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Abstract  

Assessment of human health and environmental risk is based on multiple sources of 

information, requiring the integration of the lines of evidence in order to reach a conclusion. 

There is an increasing need for data to fill the gaps and new methods for the data integration. 

From a regulatory point of view, risk assessors take advantage of all the available data by means 

of weight of evidence (WOE) and expert judgement approaches to develop conclusions about 

the risk posed by chemicals and also nanoparticles. The integration of the physico-chemical 

properties and toxicological effects shed light on relationships between the molecular properties 

and biological effects, leading us to non-testing methods. (Quantitative) structure-activity 

relationship ((Q)SAR) and read-across are examples of non-testing methods. In this dissertation, 

(i) two new structure-based carcinogenicity models, (ii) ToxDelta, a new read-across model for 

mutagenicity endpoint and (iii) a genotoxicity model for the metal oxide nanoparticles are 

introduced. Within the latter section, best professional judgement method is employed for the 

selection of reliable data from scientific publications to develop a data base of nanomaterials 

with their genotoxicity effect. We developed a decision tree model for the classification of these 

nanomaterials. 

The (Q)SAR models used in qualitative WOE approaches mainly lack transparency resulting in 

risk estimates needing quantified uncertainties. Our two structure-based carcinogenicity models, 

provide transparent reasoning in their predictions. Additionally, ToxDelta provides better 

supported techniques in read-across terms based on the analysis of the differences of the 

molecules structures. We propose a basic qualitative WOE framework that couples the in silico 

models predictions with the inspections of the similar compounds. We demonstrate the 

application of this framework to two realistic case studies, and discuss how to deal with 

different and sometimes conflicting data obtained from various in silico models in qualitative 

WOE terms to facilitate structured and transparent development of answers to scientific 

questions. 
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CHAPTER 1 

Introduction 

1.1 Genotoxicity, Carcinogenicity and Mutagenicity 

“The term carcinogen denotes a chemical substance or a mixture of chemical substances which 

induce cancer or increase its incidence” 1. 

Carcinogenicity is a crucial endpoint for the chemical safety. Carcinogenic compounds may 

promote carcinogenicity in one of the three phases of causing cancer: initiation, promotion and 

progression 2 (Figure 1-page 7). Carcinogenesis begins with a mutation, a change of a genetic 

material for which no DNA repair mechanism during cell proliferation has happened. This 

happens in the initiation phase. During the second phase (promotion) which is reversible, the 

initiated cells are affected by endogenous or exogenous chemicals and because of the clonal 

growth, the tumour starts to form. For this reason these endogenous or exogenous chemicals are 

called promoters. These chemicals are not intrinsically mutagenic but cause changes in gene 

expression or other mechanisms that will be passed to the daughter cells. At this point, cell 

proliferation rate increases and apoptotic cell death decreases. In the last stage (progression) 

additional genotoxic events such as chromosomal aberrations and translocations take place. 

Progression is irreversible and it leads to the formation of neoplasms, benign and malignant 

alike 3–5. 

 

Figure 1. Multistage carcinogenesis 

Genotoxicity describes a damaging action on a cell's genetic material affecting its integrity. 

Genotoxicity is similar to mutagenicity except that genotoxic effects that cause DNA damage 

are not themselves necessarily transmissible to the next generation of cells, while mutagenicity 
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refers to the production of transmissible genetic alterations. Genotoxic substances which are 

capable of causing genetic mutation (pre-mutagenic) and contributing to the development of 

tumours (carcinogenic) are known to be potentially mutagenic or carcinogenic. Certain chemical 

compounds and some radiations can induce genotoxicity.  

Even low exposure levels of genotoxic substances may actuate serious health effects in somatic 

and germ cells. Somatic cell genotoxicity plays a role in a variety of genetic diseases. Also 

degenerative conditions such as accelerated aging, immune dysfunction, cardiovascular and 

neurodegenerative diseases and cancer are the outcome of accumulation of DNA damage in 

somatic cells. Mutations in germ cells can lead to spontaneous abortions, infertility or heritable 

damage to the offspring and possibly to the subsequent generations. 

There is a strong correlation between mutagenicity and carcinogenicity. Studies show that 

approximately 90 percent of the known carcinogens are also mutagens. The somatic mutation 

theory of cancer states that the mutation of the somatic cells cause cancer. 

According to the mode of action, carcinogens can be classified into genotoxic or nongenotoxic 

carcinogens. Genotoxic carcinogens interact directly with DNA, resulting DNA damage or 

chromosomal aberrations that can be detected by genotoxicity tests 6. Adversely, nongenotoxic 

carcinogens have no direct reactivity with DNA and use other mechanisms in the process of 

tumour development such as affecting gene expression, signal transduction, and/or cell 

proliferation.  

Mutation may occur in two modes: “spontaneously” or “inducted mutagenicity”. DNA 

molecules are not stable in the cellular environment and each base pair in a DNA double helix is 

mutable with a certain probability. Mutations may affect entire chromosomes or large pieces of 

chromosomes. Gene alterations are the simplest form of mutation. This gene alteration is 

swapping of one base pair for another. Another cause of mutation can be the insertion of a 

transposable element from outside the genome. Most of the time the DNA damages are 

identified and corrected by cells. Figure 2 (page 9) shows the parallels between crossing-over 

and two kinds of mutational repair (excision and double-strand break repair). 
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Figure 2. Parallels between recombination and certain types of mutational repair.7 

1.1.1 Gene Mutation 

The gene mutation can be divided into two classes:  

- Mutations affecting single base pairs; 

- Mutations altering the number of copies of a small repeated sequence within a gene. 

1.1.2 Mutation in Cancer Cells 

Tumours occur from a sequence of mutational incidences that lead to uncontrolled proliferation 

and cellular immortality. The transformation of cells from the benign into the carcinogenic state 

has genetic origins. 

1. Most of the induced carcinogens (chemical substances and radiations) are also 

mutagenic and they cause cancer by originating mutations into cells. 

2. A large number of mutagens affiliated with cancer have been identified. Experimental 

models (in vivo and in vitro) help to find these associations between mutagenicity and 

carcinogenicity. 
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1.1.3 Base Alteration 

Sometimes the mutagenic agent alters a base in a DNA causing specific mispairing. Figure 3 

(page 10) shows the pairing between the normal forms of the bases. Certain alkylating agents 

such as ethylmethanesulfonate and nitrosoguanidine, are some of the examples of these 

mutagens that operate by this pathway. These mutagens add alkyl groups to many positions on 

all four bases. Figure 4 (page 10) shows the alkylation that leads to direct mispairing and results 

in G.C -> A.T transitions in the next round of replication. Another important class of DNA 

modifiers are intercalating agents. Compounds such as proflavin, acridine orange and ICR 

compounds are some examples of this group (Figure 5-page 11). These agents are able to 

intercalate between the stacked nitrogen bases at the core of the DNA and cause single-

nucleotide-pair or deletions. 

 

Figure 3. Pairing between the normal form of the bases 7 

 

Figure 4. Alkylation-induced specific mispairings 7 
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Figure 5. (a) Structures of common intercalating agents and (b) their interaction with DNA 8  

1.2 Genotoxic and Carcinogenic Chemicals 

Absorption ways of chemical carcinogens following exposure are oral, inhalator, cutaneous and 

injection. Afterwards, different issues will be involved 9. All the substances absorbed orally are 

distributed in the body through the liver, whereas those absorbed by the lung will enter the 

blood and after that will reach the liver 10. Genotoxic chemical carcinogens directly damage 

DNA, non genotoxic carcinogens or procarcarcinogens require enzymatic conversion before 

affecting DNA 11.  

Non genotoxic chemical carcinogens require bioactivation to electrophiles in order to bind 

covalently to DNA and often act by producing mutations. Different enzymes are involved in 

bioactivation reactions, such as oxidation, reduction, thiol conjugation, acetyl transfer, sulfur 

transfer, methyl transfer, glucuronosyl transfer, and epoxide hydrolysis. These enzymes are 

classified as oxidoreductases 12. Human body controls metabolic activation by phase I reactions. 

Phase II reactions protect the body by transformation of activated compounds into inert products 

that will be eliminated from the body 13. Phase II enzymes have role in the conjugation and 

inactivation of carcinogens and include transferases. Originally, these enzymes were considered 

to be involved only in the detoxification of biotransformation, but they can also trigger 

activation of certain epigenetic carcinogens 11. 

Peroxidations occur together with metabolic reactions and cause production of ROS 14,15. 

Several chronic diseases are related to these radicals including chemical carcinogenesis 14. 

Chemical reactions such as oxidation, nitration/nitrosation and halogenation, which are 

associated with ROS trigger damage to DNA, RNA, and proteins. Consequently, mutations and 

alterations in the functions of important enzymes and proteins occur as a result 13. It is 
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demonstrated that excess amount of ROS created by chemical compounds stimulates initiation, 

promotion and progression of tomour through genotoxicity 16,17.  

Although the above-mentioned metabolic methods are important for both humans and animals, 

differences are important to be considered. Incorrect interpretations may occur in animal models 

used in the assays and analysis of chemicals carcinogenicity 18,19. 

1.3 The Animal Test(s) 

Carcinogenicity studies cannot be limited exclusively to the epidemiological data about 

carcinogens. For over 40 years, long-term rodent carcinogenicity bioassay using the maximum 

tolerated dose in 2 species over 2 yr. has been the standard procedure for detecting potential 

human carcinogens20.  

Data obtained from the initial 2-year carcinogenicity studies is often subjected to critiques of the 

screening procedures since it is inadequate for risk assessment regulatory decisions. 

In laboratory experiments on animals, it is shown that most potent mutagenic chemicals are also 

carcinogenic21. Thus, all the chemicals that are mutagenic in animals are considered also 

mutagenic or suspected mutagenic and consequently human carcinogens, until there is found 

some reliable evidence which shows the contrary 22. 

1.3.1 Rodent Carcinogenicity Bioassay 

There is increasing understanding that carcinogenesis is a multistep process 23–25. Chemicals 

with positive carcinogenicity results are subjected to more accurate and detailed evaluations 

about their unsafe effects for humans. Verifying whether or not the “carcinogen” chemical with 

positive results in long-term rodent assays is also hazardous for humans needs more chemical 

evaluations. These evaluations are necessary to understand the dose-response relationships, the 

potential hazard for humans 26. It may be unrealistic to expect a basic 2 year study to provide all 

the complex data needed for risk management decisions. 

Even though the quality of the studies used in toxicity assessments is high, these toxicity 

conclusions are not sufficient for the regulatory agencies. Some results in the NCI/NTP data 

base and other data sources clearly show that some chemicals that cause cancer in rodent 

models are not carcinogenic for humans 23,27. The procedure which states that a chemical with 
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positive effect in at least one of the 4 sex/species combinations is “carcinogen”, is more 

adequate for selecting compounds to undergo further study than regulatory purposes. Dose 

extrapolation, different organ responses are among the essential factors that influence the 

applicability of the rodent bioassays directly to risk assessment.  

1.3.2 Some Notes about Rodent Carcinogenicity Bioassay 

Mechanistic considerations are essential in carcinogenicity studies especially for nongenotoxic 

chemicals. Use of cell culture methods will fill the gap of information about the differential 

metabolism between animal models and humans. According to the legislations for risk 

assessment, data obtained from different sources, included experiments and mechanistic studies 

need to be used for the decision-making process. Many nongenotoxic chemicals are sex- or 

species specific, for this reason the mechanism of tumour formation has to be studied in both 

species and sex 28. 

The reasonable solution is considering and using the whole available data rather than relying 

only on the most sensitive test results 29. Information about the chemical concentration used for 

each animal species or sex combination is crucial and explains the sex/species specificity of the 

chemical effects 29. This additional information plays an important role in extrapolation of the 

results to humans. Studying specific chemicals by rodent tests, produces useful mechanistic 

information. The methodologies for predicting carcinogenicity can be explored by conducting 

high quality rodent studies. These studies will lead us to developing better dose-response 

relationships and increasing our knowledge about interspecies extrapolation. Despite all the 

progressions in the animal tests, there is still lack of adequate rodent studies for identifying 

carcinogens 30.  

The 2-year rodent studies are the most expensive tests that usually take place as the first step of 

the carcinogenicity assessment of a chemical. The following assessments, in case the rodent test 

result is positive, are more mechanistic, quicker and less expensive. The use of predictive 

models prior to the animal studies should be more reliable in the chemical evaluation process. 

This approach makes more resources available for the mechanistic studies and will accelerate 

the risk assessment deliberations for humans 31. 
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1.4 Ames Test 

Tests for carcinogenicity are generally time consuming and are performed on small mammalian 

animals. Alternative tests use microbes (e.g. fungi and bacteria) and test for mutagenicity 

instead of carcinogenicity. Any living organism can be used for testing the mutagenicity of a 

chemical, this is because DNA is chemically equal in all organisms. Bacteria can be used as an 

alternative to mammalian models, as its life cycle is much shorter and the results can be 

obtained easier and faster. The most famous mutagenicity test was developed by Bruce Ames in 

the 1970s, which is done using Salmonella typhimurium. Properties of the bacteria were 

genetically engineered into these strains to make them suitable for mutagen detection. The 

genotype of the mutant strains in this assay is given as his-. In addition, they carry a mutation 

that eliminates the protective lipopolysaccharide coating of wild-type Salmonella to facilitate 

the entry of many different chemicals into the cell.  

In a media lacking histidine this mutant bacteria will die. The “revertant” mutants revert the his 

– to his + genotype and phenotype and this will help the bacteria to grow in a media without 

histidine. In the Ames test the Salmonella bacteria is placed on plates with a very small amount 

of histidine and the chemical to be tested is added to the plate. The grown colonies on the plate 

indicate the number of revertants. To generate a dose-response curve, different concentrations of 

the chemical under study is tested. 

A positive result of the mutagenicity Salmonella typhimurium test is an indication of the high 

probability that the tested chemical will be carcinogenic in laboratory animals and in 

consequence is more likely to be a carcinogen. Not all chemicals that cause cancer in laboratory 

animals are mutagenic in the Ames test, but still three quarters of the chemicals with positive 

result in Salmonella test are carcinogenic in also animal studies. The rapidity (3-4 weeks) and 

low cost of the Ames test makes it an important tool for the mutagenicity screening.  

1.5 Nongenotoxic Carcinogens 

A great number of human carcinogens are “genotoxic” chemicals, which means their 

carcinogenicity effect is caused by inducing DNA damage. The rest of the carcinogens are 

named “nongenotoxic” chemicals, and they induce cancer in other modes of action. 

Nongenotoxic mechanisms are not as extensive as for genotoxic carcinogens, but evidence 
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shows that alteration in multiple pathways is responsible for their carcinogenic behaviour. Some 

other processes in which the nongenotoxic carcinogens act are: tumor promotion, endocrine 

modification, immune suppression, and tissue-specific toxicity and inflammatory responses 32,33. 

Nongenotoxic carcinogens unlike genotoxic carcinogens are tissue and species specific. In the 

past, the unique method of identifying nongenotoxic chemicals was the 2-year carcinogenicity 

bioassay, but the REACH legislation recommends fewer bioassays to be used in the process of 

carcinogenicity assessment. The main assessment strategy of REACH for the carcinogenicity 

endpoint is based on Ames mutagenicity test, genotoxicity in mammalian cells (in vitro and in 

vivo), and germ cell mutagenicity tests. These kind of tests are unable to identify the 

nongenotoxic carcinogens, the result of these tests are negative for such substances 34. Thus, it is 

important to understand the mechanisms of action of these nongenotoxic carcinogens in order to 

help the decision makers in detecting these substances. 

1.5.1 Modes of Action of Human Nongenotoxic Carcinogens  

Nongenotoxic carcinogens induce cancer without altering DNA, by indirect stimulation of 

hyperplastic responses, or chromosome number or structure. The modes of action of these 

chemicals include receptor and non-receptor - mediated endocrine modulation, tumour 

promoting, inducers of tissue-specific toxicity and inflammatory responses, 

immunosuppressants, or gap junction intercellular communication inhibitors. The identification 

of these substances is very challenging. Also the kinetics of human risk assessment is different 

from genotoxic chemicals, and a non-linear approach (threshold) is applied for nongenotoxic 

carcinogens. Because of the variety of the mechanisms of action of nongenotoxic carcinogens, 

the assessment is done on gathered data with a WOE approach. The assessment is done 

individually from 90-day toxicity studies, toxicokinetic and disposition studies. If any data 

about 2-year chronic bioassays in rodents and human epidemiological data is available they are 

also used in the WOE process. 

1.6 Genotoxic Carcinogens 

Genotoxic carcinogens involve direct damage to DNA, to which the cell responds by repair of 

the damages, arrest of the cell cycle or induction of apoptosis. 
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1.6.1 Modes of Action of Human Genotoxic Carcinogens  

1.6.1.1 Electrophilic Chemical Reaction Mechanisms Forming Adducts with DNA 

Conjunction, substitution and addition are three classical chemical reactions through which the 

electrophiles react with biological nucleophiles. During these mechanisms of action electron-

rich component interacts with the electron-deficient one 35. Among all the known mechanisms 

of covalent binding, only the following mechanisms can lead to cancer: SN1, SN2, acylation, 

Schiff base formation, Michael addition, and SNAr. These mechanisms are used for the 

classification of the electrophiles into appropriate mechanistic domain (Table 1-page 17) 36. 

  



17 

 

Table 1. Structural alerts belonging to certain mechanistic domains 36–38 

Mechanistic domains Structural alerts 

SN2 Akyl esters of either phosphonic or sulphonic acids 

Monohaloalkenes 

S- or N-mustards 

Propiolactones and propiolsultones 

Epoxides and aziridines 

Aliphatic halogens 

Alkyl nitrite 

SN1 Aromatic nitro groups 

Alkyl hydrazines 

Alkyl and aryl N-nitroso groups 

Aliphatic N-nitro group  

Aromatic nitroso group 

Aromatic amines and hydroxylamine 

Halogenated polycyclic aromatic hydrocarbon (PAH) 

Halogenated dibenzodioxins 

Acylation Aromatic diazo groups 

Acyl halides 

Schiff Base Formation Simple aldehydes 

N-methylol derivates 

Michael addition Quinones 

SNAr Aromatic N-oxides, 

Aromatic mono- and dialkylamino groups 

Halogenated benzene 

1.6.1.2 Epigenetic Mechanisms of Carcinogenic Molecules 

Epigenetic chemicals cause cancer without changes in the nucleotide sequences. Epigenetic 

factors can be found in cells under stress. The nongenotoxic (or epigenetic) carcinogens do not 
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make changes in DNA and do not form DNA adducts, but they changes the expression of 

certain genes 39. Epigenetic factors mainly cause cancer in two ways: by methylation or post-

translational modifications of histones (acetylation). DNA methylation happens in the promoter 

region 40 and results in the conversion of cytosin to 5-methylcytosine, with a high mutagenic 

potential. Acetylation of histones is controlled by histone acetyl transferases, which are 

important in chromatin transformation and the regulation of gene transcription 41.  

1.6.1.3 Other Factors Determining the Carcinogenic Potential of Chemical Compounds 

Carcinogenicity and mutagenicity are not caused only by SAs. The presence of a SA does not 

imply the mutagenic or carcinogenic property in a molecule. In fact, some SAs are not 

metabolically active in some chemicals. Molecular weight and the size of chemicals are 

important factors which may make the molecule lose its toxic property. Molecules with higher 

weights have less chance to be absorbed by cells. State of matter may make it difficult for the 

compound to reach the critical point. Solubility is another factor that affects the carcinogenic or 

mutagenic properties of the chemicals. High hydrophilicity leads to less absorption by the cells. 

Geometry of chemical and chemical reactivity are other important factors 35. There are also 

other factors that cause the increase of decrease of carcinogenicity and mutagenicity of the 

chemical compounds, such as stability and transport through the membrane and half-life 2,42.  

1.7 Carcinogenic Categories of the Substances 

The substances classified in the Category 1A are known or presumed human carcinogens for 

which their mutagenicity has been proved in epidemiological and/or animal studies. 

First category is known or presumed human carcinogens. A substance is classified in category 1 

for carcinogenicity on the basis of epidemiological and/or animal data.  

Category 1A  

Substances known to have carcinogenic potential for humans. The classification in this category 

is largely based on human evidence, human studies that establish a causal relationship between 

human exposure to a substance and the development of cancer.  

Category 1B  
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Substances presumed to have carcinogenic potential for humans. The classification in this 

category is largely based on animal evidence, animal experiments for which there is sufficient 

evidence to demonstrate animal carcinogenicity.  

Second category: category 2  

Suspected human carcinogens. The placing of a substance in category 2 is done on the basis of 

evidence obtained from human and/or animal studies, but is not sufficiently convincing to place 

the substance in category 1A or 1B.34 

1.8 Structural Alert Lists for Carcinogenicity and Mutagenicity 

John Ashley introduced SAs for the first time in 1985. The SAs are molecular substructures 

which are associated with carcinogenicity or mutagenicity properties of the molecules. These 

moieties represent potential mutagenicity or carcinogenicity and are the results of a long series 

of studies on the mechanisms of action of the mutagenic and carcinogenic chemical compounds 

43. The SAs are useful in the prediction of toxicity and the classification of potential 

carcinogens, as well as, in understanding the mechanism of genotoxicity 39,43–46. The 

electrophilic theory of carcinogenic chemicals introduced by James and Elizabeth Miller 11,47 

was the first step in rationalization of the mode of action of animal carcinogens known by the 

1970s. The Miller’s hypothesis also helped to justify mutagenicity of chemicals towards 

Salmonella 48. The electrophilic hypothesis has become a general theory of the carcinogens. The 

epigenetic carcinogens do not bind covalently to DNA and cause carcinogenicity through a 

large variety of mechanisms, while the genotoxic carcinogens are either electrophiles or can be 

activated to electrophilic reactive intermediates. During the last decade, several chemical 

functional groups or SAs have been identified for genotoxic carcinogens, based on Miller’s 

theory. The identification of nongenotoxic carcinogens is much more challenging because there 

is no unifying theory for the explanation of their mechanisms of action.  

John Ashby in 1985 introduced a list of SAs for carcinogenicity. This list contained eighteen 

SAs. The revised list of these SA can be found in Ashby and Tennant 48. Each SA in the Ashby 

list has its specific mechanism of action. It is noticeable that there are some physico-chemical 

factors that may override the effect of these SAs in a molecule. The biological activity of a 
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molecule depends on different factors such as molecular weight, physical state, solubility and 

chemical reactivity. The Ashby and Tennant preliminary lists of carcinogenic SA was one of the 

most useful schemes to assess carcinogenic potential of substances with unknown carcinogenic 

properties. In 1996 Munro et al. created a functional groups list for genotoxicity based on the 

SAs of Ashby 49. Cheeseman et al. 50 identified SAs useful to support higher threshold levels by 

using (Q)SAR, genotoxicity and short-term toxicity data. The identified SA were similar to the 

Ashby and Tennant list and were correlated with the TD50. The new list contained eight new 

more complex SAs. The list of SAs proposed by Ashby and Tennant and Cheeseman was 

revised by Kroes et al. 51.  

Kazius et al. 46 expanded and refined Ashby’s SAs by applying modern data mining techniques 

on chemical data of mutagenicity in Salmonella. Kazius et al. introduced a final set of 29 

toxicophores which was able to classify the chemicals in the evaluation data set with 18% of 

classification error.  

One of the most recent rule sets defined by human expert for mutagenic carcinogenicity has 

been developed by Benigni and Bossa 39,43. The updated version of this rule set 39 is 

implemented in Toxtree version 2.6.13 52. 

1.9 Current Hazard Identification Procedures and Related Considerations 

Since the carcinogenicity is a complex process, the rodent bioassay results are insufficient for 

accurate human health risk assessments 53. Currently, genotoxic properties of the new chemicals 

are evaluated mostly by short-term studies. The chemicals that show genotoxic effects do not 

undergo long-term studies. Extrapolation of the results to humans from the rodent data is 

possible by considering the similarities and dissimilarities of the species. 

Most of the identified carcinogens in humans are genotoxic or interact directly with DNA. 

Genotoxic chemicals are essentially different from nongenotoxic chemicals 16,54. The 

classification of a carcinogen into genotoxic or nongenotoxic category has an important effect in 

the choice of the further studies and the indication of the chemical for risk assessment. 

