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Abstract. This study provides observation-based na-
tional estimates of CFC-11, CFC-12, CFC-113, and 1,1,1-
trichloroethane emissions for the United States (US) and
United Kingdom (UK) from municipal solid waste (MSW)
landfills. The scarcity of national estimates has lead to the
assumption that a significant fraction of the lingering ozone-
depleting substance (ODS) emissions, which have been de-
tected in industrialized countries, could be emitted from
landfills. Spatial coverage was achieved through sampling at
seven landfills in Massachusetts and through data provided
by nine UK landfills. Linear least square regressions of re-
covered ODS vs. CH4 were used in combination with na-
tional estimates of landfill CH4 emissions to estimate 2006
national US and UK ODS landfill emissions. The ODS land-
fill emission estimates were then compared to recent esti-
mates of total US and UK ODS emissions. US ODS land-
fill emissions are 0.4%–1% (0.006–0.09 Gg/year) of total
US emissions. UK ODS landfill emission estimates are 1%
(0.008 Gg/year) and 6% (0.03 Gg/year) of total UK CFC-11
and CFC-12 emissions, respectively. This indicates that land-
fills are only a minor source of lingering ODS emissions in
the US, but may be more significant for CFC-12 emissions in
the UK. The implication is that the majority of current ODS
emissions in industrialized countries is likely coming from
equipment still in use.

Correspondence to:E. L. Hodson
(elkeh@alum.mit.edu)

1 Introduction

The Montreal Protocol has had great success in reducing
global emissions of ozone-depleting gases since it came into
effect in industrialized countries in the mid-1990s. The rate
of accumulation of ozone-depleting substances (ODSs) in
the troposphere has declined to the point where tropospheric
concentrations are now stable or decreasing (AGAGE, 2009).
However, ODSs continue to be important to the study of
stratospheric ozone recovery and to climate change. In par-
ticular, accurate predictions of future ODS emissions are
needed to devise strategies which could minimize strato-
spheric ozone loss and greenhouse gas (GHG) emissions
over the coming decades.

The four ODSs considered in this study are CFC-
11 (trichlorofluoromethane), CFC-12 (dichlorodifluo-
romethane), CFC-113 (1,1,2-trichloro-1,2,2-trifluoroethane),
and CH3CCl3 (1,1,1-trichloroethane). It is the combination
of high ozone depleting potential (ODP), the large volume
historically released to the atmosphere, and their long
lifetimes which make chlorofluorocarbons (CFCs) still
highly important to the study of ozone recovery. CFC-11
and CFC-12 continue to have the highest global back-
ground concentration of the Montreal Protocol gases, and
only HCFC-22 has surpassed CFC-113 (AGAGE, 2009).
CH3CCl3 concentrations have decreased sharply in recent
years so that it is no longer as important a factor in ozone
recovery, but it remains important as a method of estimating
OH mole fractions (Prinn et al., 2005; Bousquet et al.,
2005; Wang et al., 2008). With regard to climate, CFCs
have very high global warming potentials (GWPs), exerting
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∼5000–15 000 times the effect which the same amount of
added CO2 would have on warming the atmosphere over
100 years (WMO, 2007).

As the Montreal Protocol has come into effect and produc-
tion of ODSs has decreased sharply, “banks” have become a
significant source of future projected CFC emissions. Banks
comprise products still in use, stockpiled products in case of
equipment replacement, and discarded products in landfills.
An increase in estimated CFC banks (i.e. by∼1100 Gg for
CFC-11 and 700 Gg for CFC-12 for the year 2002) is con-
sidered to be a significant cause for the recent increase (by
5 years) in projected ozone recovery time compared to pre-
vious ozone recovery estimates (WMO, 2007; Daniel et al.,
2007).

Landfills have the potential to be important emitters of
banked ODSs. CFC-11, CFC-12, CFC-113, and CH3CCl3
have all been detected in landfill gas significantly above
ambient concentrations (Rettenberger and Stegmann, 1996;
Allen et al., 1997; Giess et al., 1999; Scheutz et al., 2008;
and references therein). Major landfilled products include
aerosol cans (propellant residue), refrigerant liquid, and
foams (mainly polystyrene) for CFC-12; aerosol cans, closed
cell polyurethane foam (e.g. refrigeration insulation), soft
foam plastics (e.g. furniture and mattresses) for CFC-11;
solvent residues (e.g. dry-cleaning), foams, refrigerant, and
propellant for CFC-113; and solvent residues (e.g. stain
removers, detergents, adhesives, lacquers) for CH3CCl3
(Deipser et al., 1996; McCulloch and Midgley, 1998; Mc-
Culloch et al., 2001, 2003; IPCC/TEAP, 2005).

