
Optimal Reissue Policies for Reducing Tail Latency
Tim Kaler

MIT CSAIL
tfk@mit.edu

Yuxiong He

Microsoft Research
yuxhe@microsoft.com

Sameh Elnikety

Microsoft Research
samehe@microsoft.com

ABSTRACT
Interactive services send redundant requests to multiple different
replicas to meet stringent tail latency requirements. These addi-
tional (reissue) requests mitigate the impact of non-deterministic
delays within the system and thus increase the probability of re-
ceiving an on-time response.

There are two existing approaches of using reissue requests to
reduce tail latency. (1) Reissue requests immediately to one or more
replicas, which multiplies the load and runs the risk of overloading
the system. (2) Reissue requests if not completed after a fixed delay.
The delay helps to bound the number of extra reissue requests, but
it also reduces the chance for those requests to respond before a
tail latency target.

We introduce a new family of reissue policies, Single-Time
/ Random (SingleR), that reissue requests after a delay d with
probability q. SingleR employs randomness to bound the reissue
rate, while allowing requests to be reissued early enough so they
have sufficient time to respond, exploiting the benefits of both
immediate and delayed reissue of prior work. We formally prove,
within a simplified analytical model, that SingleR is optimal even
when compared to more complex policies that reissue multiple
times.

To use SingleR for interactive services, we provide efficient al-
gorithms for calculating optimal reissue delay and probability from
response time logs through data-driven approach. We apply itera-
tive adaptation for systems with load-dependent queuing delays.
The key advantage of this data-driven approach is its wide applica-
bility and effectiveness to systems with various design choices and
workload properties.

We evaluated SingleR policies thoroughly. We use simulation
to illustrate its internals and demonstrate its robustness to a wide
range of workloads. We conduct system experiments on the Re-
dis key-value store and Lucene search server. The results show
that for utilizations ranging from 40-60%, SingleR reduces the
99th-percentile latency of Redis by 30-70% by reissuing only 2% of
requests, and the 99th-percentile latency of Lucene by 15-25% by
reissuing 1% only.

1 INTRODUCTION
Interactive online services, such as web search, financial trading,
and games require consistently low response times to attract and
retain users [13, 24]. The service providers therefore define strict
targets for tail latencies — 95th percentile, 99th percentile or higher
response times [6, 7, 14, 31] to deliver consistently fast responses to
user requests. For many distributed and layered services, a request
could span several servers and the responses are aggregated, in
which case the slower servers typically dominate the response
time [18]. As a result, tail latencies are more suitable performance

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SPAA ’17, July 24-26, 2017, Washington DC, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-4593-4/17/07. . . $15.00
https://doi.org/10.1145/3087556.3087566

metrics than averages in latency-sensitive applications that employ
concurrency.

Variability in a service’s response-time can lead to tail-latencies
that are several orders of magnitude larger than the average or me-
dian. Rare work-intensive requests can have a disproportionate im-
pact on tail-latency by causing other requests to be delayed. Other,
often nondeterministic, factors also play a significant role: random
load-balancing can lead to short-term skew between machines;
background tasks on servers can lead to temporary shortages in
CPU cycles, memory, and disk bandwidth; network congestion can
increase latency and reduce throughput of communication chan-
nels. Reducing tail latency, influenced by all of these contributing
factors, is challenging.

The judicious use of redundant computation is often a highly
effective technique for reducing tail-latency in interactive services.
The basic idea is to exploit inter-machine parallelism by sending
multiple copies of a request to replicated servers in order to boost
the probability of receiving at least one timely response. This tech-
nique is widely used by interactive services, yet despite its preva-
lence there has been little guidance on optimizing its usage.

We develop a methodology for designing reissue policies that is
composed of 3 steps. First, we define several families of reissue poli-
cies of varied complexity. These reissue policies are parametrized
by variables such as: a) if to reissue a request, b) when to reissue
a request, and c) how many times to reissue a request. We choose
an optimal family of policies among the candidates guided by a
theoretical analysis under a simplified model where the system’s
response-time distributions are static. Second, we provide an algo-
rithm to find the optimal values for the policy’s parameters using
response-time logs, solving the constrained optimization problem
efficiently. Third, we provide iterative algorithms for refining a
policy’s parameters in response to changes in system load, and for
adjusting the total fraction of requests that are reissued to minimize
tail-latency.

Related work and challenges. This technique of reissuing latency-
sensitive requests is not new. It has been employed by a wide
variety of systems such as key-value stores [4, 19, 26, 29], distributed
request-response workflows [15], DNS lookup [2, 27], TCP flows
[8, 30], and web-search [6]. Existing systems that reissue requests
to reduce tail-latency predominantly employ one of two strategies.

For systems that run at low utilization, the common approach is
to perform immediate reissue of requests — i.e. dispatch multiple
copies of all requests. The effectiveness of immediate reissue has
been investigated in previous studies [8, 26, 27, 30]. The primary
advantage of the immediate reissue approach is that all copies of a
request have an equal chance to respond before a tail-latency dead-
line since they are dispatched at the same time. This advantage is a
motivation within RepFlow [30] for employing immediate reissue
for the replication of short TCP flows (under 100KB). The disad-
vantage of immediate reissue, however, is that its impact on overall
load renders it ineffective for systems with moderate and high uti-
lization. A recent study in [27] on memcached, for example, shows
that immediate reissue can degrade performance at utilizations as
low as 10%.

For systems that run at higher utilization, an alternative approach
is to perform delayed reissue of requests [5, 6, 15, 29] — i.e. dispatch
a second copy of a request after a delay d , which we refer to as
Single-Time / Deterministic policy or SingleD. The SingleD

https://doi.org/10.1145/3087556.3087566

policy family corresponds to the scheme proposed in “The Tail at
Scale” by Dean and Barroso [6], where, for example, the delay d
could be decided using 95th-percentile latency of the workload. The
advantage of delayed reissue is that we save the cost of reissuing
the requests that would respond fast anyway. However, if the delay
d is picked to be too large, then there may not be sufficient time
for a reissue request to respond before the latency target.

Along the line of analytical work, prior work only studied imme-
diate reissues for average latency under very specific arrival/service
time distributions. Joshi, et.al. [16, 17] study the impact of immedi-
ate reissuing on log-concave and log-convex service-time distribu-
tions. Gardner, et.al. [10] present an exact analysis of immediate
reissue for poisson arrivals and exponential service-times. Lee et.al.
[20] consider minimizing average latency by reissuing requests
with a known cancellation overhead. Shah et.al. [25] analyze the
effectiveness of immediate reissuing in the MDS queue model.

When it comes to developing effective reissue policies for reduc-
ing tail-latency on a wide range of workloads and systems, many
questions remain largely unanswered. The problem is challenging
for multiple reasons: (1) The impact of reissuing is complex: one
must weigh the odds of reducing tail latency by sending a duplicate
request against the increase in system utilization caused by adding
load. (2) There is a large search space with many different choices of
which requests to reissue and when. (3) The complex and different
workload properties of various interactive services, such as service-
time distributions, arrival patterns, request correlations, and system
settings make it difficult to derive general strategies for reducing tail
latency. (4) Analytical work using queueing theory is challenging
even when making strong assumptions about response-time distri-
butions (e.g. drawn from exponential family), and conclusions draw
from such simple models are hard to generalize to more complex
systems.

Methodology and Key Results. The goal of our work is to find
a reissue policy that minimizes a workload’s kth percentile tail
latency by issuing a fixed percentage (or budget) of redundant
requests. We explore the space and devise reissue policies in a
principled manner — directed by theoretical analysis to identify the
key insights of effective reissue policies, and driven by empirical
data from actual systems for wide applicability.

We introduce a new family of reissue policies, Single-Time /
Random (SingleR), that reissue requests after a delay d with prob-
ability q. The use of randomness in SingleR provides an important
degree of freedom that allows to bound the reissue budget while
also ensuring that reissue requests have sufficient time to respond,
exploiting the benefits of both immediate and delayed reissue of
prior work.

Using a simplified analytical model, we formally prove that Sin-
gleR is the optimal trade-off between the immediate and delayed
reissue strategies. More precisely, we define the Multiple-Time
/ Random (MultipleR) policies which reissue requests multiple
times with different delays and reissue probabilities. We prove that,
surprisingly, the optimal policies in MultipleR and SingleR are
equivalent. It is a powerful result, restraining the complexity of
reissue policies to one time reissue only while guaranteeing the
effectiveness of SingleR.

Next, we present how to apply SingleR for interactive services
through a data-driven approach to efficiently find the appropriate
parameters, reissue time and probability, given sampled response
times of the workloads. Our approach takes into account correla-
tions between primary and reissue request response times. It is
computationally efficient, finding optimal values of the parameters
in close to linear time, with respect to the data size.

Moreover, we show how to devise reissue policies for systems
which are sensitive to added load by adaptively refining a reissue
policy in response to feedback from the system. This method re-
mains oblivious to many system design details, relies on iterative

adaptation to discover a system’s response-time distributions and
its response to added load. This data-driven approach is performed
in a principled manner: every refined policy is the solution to a
well defined optimization problem based on updated response-time
distributions, applicable to a wide range of workloads with varying
properties.