Genotoxicity screening of a chemical by its metabolic information is more standardized 

compared to the chemical evaluation approach for defining nongenotoxic chemicals. While for 

evaluation of genotoxic chemicals a standard decision approach is approved 55, more effort is 
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needed for defining nongenotoxic chemicals 54. Following the scheme of genotoxicity 

assessment reduces the number of animals used in carcinogenicity tests early in the evaluation 

process.  

1.10 (Q)SAR and REACH 

(Q)SARs are mathematical models that correlate the physico-chemical properties of chemicals 

to their biological activity such as toxicological and environmental fate properties. The (Q)SAR 

models are mainly statistical correlations, which describe a relationship between one or more 

quantitative characteristics of a chemical (descriptor) which is calculated from the chemical 

structure to a quantitative measure of property or activity of that chemical. These biological 

activities or properties for which the (Q)SAR models seek to estimate a predicted value are 

usually toxicological endpoints for human or environment. These prediction models can yield 

either continuous or categorical endpoint 56.  

In other words, the information on the chemical structure of chemicals is connected to a specific 

property such as toxicity by means of mathematical and statistical methodologies and this 

relationship can be used as a predictive model for a new substance. Chemical applicability 

domain of each model should be defined by effective validation to make the model reliable for 

the new predictions. Considering the established applicability domain of each model, the 

reliability of the prediction of a substance by the model is decided. The chemically induced 

adverse effect of chemicals can be predicted by (Q)SAR models, as these models are becoming 

more and more robust and reliable. In addition, these models are fast and cost-effective and can 

replace a significant number of tests on animals and cells. The legislation on Registration, 

Evaluation, Authorisation and restriction of Chemicals, REACH, promotes the use of (Q)SAR 

models provided that, their scientific validity has been established, the substance falls within the 

applicability domain, the results are adequate for classification and labelling and/or risk 

assessment, and adequate and reliable documentation of the method is given. The REACH 

guidance has not determined any fixed criteria for the acceptance of the (Q)SAR models. In case 

a chemical is registered by an industrial registrant using a (Q)SAR model, the (Q)SAR model 

must be explained by them 56. The application of (Q)SAR predictions can be useful in numerous 

fields, for example, in the initial phase of selecting chemicals for testing, experimental design of 
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experimental tests, evaluate and improve the data obtained from experiments, classification and 

labelling, and persistent, bioaccumulative and toxic assessment 56. 

Another important field in which (Q)SAR predictions play role is in classification, clustering 

and read-across. Meaningful groups of chemicals can be created by the help of (Q)SARs. 

(Q)SARs are mathematical models that reveal the physico-chemical properties of the chemicals 

associated with their biological properties or activities. Presumably, these relationships 

modulate the activity giving rise to a trend development over a congeneric series of chemicals. 

The (Q)SAR predictions for molecular and toxicokinetic endpoints provide information for 

grouping and read-across process. Although, some (Q)SAR models may not provide adequate 

information for REACH or EU regulation CLP about the classification or the risk assessment of 

a compound or mixture, they can be used in a WOE approach together with other sources of 

data for designing a testing strategy and filling data gaps about the chemical properties 57. 

According to REACH all other alternative testing options, such as (Q)SARs, should be 

considered before performing or requiring vertebrate testing 58. All existing information on 

physico-chemical properties, toxicological and ecotoxicological data from in vivo and in vitro 

experiments and other non-testing methods must be gathered and put together for this end. 

Adding (Q)SAR and other non-testing methods, makes the information sufficient for the 

REACH requirements for the low tonnage substances. The REACH endpoint guidance claims 

that currently not all the mechanisms associated with reproductive toxicity can be identified by 

(Q)SAR models 59. Although REACH demands and encourages the use of non-testing and in 

vitro methods to avoid vertebrate animal testing, unaccompanied (Q)SAR models do not 

produce reliable results that can replace whole-animal reproductive toxicity testing 59. 

Supporting results from other experiments is needed to complete the negative result of the 

(Q)SAR and non-testing predictions for reproductive hazard assessment of a chemical. 

However, results of predictions of (Q)SAR models are useful in a WOE approach for grouping 

and read-across models and they contribute to reduction of animal tests 60. 

According to the REACH Annexes VII-X for known genotoxic carcinogens or germ cell 

mutagens for which sufficient risk management measures are accomplished, no testing is 
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needed for reproductive effects 58. Thus, according to the REACH guideline for chemical safety 

assessment 59, (Q)SAR results may contribute to reducing testing for reproductive toxicity. 

Among these points non-testing information which involves Quantitative Structure Property 

Relationships (QSPRs) and read-across can be used in accordance with the limitations explained 

for each individual endpoint. Each QSPR model has been built using a training set of substances 

and is more applicable to the chemicals which most closely match the samples used in the 

models. Therefore, the estimation of the QSPR models requires expert judgment. The 

predictions of such models need to be reasonable. 

1.11 REACH Guidelines 

Endpoint specific guidance of the REACH regulation 59 describes in what manner the WOE 

approach could be used for each endpoint. This section describes how the information collected 

from different sources could be integrated and used so that the conclusion on this information is 

sufficient for regulatory purposes (i.e. risk assessment). In other words, before proposing 

additional animal testing, use of alternative methods and adequacy of methods for generating 

additional information must be considered. It is precisely emphasized that experiments on 

vertebrate animals should be limited to the cases that all other data sources have been exhausted 

61.  

There are a number of issues determined by REACH to be considered before taking decision to 

perform the testing. These issues help to design fit for purpose in vivo tests, also provide 

evidence for not performing in vivo testing under certain circumstances. 

 Testing requirements; 

 Exposure/use pattern (emissions, yes or no, consumer use, etc.);  

 Occurrence (monitoring data); 

 Indications of the effect/ property based on animal or human data, in vitro data and non-

testing information; 

 Any concern e.g. based on toxicokinetics, read-across and (Q)SAR considerations, 

 WOE; 

 Seriousness of the effect; 
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 Other effects of relevance for the endpoint.62 

1.12 Genotoxicity Assessments in the EU Regulations 

The EURL ECVAM defines 3 endpoints that need to be assessed in the process of genotoxicity 

for the safety assessment of chemicals and the protection of human health and environment 63. 

These 3 endpoints are: gene mutation, structural chromosome aberrations, and numerical 

chromosome aberrations (Table 2-page 25). Classification and labelling (C&L) of chemical 

substances is based on the results of the genotoxicity tests of the scientific tests for toxicity 

assessment in the EU 34 and in the world (UN GHS).  

According to the EU legislations and directives there are two different approaches for the 

assessment of genotoxicity to humans. According to the first approach, a chemical that is 

nongenotoxic in the in vitro analysis is not considered for the further in vivo assessments (e.g. 

REACH, CLP and Cosmetics Directive). The second approach, foresees in vitro tests of 

chemicals followed up by in vivo assessments (e.g. ICH for pharmaceuticals and VICH for 

veterinary drugs). This decision is made because the alternative methods to in vivo test for 

carcinogenicity cannot thoroughly replace the animal tests 64. Analyzing the regulatory 

requirements, EURL ECVAM suggests an efficient approach to improve the traditional 

genotoxicity assessment. The new approach has the objective of reducing the animal use in 

genotoxicity testing, and EURL ECVAM suggests that efforts should be directed towards the 

improvement of the current assessments while reducing the use of animals and at the same time 

satisfies regulatory information approach. The identified solutions for improving the 

genotoxicity assessment have the following aims: 

 Increasing the performance of in vitro tests in order to avoid the additional follow-up in 

vivo tests; 

 Improving the accuracy and quality of the in vivo follow-up testing to reduce 

unnecessary use of animals.  

According to the chemical authorities the positive results of the in vitro genotoxic predictions 

need to be verified by in vivo tests, and this fact highlights the importance of finding solutions 

for reduction and refinement of genotoxicity tests. A strategy to reduce animal tests for 
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decision-making about carcinogenic or toxic compounds, can be collecting relevant data and 

drawing a conclusion on the basis of a data obtained from different sources. Pfuhler et al. 65 

published some solutions to reduce animal tests in an ECVAM workshop report. 

Table 2. Test methods most commonly used for genotoxicity/mutagenicity testing 63 

 Test Method 

COUNCIL 

REGULATION 

(EC) No 440/2008 

Test Method 

OECD Test 

Guideline 
endpoint 

In vitro/ 

in vivo 

Bacterial reverse mutation test 

(Ames test) 
B.13-14 TG 471 Gene mutations vitro 

In vitro mammalian chromosome 

aberration test 
B.10 Updated TG 473 Structural aberrations vitro 

Mammalian cell gene mutation 

test 
B.17 

TG 476 (under 

revision) 
Gene mutations vitro 

In vitro mammalian cell 

micronucleus test 
 Updated TG 487 

Structural and 

numerical aberrations 
vitro 

Mammalian erythrocyte 

micronucleus test 
B.12 Updated TG 474 

Structural and 

numerical aberrations 
vivo 

Mammalian bone marrow 

chromosome aberration test 
B.11 Updated TG 475 Structural aberrations vivo 

Transgenic rodent somatic and 

germ cell gene mutation assays 
 TG 488 Gene mutations vivo 

In vivo mammalian alkaline 

comet assay 
 TG DNA damage vivo 

 

1.13 Read-across 

A read-across approach finds out the relevance or relationship between the properties of the 

chemical structures and then make assessment on the applicability of this information to another 

substance. It is crucial to detail the reasoning behind the inference on the substance for which 

the property is unknown.  

A read-across process which is based on the concept of similarity can be applied in different 

forms: one-to-one (a similar substance can be used to make an estimation for a target substance) 

b) many-to-one (two or more analogues used to make a prediction for a single substance c) one-

to many (one analogue used to make estimations for two or more substances) d) many-to-many 

(two or more similar compounds used to make estimations for two or more substances). 
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There are some important issues to be considered when using a read-across model. These 

characteristics are as follows:  

 The source substances must have the same structural features and the functional groups 

of the target substance; 

 the physico-chemical profile of the similar compounds must be comparable to those 

present in the target substance; 

 the relevant molecular descriptors must have comparable values;  

 the analogue substances must have approximately the same molecular weight.66 

The results of a read-across should be interpreted using expert judgement and for the support of 

the conclusion detailed documentation is required. The read-across approach is more suitable 

for the physical hazard related to physico-chemical properties of the substances, as reliable test 

data should be available according to the CLP regulation. Therefore, if read-across is used as a 

unique method to generate a value to meet the endpoint data requirements, the criteria given in 

section 1.5 of Annex XI to REACH must be met.66 

1.14 Classification and Labelling and Chemical Safety Assessment 

Knowledge about physico-chemical properties of the chemicals and chemical safety assessment 

is important for the environment and human health. All the stages of the substances’ lifecycle 

must be assessed and controlled in the process of chemical safety assessment, these stages 

include manufacture, transfer, use and disposal of the chemical substances. Further, physico-

chemical data are essential for the correct planning of (eco)toxicological studies and for the 

optimization of the test conditions. 

The standard test and most confident assay for carcinogenicity is the 2-year rodent 

carcinogenicity bioassay determined and described by OECD. The purpose of this assay is “to 

observe test animals for a major portion of their life span for the development of neoplastic 

lesions during or after exposure to various doses of a test substance by an appropriate route of 

administration.” Usually two species (mice and rats) and both sexes are used in this test. The 

chemical exposure is dosed and executed by oral, dermal or inhalation modes based on the 

expected human exposure. Dosing is done during two years and animal health is screened 
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throughout the test. The most important results of the test is obtained by the thorough 

examination of the animal tissues and organs at the termination of the assay. 

The combination of carcinogenicity and chronic toxicity animal bioassays endpoints may reduce 

the animal use 67. A number of transgenic rodent models have been suggested as alternatives to 

the standard bioassay carcinogenicity test by the ILSI HESI, but none of them was as efficient 

as the traditional 2-year assay for identification of carcinogens 68. Most of these models were 

capable of detecting genotoxicity that can be already detected by other in vitro genotoxicity 

assays. Alternative models are not still suitable for the detection of nongenotoxic carcinogens 69.  

1.15 Development and Optimisation of Alternative Methods 

1.15.1 Importance of Mode of Action and Weight of Evidence Approach  

The most appropriate key events are needed to understand the mechanisms of action of 

nongenotoxic carcinogens. Since there exist numerous modes of action for these substances, a 

WOE approach seems to be essential to deduce a reasonable conclusion out of the gathered data 

for a chemical.  

There are nongenotoxic carcinogens in IARC group 3 (i.e. not classifiable as to its 

carcinogenicity to humans) which are not carcinogenic in humans. To evaluate these group of 

carcinogens, the WOE approach is a useful tool. This approach helps the scientists to 

understand the differences of modes of action in rodents and humans. 

1.15.2 Alternative Methods for Detecting Nongenotoxic Carcinogens  

In the process of the detection of the nongenotoxic carcinogens and exploring alternative 

methods for their assessment, it is important to consider the vast range of modes of action of 

these chemicals. These modes of action include: mitogenic induction, inhibition of gap-

junctional intercellular communications, endocrine modifiers, oxidative stress, 

immunosuppressants, regenerative proliferation and/or DNA methylation. Some of the 

examples of alternative methods for the nongenotoxicity detection are: (Q)SARs, measuring 

replicative DNA synthesis as an indication of cell proliferation, the in vitro cell transformation 

assays, measurements of inhibition of gap junction intercellular communication 70 and the use of 
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gene expression profiles with mechanistic networks for the identification of potential markers of 

nongenotoxic carcinogens. 

1.16 Quantitative Structure–Activity Relationship (QSAR) 

The main results of in vitro cell toxicity used by (Q)SAR models for nongenotoxic 

carcinogenicity are: several markers of in vitro cell toxicity including inhibition of gap-

junctional intercellular communications, modulation of apoptosis and induction of cellular 

proliferation 71. In this study, the structural features of the nongenotoxic carcinogen associated 

with toxicity or ligand binding, as in the case of estrogen, peroxisome proliferators and tubulin 

protein receptors, have been analyzed 71. 

The (Q)SAR models for detection of carcinogenicity use information and correlate biological 

activity or chemical reactivity to chemical structure. These models are practically based on the 

assumption that similar chemicals have similar activities. The OECD has defined a number of 

principles for the validation of the (Q)SAR models for regulatory analysis 72,73. These principles 

for (Q)SAR models are: having a defined endpoint, an unambiguous algorithm, and measures of 

goodness-of-fit, robustness, predictivity, and applicability domain.  

A great number of nongenotoxic carcinogens are mutagenic inducers which cause cancer by 

increasing cellular proliferation. Hepatocyte rodent in vivo studies indicate that most of the 

hepatocarcinogens cause cancer by accelerating hepatocyte division 74–77. 

As a result of putting into practice the REACH legislation, the number of 2-year rodent 

carcinogenicity bioassay is reduced and this fact can lead to the lack of detection of a large 

number of nongenotoxicity carcinogens. Because of the high risk of hazard associated with this 

group of carcinogens, there is an increasing need of alternative methods for their detection. 

Possible alternative methods for this purpose include: SARs and (Q)SARs, replicative DNA 

synthesis assay, the in vitro cell transformation assay and/or inhibition of GJICs. None of these 

alternative methods provide any information on the mode of action, thus further studies are 

needed to fill this gap of data. Using toxicogenomics to analyse multiple pathway-specific gene 

expression profiling is an efficient method to identify putative alerts. Additionally, statistical 

validation studies to examine the sensitivity, specificity and accuracy of these models play an 
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important role in improving these alternative models. It is important to discover as much as 

possible different modes of action of nongenotoxic carcinogens and not to depend only on the 

traditional nongenotoxic carcinogens identification methods (tetrachlorodibenzo-p-dioxin, 

carbon tetrachloride, and cyclosporine). 

1.17 Software Packages for Mutagenicity and Carcinogenicity Predictions 

Two major alternatives to in vivo testing are in vitro and in silico techniques. In the last decade, 

numerous computer software have been developed in order to replace, reduce and refine the 

animal tests. These software packages include also mutagenicity and carcinogenicity predicting 

models of the chemical compounds. 

1.17.1 VEGA Platform 

The VEGA platform contains a number of (Q)SAR models for predicting mutagenicity and 

carcinogenicity such as CAESAR. Two new carcinogenicity models have been added to the 

VEGA platform by the author 78. CAESAR ((Q)SAR mutagenicity models) was specifically 

developed for the REACH regulation in collaboration with the United States Environmental 

Protection Agency (http://www.caesar-project.eu/). The mutagenicity models in the VEGA 

platform are based on data obtained from the Ames bacterial test. Models on carcinogenicity, 

developmental toxicity and etc. are freely available from the VEGA platform.  

1.17.2 DEREK Nexus  

The DEREK Nexus 79 is a knowledge-based expert system, developed by LHASA Limited that 

predicts the genotoxicity, mutagenicity and carcinogenicity of a chemical by highlighting the 

SAs present in its molecular structure. Derek Nexus toxicity predictions are a result of two 

processes: evaluating SAs and estimating the likelihood of toxicity.  

The knowledge-based SAs for in vitro mutagenicity have been implemented by experts who 

have assessed relevant Ames data and supporting mechanistic data (e.g. DNA adduct formation 

experiments). If a query compound matches a SA, the alert will fire with an associated 

reasoning level (e.g. plausible, probable or certain). The reasoning levels associated with the in 

vitro bacterial mutagenicity alerts in Derek Nexus gives an indication of the likelihood for 

compounds in that class to be active in the Ames test 80. 

http://www.caesar-project.eu/
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Each bacterial, in vitro mutagenicity alert in the knowledge base was examined by a scientist 

with expertise in mutagenicity alert development. The patterns encoding the SAR for each alert 

were modified using the Derek Knowledge Editor if they contained features that were 

implemented to prevent the pattern being activated by nonmutagenic compounds (so-called 

exclusion patterns). Such features were removed and the resultant ‘predictive space’ was stored 

within a modified knowledge base. Thus, each bacterial, in vitro mutagenicity alert in Derek had 

a corresponding region of predictive space 81. 

1.17.3 TOPKAT 

TOPKAT 82 is a (Q)SAR-based system, developed by Accelrys Inc. (http://accelrys.co m/). 

Some of the TOPKAT toxicological endpoints are mutagenicity, developmental toxicity, rodent 

carcinogenicity, rat chronic LOAEL, rat MTD and rat oral LD50. TOPKAT models are 

developed using two-dimensional molecular, electronic and spatial descriptors. The toxicity 

prediction is obtained from a chemical’s molecular structure. TOPKAT defines an applicability 

domain value which estimates the confidence in the prediction by applying the patented Optimal 

Predictive Space validation method. Any prediction generated for a query structure outside of 

the OPS space is considered unreliable. 

1.17.4 MultiCASE  

MultiCASE 83 (MultiCASE Inc., Cleveland, OH, USA) is a prediction model for genotoxicity 

and carcinogenicity endpoints based on US FDA and US EPA. MultiCASE identifies SAs with 

a potential to initiate high biological activity, in addition, some statistical parameters are 

analysed to complete the predictions. The mutagenicity and genotoxicity models are based on 

the data obtained from Ames test, direct mutagenicity, base-pair mutagenicity, frameshift 

mutagenicity, chromosomal aberrations, and sister chromatid exchange data. The 

carcinogenicity model includes different rodent assays (rate, mouse, male, female, and TD50 

rats) and human epigenetic studies. All models use the statistical approach with the exception of 

the rule-based model for the Ames mutagenicity. 

1.17.5 QSAR Toolbox 

QSAR Toolbox 84 in cooperation with the ECHA is a read-across tool for grouping the 

chemicals and examining their toxicity effects according to the OECD principles 



31 

 

(http://www.qsartoolbox.org/). QSAR Toolbox systematically groups chemicals into classes 

according to their molecular structure, physico-chemical and biological properties. This 

software extracts structural characteristics and modes of action based on experimental 

information for the target molecule. The common mechanisms of action and common 

toxicological behaviour or consistent trends among results related to regulatory endpoints are 

results for an evaluation in this prediction software. 

1.17.6 Toxtree 

Toxtree 52 is a free tool for the assessment of mutagenicity and carcinogenicity of the chemicals 

using decision trees. Toxtree mutagenicity and carcinogenicity model is based on the SAs of the 

Benigni-Bossa rule set, SAs for identification of Michael acceptors, and SAs confirmed by 

positive in vivo micronucleus tests. The program identifies any SA present in the target 

molecule structure and concludes about the mutagenic or carcinogenic property of the chemical 

compound under investigation. The result of the prediction can be class I (inactive), class II 

(weak activity), or class III (active). 

1.17.7 LAZAR 

LAZAR 85 is an open source tool for the prediction of carcinogenicity and Salmonella 

mutagenicity. LAZAR creates local endpoint (Q)SAR models based on a training set (only 

nearest neighbours) for each chemical separately. It first calculated the descriptors and 

determines the molecular similarity and then it builds a local (Q)SAR model based on a 

database of experimental toxicity data. This program meets all five OECD principles.  

1.17.8 ACD/Tox Suite 

The ACD/Tox Suite 86 package contains predicting models for genotoxicity and carcinogenicity. 

The assessments are made based on validated (Q)SAR models in combination with expert 

knowledge. The software highlights and identifies the SAs which are responsible for toxic 

properties and extracts some similar molecules from the training set. The training set is 

composed of compounds that are genotoxic in Ames test. 

 

 

 

http://www.qsartoolbox.org/


32 

 

1.17.9 Leadscope Model Applier  

The Model Applier developed by Leadscope 87 (Leadscope Inc., Colombia, OH, USA), uses 

(Q)SAR models for Salmonella mutagenicity, E. coli mutagenicity, mouse lymphoma, in vitro 

chromosome aberrations, and in vivo micronuclei. 

1.17.10 SARpy 

SARpy 88 is a data mining tool which works in a SAR approach. This tool is able to identify a 

list of active and inactive molecular fragments that act as SAs for biological activity from a 

learning set of chemical compounds with known binary classification toxicity property (e.g. 

carcinogenicity, mutagenicity, etc.). The entire process is designed to fit with human reasoning. 

In fact, SARpy is a computerized tool which helps the expert to extract significant molecular 

substructures with potential effect in toxicity or in nontoxicity in an automatic way with 

customized requirements to be set by the user. The extracted list of active and/or inactive SAs 

identified by SARpy are considered new prediction models with satisfactory prediction ability 

on an external test set, in particular in the case of mutagenicity 89. 

1.18 Weight of Evidence 

Human health and environmental decision-making is often based on multiple lines of evidence. 

WOE is a process for integrating different and sometimes conflicting sources of information 

(lines of evidence) to determine a relative support for possible answers to a scientific question 

or assessment. A line of evidence is a group of evidence of similar type which pertain to an 

important aspect of the environmental or human health assessment. The distinct elements of 

information forming a line of evidence are called “studies” or “pieces of evidence”. The 

multiple sets of information of lines of evidence can be divided into three types: the biological 

field line, the toxicity line and the chemistry line 90. Combining information from multiple 

sources to be used in decision-making is not a simple procedure. From a regulatory point of 

view, risk assessors make use of WOE approaches to perform integration and reach conclusions 

91 in a qualitative or quantitative manner. Also the industry employs different sorts of WOE 

approaches in the toxicity assessment of the chemicals 92. The guidance on WOE provided by 

EFSA introduces a general framework of approaches used to weigh the lines of evidence in 
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order to find an answer for any scientific question which needs to consider different sources of 

information and integrate various data in its assessment process. This document explains types 

of qualitative and quantitative approaches in the WOE field and lists the relative methodologies. 

According to the EFSA document, the WOE assessment consists of three steps: 

1. Assembling the evidence 

2. Weighing the evidence 

3. Integrating the evidence 

The first step compromises searching and selecting relevant evidence for answering the 

question, and also grouping the evidences found into lines of evidence. The second step 

involves the evaluation and assigning weight to the evidence. In the third step, the collected 

lines of evidence are integrated to reach conclusions, by weighing the relative support for 

possible answers to the question at hand. 

During the process of a scientific assessment the three above mentioned steps may be required 

at one or more points, whenever integration of evidence is necessary to reach a conclusion. 

Problem formulation is the first stage of scientific assessment in which the question to be 

addressed by each WOE assessment is defined. The three steps of the WOE framework is the 

preceding step in the scientific assessment. The outcome of the process of WOE influences 

directly or indirectly the overall conclusion of the scientific assessment. The existing 

uncertainties that may affect the overall assessment are evaluated during the steps of the WOE 

and in addition, a separate step is considered for the analysis of these uncertainties as the last 

stage of the scientific assessment before any conclusion is reached. In some assessments an 

additional sensitivity and influence analysis is performed to examine the influence of evidence 

and uncertainties that may influence the conclusion. This process is iterating, and permits the 

assessor to return to an earlier step in order to refine the scientific assessment. 

