
1

Adaptive Video Streaming with Network Coding
Enabled Named Data Networking

Jonnahtan Saltarin, Student Member, IEEE, Eirina Bourtsoulatze, Member, IEEE,
Nikolaos Thomos, Senior Member, IEEE, and Torsten Braun, Senior Member, IEEE,

Abstract—The fast and huge increase of Internet traffic moti-
vates the development of new communication methods that can
deal with the growing volume of data traffic. To this aim, Named
Data Networking (NDN) has been proposed as a future Internet
architecture that enables ubiquitous in-network caching and
naturally supports multi-path data delivery. Particular attention
has been given to using Dynamic Adaptive Streaming over HTTP
(DASH) to enable video streaming in NDN as in both schemes
data transmission is triggered and controlled by the clients.
However, state-of-the-art works do not consider the multipath
capabilities of NDN and the potential improvements that multi-
path communication brings, such as increased throughput and
reliability, that are fundamental for video streaming systems. In
this paper, we present a novel architecture for dynamic adaptive
streaming over network coding enabled NDN. In comparison to
previous works proposing dynamic adaptive streaming over NDN,
our architecture exploits network coding to efficiently use the
multiple paths connecting the clients to the sources. Moreover,
our architecture enables efficient multi-source video streaming
and improves resiliency to Data packet losses. The experimental
evaluation shows that our architecture leads to reduced data
traffic load on the sources, increased cache-hit rate at the in-
network caches and faster adaptation of the requested video
quality by the clients. The performance gains are verified through
simulations in a Netflix-like scenario.

I. INTRODUCTION

As of 2015, video accounted for 70% of consumer Internet
traffic, and it is expected to reach 82% by 2020 [1]. This
increase in the volume of video traffic is fueled by the
emergence of applications such as social video, virtual reality
(VR), augmented reality (AR), etc., that have become popular
and involve the delivery of large amounts of video data. To effi-
ciently deliver the video, one of the most prominent approaches
is Dynamic Adaptive Streaming over HTTP (DASH) [2]. The
advantage of DASH compared to previous video streaming
methods is that the clients are in control of the streaming logic.
Thus, the clients are able to decide the appropriate bitrate and
resolution of the requested video, among the multiple options
offered by the video sources. This requires that the sources
encode the video in different representations, i.e., different
bitrates and resolutions. Each representation is further divided
into a series of video segments with a duration of a few seconds.

J. Saltarin and T. Braun are with the University of Bern, Bern,
Switzerland. (e-mail: {saltarin,braun}@inf.unibe.ch). E. Bourtsoulatze is
with the Imperial College London, London, United Kingdom (e-mail:
e.bourtsoulatze@imperial.ac.uk). N. Thomos is with the University of Essex,
Colchester, United Kingdom (e-mail: nthomos@essex.ac.uk). This work was
done while E. Bourtsoulatze was with the University of Bern. This work has
been partially funded by the Swiss National Science Foundation under grant
number 149225.

This allows clients to adapt in real-time the demanded video
resolution and bitrate in response to network changes.

The client driven video adaptation property has rendered
DASH an attractive option for video streaming in future
Internet architectures and, in particular, for Information-Centric
Networking (ICN) [3] architectures such as Content-Centric
Networking (CCN) [4] and Named Data Networking (NDN) [5].
In NDN, communication is not based on the addresses of clients
and sources as in current Internet, but on the name of the
content that is being requested. Hence, clients request content
by sending an Interest that contains the name of the requested
content. Any node that receives this Interest and stores a copy
of the requested content can reply by sending a Data packet
back to the client. This content retrieval mechanism of NDN
resembles the video retrieval mechanism of DASH [6]. In
particular, NDN and DASH are both client driven and, hence,
clients request content by sending requests with the names
assigned to each piece of content, i.e., a content object in NDN
or a video segment in DASH.

Motivated by the similarities of content retrieval mechanisms
of NDN and DASH, in this work we propose an adaptive video
streaming architecture over NDN that uses network coding [7]
to enable optimal multipath video streaming. Video streaming
applications require a moderately high and stable amount of
bandwidth between the video sources and the clients, to avoid
quality fluctuations and provide high Quality of Experience.
Thus, using multiple paths to connect the clients to the sources
increases the bandwidth seen by the clients, enabling the
quality adaptation mechanisms of DASH to converge to better
video qualities than with the use of a single communication
path. NDN natively supports multipath communication without
the need of any additional protocol. The clients can transmit
Interests over all their network interfaces (e.g., LTE and Wi-
Fi) to retrieve the Data packets that compose the requested
content. However, NDN does not provide any mechanisms for
coordinating the forwarding strategies at the intermediate nodes.
On one hand, without such coordination, Interest packets for
the same content may be forwarded on different paths. This
results in the delivery of multiple copies of the same content
on different paths and, therefore, diminishes the gains of using
multipath communication. On the other hand, coordination of
the forwarding strategies would require the global knowledge
of the network topology, would be computationally complex
and would not scale in large and dynamic topologies.

In this paper, we propose an efficient way of using the
multiple paths available for video content delivery by enabling
network coding within the NDN architecture. Our scheme takes

2

advantage of multipath communication by sending Interests for
network coded Data packets over multiple network interfaces.
Network coded Data packets then follow multiple paths (i.e.,
the reverse paths followed by the Interests) to reach the clients.
Since network coded Data packets generated from the same set
of original Data packets are equivalent in terms of information
content, the clients and the intermediate nodes do not need
to coordinate their forwarding decisions. Thus, our scheme
does not require complex coordination of the forwarding
strategies and exploits in a natural way the gains of multipath
communication.

Our system is based on our previous work [8], where we
have introduced network coding in CCN. This scheme showed
significant gains compared to the original CCN in terms of both
the achieved throughput and the experienced delay. These gains
were achieved without requiring transmission of the Interests
over optimal multicast trees [9], which are difficult to compute
in large and dynamic networks. However, despite the throughput
and delay gains in our previous work [8], our previous scheme
cannot support optimally video streaming applications because
it does not take into account the underlying video data structure.
To address this issue, we made changes to the data structures of
NDN. In particular, we have redesigned the Content Store (CS)
and the Pending Interest Table (PIT) and have further modified
the Interest and Data processing functions of the network
coding enabled NDN so that DASH streaming and efficient
CS and PIT handling are supported. Moreover, we propose a
new model of a client and a source application that enables
DASH communication over network coding enabled NDN.
Finally, we have implemented the proposed video streaming
architecture in the ndnSIM simulator [10]. We compare the
video streaming performance of our architecture to the original
NDN architecture in a Netflix-like scenario, designed with
parameters available in the literature [11]–[13]. Our results
demonstrate that by using network coding, our proposed video
streaming architecture exploits more effectively the multipath
communication and attains a higher cache hit rate in the router
nodes. This translates into lower bandwidth consumption at
the sources, as well as higher bitrate seen at the clients. As a
result, clients can reach their desired video quality faster.

In summary, the main contributions of this paper are the
following:

• a new model of a network coding enabled NDN node,
extending our previous work [8] with new features that
enhance the support for the network coding functionalities;

• a new design of a client and a source applications that
enable adaptive video streaming over network coding
enabled NDN; and

• an evaluation of our proposed architecture in a Netflix-like
scenario, using the ndnSIM simulator [10].

The rest of this paper is organized as follows. In Section II
we discuss the related work. The background on NDN, DASH
and network coding is presented in Section III. The motivation
behind the use of network coding for NDN adaptive video
streaming is provided in Section IV. We describe in detail
the proposed architecture for adaptive video streaming over
network coding enabled NDN in Section V. In Section VI we

evaluate the performance of the proposed architecture. Finally,
Section VII concludes our work.

II. RELATED WORK

The similarities in the content retrieval mechanisms of
DASH and NDN have attracted the attention of the research
community [3], [6], [14], [15]. Detti et al. [14] proposed a
cooperative adaptive video streaming application for CCN. In
this application, mobile users download video segments from
the sources over the cellular network and also from other mobile
users that are connected through Wi-Fi. The results show that
the users can drastically reduce the amount of data downloaded
over the cellular network by exploiting users’ cooperation,
which may result in cost reductions. In a system integrating
CCN and DASH [6], the version component of the CCN
content naming is used to name the different representations
of a DASH segment, and the segment component of the CCN
content naming is used to divide segments into Data packets
that fit into lower level Maximum Transmission Units (MTU). A
client requests a segment by sending Interests over its network
interfaces. These Interests are satisfied by a set of Data packets
containing the requested DASH segment, following the same
procedures as in the CCN architecture.

Most of the aforementioned DASH-based video streaming
proposals for ICN consider the existence of a single path
connecting the sources with the clients [6], [14], [15]. This
is sub-optimal, as not all the paths connecting the client with
the sources are exploited, hence, limiting the resources that
the client can use to adapt the video streaming towards a high
quality. Differently from previous works, in this paper, we
propose a novel DASH-based video streaming architecture for
ICN that exploits multiple paths to receive the video data. It
is worth noting that the Internet Research Task Force (IRTF)
addresses the adaptation of current video streaming mechanisms
to the ICN architecture [3]. It also defines some use cases for
video streaming and their requirements, identifying the main
issues associated with these streaming mechanisms in ICN.

