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Abstract

This paper provides an analysis of the generation-to-generation correlations as observed when solving
full core eigenvalue problems on PWR systems. Many studies have in the past looked at the impact of
these correlations on reported variance and this paper extends the analysis to the observed convergence
rate on the tallies, the effect of tally size and the effect of generation size. Since performing meaningful
analysis on such a large problem is inherently difficult, a simple homogeneous reflective cube problem
with analytical solution was developed that exhibits similar behavior to the full core PWR benchmark.
The data in this problem was selected to match the dimensionality of the reactor problem and preserve
the migration length traveled by neutrons. Results demonstrate that the variance will deviate signifi-
cantly from the 1/N (N being the number of simulated particles) convergence rate associated with truly
independent generations, but will eventually asymptote to 1/N after 1000’s of generations regardless of
the numbers of neutrons per generation. This indicates that optimal run strategies should emphasize
lower number of active generations with greater number of neutrons per generation to produce the most
accurate tally results. This paper also describes and compares three techniques to evaluate suitable confi-
dence intervals in the presence of correlations, one based on using history statistics, one using generation
statistics and one batching generations to reduce batch-to-batch correlation.

Keywords: Monte Carlo, Tally Convergence, Autocorrelation, Confidence Intervals

1. Introduction

Monte Carlo methods have long been considered a reference for neutron transport simulations since
they make very limited approximations in simulating the random walk of neutrons in a system. Most
often it is assumed that each neutron is independent of all others thus allowing for simple evaluation
of unbiased means and uncorrelated variance. Previous work has observed correlation effects between
neutrons in systems with fission, particularly when performing eigenvalue simulations based on the power
iteration. Brissenden and Garlick [1] demonstrated the existence of this bias in the Monte Carlo power
iteration and suggested that this bias became quite small when a sufficient number of neutrons per
generation were simulated. Dumonteil et al [2] further studied this issue and attributed the generation-
to-generation correlation to spatial correlation of the fission process and ensuing asymmetry between
neutron creation and annihilation in a stochastic branching process.

These works thus indicate that using a sufficiently large number of particles per generation will incur
a negligible bias, but neglecting the correlations in the variance estimate will lead to an underestimation
of that variance. Additionally, the existence of correlation impacts the convergence rate of the sample
mean leading to the conundrum that additional generations of neutrons will only slightly improve the
sample mean and may not be worth the additional run time. This has been demonstrated extensively
in recent work by Herman on a realistic 2D full core PWR benchmark [3]. The simple approach to
avoid underestimation of the variance is to perform multiple independent simulations with different
initial random seeds. This will lead to good variance estimates but requires lots of additional work
since each independent simulation needs an independent fission source and will not improve convergence
rates [4]. Many studies over the years have been performed to evaluate the ratio between estimated and
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Table 1: Parameters of demonstration problem

Geometry ν Macro Cross-Section keff Meshes
Boundary Width(cm) Σs(cm

−1) Σc(cm
−1) Σf (cm−1) Σt(cm

−1)

Reflective 400 2.45 0.270 0.018 0.012 0.300 1 16× 16× 16

true variance. This eventually led to the concept of generations-per-batch [5] that can provide a better
estimate of the variance in a single simulation.

In recent years, more effort has been dedicated at evaluating the magnitude and lag of the the
autocorrelation coefficients observed in the eigenvalue mode of Monte Carlo simulations. Herman et
al [4] calculated the autocorrelation coefficients and showed the dependency on the mesh size as well as
the insensitivity to the number of neutrons per generation. Yamamoto, et al. [6] [7] used the autogressive
(AR) model to predict underestimation of variance. In this method, the fission source distribution for
each generation is expanded with eigenfunctions of the diffusion equation. Generation-to-generation
correlation is represented by propagation of fluctuation of expansion coefficients. Sutton [8] explained
and predicted underestimation of variance with a discretized phase space approach inspired by Brissenden
and Garlick’s work [1].

In this paper, we will demonstrate the impact of the autocorrelation coefficients on the sample mean
and its convergence rate during the power iteration process and seek to develop some intuition on how
best to assign computational resources in evaluating problems with large correlations starting from a
stationary fission source. This work will use a very simple problem with known solution to eliminate any
uncertainties that can occur in evaluating convergence rates. Related work was performed by Tuttelberg
et al [9] where they optimized the number of neutrons per generation for a fixed amount of total neutrons
on both inactive and active generations to minimize bias and statistical error. However, their work did
not account explicitly for the impact of correlation effects on statistical error and convergence rate. In
this work, we will focus on determining optimal simulation parameters for the active generations only
in the presence of strong correlations as observed in full core simulations. It will thus be assumed that
acceleration methods can be used in the inactive region [4] [10] [11] [12] [13] [14] [15] to provide an initial
unbiased stationary source. Section 2 will present the simple mono-energetic homogeneous cube problem
with reflective boundary conditions used in the simulation and demonstrate its similarities with previous
analysis on a full core PWR. Section 3 will present a review on statistical analysis in the presence of
correlation. Section 4 will develop the theory behind the autocorrelation coefficients and the variance
estimates. Section 5 will derive the optimal relation between generations and number of neutrons per
generation, followed in section 6 on the best practices to define interval estimates of tallied quantities.
Concluding remarks and future work recommendations will follow in Section 7.

2. Homogeneous Cube

Analyzing correlation coefficients on full core realistic problems becomes a very costly endeavor.
Herman et al [4] were able to compute such coefficients on the 2D BEAVRS benchmark using extensive
computational time making substantial analysis very impractical. In order to accelerate the process a
simple benchmark was developed that preserves the correlation effects, reduces run time and has a simple
analytical reference solution. Parameters of the homogenized cubic reactor are given in Table 1. The
simple benchmark was chosen as a 400 cm reflective cube since it has dimensionality similar to a full
core PWR, additionally the cross sections were selected such that the system is critical and preserves
the migration length of neutrons.

Previous work relied on obtaining a suitable reference solution which was quite costly and introduced
some amount of uncertainty in the analysis. The simple benchmark used in this work alleviates this issue
since the reference solution is known analytically, thus eliminating any possible aberration that can be
observed when computing RMS convergence rates.

The Relative Square Error (RSE) between accumulated tallies and the reference source distribution
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is defined for each tally region m as

RSEm =
(X̂m − 〈Xm〉)2

〈Xm〉2
(2.1)

where X̂m is the generation averaged estimator (i.e. within a single generation) and 〈Xm〉 is the reference
solution. RSE in Eq 2.1 is then averaged over all M tally regions and taken square root. We define this
as Root Mean Square error (RMS) in Eq 2.2. RMS is essentially a spatial average using L2 norm.

RMS =

√√√√√ M∑
m=1

RSEm

M
(2.2)

The fission source distribution in the simple benchmark can be evaluated analytically, as shown by
Eq 2.3, and used as a reference in the RMS calculation.

〈Xm〉 =
Σf

Σt − Σs

1

(∆x)3
(2.3)

where Σt, Σf , Σs are the total cross section, fission cross section, scattering cross section of the cube
respectively and (∆x)3 is the volume of each tally region.