Reliability, relevance and consistency are mentioned as three key considerations for weighing 

evidence in many scientific publications. The quality of the evidence considered for supporting 

an answer to a scientific question (reliability), how applicable the evidence is to that question 

(relevance) and how consistent the line of evidence (or the piece of evidence) is with other 

existing evidence to answer the same question (consistency). Relevance needs to be considered 
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when identifying evidence, and relevance and reliability are the key considerations when 

selecting which evidence to be concluded in the assessment. Relevance and reliability may be 

different in the selected evidence and this will be analyzed in the phase of weighing the 

evidence. 

Reliability measures the correctness of a piece of evidence, and whether this piece of evidence 

represents correctly the quantity, property or event it refers to. Reliability consists of accuracy 

and precision. 

Relevance defines to what extent a piece of evidence is relevant to answer a specified question, 

provided that the information it consists is reliable. 

Consistency explains the compatibility of the information obtained from different pieces of 

evidence, after analysis of reliability and relevance. 

The important role of multi-criteria decision analysis and WOE methodologies in environmental 

decision-making 93,94, as well as, hazard ranking of NMs 85,95–97 has been assessed by numerous 

scientists.  

1.18.1 Weight of Evidence Method Classification 

Linkov et al. 98 provided a brief review of qualitative and quantitative WOE approaches in 

human and environmental risk assessment. Linkov et al. introduced a classification system for 

characterizing WOE methods, based on Weed 99 and Chapman et al.’s 100 (Table 3-page 35) The 

methods implied in this table are ordered from the most qualitative methods (e.g. listing 

evidence and BPJ or narrative review) to the most quantitative methods (e.g. indexing and 

quantification) which incorporate methods involving decision analysis tools and defining the 

problem as statistical hypothesis testing.  
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Table 3. Weight of evidence methods 98 

Method Method description 

Listing Evidence Presentation of individual lines of evidence without attempt at 

integration 

Best Professional Judgment Qualitative integration of multiple lines of evidence 

Casual Criteria A criteria-based methodology for determining cause and effect 

relationships 

Logic Standardized evaluation of individual lines of evidence based on 

qualitative logic models 

Scoring Quantitative integration of multiple lines of evidence using simple 

weighting or ranking 

Indexing Integration of lines of evidence into a single measure based on 

empirical models 

Quantification Integrated assessment using formal decision analysis and statistical 

methods 

 

Listing evidence as the simplest form of WOE, collects lines of evidence together. Lines of 

evidence are presented without any integration phase. The assessors may reach a conclusion 

considering the list of evidence. All the other methods presented in Table 3 (page 35) include a 

form of integration. BPJ is similar to listing evidence, but it attempts to integrate the evidence 

by invoking a professional opinion. Casual criteria methods consist of methods evaluating cause 

and effect relationships. Casual criteria and logic provide a consistent structure for the analysis 

and transferability of the methods are improved by these methods. Casual criteria methods by 

means of outlined criteria, establish a cause and effect criteria, by illustrating that the specific 

criteria is met. While logic methods make use of previously outlined methods for integrating 

lines of evidence, such as US EPA carcinogenicity guidelines 101. Casual criteria and logic leads 

to a more transparent integration, but the methods are qualitative and may be biased by 

experience. Casual criteria and logic depend on BPJ to synthesize lines of evidence. Scoring is 

the simplest quantitative method of WOE which assigns weights to lines of evidence. A 

numerical WOE score is a combination of weights calculated by different methods such as BPJ 
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based on consistency, specificity and strength of the association. Indexing determines a single 

value as the outcome of the analysis by integrating all the weights assigned to each line of 

evidence. Scoring and indexing do not quantify judgments using formal decision analysis or 

probabilistic techniques. Formalized mathematical methods involving quantitative methods are 

used by quantification category to weigh the evidence. Non linearity and correlations can be 

integrated in the methodologies of quantification category. Also in this category scientific 

results with individual expert or decision maker judgment and comparison across multiple 

experts can be integrated in a transparent and reproducible manner. Multiple-criteria decision 

analysis is a quantification method which uses likelihoods to weigh the evidence.  

1.18.2 Weight of Evidence Application 

Linkov et al.98 reported a summary of methods and application areas of WOE. The WOE 

applications are divided into two main categories: human health and ecological. Under category 

of human health that we focus on, WOE can be applied to i) method development, which 

develops methodologies for human health risk assessment, ii) toxicity analysis, which assesses 

the adverse effects of a substance, iii) mode of action determination, the modes in which a 

substance may cause harm to human health, iv) benchmark development, defines the allowed 

exposure levels of various substances, and other fields. This literature review yielded a 

comparable number of human health and ecological uses. Human health methodologies are 

performed mostly by best judgment methods, and a minor number of studies are conducted by 

quantitative methodologies. The qualitative methods are based on BPJ as recommended by the 

US EPA guidelines. Casual criteria and logic are mainly used by ecological methodologies. 

Overall, this review indicates that qualitative methods of WOE are used more than quantitative 

ones in the applications of WOE and BPJ is the most widely used method. 

1.18.3 Weight of Evidence Approach in Nanomaterials Risk Assessment 

Hazard identification is an important step in the process of NMs risk assessment and is required 

under regulatory frameworks of the US, Europe and worldwide. The current risk assessment 

methods used for chemical and biological materials may not be adoptable for NMs because of 

the existing uncertainties in identifying the relevant physico-chemical and biological properties 
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that are able to adequately describe the NMs. Understanding and managing the impact of NMs 

on human health and environment need new approaches. Currently, our knowledge about the 

toxicity of NMs is barely comprehensive 102,103. The potential toxicity as well as potential for 

exposure and risk of NMs may be highly impacted by their physico-chemical characteristics. In 

the absence of definitive data, NM research and regulations can make use of a systematic 

characterization of factors to identify toxicity and risk of NMs 104. On the other hand, given the 

complexity of NMs and high uncertainties associated with them, multiple studies on the 

characteristics and potential hazard effects result in varying data points. WOE approaches are 

recommended for NMs risk assessment for prioritizing research studies and identifying NMs 

with hazard effects. Expert opinion is frequently used to fill the knowledge gaps during 

decision-making. Influence diagrams by using expert judgment approach are designed to assess 

the risk of NMs on human health 105. Linkov et al. 96,97 proposed a WOE approach for NMs 

regulation and management. For the evaluation of the adverse effects of NMs, different aspects 

such as life cycle and characteristics of NMs must be addressed. To follow the European 

Commission PEC/PNEC (the ratio of predicted environmental concentration (PEC) and 

predicted no effect level (PNEC)) approach of the TGD 106, there is lack of information about 

toxicity and characteristics of NMs in order to estimate exposure concentration and no effect 

concentration and thus the risks. Available information about the life cycle phases of NMs 

concerning different issues such as environmental behavior relevant for exposure and effect are 

gathered in lines of evidence. Finally, the information gathered in these lines of evidence are 

integrated to reach a conclusion about the adverse effects of NMs. The results are usually 

qualitative, assigning the assessed NM to a specific class. This ranking system helps the 

assessors to prioritize the most potential NMs which may pose risk to human health or 

environment.  

Zuin et al. 95 reports the application of a WOE procedure to the assessment of NMs that may 

cause harm to human health. The procedure is divided into three steps. 

The starting point in the assessment of NMs is physico-chemical characterization and properties 

and toxicological information. Physico-chemical properties of NMs are the first line of 

evidence, which is mainly related to the capacity to evaluate the potential exposure according to 



38 

 

their physico-chemical properties, such as adsorption tendency and bioaccumulation potential. 

The second line of evidence addresses the evidence that a NM may enter the body and cause 

adverse biological harms. For the estimation of the hazard effects, within each line of evidence 

other indicators, such measurement endpoints are identified. These indicators should include a 

wide range of information, like physico-chemical properties, toxicological endpoints, and data 

obtained from literature. 

The second step is defining rating classes for each indicator. The assignment of each NM to a 

specific rating class may be performed on the basis of (i) characterization activity and toxicity 

test, (ii) expert judgment, (iii) literature data. The defined classes can be high, moderate, low 

and negligible. The qualitative and quantitative values associated with the indicators permits the 

NM to be assigned to a class, on the basis of its properties-related exposure level and toxicity.  

Ranking procedure is the last step of the process of the WOE approach-based method. In the 

suggested procedure the calculation of frequency of hazard occurrence is performed on the basis 

of the rating class assigned to different indicators.  
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1.19 Abstracts of the Main Parts 

1.19.1 Part 1- New Clues on Carcinogenicity-Related Substructures Derived From Mining Two 

Large Datasets of Chemical Compounds 

The first section of my thesis is about development of two SA-based (Q)SAR models for 

carcinogenicity. Two (Q)SAR models were developed by extracting data from well known 

carcinogenicity databases with genotoxic and nongenotoxic carcinogenicity reliable data 

gathered from rodent in vivo tests, Ames test and in vitro tests and epidemiological data. 

(ANATARES 107 carcinogenicity database and the combination of Kirkland et al. 108 and 

ISSCAN 109 database). 

1.19.2 Part 2 - Toxdelta: A New Program to Assess How Dissimilarity Affects the Effect of 

Chemical Substances. 

The second part explains a new read-across tool embedded in the ToxRead software: ToxDelta. 

Two structurally similar molecules share an MCS. In order to evaluate if two similar molecules 

have different effects, we focused our attention on the molecular fragments which are not in the 

MCS. These parts may increase or decrease the value of the property. We considered a variation 

of the MCS concept of efficient relevance in toxicity assessment where the rings of molecules 

must not be broken. To assess the toxicity of the target chemical, ToxDelta extracts the MCS 

and delineates the remaining fragments. Each of these fragments moiety represents a difference 

between two molecules and its relevance in the toxicity assessment are evaluated against a 

knowledge based list of active and inactive fragments. ToxDelta considers the dissimilarities of 

the molecules in a read-across approach. 

1.19.3 Part 3 – Genotoxicity Induced by Metal Oxide Nanoparticles: a Weight of Evidence 

Study and Effect of Particle Surface and Electronic Properties  

Genotoxicity of metal oxide NMs is an endpoint with intensive testing resources mainly 

resulting from in vitro comet assay. Current contributions to the genotoxicity data assessed by 

the comet assay provide a case-by-case evaluation of different types of metal oxides that ranged 

from 15 to 90 nanometres and had different crystal structures. We have assessed the quality of a 

multi-source data set of in vitro comet assay data retrieved from genotoxicity profiles for 16 
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bare nano-sized metal oxides with different chemical core compositions. There is an 

inconsistency in the literature as to the genotoxicity testing data that requires intelligent 

strategies, such as WOE evaluation. An evaluation criterion was applied to establish which of 

these meta data were of sufficient quality and what weight could have been given to them in 

inferring genotoxic results. We surveyed the collected data on 1) minimum necessary 

characterization of NPs, and 2) principals of correct comet assay testing for NMs. We quantum-

chemically calculated a set of structural descriptors for the 16 metal oxides. A classification 

model based on a decision tree has been developed for the prepared dataset. Three descriptors 

have been identified as the most relevant variables to genotoxicity prediction in our 

classification model: heat of formation, molecular weight and area of the oxide cluster based on 

conductor like screening model. The proposed genotoxicity assessment strategy that is based on 

quantum-chemical descriptors is useful to prioritise the study of the NMs, which may lead to 

high risk for human health.  
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CHAPTER 2 

2. Aim of the Study 

Human health and environmental risk assessment draw upon multiple sources of information. 

Combination and integration of multiple lines of evidence is required to draw conclusions about 

the risks posed by chemical compounds and NPs. To this end, scientists and assessors take 

advantage of WOE approaches. The increasing need for new non-testing methods for the 

estimation of toxicity of chemicals coincides with the emergent necessity of more adequate 

WOE approaches to facilitate the process of decision-making. The proposed non-testing 

methods such as (Q)SAR and read-across are promising methodologies that help the assessors 

to fill the gaps of information, which in their turn provide means that can be used in risk 

assessment in a WOE approach. The regulatory bodies (such as EFSA) and industry already 

make use of WOE approaches in the process of decision-making. 

The main aim of the present study is to introduce a new WOE framework for the results of in 

silico models, which explores the structural properties of the target and the similar compounds 

(used in read-across terms) and combines the estimations of the (Q)SAR models with the 

toxicity information associated with the molecular structures in an interpretable manner. 

In this dissertation, for the improvement of the in silico ((Q)SAR and read-across) methods in 

genotoxicity assessment of chemicals (i) two new structure-based carcinogenicity models, (ii) a 

new read-across model based on maximum common substructure for mutagenicity endpoint, are 

developed. Additionally, (iii) a genotoxicity model for the metal oxide NPs is introduced.  

We addressed two WOE methods in the present study. BPJ method as a qualitative approach is 

used in the study of genotoxicity of metal oxide NPs. Given the very high uncertainties with 

NMs and their hazard effect on environment and human health, research resources should be 

conducted in the direction of integrating the available data to help the manufactures, regulators, 

consumers and other stakeholders in the process of decision-making. A genotoxicity data base 

of metal oxide NPs is developed using a BPJ framework for selecting the most reliable data 

from peer reviews. A decision tree model is built for classification of these data base using three 

quantum-chemical descriptors, by the machine learning means. 
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Multiple studies for hazard identification of chemical substances often result in varying data 

pointing in different directions, and this causes conflict in the process of decision-making when 

data interpretation is attempted. The majority of WOE frameworks for the analysis of the results 

of in silico models are qualitative and do not satisfy the growing need of objectivity and 

transparency that are essential for regulatory purposes. Most often, the prediction results of 

(Q)SAR or read-across models lack the reasoning part, by which the assessor can interpret and 

clarify the objectivity of the hazard predictions for a chemical under investigation. The 

structure-based models such as the two models introduced in the first part of the present 

document, are adequate means to resolve the shortcomings of the in silico models with no 

interpretation for their estimations. These structure-based models are also useful for the analysis 

of the similar compounds to address the structural similarities and dissimilarities and the 

presence or absence of the known SAs in individual chemical during the process of comparison 

and inference. ToxDelta as a new read-across tool is developed for the comparison between the 

target and the source chemicals, and to analyse the different fragments and their role in 

amplifying or reducing the toxicity. 

In addition, we discussed how to deal with different and sometimes conflicting data obtained 

from various in silico models ((Q)SAR and read-across) in qualitative WOE terms based on 

identification of SAs in a read-across approach to facilitate structured and transparent 

development of answers to scientific questions. The results of different (Q)SAR models are 

explored together with the analysis of the similarities and differences of the similar compounds 

in read-across terms. The study of the structural similarities and dissimilarities between the 

target and the source compound helps the expert to validate or revoke the assumption that the 

properties of the similar compounds can be assigned to the target compound. To show the utility 

of the use of multiple tools ((Q)SAR, ToxRead and ToxDelta) within an integrated WOE 

prospective to obtain a toxicity conclusion, the application of the framework is illustrated using 

two drugs as case studies: Valproic acid and Diclofenac. 
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2.1 Part 1 – Carcinogenicity Models 

The identification of the SAs is a compelling factor in understanding mechanisms, and assessing 

the hazard risk of chemicals. The already known lists of carcinogenicity SAs, including 

genotoxic and nongenotoxic moieties can still be refined and enhanced by further studies on 

carcinogenic substances.  

Within the ANTARES project (LIFE08 ENV/IT/000435), a carcinogenicity data set is 

developed for testing the performance of seven software packages. This dataset comprises 1543 

chemicals together with their carcinogenicity values apparently of good quality. The 

carcinogenicity properties of the chemicals are related to rat toxicity (presence of carcinogenic 

effects in male or female rats). This dataset is a combination of the CAESAR data set and “FDA 

2009 SAR Carcinogenicity - SAR Structures” database. The CAESAR data set encloses 805 

chemicals taken from DSSTox Public Database Network 

(http://www.epa.gov/ncct/dsstox/sdf_cpdbas.html) which was developed from the Lois Gold’s 

CPDB. All the chemicals have been cleaned and cross checked in this data set. ID number, 

chemical name, CASRN, experimental carcinogenic potency (TD50) values for rat and 

corresponding binary carcinogenicity classes are supplied for each chemical in this data set. In 

addition, 739 compounds not present in the CAESAR dataset were taken from the “FDA 2009 

SAR Carcinogenicity - SAR Structures” database using the Leadscope software 

(http://www.leadscope.com/). A categorical label for carcinogenicity was already provided in 

the original database. A compound was labeled as carcinogenic if a positive outcome was 

detected in male or female rats. 

The ANTARES rodent carcinogenicity data set is a promising source for developing models for 

classification of carcinogenic potency. Accurate preprocessing of data and selection of data with 

rats carcinogenicity provide consistent data suitable for QSAR modeling with carcinogenic 

response closer to human. Additionally, a wide diversity of molecular structures, thus a diverse 

number of chemical classes and biological mechanisms improves the carcinogenicity prediction 

ability of QSAR models.  

Taking advantage of SARpy 88, as a statistical fragment extraction tool -without any a priori 

information- on a large data set of chemicals, is a promising strategy to inspect carcinogenicity 
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potential SAs. The SAs extracted by SARpy are subsequently revised and checked by human 

expert and a list of more significant SAs has been created out of the initial rulesets. The first 

carcinogenicity model is the collection of these SAs. 

The second model is based on a combination of the ISSCAN database 109 and the 

Carcinogenicity Genotoxicity eXperience (CGX) database created by Kirkland et al. 108. 

The ISSCAN database contains information on chemical compounds tested with the long-term 

carcinogenicity bioassay on rodents (rat, mouse). For the chemicals in the ISSCAN database 

this information is provided: carcinogenic potency in rat and mouse, mutagenicity in Salmonella 

typhimurium (Ames test), carcinogenicity results in the four experimental groups most 

commonly used for the cancer bioassay, carcinogenicity results from the NTP experimentation 

(when available), overall carcinogenicity, and the source of carcinogenicity data. 

Kirkland et al. 108 used a battery of three commonly used in vitro genotoxicity tests—Ames + 

mouse lymphoma assay + in vitro micronucleus or chromosomal aberrations test— to classify 

rodent carcinogens and non-carcinogens, inside a large database of over 700 chemicals 

compiled from the CPDB, NTP, IARC and other publications. A WOE approach has been 

applied to integrate the results obtained for these chemicals from the literature. 940 chemicals 

present in the Kirkland et al.’s dataset were merged to the ISSCAN data set. The duplicates and 

the conflicting values have been eliminated. The resulting dataset is conventionally named 

ISSCAN-CGX data set which contains 986 chemicals together with their carcinogenicity calls. 

The ISSCAN-CGX data set contains human-based assessment data on carcinogenicity. The 

second carcinogenicity model is developed by extracting the active SAs from the ISSCAN-

CGX data set by means of SARpy.  

The advantage of developing QSAR models using such large datasets is that changes in “calls” 

for a small number of chemicals containing a potential SA will not significantly influence the 

overall findings. In addition, there is more chance to extract the potential carcinogenicity 

fragments from a data base which contains chemicals with more functional groups. A model 

that considers more molecular functional groups has a wider applicability domain. All the 

extracted rules or SAs are examined by an expert and their significance in carcinogenicity is 

verified based on his expertise. 
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It is to be noted that rodents are considered more sensitive than humans to carcinogen 

chemicals. The ANTARES model being developed on pure rodent data is supposed to be more 

conservative rather than the ISSCAN-CGX model which is developed using integrated data 

obtained from more carcinogenicity assays in a WOE approach by human expert. 

The aim of the first part of my study was expanding and upgrading the knowledge on the SAs 

by the help of artificial intelligence and data mining approaches. The new carcinogenicity 

models have been implemented in the VEGA platform with notable prediction results. In both 

rule sets some new SA have been identified.  

2.2 Part 2 – ToxDelta 

The read-across approach is based on the similarity property principle. The similarity property 

principle states that structurally similar molecules are more likely to have resembling properties. 

Contrarily, studies show that structural similarity does not always imply similarity in activity 110 

nor in descriptors 111. Minor modifications can make active molecules to lose their activities 

completely. Structurally similar compounds can have very different properties. We 

contemplated the effects that the dissimilarities may trigger on the properties of the structurally 

similar compounds. To this end, we developed a new read-across tool, ToxDelta, to accomplish 

the effects of the dissimilarities in a read-across approach. This new tool is considered as a 

complementary tool to be implemented in the ToxRead software.  

ToxRead, is a new read-across tool developed by our group. ToxRead is an ad hoc visualization 

and data search method which use similarity measures and SA search to organize in a chart a 

picture of all the relevant information. ToxRead, with its original representation of the read-

across results makes it easy for the user to move in different directions of toxicity or nontoxicity 

properties of the target and source molecules which share the same SAs. ToxRead does not 

provide exclusively toxic SAs, it extracts and depicts also the nontoxic SAs present in the target 

molecule. ToxRead is currently applied to mutagenicity and bioconcentration. 

At the present moment, the ToxDelta tool is a stand-alone software for the read-across 

mutagenicity assessment. ToxDelta focuses on the dissimilar substructures between two similar 

molecules, and analyses whether these dissimilarities reduce or amplify the toxicity in the target 
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chemical compound. The MCS between two structurally similar molecules has been already 

analysed by ToxRead, and all the possible SAs present in the sharing structure has been already 

examined. As a further assessment, ToxDelta takes a closer look at these fragments and exploits 

the role of these differences in the hazard risk of the chemicals. The characteristics of the 

extracted molecular fragments is assisted in an a priori list of mutagenicity SAs. 

2.3 Part 3 – Metal Oxide NMs Genotoxicity Model 

NMs are utilised in many fields of industry, medicine and military applications. The NMs’ 

potential hazardous effects can cause a wide range of damage to human health and environment. 

While the acute toxicity of NMs has been addressed in many studies, genetic toxicity, in 

particular genotoxicity of the NMs still needs to be explored by more scientific works.  

In order to examine the toxic effect of a single NM, given the diversity within each group of 

NM a large number of property combination need to be considered (different shapes, size, 

crystallography, etc.). The risk assessment in a case-by-case manner makes the task challenging. 

In addition, increasing the number of in vivo tests is opposing to the Russel and Burch’s 3R 

principle to replace, reduce and refine animal testing of the EU Directive 2010/63/EU. The 

REACH regulation promote exploiting all existing data and focusing on new approaches e.g. 

non-testing methods and data integration using WOE strategies as effective tools to achieve this 

goal. 

In this study, we assessed the genotoxicity properties of sixteen metal oxide NPs in a WOE 

approach using the results obtained by in vitro Comet assays. Different peer review studies from 

1994 to 2014 about genotoxicity of metal oxide NMs using in vitro Comet assay have been 

collected. The reliability and the relevance of these scientific articles have been assessed taking 

advantage of the WOE technique. The overall assessment of a series of queries for this 

assessment led us to assign a genotoxic property to each of the metal oxide NM under study as a 

conclusion. In addition to the preparation of a list of metal oxide NMs with their genotoxic 

overall effect, we decided to study the relationships between quantum-chemical / physico-

chemical descriptors of these NMs and the overall assessment of their genotoxicity effects. We 

quantum-chemically calculated a series of quantum-mechanical descriptors for the set of metal 
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oxide NMs in our dataset and then opted for an understandable classification method, 

considering the binary classification nature of the endpoint. In order to exploit any significance 

relationship between the quantum-chemical descriptors and genotoxicity of the prepared dataset, 

a tree decision model is applied to the dataset. Three descriptors have been identified as the 

most relating variables to genotoxicity property in our classification model: heat of formation, 

molecular weight and area of the oxide cluster based on conductor like screening model. 

Although the number of samples in our dataset, from a modelling prospective is small, the 

simplicity and the interpretability of the developed model are the positive aspects of the new 

model.  

This part of the thesis provides a relatively comprehensive review upon WOE as inferred from 

the present large data and potentiality of metal oxide NMs chemical descriptors for assessment 

of DNA damage. It can be used as an informative platform in genotoxicity studies of metal 

oxide NMs. Such a combined approach can assist in providing useful insight about parameters 

that affect genotoxicity and thus provide guidance for the selection and/or design of safe NMs. 

