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Topological insulators are attracting considerable interest due to their potential for technological applications
and as platforms for exploring wide-ranging fundamental science questions. In order to exploit, fine-tune, control,
and manipulate the topological surface states, spectroscopic tools which can effectively probe their properties
are of key importance. Here, we demonstrate that positrons provide a sensitive probe for topological states and
that the associated annihilation spectrum provides a technique for characterizing these states. Firm experimental
evidence for the existence of a positron surface state near Bi2Te2Se with a binding energy of Eb = 2.7 ± 0.2 eV
is presented and is confirmed by first-principles calculations. Additionally, the simulations predict a significant
signal originating from annihilation with the topological surface states and show the feasibility to detect their
spin texture through the use of spin-polarized positron beams.
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I. INTRODUCTION

Quickly after their initial discovery, topological insulators
(TIs) were recognized to hold significant potential for new
technological applications and as a playground for fundamen-
tal physics [1]. An intrinsic challenge with TIs, which arises
due to the fact that their interesting properties originate from
Dirac states located in a nanoscopic layer near the surface,
remains to separate the fingerprint of the topological surface
states from the bulk behavior of the sample. Highly surface-
sensitive techniques, such as angle-resolved photoemission
spectroscopy and scanning tunneling microscopy have thus
proven to be indispensable tools to establish the existence of
the gapless states in several systems and to confirm various
predicted quasiparticle properties [2].

In this article, we demonstrate that positrons provide a
highly surface-sensitive probe for the topological Dirac states.
Since positron annihilation spectroscopy (PAS) techniques
with measurements of the two-dimensional angular correlation
of the annihilation radiation (2D-ACAR) in particular are well
suited to measure both the low- and the high-momentum
components of the annihilating electronic states without
complication of matrix element effects, they can provide useful
information on the Dirac state orbitals. Our calculations show
that spin-polarized positron beams can additionally resolve the
spin textures associated with the topological states, owing to
the predominant annihilation between particles with opposite
spins [3].

In Sec. II, we present the experimental evidence for the
existence of a bound positron state at the surface of the TI
Bi2Te2Se and the measured binding energy [4]. Section III

*vincent.callewaert@uantwerpen.be

contains a discussion of the theory and computational details
used in our first-principles investigation. In Sec. IV, we show
that the theory confirms the experimental interpretation and
predicts a significant overlap between the positron and the
topological states. We also demonstrate that spin-polarized
positron measurements can reveal the spin structure at the
surface. In Sec. V we summarize the results and discuss
possible applications and advantages of PAS over other
spectroscopic techniques.

II. EXPERIMENTAL RESULTS

Our Bi2Te2Se films are grown by molecular-beam epitaxy
on Si (111). The substrates are etched in hydrofluoric acid
prior to loading in vacuum. A stoichiometric 2:2:1 Bi:Te:Se
flux ratio is used. The substrate temperature is fixed at 200 ◦C
during the growth. The films used in this study are typically
40-nm thick. A 100-nm Se cap is then deposited in situ on
the sample surface after cooling down the substrate to room
temperature. The capping layer protects the film surface from
oxidation and atmospheric contaminants.

X-ray diffraction is systematically used to characterize the
samples as briefly discussed in Ref. [5]. The c-axis lattice
constant for the film used in this paper is found to be equal
to 30.10 ± 0.03 Å. Energy dispersive x-ray spectroscopy con-
firmed stoichiometry within a 5% error on samples resulting
from an identical growth.

The samples are then transferred to the experimental
positron chamber. In order to decap the samples, the protective
Se layer is evaporated under UHV conditions, prior to the
positron annihilation experiment. A heater button is placed
behind the sample in a holder, and a suitable current was
passed to heat the sample for 20 min at 200 ◦C. This
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FIG. 1. (a) Schematic of the PAES mechanism. In the first step,
a positron (blue) annihilates with an electron (red) occupying a core
level and creates a highly unstable hole. In the second step, an
electron from a higher level fills this hole and transfers the energy
difference between the two levels to a second electron. If the energy
difference is sufficiently large and the second electron is close enough
to the surface, it can traverse the surface dipole and escape from the
sample. The measured outgoing electron energy corresponds with the
transferred energy in the Auger process minus the energy difference
between the second electron’s state and the vacuum level. (b) Results
of the PAES measurements on the Bi2Te2Se sample in which Auger
signals from the different elements are indicated.

procedure is similar to the decapping sequence used in Ref. [6].
The technical details concerning the setup of the positron
experiments can be found in Ref. [4] and references therein.