Empirical evaluation. We illustrate the properties of SingleR
using both simulation and system experiments. Through careful
simulation, we illustrate two key points: 1) the use of randomization
in SingleR is especially important for workloads with correlated
service times and queueing delays, 2) the effectiveness of SingleR
is robust to varied workload properties and design choices includ-
ing: utilization, service-time distribution, target latency percentiles,
service-time correlations, and load-balancing/request-prioritization
strategies.

We also evaluate SingleR using two distributed systems based
on Redis [32] and Lucene enterprise search [21]. We demonstrate
that, on a wide range of utilizations from 20-60%, SingleR is able
to reduce tail-latency significantly while reissuing only a small
number of requests. Even at 40-60% utilization, which is high for
interactive services, SingleR reduces the 99th-percentile latency
of Redis by 30-70% while reissuing only 2% of requests, and the
99th-percentile latency of Lucene by 15-25% while reissuing just
1% of requests.

Summary of contributions.
(1) We introduce the SingleR reissue policy family that reis-

sues requests after a delay d with probability q. It exploits
randomness to permit the timely reissue of requests with
bounded budget, achieving the benefits of both immediate
and delayed reissue (Section 2).

(2) We prove within a simplified analytical model that the op-
timal policies in MultipleR and SingleR are equivalent.
Reissuing more than once does not offer additional benefit —
SingleR is simple and effective. (Section 3).

(3) We show how to apply SingleR for interactive services by
providing efficient algorithms for obtaining reissue delay and
probability parameters from response time logs. (Section 4).

(4) We evaluate SingleR using both simulation and system ex-
periments on Redis key value store and Lucene search server
(Section 5 and Section 6).

Note that our methodology for developing reissue policies uti-
lizes multiple performance models of increasing complexity. This is
a strategic choice that allows us to make definitive design choices
that are guided by theoretical insights. The proof that SingleR is
optimal relative to SingleD andMultipleR operates in a simplified
model in which policies reissue only a fixed fraction of requests,
and where the service’s response-time distributions are static and
uncorrelated. This simplified model allows us to address questions
about the general structure of reissue policies that are otherwise
intractable. Our algorithms for finding the optimal SingleR pol-
icy for a specific interactive service operates in a less constrained
model where response-times may be correlated. Our techniques for
adaptively refining SingleR policies are in a more general model
in which a system may have load-dependent queueing delays —
i.e. reissue requests perturb the response-time distribution. The
sequence of decisions made with respect to performance model
are not arbitrary. As shown in the empirical analysis of SingleR
on simulated workloads in Section 5 and in real-world systems
in Section 6 these steps lead to effective reissue policies and the
insights made in simpler models are readily recognizable in our
empirical results.

2 DETERMINISTIC VS RANDOM REISSUE
In this section, we introduce the Single-Time / Random (SingleR)
policies, which reissues a request with probability q after a delay

d . We show how the incorporation of randomness within SingleR
policies enables requests to be reissued earlier while still meeting
a specified reissue budget. This allows for SingleR to reduce tail-
latency significantly even when constrained by a small reissue
budget.

This section is organized as follows. Section 2.1 presents the
model and terminology. Section 2.2 defines the Single-Time / De-
terministic (SingleD) policies which formalize the “delayed reis-
sue” strategy of prior work. We present SingleR policies in Sec-
tion 2.3 and discuss their benefits over SingleD in Section 2.4.

2.1 Model and Terminology
We shall, for the moment, operate within a simplified performance
model in which there are no queueing delays and query response-
times are independent and identically distributed. Later, in Sec-
tion 4.2 we describe how these limitations can be overcome to
adapt our techniques to workloads with correlated response-times
and queueing delays.

Formally, we consider an interactive workload to be a collection
of queries where each query is composed of exactly one primary
request that is dispatched at time t =0 and zero or more reissue
requests dispatched at times d ≥ t .

The response-time of a query is based on the length of time
between the dispatch of the primary request and the arrival of any
reply from either a primary or reissue request.

The reissue rate of a workload consisting of N queries andM
reissue requests is defined as the ratioM/N .

We look for a reissue policy that minimizes a workload’s kth
percentile tail-latency with the reissue rate equal to a given reissue
budget B.

2.2 The SingleD Policies
The Single-Time / Deterministic (SingleD) policy family is a 1-
parameter family of policies that is parametrized by a reissue delay
d . A SingleD policy reissues a request if a response has not been
received after d seconds.

Let the random variable X denote the response time of the pri-
mary request and Y denote the response time of the reissue request.
A query Q completes before time t if its primary response-time X
is less than t , or if the reissue request response-time Y is less than
t−d . The probability that the query Q responds before time t is
given by Equation (1).

Pr(Q ≤ t)=Pr(X ≤ t)+Pr(X > t)Pr(Y ≤ t−d) (1)
The expected number of reissue requests created by a SingleD

policy is equal to the number of primary requests that respond after
time d , i.e., the reissue budget is

B=Pr(X >d) . (2)
Therefore, if a system can tolerate 10% additional requests, then

the delay d is chosen for the SingleD policy such that Pr(X >d)=
1/10. The smaller the delay d , more requests are reissued, and the
higher the budget B.

2.3 The SingleR Policies
The Single-Time / Random (SingleR) policy family is a 2-parameter
family of policies that is parametrized by a reissue delay d and a
reissue probability q. A SingleR policy reissues a request with
probability q if a response has not been received after d seconds.

A queryQ responds before time t if the primary request responds
before time t , or if a reissue request was created and its response
time is less than t−d . The probability that Q completes before time
t while employing SingleR is given by Equation (3).

Pr(Q ≤ t)=Pr(X ≤ t)+q ·Pr(X > t)Pr(Y ≤ t−d) (3)

The reissue budget is
B=q ·Pr(X >d) (4)

Given Equation (3) and (4), we write the constrained optimiza-
tion problem which identifies the reissue delay and probability
parameters of the optimal SingleR policy given the primary and
reissue response time distributions X and Y .

Optimal Policy For SingleR.
Given tail-latency percentile k , a reissue budget B, and policy
family SingleR

minimize
d, q

t

subject to Pr(X ≤ t)+q ·Pr(X > t)Pr(Y ≤ t−d)≥k,
q ·Pr(X ≥d)≤B

2.4 Randomization Is Essential
The use of randomization in SingleR allows the reissue budget,
and thus the added resource and system load, to be bounded while
also ensuring that requests can be reissued early enough so they
have sufficient time to respond. This may not be allowed under
SingleD, which we illustrate in the following example.

Suppose, for example, that we want to minimize a workload’s
95th percentile tail-latency by reissuing no more than 5% of all
queries. Clearly, this cannot be achieved using a SingleD policy —
its limited reissue budget forces it to reissue requests later than the
original 95th percentile tail-latency.

In general, a SingleD policy cannot reduce any workload’s kth
percentile latency with budget B<1−k . Randomization is an essen-
tial part of an effective reissue policy.

3 SINGLE VS MULTIPLE REISSUE
As we saw in Section 2, randomness provides SingleR policies an
important degree of freedom that enables a continuous trade-off
between the advantages of immediate and delayed reissuing. A
natural question arises: can we obtain an even better policy family
by introducing additional degrees of freedom?

In this section, we address this question by introducingMulti-
pleR policies that can reissue requests more than once, at multiple
different times, and with different probabilities. We prove a surpris-
ing fact: for a given reissue budget B and tail-latency percentile
k , the optimalMultipleR and SingleR policies achieve the same
tail-latency reduction.

Note that we continue to operate in the simplified model de-
scribed in Section 2.1 in which there are no queueing delays and
query response-times are independent and identically distributed.
These limitations will be lifted in Section 4.2 as we show how to
adapt SingleR policies to handle correlated response-times and
queueing delays.

3.1 Multiple Time Policies
The Multiple-Time / Random (MultipleR) policy family con-
tains policies that can reissue requests multiple times. A policy
that reissues a request at-most n times consists of a sequence of n
delays d1,d2,...,dn and n probabilities q1,q2,...,qn . Like SingleR, the
MultipleR family explores the space between two extremes — the
“immediate reissue” and “delayed reissue” strategies. Specifically,
the reissue times di of a MultipleR policy lie between 0, the time
of immediate reissue, andd ′, the time selected by a “delayed reissue”
SingleD policy, where Pr(X >d ′)=B. For any di , since di ≤d ′, the
following condition holds

Pr(X >d ′)≥B . (5)
For the purpose of our later arguments, we also define the

Double-Time / Random (DoubleR) policy family. The DoubleR

family is a subset of MultipleR and contains policies that reissue
requests at most twice.

3.2 Single Is Optimal
We prove the optimality of SingleR in two steps: (1) We show in
Theorem 3.1 that the optimal policies in the SingleR and DoubleR
families achieve identical tail-latency reduction; (2) Finally, we
prove a generalization in Theorem 3.2 for MultipleR policies that
have n>2 reissue times.