In addition the identified quantum-mechanical descriptors in the classification model can be 

useful to prioritise the study of the NMs, which may lead to high risk for human health, 

especially in regulatory purposes.  
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CHAPTER 3 

3. Materials and Methods 

3.1 Part 1 – Carcinogenicity Models 

3.1.1 Carcinogenesis Data Sources 

3.1.1.1 ANTARES Carcinogenicity Dataset: Rat Carcinogenesis Learning Set 

The first carcinogenicity model is developed on the basis of carcinogenicity database of EU-

funded project ANTARES 107. This data base contains rat carcinogenesis data (presence of 

carcinogenic effects in male or female rats). The ANTARES carcinogenesis data base is a 

collection of the EU-funded project CAESAR data set and the “FDA 2009 SAR 

Carcinogenicity—SAR Structures” data base. The 

CAESAR toxicity values were originated from the Distributed Structure-Searchable 

Toxicity DSSTox database, which was built from the Lois Gold’s Carcinogenic Potency 

Database 112. The compounds with a definite TD50 (which is the dose that produces an 

incidence of 50% of the tumors in animals) value for rat in this dataset were labeled as 

carcinogenic, while the remaining were labeled as noncarcinogenic. 805 chemicals with 

carcinogenicity data were obtained from the CAESAR data set and 738 compounds are added 

from the “FDA 2009 SAR Carcinogenicity—SAR Structures” database using the Leadscope 

database 87. A total number of 1543 compounds constituted the ANTARES dataset. 

3.1.1.2 ISS Carcinogenicity Database and Carcinogenicity Genotoxicity Experience Dataset: 

Different Species Carcinogenesis Learning Set 

For the learning set of the second prediction model we combined two carcinogenesis data sets. 

The ISS Carcinogenicity (ISSCAN) 109 database provided by the Istituto Superiore di Sanità is 

designed for the carcinogenicity predictive models. Most of the chemicals in the ISSCAN 

database are labelled as carcinogens by various regulatory agencies and scientific bodies. The 

database has been specifically designed as an expert decision support tool and contains 

information on chemicals tested with the long-term carcinogenicity bioassay on rodents 

(presence of carcinogenic effects in male or female rats and mice). 



49 

 

This carcinogenicity dataset contains 622 carcinogens, 210 noncarcinogens and 58 equivocals. 

We eliminated the chemicals with equivocal data, as we needed a definite carcinogenic effect 

for each data point. We merged the positive and the negative compounds with the ISSCAN 

database and the Carcinogenicity Genotoxicity eXperience (CGX) database. The CGX database 

was created by Kirkland et al. 108 and did not contain any equivocal result. 

All compounds in the combined dataset have been checked for their consistency between the 

two sources. We found 651 compounds in common, 15 of them with inconsistent 

carcinogenicity values. These compounds have been removed from the combined dataset. In the 

present study, this combined dataset is conventionally called ISSCAN-CGX. 

3.1.2 Comparison between the ANTARES Dataset and the ISSCAN/CGX Dataset 

We compared the ISSCAN-CGX dataset with the ANTARES carcinogenicity dataset prepared 

for the development of the first model. The result of the check was 105 compounds with 

conflicting values. In order to develop a more conservative model, we decided to remove only 

15 compounds with positive result in the ANTARES dataset and negative results in the second 

dataset, and left as carcinogenic those that had carcinogenicity result the opposite way. 

Consequently, there are 90 positive compounds in the ISSCAN-CGX database which are 

negative in the ANTARES dataset. Afterward, we checked and cleaned the structures manually, 

and by the help of the istMolBase 113 and InstantJChem 114 software formed the final dataset. In 

addition, we kept only the compounds with connected molecular structure; those which had 

unconnected structures have been removed from the dataset. The final dataset contained 986 

compounds with 734 carcinogens and 252 noncarcinogens. For compound in the list these 

information are available: a chemical name, a CAS number, a SMILES 115, and its categorical 

designation (i.e., carcinogen or noncarcinogen).  

3.1.3 Data for Model Validation 

3.1.3.1 ECHA Database 

In order to evaluate the two new carcinogenicity models developed, we prepared an external test 

set from carcinogenicity data in the eChemPortal inventory 116.  
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The constraints of the first query were: Study result type: experimental result; Reliability: 1 and 

2 (1 = reliable without restrictions. 2 = reliable with restriction); Species: mouse and rat; 

Maximum number of studies: 4.  

The second query consisted of: Study result type: experimental result; Reliability: 1 and 2; 

Species: mouse and rat; Sources: any guideline and exposure route. 

The result of the first query was 308 compounds, whereas the second query returned 166 

compounds, which were mostly in common with the chemical compounds of the first query. We 

manually examined the studies conducted for the first list of compounds, then we looked into 

the CLP inventory 117 for the positive chemicals collected by the previous queries. Inside the 

CLP inventory we found 68 compounds, which were already present in our data collection. This 

search confirmed the carcinogenic property of these compounds. The dataset consisted of 64 

positive compounds, 169 negative compounds, and 90 equivocal compounds. The equivocal 

results are due to the presence of conflicting information in different sources or different studies 

in the same source. It should be noticed that for already classified compounds (no conflicting 

information), the level of uncertainty in the assignment is not homogeneous, because some of 

the compounds were classified on the basis of a single study (i.e., data present in one single 

source). 

From the reliability point of view, in the data collected in our dataset, 49 positive compounds 

have positive carcinogenic effect in at least two sources. Fifty-seven negative compounds are 

noncarcinogenic in both lists, and they are not present in the list of compounds retrieved from 

the CLP inventory. Sixty four compounds are considered as noncarcinogens because of the 

presence of only one single study in the two lists. 

3.1.4 Active Molecular Fragments Identification by SARpy 

The SAR in Python (SARpy) program is a Python script based on the OpenBabel chemical 

library. SARpy creates classification models by identifying active and inactive molecular 

fragments by mining the chemical structures in a learning set. These extracted molecular 

substructures in the form of SMARTS 118 may be exactly similar to the already known SAs or 

newly developed SMARTS that are associated with a particular biological, pharmaceutical, or 

toxicological activity. 
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The generated molecular fragments are of arbitrary complexity, and the fragments candidate to 

become SAs are automatically selected on the basis of their prediction performance in a learning 

set. 

SARpy takes a learning set of chemicals, where the molecule structures are represented as 

SMILES 115 notations, along with their experimental activity binary labels (e.g. toxic/nontoxic, 

mutagenic/nonmutagenic). This data mining tool generates every possible substructure in the set 

and finds correlations between a particular molecular substructure and the activity of the 

molecules that contain it. This is achieved in three phases:  

(1) Fragmentation: this novel, recursive algorithm considers every combination of bond 

breakages working directly on the SMILES string. During this procedure the rings are not 

fragmented, they remain entire. 

(2) Evaluation: the predictive ability of each extracted potential SA is examined on the training 

set.  

(3) Rule set extraction: a reduced set of rules is extracted in the form:  

‘IF contains <SA> THEN <apply activity label>’; 

Where the SA is expressed as a SMARTS string, for use by human experts or chemical 

software. SMARTS notations are text representations of substructures that allow specification of 

wild card atoms and bonds, which can be identified to formulate substructure queries for a 

chemical database. Those rules can be used as a predictive model simply by calling a SMARTS 

matching program. For the matching phase, 

SMILES and the SMARTS strings are translated into graphs and the two graphs are compared 

to each other 119.  

This approach has been tested on the mutagenicity endpoint, showing marked prediction skills 

and, more interestingly, bringing to the surface much of the knowledge already collected in the 

literature as well as new evidence.  

To each SA extracted from the learning set a statistical value is associated: training likelihood 

ratio. The molecular fragments identified by SARpy as active or inactive rules are compared to 

the molecules in the training set. Considering the experimental label of each molecule, there are 

two possibilities for each SA: i) the active SA is found in a positive compound, called “true 
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positive”, or in the case of inactive SA, it is found in a negative compound, called “true 

negative”, ii) the active SA is found in a negative compound, it is called “false positive”, or the 

inactive SA is found in a positive compound, called “false negative”. These indicators are used 

to calculate the accuracy of each SA in predicting the target activity label. In the case of active 

SAs, the likelihood ratio, which is a measure of precision intrinsic to the test (not depending on 

the prevalence of activity labels in the training set), is used as in the Formula 1:  

𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑟𝑎𝑡𝑖𝑜 = (
𝑇𝑃

𝐹𝑃
) ∗ (

𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑝𝑜𝑠𝑡𝑖𝑣𝑒𝑠
)    (Formula 1) 

 

The training LR as a statistical measurement helps the user to evaluate the relevance of each SA 

in the training set used for building the model. 

SARpy can be also used as a prediction tool for structure-based classification models. A list of 

SAs presented as SMARTS can be loaded into SARpy and a list of molecules SMILES strings 

can be inserted as test set. SARpy calculates the confusion matrix on the basis of the prediction 

results and provides accuracy, sensitivity and specificity of the classification model as output of 

the model evaluation.  

3.1.5 Extracting Active Fragments 

3.1.5.1 R (Rat) Model 

To obtain a more comprehensive collection of potential carcinogenic fragments, five learning 

sets were randomly created from the ANTARES carcinogenicity dataset with 1543 compounds, 

preserving 80% for the learning set and 20% for the evaluation set. In other words, for each 

model a random set of 20% of chemicals in the learning set was removed, with the remaining 

80% of the compounds a model was developed and the activity of the compounds left out was 

predicted with the same model. We combined the five models and put together the lists of the 

potential active fragments, removed the duplicates and eliminated the SAs with likelihood ratio 

lower than two. We opted for the likelihood ratio threshold of two in order to retain the SAs that 

are statistically more significant. A measure of each fragment’s association with biological 

activity is determined by SARpy as “training likelihood ratio,” and it is given along with the list 

of the potential fragments or the rule set in the output. The likelihood ratio can be taken into 
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account to determine the goodness of a SA identified by SARpy. Even if a SA that is associated 

with activity (i.e., carcinogenicity) is present in a molecular structure, the molecule may contain 

other fragments that make it inactive (i.e., noncarcinogen), thus the specific SA might not be 

expected to be found only in active compounds. This evidence is the basis of the determination 

of the likelihood ratio. 

Using the SARpy software, each chemical in the learning set was fragmented in silico into all 

possible fragments meeting user-specified criteria. For this study we extracted only the 

“ACTIVE” fragments (or SAs) and the default values for the minimum and maximum number 

of atoms in a fragment were set for the fragment extractions of each model (minimum = 2; 

maximum = 18). Another configuration to establish by the user is the minimum number of 

compounds in the learning set in which an active (or inactive) fragment is found. In our 

analysis, the minimum number of compounds that contain a potential active fragment was set to 

three. 

Conventionally, in this study we call this model R. 

3.1.5.2 E (Expert) Model 

SARpy was used for model development and statistical analysis using the ISSCAN-CGX 

dataset. 

The extraction settings are as follows: the minimum number of atoms in a fragment is equal to 

four, whereas the maximum number of atoms is equal to 10, and the minimum number of 

compounds containing the active fragment is six. These configurations have been set in favor of 

a model with a more balanced sensitivity and specificity values. In order to assess the 

predicitivity of the model, statistical analysis have been conducted in terms of accuracy, 

sensitivity, and specificity using cross-validation routine as an internal evaluation, in addition to 

an external evaluation using an external test set. In this article, we name this model E. 

3.1.6 Internal Evaluation of the Models 

Accuracy, sensitivity, and specificity have been determined for the internal evaluation of each 

model using the SARpy program. For the internal validation, five-fold cross-validation routine 

was conducted for each model. In the five-fold cross-validation the learning set is randomly 



54 

 

partitioned into five equal sized subsets. For each iteration, a single subset of chemicals was 

retained as the validation data for testing the model, and the remaining subsets were used as 

training data. The cross-validation process was repeated five times (the folds). The evaluation 

results of five iterations were then averaged to produce a single estimation. Accuracy, 

sensitivity, and specificity of the internal evaluation are assessed in addition to the MCC. 

3.1.7 External Evaluation of the Models 

The predictability of the models has been evaluated on two external test sets: the first external 

set is the dataset used as the learning set of the opposite model (e.g., for the R model we used 

ISSCAN-CGX dataset and vice versa), and the second dataset is a collection of 258 compounds 

collected from the eChemPortal inventory. Accuracy, sensitivity, specificity, and the MCC for 

the external evaluation are determined using SARpy. Although the external evaluation is 

considered the best mean for the assessment of the predictive ability of a (Q)SAR model 120,121, 

the results of the external evaluation of any model are highly related to the relative similarity of 

the external evaluation set in relation to the learning set. 
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3.2 Part 2 – ToxDelta 

3.2.1 Database of Active and Inactive Structural Alerts 

Benfenati et al. 122 in a previous study have collected an expanded list of mutagenicity SA. This 

rule set is implemented in the ToxRead 123 software for the mutagenicity assessment within a 

read-across approach. The rules identified and collected in this collection are associated with 

Ames test bacterial mutagenicity and are based on more than 6000 chemicals from different 

chemical classes. These rules belong to both categories mutagenic and nonmutagenic and are 

sorted in a hierarchical way. ToxRead utilizes these rules in order to identify the active or 

inactive mutagenic substructures present in the target compounds. The hierarchical 

characteristic of the SAs in the list makes the process of rule search and identification more 

systematic. In other words, the exact SAs that match the target molecules are identifies and then 

more generic ones, which may match with the target molecule. In addition to the mutagenic 

active and inactive SAs, the rules present in this data set are accompanied with the exceptions 

and modulators of activity. From a toxicity prediction point of view, the identification of these 

SA in the compounds under assessment helps the expert to address the toxicity or nontoxicity of 

a molecule concerning the influence of each SA found in the molecular structure. Each SA is 

associated with its accuracy and p-value as statistical characterizations. The accuracy value 

indicates the precision of the SA as a potential agent in causing mutagenicity or decreasing the 

risk, considering the number of the molecules including this SA in the original training set. This 

set of SAs are implemented in the ToxRead program. There are more than 800 SAs present in 

this dataset with a high level of details such as accuracy and statistical significance.  

3.2.2 The MCS Algorithm 

While ToxRead analyses the similarities between a target molecule and the source molecules 

which are structurally similar, ToxDelta identifies the dissimilarities between these molecules. 

The identification of the dissimilar fragments is achievable after extraction of the MCS between 

two molecular structures. In our study, the degree of similarity between pairs of molecules is 

based on their molecular structure. Molecular structures can be encoded in several computer 

formats with topological information about the atoms and bonds of a molecule, as well as other 



56 

 

chemical information such as charges, aromaticity, etc. We opted for SMILES strings 115 as 

presentation of the input molecule in our program. The algorithm proposed by the fmcs_R 

package 124 extracts the MCS part between two molecule graphs using a novel backtracking 

algorithm by constructing a search tree of correspondences between nodes of the two graphs 

representing the two molecules. Each node in the tree presents a set of atoms correspondences 

of the respective molecule and the connected sub-graph we are looking for are in fact leaves, 

and the deepest leaves in the tree are the MCSs found. 

An important issue to be noticed about the algorithm of the fmcs_R package is that it consists of 

a further characteristic, with respect to the other MCS extraction algorithms, and that is its 

“flexibility”. In fact, this algorithm gives the possibility to the user to search not only all the 

exact MCSs, but also the flexible ones, in which the type of a limited number of atoms and 

bonds can be different in the two MCS extracted from two similar molecules. The result of 

searching a flexible MCS, probably, are pairs of different MCS, each belonging to one of the 

molecules under investigation. This option although makes the process of similarity finding 

more flexible and the number of the results is more elevated than the exact MCSs between two 

compounds, it is not in line with our objectives. Since our purpose of the MCS extraction is 

identifying the dissimilar fragments, for being more precise, we need to stay on the idea of the 

“exact” MCS extraction.  

From a toxicity point of view, it is important to pay attention to the aromatic and aliphatic rings 

of the compounds.  

The role of the aromatic and non-aromatic rings as structural properties of molecules have been 

highlighted in peer review resources. Among the important lists of mutagenic and carcinogenic 

SAs, aromatic and aliphatic rings play an important role. Different forms of rings are present in 

the mutagenicity and carcinogenicity rules 43. The fmcs_R package breaks the rings whenever it 

is necessary in order to find the greatest part in common between two graphs. This leads to a 

significant loss of structural information and consequently the implication of the extracted MCS 

which is meant to be equal for both molecules may differ for each compound. Considering this 

important issue, we decided to add a new restriction to the fmcs_R algorithm. This restriction is 

to keep all the rings present in the target and the source molecule entire and do not partially 
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select a number of atoms of a ring. The algorithm selects the whole ring and add it to the MCS 

whenever this is possible, otherwise it does not take the ring into consideration for the MCS.  

The restriction of not breaking the rings in the process of MCS findings is added during the 

process of atom selection in the algorithm. Before adding any atom to the string of the MCS the 

algorithm checks if the atom belongs to a ring in both molecules and gathers all the information 

about the corresponding ring in the target and the source molecule. Only if the rings in both 

molecules have the same properties, (e.g. the number of atoms, the type of atoms, the type of 

bonds), the whole ring is added to the MCS. At this point we can extract the structural 

differences between the two compounds under investigation: we overlap each graph with the 

MCS and highlight all the sub-branches not in the MCS (Figure 6-page 59). 

3.2.3 ToxDelta Implementation 

ToxDelta is implemented as a complementary section to the ToxRead program. ToxRead 

associates the most similar molecules present in its data base with the target molecule, pointing 

out the mutagenic (or nonmutagenic) fragment(s) as toxicity rules present in both the target and 

the similar chemical compounds. ToxRead is a read-across tool based on similarity and 

identifies the mutagenic or nonmutagenic SAs in common between the target and the source 

chemicals. These SAs belong by definition to the MCS of the pair of compounds under 

investigation. Both tools operate by taking advantage of the list of identified mutagenic and 

nonmutagenic potential SAs. The user who wants to assess the mutagenicity effect of a 

molecule can evaluate the results obtained from ToxRead and the evidences gained from 

ToxDelta and make a decision regarding the mutagenicity of the target molecule, in a WOE 

approach. Figure 7 (page 60) shows the two phases of implementation of ToxDelta: i) the SA 

list creation and improvement, and ii) the evaluation of the mutagenicity of the target molecule 

considering its similarities and dissimilarities comparing to other known molecules with a high 

structural similarity. The evaluation of the degree of similarity in ToxDelta relies on the 

ToxRead program, which uses an ad hoc similarity algorithm described elsewhere 125. A stand-

alone version of ToxDelta is accessible on the VEGA home page (https://www.vegahub.eu/).  

Examining the results of ToxRead and ToxDelta will allow a thorough investigation of a 

compound with unknown mutagenicity property. As a first step, ToxRead investigates all the 

https://www.vegahub.eu/
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SAs present in the target molecule and represents the most similar molecules to the target 

molecule which share the same SA with the target molecule. After this assessment, in order to 

have a further look, the user can select each of the source molecules and check the 

dissimilarities of the target and the source compounds. These tools help the researchers to 

identify the similar and dissimilar moieties. ToxDelta provides the most similar SAs for each of 

them in the collection of the known SAs for each moiety found. To obtain a conceivable result, 

the structure of the target and the source molecules in the comparison need to be sufficiently 

similar. If the structures of the molecules compared by ToxDelta do not share a significant 

MCS, the dissimilarities may not be interpretable to an acceptable level. In other words, 

whenever the structures of two molecules are strongly dissimilar, the user may not expect a 

significant MCS. In this regard the VEGA chemical similarity index 125 is used as a screening 

before applying the MCS approach. 

In case the identified dissimilar fragment in the target of the source molecule is a SA, and it 

belongs to the list of SAs with an assigned accuracy and p-value information, there are three 

possible scenarios that can be associated with the dissimilar fragment: 

1. The SA is an active substructure with strong potential to increase toxicity; 

2. The SA is an inactive fragment with strong potential to decrease toxicity,  

3. The SA has no relevant impact on the effect. 

In case 1 and 2 there is more probability that the dissimilar fragment affect the whole molecule, 

while in case 3 the dissimilar substructure does not cause any toxicity or nontoxicity in the 

effect of the molecule. In all three cases the software will provide documentation about each SA 

found as a dissimilar fragment in the target molecule. From regulatory point of view, 

documentation is an important factor in toxicity assessment of the compounds and the 

acceptance of the read-across results. ToxDelta makes a thorough search in the list of identified 

SAs and provides not only the exact SA found as dissimilar fragment in the molecules but also 

the SAs which are so similar to the identified SA, in order to give more information to the 

expert for the assessment of the new molecule. This whole list of SAs is used by ToxDelta to 

assess whether the fragments resulting from the subtraction of the MCS from the molecule are 

associated with an increased or decreased or neutral effect. 
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The output of ToxDelta consists of all the possible MCSs extracted from two molecules of 

interest. The user can select one of these MCSs and evaluate the dissimilarities calculated based 

on the selected MCS. The different fragments present in both molecules, are the result of the 

subtraction of the MCS and the target or source molecules. 

 

 

Figure 6. The MCS between two molecules is shown with bold lines, and the other branches are 

the differences 
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Figure 7. The flow chart of ToxDelta: the molecular similarity/dissimilarity structure analysis 

software for the mutagenicity endpoint  
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3.3 Part 3 – Metal Oxide NMs Genotoxicity Model 

3.3.1 Data Collection and Assessment 

Metal Oxide Nanomaterials and Genotoxicity Data 

The list of metal oxide NMs considered in this study consists of: Al2O3, NiO, Co3O4, CuO, 

Fe2O3, Fe3O4, TiO2, ZnO, SnO2, V2O3, V2O5, MgO, ZrO2, CeO2, and Bi2O3. These metal 

oxide NMs with different chemical core compositions have been selected to study their 

genotoxicity effect towards humans. Although SiO2 is technically a metalloid 126 it is 

considered a metal oxide NM in different nanotoxicity peer review documents 127. Considering 

the similarities between silicon oxide and other metal oxides, we also considered SiO2 as a 

metal oxide. Previously, our group conducted a study in which a collection of metal oxides with 

their Comet assay results were published 128. These results are reported in the Appendices 

section. (Table S1.A and Table S1.B, Appendices) 

3.3.1.1 Assessment of the Experimental Protocol  

The different protocols and standards of the laboratories, result in heterogeneous results. 

Consistency and integrity are two challenging issues in this field. Consequently, the raw 

collected data is not suitable for building (Q)SAR models, since the data lines are now 

comparable 129. Therefore, the experimental collected data were evaluated in order to put 

together data from different laboratories with the compatible protocols. We assessed 103 studies 

obtained from 75 publications for the assessment of metal oxide NMs in the in vitro Comet 

assay. 

3.3.1.2 Prior Chemical Characterization 

The assessment of the peer review documentation has been done on the basis of the criteria 

stabilized within the NanoPUZZLES project 130.  

The same criteria in the NanoPUZZLES project has been applied to our data, and additional 

assessment criteria to NanoPUZZLES analysis were introduced in the current work.  

The physico-chemical characterization of the NMs is reported in Table 4 (page 68) and should 

meet at least points 1, 2 and 3 of the following list:  
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1. Chemical composition and purity 

2. Surface area 

3. Particle size/size distribution 

4. Crystal structure 

5. Surface charge/zeta potential 

6. Aggregation/Agglomeration status in the relevant medium. In principle, these are 

different phenomena (strong/weak binding between NMs), but are not always 

differentiated 131. 

3.3.1.3 Minimum Criteria for the In vitro Comet Assay  

We considered only the studies of the Comet assay or its variations as described by Singh et al. 

132. To each data point of 103 case study a list of queries have been applied. This list is reported 

below.  

1. Whether the Comet assay was performed according to the guidelines presented by 

Singh et al. 132 with or without minor modifications. 

2. Whether any of the following variations of the Comet assay were performed: with 

addition of 8-oxodguanine (8oxodG), formamidopyrimidine DNA glycosylase (FPG) 

and endonuclease III (endoIII). (It is to be noted that Comet assay can be performed by 

adding lesion specific bacterial glycosylase/endonuclease enzymes after analysis. These 

tests will detect a broader class of oxidative DNA damage bases. Whether the assays 

mentioned above were performed or not was verified).  

3. Whether the pH of the electrophoresis was alkaline 

4. Whether the concentrations of the tested NM were expressed in one of the three 

modalities as indicated in Table 4 (page 68). 

