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Optimization requires the quantities of interest that define objective functions and con-
straints to be evaluated a large number of times. In aerospace engineering, these quantities
of interest can be expensive to compute (e.g., numerically solving a set of partial di↵erential
equations), leading to a challenging optimization problem. Bayesian optimization (BO) is a
class of algorithms for the global optimization of expensive-to-evaluate functions. BO lever-
ages all past evaluations available to construct a surrogate model. This surrogate model is
then used to select the next design to evaluate. This paper reviews two recent advances
in BO that tackle the challenges of optimizing expensive functions and thus can enrich the
optimization toolbox of the aerospace engineer. The first method addresses optimization
problems subject to inequality constraints where a finite budget of evaluations is available,
a common situation when dealing with expensive models (e.g., a limited time to conduct
the optimization study or limited access to a supercomputer). This challenge is addressed
via a lookahead BO algorithm that plans the sequence of designs to evaluate in order to
maximize the improvement achieved, not only at the next iteration, but once the total
budget is consumed. The second method demonstrates how sensitivity information, such
as gradients computed with adjoint methods, can be incorporated into a BO algorithm.
This algorithm exploits sensitivity information in two ways: first, to enhance the surrogate
model, and second, to improve the selection of the next design to evaluate by accounting
for future gradient evaluations. The benefits of the two methods are demonstrated on
aerospace examples.

I. Introduction

Design of aerospace engineering systems is challenging because it involves the evaluation of models that are
typically expensive to evaluate and the objective function to optimize is often non-convex. In many cases, the
systems of interest are governed by partial di↵erential equations (PDEs), which result in expensive-to-evaluate
simulation models. A significant further challenge arises when the system analysis must be treated as a
black-box (i.e., the analysis mapping from input to output can be evaluated but intrusive manipulations of the
code are not possible). In such a context, finding the global optimizer of a non-convex, expensive-to-evaluate
function requires tailored algorithms. Bayesian optimization (BO) is a class of algorithm tackling such global
optimization problems.
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BO has three main iterative steps: First, it builds a statistical model using data collected from the
designs evaluated so far. Second, it defines a utility function based on that statistical model and solves a
cheap auxiliary optimization problem that selects the next design to evaluate by maximizing this utility.
Third, the new design evaluation is added to the data set, the statistical model is updated, and the process
repeats. The statistical model is typically based on a Gaussian process (GP) regression model, leading to
a cheap-to-evaluate utility function that balances the competing e↵ects of exploration (evaluating designs
in unexplored regions of the design space) and exploitation (evaluating designs in promising regions of the
design space). One advantage of BO is that it is applicable to general black-box functions, since it only
requires input-output analyses. A second advantage lies in its ability to carefully select the next design to
evaluate, thus reducing the number of calls to the expensive-to-evaluate function. A third advantage lies in
the flexibility to define the utility function, which could include extensions such as gradient information and
budget information, topics both explored in this paper. BO has gained some popularity in the engineering
design community, in particular though the e�cient global optimization (EGO) algorithm.1 We refer to
Brochu et al. for an introduction to BO.2

In this paper, we review two algorithms that extend BO to several settings commonly encountered in
engineering design. The first setting considers the problem of optimization subject to nonlinear, expensive-to-
evaluate constraints when a finite budget of evaluations is prescribed. For such a setting, Lam and Willcox3

proposed a rollout BO algorithm using a dynamic programming approach to select the next design to
evaluate in order to maximize the long-term feasible improvement. It builds on the unconstrained version of
the rollout algorithm.4 The second setting incorporates sensitivity information such as gradients to BO. In
such a case, Poloczek, Wilson and Frazier5 proposed to use the derivative-enabled knowledge gradient (dKG)
algorithm to both augment the statistical model with the derivative information and improve the selection of
the next design to evaluate. The benefits of the two algorithms are demonstrated on aerospace problems.

