and thereby RðT¼0Þ;anap
A :

Gs
M ¼ 0.43� 0.27stat � 0.16syst � 0.03th;

Ge;ðT¼0Þ
A ¼ −2.15� 1.03stat � 0.81syst � 0.01th;

RðT¼0Þ;anap
A ¼ 1.62� 0.84stat � 0.65syst � 0.07th:

The first error originates from the statistical error of the
asymmetries, the second from the systematic uncertainties,
and the third from theory.
A further reanalysis was performed for the published

data of the G0 experiment [9,10]. The set of three
asymmetries for each Q2 have been used to determine

Gs
M, G

e;ðT¼1Þ
A , Ge;ðT¼0Þ

A , RðT¼1Þ;anap
A and RðT¼0Þ;anap

A using the
lattice-QCD calculation of Gs

E [7] instead of the theoretical

calculation of RðT¼0Þ
A [2]. The experimental uncertainties

have been reduced using Gp;n
E;M obtained in a Monte Carlo

analysis of the world data [30] instead of the Kelly
parametrization used by G0 [9,10]. The results of the
reanalysis, together with the results of the A4 experiment,

FIG. 2. Samples of the extracted asymmetries Ak
PV , taken with

(“in”) or without (“out”) a λ=2 wave plate in the electron-beam
source. The asymmetries exhibit the change of sign expected for a
parity-violating asymmetry. The fits to the “out” samples,
Aout¼ð−19.44�1.28Þ×10−6; the “in” samples, Ain ¼ ð18.52�
1.37Þ × 10−6; and to the combined data, A ¼ ð−19.01� 0.94Þ ×
10−6 are consistent within the error bars. The shaded bands mark
the 1σ width for the fit to the combined asymmetry samples.

FIG. 3. Histogram of the extracted asymmetries Aj
PV . A

Gaussian function has been fitted to the histogram (solid line).
The goodness of the fit confirms that the histogram of Aj

PV
follows a normal probability distribution.

TABLE II. List of form factors and anapole radiative corrections from the A4 and G0 experiments, using the lattice-QCD value forGs
E

[7]. The statistical, systematic and theoretical errors have been added in quadrature.

Experiment Q2 ðGeV=cÞ2 Gs
M Ge;ðT¼1Þ

A Ge;ðT¼0Þ
A RðT¼1Þ;anap

A RðT¼0Þ;anap
A

A4 0.224 0.43� 0.32 −0.19� 0.43 −2.15� 1.31 −0.41� 0.35 1.65� 1.06
G0 0.221 −0.19� 0.19 −0.60� 0.36 0.95� 0.87 −0.09� 0.29 −1.15� 1.00
G0 0.628 0.16� 0.07 −0.25� 0.36 −1.23� 0.64 −0.22� 0.50 2.40� 1.27
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are shown in Table II. The statistical, systematic and
theoretical errors have been added in quadrature.
The extracted quantities based on the measurements

obtained in the A4, G0 [9,10] and SAMPLE (at the MIT

Bates lab [31]) experiments of Ge;ðT¼1Þ
A at different Q2 and

the calculation of Zhu et al. [2], assuming a Q2 dipole
dependence with the axial mass [12], are shown in Fig. 4.
These quantities agree with the theoretical expectation
values within the error bars and exhibit a consistent Q2

dependence.
The extracted quantities shown in Table II are combined

to reduce the errors of Gs
M, G

e;ðT¼1Þ
A and Ge;ðT¼0Þ

A , and

therefore RðT¼1Þ;anap
A and RðT¼0Þ;anap

A . Gs
M is assumed to

follow a Q2 dipole dependence with the vector mass, and

Ge;ðT¼1Þ
A andGe;ðT¼0Þ

A aQ2 dipole dependence with the axial
mass [12], including the radiative corrections. This results
in a positive μs ¼ Gs

Mð0Þ ¼ 0.30� 0.19, with a quality of

the fit given by χ2=n:d:f: ¼ 2.77 at more than 1σ from zero.
[The number of degrees of freedom (n.d.f.) is 2, here and in
the fits discussed below.] Extrapolation to hQ2i ¼
0.224 ðGeV=cÞ2 yields Gs

M ¼ 0.17� 0.11. The error
0.11 is by a factor of ∼

ffiffiffi
2

p
smaller than the error from

the hydrogen measurements in the A4 experiment [6].
The fit to the axial-mass Q2 dependence yields

Ge;ðT¼1Þ
A ð0Þ ¼ −0.59� 0.34, with a good fit quality,

χ2=n:d:f ¼ 0.29, and Ge;ðT¼0Þ
A ð0Þ ¼ −0.90� 0.82 with

χ2=n:d:f: ¼ 3.29. The extracted anapole radiative correc-

tions are RðT¼1Þ;anap
A ¼ −0.54� 0.26 and RðT¼0Þ;anap

A ¼
0.62� 0.65. The error of RðT¼1Þ;anap

A is slightly larger than

the theoretical uncertainty [2], and RðT¼0Þ;anap
A exhibits a

large error and a positive value compatible with zero.
In summary, a combination of measurements of APV

obtained in the A4 experiment at the same Q2 (forward H2,
backward H2 and backward D2) has been used to determine

Ge;ðT¼1Þ
A and RðT¼1Þ;anap

A . The values Gs
M, Ge;ðT¼0Þ

A and

RðT¼0Þ;anap
A were determined using as theoretical input the

lattice-QCD calculation of Gs
E [7]. Combination with the

quantities obtained from a reanalysis of the G0 data [9,10]
enabled a reduction of the experimental uncertainties.
Future measurements of APV in the A4 experiment at

Q2 ¼ 0.1 ðGeV=cÞ2 will help to further reduce the errors of
Gs

M, G
e;ðT¼1Þ
A , Ge;ðT¼0Þ

A , RðT¼1Þ;anap
A and RðT¼0Þ;anap

A . Planned
measurements of APV at very low Q2 in the P2 experiment
at Mainz with improved statistics and systematics will lead
to determinations with considerably smaller uncertainties.
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