Existing works for multipath communication in ICN [16],
[17] mainly focus on the design of Interest forwarding strategies
that exploit all the available interfaces of the node to distribute
the Interests, without considering a specific application. Rossini
et al. [16] investigated multipath Interest forwarding strategies,
showing that the use of multiple paths simultaneously can
increase resilience and reduce repository load. They also show
that naı̈ve multipath Interest forwarding strategies (e.g., round
robin) could reduce the caching efficiency since, when multiple
clients decide to send the Interest for a Data packet over
different paths, all the caches over the followed paths cache a
copy of the same Data packet. Schneider et al. [17] presented
a set of novel Interest forwarding strategies that improve end-
user Quality of Experience (QoE) and reduce clients’ access
cost and power consumption. To accomplish this, the authors
propose a new set of interface estimators that enable fine-
grained control and selection of interfaces in a multi-homed
scenario. However, it is not clear how the QoE is affected when
multiple multi-homed clients request the same content. In our
work, we resolve the caching efficiency issue [16], i.e., caching

3

the same content, by applying network coding [7] on the Data
packets. In this case, the sources send different network coded
Data packets over each path, increasing the diversity of Data
packets that are cached in the network.

The application of network coding in ICN has been explored
by Montpetit et al. [18], who proposed an architecture called
NC3N. In this approach, Interests have a new field, which
contains the Data packet availability information of the client,
similarly to the approach proposed by Sundararajan et al. [19].
Nodes storing Data packets that match the name prefix of the
received Interest, reply only if they can provide a network
coded Data packet that provides new information to the client.
However, when there are multiple clients requesting the same
content, (i) the aggregation of Interests is problematic, since
Interests with the same name but coming from different clients
contain different Data packets availability information; and (ii),
the pipelining of Interests, i.e., sending multiple concurrent
Interests for different Data packets, is also problematic, since all
the pipelined Interests have the same Data packets availability
information. The latter is undesirable as a node that has a
matching Data packet will reply to multiple Interests with the
same Data packet. These Data packets will be considered as
duplicates by the client as only one of these will carry novel
information with respect to the Data packets that are already
available at the client.

Inspired by NC3N [18], Wu et al. [20] proposed Coding-
Cache, where network coding is used to replace the Data
packets in the cache of the network nodes. Due to the increased
Data packet diversity in the network, the cache-hit rate is
improved. However, CodingCache suffers from the same
drawbacks as NC3N, namely, the Interest aggregation and
Interest pipelining are problematic. In the work presented by
Llorca et al. [21], multicast delivery in network coding enabled
ICN is optimized by finding the evolution of the Data packets
that are cached in the network. However, this approach needs
a central entity that is aware of the network topology and
the Interests, which does not scale well with the number of
network nodes. Matsuzono et al. [22] have proposed L4C2,
a network coding enabled mechanism for low latency, low
loss video streaming over CCN. In L4C2, the network nodes
estimate the acceptable delay and Data packet loss rate in their
uplinks, adjusting the requested video quality accordingly. The
clients first request non-network coded Data packets, and only
request network coded Data packets when they detect Data
packet losses. In this case, network coding is only exploited
to deal with lost Data packets.

III. BACKGROUND

In this section, we introduce the main concepts that enable
dynamic adaptive video streaming over named data networking
with network coding. First, we describe the operation of
Dynamic Adaptive Streaming over HTTP (DASH). Then, we
describe the operation of Named Data Networking (NDN) and
show the similarities between NDN and DASH. Finally, we
introduce network coding and describe briefly its operation
within the NDN architecture.

TABLE I
NOTATION

S, R, C , Set of source, router and client nodes, respectively
Q , Set of DASH representations
Zy , Set of DASH segments that form representation q
Pn , Set of Data packets that form a DASH segment with

name n
Pµn , Subset of Data packets with name n, stored in node µ
pn,j , The jth Data packet in the set Pn
in,j , An Interest requesting the data packet pn,j
P̂n , Set of network coded Data packets generated from Pn
p̂n,g , A network coded Data packet belonging to generation

g in the set Pn
în,g , An Interest requesting a network coded Data packet

p̂n,g
Fµn , Set of faces at node µ that are configured to forward

Interests with name prefix n

A. Dynamic Adaptive Streaming over HTTP

As we discussed in Section I, one of the most prominent
video streaming techniques used nowadays is adaptive video
streaming, and, in particular, Dynamic Adaptive streaming over
HTTP (DASH). One of the main characteristics of DASH is
that the clients are in control of the streaming logic, deciding
the bitrate and resolution of the streamed video. To enable
the video quality adaptation by the clients, each video v is
encoded with different parameters (e.g., bitrate, resolution, etc.),
creating a set of representations Q. The video data in each
representation q ∈ Q is divided into a set of segments Z . Every
segment z ∈ Z has the same duration. This allows clients to
request segments belonging to the representation that better
adapts to their current network conditions, display capabilities,
etc. Hence, the clients can switch to a different representation
after receiving each segment if the network conditions change,
for example. To inform the clients about the offered video
representations, a file called the Media Presentation Description
(MPD) is associated with each video v. This file contains
information about the available representations Q in which the
video v has been encoded and the segments Z that compose
each representation, among other parameters. A client that
is interested in receiving the video v should first request the
MPD file associated with this video. Then, after receiving and
parsing the MPD file of the video v, the client knows what
representations are available and what names it should use to
request the video segments. Each particular video segment is
identified with a name n← v/q/z that is composed of the ID
v of the video to which the segment belongs, the representation
q in which the segment has been encoded and the segment ID
z.

B. DASH over Named Data Networking

In order to describe the operation of DASH in NDN, let
us consider a network that is formed by (i) a set of source
nodes S that generate and store DASH segments, (ii) a set of
clients C that request DASH segments, and (iii) a set of router
nodes R through which the DASH segments are requested and

4

transmitted. Every node µ ∈ S ∪ C ∪ R is connected with its
neighboring nodes through a set of faces Fµ.

Each source s ∈ S stores a set of DASH segments that
can be requested by the clients. Since the size of the DASH
segments is usually larger than the Maximum Transmission
Unit (MTU), the DASH segments are divided into smaller Data
packets that fit into an MTU. Therefore, we consider that a
DASH segment with name n← v/q/z is composed of the set
of Data packets Pn = {pn,1, . . . , pn,|Pn|}. To retrieve a DASH
segment composed of the set of Data packets Pn, a client
c ∈ C should send a set of Interests In = {in,1, . . . , in,|In|},
where |In| = |Pn|, meaning that there is one Interest for each
Data packet. Note that the actual number of Interests that the
client c should send to retrieve Pn may be higher than |In|,
since in a lossy network some Interests and Data packets may
be lost. Thus, some of the Interests in In will need to be sent
more than once. The Interests are sent over a set of faces Fcn
of the client c that are configured to forward Interests with
name prefix n. The information about the faces of a node that
are configured to forward Interests for a specific name prefix is
stored in the Forwarding Information Base (FIB) table. Other
than the FIB, each NDN node has two additional tables: a
Content Store (CS) and a Pending Interest Table (PIT). The
CS caches Data packets that pass through the node. The PIT
keeps track of the Interests that the node has forwarded and
the faces over which these Interests have arrived.

In NDN, when a node receives an Interest, it either: (i) adds
the information about the received Interest to the PIT and waits
for the requested Data packet to arrive, if previously an Interest
for the same Data packet had been forwarded; (ii) replies to
the Interest with a matching Data packet from its CS; or (iii)
forwards the Interest to its neighboring nodes. This is further
explained in the following.

• Waiting for a new Data packet — Consider a router r
that receives an Interest in,j over the face f . If the router
r finds in its PIT an entry that matches the name (n, j),
it means that it has already forwarded in,j and hence the
Data packet pn,j is expected. In this case, the node adds
to the respective PIT entry the face f over which the
Interest has arrived, and does not forward in,j again.

• Replying to an Interest — When the PIT of the router
r does not have any entry that matches the Interest in,j ,
it looks for a Data packet with a matching name in its
CS. If the CS stores a copy of the Data packet pn,j , the
router r replies to the Interest in,j with this Data packet.

• Forwarding an Interest — If the CS of the router r does
not contain a Data packet matching the name of the
Interest in,j , the router r forwards the Interest to one
or more of its neighboring nodes, according to its FIB.
Moreover, the router r also updates its PIT table to add
the information about the forwarded Interests.

Once the requested Data packet pn,j is found in the CS of
a router or in a source, it is sent to the client over the reverse
path of that followed by the Interest. When a node receives a
Data packet pn,j over a face f , it first looks up in its PIT for an
entry that matches the name of the Data packet pn,j . If no PIT
entry matches the name (n, j), the Data packet is considered

unsolicited and it is discarded. If a PIT entry that matches the
name (n, j) is found, the Data packet is forwarded over all the
faces specified in the corresponding PIT entry. Additionally,
the Data packet pn,j may be added to the CS, according to
the caching policy of the node. A more detailed description
of the NDN operation is provided in the NFD Developer’s
Guide [23].

C. Network coding in NDN

Network coding [7] is a technique in which the Data packets
delivered to the clients are coded by means of combining the
Data packets available at sources and routers prior to being
forwarded. Hence, when network coding is enabled in NDN,
the network coded Data packets contain information from
all the Data packets that have been combined to generate
them. Differently from the original NDN, where an Interest
in,j requests a specific Data packet pn,j , in a network coding
enabled NDN, an Interest în requests a network coded Data
packet p̂n, without specifying the particular Data packet ID
j. In this case, the set of Interests needed to retrieve P̂n is
În = {̂in}, i.e., the set contains a single Interest. To retrieve
the demanded content, each client sends the Interest în at
least |Pn| times. Note that more than |Pn| Data packets may
be needed, as network coded Data packets are generated by
randomly combining the Data packets with name prefix n.
Therefore, with some small probability when coding is done
in a large finite field, the coded Data packets can be linearly
dependent. Furthermore, due to losses, additional Interests may
need to be sent to compensate for the lost Data packets. Any
node can reply to these Interests with network coded Data
packets. The network coded Data packets are generated by
combining the set of Data packets that are available in the CS
or the repository of the node and that match the name prefix
n.