Theorem 3.1. The optimal SingleR and DoubleR reissue policies
achieve the same kth percentile tail-latency when given the same
reissue budget B.

Proof. Consider the optimal SingleR policy with budget B that
minimizes t , the kth percentile tail-latency. Suppose that this policy
reissues requests at time d∗. Then, the probability that a query
using the optimal SingleR policy responds before time t is given
by Equation (6) below.

Pr(Q ≤ t)=Pr(X ≤ t)+G∗SR (6)
where,

G∗SR = B

Pr(X >d∗)Pr(X > t)Pr(Y ≤ t−d
∗) . (7)

The first term Pr(X ≤ t) is the probabilitity that the primary request
returns before the tail-latency deadline. The termG∗SR corresponds
to the case for which the primary request misses the deadline, but
the reissue request responds on-time.

Now consider a DoubleR policy with reissue times d1,d2 and
reissue probabilities q1,q2. The probability that a query using this
policy reponds before time t is given by Equation (8) below.

Pr(Q ≤ t)=Pr(X ≤ t)+G1+G2 (8)
where,

G1 =q1Pr(X>t)Pr(Y1≤t−d1) (9)
G2 =q2(1−q1Pr(Y1≤t−d1))Pr(X>t)Pr(Y2≤t−d2) (10)

The termG1 corresponds to the case for which the primary request
misses the deadline, but the first reissue request responds on-time.
Lastly, the third term G2 corresponds to the case where both the
primary and first reissue request miss the deadline, but the second
reissue request responds on-time.

We shall show that G1+G2 ≤G∗SR . After this has been shown, it
follows that no DoubleR policy can achieve a lower tail-latency
than a SingleR policy with the same budget.

First, we provide a bound on G1.
Consider a SingleR policy that reissues requests at time d1 with

probability B ·Pr(X >d1)−1. Using this policy, the probability that a
query returns before time t is given by

Pr(Q ≤ t)=Pr(X ≤ t)+GSR,1 (11)
where,

GSR,1 = B

Pr(X >d1)Pr(X > t)Pr(Y ≤ t−d1) . (12)

Since G∗SR is the optimal policy for a budget B, we have that
GSR,1 ≤G

∗
SR . (13)

Multiplying both sides of Inequality (13) by q1Pr(X >d1)B−1

gives us the upper bound on G1 shown in Inequality (14).

G1 ≤
q1Pr(X >d1)

B
G∗SR (14)

Second, we provide an upper bound on G2.
We begin by formulating an upper bound onG2 that is a function

of q1. This requires a sequence of observations. We note that the
budget constraint for the DoubleR policy implies the following

inequality:
q1Pr(X >d1)+q2Pr(X >d2)(1−q1Pr(Y1 ≤d2−d1))≤B (15)

Then, given q1 Inequality (15) implies the following upper bound
on q2:

q2 ≤
B−q1Pr(X >d1)

Pr(X >d2)(1−q1Pr(Y1 ≤d2−d1)) . (16)

Finally, we incorporate this bound on q2 into the expression for
G2 given in Equation (10) to obtain an upper bound on G2 as a
function of q1.

G2 ≤
B−q1Pr(X >d1)

Pr(X >d2) γ Pr(X > t)Pr(Y2 ≤ t−d2) (17)

where, γ =(1−q1Pr(Y1 ≤ t−d1))/(1−q1Pr(Y1 ≤d2−d1)). Note that γ
is at most 1 since d2 is less than t which allows us to omit γ in
Inequality (17) to obtain a simpler (albeit weaker) upper bound on
G2.

Now consider a SingleR policy that reissues at time d2 with
probability BPr(X >d2)−1. The probability that a query using this
policy responds before time t is given by:

Pr(Q ≤ t)=Pr(X ≤ t)+GSR,2 (18)
where,

GSR,2 = B

Pr(X >d2)Pr(X > t)Pr(Y2 ≤ t−d2) . (19)

We have that for all positive a that aGSR,2 ≤aG∗SR . Let a=1−
q1Pr(X >d1)B−1, which is strictly positive since the budget con-
straint on the DoubleR policy implies the inequality q1Pr(X >d1)<
B.

Then, combining Equation (19) and Inequality (17) we have that

(20)
G2 ≤

(
1 − q1Pr(X > d1)

B

)
GSR,2

≤

(
1 − q1Pr(X > d1)

B

)
G∗SR .

Together the upper bounds on G1 and G2 imply that G1+G2 ≤
G∗SR , completing the proof. □

Theorem 3.2. The optimal SingleR and MultipleR reissue poli-
cies achieve the same kth percentile tail-latency when given the same
reissue budget B.

Proof. Assume as an inductive hypothesis that the theorem
holds for n- and (n+1)-time MultipleR policies. The base cases for
1-time and 2-time MultipleR policies follows from Theorem 3.1.

Consider an optimal (n+2)-time MultipleR policy Pn+2 with
reissue times d1,...,dn+2. To complete the inductive argument, we
will show that there exists an (n+1)-timeMultipleR policy with
reissue times d1,...,dn ,d ′ that achieves the same kth percentile tail-
latency.

Let Pn be the n-timeMultipleR policy obtained by taking the
first n reissue times and reissue probabilities in Pn+2. The policy Pn
consumes budget αB(≤B), where α ≤ 1.

Let Q[Pn] be a random variable representing the response-time
distribution of a query reissued using policy Pn .

Let’s now transform the original problem to a new but equivalent
problem of minimizing the kth percentile tail-latency of a workload
W ′ with primary response-time distribution Q[Pn] and reissue
response-time distribution Y .

We want to show that, for the workloadW ′, a reissue policy with
budget (1−α)B that reissues at timesdn+1 anddn+2 is aDoubleR pol-
icy. In particular, we want to show that its budget and reissue times
satisfy the condition of Inequality (5) under MultipleR definition,

i.e., the following two inequalities hold:
Pr(Q[Pn]≥dn+1)≥ (1−α)B (21)
Pr(Q[Pn]≥dn+2)≥ (1−α)B (22)

In order to show that Inequality (21) and Inequality (22) hold,
we use the induction hypothesis for n-time MultipleR policies to
obtain a lower-bound on Pr(Q[Pn]≥dn+1) and Pr(Q[Pn]≥dn+2).

Let k ′=(1−Pr(Q[Pn]>dn+1)) so that dn+1 is the k ′th percentile
tail-latency of Q[Pn]. Consider the original workloadW with pri-
mary response-time X and reissue response-time Y . By the in-
duction hypothesis for n-time MultipleR policies, there exists a
SingleR policy PSR with budget αB that achieves a k ′th percentile
tail-latency that is at most dn+1. Suppose that PSR reissues requests
at time d∗. Then, we have that

Pr(Q[Pn]>dn+1)≥Pr(Q[PSR]>dn+1) (23)
and that

Pr(Q[PSR]>dn+1)
Pr(X >dn+1) =1− αBPr(Y ≤dn+1−d∗)

Pr(X >d∗) (24)

By the definition of MultipleR we have that Pr(X >dn+1)≥B
and by the definition of SingleR that Pr(X >d∗)≥B. Together with
Inequality (23) this implies that

Pr(Q[Pn]>dn+1)≥Pr(Q[PSR]>dn+1)≥ (1−α)B (25)
Which proves that Inequality (21) holds. The proof that Inequal-

ity (22) holds follows an identical argument.
Therefore, we have shown that for the workloadW ′ the policy

which reissues requests at times dn+1 and dn+2 is a DoubleR policy.
By Theorem 3.1 it follows that there exists a SingleR policy that
reissues at some time d ′ which achieves the same kth percentile
tail-latency as this DoubleR policy. We can, therefore, replace
the (n+2)-timeMultipleR policy with an (n+1)-timeMultipleR
policy that reissues at times d1,...,dn ,d ′ that achieves the same kth
percentile tail-latency — completing the proof. □

Analysis with Correlation. The analysis in Theorem 3.1may be ex-
tended (with additional assumptions) to the case in which primary
and reissue response times are correlated. Consider a DoubleR
policy that reissues requests at times d1,d2, and let Q1 represent
the probability that either the primary or first reissue request (is-
sued at time d1) responds before time t . Then the analysis in Theo-
rem 3.1 holds if a) Pr(Y2 ≤ t−d2 |Q1> t)≤Pr(Y2 ≤ t−d2 |X > t), and b)
Pr(Y1 ≤d2−d1)|X >d2)≤Pr(Y1 ≤ t−d1 |X > t). The first assumption
(a) is fairly modest and is employed to simplify Inequality (15). Intu-
itively, assumption (a) states that the likelihood of a second reissue
request responding before time t−d2 decreases (or is unchanged) if
the first reissued request fails. The second assumption (b) is a tech-
nical requirement that allows our proof to use the budget constraint
in Inequality (15) in the correlated case. Specifically, assumption (b)
ensures that γ in Inequality (17) is at most 1. Informally, assumption
(b) states that the positive correlation between primary and reissue
response-times is weaker in the tail of the distribution (i.e. near
time t) than it is near the reissue times d1,d2. We note that in the
case where assumption (b) fails to hold, derived bounds on γ can
still be used to obtain competitive ratios.