The remainder of this paper is organized as follows. Sec. II gives a brief overview of BO. Sec. III presents
the rollout algorithm developed for the optimization of expensive function subject to nonlinear constraints
with a finite budget of evaluations. Sec. IV extends BO to use gradient information with the dKG algorithm.
Finally, we summarize our findings in Sec. V.

II. Bayesian Optimization

In this section, we present the vanilla BO algorithm employed for unconstrained optimization. The
standard BO approach considers the following optimization problem:

x

⇤ = argmin
x2X

f(x) (1)

where f is an expensive-to-evaluate objective function taking as input a d-dimensional design vector x from a
box-constrained design space X ⇢ Rd and returning a scalar value. Our goal is to compute a minimizer x⇤ of
f . Note that although we write Eq. 1 as an equality, the optimizer x⇤ may not be unique.

To solve this problem, BO starts with an initial training set D1 = {(x1, f(x1))} containing a design
x1 and its associated objective function value f(x1). At each iteration n, the training set D

n

is used to
construct a statistical model. This statistical model is typically a GP, also known as Kriging.6,7, 8 For any
given design of interest x, the posterior mean µ(x;D

n

, f) of the GP associated with f at x conditioned on
D

n

can cheaply be evaluated and serves as a surrogate for the objective function f . Similarly, the posterior
variance �2(x;D

n

, f) is a cheap-to-evaluate measure of the uncertainty of the objective function surrogate
at x. We refer to Rasmussen and Williams9 for a review of GPs, including the closed-form expressions of
the posterior mean and variance. Based on this statistical model, a utility function U

n

(x;D
n

) quantifies the
benefits of evaluating a new design x according to the surrogate model built with D

n

. The next design to
evaluate x

n+1 is selected by solving an auxiliary optimization problem that maximizes the utility function.
Popular utility functions include the expected improvement1 (EI), the probability of improvement10 (PI)
and the upper confidence bound11 (UCB). Once evaluated with f , the training set is augmented with the
new training point (x

n+1, f(xn+1)). This process iterates until a stopping criteria is met (e.g., when the
maximum number of allowed evaluations N is reached). The BO algorithm is summarized in Alg. 1.
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Algorithm 1 Bayesian Optimization

Input: Initial training set D1, budget N , utility function U
n

for n = 1 to N do
Construct GP using D

n

Solve auxiliary optimization problem for x
n+1 = argmax

x2X U
n

(x;D
n

)
Evaluate f(x

n+1)
Augment training set D

n+1 = D
n

[ {(x
n+1, f(xn+1))}

end for

BO has been shown to be e↵ective at solving black-box optimization problems in engineering de-
sign.8,12,13,14,15 Extensions to constrained optimization problems exist and have been shown to be e↵ective
for low-dimensional relatively simple optimization problems including the engineering design of a piston16 and
the optimization of a hybrid electric vehicle.17 However, these constrained BO approaches can require many
function evaluations to find good designs, especially when the feasible design space is highly constrained. One
limitation is the greedy nature of the BO iteration, which only looks at the immediate reward when choosing
the next design to evaluate. This is particularly short-sighted when the design exploration needs to balance
objective function decrease with feasibility. A second limitation is the ability to exploit other information,
such as gradients. In the following sections we discuss extensions to BO that address these two limitations.

III. Lookahead Bayesian Optimization with Inequality Constraints

In this section, we consider the problem of optimizing an objective function subject to nonlinear constraints
when a finite budget of evaluations is prescribed. We present a lookahead BO algorithm, rollout, that
selects the next design to evaluate in order to maximize the expected long-term feasible decrease of the
objective function.

A. Problem Formulation

We consider the following constrained optimization problem:

x

⇤ = argmin
x2X

f(x)

s.t. g
i

(x)  0, 8i 2 {1, . . . , m},
(2)

where x is a d-dimensional design vector. The objective function f and the m constraint functions g1, · · · , g
m

take a design from a boxed-constrained design space X ⇢ Rd as input and return a scalar. Our goal is
to compute a minimizer x

⇤ of f satisfying the constraints using a maximum of N iterations (i.e., a finite
evaluation budget).

