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Resonant electron-lattice cooling in graphene
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Controlling energy flows in solids through switchable electron-lattice cooling can grant access to a range of
interesting and potentially useful energy transport phenomena. Here we discuss a tunable electron-lattice cooling
mechanism arising in graphene due to phonon emission mediated by resonant scattering on defects in a crystal
lattice, which displays an interesting analogy to the Purcell effect in optics. In that, the electron-phonon cooling
rate is enhanced due to hot carrier trapping at resonant defects. Resonant dependence of this process on carrier
energy translates into gate-tunable cooling rates, exhibiting strong enhancement of cooling that occurs when the
carrier energy is aligned with the electron resonance of the defect.
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In 1946, Purcell discovered that bringing the energies of
atoms into alignment with resonances in optical cavities can
dramatically enhance the rate of spontaneous emission [1].
One way of understanding the enhancement is provided by
Fermi’s golden rule, which mandates that the transition rate is
proportional to the density of final states. The latter is enhanced
in a cavity at resonance compared to a free-space density of
states, providing the means to control the light-matter coupling
[2,3]. Here we discuss an electron-phonon analog of the Purcell
effect: resonant enhancement of electron-lattice cooling occur-
ring when carrier energies align with electron resonances at
defects. Because of Purcell-type enhancement of the density of
electronic states at the defects, the on-resonance electrons can
emit phonons more efficiently, enhancing the electron-lattice
cooling rate and making it gate-tunable. Furthermore, resonant
scattering opens up an additional cooling pathway due to
the possibility of carrier trapping on localized defects. The
latter process, as we will show, boosts phonon emission and
electron-lattice cooling.

While these effects are completely generic, they become
particularly important in graphene, a material in which en-
ergy relaxation pathways of nonequilibrium hot carriers are
uniquely sensitive to minute amounts of disorder. In pristine
graphene, electron-phonon scattering is suppressed and, as a
result, the hot-electron cooling is quite slow [4,5]. The intro-
duction of defects completely changes the situation, giving
rise to several different cooling mechanisms that can occur
depending on the microscopic properties of the defects as well
as system parameters such as carrier density and temperature.
Resonant defects with energies near the Dirac point play a spe-
cial role as the electronic density of Dirac states is low at these
energies. As a result, carrier trapping on the defects strongly
impacts cooling and phonon emission, as illustrated in Fig. 1.

Previous works on disorder-assisted electron-phonon scat-
tering considered so-called “supercollisions” in which the
excess recoil momentum is being absorbed by the impurity
whereas the energy is carried away by a thermal phonon [6–11].

This process, through phase-space-enhancement of electron-
phonon scattering, gives rise to disorder-assisted cooling.
However, as this paper shows, it is not the only disorder-related
cooling pathway. As we will see, resonant defects provide a
fundamentally different cooling mechanism—phonon emis-
sion by an electron trapped by a defect—that is distinct from
the enhancement of phonon phase space through momentum-
nonconserving scattering.

Graphene-based nanoscale thermoelectric devices are of
wide interest due to the unique electrical and thermal properties
of this material [12,13]. This work adds to this exciting field
by providing a controllable mechanism of hot carrier cooling.
There are two main approaches to low-dimensional nanoscale
thermal engineering: phononics engineering [15] and hot
carrier manipulation. In the field of graphene phononics, ideas
such as gate tunability cooling [14] and defect engineering
have been investigated [16,17]. Complementary to that, our
work explores the mechanism of hot carrier resonant cooling by
localized defects. Additional cooling pathways in nanodevices
with on-demand spatial dependence through precision defect
engineering are made possible by this physical framework.

Recently impurity-assisted electron-lattice cooling in
graphene was imaged using the nanoscale thermometry
scanning probe technique [18,19]. It was found that the
dominant contribution to cooling arises from resonant
scatterers with the energies of the resonances positioned near
the Dirac point. It was conjectured that resonant scatterers
mediate phonon emission and cooling through the process of
trapping band carrier in a localized state (LS) as illustrated in
Fig. 1 . While this picture seems plausible, the study reported
in Refs. [18,19] left a number of key questions unanswered, in
particular the origin of the resonances and the extent to which
resonant scattering can enhance the cooling rates. Below
we present a microscopic picture of cooling due to phonon
emission mediated by resonant scattering, and estimate the
cooling rate by evaluating the electronic cooling cross section.
The cooling rate is sharply enhanced when the Fermi energy
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FIG. 1. (a) Schematics showing a hot electron of initial state |p〉
being trapped by the impurity forming a resonant state |εLS〉, emitting
a phonon of energy h̄ωk in the process. (b) The same process shown
as a Feynman diagram. The vertex represents the matrix element M

in Eq. (12). Note that the outgoing state is the resonant state |εLS〉.