Positrons annihilate predominantly with the valence elec-
trons, but the small fraction that annihilates with core electrons
produces highly unstable core holes, which are filled by the
Auger process. Therefore, if positrons annihilate in a sur-
face state (SS), positron-induced Auger-electron spectroscopy
(PAES) provides a particularly clean method to determine the
composition of the surface, free from a secondary electron
background [7]. A schematic of the process is drawn in
Fig. 1(a). Results of PAES experiments from the TI Bi2Te2Se
surface are shown in Fig. 1(b) where signals from Bi, Te, Se,
C, and O can be identified; the latter two are caused by the
presence of a small concentration of contaminants adsorbed
on the surface [4]. These results reveal the presence of a bound
positron SS. Were this not the case, positrons would either get
trapped between the blocks of quintuple layers (QLs) of the
material or would be reemitted before they annihilate. Since
the extent of one QL block is about 10 Å, which corresponds
roughly to the mean-free path of a 60-eV electron, any Auger
signal coming from below the first QL is too weak to be
detected. Thus, the fact that the annihilation-induced Auger
peak intensities are observable is clear evidence that the
positron is in a state localized at the surface at the time it
annihilates.

Auger mediated positron sticking (AMPS) experiments
provide an independent proof for the existence of the SS
and allow us to determine its binding energy [8]. In the
AMPS mechanism, the excess energy from a positron dropping
into the image potential well is transferred to a valence
electron. This can result in the emission of an Auger electron
if the energy difference between the positron SS and the
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FIG. 2. (a) Schematic of the AMPS mechanism. The left part of
the diagram shows the incident positron (blue) that drops in the image
potential well. In this process, the positron transfers an energy �E,
determined by the incident kinetic-energy Ep and the binding energy
of the SS Eb, to an electron of the system through a virtual photon
as indicated in the right part of the figure. If the energy difference is
larger than the electronic work-function φ−, the electron can escape
to the vacuum. (b) The measured low-energy Auger signals for the
Bi2Te2Se sample. The outgoing electron energy is determined by the
transferred energy �E minus the required energy to escape from
the sample. The different lines show the result for varying energies
of the incident positrons. (c) The integrated peak amplitudes of the
low-energy Auger signal associated with the AMPS mechanism as a
function of the incident positron energy.

initial state, determined by the incident positron’s kinetic
energy, is larger than the electron work function [8]. The
maximum kinetic energy of the Auger electrons is then given
by Emax = Ep + Eb − φ−, where Ep is the energy of the
incident positron, Eb is the binding energy of the positron
surface state, and φ− is the electron work function. Figure 2(a)
illustrates the AMPS mechanism schematically. The observed
increase in amplitude of the Auger signal at low energies as
the energy of the incident positrons is increased is shown in
Fig. 2(b), and it confirms the presence of the SS. Knowing
the electron work function, the binding energy of the SS can
be determined from the positron energy threshold value for
Auger-electron emission: ET h = Ep for which Emax = 0. The
linear fit shown in Fig. 2(c) yields ET h = 1.8 eV. Next, by
considering the measured activation energy Ea = 0.4 eV for
positronium (Ps) desorption from the surface [4], one can
eliminate the electron work function using the expression [9]
Ea = Eb + φ− − 6.80 eV, which gives a binding energy of
Eb = 2.7 ± 0.2 eV (Ref. [4]).

III. THEORY AND COMPUTATIONAL DETAILS

Our first-principles calculations are carried out in the zero-
positron-density limit of the two-component electron-positron
density functional theory (2CDFT) [10,11]. In this limit, which
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is exact in the case of a delocalized positron in a perfect crystal
or at a surface, the electron density remains unperturbed by
the presence of the positron. The computations thus consist
of an electronic and positronic ground-state calculation which
are performed subsequently.