The optimality of SingleR is a powerful result, restraining the
complexity of reissue policies to one time reissue only while guar-
anteeing its effectiveness.

4 SINGLER FOR INTERACTIVE SERVICES
This section presents how to use SingleR for interactive services:
We use a data-driven approach to efficiently find the appropriate
parameters, reissue time and probability, given sampled response
times of the workloads. We develop the parameter search algorithm
in 3 steps. (1) We start from a simple model in Section 4.1, assuming
the response times of primary and reissue requests are independent.

ComputeOptimalSingleR(RX , RY , k , B):
1 Q←RX
2 d∗←min{Q }
3 t←max{Q }
4 while Q ̸=∅
5 d←min{Q }
6 Q←Q−{d }
7 α←SingleRSuccessRate(RX ,RY ,B,t,d)
8 while α > k and t > d
9 Q←Q−{t }
10 t←max{Q }
11 d∗←d
12 α←SingleRSuccessRate(RX ,RY ,B,t,d)
13 q←1−DiscreteCDF(RX ,d∗)
14 return (d∗,q)
SingleRSuccessRate(RX , RY , B , t , d):
15 Pr(X ≤ t)←DiscreteCDF(RX ,t)
16 Pr(X >d)←1−DiscreteCDF(RX ,d)
17 Pr(Y ≤ t−d)←DiscreteCDF(RY ,t−d)
18 q←B/Pr(X >d)
19 α←Pr(X ≤ t)+q ·(1−Pr(X ≤ t)) ·Pr(Y ≤ t−d)
20 return α

DiscreteCDF(R , t):
21 s← |{x ∈R; x < t } |
22 return s/ |R |

Figure 1: Pseudocode for the data-driven algorithm for find-
ing the optimal SingleR policy.

We present an algorithm ComputeOptimalSingleR that computes
optimal reissue time and probability, minimizing tail latency. Our al-
gorithm is computationally efficient, taking O(N logN) time where
N is the number of response time samples. (2) We extend the algo-
rithm in Section 4.2 to incorporate correlation between reissue and
primary requests, guaranteeing optimality on parameter selection
while offering the same computational efficiency of O(N logN). (3)
We show how to adaptively refine a SingleR policy to take into
account additional queueing delays introduced to the system by
the reissue requests in Section 4.3.

4.1 Parameter Search
The ComputeOptimalSingleR(RX ,RY ,k,B) procedure (in Fig-

ure 1) computes the optimal SingleR policy to minimize the kth
percentile tail-latency of an interactive service with reissue budget
B. The response-time distributions for the service are represented
using two sets of samples: a set RX of response times for primary
requests; and, a set RY of response times for reissued requests,
accommodating the cases in which these distributions differ, e.g.,
when reissue requests are executed using dedicated or specialized
resources. The output of the procedure is the reissue time d∗ and
the reissue probability q for the SingleR policy.

ComputeOptimalSingleR searches for the optimal reissue time.
We preserve the following invariant throughout the procedure —
the SingleR policy that reissues requests at time d∗ achieves a
kth percentile tail-latency of at most t . The procedure begins on
lines 2–3 by selecting a trivial policy that reissues all requests at
time d∗←min{RX } and achieves a kth percentile tail-latency of
t←max{RX }. A search is then performed on lines 4–12 for each
reissue time d ∈RX to determine if the SingleR policy reissuing
at time d achieves a kth percentile tail-latency smaller than t . For
each time d , the success-rate α of the SingleR policy that reissues
at time d is computed on line 7, which is the probability that a
query is serviced before time t . If this success rate is greater than
the tail-latency percentile target k , we replace d∗ with d∗←d and

decrease t to max{RX −{t }} while preserving the invariant. This
iterative refinement of the policy is repeated on lines 8–12 until the
success rate α of the SingleR policy reissuing at time d is less than
k . By then, we find the optimal d∗ value, and its corresponding q
value is computed at line 13.

Complexity. ComputeOptimalSingleR is computationally ef-
ficient with complexity of Θ(N +Sort(N)) where N is the number
of samples, and Sort(N) is the time required to sort N response
times. In particular, the list of potential reissue times Q is initial-
ized with N response times. Each time SingleRSuccessRate is
invoked one element is removed from Q . Therefore, SingleRSuc-
cessRate can be invoked at most N times. SingleRSuccessRate
evaluates three cumulative distribution functions DiscreteCDF on
lines 15–17. Although the success rate α computed on line 19 is not
necessarily monotonic as a function of (t ,d), its composite CDFs are
monotonic in t , d , and t−d respectively. As a result, the amortised
cost of DiscreteCDF is O(1) with a careful analysis considering
order statistics and using finger search tree [3, 12]. DiscreteCDF
takes pre-sorted response time samples as inputs, where the sorting
takes Θ(Sort(N)) time. Summing them together, the complexity of
ComputeOptimalSingleR is Θ(N +Sort(N)).

4.2 Incorporating Response-Time Correlations
The response-time of a request can be divided into two components:
the amount of time a request waits in a server’s queue before being
processed (the queueing time), and the time required execute the
request (the service time). The response-times of primary and
reissue requests, however, will often be correlated. For example,
queries within a workload can have different service times: a query
with high service time (e.g., many instructions) is likely to take long
for both primary and reissue requests. The system’s instantaneous
load may be similar upon the arrival of the primary and reissue
requests.

Correlations between primary and reissue requests influence the
probability that a reissue request will respond before a tail-latency
deadline. This influence can be taken into account in ComputeOp-
timalSingleR by modifying line 19 of SingleRSuccessRate in
Figure 1 to use the conditional distribution Pr(Y ≤ t−d |X > t) in
place of Pr(Y ≤ t−d).

The conditional distribution Pr(Y ≤ t−d |X > t) may be estimated
efficiently by using a 2D orthogonal range query data structure
[1, 22] over pairs (tx ,ty) where tx and ty are the primary and reissue
response times.

Each range query performed within SingleRSuccessRate takes
O(logN) time, and SingleRSuccessRate is invoked at most 2N
times by ComputeOptimalSingleR. Therefore, the procedure Com-
puteOptimalSingleR which takes into account correlation com-
putes the optimal SingleR policy in Θ(N lgN) time.

4.3 Iterative Adaptation for Queue Delays
The queueing delay of requests in a workload depends on the arrival
process to a service. The use of a reissue policy can perturb this
arrival process and change the response-time distributions used by
ComputeOptimalSingleR to find a SingleR policy.

The impact of added load on a workload’s response-time distri-
butions can be significant. Consider the inverse CDFs illustrated in
Figure 2a for Original and Primary requests1. The Original curve il-
lustrates the inverse CDF of the original primary response-time dis-
tribution of the system when no requests are reissued. The Primary
curve illustrates the new inverse CDF of the primary response-time
distribution when using a SingleR policy with a 30% reissue budget.
The impact of these reissue requests on the primary response-time
distribution is dramatic: the 85th percentile grows from 50 to 350.

1The corresponding simulation setup for Figure 2a is discussed in Section 5.

0
50

100
150
200
250
300
350
400
450
500

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

T

CDF (T)

Original
SingleR
Reissue
Primary

(a) Inverse CDF.

50
100
150
200
250
300
350
400
450

0 1 2 3 4 5 6 7 8 9 10

T

Adaptive Trial

Predicted
Actual

(b) Adaptive algorithm.

Figure 2: Convergence of the adaptive SingleR policy on
a workload with correlated service-times and queueing de-
lays.

We employ an adaptive approach to iteratively refine a SingleR
policy in-response to changes in the response-time distribution.
First, we begin with a reissue policy P that reissues requests at time
d =0 with probability B. We then execute the system with the reis-
sue policy and sample the response-time distributions of primary
and reissue requests. The sampled response-time distributions are
used within ComputeOptimalSingleR to compute the optimal
SingleR policy Plocal for these response-time distributions. Next,
we obtain a new policy P ′ that has reissue delay d ′=d+λ(dlocal−d)
where λ is a learning rate. Finally, this process is repeated until
the empirical kth percentile tail-latency converges to the value
predicted by ComputeOptimalSingleR and the empirical reissue
rate converges to B.

This adaptive approach is based upon two observations: a) using
the same budget, reissuing later tend to impact load more as it is
more likely to reissue requests with more work and higher resource
demands; and, b) small changes to the reissue delay result in only
small changes to the response-time distributions. Observation (a)
implies that the predicted kth percentile tail-latency at each step
of ComputeOptimalSingleR increases after each step of the al-
gorithm. Observation (b) implies that for sufficiently small λ that
the true optimal reissue time dopt lies between d ′ and dlocal at each
step of the algorithm.

Figure 2b shows the 95th percentile tail-latency achieved on each
step of the adaptive algorithm using a learning rate of 0.2 for a
SingleR policy with a reissue budget of 30%. Convergence can be
detected by comparing the policy optimizer’s predicted tail-latency
with the observed latency when using the policy. For this workload,
convergence is achieved after ≈6 iterations.