There have been significant advances in the understanding
of processes controlling the magnitude and timing of CFC
and CH3CCl3 landfill emissions, but more in-situ measure-
ments are still needed. Several laboratory studies have in-
vestigated parameters important to the study of CFC landfill
emissions. The size of shredded foam has been shown to
have a large influence on the release time of CFC-11, which
could delay landfill emissions by at least several decades
(McCulloch et al., 2001; Kjeldsen and Jensen, 2001; Kjeld-
sen and Scheutz, 2003). All of the compounds in this study
have been shown to degrade under simulated anaerobic land-
fill conditions (Deipser and Stegmann, 1997; Scheutz and
Kjeldsen, 2003; Scheutz et al., 2007), but the effects in-situ
are just beginning to be investigated (Scheutz et al., 2008).
ODS concentrations have been measured in-situ and several
countries have default national landfill concentration values
for individual ODSs (Parker et al., 2002; EPA, 2008). There
are far fewer site-specific in-situ measurements of CFC and
CH3CCl3 emissions (EPA, 1995; Allen et al., 1997; EPA,
2009b). The United States Environmental Protection Agency
maintains an online model which can estimate single landfill
emissions for a range of ODSs (EPA, 2009c). Yet, as of the
latest assessment report from the Intergovernmental Panel on
Climate Change, there were no existing national inventory
methods to quantify national ODS emissions from landfills
(Bogner et al., 2007).

In this study, we estimate national emission rates from
MSW landfills for two industrialized countries with signif-
icant landfilling of waste, the US and UK. National MSW
landfill emissions are based on whole landfill mole fractions
and flow rates, which were collected from US and UK land-
fills during the fall of 2006. The data was used to create
linear regressions of ODS and methane (CH4) recovery rates.
These regressions, combined with national estimates of land-
fill CH4 emissions, yielded national estimates of MSW land-
fill emissions of ODSs for the US and UK.

2 Methods

2.1 Design of study

Estimating emissions of CFC-11, CFC-12, CFC-113, and
CH3CCl3 from landfills in industrialized countries required
a targeted approach. Because any field sampling would only
cover a fraction of the more than 1800 open landfills in 2006
in the US (Arsova et al., 2008), it was important to design the
field study carefully to achieve the most unbiased estimates
possible.

The study focused on estimating landfill ODS emissions
for the US, with one-time field sampling at several US MSW
landfills as well as monthly sampling for over one year at one
US MSW landfill. Data was made available for several UK
MSW landfills to provide a comparison with another indus-
trialized country.

To narrow the focus of the study, we decided to sample
or collect information from non-hazardous waste landfills
which accept more than 50% of their waste from domestic
and commercial sources (MSW landfills). In the US, MSW
landfills account for over 90% of total generated landfill gas
(EPA, 1994, 2009a,d). Within MSW landfills, sampling was
constrained to landfills which pumped their landfill gas to
the surface (active gas collection) to increase the number of
measurements for statistical analysis.

In order to sample a representative cross section of
US and UK landfills, we controlled for two impor-
tant variables, namely landfill age and total landfilled
waste, as shown in Fig. 1 in the Supplementary In-
formation (SI) http://www.atmos-chem-phys.net/10/1899/
2010/acp-10-1899-2010-supplement.pdf. The intention was
to sample a cross-section of small, medium, and large land-
fills covering a range of ages. On average, the US study sites
in the state of Massachusetts were older and had less land-
filled waste than the national average. The UK study sites
were better distributed with respect to total landfilled waste,
but were younger than the US landfills.

2.2 Study sites

The sample sites consisted of seven US and nine UK MSW
landfills with active gas management. The detailed demo-
graphic information for each landfill is shown in Table 1
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Fig. 1. Recovered CFC-11, CFC-12, CFC-113, and CH3CCl3 plot-
ted against recovered CH4 for all US and UK landfill sites. Note the
varying y axis scales.

Fig. 1. Recovered CFC-11, CFC-12, CFC-113, and CH3CCl3 plotted against recovered CH4 for all US and UK landfill sites. Note the
varying y axis scales.

in the SI http://www.atmos-chem-phys.net/10/1899/2010/
acp-10-1899-2010-supplement.pdf. The UK sites are all
owned by one landfill company, while the US sites are partly
municipal and partly privately owned landfills. Two US
(landfills 5 and 6) and two UK (landfills 8 and 9) landfills
had reached capacity and no longer accepted waste at the
time of sampling. The accounting of the type of waste which
is landfilled is slightly different for the US and UK. For the
UK landfills, domestic and I/C (industrial and commercial)
are the two main waste categories, while for the US land-
fills, MSW, which includes domestic and commercial waste,
is the dominant category. For this study, US landfills with
more than 50% MSW and UK landfills with more than 50%
domestic waste were considered MSW landfills.

2.3 Measurement data

Table 1 presents data for each sample site. All of the mole
fractions and flow rates are whole landfill averages, which
were obtained by sampling at ports located on the main gas
line directly before either the flare or the gas-to-energy plant.
For the US sites, all of the data shown in Table 1 was used for
the emission estimates. Multiple sample dates per site were
averaged to yield one data point. For the UK sites, only the
data from 2006 and 2007 was used for the emission estimates
because of high year-to-year variability in the CFC-11 mole

fractions at several sites. UK data from 2004 is added as a
comparison. CFC-12 mole fractions within each UK sample
sites showed almost no year-to-year variability within land-
fill sites. This was also observed in a 1.5 year variability
study (Hodson, 2008) and may be related to lower microbial
degradation rates for CFC-12 compared to CFC-11 (Scheutz
and Kjeldsen, 2003; Scheutz et al., 2007). Flow rates in Ta-
ble 1 are yearly averages for 2006 and are the ones used in
the subsequent analyses to calculate emissions.