B. Constrained Bayesian Optimization

Constrained Bayesian optimization (CBO) extends BO algorithms to handle nonlinear constraints. To do so,
CBO models the objective function and the constraints with a statistical model. One popular choice is to
model each expensive-to-evaluate function with a GP. Similarly to BO, this statistical model is used to define
a utility function that quantifies the value of evaluating a design under consideration. At each iteration n,
CBO selects the design x

n+1 maximizing this utility function and evaluates f(x
n+1) and g

i

(x
n+1) for all

i 2 {1, · · · , m}. Using these new observations, the statistical model is updated for the next iteration.
Many utility functions have been proposed for CBO.18,19,20,21,22 This includes utilities based on feasible

improvement,16,23,24 penalty method,25 Lagrangian formulation,26 or information gain.27,28,29 For instance,
the expected improvement with constraint (EIC)16 is a natural extension of the expected improvement (EI)
utility. It is defined to only reward designs that are feasible. In the case where the GPs representing the
expensive-to-evaluate functions are independent, EIC can be computed in closed-form. For a given design of
interest x

n+1 and a given training set D
n

, EIC is given by:

EI
c

(x
n+1;Dn

) = EI(x
n+1;Dn

)
mY

i=1

PF (x
n+1;Dn

, g
i

), (3)
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with EI the expected improvement and PF the probability of feasibility:

EI(x;D) =
�
fD
best

� µ (x;D, f)
�
�

✓
fD
best

� µ (x;D, f)

� (x;D, f)

◆
+ �(x;D, f)�

✓
fD
best

� µ (x;D, f)

� (x;D, f)

◆
, (4)

PF (x;D, g
i

) = �

✓
�µ(x;D, g

i

)

�(x;D, g
i

)

◆
, (5)

where fD
best

is the best feasible value of the objective function in the training set D, � (respectively �) is the
CDF (respectively PDF) of the standard Gaussian distribution. We recall that µ(x;D, ') and �(x;D, ') are
the posterior mean and standard deviation of the GP associated with ' 2 {f, g1, · · · , g

m

} conditioned on the
data D, at the design x.

EIC quantifies the expected feasible improvement obtained over one step. This is a greedy approach that
does not take into account the long-term e↵ect of an evaluation. In particular, a greedy approach cannot plan
several steps ahead. However, planning is an ability necessary to balance the BO exploration-exploitation
trade-o↵ in a principled way. In the next subsection, we present a lookahead approach capable of such
planning over several steps.

C. Lookahead Constrained Bayesian Optimization: the rollout Algorithm

We now present rollout, the lookahead CBO algorithm introduced in Lam and Willcox.3

Given a fixed budget of evaluations, the performance of an optimizer is quantified by the improvement
obtained at the end of the optimization, i.e., when the evaluation budget is consumed. Thus, at each iteration
n, the best CBO algorithm evaluates the design leading, at the end of the optimization, to the maximum
expected feasible improvement.

To define this optimal CBO algorithm, it is first necessary to characterize how a design evaluated at
iteration n is likely to a↵ect the following iterations under an optimization policy. An optimization policy is
a mapping from a training set D to a design to evaluate x. Using GPs as generative models, it is possible to
simulate the possible values of the expensive functions at a given design. Combined with an optimization
policy, this defines a mechanism that simulates the possible future steps of the optimization.4 Each possible
scenario has a known probability of occurrence characterized by the statistical model. Thus, for a given
optimization policy, the expected improvement obtained at the end of the optimization can be quantified
with this simulation machinery. The optimal CBO algorithm corresponds to the (unknown) best optimization
policy which is the solution of an intractable dynamic programming (DP) problem.

The rollout algorithm is an approximate DP algorithm that circumvents the nested maximizations
responsible for the intractability of the DP formulation. At each iteration, rollout evaluates the design
that maximizes the long-term expected feasible improvement where the future steps are guided by a (known)
user-defined optimization policy. To further simplify the algorithm, a rolling horizon h limits the number of
steps simulated, and expectations are numerically approximated using N

q

Gauss-Hermite quadrature points.
The resulting algorithm is described in Alg. 2, and the computation of the utility function is described in
Alg. 3.