is close to the resonance energy of one of the scatterers,
turning off quickly when the Fermi level is detuned from the
resonance energy. Disorder-assisted resonant cooling is found
to dominate over the intrinsic contribution due to momentum-
conserving electron-phonon processes. This, along with the
ON/OFF switching behavior seen near the resonance, presents
the novel possibility of gate-tunable cooling.

I. MODEL OF ELECTRONIC COOLING

Graphene is known to host a wide variety of atomic-scale
defects that can act as resonant scatterers, which can trap elec-
trons in quasibound states [20–23]. Ab initio and STM studies
[24–26] have shown that quasibound states with energies near
the Dirac point arise in a robust manner when adatoms or polar
groups such as H, F, CH3, or OH bind covalently to carbon
atoms, transforming the trigonal sp2 orbital to the tetrahedral
sp3 orbital. Each transformed C atom gives rise to a vacancy in
the π band, producing a quasibound state localized near the de-
fect. The energy of such a localized state depends on the adatom
type, taking values εLS ∼ 10−100 meV, i.e., positioned in the
direct vicinity of the Dirac point [24–26]. In transport, such
defects act as resonant scatterers, with the scattering cross
section exhibiting a sharp resonance at ε = εLS. In contrast,
the defects having other symmetries (e.g., adatoms positioned
between two C atoms or at a hexagon center) typically form
resonances far away from the Dirac point.

Here we shall consider phonon emission by carriers in the
presence of such resonant scatterers, assuming that the lattice is
at a constant temperature of Tp, forming a thermal phonon bath.
We show that the resonance in the local density of states gives
rise to enhanced phonon emission in a manner similar to how
spontaneous photon emission is enhanced by the optical cavity
resonances in the Purcell effect. The Hamiltonian is given by a
sum of the electron and phonon parts, and the electron-phonon
interaction, H = Hel + Hph + Hel-ph, where

Hph =
∑

k

ωkb
†
kbk, Hel-ph =

∑
k,p

g
√

ωkbka
†
p+kap + H.c.

(1)

and the electron Hamiltonian Hel, describing free carriers and
their interaction with the defects, is discussed below. From the
above Hamiltonian, we can calculate the energy dissipation
rate through Fermi’s golden rule as

P =
∑

p,p′,k

ωkWp,p′k(1 − np′ )np(Nk + 1)δ(εp′ + ωk − εp)

−
∑

p,p′,k

ωkWp′k,p(1 − np)np′Nkδ(εp′ + ωk − εp), (2)

where np, np′ , and Nk are Fermi and Bose distributions for
electrons and phonons with momenta p, p′, and k, and with
energies εp = εp, εp′ = εp′ , and ωk = ωk , respectively. The
scattering cross section in Eq. (2) equals

Wp,p′k = Wp′k,p = 2π

h̄
|Mp,p′ |2, (3)

where an incoming electron |p〉 is scattered into the outgoing
state |p′〉, emitting or absorbing a phonon with momentum
k = p − p′.

The matrix element Mp,p′ , describing phonon emission in
the presence of a defect, can be written as a sum of three terms:

Mp,p′ = 〈p′|M(k)G0t + tG0M(k) + tG0M(k)G0t |p〉, (4)

where t is the T-matrix for the defect, evaluated at the energies
of the in and out states as discussed below, G0 is the bare
electronic Green’s function, and

M(k) ≡ 〈p′,k|Hel-ph|p〉 = g
√

ωkδ(p − p′ − k) (5)

is the bare electron-phonon scattering matrix element. The
three terms in Eq. (4) correspond to resonant scattering at
the defect before, after, and both before and after a phonon
emission process. The overall process is illustrated in Fig. 1(b).

We will find that the contribution to the cooling rate due
to resonant scattering, taken on-resonance, is large compared
to the contribution from bare momentum-conserving electron-
phonon scattering in the absence of disorder. This comparison,
which provides a justification for focusing on the disorder-
assisted elecron-phonon scattering processes, will be made
after the resonance-enhanced cooling rate is evaluated.