A. Electronic structure

The electronic ground state is obtained using the projector-
augmented-wave (PAW) method [12] as implemented in
the VASP software package [13–15]. Electron exchange-
correlation effects are treated using the Perdew-Burke-
Ernzerhof (PBE) functional [16], and spin-orbit coupling is
included in the computations. The kinetic-energy cutoff for
the plane-wave expansion of the wave functions is set at
275 eV. For the bulk calculations, we use the rhombohedral
unit cell with a �-centered 11×11×11 k grid in combination
with a Gaussian smearing of width 0.1 eV. In the surface
calculations, we use a slab geometry with a vacuum of 15 Å
to avoid spurious interactions between periodic images. Here,
the calculations are performed with a �-centered k grid with
11×11×1 points in the hexagonal unit cell in combination
with a Gaussian smearing of 0.1 eV. We used the experimental
lattice parameters in all our calculations [17].

B. Positron state

The effective potential for the positron in the zero-density
limit of the 2CDFT is determined by the Coulomb interaction
with the nuclei, the Hartree interaction with the electron
density, and the electron-positron correlation potential. The
latter is usually described with the local density approximation
(LDA) or the generalized gradient approximation (GGA),
which give reliable results for bulk systems. A fundamental
limitation of these semilocal approximations is that they
always describe the formation of Ps− in the limit of a dilute
electron gas. In the case of a surface, however, the correct limit
is given by the image potential [18] −1/4(z − z0), where z

denotes the distance to the surface and z0 represents the image
potential reference plane. We impose this limit in the vacuum
region by considering the corrugated mirror model [19] in
which the image potential is constructed to follow the same
isosurfaces as the electron density. In the vacuum region
z > z0, we take the least negative of the LDA potential [20]
and the image potential. The strength of the image potential is
given by [19]

Vim(r) = − 1

4{zeff[n−(r)] − z0} , (1)

where n−(r) is the electron density and the effective distance
to the surface is determined by

zeff[n
−(r)] =

∫ ∞

z0

dz′z′δ[n−(r) − 〈n−〉(z′)]. (2)

Here, 〈n−〉 is the electron density averaged over the planes
parallel to the surface, and δ denotes the Dirac δ function.
We approximate the image potential reference plane z0 by the
background edge position, which is determined by the position
outside the surface where the electron density starts decaying
exponentially.

We used the MIKA/Doppler package [21] to obtain the
positron ground state. These calculations are performed in
an all-electron way in the sense that a superposition of free
atomic core quantities, e.g., density and the Hartree potential,
are added to the self-consistent valence electron properties.
The Kohn-Sham equations for the positron are solved on a real-
space grid using a Rayleigh multigrid implementation [22,23].

C. Electron-positron momentum density

The goal of the present paper is to investigate whether PAS
can be used to measure the properties of the TI’s Dirac states.
We thus need to calculate the electron-positron momentum
density, which contains information about a sample’s elec-
tronic structure and determine if it contains a clear fingerprint
of the topological states.

Due to strong spin-orbit coupling in Bi2Te2Se the electronic
wave functions are not collinear. Hence, we present a general-
ization of the theory of electron-positron momentum-density
calculations to deal with noncollinear wave functions.

Spin-polarized positron annihilation measurements exploit
the fact that the two-γ annihilation only occurs for electron-
positron pairs in a singlet state. If one specifies the initial
spin of the positron, this translates to saying that the positron
will only annihilate with electrons of the opposite spin. The
magnetization of the electron-positron momentum density
along a specified axis can thus be obtained by taking the
difference between spectra obtained by aligning the positrons
parallel and antiparallel to that axis. As long as the electron
and positron spins are good quantum numbers, i.e., they are
position independent, the effect of the spin is easily taken
into account by realizing that the positron will be in a singlet
state with exactly half of the electron states with the opposite
spin. In systems where the spin cannot be considered a good
quantum number, however, a more careful examination is
required. In general, we can write the momentum density of
the annihilating electron-positron pairs as [24,25]

ρ(p) = 4πr2
e c

∑
j

gj

∑
se,sp

∣∣∣∣
∫

dr e−ip·rŜsαj (r,se; r,sp)

∣∣∣∣
2

, (3)

where |αj 〉 are the natural geminals which diagonalize the
reduced two-body density matrix, sometimes also referred to
as electron-positron pairing wave functions, and the gj are their
occupation numbers. The spins of the electron and positron in
the geminal are denoted by se and sp, respectively, and j

represents a set of quantum numbers (excluding the spin of the
particles). The factor 4πr2

e c with re as the classical electron
radius and c as the speed of light, is the annihilation rate
constant [26]. The operator Ŝs = 1 − 1