To analyze this benchmark a simple Monte Carlo code was developed on a GPU to accelerate the
analysis. At each generation the number of neutrons is normalized to the number of threads to be
launched. Each thread has a local collision tally in each spatial bin and a reduction algorithm is performed
after each generation to obtain the global tally. When the generation size (number of neutrons per
generation) exceeds the number of threads on the GPU, kernels are launched sequentially. Generation
sizes are selected to the power of 2 for more efficient use of the GPU hardware. The fission source
distribution is then obtained by correcting the collision source distribution by the constant factor

Σf
Σt

.
A mesh tally of 16 × 16 × 16 was selected since it is representative of an assembly size tally in a

PWR. Fig 1(a) and Fig 2(a) illustrate the similarities in autocorrelation coefficients (ACC) between
the 2D BEAVRS with assembly size tallies and the simple cube with 25 cm size tallies. The simple
benchmark also illustrates an important feature of the problem, that of lower autocorrelation coefficients
with smaller tally regions, as seen in the BEAVRS benchmark from figures 1(a) and 1(b) and illustrated
in the benchmark by figures 2(a) and 2(b). Additionally, figures 1(c) and 2(c) present similar deviations
from the ideal convergence rate which is directly caused by the presence of correlations.

3. Background

3.1. Variance of correlated sample average

In Monte Carlo eigenvalue simulations, quantities of interests are usually estimated as an average over
many generations once a stationary fission source is obtained. The sample mean is reported accompanied
by an estimate of the variance indicating the level of statistical uncertainty of the simulation and allowing
for the definition of confidence intervals.

By definition, the variance of the sample mean is given by

Var
[
X̄
]

= Var


N∑
i=1

Xi

N

 =
1

N2
Var

[
N∑
i=1

Xi

]
=

1

N2
E

( N∑
i=1

Xi − E

[
N∑
i=1

Xi

])2
 (3.1)

where Xi is the result obtained from generation i and N is the total number of active generations.
The commutability of expectation and sum decomposes the variance into two terms

Var
[
X̄
]

=
1

N2

∑
i

E
[
(Xi − E[Xi])

2
]

+
∑
i 6=j

E [(Xi − E[Xi])(Xj − E[Xj ])]


=

1

N2

Nσ2 + 2
∑
i<j

Cov [Xi, Xj ]

 (3.2)
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(a) Autocorrelation coefficients assembly-size tally (b) Autocorrelation coefficients pin-size tally

(c) RMS Convergence assembly-size tally

Figure 1: 2D BEAVRS autocorrelation coefficients and assembly-size tally convergence rate [4]

where σ2 is the variance of X.
If the generations were uncorrelated, as often assumed in Monte Carlo simulations, the covariance

term would vanish and the variance of the sample mean would be

Var[X̄] =
σ2

N
(3.3)

In the presence of correlation, since the generation tally values can be modeled as stationary time series,
the covariance between two batches only depends on batch distance or lag, k, [16] [4]

Var
[
X̄
]

=
1

N2

(
Nσ2 + 2

N−1∑
k=1

N−k∑
i=1

Cov[Xi, Xi+k]

)

=
1

N2

(
Nσ2 + 2

N−1∑
k=1

(N − k) Cov[Xi, Xi+k]

) (3.4)

Taking into account the covariance between generations, the variance of the sample mean of observable
X can be evaluated with Eq 3.5, where σ2 is the variance of X, N is the number of active generations,
and ρk is the autocorrelation coefficient between X’s with generation lag k.

Var[X̄] =
σ2

N

(
1 + 2

N−1∑
k=1

(1− k

N
)ρk

)
(3.5)

ρk =
Cov[XiXi+k]√

Var[Xi] Var[Xi+k]
(3.6)

As can be seen from Eq 3.5, if the variance of the sample formed by the generation results {X1, · · · , XN}
is divided by the total number of active generations N to estimate the variance of their average, the
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(a) Autocorrelation coefficients 16 × 16 × 16 tally (b) Autocorrelation coefficients 32 × 32 × 32 tally

(c) RMS Convergence 16 × 16 × 16 tally

Figure 2: Simple benchmark autocorrelation coefficients and assembly-size tally convergence rate
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variance of the estimator is underestimated by a factor r(N) defined as

r(N) ≡ 1 + 2

N−1∑
k=1

(1− k

N
)ρk (3.7)

When estimating observable X (with expectation 〈X〉) by estimator X̂, it can be shown that the
expected square error (ESE) equals the variance of the variable plus the bias of the estimator.

ESE = E[(X̂ − 〈X〉)2] = Var[X̂] + (E[X̂]− 〈X〉)2 (3.8)

If the estimator is unbiased, the expected square error becomes

ESE = Var[X̄] (3.9)

Eq 3.9 shows the equivalence between square error and variance of estimator. Therefore, the error
and convergence rate of the estimator (the sample mean) can be predicted by its ESE or variance. The
ESE can be used as a predictor for the RMS as follows

ESEm = Var[X̄m] (3.10)

E[RSEm] =
Var[X̄m]

〈Xm〉2
(3.11)

RMSpredict =

√√√√√ M∑
m=1

Var[X̄m]
〈Xm〉2

M
=
√
E[RMS2] (3.12)

The predicted RMS can be expanded using the definition of variance of Eq 3.5.

RMSpredict =

√√√√ 1

M

M∑
m=1

Var[X̄m]

〈Xm〉2
=

√√√√ 1

MN

M∑
m=1

σ2
m

〈Xm〉2
(1 + 2

N−1∑
k=1

(1− k

N
)ρm,k) (3.13)

By defining an average variance for all tally regions as

σ̄2 =
1

M

M∑
m=1

σ2
m

〈Xm〉2
(3.14)

and an average variance-weighted ACC,

ρ̄k =

M∑
m=1

σ2
m

〈Xm〉2 ρm,k

M∑
m=1

σ2
m

〈Xm〉2

(3.15)

the predicted RMSpredict can be cast in the same form as Eq 3.5

RMSpredict =

√√√√ σ̄2

N
(1 + 2

N−1∑
k=1

(1− k

N
)ρ̄k) (3.16)

With knowledge of the ACCs or a suitable approximation, this formula permits predicting the convergence
rate of the tallies as a function of the number of generations, N , and the number of neutrons per
generation, via the σ̄2 term.
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3.2. Bias of Sample Variance Estimated from Generation Tallies

Eq 3.16 shows that the variance, σ̄2, divided by the sample size, N , underestimates the variance of
the mean. On the other hand, if the variance is unknown, it must be estimated from samples that are
correlated. This section provides the correction to the variance estimator needed to take into account
sample correlation. For a uncorrelated sample {X1, · · · , Xn} the unbiased estimate of variance is

σ̂2
0 =

1

N − 1

N∑
i=1

(Xi − X̄)2 (3.17)

The bias of the above estimator for a correlated sample can be detected from its expectation,

E
[
σ̂2

0

]
(N − 1) = E

[
N∑
i=1

(Xi − X̄)2

]
= N

(
E[X2

i ]− E[X̄2]
)

(3.18)

From definition of variance,
E[X̄2] = E[X̄]2 + Var[X̄] (3.19)

Expressing the right hand side in terms of Xi, knowing E[X̄] = E[Xi] and Var[X̄] given in Eq 3.5, yields

E
[
σ̂2

0

]
(N − 1) = N

(
E[X2

i ]− E[Xi]
2 − Var[Xi]

N

(
1 + 2

N−1∑
k=1

(
1− k

N

)
ρk

))

= N

(
σ2 − σ2

N

(
1 + 2

N−1∑
k=1

(
1− k

N

)
ρk

)) (3.20)

After re-organization,

E
[
σ̂2

0

]
(N − 1)

N

(
1− 1

N

(
1 + 2

N−1∑
k=1

(
1− k

N

)
ρk

)) = σ2 (3.21)

If ρk is known, the denominator of Eq 3.21 can be incorporated into the expectation operator. And

after substituting the definition of σ̂2
0 , Eq 3.21 yields

E


N∑
i=1

(Xi − X̄)2

N − 1− 2
N−1∑
k=1

(
1− k

N

)
ρk

 = σ2 (3.22)

Inside the expectation operator of Eq 3.22 is an unbiased estimator of the variance σ2.

