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Abstract The CRESST experiment uses cryogenic detectors based on transition-
edge sensors to search for dark matter interactions. Each detector module consists of
a scintillating CaWO4 crystal and a silicon-on-sapphire (SOS) light detector which
operate in coincidence (phonon-light technique). The 40-mm-diameter SOS disks (2 g
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mass) used in the data taking campaign of CRESST-II Phase 2 (2014–2016) reached
absolute baseline resolutions of σ = 4–7eV. This is the best performance reported for
cryogenic light detectors of this size. Newly developed silicon beaker light detectors
(4 cm height, 4 cm diameter, 6 g mass), which cover a large fraction of the target
crystal surface, have achieved a baseline resolution of σ = 5.8 eV. First results of
further improved light detectors developed for the ongoing low-threshold CRESST-
III experiment are presented.

Keywords Transition-edge sensor · Cryogenic light detector · Direct dark matter
search

1 The Phonon-Light Technique in Direct Dark Matter Search

Trying to understand the nature of dark matter is a quest that unites many branches
of fundamental physics. The approach aiming to establish the particle nature of dark
matter in a direct search is facing two major challenges: the smallness of the expected
energy depositions induced by dark matter in the detector material, and the low rate of
the expected signal.Many darkmatter experiments tackle these challenges through the
use of a highly sensitive primary channel for the measurement of the deposited energy,
and a secondary channel for particle identification as a measure against omnipresent
radiogenic backgrounds.

The cryogenic rare event search with superconducting thermometers (CRESST)
experiment ([1,2] and references therein) uses tungsten thin-film TES for a high-
sensitivity measurement of phonons created in particle interactions in a CaWO4 target
crystal at milli-Kelvin temperatures, and an SOS disk as a separate cryogenic detector
to measure the scintillation light emitted from the target. Each pair of phonon and light
detector is referred to as a detector module in CRESST.

As the fraction of the deposited energy emitted in scintillation light depends on
the ionization density of the recoiling particle, this technique allows for event-by-
event particle identification. This is a decisive advantage in dark matter searches,
since radiogenic backgrounds typically result in electron-recoil events, whereas the
searched-for dark matter signal is expected to produce nuclear recoils.

For analysis, each event in a CRESST dataset is assigned a light yield (LY), defined
as the ratio of light energy to phonon energy for an event, normalized to 1 for 122 keV
γ events. Electron- and γ -induced events have similar characteristics and are expected
to have the same LY. α particles have a reduced light output (LY around 20%). The
more massive recoiling nuclei cause a further reduced scintillation output with light
yields of 11% (O), 6% (Ca), 2% (W) relative to electron-recoil events [3].

Figure 1 shows a typical plot of LY versus phonon energy obtained in a neutron
calibration during CRESST-II. The two bands, which are clearly separated above a
few keV in phonon energy, are due to neutron-induced nuclear recoils (magenta) and
radiogenic electron recoils (blue), respectively. Event-by-event particle identification
is thus possible down to an energy of few keV in this example. The performance of
the light detector has an important impact on particle identification: improved light-
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Fig. 1 Illustration of the phonon-light technique. Example of CRESST-II neutron calibration data displayed
in the LY-energy plane [4]. The electron-recoil events (blue band) and nuclear-recoil events (magenta band)
are separated using the information provided by the light channel. This technique allows event-by-event
particle identification, decisive for background discrimination and establishing the nuclear-recoil nature of
a possible signal. The blue lines denote the 90% upper and 90% lower limits of the electron-recoil band.
The magenta lines show the 90% upper bound of the oxygen-recoil band and the 90% lower bound of the
tungsten band. The mean of the electron-recoil band turns below one at small energies due to scintillator
non-proportionality [3]. A population of events above the electron-recoil band, called excess-light events,
is attributed to external radiation emitting additional light in the scintillating foil [4] (Color figure online)

detector resolution yields a more precise measurement of the LY, resulting in narrower
bands. This extends the range of high-significance discrimination to lower energies.