4.4 Extended Scenarios
The tools and algorithms presented in the preceding sections can
be applied to handle common scenarios that occur in practice. Since
space limitations prohibit an exhaustive examination of each of
these scenarios, we shall instead sketch a few strategies for address-
ing common use cases.

Varying load / response-time distributions. In practice a system’s
response-time distribution can vary over time on both short (hourly,
daily), and long (monthly, yearly) time scales. The iterative algo-
rithm for adaptively refining a SingleR policy can be applied in an
on-line fashion to address these temporal variation, but requires
modifications which depend on specific application needs and the
time-scale of interest to properly balance exploration and exploita-
tion in its search.

Selecting optimal reissue budget. The adaptive algorithm described
in this section assumes the use of a fixed reissue budget. As we
learned in Section 2, SingleR policies are able to reduce tail-latency
in a “smooth” fashion even with very small reissue budgets. As a
consequence, the tail-latency reduction of SingleR as a function
of the reissue budget tends to be a parabola whose extrema can be
readily found through simple binary search techniques.

To evaluate the practicality of this simple approach, we imple-
mented a simple budget selection procedure that performs the
following steps: 1) set δ =1% and set best-budget=0; 2) for bud-
get best-budget+δ run the adaptive SingleR policy optimizer for
5 adaptive trials to produce reissue policy P ; 3) collect response-
time data from the system when using reissue policy P ; 4) if the
budget best-budget+δ has smaller 99th percentile tail-latency than
best-budget, then set δ =3δ/2. Otherwise, set δ =−δ/2. An example
of this binary search procedure is presented later in Figure 8 as part
of our system experiments in Section 6.

Meeting tail-latency with minimal resources. Interactive services
often formulate service-level agreements (SLA) that guarantee a
fixed latency for k% of all requests. In such a scenario, a system
designer may be interested in minimizing the resources required to
satisfy the SLA. Given a particular tail-latency target T , the budget
can be minimized using either a brute force search, starting at small
reissue rates, or by using a variation of the binary search procedure
for finding the optimal budget that transforms tail-latency values L
using the function f (L)=min{T ,L}.

5 SIMULATIONS
In this section we use a discrete-time event simulator to carefully
evaluate the behavior and tail-latency impact of SingleR policies.
Simulation allows us to vary workload and system properties cov-
ering a wide range of scenarios.

First, we provide simulation results on three types of workloads:
Independent, Correlated, and Queueing, corresponding to the three
workload models in Section 4. This experiment demonstrates two
points: a) Randomness in SingleR is, in fact, especially important
for workloads with correlated service-times and queueing delays;
and, b) The optimal SingleR policy takes workload characteristics
into account in order to maximize the value of each reissued request.

Next, we conduct a sensitivity study that varies the Queueing
workload along many dimensions: utilization, service time distri-
bution, percentile targets, strength of service-time correlations,
load balancing strategies, and request prioritization strategies. The
results demonstrate SingleR is effective and robust over varying
workloads and system design properties.

5.1 Simulated Workload
Figure 3 provides simulation results on a set of three workloads:
Independent, Correlated, and Queueing. The service-times in each
workload are drawn from a Pareto distribution with shape param-
eter 1.1 and mode 2.0.

In the Independent workload, the service-times of primary and
reissue requests are independent and have no queueing delays (i.e.
there are an infinite number of servers). In the Correlated workload,
the primary and reissue request service-times are correlated via
the relationship Y =rx+Z where x is the sampled primary request
service-time, Z is an independently drawn service-time, and r =0.5
is a linear correlation ratio. In the Queueing workload, requests
have correlated service-times and arrive according to a Poisson
process. The request is dispatched to the FIFO queue of one of 10
servers selected uniformly at random. The arrival rate is chosen to
achieve a system utilization of 30%.

Figure 3a compares the 95th percentile tail-latency reduction
achieved by the optimal SingleR and SingleD policies for varied
reissue budgets. For the Queueing workload, both the SingleR and
SingleD policies are selected using adaptive policy refinement (for
the SingleD policy this adaptive refinement is needed to ensure
the reissue budget is satisfied). Figure 3b illustrates the “remedia-
tion rate” of SingleR and SingleD policies. The remediation rate
measures the average value of added (i.e. actually issued) reissue re-
quests and is defined to be the probability that a primary request X
exceeds a tail-latency target t , but the reissued request Y responds

before time t−d , i.e. Pr(X > t ∩Y < t−d). Figure 3c plots the reissue
times and probabilities used by the optimal SingleR policy for each
budget.

5.2 Benefits of Randomization
The results of Figure 3a illustrates the benefits of randomization
in reissue policies. For all three workloads, there exists a range of
reissue budgets for which the SingleD policy is ineffective at reduc-
ing the 95th percentile tail-latency. On the Independent workload
a SingleD policy is unable to achieve any tail-latency reduction
when the reissue budget is less than 5%. On the Correlated workload,
SingleD policies are ineffective for reissue budgets less than 10%.
Worst of all, SingleD policies actually increases the 95th percentile
latency of the Queueing workload with reissue budgets less than
10% — since these reissued requests increase system load.

In contrast, SingleR is able to reduce the 95th percentile tail-
latency for all reissue budgets on the Independent and Correlated
workloads. On the Queueing workload, SingleR begins to reduce
tail-latency once the reissue budget is greater than 3%. For all three
workloads, randomization allows for SingleR to achieve better
tail-latency reduction than SingleD for budgets less than 15%.

5.3 Impact of Correlation and Queueing
The procedure outlined in Section 4 for finding an optimal SingleR
policy takes into account the properties of the primary and reissue
response-time distributions, and adapts to queueing delays. By
inspecting the three workloads in Figure 3, we can gain insight into
how SingleR reissue policies are able to outperform SingleD.

The goal of ComputeOptimalSingleR is to find a SingleR pol-
icy that minimizes the workload’s kth percentile tail-latency with a
reissue budget of B. One can think of ComputeOptimalSingleR as
searching over all policies that use budget B in order to find the pol-
icy which maximizes the value of each added request. A convenient
measure of the “value“ of each reissue request is its remediation rate
— i.e. the probability that the redundancy provided by the reissue
request was necessary for the query to meet its tail-latency target.

Figure 3c illustrates the way in which SingleR changes its choice
of reissue delay and probability based upon the reissue budget and
workload characteristics. We shall discuss the behavior of SingleR
policies for each of our three workloads in the case where the
reissue budget is 10%.

On the Independent workload, the optimal SingleR policy reis-
sues requests with probability 0.7 at a time d where approximately
15% primary requests remain outstanding — resulting in approxi-
mately 10% of all requests being reissued in total. On the Correlated
workload, the optimal SingleR policy chooses to reissue requests
with probability 0.4 at a time d where 25% of requests are outstand-
ing.

On the Correlated workload, the optimal SingleR policy must
reissue requests earlier due to service-time correlations. When
optimizing its success rate it takes into account the fact that if a
query’s primary request exceeds a tail latency target, there is a
higher chance of its reissue request responding slowly. By reissuing
requests earlier in time, the probability that the reissued request
will help tail latency (i.e. the remediation rate) increases. Therefore,
on this workload the optimal policy reissues requests earlier at a
time d when 40% of requests are outstanding, and reissues with a
smaller probability of 25%.

On the Queueing workload, the optimal SingleR policy reissues
requests with probability 0.8 at a time d where approximately 13%
of requests are outstanding. Although this workload’s service-times
are correlated, the latency of requests in the tail of the response-
time distribution is dominated by queueing delays which depends
on the service process as well as on request arrival process and load
balancing. Indeed, we can observe in Figure 4b that the addition
of queueing delays dampens the strength of correlation between

In
de

pe
nd

en
t

1
1.2
1.4
1.6
1.8

2
2.2
2.4
2.6
2.8

3

0 0.1 0.2 0.3

95
th

La
te
nc
y
Re

du
ct
io
n
Ra

tio

Reissue Rate

SingleR
SingleD

C
or
re
la
te
d

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

0 0.1 0.2 0.3

95
th

La
te
nc
y
Re

du
ct
io
n
Ra

tio

Reissue Rate

SingleR
SingleD

Q
ue

ue
in
g

0.5

1

1.5

2

2.5

3

0 0.1 0.2 0.3

95
th

La
te
nc
y
Re

du
ct
io
n
Ra

tio

Reissue Rate

SingleR
SingleD

(a) Tail-latency reduction ratio.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.1 0.2 0.3

Re
m
ed
ia
tio

n
Ra

te

Reissue Rate

SingleR Remediation
SingleD Remediation

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.1 0.2 0.3

Re
m
ed
ia
tio

n
Ra

te

Reissue Rate

SingleR Remediation
SingleD Remediation

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.1 0.2 0.3

Re
m
ed
ia
tio

n
Ra

te

Reissue Rate

SingleR Remediation
SingleD Remediation

(b) Reissue remediation rate.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.1 0.2 0.3

Pr
ob
ab
ili
ty

Reissue Rate

% Requests Outstanding at d
Reissue Probability

Budget

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.1 0.2 0.3

Pr
ob
ab
ili
ty

Reissue Rate

% Requests Outstanding at d
Reissue Probability

Budget

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.1 0.2 0.3

Pr
ob
ab
ili
ty

Reissue Rate

% Requests Outstanding at d
Reissue Probability

Budget

(c) Reissue time and probability.

