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ABSTRACT

Effective hyperspectral thermal infrared imaging requires accurate atmospheric compensation to convert the
measured at-sensor radiance to the ground radiance. The ground radiance consists of the thermal emission
of the material and the reflected downwelling radiance. An accurate estimate of the downwelling radiance
is required for temperature-emissivity separation (TES) to remove the spectrally sharp reflected atmospheric
effects and retrieve a smooth and accurate material emissivity to use for detection.

Determination of the downwelling radiance is difficult due to the fact that a down-looking sensor has no
knowledge of the atmospheric properties above its line of sight. As the sensor altitude increases and more of
the atmospheric emitters are below the sensor, a relationship forms between the upwelling and downwelling
radiances. This relationship comes at the expense of increased pixel size, which increases the likelihood of mixed
pixels and nonlinear spectral mixing.

In this paper improvements to methods used to estimate the downwelling radiance of low altitude collec-
tions are proposed. The ground radiances of reflective pixels are used to estimate the atmosphere above the
sensor. The reflective pixels are identified from their sharp atmospheric spectral features. Using the assumption
that emissivity spectra are smooth across the narrow reflected atmospheric downwelling radiance features, the
temperatures and emissivities are then separated for the reflective pixels using a look-up-table of downwelling
radiances. The downwelling radiance that provides the best overall fit for the reflective pixels is then chosen as
the scene downwelling radiance.

1. INTRODUCTION

A hyperspectral imaging (HSI) sensor measures the electromagnetic spectrum at hundreds of narrow contiguous
wavelength bands, allowing for fine spectral measurements. These fine spectral measurements are combined to
form a spectrum at each pixel with N spectral bands [1]. The spectrum is then used to identify materials on
the ground which have their own unique spectral properties. Long wave infrared (LWIR) hyperspectral imaging
sensors measure thermal radiation between 8 µm to 14 µm.

The material properties of interest are a material’s emissivity and temperature. A material library typically
consists of emissivity spectra of interest, however the the data spectra consist of measured at-sensor radiance
spectra. In order to compare the two, the measured at-sensor radiance needs to be converted to emissivity.
The sensor radiance is converted to ground radiance by compensating for atmospheric effects on the ground
radiance over its path to the sensor. Atmospheric compensation requires accurate knowledge of the atmospheric
transmission and upwelling radiance at each of the N spectral bands. The ground radiance consists of the
thermal emission of the material and the reflected downwelling radiance [2]. The thermal emission component
includes the material properties of interest. With an accurate estimate of the downwelling radiance, the reflected
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component can be removed, and the thermal emission can be separated into temperature and emissivity using a
technique known as temperature emissivity separation (TES) [3]. The emissivity spectrum can then be used to
determine the materials within the pixel

In-scene atmospheric compensation (ISAC) algorithms exist that use in-scene pixels that contain blackbody
like materials to determine the atmospheric transmission and upwelling radiance [2]. Similar assumptions cannot
be used to determine the downwelling radiance because only pixels containing materials with low unknown
emissivities contain a reflected downwelling radiance component. In addition, the downwelling radiance consists
of the entire atmosphere, and the down-looking sensor has no knowledge of the atmospheric properties above the
sensor. The estimated atmospheric transmission and upwelling radiance only give knowledge of the atmosphere
below the sensor. Due to the lack of knowledge above the sensor, a look-up-table of (LUT) of outside models for
the downwelling radiance needs to be utilized [3].

ISAC is done on a scene to convert the at-sensor radiance spectrum of each pixel to ground radiance. Low
emissivity ground radiance spectra are then found that differ from blackbodies and contain a downwelling radiance
component. At this stage, the number of unknowns is 2N + 1 for each pixel spectrum. N unknowns for each
downwelling radiance and emissivity spectrum and 1 for the temperature. The atmosphere is assumed to be
homogenous throughout a scene, so the downwelling radiance spectrum remains constant for all the pixel spectra.
Current algorithms work by doing TES on the low emissivity spectra using each of the downwelling radiance
models, . The downwelling radiance model that supplies the best overall TES results is chosen as the downwelling
radiance of the scene [3].

In order to determine the correct emissivity spectra, the correct downwelling radiance model needs to be
determined. Small errors in the downwelling radiance estimation can effect the temperature and shape of
the emissivity spectra. Large errors will cause TES to completely fail and give unphysical results. In this
paper, techniques to improve estimation of the in-scene downwelling radiance are developed. The affects of
downwelling radiance estimate errors on TES are studied, and whether the current technique gives the correct
unique solution. The paper is organized as follows. Background descriptions of the LWIR atmospheric model,
atmospheric compensation, and TES are given in section 2. The method used to estimate the downwelling
radiance and improvements are described in section 3. The procedure used to test the estimation method is
discussed in section 4. The results are shown and discussed in section 5. A summary is provided in section 6.