σ̂2 =

N∑
i=1

(Xi − X̄)2

N − 1− 2
N−1∑
k=1

(
1− k

N

)
ρk

(3.23)

Comparing σ̂2 (Eq 3.23) and σ̂2
0(Eq 3.17) shows that the bias of the estimator σ̂2

0 is related with the
variance underestimation ratio r

σ̂2
0

σ̂2
=
N − r
N − 1

(3.24)

Fig 3 plots the ratio of sample variance calculated from Eq 3.17 to a reference with known ACCs for
the simple cube benchmark on a 16× 16× 16 mesh. It can be seen that the uncorrected sample variance
(Eq 3.17) underestimates the real sample variance by around 10% even after 1000 generations. Variance
estimated with Eq 3.17 from a simulation containing 20, 000 generations was taken as the reference by
assuming N = 20, 000� r.
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Figure 3: Bias of variance estimator

A similar problem exists for the estimate of autocorrelation coefficients ρk (Eq 3.6). The estimate is
given in Eq 3.25 [4].

ρ̂k =

(N − k)
N−k∑
i=1

XiXi+k −
N−k∑
i=1

Xi

N−k∑
i=1

Xi+k√
(N − k)

N−k∑
i=1

X2
i − (

N−k∑
i=1

Xi)2

√
(N − k)

N−k∑
i=1

X2
i+k − (

N−k∑
i=1

Xi+k)2

(3.25)

In order to calculate ρ̂k, Xi and Xi+k (i = 1, · · · , N −k) are treated as two separate data sets and ρk
is calculated as the normalized covariance between the two sets. Since two variance estimators appear in
the denominator of ρ̂k and we do not correct for them using the ACCs, in this analysis Eq 3.25 is used
to evaluate ρk for k � N .

4. Correlation analysis

4.1. Fitting autocorrelation coefficients

From the autocorrelation coefficients observed in section 2, it is reasonable to assume that the spa-
tially averaged autocorrelation coefficients decay exponentially as a function of the generation lag [7].
This hypothesis can be further validated by observing that the tallies in a region are both Gaussian and
Markovian (depends only on previous generation) and that such Gauss-Markov processes present expo-
nential autocorrelation coefficients [17]. Fig 4(a) shows the agreement between the fitted autocorrelation
coefficient and sampled autocorrelation coefficient on the simple cube problem. The exponential decay
assumption of spatially averaged ACC is expressed as

ρ̄k =

J∑
j=1

cjq
k
j (4.1)

where J is the number of decay modes used to fit the ACC and 0 < qj < 1 since ACC decays as lag
increases. Without loss of generality, the following analysis is based on the simple fit with J = 1, but all
conclusions still hold for any J > 1. Using the simple exponential fit,

ρ̄k = ρ0q
k (4.2)

the sum Eq 3.7 can be evaluated

r = 1 + 2ρ0

(
q

1− q
− q2 − qN

(1− q)2N
− q + qN

(1− q)N

)
(4.3)
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(a) Sample ACC and fitted ACC in the cube

(b) RMS and RMSpredict from fitted ACC (c) Sample variance underestimate ratio and its predic-
tion from fitted ACC

Figure 4: Verification of exponential ACC fitting
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RMS2
predict(Eq 3.16) can be evaluated as a function of the number of generations N , spatially averaged

variance σ2 (Eq 3.14), and the two ACC fitting parameters ρ0, q,

RMS2
predict(N, σ

2, ρ0, q) =
σ2

N

[
1 + 2ρ0

(
q

1− q
− q2 − qN

(1− q)2N
− q + qN

(1− q)N

)]
(4.4)

As N approaches infinity, only the first two terms in RMS2
predict remain, thus indicating the asymptotic

1/N trend of RMS2
predict. It also shows that the asymptotic ratio of variance underestimation with

uncorrelated variance (Eq 3.3) is equal to 1 + 2ρ0
q

1−q . The convergence rate of RMS can be obtained

from the asymptotic slope of RMS2
predict versus N in the log-log scale.

lim
N→∞

∂log
(
RMS2

predict

)
∂log(N)

=
N
(
(q − 1)2 − 2qρ0(q − 1)

)
+O(qN ) +O(NqN ) +O(1)

N (2qρ0(q − 1)− (q − 1)2) +O(qN ) +O(1)
→ −1 (4.5)

Therefore, the asymptotic convergence rate of RMS2
predict follows 1/N , thus RMS follows 1/

√
N even

in the presence of generation-to-generation correlation.
In addition to the comparison between sampled ACC and fitted ACC, the exponential decay assump-

tion can be verified with the factor r. First, r from fitted autocorrelation coefficient is substituted into
RMSpredict (Eq 4.4), illustrated in Fig 4(b). Second, r from fitted ACC predicts the sample variance
underestimation ratio N−r

N−1 (Eq 3.24), given in Fig 4(c). It can be seen from Fig 4 that although 1 term
exponential fitting does not predict ACC as well as 3 term fitting, it works well to predict the RMS and
predict the sample variance underestimation. Fig 4(b) also numerically verifies the unbiasedness of the
sample mean since RMSpredict stems from the variance of the estimator while RMS stems from square
error of the estimator. Their agreement demonstrates unbiasedness as given in Eq 3.9.

4.2. Independence of autocorrelation coefficients on generation size

In Eq 4.4, if q and ρ0 as a function of generation size s (number of histories per generation) are
known, optimal values of N and s can be found to reach the minimum RMS2

predict given a total amount

of work N · s or minimize N · s for a desired RMS2
predict, assuming a stationary starting fission source.

The optimization problem simplifies immensely if we assume that q(s) and ρ0(s) are constant as a
function of generation size, as evidenced by Fig 2(a). The ACCs estimated with Eq 3.25 for 3 different
generation sizes almost overlap with one another. Two additional observations can be made supporting
the assumption of constant q(s) and ρ0(s) as a function of generation size. The observations will be
presented in terms of RMSpredict calculated from fitted ACCs and RMS from the simulation. Define
the total amount of work Nt = N · s.