5. Whether a cytotoxicity test was performed 

6. Whether uptake into the cells was evaluated 

7. Whether a dose - response analysis was performed 

8. Whether positive and negative controls were used 
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9. Whether the Olive tail percentage was measured by analysis of at least two replicates of 

50 cells 

10. Whether there was an exposure of at least 3h 

3.3.1.4 Classification of the Data Based on the Assessed Quality 

We examined the experimental protocols of the Comet assays according to the questions listed 

in the “Minimum criteria for the in vitro Comet assay” section. The answers to these queries 

were “yes” or “no”. The results of this assessment is classification of the data into three classes 

of reliability: 

1st class data (high reliability): if at least questions 3 to 7 were answered “yes”, the data line 

in classified into this class. 

2nd class data (moderate reliability): Whenever cytotoxicity was not assessed (question 5), 

the corresponding meta data were classified into class 2 and less reliability value is assigned to 

the data of the second class in the final overall assessment of the genotoxicity of a specific metal 

oxide with the same core composition. 

3rd class data (low reliability): data without any dose-response studies performed (NMs of 

only two different concentrations were tested) or DNA unwinding performed in non-alkaline pH 

(question 7 and 3). 

3.3.2 Weight of Evidence Approach in the Evaluation of the Data Set  

To conclude and overall genotoxicity property for each metal oxide NM under investigation we 

employed a quantitative WOE approach. It is demonstrated that the quantitative WOE approach 

is the best strategy where individual lines of evidence are integrated by an authoritative expert 

to form a conclusion 133.  

3.3.2.1 Assessing Data for the Same Core Composition but Different Size Range or 

Crystallography Reported in One Single Publication 

In our study, we assigned an overall positive sign to a NM with the same core composition and 

size, were at least one positive result in a study was reported for the concerned metal oxide NM. 

Whereas, a negative sign was assigned to a NM, whenever all the studies reported a negative 

outcome for that specific metal oxide NM. 
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3.3.2.2 Assessing Data Derived from Different Publications for the nanomaterials of the Same 

Core Composition 

The data points with “highly reliable” property had more priority in the assessment of the data 

gathered from the publications for the NMs. Whenever the results were conflicting the 

judgement was added to by second and third class data. In addition, where the characterization 

and the reliability class of the Comet assay were equal, we considered the results of the majority 

of the data lines. We eliminated one of the data points from the final overall dataset, as 

minimum criteria for the assay performed could not be assigned to any of the classes of 

reliability (extracted from Sekar et al.134). The numbers of genotoxic and nongenotoxic results 

for each metal oxide of the same core composition are presented in Table 5 (page 69). Each 

single datum point reported here is considered as one genotoxic or nongenotoxic call. 

3.3.3 Case Studies for Illustrating the Weight of Evidence Evaluation 

We selected three case studies in order to illustrate the WOE approach applied in the present 

study. The final judgement for each metal oxide NMs, of the same core composition, is reported 

as the “overall assessment” in Table 5 (page 69). 

Case study 1  

The TiO2 NPs have been tested in the Comet assay more often than other metal oxides (37 

reports among which 31 reports were genotoxic and six were nongenotoxic). Hence, our overall 

assessment of the TiO2 NM, according to expert judgement, is that it is genotoxic. There were 

16 highly reliable data points according to the criteria defined in Section “Minimum criteria for 

the in vitro Comet assay”; genotoxicity was seen in 12 out of these 16 data points. 

Case study 2 

The Al2O3 NPs were designated as being genotoxic. However, there are two Comet assay 

studies with nongenotoxic results for aluminium oxide: Kim et al.135 and Demir et al.136. The 

extent of characterisation and minimum Comet protocol were not completely met by the study 

reported by Demir et al.136 (e.g. it lacked a dose-response relationship study); thus, greater 

reliance is placed on the highly reliable results presented by Kim et al.135. 

Case study 3 
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Overall six reports for Fe2O3 NMs were available. Among these publications the results 

published by Auffan et al.137 fulfilled all the criteria to be highly reliable data. This study was 

the only one to use the positive and negative controls as well as fulfilling the rest of the 

requirements as described in Section “Minimum criteria for the in vitro Comet assay”. Guichard 

et al.138 provided details of the assay performed that satisfy the criteria for highly reliable meta 

data and agree with the assessment of nongenotoxicity. Of all the six studies, only these two 

provided results of uptake studies. Furthermore, in support of our conclusion that Fe2O3 is 

nongenotoxic, the same result was found in most the reports of data with moderate reliability.  

The same reasoning approach was used for Fe3O4, ZnO, SiO2 (Table 5-page 69). Data for the 

Fe3O4 NPs were reported in eight studies. According to Table S1.A (Appendices), data 

extracted from Guichard et al.138 and Könczöl et al.139 were highly reliable. Nevertheless, the 

two studies reported contradictory results. Other five data points fired the NM to be genotoxic. 

These data points met all the criteria to be highly reliable except for uptake studies. Expert 

WOE results for Fe3O4 were genotoxic. For ZnO NPs highly reliable data points assigned 

genotoxic call 140.  

The same approach has been undertaken for the reports that included NiO, Co3O4, CuO, V2O3, 

V2O5, MgO, ZrO2, Bi2O3, and SnO2 as shown in Table S1.A (Appendices). If there were no 

highly reliable data points available, moderately reliable data were taken into consideration.  

3.3.4 Computational Analysis of nanomaterials Structure and Descriptor Generation: 

Quantum-chemical Descriptors 

The computational analysis of the structure of the metal oxides and the calculation of various 

molecular descriptors have been successfully conducted in the present study. A total of eleven 

descriptors were calculated by quantum chemical methods (quantum-chemical descriptors) for 

all the metal oxide NMs present in our data set. 

Quantum-mechanical calculations of metal oxide clusters were performed based on 

experimental crystal lattice parameters obtained from the Crystallographic Open Database 141. 

We adapted the method presented by Gajewicz et al.142. In order to have cubic clusters with an 

acceptable size that represent the molecular models of the NMs studied, the lattice parameters 
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were then increased in all three dimensions. We used GaussView for the generation of the 

molecular structures of all examined metal oxide clusters 143. 

The quantum-mechanical calculations of the descriptors has been performed on the clusters of 

metal oxides in two phases: i) optimization of the molecular geometry, and ii) calculation of 

quantum chemical descriptors based on the optimized geometry. 

It is important to notice that the generated clustered are too large for analysis by ab initio 

methods. For this reason, the semi-empirical level of theory has been employed, utilizing the 

efficient PM7 that has been re-parameterized for the elements considered in this investigation 

144. Additionally, the PM7 approach outcomes are more accurate compared to the DFT level, 

since it uses a novel parameterisation of the previously used PM3 Hamiltonian 145. The PM7 

method is implemented in the MOPAC2012 software package 144. 

The following molecular descriptors were calculated for each metal oxide NM: heat of 

formation (HF), dipole moment (), total energy (ET), electronic energy (EE), the total solvent 

accessible surface area of the cluster (SASA), energy of the highest occupied molecular orbital 

of the oxide cluster (EHOMO), energy of the lowest unoccupied molecular orbital of the oxide 

cluster (ELUMO), ∆H of cluster and molecular weight of metal oxide cluster (MW). The total 

solvent accessible surface area (SASA) of the cluster was calculated by COnductor-like 

Screening MOdel, implemented in MOPAC 2012. The definition of each descriptor and the 

results are reported respectively in Table 6 (page 70) and (Table S3, Appendices). 

3.3.5 Classification SAR Modelling Methods  

The limitation in the number of data samples is an unavoidable problem with the metal oxide 

NM databases. The restriction of size is a challenge in building a reliable model of genotoxicity 

with high prediction accuracy. Even if a high number of molecular descriptors is calculated for 

the small data set of NMs, still we deal with the issue of “under sampling induced collinearity”, 

which means a high degree of collinearity in descriptors 146,147. Collinearity will be present in 

the model as the number of samples is very small compared to the number of descriptors. 

Additionally, other problems such as over-fitting and noise in the data with negative effects on 

the model will arise. Considering the abovementioned complications, in order to find the most 
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appropriate model to fit the data, it is better to focus on a limited set of hypotheses. In other 

words, in case of small data, it is better to start from a small set of possible hypotheses, e.g. a set 

of decision trees with depth <= four. Thus, we opted for a simple tree classification analysis for 

(Q)SAR modelling of our data set, in particular, Recursive Partitioning and Regression Trees 

(rpart) model was used to classify the data set. 

3.3.5.1 Recursive Partitioning and Regression Trees  

The rpart programs build classification and regression models in two phases and the result is a 

binary tree. To build the tree classification model the first phase is identifying the variable 

which contributes the most to the splitting the data into two groups. After dividing the data into 

two groups, the algorithms continues the splitting separately for each group. The procedure 

continues recursively until each group contains a minimum number of samples or no more 

improvement can be achieved. During the second phase, a cross-validation evaluation is 

performed on the data to trim the full tree and make is simpler 148.  

Considering the small data set of metal oxide NMs with their associated set of their quantum-

mechanical descriptors and the classification endpoint we need to model, the factor of 

“randomness” is likely to play a role in the built model. To overcome this situation, we decided 

to develop a model to analyse the importance of each variable in relationship with the 

genotoxicity property of the NMs, rather than a model to estimate the genotoxicity of the metal 

oxide NPs. The (Q)SAR models in addition to their predictive ability, help us to identify the 

more effective physico-chemical attributes of a chemical related to toxicological and biological 

properties of the substances. In the present study, (Q)SAR models are employed to study the 

effect of each quantum-chemical descriptors in amplifying or reducing the genotoxicity of the 

NMs. Considering the limitations mentioned above, we decided to use all the data as training set 

and study the importance of each descriptor in amplifying the genotoxicity property of the metal 

oxide NPs. All the quantum-chemical descriptors have been standardized in the data set prior to 

the modelling process. All analyses were done in R version 3.2.3 (R Foundation for Statistical 

Computing, Vienna, Austria), using the ‘rpart’ library.  
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Table 4. Criteria for the usefulness and quality assessment of the data set for the (Q)SAR 

modelling: extent of Comet assay conditions checklist. General parameters have been used to 

assess each data point and the results are reported in Table S1.A (Appendices) where all questions 

are answered in a yes or no fashion. 

General parameters Further details to assess 

Comet protocol type: 

I) The pH of unwinding: alkaline, neutral, 

very alkaline. 

II) Incubation with the enzymes: FPG, 

8oxodG, Endo III. 

Concentrations expressed in at least one of the 

units: 

I) Mass per volume, per area, per cell 

(µg/ml, µg/cm2, µg/cell)  

II) Number of NMs per ml, per cm2, per 

cell (ENMs/ml or ENMs/cm2 or 

ENMs/cell) 

III) Surface area per ml, per cm2, per cell 

(cm2/ml or cm2/cm2 or cm2/cell) 

Cytotoxicity tests performed?  

Performed trend test for dose-response 

relationship? 
 

Microscopic analysis in the Comet assay:  

Analyzed at least 50 Comets per gel divided on 

two different slides (parallel gels per sample)? 

Comet count performed at least by one of the 

methods?): 

I) % DNA in the tail 

II) Tail length 

III) Tail moment 

IV) Tail intensity (classified as belonging to 

one of five classes depending on their tail 

intensity?) 

At least 3 hours for treatment time was 

respected? 
 

Performed comparison between treated samples 

and controls? 

 

 

 

I) Positive control  

II) Negative control 

III) Both negative and positive controls 

Information on uptake (demonstrated cellular 

uptake?) 
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Table 5. Comet assay experimental results for all selected metal oxide nanomaterials used for 

(Q)SAR modelling*.  

No Metal oxide 
Number of 

genotoxic reports 

Number of non-

genotoxic reports 

Overall 

assessment** 

1 Al2O3 1 1 + 

2 NiO 1  + 

3 Co3O4 2  + 

4 CuO 6 2 + 

5 Fe2O3 1 5 - 

6 Fe3O4 6 3 + 

7 TiO2 32 6 + 

8 ZnO 16 1 + 

9 SiO2 3 9 - 

10 V2O3 1  + 

11 V2O5  1 - 

12 MgO  1 - 

13 ZrO2  1 - 

14 CeO2 5 1 + 

15 Bi2O3 1  + 

16 SnO2  1 - 
* Data were extracted from 128. 
** The “positive” and “negative” signs are assigned according to the number of genotoxic and 

nongenotoxic “reports” per each NM. The assessment column represents the variable used to 

model, based upon the global evaluation (weight of evidence) of all the reports related to a single 

NM (i.e. row): “+” means positive, i.e. genotoxic, whereas “-“means negative, i.e. not genotoxic. 
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Table 6. Acronyms, short definitions and units of the molecular descriptors calculated by 

MOPAC2012. 

Symbol Descriptors Unit 

HF Heat of formation Kcal/mol 

TE Total energy of the oxide cluster Ev 

EE Electronic energy of the oxide cluster Ev 

Core Core-core repulsion energy of the oxide cluster Ev 

COSMO 
Surface charge distribution based on Conductor-like 

Screening Model 

Cubic 

Angstroms 

COSMO-

SA 
Area of the oxide cluster calculated based on COSMO 

Square 

Angstroms 

IP Ionization Potential Ev 

HOMO 
Energy of the highest occupier molecular orbital of the 

oxide cluster 
Ev 

LUMO 
Energy of the lowest unoccupied molecular orbital of the 

oxide cluster 
Ev 

No.Fl Number of Filled Levels adimensional 

MW Molecular Weight g/mol 

 

  



71 

 

3.4 Weight of Evidence Approach in the Analysis of Results of Different In Silico Methods 

for the Mutagenicity Assessment of Chemicals 

In a WOE approach the prediction results of two (Q)SAR platforms which include nine 

mutagenicity models are assessed to reach a conclusion about the mutagenic effect of two 

chemical substances as case studies. The results of each mutagenicity model are considered 

pieces of evidence. The goal is to integrate the results to reach a conclusion on mutagenicity of 

the chemical under investigation. These pieces of evidence form a line of evidence to be used in 

further investigations together with other types of lines of evidence such as in vitro or in vivo 

mutagenicity results to help the assessors to reach a reliable answer for a toxicity question. Two 

drugs are selected for the present practice: Valproic acid and Diclofenac.  

Two methodologies are integrated for the proposed WOE framework. The results of the 

(Q)SAR and read-across in silico models are documented and integrated and additionally, the 

most similar compounds identified by the (Q)SAR platforms and ToxRead are analysed. The 

comparison between the target chemical and each individual source chemical is conducted by 

means of ToxRead and ToxDelta. The identified SAs as dissimilar fragments in the structure of 

each chemical are studied to explore their role in affecting or reducing toxicity (in this case 

mutagenicity effect). 
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CHAPTER 4 

4. Results and Discussions 

4.1 Part 1- Carcinogenicity Models 

4.1.1 R Model 

From each training set a collection of active SAs has been extracted. These collections or active 

rules of molecular substructures are the new models. Each SA is associated with a likelihood 

ratio, which is a statistical value for illustration of the goodness of the rule. The final model 

which is a result of merging all the rule sets consisted of 127 active SAs. Table 7 (page 75) 

shows the statistics of the prediction results of five models developed base on five different 

splits of the ANTARES database. The performance of each model is evaluated using its own 

test set. The average of the predictive values of all the five models have been reported in Table 

7 (page 75), as well. The averages of accuracy (Formula 2), sensitivity (Formula 3) and 

specificity (Formula 4) for the 778 compound internal cross-validation using five rule sets 

extracted from the ANTARES dataset were 71%, 73% and 69%, respectively. The average of 

accuracy, sensitivity and specificity for 337 compounds in the test set as an external validation 

of these models, were 63%, 63% and 62%, respectively.  

The results of cross-validation of the R model on the whole training set were 66% accuracy, 

83% sensitivity, 48% specificity and 0.34 the MCC (Formula 5) (Table 8-page 76). The R 

model produced better results for the external evaluation of the model using the ECHA 

database. In fact, analysis of the external validation for the R model demonstrated that the 

concordance between experimental and predicted value on the ECHA dataset is higher than 

using the ISSCAN-CGX dataset. The accuracy of the R model on the ECHA dataset was 67%, 

compared to 58% of accuracy for the ISSCAN-CGX dataset. The complete list of these alerts 

are presented in the VEGA platform. 

4.1.2 E Model 

SARpy extracted 43 active SA from the ISSCAN-CGX training set. Analysis of the cross-

validation for the E model demonstrated that the second model produced an accuracy of 73%, 
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with a sensitivity of 77% and a specificity of 62% (Table 8-page 76). The MCC value for this 

analysis is 0.36. The accuracy values for the external evaluation of the E model on the 

ANTARES dataset and the ECHA database were 59% and 64%, respectively. Analysis of the 

external validations for the E model demonstrated that the model produced a higher sensitivity 

(77%) compared with the specificity (41%) of the R model. On the contrary, the specificity of 

the external evaluation on the chemicals from the ECHA database was higher (72%) compared 

to its sensitivity (48%) (Table 8-page 76). The complete list of the SAs present in this model is 

accessible through VEGA. 

4.1.3 Analysis of the Combination of the Prediction Results of the R and E Models 

In addition to the separate analysis of the prediction results of the R and E model, another 

combined evaluation has been conducted. In this analysis of the prediction results of the R 

model and the E model, we considered the final results as correctly predicted only in case both 

models have predicted them consistently. Table 9 (page 76) summarizes the results of 

combining the R and E model external validation predictions on the chemicals from the ECHA 

database. 

The results showed that in case both models had a concordant result on a negative prediction the 

reliability of the results is higher than in case the positive predictions. 

We observe an improvement of the results compared to the use of the individual models, for 

accuracy (72%) and specificity (79%). In fact, combining the predictions of the two models the 

MCC is increased to 0.37, compared to 0.31 for the R model and 0.20 for the E model. Only 

sensitivity is higher using the R model (62%). Thus, users may choose a solution or another 

depending if they prefer a conservative or a realistic assessment. 

 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
   (Formula 2) 

 

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
    (Formula 3) 

 

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
    (Formula 4) 
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𝑀𝐶𝐶 =  
𝑇𝑃×𝑇𝑁−𝐹𝑃×𝐹𝑁

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
   (Formula 5) 

 

4.1.4 Fragments Analysis 

4.1.4.1 Comparison of the SAs in the R and E Models 

We compared all the SAs in the R and E models in order to identify the SA in common between 

the two models. The common SAs have been categorized into chemical classes. The SAs in the 

R model are presented with their ID number and written in order of their correspondence to the 

identical SAs in the E model.  

1) Aromatic amine (R model: 6, 41, 36, 22, 10 / E model: 27, 31, 33, 38, 104) 

2) Aromatic heterocyclic  (R model: 12, 19, 2 / E model: 75, 108, 117)   

3) Hydrazide (R model: 28, 27 / E model: 2, 50) 

4) N-Nitroso (R model: 1 / E model: 8) 

5) Phenyl-Hydrazine (R model: 32 / E model: 48)   

6) α,β- Haloalkanes (R model: 25 / E model: 56)   

7) Sulfite (R model: 8 / E model: 68) 

8) Nitrogen Mustard like (R model: 11 / E model: 73) 

9) Phosphonite (R model: 15 / E model: 98) 

4.1.4.2 Categorization of the SAs in the R and E Models 

All the SAs of the R and E models are categorized into chemical classes. The substructures 

within each category are presented with their ID number in their original rule set and are as 

follows: 

Nitrogen containing substructures (Azo type): 

1) Aromatic amine (R model: 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 

40, 42, 83, 104, 110, 113 / E model: 6, 10, 22, 31, 35, 36, 41, 42)  

2) Aromatic heterocycles containing Nitrogen (R model: 74, 75, 80, 81, 83, 95, 113, 122 / 

E model:12, 17, 43) 

3) Azine (Hydrazine) (R model:46, 47, 49, 50, 51, 53, 54, 55, 101 / E model: 27, 32) 

4) Azide (Hydrazide) (R model: 2, 3, 44, 45, 52 / E model: 3, 28)  

5) Nitrosamine (R model:4, 5, 7, 9, 10 / E model: not found (NF)) 

6) Nitrogen or sulfur mustard (R model: 72, 73, 115 / E model: 11, 34)  

7) Aromatic methylamine (R model: 30, 34, 36 / E model: NF)  

8) Aliphatic N-Nitroso (R model: 62, 63/ E model: NF) 

9) Aromatic Nitro (R model: 90, 123 / E model: NF) 

10) 1 aryl 2 monoalkyl hydrazine (R model: 48 / E model: NF) 

11) Aziridine (R model:120 / E model: NF)  

12) Aromatic hydroxylamine (R model: 32 / E model: NF)  
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13) Diazo (R model:92 / E model: NF) 

14) Aromatic Azo (R model: 71 / E model: NF) 

15) Aromatic Nitroso (R and E models: NF) 

16) Other substructures: 

17) (1,2, and 3 membered) Aromatic Heterocycles (R model: 74, 75, 80, 81, 83, 90, 95, 103, 

108, 113, 117, 121, 122, 123 / E model: 2, 12, 17, 19, 43) 

18) Aliphatic halide (R model: 57, 58, 59, 70, 125 / E model: 18, 25) 

19) Heterocyclic Alkane (R model: 84, 105, 109, 120 / E model: 23) 

20) Polycyclic aromatic systems (R model: 39, 43, 60, 61 / E model: 30) 

21) Sulfonate bonded carbon (R model: 67, 68 / E model: 8) 

22) Epoxide (R model: 105 / E model: 23) 

23) Β propiolactone (R model: 114 / E model: NF) 

 

SARpy had successfully identified most of the already known carcinogenic substructures that 

were presented by Kazius et al. In addition a number of SAs have been extracted by SARpy for 

the first time. Table 10 (page 77) demonstrates the new identified SAs that have been classified 

into seven chemical classes. The substructures within each category are listed with their ID 

number and are as follows: 

1) Nitrosurea (R model: 12, 13, 14, 19 / E model: NF) 

2) Nitrogen or sulfur mustard like (R model: 72, 115 / E model: 34)   

3) Benzodioxole and Benzendiol (R model: 17, 18 / E model: 9)   

4) Teritiary amine substituted by a Sulfur atom (E model: 24) 

5) α,β-oxy and carboxy substitutions (R model: 20, 21, 76 / E model: NF)  

6) α,β-haloalkanes (R model: 56, 69 / E model: 25) 

7) Oximes (R model: 78 / E model: NF) 

 

As an example, we illustrated the chemicals from which the SA 24 (from the chemical class 

teritiary amine substituted by a Sulfur atom) in the E model has been extracted (Table 11-page 

78). It is important to notice that all the chemicals that contain the above mentioned SA in the 

ISSCAN-CGX data set are carcinogenic. 