2. BACKGROUND

A LWIR hyperspectral remote sensing environment has three main components as shown in Fig. 1:

• Ground Radiance

The ground radiance consists of the emitted thermal radiation from materials on the ground and the
reflected radiation from the atmosphere. The ground radiance spectrum of a pixel is modeled as [2]

LG(λk) = ε(λk)B(λk;TG) + [1 − ε(λk)]LD(λk) (1)

where λk is the wavelength of a spectral band. The ground emission is ε(λk)B(λk;TG) where ε(λk) is the
surface emissivity spectrum of the material and TG is the ground temperature. B(λk;TG) is the Planck
radiation function for a blackbody at the ground temperature

B(λ;TG) =
c1

λ5k[exp(c2/(λkTG)) − 1]
(2)

where c1 = 1.19104 × 10 (µW/cm2/sr/µm) − µm5 and c2 = 14387.7 µm-K. The ground emission is the
most important component because it contains the spectral emissivity properties of the ground material
and its temperature. The reflected radiation is [1 − ε(λk)]LD(λk), where the reflectance is [1 − ε(λk)], and
LD(λk) is the hemispherical downwelling radiance from the atmosphere.
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Figure 1. Illustration of the LWIR hyperspectral remote sensing environment.

• Atmosphere

As the ground radiance travels up toward the sensor, it is affected by the atmosphere. The atmosphere
absorbs and emits radiation. The atmospheric transmission τ(λk), upwelling radiance LU(λk), and down-
welling radiance LD(λk) depend on the types of gases present in the atmosphere and their concentrations
with altitude. An atmospheric gas profile describes how the concentration of the gas changes with altitude.
The atmosphere is approximated to be homogeneous throughout a scene. Fig. 2 shows an example of an
atmospheric TUD (for Transmission, Up-welling, Downwelling radiance) model at a sensor altitude of 1.5
km.

The atmospheric transmission in the LWIR region between 8-13µm is quite high, and is why the hyper-
spectral sensor is designed to measure radiation inside this atmospheric window. Other benefits include the
ability to measure pixel spectra at night, and the lack of aerosols and scattering. Just outside this region
the transmission quickly drops due to water absorption. The main atmospheric absorption gases in the
LWIR window region are H2O, O3, and CO2. The molecular properties of the gases determine at which
wavelengths they absorb and emit radiation. There are several significant gas absorption features within
the window region. There are H2O absorption features between 11.62-11.84µm and 12.2-12.7µm. The H2O
profile typically has a high concentration at the surface and decreases till about 10 km. The concentration
of H2O between scenes is more variable compared to the other atmospheric gases. The main O3 absorption
feature occurs between 9.4-9.84µm. There are insignificant amounts of O3 till about 10 km. The depth
of these absorption features describe the total amount of the gases in the atmosphere. A majority of the
large absorption effects of the gases are avoided at the spectral bands near 8.38, 8.85, 10.07, 10.4, 11.13,
11.4, and 12.2µm as shown in Fig. 2.

The atmospheric transmission and emission are related by 1 − τ ≈ ε. When the transmittance is low, the
atmospheric absorption is high, which makes the upwelling radiance emission high. While the upwelling
radiance consists only of emission from gases between the sensor and the ground, the downwelling radiance
LD(λk) consists of the entire atmosphere [2]. For this reason, the downwelling radiance is greater than
the upwelling radiance, and the two become more similar as the altitude of the sensor increases. When
the sensor is below 10km, the sensor will be below the O3 and the upwelling radiance will not include
the emission from the O3. However, the downwelling radiance which includes the entire atmosphere will
include the O3 emission. The difference between O3 emission in LU(λk) and LD(λk) at low sensor altitudes
between 9.4-9.84µm is shown in Fig. 2.
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Figure 2. Atmospheric TUD Model.

Figure 3. Hyperspectral Imaging Processing Pipeline

• Measured At-Aperture Radiance

The measured at-aperture radiance spectrum consists of ground radiance spectrum effected by the atmo-
sphere, and is modeled as [2]

LM(λk) = ε(λk)B(λk;TG)τ(λk) + [1 − ε(λk)]LD(λk)τ(λk) + LU(λk) = LG(λk)τ(λk) + LU(λk) (3)

The main goal of a HSI remote sensing system is to study the materials on the ground. This is typically done
in the emissivity domain where the emissivity spectra of pixels are compared to a target emissivity library. The
target emissivity library contains lab measured emissivity spectra for materials of interest. In order to make this
comparison, the ground emissivity must be extracted from the measured at-aperture radiance. Fig. 3 shows a
typical HSI processing pipeline, where the ground emissivity and temperature are extracted from the measured
radiance. The processing from measured radiance to ground emissivity consists of atmospheric compensation
followed by temperature emissivity separation, which are discussed in the following subsections.

2.1 Atmospheric Compensation (AC)

AC is the process where atmospheric effects are removed from the measured radiance to retrieve the ground
radiance, described in equation (1). To remove the atmospheric effects, a TUD atmospheric model is estimated
for the entire scene. With an accurate estimate of the atmospheric transmission τ(λk) and upwelling radiance
LU(λk), transmission losses and emission gains from the atmosphere can be compensated to find the ground
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radiance LG(λk). Rearranging Eq. 3 we find that

LG(λk) =
LM(λk) − LU(λk)

τ(λk)
(4)

In-scene Atmospheric Compensation (ISAC) is a method where the transmission and upwelling radiance of a
scene’s atmosphere are estimated using natural blackbody or near blackbody materials of varying temperatures
that are present in the scene. Multiple versions with varying methods of selecting blackbody pixels exist. The
method discussed here is from [2]. Pixels that contain materials such as water and vegetation have ε ≈ 1 and
are key candidates for blackbody like pixels, as shown in Fig. 10a. The quality of ISAC is determined by how
well the in-scene blackbody like pixels resemble actual blackbodies. When ε ≈ 1 the measured radiance in Eq. 3
simplifies to

LM(λk) ∼= ε(λk)B(λk;TG)τ(λk) + LU(λk) (5)

Since the downwelling radiance term [1 − ε]LD ≈ 0. The simplified measured radiance equation is a linear
function for each wavelength band, of the independent variable B(λk;TG), where τ(λk) and LU(λk) are the slope
and y-intercept. The difficulty of ISAC lies in the determining which of the pixels in the scene are close to being
blackbodies, and what are their corresponding temperatures.

