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Using a diverse collection of small molecules we recently found
that compound sets from different sources (commercial; academic;
natural) have different protein-binding behaviors, and these beha-
viors correlate with trends in stereochemical complexity for these
compound sets. These results lend insight into structural features
that synthetic chemists might target when synthesizing screening
collections for biological discovery. We report extensive character-
ization of structural properties and diversity of biological perfor-
mance for these compounds and expand comparative analyses to
include physicochemical properties and three-dimensional shapes
of predicted conformers. The results highlight additional similari-
ties and differences between the sets, but also the dependence
of such comparisons on the choice of molecular descriptors. Using
a protein-binding dataset, we introduce an information-theoretic
measure to assess diversity of performance with a constraint on
specificity. Rather than relying on finding individual active com-
pounds, this measure allows rational judgment of compound sub-
sets as groups. We also apply this measure to publicly available
data from ChemBank for the same compound sets across a diverse
group of functional assays. We find that performance diversity of
compound sets is relatively stable across a range of property values
as judged by this measure, both in protein-binding studies and
functional assays. Because building screening collections with im-
proved performance depends on efficient use of synthetic organic
chemistry resources, these studies illustrate an important quantita-
tive framework to help prioritize choices made in building such
collections.

A central theme in applying cheminformatics to discovery
chemistry is to relate synthetic decisions to consequences

on both chemical structure and biological assay performance.
Historically, such efforts focused on small sets of similar com-
pounds, and single performance measurements (1–3), providing
guidance to chemists in compound optimization against single-
target proteins or processes (4). However, additional methods
are needed to judge large sets of compounds, such as those used
in small-molecule screening. Progress toward more valuable
screening collections (5) requires unbiased methods to evaluate
diversity of assay performance for compound sets rather than
performance of individual members.

A widely used method to judge compounds for drug discovery
is the “rule of 5” (RO5) (6), which predicts poor absorption or
permeation for compounds that deviate from property-value
constraints: H-bond donors (Hd) and acceptors (Ha), molecular
weight (MW), and calculated partition coefficients (cLogP).
Recent studies have attempted to refine such rules (7–9) and
extend them to other goals (10–13), such as making leads or
probes. Such property filters have been debated and reviewed
(14–16), and their long-term impact on pharmaceutical research
is starting to be analyzed (17, 18). Importantly, exceptions to
these rules, including natural products (19–21), are well-noted
and suggest that previously undescribed types of chemistry might

access property distributions acceptable for certain goals despite
nonadherence to established rules.

Comparative analyses of compound sets usually use computed
properties (19, 22, 23) or historical assay results (24, 25). Signifi-
cant progress has been made quantifying and visualizing proper-
ties of compound sets (26), including methods that relate
structure to intuitive notions of shape (27–29), and similarity
fusion methods (30–33) that describe relationships between sets.
Moreover, chemical similarity and diversity analyses continue to
progress (34–37), including studies using Shannon entropy (38) as
a measure of structure information among compounds (39–41),
addressing reagent selection (42), database similarity searches
(43), and scaffold diversity (44). Entropy-based methods have
also been used on assay data to distinguish single-target com-
pounds from those with multitarget effects (45), and to quantify
relationships between targets based on Ki profiles among sets of
common inhibitors (46).

Despite advances in cheminformatics, methods to measure as-
say performance of compound collections remain underexplored.
One important study focused on compounds from different
sources, including drugs (19). Other studies focused on molecular
complexity, suggesting intermediate complexity is preferable
for drug leads (17, 47). Recently, we investigated relationships
between intermediate stereochemical complexity and binding
specificity (48). What these previous studies did not address is
set-based behavior of compound collections. In screening collec-
tions, the value of chemistry investment needs to be measured
in terms of overall collection performance, rather than anecdotes
about the best performers. An assumption often made is that
diverse structures will result in diverse outcomes across many
assays, but few studies address this question directly (49–53).
Likewise, our recent analysis (48) did not account for the distinc-
tion between individual and groupwise compound performance.
The availability of data from large-scale experiments (48) and
public databases provides an opportunity to measure set-based
performance quantitatively, rather than measuring success by
finding a few “special” compounds.