Figure 3: Simulation results for SingleR and SingleD policies with varied reissue budgets on three simulated workloads: Inde-
pendent, Correlated, and Queueing.

0

500

1000

1500

2000

0 500 1000 1500 2000

Re
iss

ue
Ti
m
e

Primary Time

(a) Correlated

0

500

1000

1500

2000

0 500 1000 1500 2000

Re
iss

ue
Ti
m
e

Primary Time

(b) Queueing

Figure 4: Response-time correlations between primary and reissue requests on the Correlated and Queueing workloads. The
service-time X of the primary request is drawn from a Pareto distribution with shape 1.1 and mode 2. The service-time Y of a
reissued request is drawn fromY =rx+Z , where x is the observed service-time of the primary request, Z is drawn from a Pareto
distribution with shape 1.1 and mode 2, and r =0.5.

0
100
200
300
400
500
600
700
800

0 0.2 0.4 0.6 0.8

Ti
m
e
(m

s)

Linear Correlation Ratio

95th percentile
No Reissue

(a) Correlation

8
16
32
64

128
256
512

1024

0 0.1 0.2 0.3 0.4 0.5

95
th

Pe
rc
en
til
e
La
te
nc
y
(m

s)

Reissue Rate

Random
Min of Two
Min of All

(b) Load-balancing

64

128

256

512

1024

0 0.1 0.2 0.3 0.4 0.5

95
th

Pe
rc
en
til
e
La
te
nc
y
(m

s)

Reissue Rate

Baseline FIFO
Prioritized FIFO
Prioritized LIFO

(c) Queuing
Figure 5: Illustrates impact of correlation ratio (Figure 5a), load-balancing strategies (Figure 5b), and server’s queue-
management policies (Figure 5c) on the 95th percentile tail-latency of the Queueing workload.

P95 P99

Lo
gN

or
m
al
(1
,1
)

1

1.5

2

2.5

3

0 0.1 0.2 0.3 0.4 0.5

95
th

La
te
nc
y
Re

du
ct
io
n

Reissue Rate

LN (1,1), 20% Util
LN (1,1), 30% Util
LN (1,1), 50% Util

1

1.5

2

2.5

3

0 0.1 0.2 0.3 0.4 0.5

99
th

La
te
nc
y
Re

du
ct
io
n

Reissue Rate

LN (1,1), 20% Util
LN (1,1), 30% Util
LN (1,1), 50% Util

Ex
po

ne
nt
ia
l(
0.
1)

1

1.5

2

2.5

3

0 0.1 0.2 0.3 0.4 0.5

95
th

La
te
nc
y
Re

du
ct
io
n

Reissue Rate

Exp(0.1), 20% Util
Exp(0.1), 30% Util
Exp(0.1), 50% Util

1

1.5

2

2.5

3

0 0.1 0.2 0.3 0.4 0.5

99
th

La
te
nc
y
Re

du
ct
io
n

Reissue Rate

Exp(0.1), 20% Util
Exp(0.1), 30% Util
Exp(0.1), 50% Util

Figure 6: The 95th percentile tail-latency P95 and the 99th percentile tail-latency P99 for Exp(0.1) and LogNormal(1,1) distribu-
tions with varied reissue rates and system utilization.

primary and reissue requests. Although the preexisting correlation
can still be observed, the structure of the joint-distribution exhibits
more randomness due to request queueing time. This provides
an explanation for why SingleR, and reissuing in general, can
achieve more latency reduction on the Queueing workload than
the Correlated workload, as shown in Figure 3a.

This experiment shows that SingleR optimizes the choice of
reissue time and probability based upon workload characteristics,
maximizing the benefit of reissued requests for tail-latency reduc-
tion.

5.4 Sensitivity Study
We study the sensitivity of SingleR to workload properties and
design choices, including: utilization, service-time distribution, tar-
get latency percentiles, correlation among requests, load-balancing
among servers, and changing the priority processing reissued re-
quests. As a baseline, we use a variant of the Queueing workload
from Section 5.1 without service-time correlations unless otherwise
specified.

Utilization, Service Time Distribution and Percentiles. We use Log-
Normal(1,1) and Exponential(0.1) as service time distributions
and measure P95 and P99 tail latency reduction for three utilization
levels: 20%, 30%, and 50%.

Figure 6 illustrates the P95 and P99 tail-latency reduction (Y-
axis) achieved by SingleR policies over a range of reissue budgets
(X-axis) compared to the original tail-latencies when no requests

are reissued. The results demonstrate: (1) Reissue obtains higher
benefit under less loaded systems, but even at rather high load of
50% utilization, SingleR achieves latency reduction of up to 1.5
times. (2) The benefit of reissue tends to increase for higher target
percentiles.

Correlation. Weuse the same default Pareto distribution tomodel
service time, and progressively increase the service time correlation
ratio r between the primary request and its corresponding reissued
request (defined in Section 5.1). The P95 latency without reissue is
567, and is independent of the correlation ratio r . Figure 5a reports
P95 latency of SingleR using a fixed reissue rate of 25% as a function
of the correlation ratio. As expected, the less service-times are
correlated the larger benefit reissuing has on tail-latency. Even
when primary and reissue requests are strongly correlated (e.g.
r =1) SingleR is still able to reduce the response-times of queries
delayed due to queueing delays.

Load-balancing. Figure 5b shows the impact of different load-
balancing strategies on tail latency. We make two observations: (1)
Using more sophisticated load-balancing strategies such asMin-of-2
(select the server with shorter queue among two randomly selected
servers to dispatch a request) or Min-of-All (select the server with
the shortest queue among all servers to dispatch a request) helps
reduce the P95 tail-latency relative to the simpler Random strategy
that picks a server uniformly at random. (2) In all cases, SingleR
reduces the P95th latency by a factor of 2 or more.

Changing priority of reissued requests. We study three priority
settings: (1) Baseline FIFO corresponds to a server maintaining a
FIFO single queue, and does not differentiate between primary and
reissue requests. (2) Prioritized FIFO corresponds to a server that
maintains two separate FIFO queues for primary and reissue re-
quests, and only processes reissue requests when the primary queue
is empty: preventing multiple reissued requests from delaying a
primary request. (3) Prioritized LIFO is the same as Prioritized FIFO
but processes the reissue queue in LIFO order. Figure 5c compares
the three systems and shows that changing the priority scheme has
a modest impact on the tail latency improvements of SingleR.

The overall results in this section show that SingleR and its
adaptive policy optimizer is robust and reduces the tail latency for
these different system design choices and workload characteristics.

6 EXPERIMENTAL EVALUATION
We evaluate SingleR policies in two distributed systems based on
Redis [32] which is a key-value store that supports stored proce-
dures, and Lucene [21] which is an enterprise search engine. Our
main target is reducing the P99 tail latency.

6.1 Experimental Setup and Workloads
We use a cluster of 10 servers to execute the workload. Each server
has a dual-core 2.4 GHz Intel E5-2676 processor and 32GB of RAM.
The data sets and its associated indices both for Redis and for
Lucene fit in the main memory. To execute each query workload,
we employ several machines emulating clients that send requests
in an open loop with exponential inter-arrival times.

To enable request reissuing, we assign each primary request a
timestamp, and add it to a FIFO queue so that the request can be
reissued later. A reissue thread consumes the entries from the FIFO
queue, and dispatches the request to a server after a policy-specified
delay. Prior to sending a reissue request, the completion status of
its associated query is checked using a client-local boolean array.

All reported system utilizations refer to CPU utilization on a
single core as measured by the Linux sysstat [11] utility. We use
10 adaptive iterations (with learning rate λ=0.5) to compute the
SingleD and SingleR policies satisfying the reissue budget. The
measured reissue rate and the target reissue budget tend to closely
agree with the predictions of the reissue policy optimizer and thus
we report only the empirical rate in all figures.

6.2 Redis Set-Intersection Workload
The Redis workload consists of set-intersection queries performed
over a synthetic collection of 1000 sets. Each set stores a random
subset of integers in the range 1 and 106, and set cardinalities are
distributed according to a lognormal distribution. Query traces
consist of 40,000 intersections between randomly selected pairs of
sets.

The service-time distribution for the Redis set-intersection work-
load is illustrated in Figure 9 discretized into 20 msec bins. Over 98%
of set-intersection queries in this workload have a service-time less
than 10 msec. Indeed, the workload’s mean service time µR =2.366
milliseconds and standard deviation σR =8.64 may lead us to expect
request latencies to be well-behaved, even in the tail.

A handful of queries (≈20), however, have service times greater
than 150 msec. These queries correspond to the rare case in which
an intersection is performed between two abnormally large sets.
These rare queries do little to skew the aggregate statistics of the
workload’s service-time distribution, but have a substantial impact
on tail-latency. As shown in Figure 7b, the 99th percentile tail-
latency for the set-intersection workload is 900 msec when one
does not reissue requests.