The ground temperature estimate T̂G of each pixel is found by finding the maximum band brightness temper-
ature in each pixel spectrum. The band brightness temperature is the inverse of the Planck function B(λk;TG)
and is the temperature at which a blackbody emits radiance L at wavelength λk and is defined as

TB(λk;L) =
c2

λln(c1/(λ5kL) + 1)
= B−1(λk;L) (6)

The band that has the most maximum pixel brightness temperatures is chosen as the reference band λR, and
only the pixels that share this band as their maximum are kept for further searching of possible blackbodies.
The reference band will typically be at an atmospherically clear wavelength.

A blackbody spectrum B(λ; T̂G) is generated with Eq. 2 over the entire spectral range of the sensor for each
pixel using the maximum brightness temperature as the ground temperature estimate. These spectra represent
the ground radiance of the possible blackbody pixels. Using the blackbody spectra as a ground radiance reference,
scatter plots are created of B(λk;TG) vs. LM(λk) for each band. An example of a B(λk;TG) vs. LM(λk) scatter
plot for the 8.87 µm band is shown in Fig. 4. These plots show how the possible ground radiance compares to
the measured radiance for the pixels at each band. The overall trend of each scatter plot is determined by the
transmission and upwelling radiance at the corresponding band as described by Eq. 5. At a constant B(λk;TG)
the value of a pixel’s LM(λk) is determined by the pixel’s ε(λk). The pixels at the top of the scatter plot have
the highest emissivity and are more likely to be blackbody like pixels. By fitting a line to the likely blackbody
like pixels in each band scatter plot, coefficients proportional to o τ(λk) and LU(λk) are found.

2.2 Temperature Emissivity Separation (TES)

The ground radiance consists of the emitted radiation from materials on the ground and the reflected radiation
from the atmosphere. The spectral emissivity features of solids are wide compared to the sharp spectral features
of atmospheric gases [3]. When observing a reflective ground material, one sees sharp features in LG(λk) from
the gas emissions of the atmosphere. In order to determine the emissivity of the ground material, these sharp
atmospheric features need to be removed. However, the magnitude of the features are dependent on the emissivity
itself. TES removes the reflected radiation component, and separates the temperature and emissivity from the
emission component.

With an accurate estimate of LD(λk) the emissivity can be calculated for a given temperature from Eq.

ε̂(λk) =
LG(λk) − LD(λk)

B(λk; T̂G) − LD(λk)
(7)

where ε̂(λk) and T̂G are estimates of the ground emissivity and temperature respectively. When the estimated
ground temperature is different from the actual temperature, the reflected atmospheric features are visible in
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Figure 4. B(λk;TG) vs. LM(λk) scatter plot for 8.87 µm band.

Figure 5. Emissivity estimates at varying temperatures. The green emissivity is the correct temperature.

the estimated emissivity. As the estimated ground temperature approaches the actual temperature, the reflected
features in the estimated emissivity decrease in size [3]. Fig. 5 shows the emissivity estimate for varying
temperatures. When the temperature estimate is off, the water and ozone emission from the downwelling
radiance are clearly visible. When the temperature is correct, the smooth green emissivity spectrum is found.

Temperature emissivity separation is a numerical optimization problem where the ground temperature esti-
mate T̂G that provides the smoothest emissivity spectrum is determined [3]. The maximum brightness tempera-
ture of the ground radiance is used as the initial T̂G. Using the current T̂G an emissivity estimate is calculated,
and smoothed using N-band boxcar averaging to obtain ε̄. A new ground radiance is calculated using the
smoothed emissivity spectrum ε̄ so that

LG(λk) = ε̄(λk)B(λk; T̂G) + (1 − ε̄(λk))LD(λk) (8)
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The error between the actual and calculated ground radiances is defined as

E =

√√√√ 1

k2 − k1 + 1

k2∑
k1

[
LG(λk) − LG(λk)

]2
(9)

where k1 and k2 are a range of spectral bands. The ground temperature estimate is updated till a T̂G is found
that provides the minimum E. This minimum occurs at the correct T̂G, when the calculated emissivity is the
smoothest, and the smoothing error is minimal.

2.3 Downwelling Radiance

The accuracy of TES is determined by the quality of the AC used to determine LG and the quality of the
estimated LD. Inaccuracies in the AC and the estimated LD can prevent TES from finding a temperature that
removes the sharp reflected atmospheric features, and can effect the temperature and the shape of the emissivity
spectrum.

The downwelling radiance is the most difficult atmospheric component to estimate due to the lack of in-scene
evidence. It consists of the entire atmosphere, including the unmeasured portion above the sensor. In-scene
evidence of the downwelling radiance comes from the upwelling radiance and reflective pixels present in the scene
[3]. The upwelling and downwelling radiance are related over the portion of the atmosphere that the two overlap.
The relationship between the two strengthens as the altitude of the sensor increases. Evidence of the downwelling
radiance for the entire atmosphere is provided as sharp reflected gas features within the ground radiance spectra
of pixels with low ε

Temperature emissivity separation and estimation of the downwelling radiance are linked. The amount of
downwelling radiance in the reflective pixels is dependent on the unknown emissivity spectra of the pixels. TES
is done on the reflective ground radiances using an estimated downwelling radiance. The quality of the estimated
downwelling radiance is determined by the TES quality of the determined emissivity spectra [3].