We recently analyzed a large compound collection in 100
parallel protein-binding assays (48) and found both protein-
binding frequencies and specificities are increased among com-
pounds having intermediate stereochemical complexity. Here,
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we extend analysis of the same compounds to physicochemical
properties (6, 7, 16, 54) and shape-based descriptors (27, 29),
revealing additional similarities and differences between sets.
We use principal component analysis (PCA) (55) of chemically
intuitive properties to analyze sources of variation among the
sets. Different descriptors report different aspects of chemical
structure (36), and we aim to illustrate for synthetic chemists
how quantitative relationships can be reconciled with chemical
intuition. We also provide a framework to evaluate performance
diversity of compound sets using Shannon entropy (38) on pro-
files of assay measurements. In this context, entropy measures
how evenly a compound set is distributed over all possible patterns
of performance accessible from a given set of measurements.
We apply this method to both protein-binding profiles (48) and
diverse profiles of functional assays extracted from ChemBank
(56). These methods provide a quantitative measure for per-
formance evaluation of small-molecule collections (5, 48) and
encourage exploration of emerging relationships between per-
formance diversity and molecular property distributions.

Results
We characterized compounds from three sources that were ex-
posed to 100 parallel protein-binding assays (48). The compound
collection consists of (i) 6,152 compounds representative of
screening collections (commercial compounds; CC); (ii) 2,477
naturally occurring compounds (natural products; NP); and
(iii) 5,963 compounds from the academic synthetic chemistry
community (diverse compounds; DC′). These sets provide an op-
portunity to compare properties and performance of compounds
from different origins (cf. ref. 19), including one group (DC′)
whose property distributions differ from other compounds, and
whose properties and performance have not thoroughly been
investigated.

Not surprisingly, when applying established filtering criteria
(16) nearly all CC will “pass” RO5 (99.9%) (6, 16) or an alter-
native based on polar surface area (PSA) and rotatable bonds
(Rot) (99.7%) (7, 16). In contrast, up to approximately 1∕3 of
DC′ (73.0% RO5, 66.5% alternative) and up to approximately
2∕5 of NP (71.1% RO5, 60.7% alternative) would “fail.”
Because differences between natural products and typical screen-
ing compounds are established (16, 19, 21, 57), we sought to
compare DC′ with each of CC and NP to determine which set
DC′ more resembles for each of six common properties (16).
For five of the six properties, DC′ is more similarly distributed to
either CC or NP than the latter two are to each other, and for
three of these, the values for DC′ are intermediate between those
of CC and NP (Table 1). That DC′ is heavier and more lipophilic
than CC or NP is evident by inspecting the Table 1 and visualizing
MW versus cLogP (Fig. 1A). In a PCA “chemical space” com-
posed of these six properties (Fig. 1B), both NP and DC′ overlap
substantially with the more compact CC, but DC′ is more similar
to NP along one dimension (Fig. 1C) and more different in
another (Fig. 1D). These results show that some members of
DC′ access part of the space not accessed by either CC or NP,
suggesting properties and performance for DC′ should be eval-
uated in their own right, rather than being presumed similar
to either CC or NP.

To refine our chemical intuition about similarities and differ-
ences among CC, NP, and DC′, we analyzed PCA coefficients to
learn which properties are correlated (Fig. 2A), and how these
properties vary in each set (Fig. 2B). Not surprisingly, PSA is
correlated with Ha and Hd, and NP has high variation in this
direction, consistent with other studies (19, 21). Similarly, Rot
is correlated with MW, and these properties, along with cLogP,
account for much of the variation in DC′. Previously, we classified
these compounds for binding specificity in protein-binding pro-
files (48). Using similarly defined specificity groups (“specific”:
bound 1 protein; “intermediate”: bound 2–5 proteins; “promiscu-

ous”: bound 6þ proteins), we asked whether compounds in
different groups are concentrated or distributed in the property
space (Fig. 2C). We found that specific and intermediate com-
pounds, regardless of source, are well-distributed throughout
the space, whereas promiscuous compounds are significantly
concentrated in the center (p < 0.0099). Because the center of
the space corresponds to common property filters, this result
suggests that our binding experiments accessed a greater number
of desirable outcomes (specific binding) than had we restricted
ourselves to compounds passing common filters.