These “queries of death” are a common problem in database
applications, and their impact on tail-latency can be difficult to
predict apriori. In particular, the influence of these requests depends

to a large extent on the queueing mechanisms used in the system.
In Redis, requests are serviced in a round-robin fashion from each
active client connection in a batch. If even a single client issues
a long-running request, then the requests of all other clients will
be delayed until completion. Furthermore, in an open-loop system
such delays lead to a backlog of requests that further extends the
impact of the slow request for multiple rounds.

Tail Latency Reduction under SingleR and SingleD. On the Redis
workload, the SingleR and SingleD policies are able to reduce
the P99 latency at 40% utilization from 900 milliseconds to 400
milliseconds. SingleR is able to meet this target P99 latency with a
budget of just ≈3.5%, whereas SingleD requires a budget of at least
5%. For reissue budgets between 3 and 5%, the reissue probability of
SingleR increases from 0.8 to 1.0 so that for budgets greater than
5% SingleR and SingleD are equivalent.

Figure 7a shows the P99 latency in msec (Y-axis) against the
reissue rates between 0 and 6% (X-axis) for SingleR and SingleD.
Both Redis (top figure) and Lucene (bottom figure) running at 40%
baseline utilization without any reissue.

We make two observations: First, both the SingleR and SingleD
curves illustrate reduced tail latency relative to the baseline system
without reissuing. Second, we note that the SingleR policy achieves
strictly better tail-latencies than SingleD for small reissue rates.
For example at 2% reissue rate in Redis, SingleR reduces the P99
latency to 405 msec, compared to 900 msec for the baseline system
and 820 msec for SingleD.

Varied System Utilization. Next, we illustrate the performance of
SingleR under three system utilization levels: 20%, 40%, and 60% in
Figure 7b, which depicts the P99 latency against fixed reissue rate.
For all utilizations between 20−60%, SingleR is able to reduce the
99th percentile tail latency.

In particular, at 60% utilization (which is very high for interactive
services) SingleR with a 3% reissue rate reduces the Redis P99
latency from 1750 msec to 1000 msec, and the Lucene P99 latency
from 1603 msec to 1157 msec.

The best latency reduction occurs when choosing the optimal
reissue rate, which depends on the system utilization. For 20%
utilization, we illustrate the process of finding the optimal reissue
rate via binary search in Figure 8. At 20% utilization the best reissue
budget is approximately 8%. At both 40% and 60% utilization, the
best reissue rate is approximately 5%.

Figure 7c illustrates the best tail-latency achieved by a SingleR
policy for the Redis workload for utilizations between 20% and 60%.
The Best Reissue Rate curve illustrates the P99 latency achieved by
the best SingleR policy (with reissue rate determined via a binary
search procedure), and the No Reissue curve illustrates the P99
latency of the baseline system without reissuing.

6.3 Lucene Search Workload
The Lucene searchworkload consists of search queries over a corpus
of 33million articles from the EnglishWikipedia dataset [9]. Queries
are drawn randomly from a set of 10,000 queries from the Lucene
nightly regression tests [23].

The service-time distribution for queries in the search workload
contrasts with set-intersection in that it is not as highly skewed to-
wards very-low latencies. The distribution for search service-times
is illustrated in Figure 9 discretized into 20 msec bins. Approxi-
mately 90% of all requests have service times between 1 and 70
msec, and the overall distribution has mean service-time µL =39.73
msec with standard deviation σL =21.88.

Similar to the set-intersection workload, the search workload
also has rare slow queries. Approximately 1% of search queries
have service-times greater than 100 msec. The impact of these
slow queries on tail-latency, however, is different in Lucene than
in Redis. At 40% utilization, the search workload’s 99th percentile

R
ed

is
Se
t-
In
te
rs
ec
ti
on

300

400

500

600

700

800

900

1000

0 0.01 0.02 0.03 0.04 0.05 0.06

99
th

Pe
rc
en
til
e
La
te
nc
y
(m

s)

Reissue Rate

SingleR
SingleD

0

500

1000

1500

2000

2500

3000

0 0.1 0.2 0.3 0.4 0.5

99
th

Pe
rc
en
til
e
La
te
nc
y
(m

s)

Reissue Rate

20% Utilization
40% Utilization
60% Utilization

0
200
400
600
800

1000
1200
1400
1600

20 25 30 35 40 45 50 55 60

99
th

Pe
rc
en
til
e
La
te
nc
y
(m

s)

Utilization

Best Reissue Rate
No Reissue

Lu
ce
ne

Se
ar
ch

340
350
360
370
380
390
400
410
420
430
440

0 0.01 0.02 0.03 0.04 0.05 0.06

99
th

Pe
rc
en
til
e
La
te
nc
y
(m

s)

Reissue Rate

SingleR
SingleD

(a) SingleR vs SingleD

200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400

0 0.02 0.04 0.06 0.08

99
th

Pe
rc
en
til
e
La
te
nc
y
(m

s)

Reissue Rate

20% Utilization
40% Utilization
60% Utilization

(b) Latency vs Reissue Rate

200

400

600

800

1000

1200

1400

1600

20 25 30 35 40 45 50 55 60

99
th

Pe
rc
en
til
e
La
te
nc
y
(m

s)

Utilization

Best Reissue Rate
No Reissue

(c) Best Latency vs Utilization

Figure 7: System experiment results for the Redis and Lucene workloads. Figure 7a compares the P99 latency of SingleR and
SingleD for reissue budgets between 0 and 6% at 40% utilization. Figure 7b shows the P99 latency for SingleRwith varied reissue
rates for 20%, 40%, and 60% utilization. Figure 7c shows the P99 latency achieved when using the best reissue budget and a
SingleR policy for utilizations ranging from 20% to 60%.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 2 4 6 8 10 12 14

Bu
dg

et

Trial Num

Trial Budget
Best Budget

80

90

100

110

120

130

140

150

0 2 4 6 8 10 12 14

99
th

pe
rc
en
til
e
(m

s)

Trial Num

Trial Latency
Best Latency

Figure 8: Illustration of binary search for optimal budget for
the Intersection Counting query tominimize 99th percentile
tail-latency. 20% utilization.

1
4

16
64

256
1024
4096

16384
65536

10 30 50 70 90 110 130 150 170 190 210 230

N
um

Re
qu

es
ts

Service Time (ms)

Lucene

1
4

16
64

256
1024
4096

16384
65536

10 30 50 70 90 110 130 150 170 190 210 230

N
um

Re
qu

es
ts

Service Time (ms)

Redis

Figure 9: Service time distributions for the Redis set-
intersection and Lucene search workloads.

latency is ≈435 msec when there are no reissued requests. This
is not entirely due to the differences in service-time distribution,
although it certainly is an important influence. The Lucene search
server also differs in how it manages concurrent requests. Requests
from all open connections are placed into a single FIFO queue which
results in relatively good tail-latency behavior — FIFO is, in fact,
optimal for light-tailed service-time distributions [28].

Tail Latency Reduction under SingleR and SingleD. On the Lucene
workload, we observe in Figure 7a that SingleR reduces Lucene’s
P99 latency at 40% utilization from 433 milliseconds to 339 millisec-
onds, and the SingleD policy reduces P99 to 346 milliseconds. This
gap, while small, is not merely measurement noise — all reported
values reflect the median of multiple runs.

The improved performance of the SingleR policy is due to its
use of randomization that allows it to reissue queries earlier than
SingleD. At 40% utilization, the optimal reissue rate for SingleR
is 4%, and the optimal policy reissues requests with probability
approximately 0.75. As the reissue rate grows the achieved latency
gap between SingleR and SingleD closes, and the reissue probabil-
ity of the optimal SingleR policy converges to 1.0. Randomization
is more valuable on the Lucene search workload than it was for
Redis because of the much higher mean service time of requests.

Varied System Utilization. Next, we illustrate the performance of
SingleR under three system utilization levels: 20%, 40%, and 60% in
Figure 7b, which depicts the P99 latency against fixed reissue rate.

SingleR reduces the tail-latency of Lucene search workload for
all utilizations between 20−60%. At 60% utilization (high load),
SingleR reduces the P99 latency from 1603 to 1157 msec. Figure 7c
illustrates the best tail-latency achieved by a SingleR policy for the
Lucene workload for utilizations between 20% and 60%. The Best
Reissue Rate curve illustrates the P99 latency achieved by the best
SingleR policy (with reissue rate determined via a binary search
procedure), and the No Reissue curve illustrates the P99 latency of
the baseline system without reissuing. We observe significant tail
latency reduction due to SingleR over the baseline.