The Data packet p̂n can be considered as a vector p̂n, where
each element of the vector belongs to a finite field. Then, the set
of network coded Data packets Pn can be expressed as a matrix
P̂n where each row corresponds to a Data packet p̂n. The
operations performed by the node to generate a new network
coded Data packet p̂n can be expressed as p̂n = A ·Pµn, where
A is a matrix of coding coefficients drawn from a finite field,
and Pµn is the matrix formed with the set of Data packets Pµn .
When the coding coefficients in A are randomly chosen from
a large finite field, the generated Data packets have a high
probability of being linearly independent with respect to the
Data packets previously generated, and, thus, innovative [24].
To decode the original Data packets that compose Pn, a client
should collect |Pn| innovative network coded Data packets p̂n.

IV. MOTIVATION

Video streaming is a data intensive application, which
requires a moderately high and stable amount of bandwidth
between the video sources and the clients. Utilizing multiple
paths to connect the clients to the sources permits to exploit
network bandwidth resources, which remain underutilized with
a single path streaming policy. Multipath streaming can, thus,
significantly improve the quality of the video received by

5

WiFi Network

Pn
s1

Pn
s2

Pn
s3

LTE Network

Pn
s4

Pn
s5

Pn
s6

c1

(a)

WiFi
Network

LTE Network

..
.

c1

c |C|

Pn

(b)

c1

r2

r1

r4

r3

r6

r5

c2

W
iF

i
N

et
w

o
rk

 1

W
iF

i
N

et
w

o
rk

 2

L
T

E
 N

et
w

o
rk

Pn
s1 Pn

s2

(c)

Fig. 1. Devices retrieving Data packets over LTE and Wi-Fi: (a) multi-source unicast; (b) single-source multicast; (c) multi-source multicast (butterfly network).

the clients compared to single path streaming. In addition,
techniques that increase the network throughput, especially
in the presence of network bottlenecks, can further enhance
the clients’ experience by enabling the delivery of better
video representations that require higher throughput. Finally,
resilience to packet losses is another important aspect of
the video streaming systems. Packet losses require Interest
retransmissions and result in network congestion and higher
delays, which in turn have a direct negative impact on the
clients’ viewing experience. These three aspects of the NDN-
based adaptive video streaming system, namely (i) multipath
streaming, (ii) throughput and (iii) resilience to packet losses
can be optimized by introducing network coding in the NDN
architecture. In the following subsections, we provide the key
motivating ideas behind the use of network coding in NDN
for adaptive video streaming and illustrate those ideas through
motivating examples.

A. Efficient multipath streaming

Nowadays, most client devices, e.g., mobile phones, laptops,
etc., have two or more network interfaces e.g., LTE, Wi-Fi,
Bluetooth, etc., where they can receive the demanded video con-
tent from. However, in the traditional host-centric networking,
support for multipath is not extended. Recent efforts to support
multipath communications on TCP (MP-TCP) [25] have been
developed by the IETF. The drawback of these proposals is
that they require end-to-end connections to be established for
each host, which makes the use of in-network caching and
the dynamic selection of the sources difficult. In comparison,
NDN provides natural support for multipath content retrieval,
without requiring end-to-end connections. This is achieved
by allowing clients to distribute all the Interests needed to
retrieve a video segment over all the available interfaces,
without knowing a priori which source or in-network cache
will provide the content. However, despite having the necessary
components for enabling multipath communication, the original
NDN architecture still lacks appropriate mechanisms for the
optimal use of the multiple paths available for video content
retrieval. Optimizing multipath video content retrieval in the
original NDN implies coordinating the forwarding of Interests,
so that (i) the Interests for a specific Data packet are forwarded
towards the source of this Data packet in multi-source systems,
and (ii) the Interests for the same Data packet are forwarded on

the same paths, such that Interest aggregation and Data packet
caching is optimized. That would require devising explicit
coordination mechanisms and complex forwarding strategies.

The need for sophisticated Interest forwarding coordination
mechanisms can be resolved by enabling network coding in the
NDN architecture. When network coding is enabled in NDN,
the network coded Data packets contain information from all the
Data packets that have been combined to generate them. Thus,
all network coded Data packets with a specific name prefix
are equivalent in terms of contained information. This reduces
the granularity of the information source and subsequently of
the data requests. As a result, clients do not need to request
specific Data packets, but rather network coded Data packets.
Therefore, the nodes do not need to coordinate the faces
where they forward Interests, which enables efficient multipath
communication without explicit coordination mechanisms and
enhances the network bandwidth utilization.

Motivating examples. We illustrate the improvement in
the use of multiple paths by introducing network coding to
NDN for adaptive video streaming through three characteristic
scenarios as depicted in Fig. 1.
• Multi-source unicast — Let us consider the case illustrated

in Fig. 1a, where a client c1 is interested in a DASH
segment composed of the set of Data packets Pn. Let us
also consider that the |Pn| Data packets that compose Pn
are distributed across multiple sources S , such that each
source s ∈ S stores a subset of Data packets Psn ⊂ Pn.
An example of this scenario is a Content Delivery Network
(CDN), in which content is distributed across multiple
video servers. In this case, the client and the routers
need to select properly the face over which they forward
each Interest, so that it reaches the source that stores
the requested Data packet. This can be accomplished by
carefully configuring the FIB table of all the nodes, such
that each Interest reaches the right source. However, for
contents comprised of a large number of Data packets,
such as DASH segments, keeping the FIB tables of all the
nodes updated for each Data packet does not scale well,
and the FIB size could become very large. Moreover, in
large networks and in the presence of unreliable sources
that can become available or unavailable at any moment,
keeping the FIB tables updated may require a lot of
signaling messages, and thus wastes resources. Differently
to the original NDN, in a network coding enabled NDN

6

the clients and the routers do not need to know which
sources they can reach over each face, since they send
Interests for network coded Data packets that are stored
at any source rather than for specific Data packets that are
stored at specific sources. This implies that the FIB tables
can be smaller than those of original NDN. Specifically,
only one entry for the name prefix n is needed in network
coding enabled NDN, while in original NDN a distinct
entry is required for every Data packet with name (n, j).
Each source then replies to these Interests with network
coded Data packets p̂n, generated by combining the Data
packets that match the name prefix n.

• Single-source multicast — Let us now examine the
case where a single source stores the complete set of
Data packets Pn that compose a DASH segment, and
that multiple clients Cn ⊂ C are interested in Pn, as
illustrated in Fig. 1b. To minimize the time needed for
each client to receive the complete set of Data packets
Pn, while also minimizing the number of duplicated Data
packet transmissions in the network, the Data packets
need to travel over an optimal set of multicast trees [9].
To accomplish this in original NDN, each node should
know where to forward each Interest in,j such that all
the Interests in,j that are sent by different clients are
aggregated at the optimal point in the network, minimizing
the number of redundant transmissions of pn,j . Moreover,
computing these multicast trees has high computational
complexity, is not reliable under network dynamics, and
requires the knowledge of the network topology [9]. In
the illustrative example shown in Fig. 1b, clients are
connected to the source through both LTE and Wi-Fi
interfaces. If all the clients send the Interest in,j over
the LTE interface, the Data packet pn,j will only be sent
through the LTE network. However, if a fraction of the
clients decides to send the Interest in,j over the Wi-Fi
interface, the Data packet pn,j will also be sent from the
source to the Wi-Fi network, wasting valuable network
resources. When multiple clients send Interests for the
same DASH segment in a network coding enabled NDN,
they do not need to coordinate the Interests that they send
over each face. This is due to the fact that the Interests
are for network coded Data packets. Thus, they can be
aggregated at any node, which leads to more efficient
network utilization.

• Multi-source multicast — Another problematic scenario is
when multiple clients are interested in a DASH segment
composed of the set of Data packets Pn that are distributed
across multiple sources. In this scenario, the multipath
adaptive video streaming in original NDN suffers from
the shortcomings of both the multi-source unicast and
the single-source multicast scenarios that we previously
discussed. To illustrate this, let us consider the network
in Fig. 1c. In this network, two clients c1 and c2 need to
coordinate where to send each Interest, such that the router
r4 is able to aggregate the Interests for the same Data
packet. Moreover, when each of the sources has a disjoint
set of Data packets, i.e., Ps1n ∩ Ps2n = ∅, the clients also
need to know which Data packets each source stores, to

avoid sending Interests to the source that does not store a
copy of the requested Data packet. With network coding
enabled, no coordination is needed at the clients nor at the
routers. This is because all the Interests can be satisfied
by any network coded Data packet.