Algorithm 2 Constrained Bayesian Optimization with rollout

Input: Initial training set D1, budget N , rolling horizon h, discount �, number of quadrature points N
q

for n = 1 to N do

Construct m + 1 independent GPs using D
n

Compute rolling horizon h0 = min{h, N � n}
Solve auxiliary optimization problem for x

n+1 = argmax
x2X

utility(x, h0, D
n

, �, N
q

)

Evaluate f(x
n+1), g1(xn+1), · · · , g

m

(x
n+1)

Augment training set D
n+1 = D

n

[ {(x
n+1, f(xn+1), g1(xn+1), · · · , g

m

(x
n+1))}

end for

D. Numerical Results for the rollout algorithm

We now illustrate the CBO rollout algorithm on an aerospace engineering problem.
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Algorithm 3 Rollout Utility Function

Function: utility(x, h, D, �, N
q

)

Construct one GP per expensive-to-evaluate function using D
U  EI

c

(x;D)

if h > 0 then

Compute µ(x;D, ') and �2(x;D, ') for ' 2 {f, g1, · · · , g
m

}
Generate N

q

Gauss-Hermite quadrature weights ↵(q) and points w

(q) 2 Rm+1 associated with the

(m + 1)-dimensional Gaussian distribution with mean [µ(x;D, f), µ(x;D, g1), · · · , µ(x;D, g
m

)]T and

covariance Diag(�(x;D, f), �(x;D, g1), · · · , �(x;D, g
m

))

for q = 1 to N
q

do

D0  D [ {(x,w(q))}
if h > 1 then

x

0  argmax
x2X

EI
c

(x;D0) (user-defined policy)

else

x

0  argmin
x2X

µ(x;D0, f) s.t. PF (x;D0) � 0.975 (user-defined policy)

end if

U  U + �↵(q)utility(x0, h� 1, D0)

end for

end if

Output: U

We consider a reacting flow governed by a set of PDEs using the model in Ref. 30. We seek the
maximization of the heat released by the chemical reaction while maintaining the maximum temperature
below a user-defined threshold to avoid melting parts of the system. The design variables are the equivalence
ratio � 2 [0, 2], the inlet velocity u 2 [40, 80] cm/sec and the inlet temperature T

i

2 [200, 400] K. The
temperature threshold is set to T

max

= 1800K. We consider a finite budget of N = 40 iterations to conduct
the optimization. At each iteration the value of the objective function (heat released) and the constraint
(maximum temperature in the domain) are computed from the solution of a system of PDEs.

We note that lookahead approaches, such as rollout, produce di↵erent sequences of decisions for di↵erent
budget N , while greedy algorithms, such as EIC, always produce the same sequence of decisions independent
of N . Therefore, in the context of finite budget optimization, the performance of the optimization should
only be evaluated at the end of iteration N . However, to illustrate the behavior of the rollout algorithm,
we show the full convergence history in Fig. 1.

Fig. 1 shows the utility gap e
n

as a function of the iteration n. The utility gap measures the di↵erence
between the optimal feasible value of the objective function f⇤ and the value of the objective function f(x⇤

n

)
at a recommended design x

⇤
n

at iteration n:

e
n

=

8
<

:
|f(x⇤

n

)� f⇤| if x⇤
n

is feasible,

| � f⇤| else,
(6)

where  is a penalty for recommending an infeasible design. We note that the recommendation is computed
in a post-processing step to measure the performance and does not influence the optimization. We use the
following recommendation:29

x

⇤
n

= argmin
x2X

µ
n

(x;D
n

, f) s.t.
mY

i=1

PF (x
n+1;Dn

, g
i

) � 0.975. (7)

Fig. 1 shows that the lookahead algorithm rollout with h = 1 and h = 2 outperforms the greedy EIC after
20 iterations. In this example, at the end of the budget, the rollout outperforms the greedy EIC by one
order of magnitude.
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Figure 1: Median utility gap for EIC and the rollout algorithm with rolling horizons h = 1 and h = 2.
rollout outperforms the greedy EIC after n = 20 iterations. Medians are computed with 50 independent
runs and the shadings show the 95% confidence interval of the median statistics.