The first observation is that the RMS vs Nt curves of different generation sizes merge when Nt
approaches infinity (Fig 5). Without loss of generality, we investigate RMS2

predict of two simulations

with generations size s1 and s2 respectively. The dependence of RMS2
predict on s can be written explicitly

RMS2
predict

(
N, σ2, ρ0, q

)
= RMS2

predict

(
Nt/s, σ(s)2, ρ0(s), q(s)

)
=
σ2(s)

Nt/s

[
1 + 2ρ0(s)

(
q(s)

1− q(s)
− q(s)2 − q(s)Nt/s

(1− q(s))2Nt/s
− q(s) + q(s)Nt/s

(1− q(s))Nt/s

)]
(4.6)

Regardless of the generation size, s, the RMS2
predict is unchanged as Nt approaches infinity, as

illustrated in Fig 5 and shown mathematically below

lim
Nt→∞

RMS2
predict(Nt/s1, σ

2(s1), ρ0(s1), q(s1))

RMS2
predict(Nt/s2, σ2(s2), ρ0(s2), q(s2))

= 1, ∀s1, s2 (4.7)

Eq 4.7 simplifies to Eq 4.8 after substituting Eq 4.6 and taking the limit

s1(1− q(s2)σ2(s1)(1− q(s1) + 2q(s1)ρ0(s1)

s2(1− q(s1)σ2(s2)(1− q(s2) + 2q(s2)ρ0(s2)
= 1, ∀s1, s2 (4.8)

where σ2(s1) is the variance of the sample obtained from Nt/s1 generations. At each generation, Xi is
calculated from the tally average over the s1 neutrons. Thus, if the variance of the tally for one neutron is
c and the neutrons are independent, σ2(s1) becomes c/s1. In reality, the s1 neutrons are not necessarily
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Figure 5: RMS −Nt curves merge; left: prediction with fitted ACC; right: with RMS data from MC simulation

independent because neutrons generated from the same fission site are correlated. However, it is still
reasonable to assume σ2(s1) ∝ 1

s1

σ(s1)2 =
c

s1
, σ(s1)2 =

c

s2
, ∀s1, s2 ⇒ σ2(s1)s1 = σ2(s2)s2 = c (4.9)

From this, Eq 4.8 simplifies to equation Eq 4.10

ρ0(s1)q(s1)

1− q(s1)
=
ρ0(s2)q(s2)

1− q(s2)
, ∀s1, s2 (4.10)

If ρ0(s) and q(s) are constant as a a function of s, Eq 4.7 and Eq 4.10 hold, and the RMS2
predict

curves will merge at large Nt as observed in Fig 5.
The second observation is that RMS×

√
s as a function of the number of generations, N , for different

generation size overlap with each other (Fig 6). Similar to the above analysis, this dependence can be
written explicitly

RMS2
predict(N, σ

2, ρ0, q) = RMS2
predict(N, σ(s)2, ρ0(s), q(s))

=
σ2(s)

N

[
1 + 2ρ0(s)

(
q(s)

1− q(s)
− q(s)2 − q(s)N

(1− q(s))2N
− q(s) + q(s)N

(1− q(s))N

)]
(4.11)

If ρ0(s) and q(s) are constant as a function of generation size, RMS2
predict depends on s only through

the σ2 term. Substituting Eq 4.9 into Eq 4.11,

RMS2
predict(N, σ

s(s1), ρ0, q)s1

RMS2
predict(N, σ

s(s2), ρ0, q)s2
= 1 (4.12)

Therefore, the RMS×
√
s vs N curves will overlap regardless of generation size as observed in Fig 6.

In this section, it was numerically verified that ρ0 and q are constant as a function of generation
size by directly investigating ACCs and observing the convergence behavior of RMS. This can also
be supported by Yamamoto, et al. [6] and Sutton [8]’s work on predicting underestimation of variance,
where the underestimate ratio is insensitive to generation size. The underestimation ratio in this paper
is represented as 1+2ρ0

q
1−q according to Eq 4.4 and its insensitivity to generation size is consistent with

the insensitivity of ACCs.

5. Optimization

When performing large Monte Carlo simulations, restrictions often come in the form of total runtime
which is proportional to the total number of histories Nt. Alternatively, reactor simulations often seek
answers to a known accuracy [18], thus leading to two possible type of optimizations:
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Figure 6: RMS×
√
s − N curves overlap; left: prediction with fitted ACC; right: with RMS data from MC

simulation

1. given a total computation amount Nt, find N and s to minimize RMSpredict
2. given desired RMSpredict, find N and s to minimize Nt

In this analysis, we assume that we are starting from a stationary source. Obviously, obtaining a sta-
tionary source for large correlated problems can be quite expensive, but it is assumed that this portion of
the work can be greatly accelerated by other schemes currently in development [4] [10] [11] [12] [13] [14] [15].

Starting from Eq 4.4 and re-writing it in terms of N and s

RMS2
predict(N, s) =

c

N s
[1 + 2ρ0(

q

1− q
− q2 − qN

(1− q)2N
− q + qN

(1− q)N
)] ≡ c

N s
f(N) (5.1)

The optimization can be performed in the N vs s plane but can be simplified in the logN vs log s
plane since the fixed N × s constraint becomes a straight line with slope −1. Using parameters c,q
and ρ0 evaluated from the cube problem with a 16 × 16 × 16 mesh, RMSpredict is plotted in Fig 7.
To perform optimization of type 1, we need to find the point at the logN + log s = logNt curve
where RMSpredict is minimal. To perform optimization of type 2, we need to find the point at the
RMSpredict(N, s) = RMSgoal curve where N × s is minimal.

Two equal-RMSpredict curves are plotted in Fig 7(a) using thick black lines. One important feature
of these curves in logN vs log s plane that affects optimization can be stated as such

d log s

d logN
∈ (−1, 0) (5.2)

The slope of the equal-RMSpredict curves can be evaluated as

d log s

d logN
= −

∂RMS2
predict(N,s)

∂ logN

∂RMS2
predict(N,s)

∂ log s

= −N
s

∂RMS2
predict(N,s)

∂N
∂RMS2

predict(N,s)

∂s

= −N
s

∂RMS2
predict(N,s)

∂N

− c
Ns2 f(N)

= N

∂RMS2
predict(N,s)

∂N

RMS2
predict(N, s)

(5.3)

Since RMS2
predict(N, s) > 0, Eq 5.2 is equivalent to

N
∂RMS2

predict(N, s)

∂N
+RMS2

predict(N, s) > 0 (5.4)

which can be related with
dRMS2

predict(Nt,s)

ds for a fixed Nt through
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dRMS2
predict(Nt, s)

ds
=

c

Nt

df(N)

ds
=

c

Nt

df(N)

dN

dN

ds
= − c

Nt

df(N)

dN

Nt
s2

= −

(
∂RMS2

predict(N, s)

∂N
−
∂ c
Nt

∂N
f(N)

)
Nt
s2

= −

(
∂RMS2

predict(N, s)

∂N
+

c

N2s
f(N)

)
N

s

= −

(
N
∂RMS2

predict(N, s)

∂N
+RMS2

predict(N, s)

)
1

s

(5.5)

The monotonicity of RMS2
predict(s) for a fixed Nt can be easily proven by writing RMS2

predict (Eq 4.4)
as a function of Nt and s and taking the derivative with respect to s as done in Eq 5.6 and Eq 5.7.

RMS2
predict(Nt, s) =

c

Nt

[
1 + 2ρ0

(
q

1− q
− q2 − qNt/s

(1− q)2Nt/s
− q + qNt/s

(1− q)Nt/s

)]
(5.6)

where c is the constant first introduced in Eq 4.9.

dRMS2
predict(s)

ds
= − 2qρ0

Nt(1− q)2s

(
s− qNt/ss+Ntq

Nt/slog(q)
)
< 0 (5.7)

where the sign of the derivative is always negative.
Therefore RMSpredict decreases with generation size s. This trend can also be easily observed from

Fig 5. For the same number of total histories, before reaching the asymptotic regime, a larger s always
produces a lower RMS, thus indicating a preference for large generation size.