A 1.5 year-long study (not shown) at US landfill 2 was un-
dertaken during 2005–2006 to monitor the intra-annual vari-
ability of ODS, CH4, and flow rates and to lend credibility to
the following emission estimates, which used data from one-
time field sampling. The standard deviation on the mean of
the monthly-sampled landfill mole fractions was 19% (CFC-
12), 29% (CFC-11), 23% (CFC-113), 12% (CH3CCl3), and
2.8% (CH4), while the standard deviation for the flow rate
was 12.5%. The variability increased (up to 45%) for all
ODSs in this study except for CFC-12, when a flare was used
as the end-of-pipe technology instead of a reciprocating en-
gine (Hodson, 2008).

2.4 US gas collection and analysis

Data collection for the US and UK landfill sites was con-
siderably different. For each of the seven US sample sites,
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Table 1. US and UK landfill gas mole fractions and flow ratesa.

Sample CFC-11 CFC-113 CH4 Flow
Site Date Nb CFC-12 CH3CCl3 Ratec

(ppb) (ppb) (ppb) (ppb) (%) (Nm3y−1)

US sites

1 20.11.06 9 1500 850 26 70. 47.3 2.88E7
2 2006d 108 140 730 9.3 44 55.0 1.46E7
3 19.12.06 9 130 490 5.0 19 48.6 1.87E7
4 28.11.06 9 36 580 6.0 11 40.7 1.27E7
5 19.10.06 9 160 590 15 74 50.4 2.34E7

18.12.06 9 130 600 20. 40. 45.5 2.34E7
6 31.10.06 9 25 410 3.7 4.9 45.4 2.59E7
7 20.11.06 9 24 200 4.7 7.2 46.0 1.26E6

UK sites

1 21.03.06 1 360 2300 ND ND 52.8 1.68E7
2 2004 1 210 1800 ND ND NM 1.48E7

03.05.07 1 ND 1800 ND ND 47.8 1.48E7
3 10.01.07 1 300 2800 ND ND 56.2 1.98E7
4 07.04.06 1 ND 2800 ND ND 40.4 6.61E7
5 23.04.04 1 320 2500 ND ND NM 3.82E7

03.05.07 1 530 2200 ND ND 46.6 3.82E7
6 28.06.04 1 940 2300 ND ND NM 1.12E7

07.04.06 1 780 2200 ND ND 49.6 1.12E7
7 07.04.06 1 590 2300 ND ND 39.5 5.69E6
8 07.04.06 1 200 1200 ND ND 51.3 5.95E6
9 21.03.06 1 250 1600 ND ND 55.6 4.71E6

a Units are parts per billion (ppb), % total gas stream by volume (%), and normal cubic meters per year (Nm3 y−1). ND = not detectable and indicates that concentrations were
below the UK analysis detection limit of 1 µg m−3. NM = not measured.
b Number of gas analyses which were averaged to yield the mole fractions on the corresponding rows.
c Represents yearly averaged flow rates for 2006 corrected for seasonal variability.
d US site 2 sampled monthly in 2006.

we collected and analyzed triplicate canister samples dur-
ing the fall of 2006. The canister samples were collected
in 0.8 L electropolished stainless steel cylinders filled in suc-
cession to 30 psig using a metal-bellows pump on a sampling
line already flushed with the sample landfill gas. Three-fold
evacuations to 100 mTorr of each sample canister as close as
possible to the time of sampling ensured canister cleanliness.
Selected canisters were analyzed for lingering traces of CH4
to further prohibit cross-contamination between sampling.

The US gas samples were analyzed on an AGILENT 6890
gas chromatograph with both a flame ionization detector
(FID) and a micro electron capture detector (µ-ECD). Sam-
ples analyzed for CFC-11, CFC-12, CFC-113 and CH3CCl3
were introduced by static fixed loop injection (50 µl, in-
ject time = 30 s), with separation on a 25M×0.32 mm ID CP
Sil 5 CB capillary column followed by detection by µECD.
The GC oven program was 45◦C for 1 min, 10◦C/min to
100◦C, hold at 100◦C for 0.5 min, 30◦C/min to 200◦C, and
hold at 200◦C for 1 min. CH4 was analyzed by static fixed
loop injection (10 µl, inject time = 4.8 min) followed by sep-
aration on a 50M×0.32 mm i.d. Alumina (Al2O3) PLOT col-
umn (Na2SO4 modified) at an isothermal oven temperature
of 45◦C.

Samples were analyzed in triplicate and bracketed by cali-
bration standards. The ODS standard (Scott specialty gases)
contained CFC-11, CFC-12, CFC-113 and CH3CCl3 all at
certified accuracy of better than 5%. CH4 was calibrated
using pure standard (research grade, 99.999% pure, BOC
gases).

Calibration curves were constructed over the experimen-
tal range for the ODS measurements and these were ap-
plied to analytical samples. The limits of quantitation (sig-
nal/noise = 10) were 0.57 ppb for the ODSs and 1330 ppb for
CH4. All samples measured exceeded these values. Av-
erage measurement precision for the GC-µECD/FID was
0.95% (CFC-12), 0.90% (CFC-11), 2.5% (CFC-113), 2.9%
(CH3CCl3) and 0.47% (CH4).