Although the above properties allow rapid application of fil-
ters, they tend to oversimplify relationships between compounds
and therefore offer only partial guidance to chemists planning
syntheses. To illustrate additional possibilities for guidance, we
characterized relationships among CC, NP, and DC′, using three
chemical spaces that shed light on different aspects of structure
variation (Fig. 3). First, we considered atom counts: PCA of
this chemical space reveals that carbon, nitrogen, and oxygen are
the dominant contributors to variation (Fig. 3A). Notably, NP
achieves most of its variation with oxygen and carbon, with little
variation in nitrogen composition (Fig. 3B). In contrast, both CC
and DC′ get most compositional variation from nitrogen and
carbon. Second, to examine compounds in terms of ring and side-
chain content, we used descriptors counting rings, side chains,
and branches (Fig. 3 C andD). Here, CC varies primarily in num-
ber of aromatic rings, as does DC′ (with higher variation in total
rings). In contrast, NP has high variation in side-chain number
(unconnected fragments after removing ring atoms), but less var-
iation in number of aromatic rings. Third, to extend our previous
analysis (48) of electronic character of carbon atoms, we used
electrotopological-state (E-state) descriptors for nine carbon
environments (Fig. 3E). These descriptors measure variation in
electronic environment (54) for these carbon types, rather than

Table 1. Distributions of properties typically used for filtering
(e.g., Lipinski RO5)

Molecular weight
(Da) Calculated logP

Polar surface area
(Å2)

Median Mean SD Median Mean SD Median Mean SD

CC 311 314 75 3.2 3.2 1.6 68 72 31
NP 386 457 232 1.9 1.8 2.2 104 136 93
DC′ 496 509 157 3.9 3.9 2.3 96 100 41

H-bond donors H-bond acceptors Rotatable bonds

Median Mean SD Median Mean SD Median Mean SD
CC 1 0.9 0.9 4 3.7 1.6 4 3.8 1.9
NP 3 4.1 3.6 7 8.5 5.9 5 6.0 4.6
DC′ 1 1.6 1.2 6 6.0 2.5 8 8.9 4.3

Bold pairs of values for each property indicate more similarly distributed
pairs of sets. Also indicated is whether the distribution for DC′ is centered
between (underline) or outside (italics) those of CC and NP.

Fig. 1. DC′ occupies a distinct part of the property space from CC and NP.
(A) Scatterplot of MW versus cLogP, omitting three compounds (all from NP)
with MW > 1;500 and three compounds (all from DC′) with cLogP > 15.
(B) Top three principal components (PCs) (93% of total variance) using six
properties. (c) PC1 versus PC3, illustrating dimension in which DC′ is similar
to NP. (D) PC2 versus PC3, illustrating dimension in which DC′ is distinct from
NP (CC: dark red; NP: dark green; DC′: dark blue).
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simply the number of each type. Comparing variation of position
in each set (Fig. 3F) to the coefficient map allows interpretation
of the relative importance of varying carbon environments to the
diversity of CC, NP, and DC′. For example, more variation in NP
than in CC or DC′ corresponds to variation in electronic charac-
ter of sp3 carbon atoms connected to three or four other heavy
atoms (ssssC, sssCH). In contrast, CC and DC′ express more of
their variation around less-connected sp3 carbons (sCH3, ssCH2)
or sp2 carbons (aaCH, aaaC). Often, descriptors such as E states
are used to build predictors of compound performance using
statistical learning methods (58, 59). Here, these examples illus-
trate how quantitative, yet chemically intuitive, information can
be used to guide chemists building discovery collections.

Recently, we used principal moment-of-inertia (PMI) descrip-
tors (27) of 3D shape to analyze chemist decisions during diver-
sity-oriented syntheses, including relationships between skeletal
and stereochemical diversity (60, 61) and a unique fragment
library (62). PMI descriptors provide an intuitive notion of mo-
lecular shape, occupying a triangular map bounded by canonical
shapes (rod, disk, and sphere). We mapped the three sets (CC,
NP, and DC) and the specificity groups (promiscuous, intermedi-
ate, and specific) to PMI plots (Fig. 4A). Consistent with earlier
observations, CC is dominated by flat and linear compounds. NP
covers more of the PMI map, its distribution centered up and to
the right relative to CC. Notably, NP has less coverage in the disk-
like (bottom center) region of the map than either CC or DC′.
DC′ covers more of the shape space than NP, with its distribution
centered down and to the right of CC. DC′ also contains low den-
sity on the extreme left diagonal of the space, indicating few very
flat or linear compounds. The specificity groups also follow a
trend, though with less difference between them than the com-
pound sets.

To quantify shifts in PMI density, we measured distance distri-
butions for each set or group relative to vertices of PMI space.
Cumulative distance distributions allow us to quantify the sta-
tistical significance of these differences, with all three of CC, NP,
and DC′ significantly different relative to the sphere shape
(Fig. 4B), and DC′ less rod-like and more disk-like than either CC
or NP. Importantly, more specific binders (regardless of set) are
significantly more sphere-like than promiscuous ones. To refine
this analysis, we also computed distance distributions from cano-
nical flat and spherical shapes based on alpha-shape descriptors
(29). The results for sphere likeness exactly match those with PMI
distance to the sphere vertex, and for flat shapes significantly dis-
criminate CC, NP, and DC′. Moreover, promiscuous compounds
are significantly flatter in their distance distribution (Fig. 4C).