3. DOWNWELLING RADIANCE ESTIMATION

Combined AC and TES requires the estimation of at least 4N + 1 parameters where N is the number of spectral
bands of the sensor[4]. Due to the large dimensionality of the problem, attempting to estimate all the parameters
at once may lead to a non-unique solution that provides believable smooth but incorrect emissivity spectra. To
limit the dimensionality of the problem, the transmission and upwelling radiance based on in-scene evidence from
ISAC are used for AC to convert a scene to ground radiance and reduce the number of unknowns to 2N +1. The
downwelling radiance is then estimated from just the ground radiance of reflective pixels using the algorithm
shown in Fig. 6.

Reflective pixels are pixels that contain low emissivity materials and contain a reflected downwelling com-
ponent in their ground radiance spectra. Examples of low emissivity spectra and simulated ground radiance
spectra are shown in Fig 10. Reflective pixels are pixels that least resemble blackbodies. They can be found in
a scene by calculating the brightness temperatures of the ground radiance spectra in a scene, and finding the
pixels with the largest brightness temperature variance. The brightness temperature variability will be effected
by the variance of the emissivity and its magnitude, along with the features of the downwelling radiance.

Since the emissivity is unknown for reflective pixels, the downwelling radiance cannot be directly estimated
from a scene. Due to the lack of in-scene evidence, an accurate atmospheric model is needed to determine the
downwelling radiance. The atmospheric model should contain atmospheric temperature and gas profiles that
closely match those of the scene for the entire height of the atmosphere.

Atmospheric models for the downwellling radiance are generated using MODTRAN (MODerate resolution at-
mospheric TRANsmission), a radiative transfer algorithm [5]. The inputs to MODTRAN consist of atmospheric
and sensor parameters. The atmospheric parameters consist of temperature and gas profiles that describe the
temperature and gas concentrations of the atmosphere with altitude. Scaling parameters are used to finely adjust
the concentration of the gases. The sensor parameters include sensor altitude, latitude, longitude, wavelength
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Figure 7. Downsampled Downwelling Radiance MODTRAN Models

centers, and spectral bandwidth (FWHM). Running MODTRAN with permutations of the atmospheric param-
eters, a multitude of varying downwelling radiance atmospheric models are generated to create a high resolution
look-up-table (LUT). Using the wavelength centers and FWHM of the sensor, the high resolution MODTRAN
models can be downsampled to the sensor resolution. Fig. 7 shows a LUT consisting of 265 downwelling radiance
models that were downsampled to the 128 band SEBASS sensor resolution.

Each of the downwelling radiance models in the LUT is used for TES on the reflective pixel spectra. The
LD model that provides the emissivity spectra with the lowest TES error in Eq. 9 is chosen as the downwelling
radiance of the scene. TES is extremely susceptible to small mismatch errors between the estimated downwelling
radiance and the true downwelling radiance present in a reflected pixel. Even with the correct downwelling
radiance model, mismatch can be caused by sensor calibration errors. Any shifting of the wavelength centers and
broadening of the bands will cause a slight discrepancy from the MODTRAN downwelling radiance downsampled
with the documented calibration parameters. Calibration correction algorithms are required to determine the
correct calibration parameters for downsampling each LD model and minimize the mismatch [3].

3.1 Utilization of Reflected Gas Features for Ground Temperature Estimation

An initial temperature estimate for TES is typically found with the ground channel radiance that provides the
maximum brightness temperature. The lower this channel emissivity and the further the pixel is from being
a blackbody, the further the initialization temperature will be from the true ground temperature. The lower
the emissivity of a material in a pixel, the more visible the sharp reflected gas features of the downwelling
radiance. The height of these reflected features are dependent on the height of the corresponding features in
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Figure 8. Measured feature height of ground radiance and downwelling radiance

the downwelling radiance and the reflectance [1 − ε(λk)] across the feature, as shown in Eq. (1). The ground
temperature effects the base radiance of the reflected feature, but not the height of the feature.

Since the emissivity is directly related to the height of reflected downwelling features, a large feature can
be used to estimate the emissivity at the feature band. The height of a large water feature between 12.2µm
and 12.7µm is measured for a ground and downwelling radiance spectra in Fig. 8. The height of the feature
is measured from the feature’s peak to a line that is linearly interpolated across the base of the feature. The
emissivity at a feature band can be estimated by comparing the height of a reflected feature in the ground radiance
to a reference height of the same feature from an accurate estimate of the downwelling radiance. Knowing that
the height of the LD reference occurs at an emissivity of 0, the ratio of the two heights can be used to estimate
the emissivity at the feature band λf using Eq. 10.

ε̂(λf ) = 1 − HG

HD
(10)

where HG and HD are the feature heights of the ground and downwelling radiance respectively. The estimated
emissivity is then used to estimate the ground temperature.