2 Design of the Light Channel in CRESST

The CaWO4 crystals employed in CRESST have a scintillation yield of 20–30 pho-
tons per keV of energy deposited in an electron-recoil event. CRESST light detectors
consist of an SOS disk facing the target crystal across a small gap for high light
collection. Sapphire is known for its excellent properties as a cryogenic detector
(high Debye temperature, therefore high sound velocities and low heat capacity).
A 1-μm epitactic silicon layer allows efficient light absorption at the wavelengths
emitted by CaWO4. Additionally, target crystal and light detector are surrounded
by scintillating reflective foil (3M Vikuiti™). This further enhances light collection
and leads to an additional light signal from penetrating external radiation (used for
vetoing this type of background). Figure 2 summarizes the wavelength characteris-
tics of CaWO4 emission (blue), SOS absorption (orange), and the reflectivity of the
scintillating foil (green). Typically, CRESST detector modules achieve a detected
light energy of 2% of the energy deposition in the target (for an electron-recoil
event) [6].

Between CRESST-II and CRESST-III, the shape of the light detector has been
adapted to match the target crystal geometry. In CRESST-II, cylindrical target crys-
tals (of 40 mm diameter and 40 mm height) were equipped with SOS disks of
40 mm diameter and 0.4 mm thickness. In CRESST-III, the target crystals are
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Fig. 2 CaWO4 scintillation spectrum (solid blue line),wavelength-dependent reflectivity of the scintillating
foil (dotted green line), and absorption of SOS wafers (dashed orange line) [5] (Color figure online)

Fig. 3 Photographs of CRESST-II (left) and CRESST-III (right) light detectors (Color figure online)

20 × 20 × 10 mm3 cuboids and the light detectors are 20 × 20 mm2 square
plates of 0.4 mm thickness. Figure 3 shows photographs of a CRESST-II light
detector (left) and an opened CRESST-III module (right). The CRESST-III light
detector is the vertical square plate facing the cuboid target crystal. It is held
by scintillating CaWO4 sticks to avoid non-scintillating material with line-of-
sight to the target crystal as a measure for vetoing any event originating in the
holder [7,8].
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3 Results from CRESST-II Light Detectors

3.1 Characterization of the Light Detector as Part of a CRESST Detector
Module

The standard calibration technique in CRESST dark matter runs uses an external
57Co source producing 122 keV γ events. The light detectors are generally strongly
saturated by an absorption of a 122 keV γ . Due to the increasingly nonlinear detector
response at high energies, this technique does not allow establishing a direct energy
scale for the light detector. Instead, the coincident pulses in phonon and light channel
upon absorption of a 122 keV γ in the target crystal can be used to establish energy
scales. In thisway, a direct calibration of the phonon channel is obtained,while the light
channel response is known only in electron-equivalent units (keVee), with a conversion
factor dependent on various module parameters such as scintillation yield and light
collection. The energy scale of the light channel thus established can be converted to
a baseline resolution of the light channel using empty baseline samples. This indirect
measure of light detector resolution is most relevant for dark matter search, as it
directly relates to the energy range for which particle identification is possible. The
1-σ baseline resolution can be found from a fit to the LY bands described above. A
typical value reached in a CRESST-II light detector is 250 eVee. There is a small
contribution to the width of the LY band from the finite phonon channel resolution,
but this is negligible compared to the light detector resolution due to the smallness of
the scintillation light signal compared to the main absorber heat signal.