2 Ŝ2, where Ŝ is the total
spin operator for the electron-positron pair, projects on the
singlet state. For the purpose of notation as well as practical
calculations, it is convenient to define

Aj,se,sp
(p) =

∫
dr e−ip·rαj (r,se; r,sp), (4)

as well as the matrix,

�j (p) =
( |Aj,↑↓(p)|2 Aj,↑↓(p)A∗

j,↓↑(p)
Aj,↓↑(p)A∗

j,↑↓(p) |Aj,↓↑(p)|2
)

. (5)
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In measurements with unpolarized positron beams, the
positron has statistically a 50% chance to be either in the
spin-up or spin-down state. In this case, upon evaluation
of Eq. (3), the off-diagonal terms of �j (p) drop since the
geminals with opposite spin orientations, e.g., αj (r, ↑; r, ↓)
and αj (r, ↓; r, ↑), are not simultaneously occupied. The result
for the momentum density then becomes

ρ(p) = πr2
e c

∑
j

gj Tr[�j (p)], (6)

where Tr[· · · ] denotes taking the trace. In case the positron
beam is perfectly polarized parallel or antiparallel to the z

axis, we obtain

ρ↑
z (p) = 2πr2

e c
∑

j

gj |Aj,↑↓(p)|2, (7)

and

ρ↓
z (p) = 2πr2

e c
∑

j

gj |Aj,↓↑(p)|2, (8)

respectively. The magnetization along the z axis is obtained
by taking the difference between these two spectra and can
conveniently be written as

ρz(p) = 2πr2
e c

∑
j

gj Tr[σz�j (p)], (9)

where σz denotes the Pauli matrix. Analogous observations
can be made for a positron polarized along the different axes,
thus we can write in general,

ρi(p) = 2πr2
e c

∑
j

gj Tr[σi�j (p)], (10)

where i = {x,y,z} and σi are the Pauli matrices. A detailed
derivation of the above formulas can be found in the
Supplemental Material [27].

In electron-positron momentum-density calculations based
on the 2CDFT, one assumes that the natural geminals can be
written in terms of a product of the electron and positron single-
particle Kohn-Sham orbitals ψ−

j,se
and ψ+

sp
where the positron

is assumed to reside in its ground state and the occupation
numbers of the electronic orbitals replace those of the natural
geminals gj . Electron-positron correlation effects are included
by introducing a multiplicative term γ , i.e., the enhancement
factor, which can be state and/or space dependent. We thus
have

αj (r,se; r,sp) =
√

γj,se,sp
(r)ψ−

j,se
(r)ψ+

sp
(r). (11)

Note that, in general, it is justified to consider the positron
wave function to be collinear even though the electronic states
are not. Indeed, electron-positron spin-spin interactions are
small and generally neglected in PAS studies, and positrons
stay too far away from the nuclei to experience any significant
spin-orbit interaction. We thus assume that the orbital part of
the positron wave function is independent of the chosen spin
polarization: ψ+

sp
(r) = ψ+(r)χsp

, where χsp
denotes a two-

component spinor for the positron. Note that for the calculation
of the momentum density from Eqs. (6) and (10), we have to
set ψ+

↑ (r) = ψ+
↓ (r) instead of explicitly setting a polarization.

In our calculations, we consider the state-dependent en-
hancement factors [28]: γj,se,sp

= λLDA
j,se,sp

/λIPM
j,se,sp

. The λ’s de-
note the partial annihilation rates in the LDA and independent
particle model (IPM), respectively, and the former is calculated
as

λLDA
j,se,sp

= πr2
e c

∫
dr

∣∣ψ−
j,se

(r)
∣∣2∣∣ψ+

sp
(r)

∣∣2
γ [n−(r)], (12)

with γ [n−(r)] as the LDA enhancement factor parametrized
by Drummond et al. [29]. The IPM annihilation rates are
obtained by setting γ [n−(r)] = 1.