2.5 UK gas collection and analysis

CFC-11, CFC-12, and CH4 mole fractions for the nine
UK landfills were obtained from Viridor Waste Manage-
ment. All of the data from Viridor had well documented
sampling and analysis procedures, but had only one analy-
sis per sample date. For the gas samples collected before
May of 2007, Viridor collected the sample and CERAM
(Stoke-on-Trent, Staffordshire, UK) performed the analysis.
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CERAM is a UKAS (United Kingdom Accreditation Ser-
vice) ISO 17 025:2005 accredited testing laboratory special-
izing in landfill gas analysis. Viridor filled one or more Ted-
lar bags using a GA2000 Infrared Gas Analyzer (Geotech-
nical Instruments, Chelmsford, England) fitted with a water
filter. The bags were filled to∼3 cm thick and shipped to
CERAM. At CERAM, the gas samples were analyzed using
their UKAS in-house method BCRL-C51 and BCRL-C72 for
the CFCs and CH4, respectively. Both methods were accred-
ited in 1999. All of the gas samples were analyzed on a GC-
MS at most two weeks after sampling.

For the two UK samples analyzed in May of 2007, C&P
Environmental (Bedford, Bedfordshire, UK) collected the
samples and performed the analysis. C&P used a GA2000+
analyzer to fill and evacuate their Tedlar bags two or more
times before filling the final sample. Two Tedlar bags were
filled in case one leaked before the gas analysis. Bags were
kept at ambient temperature in a dark, cool box during trans-
portation after sampling and before analysis. Analysis was
done one week after sampling on a GC-MS at C&P Environ-
mental which is an UKAS accredited testing laboratory.

2.6 Flow rates

For US landfills 1–6, instantaneous flow rates were provided
by the landfill operators and extrapolated to yearly averages.
A comparison at US landfill 2 between the built-in, con-
tinuous monitoring orifice plate (accuracy±0.6% of flow,
Oripac Model, Lambda Square Inc., Bay Shore, NY, USA)
and a traverse with a Dwyer 166 T Telescoping Pitot Tube
(Dwyer Instruments Inc, Michigan City, IN, USA) combined
with a Dwyer 477A-1 Handheld Digital Manometer (scale
0“−20” water column, accuracy is 0.1% full scale) yielded
flow rates within 4%. Landfills 1–6 all had similar built-in
flow monitoring technologies. US landfill 7 had only a flare
and no built-in flow monitoring technology. Thus, the flow
rate for landfill 7 was measured with the Dwyer pitot tube
and manometer.

For the UK, Viridor provided yearly averaged flow rates
for each site. The flow rates were given in units of normal
meters cubed per year (1 atm and 0◦C). Viridor did not mea-
sure daily flow rates, but rather used a model to calculate
annual emissions based on input parameter including land-
fill size, depth, age of waste, and type of landfilled waste.
Estimated error on the annual flow projections is 10–20%.

It was necessary to standardize the US and UK data sets by
calculating 2006 annual averages of flow rates for each land-
fill. The US instantaneous flow rates were converted into
average annual flow rates using seasonal correction factors
derived from the long term study at US landfill 2. Flow rates
were averaged in the long term study for 30 days before and
after the sample date of the flow rate to be corrected. The av-
erage ratio between the 60 days and running 12-month aver-
ages (calculated from 18 months of gas-to-energy plant data
for US landfills 1–6 and 3 years of flare data for US land-

fill 7) was then applied to the data set to be corrected. No
corrections were necessary for the annual averaged flow rates
obtained for the UK landfills.

2.7 Emission estimation methodology

The fate of landfill CH4 and ODSs can be expressed by the
following simplified equations

CH4(emitted) = CH4(produced) −R−Ox (1)

ODS(emitted) = ODS(volatilized) −R−Md (2)

whereR = recovered CH4 or ODS, Ox = CH4 oxidized in the
landfill soil cover, and Md = microbial degradation of the re-
spective ODSs (Bogner et al., 2007; Scheutz et al., 2007,
and references therein). Two further pathways important on
longer time scales are lateral migration underground and in-
ternal changes in landfill gas storage (Bogner et al., 2007).
Recovered landfill gas is defined as the gas generated within
the landfill which is pumped to a flare or gas-to-energy plant
for combustion or electricity conversion.

In this study, we measured recovered ODS and CH4 gas
fluxes and made use of available national inventory statistics
for landfill CH4 to scale the individual measurements to na-
tional landfill ODS emissions. This bootstrap method can be
expressed as

ODS(emitted) =
ODS(recovered)
CH4(recovered) ×CH4(emitted) (3)

where all units are in mass/time.
This bootstrap method allowed us make use of avail-

able inventory data and landfill gas technology, but includes
assumptions for our results. First, we assumed that the
ODS/CH4 ratio was the same in the recovered and emit-
ted landfill gas. To check this assumption, we calculated
ODS/CH4 ratios for our five US open landfills using the US
Environmental Protection Agency (EPA) landfill gas emis-
sions model LandGEM (EPA, 2009c). We then compared
the LandGEM emission ratios and the recovered gas ra-
tios from this study to surface emission ratios and recov-
ered gas ratios which were measured at Freshkills land-
fill in New York (EPA, 1995). Table 2 in the SI presents
the results http://www.atmos-chem-phys.net/10/1899/2010/
acp-10-1899-2010-supplement.pdf. The ratio of ODS/CH4
was within 25% from all data sources for CFC-12, CFC-
113, and CH3CCl3. CFC-11/CH4 ratios were 130% higher
in the gas collection system compared to the emitted gas at
Freshkills landfill (EPA, 1995). Likewise, the CFC-11/CH4
ratio in this study was 60% higher than the predicted emis-
sions from the LandGEM model. One reason for this dif-
ference in ratio variability may come from recent studies of
anaerobic degradation. In simulated landfill soil cover and
anaerobic landfill conditions, CFC-11 degradation is faster
than CFC-12 degradation and methane oxidation (Scheutz
and Kjeldsen, 2003; Scheutz et al., 2007). Moreover, a recent
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field study observed very constant soil concentration profiles
to a depth of 80 cm for CFC-113 and CH3CCl3 (Scheutz
et al., 2008). Taking the more conservative ratio, we would
expect our CFC-11 emission estimates to overestimate emis-
sions by approximately 130% and that our CFC-12, CFC-
113, and CH3CCl3 estimates would be within 25% of their
true values.