Validity of Eq 5.2 has been demonstrated with Eq 5.7 and Eq 5.5. Defining the tangent vector, τ ,
and the gradients of Nt and RMS2

predict can facilitate the explanation of both optimization types.

∇RMS2
predict =

(
∂RMS2

predict(N, s)

∂ logN
,
∂RMS2

predict(N, s)

∂ log s

)
≡ (g1, g2) (5.8)

τ (RMS2
predict) =

(
1,−g1

g2

)
(5.9)

∇Nt = (1, 1) (5.10)

τ (Nt) = (1,−1) (5.11)

5.1. Type 1
Optimization of type 1 is to find the lowestRMSpredict on the straight line of constantNt (N×s = 105

in Fig 7(a)). From Fig 7(a), this clearly indicates that the lowest RMSpredict predict is obtained with
the fewest number of generations. This can also be shown mathematically by taking the tangent of the
Nt line multiplied by the gradient of RMS2

predict

τ (Nt) ·∇RMS2
predict > 0 (5.12)

which is guaranteed since g1 < 0, g2 < 0 and −1 < − g1g2 < 0.

5.2. Type 2
Optimization of type 2 is to find the lowest Nt for a desired RMSpredict (RMS2

predict = 1.88× 10−6

in Fig 7(b)). Moving from right to left in Fig 7(b), the desired RMSpredict intersects the Nt = 106 line
followed by the better case on the left with Nt = 19952. This can also be shown mathematically by
looking at the tangent of the equal-RMSpredict curve.

τ (RMS2
predict) ·∇Nt > 0 (5.13)

This expression indicates that when moving tangentially from the RMS2
predict curve, Nt always increases.

Everything we have done so far indicates a need for large s and no generations which is not always
practical. Large generation size will impact the inactive generations and can require an excessive amount
of memory for the storage of the fission source. Additionally, common practice requires the definition of
confidence intervals often done over generations, which will be discussed in the next section.
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(a) Optimization given Nt (b) Optimization given RMSpredict

Figure 7: Two types of optimization

6. Interval Estimation

This section gives a brief review of interval estimate of uncorrelated samples and then discusses the
extension to correlated samples. The basic idea of interval estimate is to construct a pivot quantity Q,
which depends on the statistic T calculated from a sample and the parameter θ to be estimated but
whose distribution does not depend on θ as expressed in the following equation

Pr(t1 < Q(T, θ) < t2) = P (6.1)

which can be converted to

Pr(f1(T, t1) <θ < f2(T, t2) = P

or Pr(f1(T, t2) <θ < f2(T, t1) = P
(6.2)

since the distribution of Q does not depend on θ, neither do t1 and t2. Therefore (f1(T, t1), f2(T, t2)) or
(f1(T, t2), f2(T, t1)) is the confidence interval of θ with probability P .

Suppose in generation i, the s histories provide tallies of quantity x, {xi,1, · · · , xi,s} from which a
generation mean is defined

Xi =
1

s

s∑
j=1

xi,j (6.3)

Additionally, for N generations with sample {X1, X2, · · · , XN}, the overall simulation mean is given by

X̄ =
1

N

N∑
i=1

Xi (6.4)

which is an estimate of the expectation of the true mean µ. If the neutrons within a generation are
assumed independent of each other, thus tallied quantities {x1, · · · , xs} are independent. According to
the central limit theorem, the average over these neutrons (Xi) converges to a normal distribution,

Xi
d⇒ N(µ, σ2) = N(µ,

c

s
) (6.5)

where
d⇒ denotes convergence in distribution, σ2 is the variance of X, and c is the variance of x.

6.1. Uncorrelated Generations

This subsection reviews the confidence intervals that would be obtained if generation correlation
is neglected. If the sample {X1, · · · , XN} is uncorrelated, an interval estimate can be obtained by
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constructing a Student’s t distribution pivot. For i.i.d random variables Xi ∼ N(µ, σ2), if µ is estimated

with Eq 6.4 and σ2 with σ̂2 (Eq 3.17), the pivot can be written as

QUG1 =
X̄ − µ√
σ̂2/N

∼ tN−1 (6.6)

where tN−1 does not dependent on µ and σ2 [19].
Substituting QUG1, θ = µ, t1 = −tN−1,α/2, t2 = tN−1,α/2 and P = 1 − α in Eq 6.1 provides the

uncorrelated generation statistics confidence interval (UGCI) of µ as

UGCIg = X̄ ± tN−1,α/2

√
σ̂2

√
N

(6.7)

where tN−1,α/2 is the α/2 quantile of student’s t distribution of degrees of freedom N − 1 and σ̂2 is the
estimator of σ2 (Eq 3.17). UGCIg only requires a large generation size to approximate Xi by a normal
distribution but applies to any generation number N > 2. When the generation number, N , approaches
infinity, the limit of UGCI is

UGCIg = X̄ ± Zα/2

√
σ̂2

√
N

(6.8)

This can be obtained by taking the limit of tN−1,α/2 to Zα/2.
Alternatively, σ2 can be calculated from ĉ (history based variance estimate of c), which does not

require generation statistics over the sample {X1, · · · , XN}. Therefore σ2 can be assumed to be known
and a normal pivot can be constructed

QUG2 =
X̄ − µ√
σ2/
√
N

d⇒ N(0, 1) (6.9)

where

σ2 =
ĉ

s

ĉ =
1

N

N∑
i=1

1

s− 1

s∑
j=1

(xi,j −Xi)
2 ≡ σ̂2

h

(6.10)

Each generation gives an estimate of c, while ĉ is the average.
Substituting QUG2, θ = µ, t1 = −Zα/2, t2 = Zα/2 and P = 1 − α in Eq 6.1 gives the uncorrelated

generation confidence interval of µ as

UGCIh = X̄ ± Zα/2

√
ĉ√
Ns

(6.11)

6.2. Correlated Generations

Since the generation results are correlated with each other, it is impossible to construct the traditional
student’s t-distribution pivot to perform interval estimate. If the sample {X1, · · · , XN} is viewed as a
Markov Chain, as N approaches infinity, the central limit theorem of Markov Chain holds [20][21] and
a normal distribution pivot can be constructed for interval estimates. More generally, Ibragimov [22]
proved a variant of the central limit theorem for stationary sequence with weak dependence (ρk → 0 as
k →∞):

QCG =
X̄ − µ

σ

(
N∑
i=1

Xi

)
/N

d⇒ N(0, 1) (6.12)

Following the procedure in section 3.1, it can be shown

σ

(
N∑
i=1

Xi

)
=
√
σ2Nr (6.13)
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Table 2: Comparison of Confidence Intervals

Uncorrelated generations Correlated generations

generation statistics (unknown variance)
2tN−1,α/2√

N

√
σ̂2 (UGCIg,Eq 6.8)

2Zα/2√
N

√
σ̂2
√
r (CGCIg,Eq 6.16)

history statistics (known variance)
2Zα/2√
N

√
ĉ
s (UGCIh,Eq 6.11)

2Zα/2√
N

√
ĉ
s

√
r(CGCIh,Eq 6.19)

where r is defined in Eq 3.7. Similar to the analysis of uncorrelated generations, there are two methods

to obtain confidence interval from Eq 6.12: the first estimates σ

(
N∑
i=1

Xi

)
from generation statistics and

the second assumes σ

(
N∑
i=1

Xi

)
is known from history statistics.

