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A torsional artificial muscle from twisted nitinol microwire 

Seyed M. Mirvakili, Ian W. Hunter 

Department of Mechanical Engineering, BioInstrumentation Laboratory, Massachusetts Institute of 

Technology, Cambridge, MA, 02139, USA. 

ABSTRACT 

Nitinol microwires of 25 µm in diameter can have tensile actuation of up to 4.5% in less than 100 ms. 

A work density of up to 480 MPa can be achieved from these microwires. In the present work, we are 

showing that by twisting the microwires in form of closed-loop two-ply yarn we can create a torsional 

actuator. We achieved a revisable torsional stroke of 46 °/mm with peak rotational speed of up to 

10,000 rpm. We measured a gravimetric torque of up to 28.5 N·m/kg which is higher than the 3 – 6 

N·m/kg for direct-drive commercial electric motors. These remarkable performance results are 

comparable to those of guest-infiltrated carbon nanotube twisted yarns. 

 

Keywords: Torsional Artificial Muscle, Shape Memory Alloy, Nitinol, Twisted Fiber. 

 

1. INTRODUCTION AND BACKGROUND 

 Since the discovery of the shape-memory effect in 1930s many devices have been made that 

exploit this remarkable effect including torsional actuators. By twisting a 100 µm nitinol wire (NiTi 

alloy) and differentially heating it along its length, Walker et al. at AT&T Bell Laboratories showed 

that torsional actuation can be observed [1]. The working principle relies on the shape recovery of the 

twisted wire. In their design, half of the length of the nitinol wire was Joule heated via an electrical 

contact in the middle. This three-contact configuration limits the practicality of such torsional actuator. 

In the present work, we introduce an alternative design in which the torsional actuator works without 

any need for the middle electrical contact.  

The recent advancements in fabrication of shape memory alloy wires have reduced the 

diameter of nitinol wires down to 25 µm. The smaller diameter wires cool more rapidly which enables 
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a higher cycling rate. Although there are techniques to reduce the cooling time [2], [3], for simplicity 

we used 25 µm nitinol wires in the present work. 

Other types of miniature torsional actuators made from infiltrated (guest) carbon nanotube or 

niobium nanowire yarns are shown to produce remarkable torsional stroke (up to 16 °/mm), rotational 

speed (up to 11,500 rpm), and gravimetric torque (up to 8 N·m/kg) [4]–[7]. The mechanism by which 

these nanofiber-based torsional actuators work is based on the volumetric expansion of their stimuli-

responsive guest material. Here, by using only one length of nitinol microwire we achieved 

performance results which favorably compare to those of nanofiber-based torsional actuators. The key 

working mechanism here is shape recovery of the twisted nitinol wire via Joule heating. 

2. METHODS 

The torsional actuator is made of one length of nitinol microwire (25 µm in diameter) with two 

ends connected to electrical contacts to one side of the device (figure 1 A). By attaching a loop to 

middle of the microwire and twisting it, we formed a twisted structure illustrated in figure 1A. The 

other side of the loop is attached to a load (figure 1A). To observe the torsional actuation, we attached 

a small paddle (4 mm × 10 mm × 25 µm) made of a piece of aluminum foil close to the junction where 

two microwires meet (figure 1A). We used a programmable power supply (Agilent B2962A) to excite 

the actuator with voltage pulses of different width and amplitude. To measure the torsional speed and 

stroke, we used a high-speed camera (1,000 fps, SAMSUNG TL350). An algorithm was implemented 

in MATLAB to extract the data from the high-speed video files.  

 

Figure 1 – (A) An illustration of the actuator structure and its working cycle. The components are not to scale. 

(B) By passing current through the nitinol microwires we achieved torsional actuation. 

A 

B 
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The maximum generated torque from this structure can be estimated from the maximum torsional 

stroke (θm) and the torsional spring constant of the yarn (κ) by using mmτ  . By applying square 

wave input signal, with appropriate width and amplitude, the paddle oscillates at the resonance 

frequency of the structure when it reaches the peak torsional stroke. By measuring this resonance 

frequency and using the moment of inertia of the paddle ( 12/)( 22 wlmI  ) we can estimate the 

torsional spring constant from 2

nI   . The specific work capacity, a measure of how much work a 

torsional actuator can output, can be estimated from the maximum torque and torsional stroke (

4/mmmW  ). 

3. RESULTS AND DISCUSSION 

We measured peak speed of almost 10,000 rpm with torsional stroke of up to 46 °/mm (Figure 2). 