A second assumption with our method is that the com-
bustion efficiencies of the recovered CH4 and ODSs are the
same. The US landfill CH4 inventory data assumes a com-
bustion efficiency of 99% (EPA, 2009a) and the UK land-
fill CH4 inventory data assumes a total percentage of recov-
ered landfill gas nationally (Choudrie et al., 2008). Studies
of CFC combustion efficiency at typical flare and engine op-
erating temperatures achieve destruction efficiencies greater
than 99.9% (Rittmeyer and Vehlow, 1993), which matches
assumed CH4 combustion efficiencies within 1%.

The national inventory statistics for emitted landfill CH4
along with their confidence intervals, which were used for
this study, are shown in Table 2. Both the US and UK esti-
mates calculate landfill CH4 emissions using a more complex
version of Eq. (1). The best estimates in Table 2 include all
of the parameters in Eq. (1). The maximum estimates do not
subtract recovered CH4 (R) or oxidized CH4 (Ox). The frac-
tion of recovered landfill gas is provided by both estimates
and is calculated using available flare and gas-to-energy plant
databases and through consultations (Choudrie et al., 2008;
EPA, 2009a). A second US CH4 estimate from EIA (2008)
was not included in Table 2 because it was only 5.7% higher
than the EPA (2009a) estimate and did not provide either
a maximum estimate or annually updated confidence inter-
vals. Both estimates in Table 2 include CH4 emissions pri-
marily from MSW, but also from industrial and commercial
waste. Even if it would have been possible to attribute CH4
emissions to each waste type, our sampled landfills also con-
tained mixed waste sources. Thus, while our study is biased
towards municipal solid waste emissions, our results also in-
clude some influence from commercial and industrial waste
sources. This increases the uncertainty on our ODS emission
estimates, but also generalizes our results to landfills beyond
MSW landfills.

Several other bootstrap parameters besides total emitted
landfilled CH4 were considered such as total and annual
landfilled waste, landfill age, megawatt capacity of gas-to-
energy plants, and total landfill surface area. Estimates made
using landfilled waste are presented in the SI. Their major
disadvantage was that they did not allow subtraction of the
recovered fraction of landfill gas. Landfill age did not have
a linear relationship with ODS recovery rates and it was re-
ported in a partially audited database (LMOP, 2009). It is
possible that landfill age might be useful as a secondary pa-
rameter in a multiple linear regression, but the small sample
size for this study did not support anything more complicated
than using a single linear relationship for scaling to emission
estimates. Megawatt capacity is also reported in the same

Table 2. 2006 US and UK national estimates of CH4 emissions
from landfills.

Estimate Mean

Country/Source Best Maximuma 95% CIsb

(Gg y−1) (Gg y−1) Upper, Lower

US EPA (2009a) 6211 12 543 + 33%,−39%
UK Jackson et 926.5 3309 + 20%,−20%

al. (2008)

a The maximum estimate includes CH4 which is oxidized and re-
covered and is explicitly calculated by EPA (2009a). For the UK,
the maximum estimate is calculated by assuming the best estimate
is 30% of potential UK CH4 emissions (Choudrie et al., 2008).
b CI = confidence interval. The US CIs are for CH4 emitted from
landfills only, while the UK CIs were calculated for all UK CH4
sources and are equal to±2×(standard deviation)/mean % (∼95%
confidence interval) (Jackson et al., 2008).

partially audited database as landfill age. There is no national
annual estimate of total landfill surface area.

Scatter plots of recovered ODSs vs. CH4 for all of the sam-
ple sites are shown in Fig. 1. The data is separated into four
categories, including US, UK, open and closed landfills. The
sampled US landfills emitted statistically significantly less
CFC-12 per unit mass of CH4 than the UK landfills. This
could indicate either 1) UK landfills release CFC-12 faster
than US landfills due to age, climate, engineering design,
etc.; or 2) that the UK waste has more total CFC-12 landfilled
mass at least in the sample sites. For CFC-11, the compari-
son between countries was less clear because of one highly
concentrated US site. If we compare open and closed land-
fills, not all of the compounds had the same ODS/CH4 ratio
between the two landfill types. In particular, CFC-113 and
CH3CCl3 closed and open landfills could not be included in
the same linear regression. Even for CFC-12 and CFC-11 in
the US data sets, with only two closed landfill data points and
one of the two emitting almost no gas, it was difficult to eval-
uate if our US closed landfill data were reliable indicators of
all closed US landfills. Thus, for the following analysis, the
US and UK data sets were analyzed separately. Each data
set was used to provide quantitative estimates for its respec-
tive country only. Furthermore, except for the UK CFC-11
data set, only open landfills were used to develop the linear
regressions used in the methane bootstrap method (Eq. 3).