If σ2 is estimated from generation statistics substituted into the original pivot in Eq 6.12. Slutsky’s
theorem [23] determines the distribution of pivot QCG1:√

σ̂2Nr
P⇒ σ

(
N∑
i=1

Xi

)
(6.14)

QCG1 =
X̄ − µ√
σ̂2r/

√
N

d⇒ N(0, 1) (6.15)

Substituting QCG1, θ = µ, t1 = −Zα/2, t2 = Zα/2 and P = 1 − α in Eq 6.1 provides the correlated
generation confidence interval (CGCI)of µ as

CGCIg = X̄ ± Zα/2

√
σ̂2

√
N

√
r (6.16)

where σ̂2 is the estimator of σ2 from generation-based statistics

σ̂2 =
1

N − r

N∑
i=1

(Xi − X̄)2 ≡ σ̂2
g (6.17)

Alternatively, the denominator of QCG in Eq 6.12 can be approximated from history statistics. Thus
the pivot can be written as

QCG2 =
X̄ − µ√
σ2/Nr

d⇒ N(0, 1) (6.18)

Substituting QCG2, θ = µ, t1 = −Zα/2, t2 = Zα/2 and P = 1 − α in Eq 6.1 provides the correlated
generation confidence interval of µ as

CGCIh = X̄ ± Zα/2

√
σ2

√
N

√
r (6.19)

where σ2 can be approximated as given in Eq 6.10. Since each generation gives an unbiased estimate of
c, although generations are correlated, their average is unbiased.

Table 2 summarizes confidence interval options from history statistics and generation statistics using
the same total number of simulated neutrons. Generation statistics are based on tallies from N genera-
tions with size s while history statistics are based on tallies from all generation with N × s neutrons. X̄
will be the same no matter whether history statistics or generation statistics are used and the confidence
intervals are symmetric about the common center, therefore, only the size of confidence intervals are
compared.

Table 2 also shows that the confidence intervals are larger by a factor of
√
r in the presence of

generation-to-generation correlation. The bias of the variance estimator as noted in Eq 3.24 can be
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neglected since r � N . Since the confidence intervals are derived from pivots where N → ∞, the
asymptotic value of r can be used to calculate confidence intervals. Using the simple benchmark with
16× 16× 16 mesh,

√
r approaches 8 asymptotically. The factor r is defined in Eq 3.7 and is a function

of the number of generations N . Additionally, it can be observed in Table 2 that history statistics

and generation statistics will give the same confidence interval as long as both σ̂2 and ĉ/s estimate the
variance of X (σ2) accurately.

6.3. Numerical Example

6.3.1. Method 1: Asymptotic Confidence Interval with large N

The simplest way to obtain confidence intervals is to run a large number of generations and assume N
to approach infinity such that CGCIg (Eq 6.16) or CGCIh (Eq 6.19) can be used directly. The problem
is that there is no criterion to determine whether N is large enough to validate the central limit theorem
for correlated generation tallies or the asymptotic normal distribution of pivot QCG (Eq 6.12).

6.3.2. Method 2: Asymptotic Confidence Interval without explicit r dependence

Using a batching algorithm enables evaluating the confidence interval without the need of r [24] [25].
This method has been implemented in OpenMC [26], MCNP [27] and MC21[5]. The total number of
active generations N is divided into NB = N/B batches, where a batch consists of B consecutive fission
generations. The batch k tally value is obtained as

Xk =
1

B

kM∑
i=(k−1)M+1

Xi (6.20)

where Xi is the generation i tally value. Statistics over the sample {X1, · · · ,XNB} are performed to
construct a pivot and obtain a confidence interval. According to Kelly et al, by making B sufficiently
large, the correlation between batches can be reduced to a negligible level. Therefore with a pivot similar
to QUG1 (Eq 6.6), confidence interval in the form of UGCIg (Eq 6.8) can be obtained by replacing N

with NB , and σ̂2 with σ̂2
X . This is denoted as UBCI (Uncorrelated Batches Confidence Interval) and is

evaluated as

UBCI = X̄ ±
tNB−1,α/2√

NB

√
σ̂2
X (6.21)

σ̂2
X =

1

(NB − 1)

NB∑
k=1

(Xk − X̄ )2 (6.22)

UBCI is consistent with CGCIg or CGCIh. By definition of X (Eq 6.20)

σ2
X =

σ2

B
r(B) (6.23)

where the dependence of r on number of generations is recalled. Therefore σ̂2
X along with

√
NB in UGCI

is consistent with

√
σ̂2r
N in CGCIg and

√
ĉr
sN in CGCIh. They are all estimators of the variance of X̄.

The main problem of this method is that there is no criterion to determine whether B is sufficiently
large to validate the independence between batches. Theory developed so far in this paper can be applied
to provide a criterion with respect to the correlation between batches. Similarly to the analysis in Sec 3.1,
covariance between batch J and K can be evaluated as

Cov[XJ ,XK ] =
σ2

B2

(∆+1)B−1∑
l=(∆−1)B+1

(∆B − |∆B − l|) ρl (6.24)

where ∆ = |J −K| ≥ 1 is the batch lag, ρl is the correlation coefficient between generations with lag l
as defined in Eq 3.6. The correlation coefficient between batches with lag ∆ can be further obtained as

%∆ =
Cov[XJ ,XK ]

σ2
X

=
1

Br(B)

(∆+1)B−1∑
l=(∆−1)B+1

(∆B − |∆B − l|) ρl (6.25)
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With the verified assumption of exponential decay of ρl, batch correlation coefficient %∆ can be evaluated
with the exponential decay parameters as introduced in Sec 4.1. With the one-term exponential form of
ρk, %1 can be obtained as

%1 =
qρ0

(
1− qB

)2
B(1− q) (2ρ0q − q + 1)− 2qρ0 (1− qB)

(6.26)

Finally, given the exponential decay parameter of generation correlation coefficients ρk, the “sufficiently”
large B can be found through %1 ∼ 0.

6.3.3. Method 3: Confidence Interval for finite N

In addition to central limit theorem, distribution of pivots constructed at the first of this section can
also be obtained with more assumptions. If the asymptotic distribution of X(Eq 6.5) is substituted into
the pivot QCG2, distribution of QCG2 can be obtained for any N . It can be shown that for N random
variables Xi ∼ N(µ, σ2), their average is still normal.