Table 7. R model internal and external validation for five different splits and the average of the 

model performance 

  1° split 

(59 active 

rules) 

2° split  

(65 active 

rules) 

3° split 

(61 active 

rules) 

4° split  

(58 active 

rules) 

5° split  

(57 active 

rules) 

Average 

Learning set 

(778 

compounds) 

Accuracy 71 % 72 % 71 % 70 % 71 % 71 % 

Sensitivity 75 % 75 % 71 % 73 % 70 % 73 % 

Specificity 65 % 69 % 71 % 66 % 72 % 69 % 

Test set 

(337 

compounds) 

Accuracy 63 % 60 % 64 % 65 % 62 % 63 % 

Sensitivity 68 % 58 % 62 % 67 % 61 % 63 % 

Specificity 56 % 63 % 66% 61 % 64 % 62 % 

 



76 

 

Table 8. R model and E model internal and external validation  

 R model  

(127 active rules) 

E model  

(43 active rules) 
 

Cross-

validation 

external 

validation on 

ISSCAN and 

CGX data 

external 

validation 

on ECHA 

data 

Cross-

validation 

external 

validation 

on 

ANTARES 

data 

external 

validation 

on ECHA 

data 

Accuracy 66% 58% 67% 73% 59% 64% 

Sensitivity 83% 76% 62% 77% 77% 48% 

Specificity 48% 40% 70% 62% 41% 72% 

TPa 651/783 593/735 55/89 562/735 599/783 43/89 

TNb 367/760 142/254 119/169 157/254 315/760 121/169 

FPc 393/760 112/254 50/169 95/254 445/760 48/169 

FNd 132/783 142/735 34/89 172/735 184/738 46/89 

MCCe 0.34 0.35 0.31 0.36 0.19 0.20 

a True positive; b True negative; c False positive; d False negative; e Matthews Correlation 

Coefficient 

 

Table 9. The combination of the predictions of the R and E models on the ECHA external 

validation set  

Combined model 

TPa 33/89 

TNb 96/169 

FPc 25/169 

FNd 24/89 

Accuracy 72% 

Sensitivity 58% 

Specificity 79% 

MCCe 0.37 

Coverage 178/258 
a True positive; b True negative; c False positive; d False negative; e Matthews correlation 

coefficient 
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Table 10. New carcinogenic structural alerts identified by SARpy in the R and E models 

Nitrosurea (R model: 12, 13, 14, 19) 

 

Nitrogen or sulfur mustard like (R model: 72, 115 / E model: 34)  

 

Benzodioxole and Benzendiol (R model: 17, 18 / E model: 9) 

 

α,β-oxy and carboxy substitutions (R model: 20, 21, 76) 

 

Teritiary amine substituted by a Sulfur atom (E model: 24) 

 

 

α,β-haloalkanes (R model: 56, 69 / E model: 25) 

 

Oximes (R model: 78) 
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Table 11. Chemicals structures in the ISSCAN-CGX data set from which structural alert 24 has 

been extracted 

   

O=C1c2ccccc2C(=O)N1SC(Cl)(

Cl)Cl  

O=C1N(C(=O)C2CC=CCC12)SC(C(Cl)Cl

)(Cl)Cl  

O=C1N(C(=O)C2CC=CCC12)SC(Cl)(Cl)Cl  

 

 

 

O1CCN(C(=S)SN2CCOCC2)C

C1  

O=C(O)c1ccc(cc1)S(=O)(=O)N(CCC)CCC  O=C(O)c1cc(ccc1Cl)S(=O)(=O)N1CC(C)C

C(C)C1 
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4.2 Part 2- ToxDelta 

In the stand-alone version of ToxDelta, the user can insert two chemical compounds and 

compare their molecular structure. The two chemical compounds can be introduced as SMILES 

115. The MCS is the biggest common part between two molecules in input and is shown in Table 

12 (page 85). Usually the assessment of a target molecule in a read-across approach is based on 

the comparison of the structure of the compound under investigation and another source 

compound with known toxicity property. In our program, the MCS is the common part in both 

molecules which is analysed and processed by ToxRead in the initial phase of read-across 

process. Indeed, the application of ToxDelta is useful for substances that are structurally similar. 

The MCS typically is an important part in read-across procedure. In this scheme, ToxDelta 

complements the conceptual strategy of ToxRead. The problem with the existing read-across 

tools is the risk of missing the differences between two similar molecules. The similarity should 

not minimize the fact that the possible opposed behaviour of the two similar compounds. In 

order to avoid the lack of attention to the opposite behaviour, ToxDelta makes a thorough 

assessment about the differences of the similar compounds under read-across examination. The 

theoretical basis is closely related to the SA paradigm. Thus, ToxDelta is an interdependent part 

of the ToxRead software, which exploits all the SAs of the target compound.  

ToxDelta makes is possible to take a closer look at the two substances (i.e. the target and the 

reference compounds), in particular, when they may have opposite toxicological properties. 

Indeed, it should be reminded that ToxRead predicts the toxicological property of the target 

compound, and thus the predicted value of the target compound may be the completely different 

from the experimental value of the similar compound.  

To investigate the utility of ToxDelta in read-across we provide two examples of mutagenicity 

endpoint. Each example includes two chemicals. For convention, we label one of the chemicals 

“Target molecule” and the other chemical “Source molecule”.  

4.2.1 Case Study 1: Benzodiazepine Derivatives  

Target molecule 1: Diazepam  

Systematic name: 1-methyl-5-phenyl-7-chloro-1,3-dihydro-2H-1,4-benzodiazepin-2-one 

SMILES: O=C1N(c3ccc(cc3(C(=NC1)c2ccccc2))Cl)C 
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Experimental activity: nonmutagenic in Ames test 52 

CAS number: 439-14-5 

Source molecule 1: Flunitrazepam 

Systematic name: 1,3-dihydro-5-(o-fluorophenyl)-1-methyl-7-nitro-2H-1,4-benzodiazepin-2-

one 

SMILES: c12C(=NCC(=O)N(c1ccc(c2)[N+](=O)[O-])C)c1c(cccc1)F 

Experimental activity: mutagenic in Ames test 52 

CAS number: 1622-62-4 

The first pair are Diazepam (we suppose with unknown mutagenic property) as the target 

molecule and Flunitrazepam (mutagenic in Ames test) as the source molecule. We suppose 

that we have no information about the mutagenic effect of the target molecule and the aim is to 

investigate the possibility of assigning the mutagenicity property of the source molecule to the 

target molecule. The similarity index between the first pair of molecules is 0.871, and the MCS 

between the target and source molecule is extracted by ToxDelta (“1-methyl-5-phenyl-2,3-

dihydro-1H-1,4-benzodiazepin-2-one”) (Table 12-page 85). Since ToxDelta is a complementary 

tool implemented in ToxRead, prior to using ToxDelta the user have the possibility to illustrate 

the common SAs between the target and the source molecular structures. Indeed, ToxRead 

identifies the SA in common between the two molecules as following: 

 

Name: SM203 

Description: Sarpy alert n. 203 for NON-Mutagenicity, defined by the SMARTS: 

N(C)(CCN)c1ccccc1 

Experimental accuracy: 0.52 

Fisher test p-value: 0.55052 

 

Since the SA in common between the two molecules is not an active mutagenicity rule, it is 

important to investigate the dissimilarities between the molecules. At this point ToxDelta is 

used to identify the differences and to extract all the dissimilar fragments, which do not belong 

to the MCS in both molecules. 
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ToxDelta extracts the following SA as one of the dissimilar fragments from Flunitrazepam 

from the mutagenicity SA dataset of ToxRead/ToxDelta 122,123: 

 

Name: SA27 

Description: Nitro aromatic (Benigni/Bossa structural alert no. 27) 

Experimental accuracy: 0.87 

Fisher test p-value: < 10e-6 

 

Given that there are no other significant SA in Flunitrazepam, the Nitro aromatic mutagenicity 

rule with 0.87 experimental accuracy is likely to be the reason of the mutagenicity effect of the 

source compound.  

The other dissimilar fragment identified in the source molecule (Fluorobenzene) is also present 

in the target molecule (Chlorobenzene). This dissimilar fragment is halogenated benzene with a 

low experimental accuracy for mutagenicity effect, thus is not likely to trigger mutagenicity. 

 

Name: SA31a 

Description: Halogenated benzene (Benigni/Bossa structural alert no. 31a) 

Experimental accuracy: 0.48 

Fisher test p-value: 0.00735  

 

Considering that no other significant mutagenicity SA is identified in the structure of 

Diazepam, the user may conclude that although the similarity index between Diazepam and 

Flunitrazepam is high (0.871), the molecular structure investigation of the two molecules do 

not provide evidence to the possibility of assigning the property of the source molecule to the 

target. Not being available any other SA with high mutagenicity accuracy inside the MCS or the 

dissimilar fragments extracted from the target after the comparison with the source, the user 

may conclude that Diazepam is not mutagenic. Indeed, we already have the Ames test value for 

Diazepam, which is negative for this endpoint. 
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As a conclusion, ToxDelta immediately reports as a key difference the presence of the 

nitroaromatic fragment, which is at the basis of the different mutagenicity value of the two 

substances. 

4.2.2 Case Study 2: Androstane Derivatives 

Target molecule 2: Mepitiostane 

Systematic name: 5-alpha-Androstane, 2-alpha,3-alpha-epithio-17-beta-(1-

methoxycyclopentyloxy)- 

SMILES: O(C)C6(OC2CCC3C4CCC1CC5C(CC1(C)C4(CCC23(C)))S5)(CCCC6) 

CAS number: 21362-69-6 

Experimental activity: nonmutagenic in Ames test 149 

Source molecule 2: Cholestan-6-one, 3-bromo-, cyclic 1,2-ethanediyl mercaptole, S,S,S',S'-

tetraoxide, (3-beta,5-alpha)- 

Systematic name: Cholestan-6-one, 3-bromo-, cyclic 1,2-ethanediyl mercaptole, S,S,S',S'-

tetraoxide, (3-beta,5-alpha)- 

SMILES: 

O=S5(=O)(CCS(=O)(=O)C35(CC1C4CCC(C(C)CCCC(C)C)C4(C)(CCC1C2(C)(CCC(CC23)B

r))) 

CAS number: 133331-34-7 

Experimental activity: mutagenic in Ames test 149 

The second pair are Mepitiostane (we suppose with unknown mutagenic property) as the target 

molecule and Cholestan-6-one, 3-bromo-, cyclic 1,2-ethanediyl mercaptole, S,S,S',S'-

tetraoxide, (3-beta,5-alpha)- (mutagenic in Ames test) as the source molecule. We suppose 

that we have no information about the mutagenic effect of the target molecule and the aim is to 

investigate the possibility of assigning the mutagenicity property of the source molecule to the 

target molecule. The similarity index between the second pair of molecules is 0.774, and the 

MCS between the target and source molecule is extracted by ToxDelta (Table 12-page 85). 

ToxDelta can be used as a stand-alone tool or an auxiliary tool inside ToxRead. ToxRead 

illustrates the common SAs between the target and the source molecular structures. Indeed, SAs 

in common between the two molecules identified by ToxRead are as following: 



83 

 

 

Name: SM153 

Description: Sarpy alert n. 153 for NON-Mutagenicity, defined by the SMARTS: SCCCC 

Experimental accuracy: 0.83 

Fisher test p-value: 0.00005 

It is evident that the common substructure between the molecules under investigation is not a 

potential mutagenic SA, thus the dissimilarities of the two molecules need to be explored for the 

potential mutagenic substructure.  

ToxDelta identifies the androstane tetracyclic system as MCS shared by these two chemicals 

and extracts five fragments of dissimilarity (Table 12-page 85). Three of these are aliphatic 

rings: the thiirane, 1,1-dimethoxycyclopentane, and 1,3-Dithiolane 1,1,3,3-tetraoxide rings and 

two are aliphatic chains: the 2-methylheptyl group and a bromine atom, both linked to an 

aliphatic carbon ring. The cyclic moieties and the alkyl carbon chain do not match any rule 

potentially responsible for mutagenic/nonmutagenic activity listed in the ToxRead software. 

Conversely, the bromine atom linked to an aliphatic carbon ring corresponds to two 

ToxRead/ToxDelta SAs both referring to bromo-/halo-ethyl moieties with different levels of 

specificity and a prevalence of mutagenic activity of 71% and 67%, respectively. The identified 

SA extracted by ToxDelta in the source molecule are as following: 

 

Name: MNM16 

Description: IRFMN alert n. 16 for Mutagenicity, defined by the SMARTS: 

[Cl,Br,I][C;H1;D3][$([C;H3;D1]),$([C;H2;D2][C,O,N,S,Cl,Br,I])] 

Experimental accuracy: 0.71 

Fisher test p-value: 0.00704 

 

Name: SM93 

Description: Sarpy alert n. 93 for Mutagenicity, defined by the SMARTS: C(C)Br 

Experimental accuracy: 0.67 

Fisher test p-value: 0.0036 
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These rules, which are present in the source molecule but not in the target chemical, give a first 

indication of different toxicological profiles for these chemicals.  

Considering that no other significant mutagenicity SA is identified in the structure of 

Mepitiostane, the user may conclude that although the similarity index between these 

molecules is high (0.774), the similarity and dissimilarity investigation do not provide evidence 

to the possibility of assigning the property of the source molecule to the target. Not being 

available any other SA inside the MCS or the dissimilar fragments extracted from the target 

after the comparison with the source, the user may conclude that Mepitiostane is not 

mutagenic. Indeed, we already have the Ames test value for Mepitiostane, which is negative for 

this endpoint. 

Considering the two case studies, it is notable that sometimes the identified dissimilar 

substructure is not an entire SA. In many cases the dissimilarity substructures are fractions of 

the whole SA (i.e. a rule which is present in the database of mutagenicity or any other toxicity 

endpoint SAs), and the remaining of the SA are in the MCS. This concern has been solved by 

ToxRead. In fact, the examination of ToxDelta of the dissimilarities happens after the 

visualization of ToxRead results. 

ToxRead outcome comprises all the existing SAs that are matched with the target molecule and 

are in common between the target molecule and a set of structurally similar molecules. 
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Table 12. The two case studies: Case study 1) target molecule: Diazepam, source molecule: 

Flunitrazepam; Case study 2) target molecule: cholestan-6-one, 3-bromo-, cyclic 1,2-ethanediyl 

mercaptole, S,S,S',S'-tetraoxide, (3-beta,5-alpha)-, source molecule: mepitiostane, and the results 

of ToxDelta: maximum common substructure and dissimilar fragments. 

 

* Maximum common substructure 
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4.3 Part 3 – Metal Oxide NMs Genotoxicity Model 

The aim of this study is the collection of all the metal oxide NMs with genotoxicity data 

available in reliable peer reviews and the development of computational grouping model for the 

created dataset. The prepared dataset is based on evaluation of genotoxicity results from the 

comet assay results, gathered by the authors128.  

The availability of a relatively high number of publications of Comet assay data for the 

assessment of genotoxicity of NM, had been the reason of choosing this genotoxicity test in our 

investigation.  

To conclude an accurate result from the various number of studies conducted on 16 metal oxide 

NMs in the field of genotoxicity by Comet assay, we needed to examine the significant factors 

that could affect the reliability of the data. Moreover, this scheme made maximum use of pre-

existing data from in vitro methods, for (Q)SAR modelling. 

4.3.1 Data Quality Assessment 

Table S1.A in Appendices, contains the results of both physico-chemical properties and Comet 

assay adherence assessment. Each datum point corresponds to the summary of results from the 

Comet assay for a nano metal oxide (or silica), with a common core chemical composition and a 

unique size/ size range.  

As part of this assessment, we extracted data for the size of various metal oxide NMs and 

provided in Table S1.B (Appendices). In a few publications, size was reported as nominal size 

as provided by the suppliers whilst other authors measured the size with one or more tools 

including (TEM, SEM, etc.).  

Information on the crystallography is also included in this table. Metal oxides that had different 

crystallographic properties in the assessed data were TiO2, and SiO2. The anatase or rutile 

forms of TiO2 and amorphous or crystalline forms of SiO2 were tested.  

Physico-chemcial properties of the NMs such as size, shape, charge, and surface coating, and 

various components present in the medium, such as serum proteins that dispersion and stability 

of NMs depend on them, influence the assay results. Considering the importance of these 

factors in Comet assay results, it is essential to characterize NMs in the relevant medium and to 

use the appropriate treatment conditions.  
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Recent studies in the field of NMs show that significant size-dependent changes in NMs’ 

properties happens in the NM smaller than 5 nm 150–152. NMs with sizes between 15 and 90 nm 

do not show a meaningful correlation between the factor of size and activity. On the other hand, 

all nanopowders when suspended in water resulted in same sized aggregated particles, 

regardless of their initial size 153. Thus, we decided to exclude NMs smaller than 15 and bigger 

than 95 nm from the consecutive data analysis. 

In data quality assessment section the aim was to examine the already existing data and 

establish a data set of metal oxide NMs with their assigned genotoxicity properties, based on the 

minimum criteria. This dataset was aimed to be used for (Q)SAR modelling purpose 154. It is 

important to notice that until the current time there are no official guidelines for the in vitro 

Comet assay 155. After assessing the quality of the tests presented in the literature, we propose a 

scheme employing a WOE approach 133. This approach is an appropriate solution to make a 

conclusion for the hundreds of reports that have been published without a concrete outcome 156. 

Finally, a binary classification of genotoxic or nongenotoxic has been assigned to each metal 

core composition. 

We established some criteria to make a possible comparison of data obtained from the reports of 

different laboratories and studies. Table 5 (page 69) shows the existing trend for genotoxicity of 

each type of the metal oxide NM as identified by the Comet assay. The differences of Comet 

assays methods in different laboratories have been investigated in past 157–163. In our approach, 

we selected the results with sufficient number of necessary factors for the performed test. These 

important factors of the Comet assays make their results more reliable. We have undertaken two 

phases to evaluate the experimental data: those criteria to be respected for a reliable in vitro 

Comet assay and a WOE approach applied to the reports that have met the criteria established. 

Previously, Huk et al.154 establish the minimum considerations in performing the in vitro Comet 

assay experimentally for NMs. These considerations are listed in Table S1.A (Appendices). For 

instance, data points that are not associated with the three important physico-chemical 

characterisations (i.e. chemical composition and purity, surface area and particle size/size 

distribution) are known to be less reliable comparing to the NMs for which this kind of 
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information was provided. The data lines without any physico-chemical properties of tested 

metal oxide NMs, were excluded from the list of data. Therefore, the data points assessed for in 

vitro Comet assay minimum protocol were satisfactory from this point of view. 

After applying the established criteria to the data points, 48 data belonged to the “high 

reliability” class of which 18 data points had also uptake analysis. 8 data points belonged to the 

“moderate reliability” class, of which 2 had an uptake analysis. 4 data points belonged to the 

“low reliability” class, of which 1 had an uptake analysis. Table 13 (page 91) shows the 

assignment of the reliability of Comet assays based on the criteria list defined by Huk et al. 154. 

Details of this analysis are reported in Table S1.A (Appendices). Table S4 (Appendices) reports 

the number of total studies evaluated for each metal oxide core (all sizes) together with the 

number of studies with size range 5-100 nm, the number of studies in each reliability class and 

the overall genotoxicity for each metal oxide nanoparticles. 

4.3.2 Quantum Mechanical Descriptor Calculations 

The size of the NPs under investigation in this study is 15-90 nm in the laboratories’ analysis. 

Calculation of the quantum-mechanical descriptors of these NMs is not possible, since the 

systems are too large. For this reason we decided to simplify the structural models used for the 

calculation of the descriptors. Smaller metal oxide clusters of the same size have been 

considered for the calculation of the descriptors and one of the descriptors was calculated on the 

basis of the characteristic of the considered NMs. In the current study, we adopted the same 

method used by Puzyn et al.164 for a predictive cytotoxicity model. In our study we used the 

same 10 metal oxides that Puzyn et al. used in their cytotoxicity dataset. Puzyn et al. utilized 16 

NMs in genotoxicity and 17 NMs in cytotoxicity dataset. The same concepts in considering 

experimental results performed on different sizes from 15 to 90 nm has been adopted in the 

present study. In addition, Puzyn et al. have given a strong justification for the use of the size 

rage of 15-90 nm outcomes in a singular modelling approach. In precedent studies it is shown 

that genotoxicity of many NMs is directly related to oxidative stress (by elevated ROS levels, 

reduced antioxidant levels and increased lipid peroxidation) and subsequent inflammation 
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(leading to apoptosis)165,166. Hence, the descriptors that were selected by the machine learning 

approaches were evaluated to illustrate their role in the oxidative stress process.  

4.3.3 Recursive Partitioning and Regression Trees  

In order to maintain the simplicity of the model, we built a simple classification tree on the data 

set of 16 metal oxide NPs. Table S3 (Appendices) reports the scaled values on the dataset used 

for the classification model. In the developed model tree descriptors have been used and the 

NMs are classified into two classes: genotoxic and nongenotoxic. Figure 8 (page 89) shows the 

tree representation of the developed model. Since the model is fitted with scaled data, for 

making predictions the new observations should be scaled according to the scale attributes 

(Table S3, Appendices) of the dataset used to build the model. The thresholds used in this 

model are as following: 

First split:  

 NPs with HF < -1.145 (original value: -5199.7) are nongenotoxic; the rest of the NPs will be 

processed in the second split. 

Second split: 

 NPs with MW < 0.3601 (original value: 1492.2) are nongenotoxic; the rest of the NPs will 

be processed in the third split. 

Third split:  

 NP with COSMO-SA >= 1.176 (original value: 960.9) are nongenotoxic; and the rest are 

genotoxic 

 

 

Figure 8. The ‘rpart’ classification tree model on the data set of 16 metal oxide nanomaterials. 
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All the eleven descriptors reported in Table 4 (page 68) are given as input to the rpart algorithm. 

The method is set to classification, as the endpoint is a binary value (i.e. genotoxic and 

nongenotoxic). Three control parameters are set in the command line of building the model. 

“Minsplit” that is the minimum number of observations in a node for which the routine will 

even try to compute a split is set to 3, “minbucket”, which is the minimum number of 

observations in a terminal node is set to 1, and “cp” that is the threshold complexity parameter 

is set to 0.001. The resultant model successfully separated the sixteen NPs into two groups using 

three quantum-chemcial descriptors: heat of formation (HF), molecular weight (MW), and 

surface area of the oxide cluster based on conductor-like screening model (COSMO-SA). The 

other eight descriptors did not appear in the final model.  

The selected descriptors very well conform to overall toxicity model for metal oxide NM, while 

this selection also can be beneficial for explanation of genotoxicity mechanisms of action. The 

results show that NM with small MW and HF are less genotoxic, comparing to heavier metal 

oxide NM. Enthalpy of formation or heat of formation is the only structural descriptor used in 

the nano-(Q)SAR model developed by Puzyn et al.164. From an initial set of 12 quantum-

chemically calculated structural descriptors, ΔHMe+ representing the enthalpy of formation of a 

gaseous cation with the same oxidation state as that in the MO structure was used to establish 

the linear equation of the model. HF is associated with the stability of the NM. Possibly, NMs, 

which are less stable, release ions more easily, and this increase the effect. COSMO solvent 

accessible surface area (COSMO-SA) is a continuous surface of the molecule, which can be 

reached by the centre of charge of a solvent molecule. The correlation between the lower 

COSMO-SA values and the higher DNA damage can be explained by the fact that the metallic 

ion has to be supplied via solution to DNA. The solubility and the dissolution rate of the metal 

oxides are essential for the metal supply. For the same type of metal ion (Fe), more metal ions 

are accessible in Fe3O4 comparing to Fe2O3. Assuming the surface area is equal, different 

number of oxygen, the metal type and the crystal structure (number of oxygens for each atom of 

metal), play an important role. This information are encoded in COSMO-SA. In other words, 

two different metal oxides having equal surface area can have different number of metal ions on 
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the surface depending on the length of the inter-intra molecular bonds, volume/molecular 

weight of the metal ion, and the proportion of the number of oxygens to the number of metals. 

Because of the small size of the dataset in our study in addition to the classification endpoint, 

we decided to maximize the amount of data in the process of model training and consequently 

there were no data considered as test set. Nevertheless, all the principles of the OECD for the 

validation of (Q)SAR models 73 have been fulfilled in our new model, except the model 

validation for stability and predictivity. In fact, the developed model has a defined endpoint: 

genotoxicity, an unambiguous algorithm, and an applicability domain. The most important goal 

of developing a new (Q)SAR model for the provided data set is to evaluate the correlation of 

each quantum-mechanical descriptor with the genotoxicity endpoint of the NMs. Indeed, feature 

selection is a crucial phase of (Q)SAR modelling. The developed model reveals the most 

significant descriptors related to the genotoxicity risk assessment of the NMs from a quantum-

mechanical point of view.  

Table 13. Assignment of the reliability of in vitro Comet assays based on the criteria defined in 

Huk et al. The assignment questions were treated in a “yes” or “no” fashion. In a weight of 

evidence approach, data points that presented 1st class property were used to assign the genotoxic 

or non-genotoxic fate to the metal oxide nanomaterials with the same chemical core composition. 

Comet assay main principals to follow 

for obtaining reliable test results 

1st class 

data 

2nd class 

data 

3rd class 

data 

Unreliable 

data 

Exposure to the nano metal oxides 

expressed in at least one of the units 

mentioned in Table 6 (page 70) 

yes yes yes no 

Cytotoxicity tests performed? (results 

were in a range from nontoxic to 

around 80% viability) 

yes no no no 

At least exposure for (3h) treatment 

time 
yes yes no no 

Performed trend test for dose-response 

relationship? 
yes no no no 

Performed comparison between treated 

samples and controls or both? 
yes yes yes no 

Information on uptake (demonstrated 

cellular uptake?) 

yes 

(prioritized 

results) 

and no 

yes 

(prioritized 

results) 

and no 

yes 

(prioritized 

results) 

and no 

no 
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4.4 Weight of Evidence Approach in In Silico Models for the Mutagenicity Assessment of 

Chemicals 

There can be two methodologies for the assessment and integration of the prediction results of 

the in silico models. In the WOE section of the present dissertation, to develop a conclusion in a 

WOE approach: i) first the (Q)SAR and read-across results as reported by the prediction models 

are documented and integrated, considering the reliability, relevance and consistency of each 

prediction, ii) then the structurally similar compounds indicated by the in silico software, as 

most similar chemicals to the target chemical under investigation are explored in order to 

evaluate the relevance and the reliability of the similar chemical to be used in a read-across way. 