T̂Gf
= B−1

(
λf ;

LG(λf ) − [1 − ε̂(λf )]LD(λf )

ε̂(λf )

)
(11)

3.2 Reduction of Possible Downwelling Radiance Models

The downwelling radiance models present in the LUT are not necessarily all valid models for the available
reflective ground radiance spectra. Several techniques are used to remove the invalid downwelling radiance
models from the LUT. One technique to filter out invalid models compares the height of a large feature in the
downwelling radiance model to the largest feature found in the reflective ground radiance spectra. The feature
heights are measured using the technique described in 3.1 to find the improved ground temperature estimate.
The downwelling radiance model feature height is the maximum feature height that is reached when a ground
radiance spectrum has an emissivity of 0. Invalid downwelling radiance models have feature heights that are less
than the largest feature found in the reflective ground radiance spectra, and would require a negative emissivity
to create the observed feature. Such models that require non-physical emissivities are removed from the LUT.
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The downwelling radiance models in the LUT consist of the entire height of the atmosphere. The upwelling
radiance determined by ISAC consists of the portion of atmosphere below the sensor. Since the downwelling
radiance is modeled just above the ground where the atmosphere is thickest, and can consist of significantly more
atmosphere, it should have a higher radiance. Any downwelling radiance model that has radiances less than the
upwelling radiance are removed from the LUT.

The downwelling radiance LUT shown in Fig. 7 includes the true LD in red and its corresponding LU at a
sensor altitude of 1.5 km in magenta. Using the simulated ground radiance spectra in Fig. 10, it was possible to
reduce the 265 models in the LUT to the 64 green models using the two methods discussed above.

3.3 Sensor Calibration Correction

A preflight spectral and radiometric calibration of the hyperspectral sensor is typically accomplished to obtain
accurate measurements of band centers λ and resolutions FWHM. These measured calibration parameters C
can change overtime. Factors such as mechanical vibration and temperature changes can cause spectral shifts
λ + ∆ and band broadening s(FWHM) [6]. The calibration error typically remains constant in the along-track
direction but depending on the quality of the sensor can change in the across-track direction[6]. These calibration
errors cause a mismatch between the downwelling radiance in the LUT and the reflected downwelling radiance
in the ground radiance spectra. This mismatch will prevent TES from completely removing the sharp reflected
gas features even when the correct temperature is determined.

The sensor calibration algorithm used to find an accurate estimate of the calibration parameters Ĉ =
(
λ +

∆, s(FWHM)
)

is shown in Fig. 9. Using low emissivity pixel spectra, the current LD, and the documented C as

an initial estimate of the calibration, the goal is to find the spectral shift ∆ and broadening factor s that provides
the smoothest emissivity spectra and removes the sharp gas features. This process is similar to the technique
discussed in [6] that uses reflectance smoothness. Emissivity smoothness is the optimization parameter for TES,
so TES is utilized to measure the quality of each Ĉ iteration. In order to reduce the optimization parameters to
just the calibration parameters, TES is done for only one iteration with the feature based temperature estimates.
The feature based temperature estimates are close enough to the truth to provide emissivities that are relatively
free of reflected atmospheric features when the correct C is found. The temperature estimates are updated each
iteration to account for feature changes from the new downsampling. The Ĉ that provides the lowest overall
TES error for all the reflective pixels is chosen as the correct calibration.

A single correction is accomplished for the entire scene, so it is important for the sensor to be of high enough
quality for the calibration to remain consistent across-track. Determining a sensor calibration correction for
each along-track sample would require several low emissivity pixels in each of the samples [6]. Depending on the
scene, there is no guarantee that each sample will contain low emissivity pixels.

4. DOWNWELLING RADIANCE ESTIMATION SIMULATION

The proposed techniques used to determine the in-scene downwelling radiance were tested on simulated reflective
ground radiance spectra. Simulated spectra were utilized due to the lack of scenes with accurate ground and
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atmospheric truth. Ground radiance spectra were simulated to exclude any effects caused by AC error, and allow
for a more precise study of how the downwelling radiance estimate affects TES.

The simulation was done following the flowchart in Fig. 11. A downwelling radiance was chosen from the LUT
and downsampled to the 128 band SEBASS sensor calibration C[2]. The downsampled downwelling radiance LD

that was used is the red spectrum in Fig. 7, and the corresponding LU at 1.5 km is the magenta spectrum. Three
low emissivity spectra were also downsampled to C, and are shown in 10a. Five ground radiance spectra were
then simulated for each emissivity spectrum. The five spectra for each emissivity were simulated at 5 ground
temperatures TG from 285K - 305K in 5K steps using Eq. 1. The 15 simulated ground radiance spectra are
shown in Fig. 10b, along with the corresponding blackbody spectra in blue. Sensor noise could then be added
to the simulated ground radiance spectra by adding white gaussian noise to each spectral band. Calibration

error could be added so that the initial calibration estimate is Ce =
(
λ + ∆, s(FWHM)

)
. The simulated

ground radiances, high resolution LD LUT, and Ce are fed into the downwelling radiance estimation algorithm.
The downwelling radiance estimation algorithm supplies an estimate of the downwelling radiance L̂D from the
LUT, that is downsampled to a corrected sensor calibration Ĉ. For each of the supplied LG spectra there are
corresponding ground temperature T̂G and emissivity spectrum ε̂ estimates. These estimates are compared to
the supplied parameters to determine their quality.

(a) Emissivity Spectra (b) Simulated Ground Radiance and Blackbody Spectra

Figure 10. Emissivity spectra and simulated ground radiance spectra using corresponding low emissivity spectra.