IV. Bayesian Optimization with Derivative Information

In this section, we return to the original unconstrained problem of minimizing an expensive-to-evaluate
function described by Eq. 1. We consider the situation where gradients of the objective function are available
and present dKG,5 an algorithm that leverages this additional information to improve both the statistical
model and the selection of the next design to evaluate.

Typically in BO, it is assumed that the objective function f is a black-box function. That is, upon
evaluating f at some design x, we obtain only the function value f(x) (possibly with noise) but no derivative
information. However, derivative information is often available at little cost, e.g., when using an adjoint method
to optimize a system modeled by a system of PDEs.31,32,33,34,35,36,37,38 This has motivated investigations
how such information can be incorporated into BO algorithms to extend their applicability to problems of
higher dimension. Gradients have already been exploited to improve GPs.39,40 In particular gradient-enhanced
Kriging (GEK)41,14,42,43 has been developed in the context of optimization.44,45 Previous works focused
on the expected improvement utility function.10,46,47,48 In the following, we present an extension of the
Knowledge Gradient (KG) utility function49 that incorporates sensitivity information. This utility function is
aware that the gradient of the objective function will be evaluated at the next iteration and takes it into
account to select the next design to evaluate. Additionally, it allows for the selection of multiple designs to
evaluate in batch at each iteration, an advantage when the model can be queried in parallel.

A. The dKG Algorithm

Wu, Poloczek, Wilson, and Frazier5 proposed the derivative-enabled knowledge gradient (dKG) algorithm.
Consider the case where a single design z1 is selected for evaluation at each iteration n. Note that we use the
notation z here to denote a design selected for evaluation, in contrast to x to denote a generic design. In this
case, the dKG utility function quantifies the di↵erence between the current minimum value of the posterior
mean of the objective function, min

x2X µ(x;D
n

, f), and the future minimum value of the posterior mean of
the objective function, min

x2X µ(x;D
n+1, f), once the additional values of f and rf at z1 are added in the

training set D
n+1. Because f(z1) and rf(z1) are unknown at iteration n, they are modeled by the random

variables f1 and rf1 based on the current GP. The dKG utility function quantifies the change in posterior
mean minimum value in an expected sense:

dKG(z1;Dn

) = min
x2X

µ(x;D
n

, f)� E[min
x2X

µ(x;D
n+1, f)],

where the expectation is taken with respect to the random variables f1 and rf1 and D
n+1 = D

n

[
{(z1, f1,rf1)}.
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Now consider the batch case. Suppose that we have selected q designs for the next batch: z1, . . . , zq

. We
wonder how the observation of the function values and gradients at z1, . . . , zq

will change our posterior belief
and in particular the optimum min

x2X µ(x;D
n+1, f). While we cannot know the exact optimal posterior

mean before observing these q · (d + 1) values, we can compute its expectation based on our posterior belief
how the observations of the function values and gradients are distributed. The best design (after observing
the function values and gradients of this batch) has an expected value of E[min

x2X µ(x;D
n+1; f)] under the

current posterior, i.e., before we obtain the observations at z1, . . . , zq

. The dKG utility function in the batch
case then becomes

dKG(z1, . . . , zq

;D
n

) = min
x2X

µ(x;D
n

, f)� E[min
x2X

µ(x;D
n+1, f)],

where the expectation is now taken with respect to random variables f1, · · · , f
q

(respectively rf1, · · · ,rf
q

)
modeling f(z1), · · · , f(z

q

) (respectively rf(z1), · · · ,rf(z
q

)) and D
n+1 is the future training set defined by

D
n+1 = D

n

[ {(z1, f1,rf1), · · · , (z
q

, f
q

,rf
q

)}.
We refer to Wu et al. for details on how to find argmax dKG in practice. The dKG algorithm is summarized

in Alg. 4.