B. Throughput gains

Apart from the gains coming from the more optimal use
of the multipath communication capability, enabling network
coding in NDN can also improve the throughput, in particular
when bottlenecks are present in the network. This property
of network coding has been demonstrated in traditional host-
centric streaming systems [26], [27]. Here, we illustrate the
throughput improvements also in the context of the NDN
architecture. Let us consider the widely known butterfly network
topology shown in Fig. 1c. We consider that the clients c1 and
c2 are interested in a DASH segment composed of the Data
packets in Pn = {pn,1, pn,2}, which are distributed across
both sources. Without loss of generality, let us assume that
the source node s1 stores a copy of the Data packet pn,1 (i.e.,
Ps1n = {pn,1}) and the source node s2 stores a copy of the Data
packet pn,2 (i.e., Ps2n = {pn,2}). In this case, if network coding
is not enabled, the router r4 cannot aggregate the Interests sent
by the clients c1 and c2, since they are for different Data
packets. This means that the link between the routers r3 and
r4 becomes a bottleneck for the Data packets pn,2 and pn,1
traveling to the clients c1 and c2, respectively. Thus, one of the
clients will see a higher delay in receiving the complete set of
packets Pn, which is critical for time-constrained applications
such as video streaming. In contrast, when the Data packets are
requested in a network coding enabled NDN architecture, the
router r4 is able to aggregate the Interests sent by the clients c1
and c2, as these Interests are for network coded Data packets.
If the router r3 network encodes the Data packets received
from the sources, the resulting network coded Data packet will
be useful for both clients c1 and c2.

C. Resilience to packet losses

Finally, we illustrate how network coding improves the re-
siliency to Data/Interest packet losses. Again, this property has
been widely studied in state-of-the-art host centric streaming
scenarios [28]. Similarly to traditional streaming architectures,
in adaptive video streaming over NDN, network coding can deal
efficiently with packet losses eliminating the need for explicit
packet retransmissions. To illustrate this, let us consider a
NDN network with Interests or Data packets losses. Let us
also consider that a client is interested in a DASH segment
composed of the Data packets Pn, and that one of the Interests
sent by the client or one of the Data packets sent to the client
is lost in the network. Hence, one of the Data packets that the
client is expecting will not arrive. If network coding is not
enabled, the client should wait until an Interest expires before
realizing which Data packet will not arrive. Then, the node
should re-send the same Interest and wait again for the Data
packet. In contrast, if network coding is enabled, a proactive
node that knows the average Data packet loss rate can request
|Pn|+ ε Data packets, where ε depends on the packet loss rate

7

ClientSource

Router

Video

packetization

and naming

Video Content

Provider

DASH player

NetCodNDN

consumer

NetCodNDN

Forwarder

Repository

NetCodNDN

Forwarder

NetCodNDN

Forwarder

End-user

Fig. 2. Proposed architecture for adaptive video streaming over network
coding enabled NDN.

and the finite field where the coding operations are performed.
This is possible because, in the event of an Interest or Data
packet loss, any other network coded Data packet will be useful
to the client, even if it is not an exact copy of the lost Data
packet. This reduces the time that the client needs to retrieve
the complete set of Data packets Pn, since the clients do not
need to wait until the lost Interest expires.

V. SYSTEM DESIGN AND IMPLEMENTATION

In this section, we present our architecture for dynamic
adaptive streaming (DASH) over network coding enabled NDN.
Our system is based on our previously proposed NetCodCCN
architecture [8], which here is advanced to support DASH video
streaming. The main notation used throughout the following
section is summarized in Table I.

We consider a set of videos V that are made available by a
video content provider to a set of end-users. The videos V are
encoded into a set of different DASH representations Q. Each
representation y ∈ Q is divided into a set of segments Z , as
described in Section III-A. Each segment z ∈ Z has a name
n← x/y/z that identifies it uniquely. This name is composed
of the video stream ID v, the representation ID q, and the
segment ID z. Then, the segments are stored at the source’s
repositories. An end-user expresses its interest in watching a
video v ∈ V to its client, which then requests the video v from
the network. In Fig. 2, we show a simple network example
composed of a source, a router, and a client, and we illustrate
the main components of these nodes. In the following sections,
we discuss the source, router and client nodes implementation
in more details.

A. Source design

We consider that a source s ∈ S is a node that replies with
the content in its repository to the Interests that it receives.
Differently from a CS, a repository is designed to keep the
Data packets for longer time periods, using persistent storage
devices. Before the video content is requested by the clients,
the sources are initialized as follows. First, the source receives
video content, in the form of DASH segments, from a video
content provider. Then, each of the DASH segments is divided

into Data packets, and a name is associated with each Data
packet. Finally, the Data packets are loaded into the repository.
The repository replies with network coded versions of these
Data packets whenever it receives an Interest that matches
the name prefix. In the following sections, we present further
details about this process.

1) Video data packetization and naming: Each segment
z ∈ Z is divided into a set of Data packets, Pn, such that
each Data packet pn,j ∈ Pn fits into an MTU. As presented
in Section III-C, the Data packet pn,j can be represented as a
vector pn,j . To facilitate the deployment of network coding in
practical settings [29], each Data packet pn,j is prepended with
an encoding vector to inform the routers and clients about the
coding operations that the network coded Data packet has been
subjected to. At the sources, the initial value of the encoding
vector associated with the Data packet pn,j is set to be the
jth unit vector, which has value 1 in the jth position and 0
otherwise.

Prepending encoding vectors to the Data packets introduces
a communication overhead that consumes network resources,
especially when the segment z is divided into a large number
of Data packets. To limit this overhead, we adopt the concept
of generations [29], where the original set of Data packets that
compose Pn is divided into smaller groups of Data packets,
which are known as generations. The coding operations are
restricted only among Data packets that belong to the same
generation, in order to reduce the network coding overhead
and make it appropriate for time-constrained applications. The
set of Data packets that form the generation g is denoted as
Pn,g, where g is the generation ID. Thus, Pn = ∪Gg=1Pn,g,
where G is the total number of generations. To avoid mixing
Data packets from different generations, the generation ID,
g, is appended to the name of the Data packet, such that
(n, g) ← v/q/z/g. The size of the generation controls the
tradeoff between the overhead required to communicate the
encoding vector and the Data packet diversity. Note that the
size of the encoding vectors prepended to each Data packet
is equal to the size |Pn,g| of the generation g, as the network
coded Data packets may potentially carry information from all
the Data packets in Pn,g .

2) Repository: Each source s contains one or more repos-
itories where the set of Data packets Psn,g are stored. It is
worth noting that a source s may not store the whole set of
Data packets Pn,g , but only a subset Psn,g ⊂ Pn,g . We should
also note that repositories and content stores have similar
functionalities: (i) when they receive a Data packet pn,g ∈ Pn,g ,
they store it; and (ii) when they receive an Interest în,g, they
return a network coded Data packet p̂n,g generated with the set
of Data packets Psn,g that are available in their storage. Even
though the implementation of repositories and content stores
might differ, in this paper we consider that their functionality
is the same and will be further explained in Section V-C1.

B. Client Design

In our architecture, we consider that a client c ∈ C is a node
that, upon receiving a video request from an end-user, generates
the Interests needed to collect its Data packets and assembles

8

the DASH segments that will be delivered to the end-user. Our
model of a client consists of two main components: (i) a DASH
player that decides the DASH representation that should be
displayed and requests the appropriate segments, and (ii) a
NetCodNDN consumer that receives requests for segments and
generates Interests for network coded Data packets. Moreover,
when the network coded Data packets arrive to the NetCodNDN
consumer, it decodes them and reassembles the original segment
before sending it to the DASH player. These components are
further described in the following sections.

1) DASH player: The DASH player is the most direct
interface between the end-user and the video communication
system. When a DASH player receives a request from an end-
user to retrieve a video v, it first requests the MPD file. This
file is typically of a small size and needs to be communicated
only once. Thus, it is not network coded and is requested as
traditional NDN content object. Given the MPD information,
the available resources and the configuration parameters, the
DASH player decides which representation q ∈ Q is the
optimal every time that it has to request a new segment z ∈ Z .
The DASH player is agnostic to the protocol deployed in
the network for requesting the segment, which can be either
NetCodNDN, NDN or HTTP. It only takes into account the
bitrate measured in the reception of the video segments.

2) NetCodNDN consumer: Whenever a NetCodNDN con-
sumer receives requests for a DASH segment, it generates and
forwards a set of Interests În,g, where n is the name prefix
of the segment, and g is the generation ID. The generations
are requested sequentially, starting from g = 1 up to the last
generation, G. The total number of generations G can be
obtained as Data packet metadata, or simply by adding a flag
to the Data packets of the last generation.

The NetCodNDN consumer keeps track of the received
innovative Data packets p̂n,g in a matrix P̂cn,g , where c stands
for the consumer, so that the original set of Data packets can be
retrieved by performing Gaussian elimination when the matrix
P̂cn,g is full rank, i.e., it contains |Pn,g| linearly independent
Data packets.

C. The NetCodNDN forwarder

The NetCodNDN forwarder is in charge of (i) routing
Interests towards the sources, (ii) forwarding Data packets
back to the clients, (iii) applying network coding operations
on the Data packets before forwarding them, and (iv) keeping
a cache with the received Data packets in order to reply to
future Interests. In the following, we describe the architecture
of the NetCodNDN forwarder, starting with the modified
data structures: the new Content Store (CS) and the new
Pending Interest Table (PIT). The Forwarding Information
Base (FIB) of the NetCodNDN forwarder is the same as the
FIB of the NDN forwarder [23], thus, we do not describe it
here. Then, we present the algorithms followed by the routers
when they receive Interests or Data packets. Note that in our
previous work [8], we presented a network coding based content
retrieval scheme that utilized the original CS and introduced
a few modifications to the PIT, keeping the model of the
proposed architecture as similar as possible to the model of

EntryName

NDN CS

(n,1)

(n,2)

(n,3)

pn,1

pn,2

pn,3

(a)

EntryName

NetCodNDN CS

(n,g)

Pn,g

pn,g

pn,g

pn,g^***

^**

^*

Counters

σf1

σf2

n,g

n,g

^

(b)

Fig. 3. Structure of a Content Store (CS) storing three Data packets with
name prefix n: (a) In NDN, there are three CS entries, each one storing a
single Data packet; (b) In NetCodNDN, there is a single entry that contains a
matrix P̂n,g that stores the content of the three Data packets, and a set of
counters σfn,g .