The foregoing analyses treat properties as distributions, but
until now we have considered assay performance for each com-

pound separately, for example, assigning each to a specificity
group. An important consideration for compound collections is
how well they access a diversity of assay outcomes. Given 100
specific compounds (each binds exactly one of 100 proteins), com-
pare the case where each compound binds the same protein to the
case where each compound binds a different protein: “Hit” rates
and specificity groups are not sufficient. To evaluate compound
sets, we need to distinguish these cases. Shannon entropy (38) and
related measures (45) provide a framework to do so when applied
to matrices of assay outcomes (cf. figure 4 in ref. 48). Entropy
applied to profiles (profile entropy) of small-molecule perfor-
mance allows us to distinguish the possibilities above, providing
a higher score for more diverse sets of assay outcomes, a maximal
score for uniform coverage of all possible outcomes, and penal-
ties for missing outcomes or “dilution” with inactive compounds.
By itself, however, profile entropy does not distinguish profiles
based on their selectivity. A profile with a single assay activity

Fig. 2. Specific binders occur throughout the property space. (A) PCA coef-
ficient map of six properties onto first two PCs, showing correlations between
properties and interpretation of dimensions; horizontal and vertical scales
are relative to unit vectors along the PCs. (B) PC1 versus PC2 showing
compound sets (CC: dark red; NP: dark green; DC′: dark blue); scales are unit
standard deviations. (C) PC1 versus PC2 showing distributions of protein-
binding specificity groups (cf. figure 7 of ref. 48); (specific: 1 protein, cyan;
intermediate: 2–5 proteins, black; promiscuous: 6þ proteins, red); scales
are the same as in B. Promiscuous compounds are significantly concentrated
(p < 0.0099) in the center of the space.

Fig. 3. Different chemical spaces provide intuitive comparisons between
collections. (A) PCA coefficient map of select atom counts onto first two
PCs, showing interpretation of PCA dimensions. (B) PC1 versus PC2 showing
compound sets in the space of A (CC: dark red; NP: dark green; DC′: dark
blue). (C) PCA coefficient map of select ring and chain counts onto first
two PCs, showing interpretation of PCA dimensions. (D) PC1 versus PC2 show-
ing compound sets in the space of C. (E) PCA coefficient map of E-state sums
(54) (reporting electronic environments of different carbon atom types) onto
first two PCs, showing interpretation of PCA dimensions (s: single bond;
d: double bond; a: aromatic bond). (F) PC1 versus PC2 showing compound
sets in the space of E. Scale units for coefficient maps and PCA plots are
the same as Fig. 2.
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is equivalent to one with a single assay inactivity (i.e., a promis-
cuous compound). To address this concern we define a weighted
measure (weighted profile entropy) to reward more specific pro-
files over less specific ones.

Using profile entropy, we analyzed the performance of CC,
NP, and DC′ using profiles of binding to 100 proteins (Fig. 5A)
(48). By this measure, CC exhibits higher performance diversity
than DC′, and substantially higher than NP, possibly due to lower
hit rates in NP (48). However, considering hit compounds only
(bound at least one protein) does not change relative scores;
NP, and to a lesser extent DC′, “concentrates” its compounds on
particular patterns of protein binding (which entropy penalizes).
Weighted profile entropies show similar relationships between
sets, as expected because most hit compounds bind one (65.3%)
or two (13.2%) proteins. As an independent test of performance
diversity for the compound sets, we extracted functional assay
data from ChemBank corresponding to all 14,592 compounds.
Each compound had been exposed to between 51 and 154 differ-
ent functional assay readouts (median ¼ 71, mean ¼ 85). Using
these data, we computed profile entropies for CC, NP, and
DC′ (Fig. 5B). The functional assay results exhibit higher overall
entropies (a smaller fraction is never called active; 30.4% versus
78.4%), but performance diversity remains highest for CC and
lowest for NP, except in weighted profile entropies, where DC′
drops below NP, suggesting that either nonspecific effects or
correlations between assay readouts are more common for DC′
than for NP.