The six linear regressions for each ODS and country com-
bination are presented in Fig. 2. The regression method
used in this study was weighted linear least squares, which
is appropriate for predicting a dependent variable (recov-
ered ODS) given an independent variable (recovered CH4)
(Isobe et al., 1990). The regression for UK CFC-11 was
the only one which included closed landfills. Adding the
closed landfills did not change the mean regression fit or the
final mean emission estimates, but it did significantly reduce
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Fig. 2. Mean linear regression (red line), regression 95% confidence intervals (green lines), and regression fit (R2) for each labeled country
and ODS combination. Note the varying x and y axis scales.

the regression uncertainty (p-value was reduced from 0.07 to
0.007). The linear regression for the US CFC-11 data set was
fit by removing the outlier in Fig. 1, which was considerably
outside the 99% confidence interval. A discussion of how
this outlier may have affected the final results is included in
the following section.

3 Results and discussion

The 2006 US and UK estimates of CFC-11, CFC-12, CFC-
113, and CH3CCl3 landfill emissions are presented in Ta-
ble 3. The best estimates use national CH4 emission statis-
tics which subtract recovered and oxidized CH4. The max-
imum estimates represent the total possible ODS landfill
emissions, using the methodology in this study, if all land-
fill gas produced or volatilized in landfills were emitted
to the atmosphere. They are considered to be an upper
threshold to the estimates. The US CFC-11 best estimate
(0.037 Gg y−1) is significantly lower than the emissions ex-

Table 3. 2006 US and UK MSW landfill emission estimates for
CFC-11, CFC-12, CFC-113, and CH3CCl3.

Estimate Meana

Country/ Best Maximum 95% CIsb

Compound (Gg y−1) (Gg y−1) Upper, Lower

US/CFC-11 0.037 0.074 +80%,−61%
US/CFC-12 0.089 0.18 +148%,−93%
US/CFC-113 0.0058 0.012 +148%,−93%
US/CH3CCl3 0.012 0.024 +123%,−81%

UK/CFC-11 0.0082 0.027 +91%,−68%
UK/CFC-12 0.032 0.11 +44%,−36%

a Calculated by using the corresponding Best and Maximum esti-
mates in in Table 2 along with the regressions in Fig. 2.
b CI = confidence interval. Includes the uncertainty in the regression
estimates and the uncertainty in the landfill CH4 emission estimates.
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Table 4. Recent observation-based estimates of total US and UK
emissions of CFC-11, CFC-12, CFC-113, and CH3CCl3

a.

Country/ Li et al. Hurst et al. Millet et al. Manning
Compound (2005)b (2006)c (2009)d (2007)e

US/CFC-11 7.3 7.0 (4.4–9.6) 11 (7–14)
US/CFC-12 16.4 14.2 (10.2–18.3) 8.8 (0–16)
US/CFC-113 0.6 1.5 (0.6–2.3) ND
US/CH3CCl3 2.2 3.8 (2.6–4.9) 2.8 (2–3.5)

UK/CFC-11 0.68
UK/CFC-12 0.51

a All estimates are in Gg y−1; 95% confidence intervals are shown
in brackets if they were given; ND = not detectable.
b Combines measurements at Trinidad Head, California and Har-
vard Forest, Massachusetts as explained in Li et al. (2005). Data is
averaged over the years 1999–2002 for CFC-12, CFC-11, and CFC-
113 and 2001–2002 for CH3CCl3.
c Calculated by multiplying 2003 emission rates derived from the
COBRA-NA airplane campaign (Hurst et al., 2006) with a 2003 US
population of 290, 796, 023 (US Census Bureau, 2009).
d Combines recent airplane campaigns with a chemical transport
model and represents an average of the years 2004–2006 (Millet
et al., 2009).
e UK emission are estimated for the year 2005/2006 (updated re-
sults from A. Manning (personal communication, 2007) are based
on Manning et al., 2003).

pected from instantaneous release of decommissioned appli-
ances (Kjeldsen and Scheutz, 2003). Moreover, the UK best
estimates (0.0082 and 0.032 Gg y−1) are significantly lower
than a previous order of magnitude estimate of 1 Gg y−1

for total UK landfill emissions of all CFCs in 1995 (Allen
et al., 1997). For the US estimates, CFC-12 had the largest
landfill mole fractions and emissions, followed by: CFC-
11>CH3CCl3>CFC-113. This ranking is consistent with
default US concentrations (EPA, 2008) and some landfill
studies (e.g. EPA, 1995; Allen et al., 1997). However, other
landfill studies have detected larger relative concentrations
of CH3CCl3 or CFC-11 (e.g. Deipser et al., 1996; Parker
et al., 2002; Scheutz et al., 2008). The US and UK per
capita emissions, calculated by dividing the Table 3 es-
timates by Census data (ONS, 2007; US Census Bureau,
2009), were equal or statistically indistinguishable for CFC-
11 (US and UK = 0.1 g person−1 y−1) and CFC-12 (US = 0.3,
UK = 0.5 g person−1 y−1) partly due to the estimate uncer-
tainties. The UK CFC-12 emission estimates had the nar-
rowest 95% confidence intervals (+44% and−36%) resulting
from the comparatively constant ODS/CH4 ratios amongst
all of the open UK landfill sites.