Denote the N Gaussian random variables as an N dimension random vector ~X ∼ (N(~µ,Σ), where Σ
is the covariance matrix with Σi,j = Cov[Xi, Xj ]. The characteristic function of the Gaussian random
vector is

φ ~X
(
~t
)

= E
[
e−i

~tT ~X
]

= e−i
~tT ~µ+ 1

2
~tTΣ~t (6.27)

The average of the N X’s can be denoted as

X̄ = ~aT ~X (6.28)

~aT =
1

N
(1, · · · , 1) (6.29)

Then the characteristic function of X̄ can be found as

φX̄(s) = E
[
e−is~a

T ~X
]

= φ ~X (s~a) = e−is~a
T ~µ+ 1

2 s
2~aTΣ~a (6.30)

Therefore X̄ is a Gaussian random variable with mean ~aT ~µ = µ and variance σ2(X̄) = ~aTΣ~a. This leads
to a Gaussian pivot for finite N , QN ,

QN =
X̄ − µ√

σ2r(N)/
√
N
∼ N(0, 1) (6.31)

where σ2 and r(N) are assumed to be known and σ2 can be evaluated with Eq 6.10. In comparison with
QCG2, distribution of QN does not require large N and the variance underestimate ratio need not take
the asymptotic value. Substituting QN , θ = µ, t1 = −Zα/2, t2 = Zα/2 and P = 1−α in Eq 6.1 provides
the correlated generation confidence interval of µ as

CGCIN = X̄ ± Zα/2

√
ĉ√
Ns

√
r(N) (6.32)

6.3.4. Results

This section compares variance estimators of X̄ (Eq 6.4), as a proxy to confidence intervals. The
variance estimators calculated from history statistics (Eq 6.10), generation statistics (Eq 6.17) and batch
statistics (Eq 6.22) are summarized below.

σ̂2
X̄h

=
σ̂2
h

sN
r(N) (6.33)

σ̂2
X̄g

=
σ̂2
g

N
r(N) (6.34)

σ̂2
X̄ b

=
σ̂2X

NB
(6.35)
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The reference variance value can be calculated as

σ2
X̄ =

σ2

N
=

c

N s
(6.36)

where σ2 can be obtained analytically and r can be approximated as described in sec 4.1. The assump-
tion that the tallies obtained by neutrons in one generation are independent are not true in traditional
source update methods due to the possibility of re-using source sites in a given generation leading to
history-to-history correlations. This correlation invalidates the relation between history variance c and
generation variance σ2 described by Eq 4.9 but can be avoided by removing this source site multiplicity.
In the simple cube problem, sites can be re-sampled from a uniform distribution (exact solution), but
more generally sites could be replaced by source sites from a previous generation.

Under the assumption of independent history tallies, the analytical variance of the fission tally is

c =
Pf

M2(1− Ps)2
(Pc + (1− Ps)(M − 1) (6.37)

where M is the number of meshes in the cube, and the fission probability Pf , scattering probability Ps
and capture probability Pc can be calculated from the cross section parameters in Table 1. Knowing c
and approximating r(N), Eq 6.36 provides a reference value of the true variance.

Sixty independent simulations were performed using 10, 000 generations of 983, 040 neutrons per
generation. Analog fission rates were tallied on 4 × 4 × 4 mesh and results compared on a single tally
region. The factor r(N) is calculated following the procedure described in Sec 4.1 and assumed to be
known.

The variance using the three methods for the 60 simulations are presented in Fig 8. The batch
statistics results were produced assuming batch groupings of B = 200. The first observation in Fig 8 is
that using uncorrelated statistics leads to underestimating the variance by a factor of 2. This figure also
demonstrates consistency between the three proposed methods for correlated statistics. The variance
estimates from history and generation statistics are closely distributed around the theoretical value,
however, batch statistics presents much greater dispersion. Appendix A demonstrates that history
statistics will provide an estimation with a smaller uncertainty than generation-based estimates and that
generation-based estimates provide an estimatation with a smaller uncertainty than batch-based variance
estimates. This can be observed in Fig 8 and Fig 9. For this particular problem, B = 200 might be an
overkill. The large B leads to smaller number of batches, NB , and further increases the uncertainty of

the estimator σ̂2
X . If B is instead set to 10, the dispersion of σ̂2

X becomes, as expected, much narrower
but the average value deviates from the reference value (Fig 10(a)). The deviation can be viewed as
an underestimation of the batch variance and attributed to correlation between batches. Reducing the
batch size B from 200 to 10 increased the batch correlation coefficient of lag 1 (Eq 6.26) from 0.0022 to

0.048. Therefore, calculating the batch correlation, the variance can be corrected by a factor r(N)
r(B) . This

corrected estimator matches the reference value as shown in Fig 10(b)).
From these results it can be seen that history statistics (once history-to-history correlation is elimi-

nated) can provide a suitable and accurate estimate of the variance. Thus, in support of the optimization
conclusion of Sec 5, few generations with large particle counts is a possibility to provide the lowest pos-
sible tally errors while still providing an accurate measure of the confidence intervals. One caveat to
this approach is that it requires an approximation of the underestimation factor. The batching scheme
avoids this need, but the run strategy favors multiple generations which was shown to be sub-optimal
with respect to the convergence rate. Additionally, history statistics require performing accumulation of
tallies after each history which can become computationally prohibitive when many tallies are needed.

7. Conclusions

This paper provides an analysis of the generation-to-generation correlations as observed when solving
full core eigenvalue problems on PWR systems. Many studies have in the past looked at the impact of
these correlations on reported variance and this paper extends the analysis to the observed convergence
rate on the tallies, the effect of tally size and the effect of generation size. Since performing meaningful
analysis on such a large problem is inherently difficult, a simple homogeneous reflective cube problem
was developed that exhibits similar behavior to the full core PWR benchmark. The data in this problem
was selected to match the dimensionality of the reactor problem and preserve the migration length
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Figure 8: Comparison of CI evaluated from different methods

Batch statistics: Estimate σ̂2
X in UBCI (Eq 6.21) with Eq 6.22.

Generation statistics: Estimate σ̂2 in CGCIh (Eq 6.16) with Eq 6.17.

History statistics: Estimate ĉ2 in CGCIN (Eq 6.32) with Eq 6.10.
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Figure 9: Comparison of CI: history and generation statistics

(a) B = 10, σ̂2
X uncorrected (b) B = 10, σ̂2

X corrected by
r(N)
r(B)

Figure 10: Comparison of CI: batch statistics of different batch sizes

21



traveled by neutrons. The reflective homogeneous nature of the problem also provides a simple analytical
reference solution on which to determine convergence rates. The validity of this problem was verified by
comparing the autocorrelation coefficients (ACCs) with those evaluated from the BEAVRS benchmark.
One interesting observation can be made from this analysis, larger tally sizes exhibit greater generation-
to-generation correlation. This is supported by the convergence behavior of the power iteration method
that is hindered more by the low frequency modes than the high ones.

Work by Sutton [8], Herman [4], and Yamamoto [6] has shown mathematically that the convergence
rate of the tallies will deviate from 1/

√
N in the presence of generation-to-generation correlation, but

should eventually return to 1/
√
N . This paper demonstrates this fact once again in greater detail and

provides supporting simulation results. Additionally, the ACCs were fitted using exponential terms in
order to develop a predictive capability of the convergence rate. Thus, knowing the fit of the ACCs,
one can determine the number of generations needed to achieve a desired level of accuracy. The fitting
process and supporting simulations were also used to demonstrate the independence of ACCs on the
generation size. Generation size will impact the level of accuracy but not the ACCs, thus only additional
generations can overcome the correlation and allow convergence of the error to return to 1/

√
N . This

paper demonstrates that realistic cases may require 1000’s of generations before the convergence rate
reaches the asymptotic behavior, thus indicating that commonly held belief of adding more generations
provides little added value when true variance is measured.