Algorithm 4 Batch Gradient-enhanced Bayesian Optimization with dKG

Input: Initial training set D1, maximum iteration N , batch size q

for n = 1 to N do

Construct GP using D
n

Solve auxiliary optimization problem for (z1, · · · , z
q

) = argmax(z1,··· ,zq)2X q dKG(z1, · · · , z
q

;D
n

)

Evaluate f(z1), · · · , f(z
q

) and rf(z1), · · · ,rf(z
q

)

Augment training set D
n+1 = D

n

[ {(z1, f(z1),rf(z1)), · · · , (z
q

, f(z
q

),rf(z
q

))}
end for

Interestingly, Wu et al. demonstrated that their utility function is better suited to leverage derivative
information than expected improvement that was used in previous works. The underlying reason is that
the knowledge gradient anticipates the observation of the gradient and captures its e↵ect on the posterior
distribution in the utility function.

While incorporating derivative information into the GP results in a more accurate posterior distribution,
the computational cost of obtaining this posterior is increased from O(n3q3) to O(n3q3d3) in each iteration
n, where we recall that d is the dimension of the design variables and q is the batch size. Wu et al. addressed
this problem by focusing on relevant directional derivatives (see Algorithm 1 in their paper). Moreover, they
showed that the dKG algorithm leverages noisy observations of gradients and can be used even if derivative
information is available only for some of the optimization parameters.

B. Numerical Results for the dKG algorithm

We evaluate the dKG algorithm on the eight-dimensional aerostructural optimization problem defined in the
OpenMDAO test suite and available at https://github.com/mdolab/OpenAeroStruct. This model couples
a vortex-lattice method and a three-dimensional beam model to simulate aerostructural analysis of a wing.

We compare the performance of dKG to the default gradient-based optimization algorithm SLSQP provided
by the OpenMDAO framework. dKG outperforms SLSQP and additionally has the advantage that it provides
good solutions already at low computational cost. Note that dKG chooses eight designs in batch in each
iteration and evaluates these designs simultaneously. In this benchmarks, all partial derivatives are available,
thus dKG observes 72 (= q(d + 1)) values at each iteration. Fig. 2 shows the performances of dKG and the
gradient-based optimizer SLSQP.
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Figure 2: Combining Bayesian and gradient-based optimization, dKG outperforms the gradient-based opti-
mization algorithm of OpenMDAO on an aerostructural test problem. dKG selects batches of eight points to
be evaluated in parallel.

The source code of the dKG algorithm is available at https://github.com/wujian16/Cornell-MOE.

V. Conclusions

In this paper, we reviewed two BO algorithms adapted for the optimization of expensive-to-evaluate
aerospace engineering systems. BO sequentially updates a statistical model that is used to select the next
design to evaluate, reducing the number of calls to the expensive function. Each algorithm presented addresses
a particular challenge encountered in aerospace engineering.

The first algorithm, rollout, selects the next design to evaluate in order to maximize the expected feasible
improvement obtained over several steps. It allows for the optimization of systems subject to nonlinear
expensive-to-evaluate inequality constraints, a common situation in aerospace engineering. Accounting for
the long-term e↵ect of a decision was shown to improve the optimization performance. Such benefits were
demonstrated on a reacting flow problem.

The second algorithm, dKG, leverages sensitivity information, such as gradients computed via adjoint
methods, to improve the statistical model and select a batch of designs to evaluate at each iteration. This
was shown to outperform a gradient-based optimization algorithm on an aerostructural optimization problem.

The two BO algorithms reviewed in this paper have been demonstrated to improve performance on several
aerospace design problems. They are promising tools for the aerospace engineer and have the potential to
further enable the global optimization of expensive-to-evaluate functions.
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