3.2 Resolution of CRESST-II Light Detectors as Individual Detectors

In order to obtain the energy scale in a light detector independent ofmodule parameters
governing the light signal generation, a direct calibration at lower energies is necessary.
In CRESST-II Phase 2, several light detectors were equipped with 55Fe sources which
decay by electron capture and emit the characteristic Kα/Kβ lines ofMn at 5.9 keV and
6.5 keV. Figure 4 (left) shows the spectrumof the 55Fe source observed in a typical light
detector of CRESST-II. The baseline resolution is found from a fit of empty baseline
samples. The resulting values for the baseline noise lie between 4.1 eV and 6.7 eV.
This is the best result reported for cryogenic light detectors of this size. Figure 4 (right)
displays the results for light detectors equipped with 55Fe sources in CRESST-II (dots:
standard light detectors and crosses: beaker light detectors). As visible in Fig. 4 (left),
the energy resolution is degraded at higher energies (here: 45 eV at 6 keV). This is a
known effect in sapphire cryogenic detectors [9].

4 Beaker Light Detectors

In a parallel line of development, beaker-shaped light detectors have been deployed
in CRESST-II. Beaker light detectors are 40 mm diameter, 40 mm height cylindrical
objects with 0.4 mm wall thickness milled from silicon single crystal material and
optically polished. They have been paired with cylindrical target crystals of 38 mm
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Fig. 4 Left: 55Mn Kα /Kβ lines observed in CRESST-II light detector Leon. Right: baseline resolutions

achieved by the CRESST-II light detectors equipped with 55Fe sources for direct calibration. Dots: standard
light detectors. Crosses: beaker light detectors

Fig. 5 Beaker light detectors. Left: CRESST beaker-module holding scheme including glued TES-carrier
to complete a 4π -veto. Right: polished silicon beaker (height 40 mm, diameter 40 mm, thickness 0.4 mm)
milled from single crystal material (Color figure online)

diameter and 35 mm height, which were independently held to ensure a small gap
between target and beaker. Excellent detector properties have been demonstrated with
an achieved baseline noise of 5.8 eV [10]. The main advantages of beaker light detec-
tors are an enhanced light collection (up to 80%) and an encapsulation of the target
crystal. In the beaker modules, the target crystal is glued to a carrier crystal which
holds the TES sensor, as shown in Fig. 5 (left). Since the target crystal has no line-of-
sight to non-instrumented material, any ionizing particle that deposits energy in the
target crystal also passes through the carrier and/or beaker. This results in an efficient
veto for external backgrounds via light-yield and pulse-shape cuts. The same is true
for surface contaminations with back-to-back event topology (either on target crystal
or inner beaker surfaces). Efficient removal of such backgrounds has been shown in
CRESST-II [10].

5 Conclusion and Outlook

Light detectors in CRESST are macroscopic absorbers equipped with a tungsten
transition-edge sensor to measure temperature signals induced by the absorption of

123



J Low Temp Phys

scintillation light. The 40-mm-diameter silicon-on-sapphire disks employed as stan-
dard light detectors inCRESST-II have reached absolute baseline resolutions of 4–7 eV
(1− σ ), the best detector achieving 4.1 eV resolution. This is the best result reported
for cryogenic light detectors of this size.

Beaker light detectorsmilled from single-crystal siliconmaterial have demonstrated
a baseline resolution of 5.8 eV, an excellent result for a large object with a surface
area of about 60 cm2. The main advantage of beaker light detectors is their greatly
enhanced light collection and additional function as a veto for external radiation, as
they cover a large solid angle around the target crystal.

In CRESST-III, the performance of the light channel is expected to improve in
several ways. With a smaller target crystal and a more compact module, dedicated
Monte Carlo studies predict a total light collection increased to 2.5% of the signal in
the target.At the same time, the area of the light detector is reduced,which enhances the
phonon density and transport into the thermometer. This promises an improvement
in the energy resolution by a factor of 2.7. Preliminary 57Co-calibration data from
CRESST-III show a light detector baseline noise of 80 eVee, improved by a factor of
three compared to CRESST-II performance, consistent with the expectations. With
the light collection predicted by the Monte Carlo studies, this translates into a direct
baseline resolution in the range of 2 eV. Though not crucial for the application in
dark matter search, it is interesting to note that the macroscopic light detectors used
in CRESST approach calorimetric single-photon resolution. Further study and direct
calibration measurements are needed to confirm the resolution of CRESST-III light
detectors.
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