The peak speed is lower than the 11,500 rpm from wax-infiltrated multi-walled carbon nanotube yarns 

[4] but higher than the 7,200 rpm for wax-infiltrated niobium nanowire yarns [6]. The torsional stroke 

is higher than the 0.6 °/mm for NiTi monofilament torsional actuators [1] and the 16 °/mm for 

MWCNT wax-infiltrated yarns [4].  

We measured gravimetric torque of up 28 N·m/kg which is higher than the reported values for 

MWCNT and niobium nanowire wax-infiltrated yarns. This remarkable gravimetric torque is also 

higher than the 3 – 6 N·m/kg for ungeared direct-drive commercial electric motors. 

By twisting the looped nitinol wire from its middle, since the two ends of the wire are clamped, the 

entire length of the wire twists. Therefore, the two segments of the wire between the electrical contacts 

and the junction where they meet will also have twist on them (figure 1B). By applying current, these 

two segments untwist and make the section between the junction and the paddle to untwist. As the two 

segments untwist the junction moves towards the paddle and therefore, length of each segment 

increases (figure 4). As the section on the left side of the paddle is untwisting, the rest of the yarn 

twists until it counterbalances the torque generated by the torsional stroke. The stored energy in the 

twisted part rotates the paddle back to its initial angular position when the voltage is turned off.  The 

number of unwinding rotations depends on the initial inserted twist and length of the microwire. 
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Figure 2 – (A) Response of the actuator to a square wave input with amplitude of 14 V and width of 400 ms 

(1.4 W). The sample had an initial inserted twist number of 75 with initial length of 250 mm. Sample was under 

a load of 24 MPa. (B) Tensile actuation of the actuator in (A) with the same input power. (C) Normalized 

torsional stroke of the actuator as a function of input power. (D) rotational speed of the actuator as a function 

of input power. 

 

Figure 3 – (A) Gravimetric torque of the actuator as a function of input power. (B) Specific work capacity of 

the actuator as a function of input power (mass of the yarn is 0.63 mg). 
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Due to the twisting/untwisting of different sections of the wire, we expect to see a linear stroke as 

well. This linear actuation is due to two separate phenomena: 1) shape recovery of the Joule heated 

sections of the wire which untwists the sections on the left side of the paddle; 2) change in length due 

to an increase in the number of twists for the section on the right side of the paddle. We derived an 

equation that predicts the linear stroke in the yarn from some of the measurable parameters. Figure 4 

illustrates the diagram we have used to derive the equation. As illustrated here, when the yarn untwists 

the length of the wires between the electrical contact and the junction (noted as lo and l) increases. 

However, the length of the twisted pair (noted as ho and h) decreases because of the increase in the 

inserted twist (noted as no and n). 

 

 

Figure 4 – Top and bottom left: illustrates the actuation mechanism and changes in the inserted twist and length 

of the actuator. Right: illustrates the geometry of a helix and its relationship with the length and the number of 

twists. 

Using the helix geometry and trigonometric functions, we find the ΔLyarn (figure 1) to be: 

oooyarn hhllL  )cos()cos(  , (1) 

where the Δh can be measured directly from the experiment or we can find it from the following 

equation: 
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We know that Δl = nπD/sin(αo) − δl, where δl is the change in length of the microwire segments 

between the electrical contacts and the junction due to the phase transition [2]. The change in total 

length of one of the microwires (i.e., L+l) is: 

 l
Dn

lLL
o

o 





)sin(
. (3) 

Therefore, ΔL = − nπD/sin(αo) + δl which is equal to: 
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We can assume that at rest (i.e., before excitation) the twist angle in the yarn (αo) is equal to βo. 

Therefore, the twist angle in activated state, α, is: 
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Now, we can rewrite the equation 1 as: 

   DnDnnsL ooooyarn  )cot())(cot()cot()cot(  . (6) 

From equation 6, we can conclude that the distance between the electrical contacts (2s) and the number 

of inserted twists (n) have a direct impact on the linear actuation. This conclusion agrees with our 

observation from the experiments. 

We measured linear stroke of 0.55% for a yarn with 75 inserted twists with final length (ho+fo) of 100 

mm (figure 2B). The separation between the electrical contacts was 30 mm.  

4. CONCLUSION 

In conclusion, in this work we presented a simple method for fabricating a large stroke torsional 

actuator with a single nitinol microwire without using a third contact. The very small linear actuation 

in the yarn enables us to use this actuator in devices where the length should be constant and only 

torsional stroke is desirable. Although shape memory alloys have shorter cycle life compared to CNT 

yarns, their abundancy and ease of handling make them very comparable to nanofiber-based torsional 

actuator from system point of view. 
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