The bare electron propagator is given by

G0(p,ε) = 1

ε − H0(p) + i0
(6)

with the free-particle tight-binding Hamiltonian given by a
2 × 2 matrix in the A/B sublattice pseudospin basis

H0 =
(

0 thf (p)

thf
∗(p) 0

)
, f (p) =

3∑
i=1

eip·ei . (7)

Here ei are vectors connecting neighboring C atoms and th is
the nearest-neighbor hopping parameter.

II. T-MATRIX FOR RESONANT DEFECTS

To describe resonant scatterers, we introduce the diag-
onal on-site disorder potential V (x) = ∑

i V
1
2 (1 ± σz)δ(x −

xi) with the plus and minus signs corresponding to defects
positioned on sites A or B, respectively. The resonant character
of this disorder potential becomes prominent in the limit
V 	 W , where W ≈ 6 eV is the graphene bandwidth. This is
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evident from the T-matrix, which describes the defect potential
renormalized by multiple scattering processes. For a single
defect, taken without loss of generality on an A site at x = 0,
the T-matrix equals

t(ε) = Ṽ

1 − Ṽ
∑

p G0(ε,p)
= πv2

F

ε ln iW
ε

+ δ

1 + σz

2
, (8)

where Ṽ = 1
2 (1 + σz)V and δ = πv2

F /V � W . The T-matrix
has a resonance centered at εLS ≈ −δ/ ln(W/δ), which cor-
responds to the energy of a localized state. The energy of the
resonance εLS is small, with δ parametrizing the detuning from
the Dirac point.

When the defect concentration is low and the defect po-
tential V is large compared to W , each defect hosts a single
resonance state with energy εLS close to the Dirac point,
broadened due to hybridization with the states in the Dirac
continuum. For a strong defect potential V 	 W , the energy
εLS is much smaller than the bandwidth W and it has an
opposite sign to that of V . This resonance has a half-width
of γ ≈ πδ/[2 ln(W/δ)], and it is thus small when δ is small.

The contribution of the defect to the single-particle density
of states is given by

1

π
Im t(ε) = πv2

F |ε|/2

[ε ln(W/|ε|) + δ]2 + (πε/2)2
, (9)

where we used the identity ln(iW/ε) = ln(W/|ε|) +
iπ sgn (ε)/2. This expression can be viewed as the density
of states of pristine graphene ∼|ε| modulated by a resonant
energy dependence due to the defect. The peak in the energy
dependence of Im t(ε), positioned near the Dirac point,
corresponds to the defect resonance state.

Next we proceed to calculate the cooling power. It will be
seen that in realistic regimes the cooling power dependence
on electron Fermi energy shows a peak that mimics the defect
density of states, with a prefactor that depends on the electron
and phonon energy distributions. Microscopically, there are
two separate resonant processes. In one, an electron emits
phonon after being trapped on the localized state at a defect.
In this case, a resonant scatterer traps band electrons on the
quasibound state found in the previous section, and the energy
difference is released to phonons. In another process, a freely
moving electron emits a phonon before or after being scattering
by a resonant defect. In this case, due to breaking of translation
symmetry by the presence of defects, momentum does not have
to be conserved as the defects can absorb recoil momentum
from the phonons, thus enlarging the available phase space for
the outgoing states. These latter effect are described in Song
et al. [7] for weak disorder potential. As we will see, in our
case it provides a relatively small contribution to the cooling
power in comparison to resonant cooling through the process
involving electron trapping on the defect.

III. EVALUATION OF MATRIX ELEMENTS

To evaluate the cooling power, we need to evaluate the
matrix element in Eq. (4). We will focus on the experimen-
tally relevant regime of electron and phonon temperatures
that are small compared to the resonance energy εLS and

width γ = πδ/[2 ln(W/δ)]. In this case, since the change of
electron energy is small compared to εLS and γ , the process
is quasielastic. Also, at not too low temperatures, the phonon
momentum values k are typically large compared to electron
in and out momentum values p and p′, which are of order kF .
This allows us to approximate G0(ε,p) ∼ ±1/σvk. The first
two terms of Eq. (4) then combine to give a commutator

−M(k)t(ε)
[σ · k,σ3]

2k2
= M(k)t(ε)

iσ × k
vk2

. (10)

Here M(k) = g
√

ωk is the bare electron-phonon interaction
matrix element.