CCN [4], at the expense of performance. The new CS and PIT
models presented in this paper are redesigned to improve the
performance of the network coding operations. Moreover, other
than the redesigned CS and PIT, the NetCodNDN forwarder
still has the traditional CS and PIT to process non-network
coded Interests and Data packets.

It is worth noting that not every NetCodNDN router
should keep a CS with the Data packets that it receives. As
demonstrated by Fayazbakhsh et al. [30] and Sun et al. [31],
the data delivery performance of an NDN network in which
every router has a CS is not much better than that of an NDN
network where only the edge routers have a CS, taking into
consideration the computing power and storage capacity that a
CS requires. It is also worth noting that not all the NetCodNDN
routers need to apply network coding operations to the received
Data packets. In fact, when a NetCodNDN router does not have
a CS, it will not be able to apply network coding operations on
the Data packets before forwarding them, since there will be no
other Data packets cached in the router. If the routers that are
able to apply network coding are chosen carefully, the benefits
that network coding brings to the video delivery remain high,
while the computing power and storage capacity of certain
routers can be drastically reduced, as has been demonstrated
by Cleju et al. [26].

1) Content Store: As presented in Section III-B, an NDN
router r maintains a cache with a set of Data packets Prn that
it has received and considered useful to store, in order to reply
to future Interests for the name prefix n. In traditional NDN,
each Data packet pn,j ∈ Prn is stored as an entry in the CS.
When a router r receives an Interest in,j , it looks into its CS
to find all the entries that match the name prefix (n, j) of the
Interest. Since the name prefix (n, j) refers to a specific Data
packet, only one entry can match.

Differently from NDN, in a network coding enabled NDN
the clients do not specify a precise name (n, j) for the Interests
they send, but rather a name prefix (n, g) that refers to any
network coded Data packet generated from the set P̂n,g , where
g is a generation ID. When a router r receives an Interest în,g ,
it replies with a network coded Data packet p̂n,g only if it
considers that this Data packet has high probability of being
innovative for the client. The router r generates a network coded
Data packet p̂n,g by randomly combining the Data packets

9

EntryName

(n,1) in,1

f1

NDN PIT

in,1

f2

(n,2) in,2

f1 f2

(a)

EntryName

(n,g)

t f1(in)

(r1, e1)

t f1(out)

f1

NetCodNDN PIT

n,g

(r2, e2)

n,g

t f1(out)n,g

t f2(in)

(r1, e1)

t f2(out)n,g

n,g

t f2(out)n,g

f2

(b)

Fig. 4. Structure of a Pending Interest Table (PIT) storing two pending
Interests with name prefix n: (a) In NDN, there are two PIT entries, each one
storing a single Interest; (b) In NetCodNDN, there is a single entry that stores
information about both Interests.

P̂rn,g in its CS. Thus, p̂n,g =
∑|P̂r

n,g|
j=1 aj · p̂(j)

n,g , where aj is a
randomly selected coding coefficient and p̂

(j)
n,g in the jth Data

packet in P̂rn,g .
In our previous work [8], we used the CS model provided

by CCN [4] for both the traditional Interests and Interests for
network coded data. In this case, generating a Data packet p̂n,g
requires up to |P̂n,g| lookups to the CS, which is inefficient.
Differently, in this paper we propose a new design of the CS
that facilitates the generation of network coded Data packets
with respect to that of the NDN forwarder, as depicted in Fig. 3.
In the NetCodNDN forwarder, each CS entry contains a set of
network coded Data packets, P̂rn,g , where all the Data packets
belong to the same generation g. This set of Data packets is
stored as a matrix P̂rn,g , where each row is a vector p̂n,g that
represents the network coded Data packet p̂n,g . This allows to
reduce the number of lookups to the CS needed to generate a
network coded Data packet to only one, which is much more
efficient than our previous work [8].

Moreover, each CS entry also stores a counter σfn,g for each
face f of the router r. Each counter σfn,g measures the number
of Data packets generated with the content of the matrix P̂r

n,g

that have already been sent over the face f , i.e., it measures
the amount of information from the matrix P̂n,g that has been
transferred from the router r to the neighbor node connected
over the face f . When a Data packet with name prefix (n, g) is
removed from P̂n,g (e.g., when the CS eviction policy decides
that a Data packet with name prefix (n, g) needs to be removed
from the CS), the amount of information in P̂n,g is reduced
by 1. Therefore, the value of σfn,g is also decreased by 1 for
all the faces, in order to reflect the current state of the CS in
terms of the available information.

2) Pending Interest Table: As described in section V-C1,
when a router r with a NetCodNDN forwarder receives an
Interest în,g , it uses the set of Data packets P̂rn,g that are stored
in its CS to generate a network coded Data packet and reply to
the Interest. However, if the Data packets stored in the CS are
not sufficient to generate an innovative Data packet, the router
r may need to wait until it receives new Data packets before
replying to the Interest. In this case, the router forwards the
Interest în,g to its neighbors and stores the face over which
the Interest arrived and the face over which the Interest was
forwarded in the PIT.

To facilitate the new functionalities of the NetCodNDN
forwarder, the design of the PIT has to be modified with respect
to that of the original NDN forwarder, as depicted in Fig. 4.
The redesigned PIT is a collection of entries T = {tn,g . . . }.
Each PIT entry tn,g keeps track of the received Interests with
name prefix (n, g) that were forwarded and are pending, i.e.,
have not been consumed by a Data packet. Each entry tn,g has
two components for each face f , an in-record tf(in)n,g that keeps
track of the Interests that arrived over the face f and that have
not been satisfied, and an out-record t

f(out)
n,g that keeps track

of the Interests that have been forwarded over the face f , and
that are still pending.

The in-record tf(in)n,g is a list that keeps track of the Interests
în,g that arrived over the face f . Each element in this list is
a tuple of the form t

f,ρ(in)
n,g = (ρ, e), where ρ is the rank that

the matrix P̂rn,g must have before replying to the Interest, and
e is the expiration time of the Interest. The size of this list,
denoted as |tf(in)n,g |, is the total number of Data packets with
name prefix (n, g) that should be sent over face f .

The out-record t
f(out)
n,g is a scalar that keeps track of the

number of Interests with name prefix (n, g) that have been
forwarded over the face f . The total number of Interests with
name prefix (n, g) that have been forwarded by the router r
over all its faces is computed as t(out)n,g =

∑
f∈Fr

n,g
t
f(out)
n,g ,

where Frn,g is the set of faces of router r that are configured
to forward Interests with name prefix (n, g).

3) Interest Processing: In our architecture, video streaming
is triggered by the clients that send Interests în,g for network
coded Data packets, where n is the name of the DASH
segment and g is the generation ID. The Interests în,g have
a NetworkCodingAllowed field which indicates whether
the Interest is for a network coded Data packet or for a non-
coded Data packet and, thus, determines the Interest processing
procedures to be invoked by the NetCodNDN forwarder. If the
NetworkCodingAllowed field is set to the value 1, the
NetCodNDN Interest processing procedures are invoked. If the
NetworkCodingAllowed field is not present or set to the
value 0, the Interests are treated following the original NDN
procedures [23].

When a router with a NetCodNDN forwarder receives an
Interest for a network coded Data packet, it either (i) replies
to the Interest with a network coded Data packet generated by
combining the Data packets in its CS; (ii) forwards the Interest
to its neighboring nodes, to receive an innovative network
coded Data packet; or (iii) waits for a new network coded
Data packet to arrive, if a previously received Interest with the
same name prefix has already been forwarded. This procedure
is further explained below and summarized in Algorithm 1,
• Replying to an Interest — The router r replies to an

Interest în,g when (i) it has collected |P̂n,g| innovative
network coded Data packets, meaning that the generation
g is decodable; or when (ii) a network coded Data packet
generated by the router r has high probability to be
innovative for the neighbor node connected through the
face f on which the Interest arrived. The number of
network coded Data packets that can be generated by the
router r and that have a high probability to be innovative

10

Algorithm 1 Interest processing in the NetCodNDN forwarder

Require: în,g , f , P̂rn,g
1: if rank(P̂rn,g) = |P̂n,g| then {Generation is decodable}
2: ξfn,g = |P̂n,g|
3: else
4: ξfn,g = rank(P̂rn,g)− σfn,g
5: end if
6: if ξfn,g > 0 then

7: p̂n,g ←
∑|P̂r

n,g|
j=1 aj · p̂(j)

n,g

8: Send Data packet p̂n,g over face f
9: else

10: ρ← highest rank in tf(in)n,g

11: e← expire(̂in,g)

12: Insert {ρ+ 1, e} into tf(in)n,g

13: if t(out)n,g ≤ |tf(in)n,g | then
14: send interest(̂in,g)
15: f ′ ← the face over which în,g was sent
16: Update tf

′(out)
n,g

17: end if
18: end if

is given by ξfn,g = rank(P̂rn,g) − σfn,g. Recall that the
parameter σfn,g denotes the number of network coded Data
packets that have been sent over the face f . When ξfn,g
is greater than 0, the router r generates a new network

coded Data packet p̂∗n,g =
∑|P̂r

n,g|
j=1 aj · p̂(j)

n,g and sends it
over the face f .