With our landfill emission estimates, it was possible to
quantify the importance of landfills as a source of ODS
emissions in the US and UK by comparing our estimates
to total country ODS emissions. Table 4 summarizes recent

Table 5. US and UK landfill emissions as a percentage of total
country emissions

% of Totala

Country/ Best Maximum
Compound mean (95% range) mean (95% range)

US/CFC-11 0.4 (0.1–1.5)% 0.9 (0.2–3)%
US/CFC-12b 1.0 (0.04–2.5)% 2.0 (0.1–5)%
US/CFC-113c 0.9 (0.02–UD)% 1.7 (0.04–UD)%
US/CH3CCl3 0.4 (0.05–1)% 0.8 (0.1–3)%

UK/CFC-11 1.2 (0.4–3)% 4.0 (1–9)%
UK/CFC-12 6.3 (4–10)% 21 (12–34)%

a Mean estimates and 95% confidence intervals calculated by multi-
plying (Best or Maximum estimate of landfill ODS emissions from
Table 3)×100÷ (mean, maximum or minimum of all US or UK
total ODS emission estimates for each compound from Table 4).
b For US CFC-12, instead of averaging the three US emission esti-
mates in Table 4, the most recent estimate of 8.8 Gg was used. See
text for an explanation.
c ND in Table 4 was assumed to be equal to zero and
UD= undetermined. See text for an explanation of the upper 95%
confidence intervals.

observation-based estimates of total US and UK ODS emis-
sions. The US estimates span a time period between 1999–
2006, with the oldest estimates listed farther to the left of
Table 4. For CFC-11, CFC-113, and CH3CCl3, there was no
sustained increase or decrease in US emissions from 1999–
2006; thus we used the average of all three US estimates to
estimate the contribution of landfills to total national emis-
sions. For CFC-12, the total US estimates had a sustained
decrease over time; hence we used the most recent US CFC-
12 estimate from Millet et al. (2009) in subsequent calcula-
tions. In addition, we used the highest or lowest 95% confi-
dence intervals in each row in Table 4 for further calculations
with the following exceptions. For the UK gases, a 95% con-
fidence interval of 10% was assumed, corresponding to the
difference between the two UK estimation methods. For US
CFC-12, a lower confidence interval of 8.8 Gg was used for
the total country estimates. Based on previously published
uncertainty ranges (Hurst et al., 2006; Li et al., 2005; Barnes
et al., 2003) and the steady decrease observed in CFC-12
emissions over northwest Europe from 1995–2006 (A. Man-
ning, personal communication, 2007), it seems unlikely that
CFC-12 emissions have suddenly dropped to zero in the US.

The UK CFC-12 and CFC-11 total emissions in Table 4
are averages of two estimation methods. The first estima-
tion method uses mole fraction measurements taken at Mace
Head, Ireland in combination with inverse modeling as de-
scribed in Manning et al. (2003). The second estimation
method calculates ODS/CO ratios using Mace Head ODS
mole fractions and a model-derived CO time series, and then
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Fig. 3. The 2006 landfill emission estimates (vertical red lines) plotted against total emission estimates from Table 4 (horizontal blue lines).
The vertical red lines represent the mean and 95% confidence interval of the landfill ODS best estimates with the mean value explicitly
labeled (Table 3).

uses CO maps from the European Monitoring and Evaluation
Programme to extrapolate to the UK scale. The estimates
from both methods are within 10% (A. Manning, personal
communication, 2007).

Using the total country estimates (Table 4), we calculated
source strengths for our landfill emission estimates in Ta-
ble 5. The best estimates of US landfill emissions were less
than or equal to 1% of total US ODS emissions for each
compound, with an upper limit for CFC-11, CFC-12 and
CH3CCl3 (upper 95% confidence interval of the maximum
estimate) between 3%–5%. US CFC-113 was a special case,
because the latest total country estimates from Millet et al.
(2009) could not detect US CFC-113 emissions which were
statistically different from zero. That makes it difficult to say
anything about the CFC-113 upper 95% confidence intervals.
It is possible that all lingering CFC-113 emissions in the US
are coming from landfills. However, based on total US CFC-
113 estimates from Li et al. (2005) and Hurst et al. (2006), it
seems more likely that landfills are contributing a maximum
of 2.5% to the US CFC-113 emission source.

UK CFC-11 landfill emissions (1.2%) were within the
same range as the US landfill emissions. CFC-12 landfill
emissions in the UK were estimated to be a potentially sig-
nificant fraction of total UK CFC-12 emissions (6.3% with an
upper limit of 34%). The highly linear correlation between
recovered CFC-12 and CH4 for the UK samples (Fig. 2)
lends further credibility to the UK CFC-12 estimates. The
difference between the best and maximum percentages was
larger for the UK estimates because a larger fraction of land-
fill gas is recovered (Table 2).

Landfill emission estimates from this study are plotted
against the recent US and UK total ODS emission estimates
in Fig. 3. Except for UK CFC-12 and possibly US CFC-
113, the landfill emission best estimates are∼2 orders of
magnitude below the best estimates of total country emis-
sions. This provides clear evidence that US CFC-11, CFC-
12, and CH3CCl3 and UK CFC-11 MSW landfill emissions
are a small fraction of total country ODS emissions. More-

over, we projected that the methodology used in this study
could significantly overestimate CFC-11 landfill emissions
and possibly overestimate all US ODS landfill emission, if
US closed landfills have lower ODS/CH4 landfill gas ratios
as suggested by Fig. 1.