The third term in Eq. (4) can be evaluated by integrating
the product of two Green’s functions over internal electron
momenta k < q < k0 = W/vF , giving

tG0M0G0t ≈ M(k)

2πv2
F

1 + σ3

2
t(ε′)t(ε)

∫ k0

k

dq

q

= M(k)

2πv2
F

ln
W

vF k

1 + σ3

2
t(ε′)t(ε). (11)

Summing the three terms in Eq. (4) gives

Mp,p′ = M(k)
iσ × k
vF k2

t(ε) + M(k)

2πv2
F

ln
k0

k

1 + σ3

2
t(ε′)t(ε).

(12)

The two contributions in Eq. (12) can be compared directly by
ignoring the matrix structure. Since the process is quasielastic,
the difference between ε and ε′ is inessential and the second
term, which represents resonant trapping, dominates over the
first term.

To better understand the competition between the two terms
in Eq. (12), we consider their ratio

M1

M2
≈ 2s

vF

ε ln iW
ε

+ δ

kBT ln k0
k

, (13)

where s is the acoustic sound velocity s ≈ 2 × 104 m/s. Since
the velocity ratio s/v is quite small, the second term in Eq. (12)
will indeed dominate for the energies near resonance, μ ∼ εLS,
and at not too low temperatures. However, a different behavior
is expected for energies away from the resonance, since the
second term falls off faster than the first term (1/ε2 versus
1/ε). As a result, the first term can win at large enough ε.
For a crude estimate, taking the detuning from resonance on
the order of εLS we see that the first term becomes relevant
when kBT � (s/vF )εLS. Taking εLS ∼ 30 meV gives T > 5 K,
which is close to the measurement temperature in [18,19]. This
analysis indicates that the second term dominates at resonance,
whereas the first term dominates away from resonance.

IV. COOLING POWER

Next we show that the resonant energy dependence of
phonon emission translates into a resonant dependence of the
cooling rate as a function of carrier doping. After plugging the
matrix element given in Eq. (12) into the expression for the
cooling power, Eq. (2), and averaging over p and p′ angles,
we find that the contributions of the first and second terms
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separate whereas the cross terms vanish under trace. Therefore,
the two terms in Eq. (12) give independent contributions to the
cooling power. These contributions describe the two distinct
processes discussed above. In the first case, phonon is emitted
by a freely moving electron before or after resonant scattering.
In the second case, phonon is emitted by an electron which is
trapped on a defect.

To evaluate the second contribution, which, according to
Eq. (13), is expected to dominate over the first contribution,
we use the identity

∑
p,p′ = N

∫
dε dε′ ν(ε)ν(ε′), where ν(ε)

is the density of states per spin per valley and N = 4 is the
spin and valley degeneracy, assuming unit area. The energy
conservation δ function can be used to evaluate one of the
integrals, while the other integral can be evaluated by using the
quasielastic approximation:

∫ ∞
∞ dε g(ε)[n(ε) − n(ε − ω)] ≈

−g(μ)ω, where g(ε) is an arbitrary smooth function of ε,
and the identity n(ε)[1 − n(ε − ω)] = Ne

ω[n(ε − ω) − n(ε)],
with Ne

ω being the Bose function evaluated at the electronic
temperature. The final integral over ωk is of the form

∫ ∞

0
dω ω4(Ne

ω − Np
ω

) = 24ζ (5)k5
B

(
T 5

e − T 5
p

)
, (14)

where N
p
ω is the Bose function evaluated at the lattice temper-

ature. Putting everything together, we arrive at

P2(μ) = A(μ)k5
B

(
T 5

e − T 5
p

)
(15)

for the cooling power per defect. Here μ is the Fermi energy
and

A(μ) = 48ζ (5)

π2

D2

h̄3ρs4

(π/2)4μ2 ln2 k0
kp[(

μ ln W
|μ| + δ

)2 + π2

4 μ2
]2 , (16)

where kp ≈ kBTe/s is the typical momentum of an emitted
phonon, and we used the relation between the electron-phonon
coupling constant and the graphene deformation potential g2 =
D2/2ρs2, with D ≈ 50 eV, and ρ is the mass density of the
graphene sheet. The quantity P2(μ) vanishes in equilibrium as
a result of detailed balance, but it is nonzero when the system is
driven out of equilibrium, as one would expect. For a numerical
estimate we use the value D2/(h̄2ρs2v2

F ) = 1.86 × 1019J−1.
After scaling the Fermi energy by 1 meV and temperature by
1 K, we evaluate the numerical factors to obtain

P2(μ) =
μ2 ln2 k0

kp

(
T 5

e − T 5
p

)
[1 meV]2

[(
μ ln W

|μ| + δ
)2 + π2

4 μ2
]2

[1 K]5
× 260 fW. (17)

This contribution peaks near the resonance energy, falling off
as 1/μ2 at large detuning. Here and below we explicitly show
the cooling power μ dependence, which is sometimes referred
to as the cooling power spectrum [19].