• Forwarding an Interest — If the number of network coded
Data packets that can be generated by the router r and that
have a high probability to be innovative, ξfn,g, is equal
to 0, the router r needs to receive an innovative Data
packet that increases the rank of P̂rn,g before it is able to
reply to the Interest în,g . Prior to forwarding an Interest,
the router r checks its PIT. In order to support Interest
pipelining, i.e., sending multiple concurrent Interests for
different Data packets of the same segment, the PIT lookup
procedure of the NetCodNDN forwarder is different from
that of the NDN forwarder. Specifically, if a matching
PIT entry tn,g is found, the router r adds a new tuple
(ρ+ 1, expire(̂in,g)) to the in-record tf(in)n,g , where ρ is
the highest rank on the in-record and expire(̂in,g) is the
expire time of the Interest în,g . The router r forwards the
Interest în,g if the number of innovative network coded
Data packets with name prefix (n, g) that it is expecting
to receive before the Interest în,g expires is not enough to
satisfy all the pending Interests. To compute the number
of expected innovative Data packets, the router needs
to take into consideration the Interest and Data packet
loss rate and delays, among other variables. For the sake
of simplicity, the NetCodNDN forwarder assumes that
any forwarded Interest brings an innovative Data packet
before its expiration. This assumption is aligned with the
one made by the original NDN forwarder, where received
Interests are not further forwarded if a PIT entry matching
the name of the Interest is found, since the previously

Algorithm 2 Data packet processing in the NetCodNDN
forwarder
Require: p̂n,g

1: if tn,g = ∅ then {Unsolicited}
2: Discard p̂n,g
3: else
4: if rank(P̂rn,g ∪ p̂n,g) > rank(P̂rn,g) then
5: Insert p̂n,g into P̂rn,g
6: ρ← rank(P̂rn,g)
7: for all f ∈ Fr do
8: if tf,ρ(in))n,g exists then
9: p̂∗n,g =

∑|P̂r
n,g|

j=1 aj · p̂(j)
n,g

10: Send the Data packet p̂∗n,g over the face f
11: σfn,g ← σfn,g + 1

12: Remove tf,ρ(in))n,g

13: end if
14: end for
15: else
16: Discard p̂n,g
17: end if
18: end if

forwarded Interest is expected to bring the requested Data
packet. This is because the NDN forwarder also considers
that every forwarded Interest will bring the requested
Data packet before its expiration. In this case, the number
of expected innovative Data packets with name prefix
(n, g) is equal to the total number of Interests with the
same name prefix that have been forwarded, denoted
as t(out)n,g . Thus, the router forwards the Interest în,g if
t
(out)
n,g ≤ |tf(in)n,g |.

• Waiting for a new network coded Data packet — If
t
(out)
n,g > |tf(in)n,g |, the router r does not forward the Interest
în,g and waits for a new network coded Data packet to
arrive, as it expects to receive enough network coded Data
packets to satisfy all the pending Interests, including the
received Interest.

4) Data Packet Processing: When a router r receives a
network coded Data packet p̂n,g over the face f , it first
determines whether this Data packet was expected or if it
was unsolicited. The router r accomplishes this by looking at
its PIT. If no entry for the name prefix (n, g) exists in its PIT,
the router considers the Data packet unsolicited and it is not
further transmitted. Otherwise, if the Data packet was expected,
the router r determines if the Data packet p̂n,g is innovative.
The Data packet p̂n,g is innovative for the router r if it is
linearly independent with respect to all the Data packets in the
CS of the router r, P̂rn,g , i.e., if it increases the rank of P̂rn,g . If
the Data packet is non-innovative, it is discarded by the router
r. If the Data packet p̂n,g is innovative, the router r inserts it
into its CS. Then, the router r generates a new network coded

Data packet p̂∗n,g =
∑|P̂r

n,g|
j=1 aj · p̂(j)

n,g and sends it over every
face that has a pending Interest to be satisfied when the rank
of P̂rn,g is ρ. This procedure is outlined in Algorithm 2.

11

VI. EVALUATION

In this section, we evaluate the performance of our proposed
adaptive video streaming architecture based on the NetCodNDN
forwarder (NetCodNDN-DASH) and compare it with an NDN
variant without network coding capabilities (NDN-DASH).
First, we describe the implementation of our architecture, the
network topology used in the experiments, and the evaluation
setup. Then, we show the performance evaluation results of
our proposed adaptive video streaming architecture.

A. Implementation

We implemented our proposed adaptive video streaming
architecture by extending both the named data layer to enable
the NetCodNDN forwarder at every node, and the application
layer to enable adaptive video streaming at the clients and the
sources.
• NetCodNDN forwarder — The NetCodNDN forwarder

is implemented by integrating the changes to the NDN
architecture described in Section V-C into the NDN
Forwarding Daemon (NFD) codebase [32]. We have
modified two main modules of the NFD code to implement
NetCodNDN. First, we have modified the Tables module,
where two new tables were implemented: the modified
CS and PIT, as described in Sections V-C1 and V-C2,
respectively. In the modified Tables module, both the
original and the modified versions of the CS and PIT
coexist. The original version is used to process NDN
Interests and Data packets, while the modified version
is used in the processing of network coding Interests
and Data packets. We have also modified the Forwarding
module, in order to add a new set of methods to process
network coding enabled Interests and Data packets. The
modified Forwarding module uses the original NDN
procedures [23] to process traditional Interests and Data
packets. Further, it uses the new NetCodNDN procedures,
described in Section V-C, to process the network coding
Interests and Data packets. We have used the Kodo C++
library [33] to enable network coding operations in the
NetCodNDN forwarder.

• Adaptive video applications — To implement the sources
and clients that enable adaptive video streaming with
network coding, as described in Sections V-A and V-B,
respectively, we modified the Adaptive Multimedia Stream-
ing with ndnSIM (AMuSt) codebase [34]. The AMuSt
framework provides a set of applications for producing
and consuming adaptive video, based on the DASH
standard [2], but replacing HTTP with NDN. The DASH
functionality is provided by the libdash library [35], an
open-source library that provides an interface to the
DASH standard. Currently, libdash is the official reference
software of the DASH standard. We implemented a new
set of applications in the AMuSt framework that use the
Kodo C++ library [33] to enable network coding at both
the sources and the clients.

Finally, we have installed the implementations of the
NetCodNDN forwarder and the adaptive video applications
into ndnSIM [10] nodes. ndnSIM is an NDN simulator based

IXP1

A
u
st

ri
a
 (

A
T

)

ISPAT,1 ISPAT,2 ISPAT,l

B
el

g
iu

m
 (

B
E

)

ISPBE,1 ISPBE,2 ISPBE,m

S
w

ed
en

 (
S
E

)

ISPSE,1 ISPSE,2 ISPSE,n

IXP10

...

...

...
...

L
a
y
er

 1

S
o
u
rc

e

Single server / Content Delivery Network (CDN)

L
a
y
er

 2

IX
P

L
a
y
er

 3

IS
P

L
a
y
er

 4

C
li
en

t

...

Fig. 5. Layered topology used in our evaluation. The first layer is the source,
while the second and third layers represent IXP and ISP routers, respectively,
and connect the source with the clients, that form the fourth layer.

on the NS-3 network simulator [36]. This simulator is used to
generate the network nodes, i.e., sources, routers and clients,
and connect them with point-to-point links.

B. Network Topology

We evaluate our proposed adaptive video streaming architec-
ture in a layered topology, presented in Fig. 5. The design of this
topology is inspired by Netflix’s OpenConnect Content Delivery
Network [12], and it is composed of four layers. The first layer
of our topology contains a source that is able to provide all the
video segments that the clients might request. The source can
be considered as a server that stores all the video segments
or as a connection to a Content Delivery Network (CDN) that
is able to provide the video segments from any of its servers.
The second layer of our topology contains a set of routers that
represent Internet exchange points (IXP). In our evaluation, we
consider 10 IXP routers, each one connected directly to the
source. The third layer of the topology is another set of routers
that represent Internet service provider (ISP) routers. Each ISP
router is connected to two or three IXP routers. Moreover,
the ISP routers are clustered into 16 groups that represent the
European countries served by Netflix [12]. Netflix deploys
video delivery servers in certain IXPs and ISPs. These servers
store the complete or a fraction of the Netflix video catalog.
In our topology, the IXP and ISP routers have content stores
that can cache all the incoming Data packets. When cache
space is limited, our architecture needs a cache replacement
strategy to decide the cached content. This is, however, out of
the scope of this paper which aims to study the behavior of the
proposed adaptive video streaming protocol. The study of such
strategies is one of our future research investigations. Each
country (i.e., cluster) has between 4 and 10 ISP routers. Finally,
the fourth layer of the topology consists of a set of clients,
each of them is connected to two ISP routers that belong to
the same country as the client. Each country has between 10
and 20 clients. We choose to connect each client with two
ISP routers to evaluate multi-path adaptive video streaming,
considering that nowadays most end-user devices come with
multiple interfaces, e.g., LTE and Wi-Fi. The bandwidth of the
links connecting the clients to the ISP routers is based on the
values reported in the Netflix ISP Speed Index [13]. In detail,
the bandwidth of each link is randomly selected from a normal
distribution, with mean close to the average ISP speed reported

12

in the Netflix ISP Speed Index, and standard deviation 1.5.
It is worth noting that the standard deviation reported in the
Netflix ISP Speed Index tends to be much lower than 1.5, but
we choose this value in order to allow more client diversity.
The distribution of the total bandwidth of the clients used in
the simulations, considering the two interfaces on the clients,
is shown in Fig. 6. In average, the used topologies have more
than 110 ISP routers and more than 230 clients, additionally
to the source and the 10 IXP routers.