ODS landfill emission estimates calculated using waste
statistics as an alternative to landfill methane emissions
are presented in the SI http://www.atmos-chem-phys.net/10/
1899/2010/acp-10-1899-2010-supplement.pdf. The results
were either equal to the best estimates in Table 3 (UK es-
timates) or between the best and maximum estimates (US
estimates). Because the waste statistics do not account for
gas recovery, this provides further evidence that the max-
imum estimates calculated using landfill methane statistics
(Tables 3 and 5) are upper limits and that the true emissions
of the ODSs in this study from US and UK landfills are lower
than our maximum estimates.

With a small sample size, one of the main concerns was
that the data sets were not representative of landfill emis-
sions in the US or UK. The UK regressions for CFC-11 and
CFC-12 provided a useful way to check how a much higher
ODS/CH4 ratio would affect US ODS landfill emission esti-
mates (see Figs. 1 and 2). Using the higher UK ODS/CH4 ra-
tios increased the best estimates of US CFC-11 and CFC-12
landfill emissions to 0.7% and 1.6% of total US emissions,
respectively. The US maximum landfill source strength in-
creased to 1.3% (CFC-11) and 3.3% (CFC-12). Likewise,
if we used the US outlier ODS/CH4 ratio from Fig. 1, US
CFC-11 emissions increased to 2% of total US CFC-11 emis-
sions. Even these comparisons, which use∼2× higher CH4
statistics and much different ODS/CH4 ratios, were still only
a small fraction of total US emissions. This indicates that the
US estimates are relatively robust to large changes in both the
generated ODS/CH4 ratio and to the national CH4 emission
value used with the regressions. Large biases within the data
would not change the overall conclusion that landfills are not
a significant source of lingering ODS emissions in the US.
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Lastly, although this study was confined to MSW landfills,
it seems unlikely that non-MSW landfill emissions would be
much different for the CFCs. The Toxics Release Inventory
(TRI) provides information submitted by US facilities pro-
cessing toxic chemicals for the last 20 years. For 2001–2008,
chosen for being the longest set of years that TRI lumps to-
gether, total landfill disposal is less than 1% of the total gas
released to the atmosphere for the three CFCs in this study
(TRI.NET, 2009). Furthermore, during this study we also
collected data from seven UK landfills with industrial waste
fractions greater than 50% (not shown). The industrial land-
fills had CFC-11/CH4 and CFC-12/CH4 ratios which were
indistinguishable from the UK MSW landfill ratios used in
our analysis.

Both MSW and non-MSW landfills may be more impor-
tant sources of other ODSs. For CH3CCl3, 20% of total re-
ported annual releases was disposed in landfills which ac-
cepted hazardous waste (RCRA landfills) during 2001–2008.
For HCFC-123, the fraction disposed at RCRA landfills was
98% over the same time period. Other ODSs with high total
disposal rates (over one thousand pounds per year), but low
disposal fractions (less than 1%) relative to their total an-
nual release of the chemical to the atmosphere in the US, are
HCFC-22, HCFC-141b and HCFC-142b (TRI.NET, 2009).

4 Conclusions

The results support the hypothesis that US and UK MSW
landfills are not significant sources of CFC-11, CFC-12,
CFC-113, and CH3CCl3 in the US and CFC-11 and CFC-
12 in the UK. US MSW landfills were estimated to emit all
four compounds at a rate of 1% or less of total US emissions.
The upper 95% confidence intervals gave slightly more am-
biguous results. CFC-12, CFC-11, and CH3CCl3 were still
small percentages of total US ODS emissions (1%–2.5%),
but the upper 95% confidence interval for CFC-113 could not
be determined and may be a greater fraction of total US CFC-
113 emissions. Likewise, CFC-11 emissions from UK MSW
landfills were estimated to be 1% of total UK CFC-11 emis-
sions and only UK CFC-12 emissions were estimated to be a
higher fraction of total country emissions (6.3%). The results
were very robust to both the selection of sampled actively-
managed landfills and to the national statistics used for the
extrapolation.

The conclusions from this study support the idea that
continued emissions in industrialized countries of CFC-11,
CFC-12, CFC-113, and CH3CCl3 are still coming from faster
emitting sources such as installation, leakage, and destruc-
tion of ODS-containing material as described for the global
scale in IPCC/TEAP (2005). However, the potential remains
for increased banking of ODSs in both MSW and non-MSW
landfills in industrialized countries where landfilling is still
commonly practiced, such as the US or UK. Especially in the
case of CFC-11, where a significant fraction is used in blown

foams which are later landfilled, MSW landfills could be-
come important as repositories of CFC-11-containing prod-
ucts. Hazardous waste landfills may be or become significant
sources of CH3CCl3 and HCFC emissions and should be in-
vestigated in the future. Depending on further refinement of
the landfill residence time of CFCs, there could be small, but
prolonged CFC emissions from landfills lasting over many
decades. It is unclear if landfill emissions have peaked or
if the peak is yet to come. If landfill emissions do increase
or even maintain their current emission levels in the com-
ing decades, this could be important for stratospheric ozone
recovery in polar regions, which is expected to recover to
1980s levels in the year 2065,∼16 years later than in the
mid-latitudes (WMO, 2007).
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