Finally, we revisited the idea that computed property distribu-
tions will impact compound set performance: specifically the
ability to produce diverse activities in primary assay formats
(binding or functional). We computed profile entropies for sub-
sets of compounds with similar property values. We took sets
of profiles of equal size, centered on a compound with the
(ranked) property value of interest. We found that increasing
cLogP increased performance diversity in protein-binding pro-
files using both unweighted and weighted profile entropy mea-
sures (Fig. 5C). In contrast, though increasing both MW and
cLogP produced increased performance diversity in unweighted

functional assay profiles, both properties showed stable perfor-
mance diversity when specificity-weighted profile entropies were
considered (Fig. 5D), suggesting increases in the unweighted case
may stem from nonspecific effects in assays. Similar observations
were observed with several descriptors (see SI Datasets D1–D8);
for example, we observed that increasing PSA to extreme values
decreased performance diversity in functional assays, consistent
with the inability of compounds to penetrate cells. Clearly, other
such comparisons are warranted, but these preliminary results
illustrate a framework to evaluate set-based performance in
terms of calculated property distributions.

Discussion
Quantifying properties and behavior of compound sets has
implications for organic synthesis toward small-molecule probes
and drugs. In particular, it is valuable to make quantitative deci-
sions about choices: which compounds to buy, which to synthe-
size, which to include in a screening collection, which to retire
from screening. Decisions regarding individual compounds typi-
cally dominate such discussions: Individual compounds pass or
fail filtering rules, individual compounds hit or not in assays,
etc. In this study, we use real-world compounds and data to illus-
trate methods that can guide decisions about sets of compounds.

Our results reflect the properties a particular set of compounds
(48), but the message of this study is not a statement about these
particular compounds. Indeed, our current discovery collection at
the Broad Institute reflects many considerations (26, 63–67) that
were never applied to the compounds in this study. Rather, we
aim to promote a way of thinking about compound sets that is
unbiased, quantitative, and decision-oriented, not to prescribe
which particular decisions should be made. Depending on the
goal of any particular study, attention to different properties
or performance is warranted. For example, Figs. 1 and 2 remind
us that although for certain applications (e.g., drug discovery)
additional property constraints might be applied, we should be
cautious against overapplication of constraints that might obscure
previously undescribed insights into small-molecule behavior—
lack of “drug-likeness” does not mean that a compound’s profile

Fig. 4. Different compound sets and specificity
groups are quantitatively different in shape distribu-
tions. (A) PMI maps showing compounds from each
set (Top; CC: dark red; NP: dark green; DC′: dark blue)
and from each specificity group (specific: 1 protein,
cyan; intermediate: 2–5 proteins, black; promiscuous:
6þ proteins, red). Canonical PMI shapes are shown
on the bottom-left map. (B) Cumulative distributions
of distances from canonical sphere shape using PMI
descriptors. (C) Cumulative distributions of distances
from canonical flat shape using alpha-shape descrip-
tors (29). Color-coding of distributions is the same
as in A.
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of interactions with 100 different proteins is not valuable infor-
mation.

Compounds are often judged by whether they add “diversity”
to a compound collection. Fig. 3 reminds us that diversity is a
relative concept, depending on the sets being compared and
properties used to describe them. Consistent with earlier studies
(60, 61), visualizing molecular shape relative to canonical shapes
(27–29) provides a powerful stimulus to chemists interested in
“escaping flatland” (68) by making more “globular” compounds.
Importantly, we show in Fig. 4 how these relationships can be
quantified and their significance assessed, but our results do not
support a causative relationship between globularity and specifi-
city. DC′ is more globular (sphere-like) than other sets, and the
group of specific binders is more globular than promiscuous com-
pounds. However, this is primarily because DC′ is enriched in
specific binders (48), not because globularity “imparts” specifi-
city. Specific members of CC and NP are not statistically enriched
for globularity relative to their promiscuous counterparts, sug-
gesting more complicated relationships that warrant investigation
with different compounds.

An important advance in this study is extending Shannon
entropy (38) to profiles of assay performance for compound sets.
Entropy has been used extensively for chemical structure analysis
(39–44), but has been underutilized in the area of measuring
diversity of assay performance (45, 46). Here, we apply entropy
broadly to multiassay performance profiles (51, 53) for large col-
lections and observe that CC accesses 654 unique protein-binding
profiles with 1,415 active compounds, NP accesses 112 profiles
with 324 compounds, and DC′ accesses 422 profiles with 1,406
compounds. Entropy is sensitive precisely to these relation-
ships—how uniformly are compounds distributed over different
patterns of performance? Weighted profile entropy addresses an
important concern about specificity among binding profiles, and
future studies should reconcile weighting with further analysis of
on-target and off-target effects in phenotypic assays and provide
improved handling of missing data (45). As suggested by Fig. 5,
profile entropy can be sensitive to the size of compound sets and
the number of assays. Moreover, our nonparametric analysis
of entropy relative to property distributions is likely sensitive
to the shapes of these distributions. Additional studies with other
datasets are needed to refine the methodology, but the speed of
profile entropy calculations, and their generality to any small-
molecule profiling study (69), are indicators of future promise.