The testing was done in three stages. The first stage used noiseless ground radiance spectra and included no
calibration error so that C = Ce. The purpose of this stage was to study how the different LD models effect TES,
and whether or not the correct LD model could be found with no sources of error. Since the two calibrations
perfectly matched up, the sensor calibration correction algorithm was removed from the downwelling radiance
estimation algorithm, and the hires downwelling radiance models were simply downsampled to C. The noiseless
ground radiance spectra in Fig. 10 were then processed using the simplified downwelling radiance estimation
algorithm that ran TES on each of the signatures using each downsampled LD in the LUT. The LD model that
provided the lowest overall TES error for the signatures was then chosen.

Errors were added incrementally, to understand how individual errors effected the downwelling estimation
process. The second stage was identical to the first except that calibration error was added, and the hires
downwelling radiance models were downsampled to Ce. The calibration error consisted of a spectral shift of
0.25× the minimum distance between band centers and a band broadening of 1.1×. The effects of calibration
error and LD mismatch on TES and determining the correct model were studied. The next stage re-inserted the
sensor calibration correction algorithm into the downwelling estimation algorithm to correct for the mismatch
that was added by Ce. The quality of the sensor calibration correction to minimize the LD mismatch and
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improve the downwelling radiance estimation and TES was studied. The last stage added sensor noise with
a noise equivalent spectral radiance (NESR) of 1 microflick to each band of the ground radiance spectra to
determine how noise effected the entire process.

5. RESULTS

The four incremental simulation stages were as follows:

• Matched - the LD used to simulate the ground radiance spectra and the LD in the LUT were downsampled
using the same C so that C = Ce.

• Mismatched Calibration - the LD used to simulate the ground radiance spectra was downsampled at C,

the LD in the LUT were downsampled at Ce =
(
λ+ ∆, s(FWHM)

)
. ∆ was 0.25× the minimum distance

between band centers and the band broadening of s was 1.1×.

• Corrected Calibration - the sensor calibration correction algorithm was used to correct the mismatched Ce

used to downsample the LD LUT.

• Ground Radiance Noise - NESR of 1 microflick was added to each band of the simulated ground radiance
spectra.

The results of each stage were compared to each other and the truth using three methods. The true LD model
spectra and the models spectra with lower TES errors are compared in Section 5.1. The TES results using the
corresponding low TES error LD models are studied in the next two sections. The temperature estimates are
discussed in section 5.2 and the corresponding emissivity estimates are discussed in section 5.3.

5.1 Downwelling Radiance Estimates

For each of the stages the best LD model found in the LUT with the lowest overall TES error was not the true
model used to simulate the ground radiance spectra. Table 1 shows the number of models found that had TES
errors less than or equal to the true model. It can be seen that as the stages progressed the number of models
decreased. The TES errors for the best and true models of each stage are shown in Table 2. As expected, the
TES error was lowest when the downsampling of the LUT matched the ground radiance spectra. The TES error
increased when calibration error was included, and was decreased when the sensor calibration was corrected.
The sensor calibration compensated for approximately 2/3 of the error caused by the calibration error. When
noise was added to the ground radiance spectra, the TES error found with Eq. 9 increased by approximately
800 for the best and true models.

The best L̂D model spectra for each of the stages are shown in Fig. 12. The best L̂D spectra are green and
the true L̂D spectra corresponding to the true LD model in the LUT are red. The rest of the models better than
the true L̂D are blue. The LD spectra in Fig. 12a for the matching calibration case are quite similar, which
explains the small range of TES errors. Table 3 and 4 show the angular and distance error between the L̂D
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Matched Mismatched Corrected Noise
# of Models 14 8 6 7

Table 1. Number of LD models better than true model for each stage.

Matched Mismatched Corrected Noise
Best 8008.2 11560 9219.7 10040
True 8020.6 11669 9261.6 10079

Range 12.4 109 41.9 39

Table 2. TES error for the estimated best and true LD models for each stage.

spectra and the true LD for each of the stages. Both errors are zero for the true L̂D because they are identical
with the matching calibration. The max angle and distances errors are quite low.

When calibration error was added, L̂D spectra significantly different from LD were found. The best mis-
calibrated downsampled L̂D spectra are shown in Fig. 12b. The number of models decreased to 8. Of the 8
models, only the last two models were consistent between the matching and mismatched calibration models. The
angular and distance errors between L̂D and LD increased significantly. Sensor calibration correction removed
the two highest radiance models from the mis-calibration models. The remaining L̂D models can be seen in Fig.
12c.

The angular and distance errors between L̂D and LD decreased close to their original values. Adding sensor
noise to the ground radiances had little effect on the L̂D spectra as shown in Fig. 12d.

Matched Mismatched Corrected Noise
Best 0.86 4.58 2.74 2.74
True 0 1.37 0.17 0.14
Max 1.27 5.76 2.74 4.21

Table 3. Angular Error (Degrees) between the true LD model and the estimated best and true models for each stage.