The high-momentum components of the wave functions
are important to accurately calculate the electron-positron
momentum density. It is thus necessary to use the all-electron
wave functions in the above formulas instead of the soft
pseudowave functions, i.e., we explicitly perform the PAW
transformation [12],

|ψ−〉 = |ψ̃−〉 +
∑

i

(|φ−
i 〉 − |φ̃−

i 〉)〈p̃i |ψ̃−〉. (13)

Here, |ψ̃−
j 〉 are the soft pseudowave functions, 〈p̃i | are the pro-

jectors, and |φ−
i 〉 and |φ̃−

i 〉 are the localized all-electron partial
waves and soft pseudo partial waves of the ions, respectively.
The details on how we performed this transformation can be
found in Refs. [21,24].

D. Positronium model

We can theoretically determine the activation energy for Ps
desorption from Bi2Te2Se of which the experimental results
are described in Ref. [4] by calculating the particle’s binding
energy to the surface. In order to model the Ps state, we
consider the Schrödinger equation for a neutral particle in
an effective potential well [30]. Here, the effective potential
outside the surface is determined by an attractive and a
repulsive contribution. The repulsive contribution due to the
overlap of the electron of Ps with electrons of the material is
given by

VR(z) = |φPs|e−(z−z0)/λ, (14)

where φPs is the Ps work function, z0 is the background edge
position, and λ is the characteristic length of the electron-
density decay outside the surface. The Ps work function can
be calculated by taking the sum of the work functions of the
constituent particles minus their binding energy: φPs = φ+ +
φ− − 0.25 Ha. The attractive part of the interaction is given
by the van der Waals interaction and can be written as

VvdW (z) = − C

(z − z′
0)3

F [(z − z′
0)/λ], (15)

where the strength of the interaction is given by the expres-
sion [31],

C = �

4π

∫ ∞

0
dω α(iω)

(
ε(iω) − 1

ε(iω) + 1

)
. (16)

The bulk dielectric function ε at imaginary frequencies can
be obtained by first evaluating the dielectric function at real
frequencies, which is readily calculated from first principles in
the random-phase approximation, and then applying analytic
continuation. The Ps polarizability α can be obtained from
the analytic expression for H-like atoms, given in Ref. [32],
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FIG. 3. Potential obtained for the Ps model with the values for
C, z0, λ, and φ+ mentioned in the discussion. For the electronic work
function, we took φ− = 4.612 eV, which gives a Ps work function
of φPs = 0.2 eV and lies in the middle of the range of values for
which the model gives an activation energy in good agreement with
the experimental result.

by rescaling. Indeed, the Ps problem can be solved by going
to the center-of-mass coordinates, which then yield the same
equations as for the H atom. The only differences are that
the Bohr radius is twice as large and the ionization energy
is half the value of that of H. The analytic damping function
F for which we take expression (17) of Ref. [33] describes
the saturation of the van der Waals interaction as the particle
draws closer to the surface and regularizes the divergence at the
reference plane position z = z′

0. The reference plane position
can in principle take another value than the background edge
position but since they are both, in the case of an elementary
metal with lattice parameter a, located close to a/2, we make
the approximation z′

0 = z0. For z < z0, we extend the repulsive
interaction and add VvdW (z0) to ensure the continuity of the
potential with a cutoff set by the Ps work function,

V (z) = min{φPs,VR(z) + VvdW (z0)}�(z < z0)

+{VR(z) + VvdW (z)}�(z � z0), (17)

where �(. . . ) is the Heaviside function. The different contri-
butions to the potential are shown in Fig. 3. The Ps state and
its energy are obtained by solving the resulting Schrödinger
equation,

−ψ ′′

4
+ V (z)ψ = Eψ. (18)

IV. COMPUTATIONAL RESULTS

We start our discussion of the computations by showing
that the measured Ps activation energy Ea = 0.4 eV [4]
is consistent with the theoretical predictions. We take the
activation energy to be equal to the ground-state energy
predicted by the Ps model discussed in the previous section.
For the parameters in the model, we find that the van der

Waals interaction strength evaluates to C = 2.306 eV Å
3

and
from the electronic and positronic work functions φ− = 4.904
and φ+ = 2.392 eV, we obtain φPs = 0.493 eV. The values
for the background edge position and the characteristic length
of the electron-density decay in the vacuum region are given by
z0 = 1.250 and λ = 0.365 Å. Using these values, the model
predicts that the Ps forms a delocalized state in the bulk of
the material. We note, though, that the experimental value for
the electronic work function φ− = 4.5 eV is lower than the
theoretical one. It is thus sensible to consider the outcome of
the model for φ− ∈ [4.5,4.9] eV. Over the range of φ− = 4.90
to φ− = 4.72 eV, we find that the ground state gradually
shifts from the bulk to the surface. To determine when we
have a surface state, we set the criterion that the Ps density
should decay below 1% of its maximum value beyond the
first QL block inside the material. In the range of φ− ∈
[4.52,4.72] eV, the Ps model predicts a surface state with a
binding energy of EPs = 0.40 ± 0.05 eV, in good agreement
with the experimental results.