C. Evaluation Setup

We consider that the end-users are interested in a video
v that is available in three different representations, Q =
{480p, 720p, 1080p} with bitrates {1750kbps, 3000kbps,
5800kbps}, respectively, that are a subset of the ones used by
Netflix in the past [11]. Each representation is divided into a
set of 50 segments, each of a duration of 2 seconds. These
segments are further divided into generations and Data packets,
as presented in Section V-A1. When network coding is enabled,
the coding operations are performed in a finite field of size 28.

To select the representation that better adapts to their
condition, the clients use an adaptation logic that considers the
throughput measured by the client and the number of DASH
segments that are buffered. The adaptation logic used in our
evaluation is based on the one used by the DASH reference
client, dash.js. As it has been demonstrated in the literature [37],
the simple design of the dash.js adaptation logic performs better
than other more sophisticated adaptation logics.

To demonstrate the Interest aggregation capabilities of the
NetCodNDN forwarder, we consider a scenario where all the
clients start requesting the video segments within the first
100ms of the simulation, and then carry on until they receive
all the video segments. It is worth noting that since each client
has different access bandwidth, and its adaptation logic works
independently from other clients, the requested representation
and segment IDs may vary across the clients. This means
that at the same moment, different clients may be requesting
different segments and representations, and thus some clients
may finish retrieving all the segments earlier than others.

D. Evaluation Results

We start by evaluating how the bandwidth of the links in the
core network, i.e., the links connecting the sources with the
IXP routers, as well as the IXP routers with the ISP routers,
affects the video quality received by the clients. Figs. 7 and 8
show the percentage of segments corresponding to each of the
available video representations delivered for different values of
the core links bandwidth, with NetCodNDN-DASH and NDN-
DASH, respectively. As can be seen in Fig. 7, the percentage of
segments delivered at the highest representation available (i.e.,
1080p) whith NetCodNDN-DASH, stabilizes at around 70% of
the total number of delivered segments for core links bandwidth
higher than 7.5Mbps. However, as can be seen in Fig. 8, with
NDN-DASH the percentage of segments delivered at 1080p
reaches the same stability only for core links bandwidth higher
than 17.5Mbps. This behavior is observed as the use of network
coding alleviates the competition between the clients for the

core network resources. For the remainder of the evaluation,
we consider that core links have a bandwidth of 10Mbps.

We now evaluate the cache-hit rate at the ISP and IXP layers.
In Fig. 9, we can see that at the ISP layer, the cache-hit rate
is constantly higher for NetCodNDN-DASH, as compared to
NDN-DASH. After 60 seconds of streaming, the cache-hit
rate for NDN-DASH is around 30%, while for NetCodNDN-
DASH it is around 50%, i.e., more than 20% higher. The
reason for the lower cache-hit rate of NDN-DASH is that,
since the clients are distributing the set of Interests that request
a particular video segment over both of their faces, they need
to coordinate the face over which each Interest is sent, so that
they are aggregated at a router closer to the clients. However,
due to the high granularity of the content (each Data packet
is unique and can satisfy only the Interest with the specific
matching name), such coordination is not possible for each
Data packet, as it requires centralized control. Further, it does
not scale with the size of the network and the length of the
video. On the contrary, the need for coordination is eliminated
with NetCodNDN-DASH, since clients do not send Interests
for a particular Data packet, but for any network coded Data
packet. Thus, an Interest can be satisfied with any innovative
Data packet available in the CS of a node. These results verify
our initial motivation for using network coding to enable a
more efficient Interest aggregation and improve the use of
the available network resources through efficient multipath
communication.

At the IXP layer, both the traditional and the network coded
architectures show a higher cache-hit rate than the one achieved
at the ISP layer. After 60 seconds of streaming, the cache-hit
rate for NDN-DASH is around 75%, while for NetCodNDN-
DASH it is around 95%, as illustrated in Fig. 10. The cache-hit
rate is high at the IXP layer because the 10 routers that belong
to this layer are receiving Interests from more than 200 clients,
meaning that the probability of aggregating Interests at this
layer is high. The increased cache-hit rate of the network
coding architecture has two major performance consequences:
(i) the number of Interests that reach the source is reduced and,
(ii) the data bitrate seen by the client increases, since the Data
packets are found closer to them.

First, let us investigate the impact of using network coding
on the load of the source. In Fig. 11, we can see that there
is a decrease in the total number of bytes that are provided
by the source, from 1200MB for NDN-DASH to 450MB for
NetCodNDN-DASH. This means that the use of network coding
decreases the load on the source by more than 60%. This source
load reduction translates into lower costs for the video content
provider, that can reduce the number of servers at its data
centers or reduce the amount of bandwidth needed by a CDN
provider.

We now examine the benefits that network coding brings
to the clients in terms of perceived quality. The percentage of
clients that decide to request a given video representation is
shown in Figs. 12 and 13, for NetCodNDN-DASH and NDN-
DASH, respectively. With NetCodNDN-DASH more than 70%
of the clients are able to receive the highest quality available
(1080p) after a short adaptation period of around 8 segments. In
contrast, with NDN-DASH less than 20% of the clients are able

13

0 2 4 6 8 10 12 14 16

Total client bandwidth [Mbps]

0.0

5.0

10.0

15.0

20.0

25.0

Pe
rc

en
ta

ge
of

cl
ie

nt
s

[%
]

µ = 2× 4

σ =
√
2× 1.5

Fig. 6. Clients’ bandwidth distribution. Each client
has two faces, the average bandwidth is µ = 2×
4Mbps and the standard deviation is σ =

√
2×1.5.

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Core links bandwidth [Mbps]

0

20

40

60

80

100

Se
gm

en
ts

re
qu

es
te

d
[%

] 480p
720p
1080p

Fig. 7. Representation of the segments received
by the clients with respect to different core links
bandwidth, for NetCodNDN-DASH.

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Core links bandwidth [Mbps]

0

20

40

60

80

100

Se
gm

en
ts

re
qu

es
te

d
[%

] 480p
720p
1080p

Fig. 8. Representation of the segments received
by the clients with respect to different core links
bandwidth, for NDN-DASH.

0 20 40 60 80 100

Time [s]

0

20

40

60

80

100

C
ac

he
-h

it
ra

te
[%

]

NetCodNDN-DASH
NDN-DASH

Fig. 9. Cache-hit rate at the ISP layer.

0 20 40 60 80 100

Time [s]

0

20

40

60

80

100
C

ac
he

-h
it

ra
te

[%
]

NetCodNDN-DASH
NDN-DASH

Fig. 10. Cache-hit rate at the IXP layer.

0 20 40 60 80 100 120

Time [s]

0

200

400

600

800

1000

1200

1400

D
at

a
de

liv
er

ed
by

th
e

so
ur

ce
[M

B
]

NetCodNDN-DASH
NDN-DASH

Fig. 11. Total data delivered by the source.

0 10 20 30 40

Segment

0

20

40

60

80

100

C
lie

nt
s

[%
]

480p
720p
1080p

Fig. 12. Representations requested by the clients
with NetCodNDN-DASH.

0 10 20 30 40

Segment

0

20

40

60

80

100

C
lie

nt
s

[%
]

480p
720p
1080p

Fig. 13. Representations requested by the clients
with NDN-DASH.

0 10 20 30 40 50

Segment

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

G
oo

dp
ut

[M
bp

s]

NetCodNDN-DASH
NDN-DASH

Fig. 14. Average goodput measured by the clients.

to receive the same quality, and only after a long adaptation
period of around 45 segments. The reason for this is that since
more Data packets are served from closer caches, the goodput
measured by the clients is higher with NetCodNDN-DASH,
as illustrated in Fig. 14. Specifically, the goodput measured
by the NetCodNDN-DASH clients is around 7.5Mbps, while
it is approximately 4Mbps for NDN-DASH clients. This is
inline with the average client bandwidth of 8Mbps, which
after excluding the protocol overhead data, leaves a goodput of
around 7.5Mbps. The increased goodput accelerates the DASH
adaptation towards the highest representation, meaning that the
clients are able to receive the best possible quality earlier.

It is worth mentioning that the NetCodNDN-DASH clients
enjoy an increased goodput compared to NDN-DASH clients
and hence improved quality, despite the fact that the imple-
mentation of our NetCodNDN-DASH client introduces a small
delay between the requests of two consecutive generations.
This delay is due to the fact that the NetCodNDN-DASH client
needs to wait until a generation is decoded before requesting

the next one, meaning that no Data packets are flowing to
the client in the time interval between the arrivals of the
last Data packet of generation g and the first Data packet of
generation g+1. The NDN-DASH client does not suffer from
this problem, as it does not consider generations. The goodput
achieved by our architecture can be further improved by a
more advanced client implementation, that would allow the
clients to start requesting the next generation before decoding
the current one. We have successfully deployed in [38], [39]
such approaches for video streaming in host-centric networks
deploying generation-based network coding and will investigate
them in the NetCodNDN-DASH client implementation in our
future work.

VII. CONCLUSIONS

In this paper, we have presented an adaptive video streaming
architecture based on DASH for network coding enabled NDN.
Our architecture takes advantage of multi-path communication
and uses network coding to eliminate the need for coordination

14

between the network nodes. This improves the quality of
the delivered video, reduces the resource utilization at the
sources and improves the resiliency to Data packet erasures.
We implemented our architecture by modifying the original
NDN codebase, to enable network coding operations at the
sources, routers, and clients. We evaluated our architecture
using a network topology similar to the one used by video
content providers. We have observed large performance gains in
terms of the load on the source, as well as an increased cache-
hit rate. We can conclude that our approach brings significant
gains to video content providers, by reducing the traffic load
on the servers and improving the use of network resources.
This will, in turn, have an impact on the cost for the video
content providers, leading to reduced cost for the video content
consumers. Moreover, network coding also improves the speed
at which the clients obtain the desired DASH representation.
Our future research includes the investigation of optimal
caching algorithms for video streaming in network coding
enabled NDN.