Overall, this study focuses attention on the need of computa-
tional methods to adapt to the changing requirements of high-
throughput chemistry and screening. It provides a framework

for analysis of compound collections that focuses on overall
collection performance rather than performance of individual
members (as with more conventional structure-activity studies).
We intend this study as a follow-up to our prior work (48), in that
it provides informative additional analysis of compounds from
different sources. However, we also intend this work to advance
methods for analysis that can be applied to previously unde-
scribed compounds and profiling datasets in the future. Such
large-scale computational analysis of compound sets in the con-
text of screening data can influence synthetic (or acquisition)
decisions leading toward the assembly of improved screening col-
lections.

Materials and Methods
Chemical structures, categories, sources, and ChemBank (56) identifiers for
each compound are already published (48), and we used this information
as the source of structures and binary protein-binding data. We calculated
molecular property counts (SI Datasets D1 and D2) and E-state descriptors
using Pipeline Pilot (Accelrys, Inc.). We also considered these descriptors as
a function of protein-binding specificity (SI Dataset D3). For 3D descriptors,
we used a ChemAxonmodule employing DREIDING force field (70) in Pipeline
Pilot to generate up to 16 3D conformers per molecule, retaining those with-
in 3 kcal∕mol of the lowest energy conformer. We computed PMI (27) and
alpha-shape (29) descriptors using MATLAB code (The MathWorks, Inc.) that
follows published methods. Median PMI values and alpha-shape-based dis-
tances were taken across retained conformers. In PCA visualizations, small
numbers of outliers are not shown for graphical clarity, but all compounds
were included in calculations. Significance of spread or concentration in PCA
was performed between distributions of Hotelling’s T2 values, and in PMI and
alpha-shape plots between distance distributions (SI Dataset D4), each using
Kolmogorov–Smirnov tests (71). Correlations between 2D and PMI descrip-
tors are also provided (SI Dataset D5).

For each compound we constructed a performance profile assigning
binary ([0,1], binding data) or discrete (½−1;0;1�, functional data) values
representing activity for a compound in a given assay, collecting such values
across all assays into a vector x. Discretization of binding data are described
elsewhere (48), and ChemBank data were handled similarly, except both
high- and low-signal outlier values (56) were accepted (SI Datasets D6 and
D7). All distinct performance profile vectors x for compounds were collected
to set S, and Shannon entropy (H) was computed by calculating relative fre-
quencies pðxÞ and summing frequency terms over x ∈ S: HðSÞ ¼ −ΣpðxÞ log2

½pðxÞ� (profile entropy). To calculate entropy for a set of profiles weighted
by a specificity constraint, we first computed H separately for each subset
Sm of profiles sharing the same number m of nonzero profile features, then
computed a weighted sum of these entropies with weighting factor
wm ¼ exp½− lnð2Þm�, to give Hw ðSÞ ¼ ΣwmHðSmÞ (weighted profile entropy).
For ChemBank profiles, missing data were censored to zero before entropy
calculations (SI Dataset D8). Statistical analyses, visualizations, and entropy
calculations were performed in MATLAB.

Fig. 5. Shannon entropy measures performance di-
versity for sets of compounds across many assays. (A)
Performance diversity of CC, NP, and DC′ in 100 pro-
tein-binding assays, including profile entropy for all
compounds (red bars), hits only (black bars), and
weighted profile entropy (cyan bars). (B) Perfor-
mance diversity of CC, NP, and DC′ in ChemBank assay
data; color coding is the same as A. (c) Trend lines in
relative performance diversity for all compounds in
protein-binding assays as a function of increasing
ranked cLogP values, including both profile entropy
(black line) and weighted profile entropy (cyan line).
(D) Trend lines in relative performance diversity for all
compounds in ChemBank functional assays as a func-
tion of increasing ranked cLogP (solid lines) or MW
(dashed lines) values, including both profile entropies
(black) and weighted profile entropies (cyan). In C
and D, entropy values are normalized by subtraction
to the first compound set considered (i.e., lowest
values of cLogP or MW).
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