This new information on ACCs and how they are impacted by generation size and number of gen-
erations brought a very interesting question on what is the optimal run strategy to minimize the tally
errors. This analysis was made under the premise that a converged source distribution was provided us-
ing one of the many techniques currently under development [4] [10] [11] [12] [13] [14] [15]. The analysis
demonstrates that in the presence of correlations, it is beneficial to opt for large generation sizes and
few generations. There are obvious limitations to such a running scheme like the impact on the inactive
generations and storage requirements of fission sites. Additionally, common practice often requires many
generations in order to provide suitable confidence intervals. This paper described three techniques to
evaluate suitable confidence intervals in the presence of correlations, one based on using history statistics,
one using generation statistics and one batching generations to reduce batch-to-batch correlation ([5]).
The first two require some estimate of the variance underestimation factor evaluated from the ACCs,
while batching can do without. The analysis indicates that history statistics are possible as long as one
can remove history-to-history correlations often observed in current source update methods and would
allow the use of a single generation if such a converged source bank could be generated. Batching will
provide a good estimate of the true variance, but will suffer from poor convergence on highly-correlated
problems since the scheme favors the use of many generations which is contrary to the optimal run
strategy derived in this work.

Future work will focus on finding ways to estimate the ACCs (needed to calculate the underestimation
factor) during the inactive generations such that few generations with large particle counts can be
used to minimize the tally errors. Additionally, this work will be extended to reduce the history-to-
history correlation that was identified in Sec 6, which will in return reduce the overall correlation of the
simulation.
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Appendix A. Variance of Variance Estimators

Sample 1 {x1, x2, · · · , xM} is independently sampled from an identical distribution. Sample 2 {X1, X2, · · · , XN}
is obtained by splitting {x1, · · · , xM} into N groups of size s = M/N and calculating the average of each
group.

Xi =
1

s

s∑
j=1

x(i−1)s+j (A.1)

Variance of these two samples σ2
1 and σ2

2 satisfies

σ2
2 =

σ2
1

s
(A.2)

σ2
1 can be estimated with

S2
0 =

1

M − 1

M∑
i=1

(xi − x̄)
2

(A.3)

Alternatively, σ2
1 can be estimated by estimating the variance of each of the N groups and averaging

them

S2
1 =

1

N

N∑
i=1

1

s− 1

s∑
j=1

(
x(i−1)s+j −Xi

)2 ≡ 1

N

N∑
i=1

S2
1,i (A.4)

And σ2
2 can be estimated with

S2
2 =

1

N − 1

N∑
j=1

(
Xj − X̄

)2
(A.5)

This section proves:

Var[S2
0 ] < Var[s S2

2 ] (A.6)

Var[S2
0 ] < Var[s S2

2 ] (A.7)

or equivalently

Var[S2
0 ] < s2 Var[S2

2 ] (A.8)

Var[S2
1 ] < s2 Var[S2

2 ] (A.9)

Variance of sample variance can be evaluated as [23]

Var[S2
0 ] =

µ4(x)

M
− σ(x)4

M

M − 3

M − 1
(A.10)

Var[S2
1,i] =

µ4(x)

s
− σ(x)4

s

s− 3

s− 1
(A.11)

Var[S2
2 ] =

µ4(X)

N
− σ(X)4

N

N − 3

N − 1
(A.12)

where µ4(x) is the 4th central moment of x, σ(x)4 is the square of variance of x. To compare Eq A.10
(or Eq A.11) with A.12, relation between µ4(x) and µ4(X), σ4(x) and σ4(X) is needed. Since X is the
average of s x,

σ4(X) = (σ2(X))2 =

(
σ2(x)

s

)2

=
σ4(x)

s2
(A.13)

Relation between µ4(X) and µ4(x) can be derived as below, where µ = E[x] = E[X] = E[x̄] = E[X̄],

µ4(X) = E[(X − µ)4] = E




s∑
j=1

xj

s
− µ


4

=
1

s4
E


 s∑
j=1

(xj − µ)

4


(A.14)
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For simplicity, define
yi ≡ xi − µ (A.15)

therefore
E[yi] = 0 (A.16)

s4µ4(X) = E


 s∑
j=1

yj

4


= E

 s∑
j=1

y4
j + 3

∑
j 6=i

y2
j y

2
i + 4

∑
j 6=i

y3
j yi + 6

∑
j 6=i 6=k

y2
j yiyk +

∑
j 6=i 6=k 6=l

yjyiykyl


=

s∑
j=1

E
[
y4
j

]
+ 3

∑
j 6=i

E
[
y2
j y

2
i

]
+ 4

∑
j 6=i

E
[
y3
j yi
]

+ 6
∑
j 6=i 6=k

E
[
y2
j yiyk

]
+

∑
j 6=i 6=k 6=l

E [yjyiykyl]

(A.17)

Since the x’s are independent,

s4µ4(X) =

s∑
j=1

E[y4
j ] + 3

∑
j 6=i

E[y2
j ]E[y2

i ] + 4
∑
j 6=i

E[y3
j ]E[yi]

+ 6
∑
j 6=i6=k

E[y2
j ]E[yi]E[yk] +

∑
j 6=i6=k 6=l

E[yj ]E[yi]E[yk]E[yl]

(A.18)

The above equation can be simplified due to Eq A.16

s4µ4(X) = sE[y4
j ] + 3s(s− 1)E[y2

j ]E[y2
i ]

= sE[(xi − µ)4] + 3s(s− 1)E[(xj − µ)2]2

= sµ4(x) + 3s(s− 1)σ4(x)

(A.19)

Therefore µ4(X) and µ4(x) are related with

µ4(X) =
1

s3
µ4(x) +

3(s− 1)

s3
σ4(x) (A.20)

With Eq A.13 and A.20, inequality to be proved (Eq A.8) can be equivalently transformed to

µ4(x)

Ns
− σ4(x)

Ns

Ns− 3

Ns− 1
<
µ4(x)

Ns
+

3(s− 1)

Ns
σ4(x)− σ4(x)

N

N − 3

N − 1
(A.21)

(A.22)

which is equivalent to

2
σ4(x)

Ns

(
s− 1 +

s

N − 1
− 1

Ns− 1

)
> 0 (A.23)

It can be verified that if s = 1, the two estimators S2
0 and sS2

2 have the same variance. As long as s > 1,
the above equation holds and S2

0 has lower variance than S2
2 .

Similarly, with Eq A.13, Eq A.20 and Var[S2
1 ] =

Var[S2
1,i]

N , inequality to be proved in Eq A.9 can be
equivalently transformed to

1

N

(
µ4(x)

s
− σ4(x)

s

s− 3

s− 1

)
<
µ4(x)

Ns
+

3(s− 1)

Ns
σ4(x)− σ4(x)

N

N − 3

N − 1
(A.24)

(A.25)

which is equivalent to

2
σ4(x)

Ns

(
s− 1 +

s

N − 1
− 1

s− 1

)
> 0 (A.26)
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It can be verified that as long as s > 1, the above equation holds and S2
1 has lower variance than S2

2 .

When comparing variance estimated from history statistics and generation statistics, the uncertainty
of the former one corresponds to S2

1 the latter one corresponds to S2
2 . When comparing variance es-

timated from generation statistics and batch statistics, the uncertainty of the former one corresponds
to S2

0 the latter one corresponds to S2
2 . Therefore, history-based variance estimator always has lower

uncertainty than generation-based variance estimator. And generation-based variance estimator always
has lower uncertainty than batch-based variance estimator.
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