REFERENCES

[1] “Cisco Visual Networking Index: Forecast and Methodology, 2016-2021,”
White Paper, Cisco Systems Inc., Jun. 2016.

[2] ISO/IEC JTC 1/SC 29, Information technology – Dynamic adaptive
streaming over HTTP (DASH) – Part 1: Media presentation description
and segment formats, ISO/IEC 23 009-1:2014, May 2014.

[3] C. Westphal et al., “Adaptive video streaming over information-centric
networking (ICN),” RFC 7933, IRTF, Aug. 2016. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc7933.txt

[4] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking named content,” in Proc. of ACM
CoNEXT’09, Rome, Italy, Dec. 2009, pp. 1–12.

[5] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, K. Claffy, P. Crowley,
C. Papadopoulos, L. Wang, and B. Zhang, “Named data networking,”
SIGCOMM Computer Communication Review, vol. 44, no. 3, pp. 66–73,
Jul. 2014.

[6] S. Lederer, C. Mueller, B. Rainer, C. Timmerer, and H. Hellwagner,
“An experimental analysis of dynamic adaptive streaming over HTTP in
content centric networks,” in Proc. of IEEE Int. Conf. Multimedia and
Expo (ICME’13), San Jose, CA, USA, Jul. 2013, pp. 1–6.

[7] R. Ahlswede, N. Cai, S.-Y. Li, and R. Yeung, “Network information
flow,” IEEE Trans. Information Theory, vol. 46, no. 4, pp. 1204–1216,
Jul. 2000.

[8] J. Saltarin, E. Bourtsoulatze, N. Thomos, and T. Braun, “NetCodCCN:
a network coding approach for content-centric networks,” in Proc. of
IEEE INFOCOM’16, San Francisco, CA, USA, Apr. 2016.

[9] Y. Wu, P. Chou, and K. Jain, “A comparison of network coding and
tree packing,” in Proc. of IEEE Int. Symp. Information Theory (ISIT’04),
Chicago, IL, USA, Jun. 2004, p. 145.

[10] S. Mastorakis, A. Afanasyev, I. Moiseenko, and L. Zhang, “ndnSIM 2: an
updated NDN simulator for NS-3,” NDN, Technical Report NDN-0028
Revision 2, Nov. 2016.

[11] A. Aaron, Z. Li, M. Manohara, J. D. Cock, and D. Ronca,
“The Netflix tech blog: Per-title encode optimization,”
http://techblog.netflix.com/2015/12/per-title-encode-optimization.html,
Dec. 2015.

[12] T. Böttger, F. Cuadrado, G. Tyson, I. Castro, and S. Uhlig, “Open connect
everywhere: a glimpse at the internet ecosystem through the lens of the
netflix cdn,” arXiv preprint arXiv:1606.05519, Jun. 2016.

[13] “The Netflix ISP Speed Index,” Netflix Inc., Dec. 2016. [Online].
Available: https://ispspeedindex.netflix.com/

[14] A. Detti, M. Pomposini, N. Blefari-Melazzi, S. Salsano, and A. Bra-
gagnini, “Offloading cellular networks with information-centric network-
ing: the case of video streaming,” in Proc. of IEEE WoWMoM’12, San
Francisco, CA, USA, Jun. 2012.

[15] L. Wang, I. Moiseenko, and D. Wang, “When video streaming
meets named data networking: a case study,” in Proc. of IEEE
HPCC/SmartCity/DSS’16, Sydney, Australia, Dec. 2016, pp. 166–173.

[16] G. Rossini and D. Rossi, “Evaluating CCN multi-path interest forwarding
strategies,” Computer Communications, vol. 36, no. 7, pp. 771 – 778,
Apr. 2013.

[17] K. M. Schneider and U. R. Krieger, “Beyond network selection: exploiting
access network heterogeneity with named data networking,” in Proc. of
ACM ICN’15, San Francisco, USA, Sep. 2015, pp. 137–146.

[18] M.-J. Montpetit, C. Westphal, and D. Trossen, “Network coding meets
information-centric networking: an architectural case for information
dispersion through native network coding,” in Proc. of 1st ACM NoM
Workshop, Hilton Head, South Carolina, USA, Jun. 2012, pp. 31–36.

[19] J. Sundararajan, D. Shah, M. Medard, S. Jakubczak, M. Mitzenmacher,
and J. Barros, “Network coding meets TCP: theory and implementation,”
Proc. of the IEEE, vol. 99, no. 3, pp. 490–512, Mar. 2011.

[20] Q. Wu, Z. Li, and G. Xie, “CodingCache: multipath-aware CCN cache
with network coding,” in Proc. of 3rd ACM SIGCOMM Workshop on
Information-Centric Networks (ICN’2013), Hong Kong, China, Aug.
2013, pp. 41–42.

[21] J. Llorca, A. Tulino, K. Guan, and D. Kilper, “Network-coded caching-
aided multicast for efficient content delivery,” in Proc. of IEEE Int.
Conf. Communications (ICC’13), Budapest, Hungary, Jun. 2013, pp.
3557–3562.

[22] K. Matsuzono, H. Asaeda, and T. Turletti, “Low latency low loss
streaming using in-network coding and caching,” in Proc. of IEEE
INFOCOM’17, Atlanta, USA, May 2017.

[23] A. Afanasyev et al., “NFD developer’s guide,” NDN, Technical Report
NDN-0021 Revision 7, Oct. 2016.

[24] T. Ho, M. Medard, J. Shi, M. Effros, and D. R. Karger, “On randomized
network coding,” in Proc. of 41st Annual Allerton Conference on
Communication, Control, and Computing, Oct. 2003.

[25] A. Ford et al., “TCP extensions for multipath operation with
multiple addresses,” RFC 6824, IETF, Jan. 2013. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc6824.txt

[26] N. Cleju, N. Thomos, and P. Frossard, “Selection of network coding nodes
for minimal playback delay in streaming overlays,” IEEE Transactions
on Multimedia, vol. 13, no. 5, pp. 1103–1115, Oct. 2011.

[27] C. Wu and B. Li, “rStream: Resilient and optimal peer-to-peer streaming
with rateless codes,” IEEE Trans. Parallel and Distributed Systems,
vol. 19, no. 1, pp. 77–92, Jan. 2008.

[28] A. M. Sheikh, A. Fiandrotti, and E. Magli, “Distributed scheduling for
low-delay and loss-resilient media streaming with network coding,” IEEE
Trans. Multimedia, vol. 16, no. 8, pp. 2294–2306, Dec. 2014.

[29] P. Chou and Y. Wu, “Network coding for the Internet and wireless
networks,” IEEE Signal Processing Magazine, vol. 24, no. 5, pp. 77–85,
Sep. 2007.

[30] S. K. Fayazbakhsh, Y. Lin, A. Tootoonchian, A. Ghodsi, T. Koponen,
B. Maggs, K. Ng, V. Sekar, and S. Shenker, “Less pain, most of the gain:
incrementally deployable ICN,” in Proceedings of the ACM SIGCOMM
2013 Conference(SIGCOMM ’13), 2013, pp. 147–158.

[31] Y. Sun, S. K. Fayaz, Y. Guo, V. Sekar, Y. Jin, M. A. Kaafar, and S. Uhlig,
“Trace-driven analysis of ICN caching algorithms on video-on-demand
workloads,” in Proceedings of the 10th ACM International on Conference
on Emerging Networking Experiments and Technologies (CoNEXT ’14),
2014, pp. 363–376.

[32] Named Data Networking (NDN) Project, “Named Data Networking
Forwarding Daemon,” https://github.com/named-data/NFD.

[33] M. Pedersen, J. Heide, and F. H. P. Fitzek, “Kodo: an open and
research oriented network coding library,” in Proc. of IFIP 10th Int.
Conf. Networking (NETWORKING’11), Valencia, Spain, May 2011, pp.
145–152.

[34] C. Kreuzberger, D. Posch, and H. Hellwagner, “AMuSt Framework
- Adaptive Multimedia Streaming Simulation Framework for ns-3 and
ndnSIM,” https://github.com/ChristianKreuzberger/amust-simulator, 2016.

[35] C. Mueller, S. Lederer, J. Poecher, and C. Timmerer, “Demo paper:
libdash - an open source software library for the MPEG-DASH standard,”
in Proc. of IEEE Int. Conf. Multimedia and Expo Workshops (ICMEW’13),
San Jose, CA, USA, Jul. 2013.

[36] “The network simulator - ns3,” http://www.nsnam.org/.
[37] C. Timmerer, M. Maiero, and B. Rainer, “Which adaptation logic? An

objective and subjective performance evaluation of http-based adaptive
media streaming systems,” arXiv preprint arXiv:1606.00341, Jun. 2016.

[38] E. Bourtsoulatze, N. Thomos, and P. Frossard, “Distributed rate allocation
in inter-session network coding,” IEEE Trans. Multimedia, vol. 16, no. 6,
pp. 1752–1765, Oct. 2014.

[39] N. Thomos, E. Kurdoglu, P. Frossard, and M. van der Schaar, “Adaptive
prioritized random linear coding and scheduling for layered data delivery
from multiple servers,” IEEE Trans. Multimedia, vol. 17, no. 6, pp.
893–906, Jun. 2015.