5.2 Ground Temperature Estimates

The temperature estimate errors for each of the stages are shown in Fig. 13. Each of the figures shows the
temperature estimate errors for the L̂D models corresponding to each stage and all the ground radiance spectra.
The ground radiance spectra are grouped into 3 sets of 5 by their emissivities, where each set has temperatures
285K - 305K in 5K steps. Similar to the L̂D model spectra, the temperature errors corresponding to the best L̂D

spectra are green and red for those corresponding to the true L̂D. The rest of the models in-between are blue.
The magenta lines are the initial ground temperature estimates using the maximum brightness temperature of
the ground radiance. The black lines are the initial temperature estimates for the true L̂D model using the
method discussed in section 3.1 that compares the height of reflected gas features to the feature in the L̂D model.
The average temperature errors of the 5 spectra for each emissivity spectrum are shown in Table 5 for the best
and true L̂D models.

For all the stages there was a pattern where the temperature error increased with the true temperature of
the ground radiance spectrum. The temperature errors for the matching calibration case are shown in Fig. 13a.
Due to the similarity of the L̂D spectra, the temperature errors for each L̂D model were nearly identical. The
temperature errors were always under 1.5K with averages less than 0.5K. Ground radiance spectra simulated
with Sig 2, the highest emissivity spectrum, had the lowest error. The feature based initial temperature estimates
remained below 2K and were significantly better than the estimates using the maximum brightness temperature.
The temperature error increased significantly when the calibration error was added, as shown in Fig. 13b. The
average errors in Table 5 increased by over an order of magnitude for the true model. The feature based initial
temperature estimates still remained below 2K, and were better than the final estimates. The sensor calibration
correction was able to correct the temperature estimates with errors within -0.5K for the true model, where all
the estimates were too low. The feature based initial temperature estimates were nearly identical to the initial
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Matched Mismatched Corrected Noise
Best 193.05 762.93 467.87 467.93
True 0 76.76 9.60 7.70
Max 217.25 1034.2 467.87 754.23

Table 4. Distance Error between the true LD model and the estimated best and true models for each stage.

(a) Matching Calibration (b) Mismatched Calibration

(c) Corrected Calibration (d) Noisy Ground Radiance Corrected Calibration

Figure 12. Best LD models.

estimates for the matching calibration. Sensor noise had little effect on the temperature error other than adding
a slight randomness.

5.3 Emissivity Estimates

The emissivity estimates with the best L̂D for each of the stages are shown in Fig. 14. The three truth emissivity
spectra are red, and the estimates are blue. The average angular and distance emissivity errors of the 5 spectra
for each emissivity spectrum are shown in Tables 6 and 7 for the best and true L̂D models. The emissivity
estimates for the matching calibration in Fig. 14a are below the truth and have a slightly different truth. The
temperatures were as close to the truth as the true L̂D, so the difference in emissivity is caused by the slight
shape and height difference between the best L̂D and LD. The effects of mismatched calibration are evident in

Proc. of SPIE Vol. 9976  99760E-14

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 3/16/2018 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



True. In- between

Feature Based

Sigl Sig2 Sig3

Signatures (285K - 305K 5K steps)

Sia 1 Sia 2 Sig 3

Signatures (285K - 305K 5K steps)

Sia 1 Sia 2 Sia 3

Signatures (285K - 305K 5K steps)

Sia 1 Sia 2 Sia 3

Signatures (285K - 305K 5K steps)

Matched Mismatched Corrected Noise
Sig 1 Sig 2 Sig3 Sig 1 Sig 2 Sig 3 Sig 1 Sig 2 Sig 3 Sig 1 Sig 2 Sig 3

Best 0.37 0.11 0.43 1.25 0.56 3.11 -1.52 -0.98 -1.66 -1.53 -0.82 -1.47
True 0.35 0.10 0.41 3.67 1.95 5.91 -0.46 -0.36 -0.34 -0.34 -0.12 -0.01

Table 5. Average Temperature Error (K)

(a) Matching Calibration (b) Mismatched Calibration

(c) Corrected Calibration (d) Noisy Ground Radiance Corrected Calibration

Figure 13. Ground temperature estimates of ground radiance spectra with corresponding best LD models.

Fig. 14b from the roughness of the emissivity spectra. The temperature estimates and L̂D were above the truth
lowering the emissivity estimates. The sensor calibration was able to correct the LD mismatch and give the
emissivity estimates in Fig. 14c that were close to the matching calibration estimates. The sensor noise added
to the ground radiance spectra was transfered to the emissivity estimates in Fig. 14d, but the overall shapes
remained the same.

The emissivity estimates with the true L̂D for each of the stages are shown in Fig. 15. With the true L̂D,
the emissivity estimates are significantly closer to the truth. Mismatched calibration added roughness to the
emissivity estimates shown in Fig. 15b. TES failed giving temperature estimates several degrees above the truth
which lowered the emissivity estimates. The sensor calibration was able to correct the LD mismatch and give

Proc. of SPIE Vol. 9976  99760E-15

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 3/16/2018 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



the emissivity estimates in Fig. 15c that were close to the matching calibration estimates. The estimates were
slightly above the truth due to temperature estimates slightly below the truth. The sensor noise added to the
ground radiance spectra was transfered to the emissivity estimates in Fig. 15d, but the overall shapes remained
the same.

The optimum emissivity estimates with the true L̂D models of each stage were determined by calculating
the emissivities with the correct temperatures of each ground radiance spectrum and the true L̂D model. By
calculating the emissivities with the correct temperature, the emissivity estimates are free of TES errors. The
calculated emissivities for all the stages excluding the matching calibration are shown in Fig. 16. Fig. 16a
show the true L̂D models for each of the stages. Except for the mismatched calibration case in Fig. 16b were
TES failed, the estimated and calculated emissivities are close to each other. The average angular and distance
emissivity errors of the 5 calculated emissivity spectra for each emissivity spectrum are shown in Tables 6 and 7.