The contribution of the first term in Eq. (12) can be evaluated
in a similar manner, giving [6]

P1(μ) = 9.62
g2k3

B

(
T 3

e − T 3
p

)
2h̄3v2

F

ν2(μ)|t(μ)|2. (18)

where ν(μ) = |μ|/2πh̄2v2
F is the density of states. After

scaling the Fermi energy by 1 meV and temperature by 1 K,

this expression becomes

P1(μ) = μ2
(
T 3

e − T 3
p

)
[1 K−3](

μ ln W
|μ| + δ

)2 + π2

4 μ2
× 0.28 fW. (19)

The total cooling rate per defect is then given by Ptot(μ) =
P1(μ) + P2(μ).

It is instructive to compare the cooling rates due to resonant
scattering with the intrinsic contribution of pristine graphene
[4,5]. The cooling power per unit area due to momentum-
conserving processes can be written as

P0(μ) = Nν2
∑
θp,θ ′

p

2π

h̄
g2ωk|〈p′|p〉|2

(
Ne

ωk
− Np

ωk

)
ω2

k (20)

with the phonon energy ωk = h̄s|p − p′| and the coherence
factor |〈p′|p〉|2 = cos2(θp,p′/2). Here

∑
θp,θ ′

p
denotes averag-

ing over the Fermi surface through
∮ ∮ dθpdθ ′

p

(2π)2 . We parametrize

|p − p′| = 2kF x, 0 < x < 1. (21)

Writing |〈p′|p〉|2 = 1 − x2 and dθp,p′ = 2dx√
1−x2 , we can

express the cooling power as

P0(μ) = Nν2 2

π

∫ 1

0
dx

√
1 − x2

2π

h̄
g2

(
Ne

ωk
− Np

ωk

)
ω3

k, (22)

where ωk = 2sxkF .
This expression behaves differently depending on whether

the temperature T is greater or smaller than the Bloch-
Gruneisen temperature TBG = h̄skF . For T 	 TBG we can
approximate the Bose distribution as Nωk

≈ T
ωk

. Using the

identity
∫ 1

0 dx x2
√

1 − x2 = 1
4�2(3/2) = π

16 , we obtain

P0(μ) = B(μ)kB(Te − Tp), (23)

with B(μ) = πNh̄g2ν2(μ)k2
F s2. The numerical factors can be

evaluated to give

P0(μ) = 9.2 × 10−3 (Te − Tp)μ4

[1 K][1 meV]4
fW μm−2. (24)

In the limit T � TBG the integral over x, which is dominated
by x � 1, can be estimated as

P0(μ) = Nν2 2

π

∫ ∞

0
dx

2π

h̄
g2

(
Ne

ωk
− Np

ωk

)
ω3

k

= 4Nν2g2 3ζ (4)

h̄2skF

k4
B

(
T 4

e − T 4
p

)

= 3.0 ×
(
T 4

e − T 4
p

)|μ|
[1 K4][1 meV]

fW μm−2. (25)

To compare P0(μ) to the resonant scattering contribution,
Eq. (17), we have to consider the physical measurement
process. In such a measurement, the tip picks up the thermal
signal from a sensing region with area As , and thus the
cooling power contribution from P0 is given by AsP0. With
the experimentally realistic value of As = 100 × 100 nm2,
and assuming that there is only one defect in such a region,
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FIG. 2. A plot of the cooling power, in the presence of resonant
scatterers vs Fermi energy for several values of the scatterer energy
εLS [Eqs. (26) and (17)]. Local temperature change [Eq. (29)], which
is proportional to the cooling power, is shown on the right axis. The
curves are sharply peaked on resonance, falling off rapidly away from
resonance. The purple dashed line shows the experimental curve from
[19], where peaks in cooling power due to resonant scatterers were
observed near ε ≈ −22 meV. The intrinsic contribution [Eq. (24)]
vanishes at the Dirac point and remains low, compared to the peaks,
throughout the range of Fermi energies plotted. (b) Semilog plot
showing the relative contributions of P0, P1, and P2 for εLS =
−22 meV. P1 is small throughout the range of μ.