We employed the both methodologies to the pieces of evidence. First we considered the 

prediction results of each individual in silico model with their corresponding applicability 

domain index as a measure of reliability. Then the similar chemicals indicated by different in 

silico models are taken into consideration for a further investigation to assess their relevance in 

terms of read-across. This assessment is based on their structure characterization or the presence 

or absence of active or inactive mutagenic rules and the similarities and dissimilarities between 

the target and the source molecules. At the end, the consistency of the various results has been 

evaluated together with their reliability and relevance to develop a conclusion for the 

mutagenicity effect of each drug. The results of the two case studies are presented in Chapter 6. 
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CHAPTER 5 

5. Conclusions 

5.1 Part 1- Carcinogenicity Models 

Based on SARpy as an automatic SA extraction tool, we developed two carcinogenicity models 

from two different training sets. The ANTARES learning set contained rodent bioassay 

carcinogenicity data of 1543 compounds, while ISSCAN-CGS dataset consisted of 986 

chemical substances with human-based assessments and data retrieved from different types of 

assays. We thoroughly evaluated the predicitivity of each model, this was evaluated on its 

related test set and additionally on an external test set composed of 258 chemical compounds 

obtained from the ECHA inventory. These two newly developed models are implemented in the 

VEGA platform and are freely accessible to all users.  

The already existing carcinogenicity models in the VEGA platform 167 before adding the two 

developed models (ANTARES and ISSCAN-CGX) were CAESAR and ISS. The CAESAR 

model is built as a CP ANN model. The neural network output consists of two values labeled as 

Positive and Non-Positive. The CP ANN uses twelve molecular descriptors. The ISS model is 

indeed the Toxtree carcinogenicity module version 2.6 52 introduced by Benigni et al. 43. When 

at least one carcinogen rule is matching with the target compound, “carcinogen” prediction is 

given; otherwise, the prediction will be “non-carcinogen”. The carcinogenicity developed 

models are the only structure-based models of the VEGA platform, except the ISS model which 

is indeed the implementation of Toxtree carcinogenicity module in this platform. The SAs of the 

ISS model are exactly the same as SAs of the Benigni and Bossa ruleset 43.  

Automated discovery of SAs associated with toxicology has been made great progresses due to 

the evolution of data mining tools. The statistically-based methods for the identification of new 

SAs are helpful in improving the already existing rule sets. While the most known 

carcinogenicity rule sets 43 are collected on the basis of human expert judgement, the SAs 

identified in our study are extracted by SARpy with no a priori knowledge about the MoA of 

the chemicals. This approach highlighted some new clues about genotoxic and non-genotoxic 
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SAs. Some primary analyses have been provided on the SA lists; chemical classes of the 

identified SAs have been evaluated, however, further study for the new SAs should be 

performed.  

In addition to the newly discovered SAs in the present study, the results obtained by the SARpy 

SAs extraction based on the analysis on the ANTARES and ISSCAN-CGX data sets are 

completely in line with the SAs presented by Kazius et al.46. 

Furthermore, the models are developed on the basis of two learning sets with different 

carcinogenicity data from the point of view of origin and provenance. Concerning the training 

sets with variant carcinogenicity data assessed within different properties, each set of the 

extracted SAs constituted a purpose oriented model. The user may consider the results of the 

model with more realistic predictions (ISSCAN-CGX) or the one with more conservative 

assessments (ANTARES).  

From a decision-making point of view, the most logical approach is combining the evidences 

obtained from different sources of information such as (Q)SAR model predictions, in vitro and 

in vivo test results. Scientists instead of accepting a singular judgement or prediction from one 

source of information, may acquire a WOE approach and consider more methodologies before 

determining the level of toxicity of a target substance. An example of the latter approach is 

implemented for mutagenicity (Ames test) endpoint, in the VEGA platform, in which the results 

of different models are combined and the output is based on different existing models 167. These 

two developed models for carcinogenicity are also implemented in VEGA where other models 

for the same endpoint are available. This implementation increases also the possibility of 

performing a similar activity to make a conclusion. 

Finally, the SAs explored in this study will be used for the construction of the carcinogenicity 

ruleset in ToxRead (http://www.toxgate.eu), a platform that uses set of rules for different 

endpoints to filter and select similar compounds and assist the user in performing read-across 

studies 122,123. 

  

http://www.toxgate.eu/
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5.2 Part 2- ToxDelta 

ToxDelta is a complementary tool to be used in a parallel way together with the other prediction 

tools. It can be used alone and also is aimed to match some important features of ToxRead. 

ToxDelta addresses the dissimilarities between two similar molecules, and it does not make a 

conclusion on the evidences found in the dissimilar fragments of two substances. The 

conclusion on the outcome of the prediction may be accomplished by other prediction or read-

across tools such as ToxRead. The main advantage of this new read-across tool is the emphasis 

on the differences in addition to the similarities and the resembling properties between two 

structurally similar molecules. In other words, it exploits the adverse effects of the dissimilar 

fragments that may trigger the toxicological properties or biological activities of the chemicals. 

ToxDelta analyses the modulations of the effects related to the presence of the specific 

fragments in one of the two structures under investigation. ToxDelta executes in a “local” way. 

This functionality is important to evaluate the metabolites and the impurities related to a target 

compound in a comparative approach to the parent compound. Two important fields of the 

application of this strategy are impurities in pharmaceutics and pesticides. The FDA has 

provided a guideline for industry about the mutagenicity of the pharmaceutical impurities 168 

that describes a practical framework for identification and control of the identified mutagenic 

impurities in order to limit potential carcinogenic risk. Another appropriate field of application 

for this tool is in pesticides assessment. The EFSA has discussed the use of in silico models for 

the evaluation of the effects of metabolites of pesticides. ToxDelta’s methodology is useful in 

the toxicity assessment of pesticides, biocides and pharmaceuticals. The experimental toxicity 

properties of the parent compound is requested by the regulatory bodies and ToxDelta is able to 

provide this information. In these cases data for the parent compound is available and user 

requires the possible increase of effect caused by an impurity in the structure of a chemical 

instead of the absolute effect of the related compound. If the toxicity level of the impurities is 

similar to the parent compound, there must not be differences in the regulations and laws related 

to the target compound. Conversely, if the impurities have potential hazard effect the compound 

under the investigation must go through more analysis for the hazard assessment. To resolve 

these problems, local tools that are able to measure the relative increase or decrease of the 
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effects are more accurate than absolute de novo predictions. Despite the widespread use of read-

across tools, still the acceptance of the dossiers based on read-across approaches is not 

straightforward. A detailed documentation is required to be provided by the expert. The main 

concept of read-across is constructed by the analysis of two (or more) substances, the target 

compound, with missing data, and the source compound(s) which is assumed to represent the 

properties of the target compound. The already existing read-across tools to this moment are all 

focused on the similarities between the target and the source compounds. The main idea is the 

higher the similarity is, the greater is the likelihood that the two compounds share the same 

biological properties/activities. Indeed, the authorities often discuss the fact that even minor 

differences may provoke crucial change in the properties of the substances. In order to 

complement the existing read-across tools, we put emphasis on the differences between two 

structurally similar compounds, introducing ToxDelta. 

Another noticeable difference between ToxRead and ToxDelta with the other read-across 

programs, is that they do not contain exclusively active SAs, but also inactive SAs. This allows 

the examination of any positive or negative modulations of the effect. To each SA statistical 

characterizations are assigned. These statistical values show the accuracy and p-value of the 

SAs and are calculated based on the number of chemicals containing that SA, and the 

prevalence of the toxic or non-toxic category. Consequently, the tool provides not only the SAs 

present in the compounds, but also the statistical significance of the association of the found SA 

to a certain effect. ToxRead contains data related to mutagenicity and BCF endpoints and 

permits the user to move in different levels of reasoning in a read-across approach. ToxDelta 

offers additional focus on all the dissimilar fragment that may affect the properties and the 

activities of the molecules. 

Currently, a beta version of ToxDelta is freely available on the VEGA platform 

(https://www.vegahub.eu/) and the toxicity endpoint for which this tool can be used is 

mutagenicity. Other endpoints will be added to the software in the future. 

  

https://www.vegahub.eu/
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5.3 Part 3- Metal Oxide NMs Genotoxicity Model 

NMs are complicated and exploring the relationships between their properties and their toxicity 

is challenging comparing to the small organic substances. This study is the first attempt in the 

field of computational nanotoxicology for modelling the genotoxicity of metal oxide NMs.  

Even though sufficient experimental data on genotoxicity of metal oxide NMs are available, 

there is no reliable model (or theory) for the prediction of genotoxicity of these NMs. In the 

present study, (Q)SAR modelling has been conducted based on experimental data obtained from 

a wide range of tests done on metal oxide NMs by in vivo and in vitro methods, mainly the in 

vitro Comet assay. We applied data quality assessment techniques on the experimental data 

based on in vitro models to create a reliable data base for use in computational modelling.  

The results of our WOE assessments confirm that it is important to fill the gaps of physico-

chemical characteristics of NMs used in in vitro Comet assay. In our analysis the range of size 

that has been mostly covered in experimental testing has been reported. We aimed at ranking the 

potential genotoxic category by material class, focusing on the within and between class 

variability. Within our investigation, we examined the role of the size of the same metal 

composition chemical core (size range or 1 to 90 nm) in genotoxicity effect of these chemicals 

as measured by Comet assay, and the possible statistical inferences that can be obtained from 

those data. 

While there are numerous progresses in the field of traditional (Q)SAR analysis, nano-(Q)SAR 

modelling is still at its primitive phase, due to the lack of sufficient knowledge about the 

measurements and modelling standards. The most problematic part of nano-(Q)SAR modelling 

is defining a series of consensus characterizations for the toxicity tests. The standardization of 

NMs characteristics and test methodologies is a great step towards the realization of successful 

nano-(Q)SAR models. 

In this study, for the first time we introduce a genotoxicity model which relates the experimental 

genotoxicity property of a set of metal oxide NMs to the quantum-mechanical calculated 

descriptors of these NMs. We successfully built a classification nano-(Q)SAR model based on a 

simple tree modelling approach. The aim of this model is to identify the most significant 

quantum-mechanical descriptors of the NMs that affect the genotoxicity properties assigned to 
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each NM based on a WOE study applied to a number of peer review resources. To the best of 

our knowledge, this study is the first example of NMs genotoxicity modelling by nano-(Q)SAR 

approach. In consequence of the small number of samples in the data set and the classification 

endpoint, we decided to use all the available data as training set in order to study the variable 

importance, rather than focusing on prediction ability of the model. Even though the model is 

simple and does the classification in a straightforward mode by using only three quantum-

chemical descriptors, it is still based on a small data set and the model validation still needs to 

be accomplished using a test set. Although the initial findings are encouraging, there is a strong 

need to verify and validate the results in order to make them acknowledged by regulatory bodies 

and users. Concerning the restraints, the developed model demonstrates a high potential of 

current chemo-informatic approaches for toxicological assessment of various metal oxide NMs. 

The design and manufacture of safer NMs require detailed analysis. The use of this model 

during the early stages of risk assessment can be very helpful to prioritize the NMs, which may 

impose adverse effects on human health. 

Although the mechanisms of nanoparticles genotoxicity are still not fully discovered but direct 

DNA damage and oxidative stress are considered important 169,159. Direct DNA damage 

mechanism is assumed to be more nano-specific because small nanoparticles may reach the 

nucleus through the nuclear pore complexes 170. However, the observation of larger 

nanoparticles in the nucleus hints that larger nanoparticles may get access to the DNA in 

dividing cells during the nuclear membrane dissemblance 171. Oxidative stress is induced by 

overproduction of ROS, resulting in the loss of normal physiological redox-regulated functions 

in the cells. This triggers DNA damage, unregulated cell signalling, change in cell motility, 

cytotoxicity, apoptosis, and cancer initiation 172. The relationship between DNA adducts and 

oxidation-induced DNA fragmentation and exposure to metal oxide nanoparticles is confirmed 

in numerous studies 173-177. Huang et al. 178 reported a detailed description of the genotoxic 

mechanisms of action of metal oxide nanoparticles. 

Enhancement of systematic risk assessment for NM is one of the main emphasis of the topic-

related (EU)-funded projects. The ongoing “Nanosafety Cluster” aims at identifying key areas 

for further research on risk assessment procedures for NM. The NanoSafety Cluster Working 
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Group 10 outcome was concern-driven integrated approaches for the (eco)-toxicological testing 

and assessment of NM 179. A set of tiers using standardized protocols for preparation and testing 

was introduced. Tier 1 included determining physico-chemical properties, non-testing methods 

such as QSAR and evaluating existing data. Tier 2 consisted of performing a limited set of in 

vitro and in vivo tests that are used to clarify the known risks of a relative concern or to 

highlight the need for performing further tests. A concern-driven guidance for investigating 

potential risks of NM is based on the idea of focusing research on NM that may induce some 

concerns based on exposure, use and already available toxicological information driven form 

non-testing methods ((Q)SAR, pharmacokinetic modelling and read-across). A testing strategy 

should consider the possibility to apply “read-across” methodology, to omit the “non-necessary” 

tests based on the relative category of a NM. The aim is to improve the risk assessment strategy 

in order to require less testing whenever the available information is sufficient to reach a 

conclusion in a decision-making process.  

Based on the factors determined that contribute to the genotoxicity of metal oxide NMs further 

studies will be performed to determine structural features which may help to derive mode of 

action knowledge from the data, i.e. prove a key mechanism that can describe a DNA damage. 
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5.4 Overall Conclusion 

The growing number of chemicals requring risk assessment, envisions increased efficiency in 

toxicity testing and the way toxicity testing is currently conducted may need major changes. In 

fact, acquiring a full set of toxicity results needed for regulatory bodies and decision-making 

procedures at the same pace these chemicals are introduced to the market, is becoming ever 

more challenging. Several approaches have been introduced in recent years, including the use of 

robotic high-throughput screening and computational toxicology studies to overcome this issue 

while decreasing the animal usage and increasing the required time for testing. Additionally, 

relibale non-testing methods, including (Q)SAR and read-across are becoming more and more 

acknowledged by risk assessors and regulators. The OECD experience with non-testing 

methods illustrates that grouping chemicals into categories and filling data gaps by read-across, 

interplolation or extrapolation are a winning strategy. Grouping approach relies on the 

assumption that not all the chemicals belonging to a group need to be tested for all toxic effect, 

and data gaps can be filled by means of read-across and grouping, saving “unnecessary” in vivo 

or in vitro tests. The flexibility and the transparency of the read-across approach make it a 

successful tool in many toxicological fields, especially regulatory decision-making. 

Consequently, these tools contribute to the realization of the Russell and Burch’s “3Rs 

principles” (Replacement, Reduction and Refinement) of animal use in toxicological studies. 

The use of the proposed WOE framework is illustrated by two drugs as case studies for 

mutagenicity assessment (Chapter 6). ToxDelta and ToxRead as two read-across tools are 

powerful means for the exploration of the active and inactive SAs present in the target molecule 

and the similar chemicals used as sources in read-across terms. These new tools help the 

assessors to overcome the shortcomings related to the interpretation of the results of in silico 

prediction models. The results show that the combination of the methodologies: (Q)SAR and 

read-across methods, with ToxRead and ToxDelta develops more interpretable data that can be 

utilized as lines of evidence in a WOE approach. The structure-based carcinogenicity models 

introduced in the first part and the new read-across tool, ToxDelta introduce in the second part, 

are completely in line with the aim of improving the current methodologies in WOE 

approaches.  
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In the third part of the study, the new genotoxicity model developed for the metal oxide NPs 

provides assistance for identifying and prioritizing the NMs which pose toxic effects to human 

health and environment. Safety assessment of NM and their modifications (shape, size, surface, 

coating, etc.) needs a full-blown testing program for each NM. This leads to a huge amount of 

testing with their relative costs and testing time. Some hazard information of NM can be 

deduced from the similar bulk materials or similar NM. In general, read-across and category 

approaches are used to predict properties and/or biological effects of chemicals. This is a way to 

fill the data gaps to characterize the adverse effects of NM. The WOE approach is also an 

effective tool for the integration of the conflicting and different results collected from the 

literature. From a regulatory point of view, the European projects which aim at introducing new 

strategies for further investigation on NM toxicity, point at a concern-driven guidance. This 

concern-driven guidance for investigating potential risks of NM is based on the idea of focusing 

research on materials that may induce some concerns based on exposure, use and toxicological 

information driven form non-testing methods ((Q)SAR, pharmacokinetic modelling and read-

across). Whenever possible, a testing strategy should consider the application of “read-across” 

methodology, to reduce the number of assays based on the potential risk associated with a NM. 

The aim is to improve the risk assessment strategy of NM in decision-making processes, and we 

believe that our classification tool can be used as an effective QSAR model to prioritize the 

metal oxide NM with high concern. 

The main goal of (Q)SAR and read across studies is to improve the risk assessment strategy in 

order to require less testing whenever developing new data is feasible. Using data integration 

approaches can help scientists and regulators in decision-making processes, and enable them to 

reach conclusions. The results obtained during my studies and presented in this dissertation are 

useful progresses in the field of structure-based genotoxicity non-testing methods. In particular, 

new approaches to read-across studies, achieved and implemented during my Ph.D studies, 

provide new scientific contributions to a transparent and structured framework for chemicals 

and NM risk assessment. 
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CHAPTER 6 

6. Example of the Use of Non-Testing Methods within a Weight of Evidence 

Framework 

In this section two case studies are selected for demonstrating the use of non-testing methods 

within a WOE approach. The prediction results for mutagenicity effect of a target compound are 

considered as pieces of evidence, while the objective is integrating these results to reach a 

conclusion on mutagenicity of the chemical under investigation. These pieces of evidence form 

a line of evidence to be used in further investigations together with other types of lines of 

evidence to help the assessors to support an adequate answer to a toxicity question. Two drugs 

are selected for the present practice: Valproic acid and Diclofenac. 

The evaluation and integration of the in silico model results in order to develop a conclusion in 

a WOE approach can be performed in two ways: i) first evaluating the (Q)SAR and read-across 

results as reported by the prediction models and integrating the results, considering the 

reliability, relevance and consistency of each prediction, ii) analysing the structurally similar 

compounds indicated by the in silico software, as most similar chemicals to the target chemical 

under investigation in order to evaluate the relevance and the reliability of the similar chemical 

to be used in a read-across way. In the present study, we employed both methodologies to the 

pieces of evidence. First we considered the prediction results of each individual in silico model 

with their corresponding applicability domain index as a measure of reliability. Then the similar 

chemicals indicated by different in silico models are taken into consideration for a further 

investigation to assess their relevance in terms of read-across. This assessment is based on their 

structure characterization or the presence or absence of active or inactive mutagenic rules and 

the similarities and dissimilarities between the target and the source molecules. At the end the 

consistency of the various results has been evaluated, together with their reliability and 

relevance to develop a conclusion for the mutagenicity effect of each drug. 
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6.1 First Case Study: Valproic Acid 

For the first case study we chose Valproic acid (Figure 9-page 103) as a target molecule for its 

mutagenicity assessment (as assessed through bacterial reverse mutation test) by non-testing 

methods, such as (Q)SAR models and read-across. For the estimation of mutagenicity we opted 

two platforms: VEGA (http://www.vega-qsar.eu) and T.E.S.T. 

(http://www.epa.gov/nrmrl/std/qsar/qsar.html#TEST). The VEGA platform contains four 

mutagenicity models (CAESAR, SARpy, ISS and KNN) and a consensus model which makes a 

conclusion on the basis of the four models predictions. The T.E.S.T. platform encloses three 

mutagenicity methods (Hierarchical, FDA and Nearest Neighbour). The Hierarchical and FDA 

methods are (Q)SAR structure-based methods, while Nearest neighbour is a read-across model. 

The mutagenicity property of the molecule under investigation is also assessed by ToxRead 

(http://www.toxread.eu/), to provide additional support for the predictions. Further T.E.S.T.’s 

outcome provides a few examples of similar molecules to the target molecule along with their 

similarity index, experimental and predicted values to be examined by the user. In the present 

practice, we applied both methods to our investigation in a WOE approach. Here we reported 

some of these similar examples presented by T.E.S.T. and evaluated their structural similarity 

and dissimilarities and the effect of the dissimilar fragments in the properties of the source 

molecules comparing with the target.  

 

 

Figure 9. Valproic acid chemical structure (CAS number: 99-66-1) 

  

http://www.vega-qsar.eu/
http://www.epa.gov/nrmrl/std/qsar/qsar.html#TEST
http://www.toxread.eu/
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Table 14. Summary of the prediction results of non-testing models for Valproic acid  

Software Model/method Experimental 

value 

Results Predicted value Applicability Domain 

Index 

VEGA CONSENSUS  NON-

Mutagenic 

 
Non-mutagenic score: 

0.9 

CAESAR N/A** NON-

Mutagenic 

 
0.98 

SARpy/IRFMN N/A NON-

Mutagenic 

 
0.98 

ISS N/A NON-

Mutagenic 

 
0.90 

KNN/Read-

across 

N/A NON-

Mutagenic 

 
0.96 

T.E.S.T.* Consensus  
 

NON-

Mutagenic 

-0.04 Internally checked 

Hierarchical  Non-mutagenic NON-

Mutagenic 

-0.01 Internally checked 

FDA  Non-mutagenic NON-

Mutagenic 

-0.1 Internally checked 

Nearest 

neighbour  

Non-mutagenic NON-

Mutagenic 

0 Internally checked 

ToxRead Read-across  NON-

Mutagenic 

 N/A 

*the test chemical was present in the training set. 

**Not available 

 

Table 14 (page 104) shows the predictions of all models. All the models of VEGA and all the 

methods of T.E.S.T. predicted the substance as non-mutagenic. The applicability domain 

indices for each model in present in the table and they illustrate the level of reliability for each 

prediction. All the models agree on the non-mutagenic effect of the chemical. These results are 

based on experimental values, structurally similar compounds and the results of (Q)SAR 

models. The target substance was present in the training set of T.E.S.T. as non-mutagenic. 

Among with the predictions of all the models and the consensus method of T.E.S.T. also a 
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number of similar substances in the training set and external test set are reported in the outcome 

panel. For sake of example we reported four similar substances identified by T.E.S.T. in Table 

15 (page 106). For each similar substance the corresponding similarity coefficient, experimental 

value and predicted values are reported. Oryzalin metabolite and 2-[Ethyl(nitroso)amino]ethanol 

are two similar substances with high similarity coefficient (0.74 and 0.81, respectively) which 

reports positive mutagenicity effect for the experimental and also predicted values. The reason 

for the conflicting mutagenicity result for these two molecules is evaluated by ToxDelta. 2-

[Ethyl(nitroso)amino]ethanol (CAS 13147-25-6) (mutagenic) is selected to be compared to 

Valproic acid (non-mutagenic). Figure 10 (page 107) reports the outcome of ToxDelta for the 

MCS extraction and dissimilarities identification. After the subtraction of the MCS form the 

target and the source substances, the dissimilar substructures are shown in the outcome panel. 

The two dissimilar substructures extracted from the target substance do not present any 

mutagenic potentiality, but the dissimilar substructure extracted from the source molecule is 

known to be an active mutagenicity rule in the CRS4 mutagenicity rule base with accuracy=1.  
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Table 15. Experimental and prediction values for some examples of similar chemicals to Valproic 

acid (CAS number: 99-66-1) in the training set and test set of T.E.S.T. 