Matched Mismatched Corrected Noise
Sig 1 Sig 2 Sig3 Sig 1 Sig 2 Sig 3 Sig 1 Sig 2 Sig 3 Sig 1 Sig 2 Sig 3

Best 0.89 0.47 1.23 4.04 2.14 5.64 1.83 0.97 2.70 1.85 1.01 2.71
True 0.11 0.03 0.14 1.09 0.62 1.61 0.15 0.11 0.13 0.21 0.16 0.21

Correct Temp —- —- —- 0.66 0.39 0.76 0.08 0.05 0.09 0.18 0.15 0.19

Table 6. Average Angular Emissivity Error (Degrees)

Matched Mismatched Corrected Noise
Sig 1 Sig 2 Sig3 Sig 1 Sig 2 Sig 3 Sig 1 Sig 2 Sig 3 Sig 1 Sig 2 Sig 3

Best 0.25 0.15 0.28 0.92 0.60 1.22 0.22 0.13 0.30 0.22 0.15 0.32
True 0.06 0.02 0.07 0.57 0.36 0.79 0.08 0.07 0.05 0.06 0.04 0.04

Correct Temp —- —- —- 0.07 0.05 0.08 0.009 0.006 0.009 0.021 0.020 0.020

Table 7. Average Distance Emissivity Error

6. SUMMARY AND FUTURE WORK

It was found that the true L̂D model did not provide emissivity estimates with the minimum TES error. However,
the best L̂D model was still within 3◦ of the LD, and provided temperature estimates within 2 K and emissivity
estimates within 3◦ of the truth. It was shown how mismatched calibration could cause TES to fail, but that
a majority of the mismatch could be removed with the sensor calibration algorithm returning the results close
to the originals. A feature based temperature estimation was shown that provides an improved initialization
temperature for TES within 2 K of the truth, and is resistant to LD mismatch.

Future work will include developing techniques that can speed up the time of convergence to an accurate L̂D

model. These techniques will include methods to further reduce the number of possible L̂D models in the LUT,
and limiting the number of models that sensor calibration correction is implemented on. Further testing will
also be done with varying low emissivity spectra. The largest limitation to this test was the lack of atmospheric
compensation error in the ground radiance error. In order to add this error to the model, scenes need to be
developed with statistically meaningful classes and atmospheres with a small amount of variability need to be
applied. Atmospheric compensation algorithms can then be tested on simulated scenes to determine possible
errors and there effects on TES and determining a downwelling radiance model.

References

[1] Manolakis, D., Marden, D., and Shaw, G., “Hyperspectral image processing for automatic target detection
applications,” Lincoln Laboratory Journal 14(1), 79–116 (2003).

[2] Young, S. J., Johnson, B. R., and Hackwell, J. A., “An in-scene method for atmospheric compensation of
thermal hyperspectral data,” Journal of Geophysical Research: Atmospheres 107(D24), ACH 14–1–ACH
14–20 (2002). 4774.

Proc. of SPIE Vol. 9976  99760E-16

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 3/16/2018 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



1

0.8

E 0.4w

0.2

0

8 9 10 11 12

Wavelength (pm)
13

0.8

>,=
>
u, 0.6
È
w

0.4

8 9 10 11 12 13

Wavelength (µm)

0.8

w

0.4

8 9 10 11 12

Wavelength (µm)
13

(a) Matching Calibration (b) Mismatched Calibration

(c) Corrected Calibration (d) Noisy Ground Radiance Corrected Calibration

Figure 14. Emissivity estimates from ground radiance spectra with best LD models.

[3] Borel, C., “Error analysis for a temperature and emissivity retrieval algorithm for hyperspectral imaging
data,” Proc. SPIE 6565, 65651Q–65651Q–12 (2007).

[4] Boonmee, M., Land Surface Temperature and Emissivity Retrieval from Thermal Infrared Hyperspectral Im-
agery, PhD thesis (2007).

[5] Berk, A., Anderson, G. P., Acharya, P. K., Bernstein, L. S., Muratov, L., Lee, J., Fox, M., Adler-Golden,
S. M., Chetwynd, Jr., J. H., Hoke, M. L., Lockwood, R. B., Gardner, J. A., Cooley, T. W., Borel, C. C.,
Lewis, P. E., and Shettle, E. P., “Modtran5: 2006 update,” (2006).

[6] Guanter, L., Richter, R., and Moreno, J., “Spectral calibration of hyperspectral imagery using atmospheric
absorption features,” Appl. Opt. 45, 2360–2370 (Apr 2006).

Proc. of SPIE Vol. 9976  99760E-17

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 3/16/2018 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



0.9

0.8

É 0.6w

0.5

0.4

Truth, Estimates

- Sig 2

'Sig 1

-Sig 3

8 9 10 11 12 13

Wavelength (pm)

0.8

0.4

8 9 10 11 12

Wavelength (µm)

13

0.9

0.8

>,
> 0.7
c n

È 0.6w

0.5

0.4
8 9 10 11 12 13

Wavelength (µm)
9 10 11 12 13

Wavelength (µm)

(a) Matching Calibration (b) Mismatched Calibration

(c) Corrected Calibration (d) Noisy Ground Radiance Corrected Calibration
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