we construct the quantity

P (μ) = AsP0(μ) + P1(μ) + P2(μ). (26)

We plot the cooling power Eq. (26) in Fig. 2(a), for
three different values of εLS, and with the parameters
ln(k0/kp) = 5.6, Te = 4.25 K, Tp = 4.2 K. The sharp peaks
near εLS come from the contribution of P2, while P1 affects
the tails of the peak, as can be seen in Fig. 2(b). The intrinsic
contribution P0 is smaller than that of the defects at all energies
shown in Fig. 2(a). As a result, the resonant peak in the cooling
rate due to the defects dominates near charge neutrality.

V. COMPARISON TO EXPERIMENT

To make a direct comparison with the measurement results
reported in Ref. [19], which employ a nanoscale probe to detect
local changes in temperature, we convert the cooling power
to local temperature change as follows. We assume that the
power dissipated at the defect generates phonons which then
carry heat flux radially outward. Since the graphene monolayer
is encapsulated by hBN, we assume that the heat flux is
generated in the entire graphene/hBN stack rather than just the
graphene monolayer. We assume that the phonons propagate
ballistically in the individual layers, and also make transitions
between different layers due to scattering at interfaces and
disorder, resulting in momentum relaxation at significantly
shorter length scales than those for energy relaxation. The
heat flux due to this phonon flow can thus be modeled by a
2D heat conduction equation j = −κ∇T , where j is the radial
heat flux and κ is the 2D conductivity of the graphene/hBN
system. Substituting the continuity equation for the heat flux
∇ · j = P (μ)δ(r), with the defect taken to be at the origin, into
the heat equation, we obtain

∇2δT (r) = −P (μ)

κ
δ(r). (27)

The local temperature change of the graphene/hBN system is

δT (r) = P (μ)

2πκ
log

L

r
, (28)

where L is the distance to the heat reservoir for which δT = 0,
which is of order the distance to the system edge, and a is the
thickness of the graphene/hBN stack. The thermal conductivity
κ can be written as κ = 1

2 sc′
plmfp, where c′

p is the specific-
heat capacity of the graphene/hBN system, and lmfp is the
momentum relaxation mean free path of the phonons. If we
denote cp = 9ζ (3)k3

BT 2
p /(πs2) as the specific-heat capacity of

the monolayer graphene, we can define the dimensionless ratio
Z ≡ c′

p/cp to account for the contribution from the hBN layers.
In the limit where the phonon modes of the different atomic
layers are decoupled, Z is equal to the number of atomic layers.
A typical value of r would be of order lmfp, and we assume
lmfp ∼ 2πh̄s/kBTp to be of the scale of the phonon thermal
wavelength. With these assumptions, we obtain

δTp = h̄

18πζ (3)Z

P (μ)

k2
BTp

log
L

lmfp
. (29)

The experimental curve from [19] is plotted in Fig. 2(a) for
comparison, with the temperature axis shown on the right. We
find that the data are consistent with the theoretical prediction
for εLS ≈ −22 meV if we choose Z ≈ 151 for L ≈ 1 μm.
Since the thickness of the graphene/hBN system is about 50
nm, which corresponds to about 150 atomic layers, this value of
Z is physically reasonable. We also note that εLS ≈ −22 meV
agrees with the energy of a defect formed by a hydrogen adatom
[18]. This highlights the use of resonance cooling as a way to
identify the nature of a defect.

VI. CONCLUSIONS

In conclusion, we have shown that resonant defects result in
resonant electron-lattice cooling phenomena. The underlying
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physics of these processes is distinct from that considered
before, which was based on an enhancement of phonon
phase space in electron-phonon scattering. The sharp peak
in P (μ) near εLS enables the switching of electron cooling
ON and OFF through precise tuning of the Fermi energy.
In direct analogy with how the Purcell effect is used to
control photon emission in optics, resonantly enhanced phonon
emission, occurring around the localized defects, can be used
to control cooling. One can envision the design of specific
cooling pathways and, through defect engineering, the de-
velopment of new approaches to control heat flow in nano-
systems.

Note added. It has come to our attention during the review
process that Ref. [27] has come to similar conclusions.
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