Next, we investigate the predictions of the 2CDFT cal-
culations to determine whether they support the proposed
interpretation of the PAES and AMPS experiments. Our first
observation is that the positron in its ground state indeed
resides in the surface’s image potential well rather than the
gaps in between the QLs, which also act as strong positron
traps. We obtain the binding energy of the positron by taking
the difference between the vacuum level and the positron’s
chemical potential. The vacuum level is determined in the
usual way by the taking the value of the Hartree potential in the
middle of the vacuum region. We find that the positron SS has a
binding energy of Eb = 2.69 eV, in excellent agreement with
the measured value. We find that the lifetime evaluates to τ =
309.25 ps. This value seems reasonable compared with the
lifetime of 340–380 ps measured for positrons trapped at the
surface of colloidal PbSe quantum dots [34]. On the other hand,
a lifetime of 580 ps has been determined for positrons trapped
at an Al surface [35], which cannot be reproduced within
the LDA approximation [19]. One workaround suggested in
literature is to set the enhancement factor to zero for z > z0,
i.e., assume that the positron will not annihilate in the vacuum
region [36]. We find, though, that this operation makes the
result for the lifetime depend sensitively on the value for the
image potential reference plane z0. For this reason, as well
as the scarcity of experimental data that show this operation
is justified, the rest of our calculations have been carried out
without modifying the LDA enhancement factor.

Now that the calculations confirmed the existence of the
bound positron SS, we turn to the important question of the
extent to which this SS overlaps with the Dirac cone electrons.
This overlap is of central importance because it determines the
annihilation rate of the positron with the electrons occupying
the topological states and thus the sensitivity with which
positron annihilation spectroscopy can probe the Dirac states.
This can be seen from Eq. (12) where the partial annihilation
rate is determined by the sum over all λj where j represents a
state on the cone.

The computed densities of the positron SS, ρ+, and
the topological Dirac states ρ−

Dirac are shown in Fig. 4.
The density of the topological states is obtained by summing
the one-particle densities for all states on the cone between
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FIG. 4. Overlap of the positron SS with the Dirac states. (a) Planar
average of the positron (blue) and electron (red/yellow) densities
associated with the Dirac states below the Fermi energy for two
different values of the chemical potential μ−. (b) Density of the
topological surface state and the positron in the same spatial region as
panel (a). The progressively lighter blue isosurfaces show the positron
density at 80%, 20%, and 2% of the maximum value, respectively,
and the red isosurfaces show the electronic charge density associated
with the electron states on the Dirac cone below the Fermi level at
10% of the maximum value. The Bi, Te, and Se atoms are shown in
purple, brown, and green colors, respectively.

the Dirac point and a specific value for the electron chemical
potential μ−. Although the positron is seen to probe only
the topmost atomic layers of the material, it still penetrates
the material sufficiently to have a significant overlap with the
Dirac states. Moreover, the left panel of Fig. 4 shows that the
overlap with the Dirac states changes sensitively depending

on the population of the Dirac states near the Fermi level.
Our calculations of the momentum density, discussed below,
further demonstrate that this underlying overlap translates into
a clear signal coming from the annihilation of the positron
with the Dirac fermions.

A partially filled energy band when it crosses the Fermi
energy gives rise to a break in the electron-momentum density,
which is the basis of the measurement of Fermi surfaces in
materials via 2D-ACAR experiments. A standard procedure
for enhancing the Fermi-surface signal in the spectrum is
the Lock-Crisp-West (LCW) map obtained by folding all
the higher-momentum (Umklapp) contributions into the first
Brillouin zone [37]. Figure 5 shows the calculated LCW map
together with a cut along �-M over a range of values of the
electron chemical potential, which simulates different doping
levels of the Dirac cone. The evolution of the plateau around
the � point clearly indicates the sensitivity of the positron to
the Dirac cone states. The relative drop in intensity between
5% and 7% at the Fermi momentum compares favorably with,
for example, the 1% drop found for the Nd2−xCexCuO4−δ

high-Tc superconductor in which 2D-ACAR experiments have
been shown previously to be viable in detecting Fermi-surface
sheets due to Cu-O planes [38].