7 CONCLUSION
We have illustrated principled methods of generating reissue poli-
cies for interactive services. By operating within a simplified model,
we were able to prove that SingleR is an optimal compromise be-
tween the commonly used immediate and delayed reissue strategies.
There are a few general lessons that we think are useful to impart:
a) there is little reason to choose a reissue policy more complex than
SingleR if that additional complexity does not leverage application-
specific insight; and, b) reissue policies that reduce tail-latency as
a “smooth” function of their budget admit relatively simple strate-
gies for adapting to load-dependent queueing delays and searching
for optimal reissue budgets. As we have shown, we were able to
adapt SingleR policies to systems and workloads with a wide range
of properties through iterative adaptation. As we have seen, this
leads to a simple process for finding effective reissue policies in
real systems: SingleR is able to reduce tail-latency in simulated
and real-world workloads even when reissuing a small fraction of
requests.

REFERENCES
[1] Pankaj K Agarwal. 1996. Range Searching. Technical Report. DTIC Document.
[2] David G Andersen, Hari Balakrishnan, M Frans Kaashoek, and Rohit N Rao. 2005.

Improving web availability for clients with MONET. In Proceedings of the 2nd
conference on Symposium on Networked Systems Design & Implementation-Volume
2. USENIX Association, 115–128.

[3] Mark R Brown and Robert E Tarjan. 1980. Design and analysis of a data structure
for representing sorted lists. SIAM journal on computing 9, 3 (1980), 594–614.

[4] Fay Chang, JeffreyDean, SanjayGhemawat,Wilson C. Hsieh, DeborahA.Wallach,
Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. 2008.
Bigtable: A Distributed Storage System for Structured Data. ACM Trans. Comput.
Syst. 26, 2, Article 4 (June 2008), 26 pages. https://doi.org/10.1145/1365815.1365816

[5] Inc. DataStax. 2016. DataStax Distribution of Apache Cassandra 3.x. (2016).
http://docs.datastax.com/en/cassandra/3.x/pdf/cassandra3x.pdf

[6] Jeffrey Dean and Luiz André Barroso. 2013. The Tail at Scale. Commun. ACM 56,
2 (2013), 74–80.

[7] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,
and Werner Vogels. 2007. Dynamo: amazon’s highly available key-value store.
In SOSP.

[8] Tobias Flach, Nandita Dukkipati, Andreas Terzis, Barath Raghavan, Neal Card-
well, Yuchung Cheng, Ankur Jain, Shuai Hao, Ethan Katz-Bassett, and Ramesh
Govindan. 2013. Reducing web latency: the virtue of gentle aggression. In ACM
SIGCOMM Computer Communication Review, Vol. 43. ACM, 159–170.

[9] Wikimedia Foundation. 2016. Wikipedia: Database. (2016). https://en.wikipedia.
org/wiki/Wikipedia:Database_download

[10] Kristen Gardner, Samuel Zbarsky, Sherwin Doroudi, Mor Harchol-Balter, and Esa
Hyytia. 2015. Reducing latency via redundant requests: Exact analysis. In Pro-
ceedings of the 2015 ACM SIGMETRICS International Conference on Measurement
and Modeling of Computer Systems. ACM, 347–360.

[11] Sébastien Godard. 2004. Sysstat: System performance tools for the Linux OS.
(2004).

[12] Leo J Guibas, Edward M McCreight, Michael F Plass, and Janet R Roberts. 1977.
A new representation for linear lists. In Proceedings of the ninth annual ACM
symposium on Theory of computing. ACM, 49–60.

[13] James Hamilton. 2009. The Cost of Latency. (2009). http://per-spect-ives-.
mvdirona.com-/2009/10/31/TheCostOfLatency.aspx

[14] Y. He, S. Elnikety, J. Larus, and C. Yan. 2012. Zeta: Scheduling Interactive Services
with Partial Execution. In ACM Symposium on Cloud Computing (SOCC). 12.

[15] Virajith Jalaparti, Peter Bodik, Srikanth Kandula, Ishai Menache, Mikhail Ry-
balkin, and Chenyu Yan. 2013. Speeding up distributed request-response work-
flows. ACM SIGCOMM Computer Communication Review 43, 4 (2013), 219–230.

[16] Gauri Joshi, Emina Soljanin, and Gregory Wornell. 2015. Efficient Redun-
dancy Techniques for Latency Reduction in Cloud Systems. arXiv preprint
arXiv:1508.03599 (2015).

[17] Gauri Joshi, Emina Soljanin, and GregoryWornell. 2015. Queueswith redundancy:
Latency-cost analysis. ACM SIGMETRICS Performance Evaluation Review 43, 2
(2015), 54–56.

[18] Saehoon Kim, Yuxiong He, Seung-won Hwang, Sameh Elnikety, and Seungjin
Choi. 2015. Delayed-Dynamic-Selective (DDS) Prediction for Reducing Extreme
Tail Latency in Web Search. In Proceedings of the Eighth ACM International
Conference on Web Search and Data Mining (WSDM ’15). ACM, New York, NY,
USA, 7–16. https://doi.org/10.1145/2684822.2685289

[19] Avinash Lakshman and Prashant Malik. 2010. Cassandra: A Decentralized
Structured Storage System. SIGOPS Oper. Syst. Rev. 44, 2 (April 2010), 35–40.
https://doi.org/10.1145/1773912.1773922

[20] Kangwook Lee, Ramtin Pedarsani, and Kannan Ramchandran. 2015. On Schedul-
ing Redundant Requests with Cancellation Overheads. In Proc. of the 53rd Annual
Allerton conference on Communication, Control, and Computing.

[21] Apache Lucene. 2010. Apache lucene. (2010).
[22] George S Lueker. 1978. A data structure for orthogonal range queries. In Founda-

tions of Computer Science, 1978., 19th Annual Symposium on. IEEE, 28–34.
[23] Mike McCandless. 2010. Lucene Nightly Benchmarks. (2010). http://people.

apache.org/~mikemccand/lucenebench
[24] Eric Schurman and Jake Brutlag. 2009. The user and business impact of server

delays, additional bytes, and HTTP chunking in web search. In Velocity Confer-
ence.

[25] Nihar B Shah, Kangwook Lee, and Kannan Ramchandran. 2014. The MDS queue:
Analysing the latency performance of erasure codes. In Information Theory (ISIT),
2014 IEEE International Symposium on. IEEE, 861–865.

[26] Christopher Stewart, Aniket Chakrabarti, and Rean Griffith. 2013. Zoolander:
Efficiently Meeting Very Strict, Low-Latency SLOs.. In ICAC, Vol. 13. 265–277.

[27] Ashish Vulimiri, Oliver Michel, P Godfrey, and Scott Shenker. 2012. More is less:
reducing latency via redundancy. In Proceedings of the 11th ACM Workshop on
Hot Topics in Networks. ACM, 13–18.

[28] Adam Wierman and Bert Zwart. 2012. Is tail-optimal scheduling possible? Oper-
ations research 60, 5 (2012), 1249–1257.

[29] Zhe Wu, Curtis Yu, and Harsha V. Madhyastha. 2015. CosTLO: Cost-Effective
Redundancy for Lower Latency Variance on Cloud Storage Services. In 12th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 15).
USENIXAssociation, Oakland, CA, 543–557. https://www.usenix.org/conference/
nsdi15/technical-sessions/presentation/wu

[30] Hong Xu and Baochun Li. 2014. RepFlow: Minimizing flow completion times
with replicated flows in data centers. In INFOCOM, 2014 Proceedings IEEE. IEEE,
1581–1589.

[31] Jeonghee Yi, Farzin Maghoul, and Jan Pedersen. 2008. Deciphering mobile
search patterns: A study of Yahoo! mobile search queries. In ACM International
Conference on World Wide Web (WWW). 257–266.

[32] Jeremy Zawodny. 2009. Redis: Lightweight key/value store that goes the extra
mile. Linux Magazine 79 (2009).

https://doi.org/10.1145/1365815.1365816
http://docs.datastax.com/en/cassandra/3.x/pdf/cassandra3x.pdf
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
http://per-spect-ives-.mvdirona.com-/2009/10/31/TheCostOfLatency.aspx
http://per-spect-ives-.mvdirona.com-/2009/10/31/TheCostOfLatency.aspx
https://doi.org/10.1145/2684822.2685289
https://doi.org/10.1145/1773912.1773922
http://people.apache.org/~mikemccand/lucenebench
http://people.apache.org/~mikemccand/lucenebench
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/wu
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/wu

	Abstract
	1 Introduction
	2 Deterministic vs Random Reissue
	2.1 Model and Terminology
	2.2 The SingleD Policies
	2.3 The SingleR Policies
	2.4 Randomization Is Essential

	3 Single vs Multiple Reissue
	3.1 Multiple Time Policies
	3.2 Single Is Optimal

	4 SingleR for Interactive Services
	4.1 Parameter Search
	4.2 Incorporating Response-Time Correlations
	4.3 Iterative Adaptation for Queue Delays
	4.4 Extended Scenarios

	5 Simulations
	5.1 Simulated Workload
	5.2 Benefits of Randomization
	5.3 Impact of Correlation and Queueing
	5.4 Sensitivity Study

	6 Experimental Evaluation
	6.1 Experimental Setup and Workloads
	6.2 Redis Set-Intersection Workload
	6.3 Lucene Search Workload

	7 Conclusion
	References