A topic which has drawn considerable interest in the case
of topological insulators is the spin-momentum locking of
the topological states. Measurements using spin-polarized
positron beams exploit the fact that a two-photon decay is
only possible between electrons and positrons with opposite
spins [3]. In recent work, spin effects in the electronic structure
of simple ferromagnets were observed using differences
between the Doppler broadening of the annihilation radiation
measured with positrons aligned parallel and antiparallel
to a polarizing magnetic field [39]. In a similar ACAR
experiment, Weber et al. [40] successfully resolved the
spin-dependent Fermi surface of the ferromagnetic Heusler
compound Cu2MnAl. This motivates us to investigate whether
spin-polarized positrons can be used to detect the spin structure
of the topological states at the surface. The signal from
the Fermi surface can be extracted from the LCW map by
taking the difference between the signal obtained at different
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Figs. 5(a) and 5(b), respectively. The length of the reciprocal axes

is |b| = 1.688 Å
−1

, and the amplitudes are given in ps−1 Å
2
. (It is

readily seen that the units of the LCW map are in ps−1 Å
2

by realizing
that the integral over the LCW map yields the positron’s annihilation
rate, or in the case of the magnetic LCW maps, the difference
in annihilation rate between two measurements with opposite spin
polarizations for the positron.)

doping levels. In Fig. 6, we show the results obtained by
taking the difference between the LCW maps obtained with
μ− = EF + 0.2 eV and μ− = EF in the vicinity of the �

point. As expected, we see the plateau due to the extra
occupation of the cone in the total amplitude. Our results for
the magnetization along the x and y directions agree well with
the results obtained in several studies of various tetradymite
TIs [41–44], which all predict a clockwise rotation of the spin.
We see that the z component of the magnetization increases
gradually away from the � point. This out-of-plane component
develops due to the hexagonal warping of the Dirac cone as
pointed out by Fu [45]. We note that the difference in amplitude
for the magnetic components is quite pronounced with regard
to the Fermi-surface signal. Indeed, we find that the signal
from the magnetization is about half that of the Fermi-surface
signal obtainable with an unpolarized beam. This means that
the magnetization signal still constitutes a promising 2%–4%
of the total signal. We note, though, that in real experiments,
positron beams are not perfectly polarized as we have
assumed in our calculations. Thus, in experiment, a proper
weighting has to be performed which will lead to a smaller
signal.

V. CONCLUSION AND OUTLOOK

Our study establishes the existence of a positron surface
state near the topological insulator Bi2Te2Se. The results
of our calculations show that this surface state can be
exploited as a spectroscopic characterization tool for probing
surfaces of topological materials. Since a significant fraction
of positrons annihilate with electrons occupying Dirac cone
states, 2D-ACAR experiments should be able to measure
their momentum distribution with high precision [46] and
thus obtain information concerning the nature of the Dirac
states which is complementary to that accessed through
angle-resolved photoemission, scanning tunneling, and other
surface-sensitive spectroscopies without the complications
of related matrix element effects [47]. PAES and Doppler
broadening of the annihilation radiation [48] measurements
can, in turn, be used to characterize the chemical composition
of surfaces. In combination with 2D-ACAR experiments,
these positron spectroscopies could be exploited to determine
effects of various surface impurities on the topological
states in addition to the role of bulk defects [49]. Now
that our study identified a positron surface state, positron
spectroscopies can prove valuable for the characterization
of nanostructured topological insulators. Indeed, positrons
have been shown to act as effective self-seeking probes for
nanocrystal surfaces without requiring the preparation of
single-crystal specimens [50], whereas the applicability of
conventional spectroscopic techniques is limited. Finally, our
calculations show that the spin textures of the Dirac states
should be accessible through 2D-ACAR measurements using
a spin-polarized positron beam since positrons predominantly
annihilate with electrons of the opposite spin [3,39,40].
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