CAS Structure 
Similarity 

Coefficient 

Experiment

al value 
Predicted value 

621-64-7 

 

0.81 1.00 0.97 

110-58-7 

 

0.79 0.00 -0.02 

106-27-4 

 

0.74 0.00 -0.00 

13147-25-6 

 

0.74 1.00 0.90 

  

file:///C:/Users/Agolbamaki/Documents/ToxRuns/images/621-64-7.png
file:///C:/Users/Agolbamaki/Documents/ToxRuns/images/110-58-7.png
file:///C:/Users/Agolbamaki/Documents/ToxRuns/images/106-27-4.png
file:///C:/Users/Agolbamaki/Documents/ToxRuns/images/13147-25-6.png
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A       B 

Figure 10. A) ToxDelta outcome for the comparison between Valproic acid (molecule #1) and 

2-[Ethyl(nitroso)amino]ethanol (CAS 13147-25-6) (molecule #2) The maximum common 

substructure is at the top of the panel. The dissimilar substructures are listed below their 

corresponding molecule. B) The identified dissimilar substructure extracted from the molecule 

#2 is a mutagenicity structural alert in the CRS4 dataset of mutagenicity ruleset with 

accuracy=1.  
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Figure 11. ToxRead chart for the target molecule Valproic acid (CAS number: 99-66-1). The 

numbers refer to CAS identifiers. Straight arrows link the target chemical to rules, while curved 

arrows link to chemicals 

 
ToxRead as a read-across tool can integrate the results from (Q)SAR and read-across models in 

a WOE approach. While some of the similar substances identified by T.E.S.T. are not 

structurally so similar to Valproic acid, the similar substances identified by ToxRead in the 

process of read-across are more compatible with the target (Figure 11-page 108). Indeed, the 

target chemical does not contain any structural rule for mutagenicity. The presence of 

nitrosamine substructure in the source substances triggers a remarkable difference in biological 

effect of the molecules form the mutagenicity point of view. This crucial differences and their 

role in reducing or amplifying toxicity effects of the molecule (not only mutagenicity but also 

other endpoints) can be precisely established by ToxDelta and can have an important role in the 

process of decision-making and the expert judgement in terms of WOE. Indeed, risk assessors 

can make use of this tool in order to minimize or even eliminate the eventual uncertainties 
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during the assessments with non-testing methods. Considering the differences between Valproic 

acid and the similar compounds identified by T.E.S.T. we can draw the overall conclusion that 

the substance under investigation is non-mutagenic. Table 16 (page 109) is the tabular format 

for summarizing WOE.assessment of Valproic acid in a qualitative way. 

Table 16. Optional tabular format for summarizing weight of evidence assessment of Valproic 

acid 

Question Hazard identification 

Assemble the evidence Select evidence Nine (Q)SAR models from two in silico 

platforms, a read-across tool, ToxRead and a 

tool to investigate the dissimilarities between 

the similar compounds and the target, 

ToxDelta, are chosen for testing mutagenicity 

effect of Valproic acid. The used platforms 

provide both predicted values from several 

models, and indicate similar substances with 

experimental values, which can be used for 

read-across. 

Lines of evidence All the models estimated the chemical as non-

mutagen. The exception were a few examples 

of similar compounds in the T.E.S.T prediction 

outcome. To evaluate the relevance of these 

similar molecules in a read-across approach we 

used ToxDelta. The dissimilar substructures 

between the target and the source molecules 

are investigated. Valproic acid do not contain 

any mutagenic structural alert, so the similar 

compounds assigned by T.E.S.T. to the target 

are not relevant for the assignment of the same 

property to the target molecule. 

Weight the evidence Methods VEGA provides applicability domain index 

that is a sort of quantitative measurement of 

reliability and values higher than 0.8 are 

considered more reliable. T.E.S.T. applies a 

filter to eliminate not reliable predictions. 

ToxRead indicates the structural alerts found in 

the target which are associated with the effect 

and an arbitrary number of similar compounds 

which share that rule with the target. ToxRead 

also reveals the structure alerts present in the 

source compounds, and by using ToxDelta user 

can check if these active moieties belong to the 

dissimilarities between the two molecules. For 

Valproic acid this further evaluation is 

performed on the similar compounds identified 

by T.E.S.T. to check the relevance and the 

reliability of the similar compounds to be used 

in terms of read-across.  
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Results All the predictions obtained from VEGA and 

T.E.S.T.are reliable in terms of applicability 

domain index. No structural alert in the 

structure of Valproic acid is identified by 

ToxRead. A further evaluation is performed on 

the similar compounds suggested by T.E.S.T. 

with contrary mutagenic effect using ToxDelta 

to check the relevance of the similar 

compounds. The results showed that the 

potential structure alert found in the source 

compound was not present in Valproic acid, 

and therefore is not relevant. 

Integrate the evidence Methods Considering the reliability and relevance of 

each estimation obtained from individual 

mutagenicity prediction models, the results are 

integrated, together with the consistency of the 

predictions. These results can be used by an 

expert judgement to reach a conclusion on the 

probability of mutagenicity effect. 

Results All the in silico methods used in this practice 

are in concordance with high level of reliability 

and relevance. Considering the evidence 

obtained from these predictions, it can be 

concluded by expert judgement that the target 

compound is not mutagenic. 
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6.2 Second Case Study: Diclofenac 

 

Figure 12. Diclofenac, CAS number: 15307-86-5 

The second case study presented in this dissertation is Diclofenac (Figure 12-page 111) (CAS 

number: 15307-86-5). Herein the use of WOE approach when information is derived from non-

testing methods, such as (Q)SAR and read-across is described. For the estimation of 

mutagenicity we used two in silico platforms: VEGA (http://www.vega-qsar.eu) and T.E.S.T. 

(http://www.epa.gov/nrmrl/std/qsar/qsar.html#TEST). Also ToxRead (http://www.toxread.eu) 

as a read-across tool is used for the further investigation of the target molecule. Table 17 (page 

112) shows all the predictions of the (Q)SAR models used in this study. All the VEGA models 

estimate the compound as non-mutagenic with applicability domain index higher than 0.77, 

except KNN/read-across with applicability domain equal to 0.65. The VEGA Consensus model 

predicts the target substance as non-mutagenic based on the presence of experimental value in 

two models (CAESAR and SARpy/IRFMN) even though one of the models outcome does not 

agree with the other. The VEGA models whenever the experimental value is available for a 

molecule, give the experimental value as an output of the prediction, while T.E.S.T. presents the 

experimental value along with the results of the predictions. Contrarily, T.E.S.T. overall 

estimation for Diclofenac is mutagenic. The compound is not present in the training set either in 

the external test set of T.E.S.T. The consensus overall result of T.E.S.T. is the result of the 

integration of the predictions of the three models predictions (Hierarchical, FDA and Nearest 

neighbour). The Hierarchical model predicts the substance as non-mutagenic, while FDA and 

Nearest neighbour predictions are mutagenic. Together with these predictions also two tables of 

similar compounds extracted from the training and test sets are provided by T.E.S.T. Table 18 

(page 113) reports the first two similar chemicals obtained from this table of similar 

compounds, with their similarity coefficient, experimental and predicted values. We selected the 

http://www.vega-qsar.eu/
http://www.epa.gov/nrmrl/std/qsar/qsar.html#TEST
http://www.toxread.eu/
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first chemical similar to Diclofenac: N-[(2,4,5-Trichlorophenoxy)acetyl]-L-aspartic acid (CAS 

number: 66789-80-8), to further analyse the similarities and the differences between this 

chemical and the target chemical making use of ToxDelta. 

Table 17. Summary of the prediction results of non-testing models for Diclofenac 

Software Model/method Experimental 

value 

Results Predicted value Applicability Domain 

Index 

VEGA CONSENSUS  Non-mutagenic   

CAESAR Non-mutagenic Non-mutagenic  1 

SARpy/IRFMN Non-mutagenic Non-mutagenic  1 

ISS N/A* Non-mutagenic  0.772 

KNN/Read-

across 

N/A Mutagenic  0.652 

T.E.S.T.* Consensus  
 

Mutagenic 0.53 Internally checked 

Hierarchical  N/A Non-Mutagenic 0.40 Internally checked 

FDA  N/A Mutagenic 0.51 Internally checked 

Nearest 

neighbour  

N/A Mutagenic 0.67 Internally checked 

ToxRead Read-across  4 SAs:Non-

mutagenic 

1 SA: 

mutagenic 

 N/A 

*Not availbale 
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Table 18. Experimental and prediction values for N-[(2,4,5-Trichlorophenoxy)acetyl]-L-aspartic 

acid (CAS 66789-80-8) and N-[4-(4-Amino-3-chlorobenzyl)-2-chlorophenyl]acetamide (CAS 

91575-28-9) as examples of similar chemicals to Diclofenac in the outcome of T.E.S.T. 

CAS Structure 
Similarity 

Coefficient 
Experimental value Predicted value 

66789-80-8  

 

0.61  0.00  0.02 

91575-28-9 

 

0.70 1.00 0.80 

 

As shown in Table A.4 N-[(2,4,5-Trichlorophenoxy)acetyl]-L-aspartic acid (CAS 66789-80-8) 

and N-[4-(4-Amino-3-chlorobenzyl)-2-chlorophenyl]acetamide (CAS 91575-28-9) are the most 

similar chemicals identified by T.E.S.T (similarity coefficient: 0.61 and 0.70, respectively). 

While the experimental value and the predicted value of the first molecule are non-mutagenic, 

mutagenicity effect of the second molecule is indicated as positive. ToxDelta is used to 

investigate the structural similarities and dissimilarities, and the presence of mutagenic or non-

mutagenic rules in Diclofenac and each similar substance. Figure 13 (page 115) shows the 

results of ToxDelta for the comparison between the target and each similar molecule. The MCS 

extracted from the two structures is illustrated on the top of the panel, while the dissimilar 

substructures of each molecule are listed below the corresponding molecules. In the case of the 

mutagenic similar compound (CAS 91575-28-9), on the right part of the figure, there are four 

fragments not in common between the target and the similar compound, two fragments present 

in the target, and two in the similar compound. The two fragments related to Diclofenac appear 

also as fragments in the comparison with the first similar compound, and we know that both 

Diclofenac and the similar compound are not toxic. Thus, we focus our attention to the other 

two fragments. The fragment CH3-C=O is not associated with any mutagenic activity. This can 

be verified for instance with ToxRead, studying Acetone. Figure 14 (page 116) reports the 
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dissimilar substructure in the target and the second similar chemical (CAS 91575-28-9) with 

mutagenic result. The presence of p-toluidine may trigger mutagenicity in a chemical. We also 

notice that the fragment Diphenylamine present in Diclofenac is a non-mutagenic SA.  
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(a)                                                                          (b) 

Figure 13. ToxDelta outcome for the comparison between Diclofenac and a) N-[(2,4,5-

Trichlorophenoxy)acetyl]-L-aspartic acid (CAS 66789-80-8), b) N-[4-(4-Amino-3-

chlorobenzyl)-2-chlorophenyl]acetamide (CAS 91575-28-9)  
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Figure 14. ToxDelta outcome of the dissimilar substructure remaining after the subtraction of the 

MCS and the structural rules identified inside the dissimilar substructure of N-[4-(4-Amino-3-

chlorobenzyl)-2-chlorophenyl]acetamide (CAS 91575-28-9) (molecule #2)  

 
Additionally, Diclofenac is analyzed by ToxRead to identify all the SAs present in the 

molecular structure, either mutagenic or non-mutagenic, together with the most structurally 

similar substances present in the database of ToxRead. Figure 15 (page 117) shows the outcome 

chart of ToxRead with the target substance in the middle, encircled by three similar substances 

(two mutagenic and one non-mutagenic). In addition, six SAs are identified and are connected 

to the target by straight arrows. These SAs consist of five non-mutagenic rules and one 

mutagenic rule. The list of the identified rules is reported in Table 19 (page 118). In fact, the 

mutagenic rule identified by ToxRead (MNM37) is a substructure of the non-mutagenic rule 

(SM197) present in the target substance, similar to the mutagenic rule identified by ToxDelta 

(Figure 16-page 118). The two mutagenic similar compounds indicated by ToxRead are 

analysed by ToxDelta for investigating the dissimilarities (Figure 17-page 118). Both similar 

chemicals contain Phenylamine SA as a mutagenic rule. As implied in the preceding section, 

this active SA is a part of a bigger SA identified in Diclofenac with non-mutagenic effect. This 

means the effect of the smaller SA is overcome by the parent SA which has a larger overlap 
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with the target compound. This important difference between the target and the similar 

compounds explains the different mutagenicity effect by means of a structure-based method, 

analysing the active and inactive rules inside the structure of the chemicals. Table 20 (page 119) 

is the tabular format for summarizing WOE assessment of Diclofenac in a qualitative way. 

 

Figure 15. ToxRead chart for the target molecule Diclofenac. The target substance molecule is 

shown on the right side and the identified non-mutagenic and mutagenic rules are listed below 
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Table 19. The mutagenicity and non-mutagenicity rules identified by ToxRead in the structure of 

Diclofenac 

Name Effect Source Experimental 

accuracy 

SMARTS P-value 

SM183 Non-mutagenic SARpy 0.75 c1(cc(ccc1)Cl)Cl <10e-6 

CRM6 Non-mutagenic CRS4 0.55 CC(=O)O 0.00075 

CRM60 Non-mutagenic CRS4 0.72 c1cc(cc(c1)Cl)Cl 0.00009 

SM195 Non-mutagenic SARpy 0.68 C(=O)(O)Cc1ccccc1 0.00511 

SM197 Non-mutagenic SARpy 0.65 N(c1ccccc1)c2ccccc2 0.00477 

MNM37 Mutagenic IRFMN 0.68 N- Ar <10e-6 

 

Figure 16. (a) SM197, Diphenylamine: non-mutagenic rule, (b) MNM37, Phenylamine: 

mutagenic rule identified by ToxRead 

 

 

 

 

 

 

 

 

Figure 17. The two similar chemicals to Diclofenac extracted by ToxRead with mutagenic effect 
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Table 20. Optional tabular format for summarizing weight of evidence assessment of 

Diclofenac 

Question Hazard identification 

Assemble the evidence Select 

evidence 

Nine (Q)SAR models from two in silico platforms, 

a read-across tool, ToxRead and a tool to 

investigate the dissimilarities between the similar 

compounds and the target, ToxDelta, are chosen for 

testing mutagenicity effect of Diclofenac. The used 

platforms provide both predicted values from 

several models, and indicate similar substances 

with experimental values, which can be used for 

read-across. 

 Lines of 

evidence 

The consensus model of VEGA estimated the 

chemical as non-mutagen. All the models in VEGA 

except KNN predicted the target as non-mutagenic. 

The consensus model of T.E.S.T. predicted the 

target as mutagenic. All the models in T.E.S.T. 

except Hierarchical predicted the compound as 

mutagenic with moderate predicted values. A 

number of similar compounds are suggested by 

T.E.S.T. The first two similar compounds are 

selected for a further investigation. The 

dissimilarities between the target and each similar 

compound is evaluated. Further analysis by 

ToxDelta, shows the presence of phenylamine in 

the similar mutagenic chemical which trigger the 

mutagenic effect. Although Phenylamine as a 

mutagenic SA with accuracy=0.68 exist in 

Diclofenac, it is a part of a bigger SA 

(Diphenylamine) with non-mutagenic effect. Due 

to this difference, the similarity of this chemical is 

not relevant to be used in a read-across way. 

Further evaluation by ToxRead, indicates five non-

mutagenic rules and one mutagenic rule in the 

structure of the target. Similarly, in the results of 

ToxRead the mutagenic SA is Phenylamine which 

is present in the bigger non-mutagenic SA, 

Diphenyamine.  

Weight the evidence Methods VEGA provides ADI that is a sort of quantitative 

measurement of reliability and values higher than 

0.8 are considered more reliable. T.E.S.T. applies a 

filter to eliminate not reliable predictions. ToxRead 

indicates the structural alerts found in the target 

which are associated with the effect and an 

arbitrary number of similar compounds which 

share that rule with the target. ToxRead also 

reveals the SAs present in the source compounds, 

and by using ToxDelta user can check if these 

active moieties belong to the dissimilarities 

between the two molecules. For Diclofenac a 

further evaluation is performed on the similar 

compound indicated by T.E.S.T. and ToxRead to 

check the relevance and the reliability of the 
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similar compounds to be used in terms of read-

across.  

 Results All the predictions obtained from VEGA and 

T.E.S.T. are reliable in terms of ADI. A further 

evaluation is performed on the similar compound 

suggested by T.E.S.T. and ToxRead to check the 

relevance of the similarity to be used in read-across 

terms. Five non-mutagenic and one mutagenic rules 

in the structure of Diclofenac are identified by 

ToxRead. The results of dissimilarities indicated 

the presence of a mutagenic SA in Diclofenac 

which is a substructure of a bigger non-mutagenic 

SA, and therefore its toxic effect is not relevant. 

Integrate the evidence Methods Inconsistency is present in the results of the two 

main platforms. ToxDelta and ToxRead both 

indicate the presence of a mutagenic rule in the 

structure of Diclofenac, but VEGA estimates the 

compound as non-mutagenic based on two 

experimental values present in its models. High 

ADI are assigned to individual predictions of the 

models, the conflict in the results is assessed by 

ToxDelta. Further investigation on the similar 

compounds suggested by T.E.S.T. and ToxRead is 

performed to evaluate the similarities and the 

differences between each pair of molecules and to 

reach a conclusion based on read-across. The 

reliability and relevance of all the similar 

compounds can be evaluated in this way. The non-

relevance of phenylamine SA in the target makes 

the process of decision-making easier. Also the 

expert may find confidence in experimental results 

(in this case non-mutagenic effect). 

 Results The in silico methods used in this practice are not 

in concordance. The similar compounds suggested 

are useful for defining the reliability and relevance. 

Considering the evidence obtained from these 

predictions, it can be concluded that Diclofenac is 

not mutagenic. 
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Appendices 

Metal Oxide nanomaterials Genotoxicity Model Supplementary Information 

Table S1 A. Assessment of the quality of the data points. Adherence to the minimum comet assay requirements (yellow boxes) and minimum physicochemical 

characterization (green boxes) of nanomaterials was evaluated by answering the questions in the header. Each data point represents a study reporting comet assay 

results for one or more metal oxides with the same or different core composition. The comet assay procedure and the characterization was done in the same way for 

nano metal oxides of the same data point. For a data point, genotoxicity results of the test may differ between the metal oxides with different core composition. If the 

question in the header was answered in the data point, then it is assigned by “Y” and if not by “N”.  
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Fe2O3 1 Alkaline None Y Y Y Y Y Y Y Y Y Y Y Y Auffan et 

al., 2006 

- 

TiO2 1 Alkaline None Y Y Y Y Y Y Y Y Y Y Y Y Barillet et 
al., 2010 

+ 

TiO2 1 Alkaline FPG Y Y Y Y Y Y Y Y Y Y N N Shukla et 

al., 2011 

+ 

TiO2 1 Alkaline FPG Y Y Y Y Y Y Y Y Y Y Y Y Shukla et 
al., 2013 

+ 

TiO2 1 Neutral None Y Y Y Y Y Y Y Y Y Y Y Y Saquib et 

al., 2012 

+ 

TiO2 1 Alkaline 
EndoIII 

and 8oxoG 
Y Y Y Y Y Y Y Y Y Y N Y Woodruff 

et al., 2012 

+ 

ZnO 1 Alkaline 8oxodG Y Y Y Y Y Y Y N Y Y N N 
Valdiglesia
s et al., 

2013 

+ 

ZnO 1 Alkaline None Y Y Y Y Y Y Y Y Y Y Y Y Sharma et 
al., 2009 

+ 

MgO 1 - - Y Y Y Y Y Y Y Y Y Y Y Y Mahmoud 

et al., 2016 
+ 

TiO2 2 Alkaline None Y Y Y Y Y Y N Y Y Y Y N Roszak et 

al., 7 

- 

TiO2 2 Alkaline None Y Y Y Y Y Y N N Y Y Y Y Chen et al., 

Febbraio 5 

- 

TiO2 2 Alkaline 
FPG and 

EndoIII 
Y Y Y Y Y Y N N Y Y Y N Reeves et 

al., 2008 

+ 

TiO2 2 Alkaline None Y Y Y Y Y Y N Y Y Y Y Y Rajapakse 
et al., 2013 

+ 

TiO2 2 Alkaline None Y Y Y Y Y Y N Y Y Y Y Y Prasad et 
al., 2013 

+ 
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ZnO 2 Alkaline None Y Y Y Y Y Y N Y Y Y Y N 
Hackenberg 
et al., 

2011b 

+ 

Al2O3 2 Very alkaline None Y Y Y Y Y Y N N Y Y N N Kim et al., 
2009 

+ 

Bi2O3 2 Alkaline None Y Y Y Y Y Y N N Y Y Y N Liman, 

2013 

+ 

CeO2 2 Very alkaline None Y Y Y Y Y Y N Y Y Y Y Y De Marzi et 
al., 2013 

+ 

SiO2 2 Alkaline None Y Y Y Y Y Y N N Y Y Y N Choi et al., 

2011 

+ 

TiO2 2 Neutral 
FPG and 
EndoIII 

Y Y Y Y Y Y N Y Y Y Y Y Petković et 

al., 2011a 

+ 

ZnO 2 Alkaline 
FPG and 

EndoIII 
Y Y Y Y Y Y N Y Y Y Y N Demir et 

al., 2014b 

+ 

SiO2 2 Alkaline FPG Y Y Y Y Y Y N Y Y Y Y Y Gehrke et 
al., 2011 

+ 

TiO2 2 Alkaline None Y Y Y Y Y Y N Y Y Y Y Y 
Bernardesc

hi et al., 
2010 

+ 

TiO2 2 Alkaline None Y Y Y Y Y Y N Y Y Y Y N Falck et al., 
2009 

+ 

TiO2 2 Alkaline FPG Y Y Y Y Y Y N Y Y Y Y Y Petković et 

al., 2011b 

+ 

TiO2, ZnO 2 Alkaline FPG Y Y Y Y Y Y N Y Y Y Y Y 
Kermaniza

deh et al., 

2013 

TiO2 (+), 

ZnO (+) 

ZnO 2 Alkaline None Y Y Y Y Y Y N Y Y Y Y N Alarifi et 

al., 2013c 

+ 
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V2O3 2 Alkaline None Y Y Y Y Y Y N Y Y Y Y N Lansiedel et 

al., 2009 

+ 

V2O5 2 Alkaline None Y Y Y Y Y Y N Y Y Y Y N Lansiedel et 
al., 2009 

- 

SiO2 3 Alkaline None Y N Y Y Y Y N N Y Y Y N Wang et al., 

2007a 

- 

TiO2, ZnO 3 Alkaline None Y N Y Y Y Y N Y Y Y Y N Demir et 
al., 2014a 

TiO2 (+), 

ZnO (+) 

TiO2, ZnO 2 Very alkaline None Y N Y Y Y Y N N Y Y N N Gopalan et 

al., 2009 

TiO2 (+), 
ZnO (+) 

TiO2 2 Alkaline None Y N Y Y Y Y Y Y Y Y Y N Prasad et 

al., 2014 

+ 

Al2O3, 

TiO2, ZrO2 
2 Alkaline 

FPG and 

EndoIII 
Y Y N Y Y Y N Y Y Y Y Y Demir et 

al., 2013 

Al2O3 (-), 
TiO2 (+), 

ZrO2 (-) 

CuO 3 Alkaline 
FPG and 

EndoIII 
Y Y N Y Y Y N Y Y Y Y Y 

Di 
Bucchianic

o et al., 

2013 

+ 

ZnO 2 Alkaline None Y Y N Y Y N Y Y Y Y N Y Mu et al., 

2014 

+ 

TiO2 2 Alkaline 8oxodG Y Y N Y Y N Y Y Y Y Y Y Jugan et al., 

2012 

+ 

CuO, 

TiO2, ZnO 
2 Alkaline FPG Y Y N Y Y Y Y Y Y Y Y Y Bayat et al., 

2014 

CuO (+), 

TiO2 (+), 
ZnO (+) 

SiO2 2 Alkaline None Y Y N Y Y Y Y Y Y Y Y N Barnes et 
al., 2008 

- 

TiO2 2 Alkaline None Y Y N Y Y Y Y Y Y Y Y Y 
Hamzeh 

and 

Sunahara, 3 

- 
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TiO2 2 Alkaline None Y Y Y Y Y N N Y Y Y Y N Kang et al., 

2008 

- 

CuO, 
Fe2O3, 

Fe3O4, 

TiO2 

2 Alkaline FPG Y Y Y Y Y N N Y Y Y Y Y 
Karlsson et 

al., 2009 

CuO (+), 
Fe2O3 (-), 

Fe3O4 (-), 

TiO2 (+) 

SiO2, ZnO 2 Alkaline None Y Y Y Y Y N N Y Y Y Y Y Yang et al., 

2009 

SiO2 (+), 

ZnO (+) 

CuO, 

Fe2O3, 

Fe3O4, 
TiO2, ZnO 

2 Alkaline FPG Y Y Y Y Y N N Y Y Y Y Y 

Karlsson et 

al., 2008 

CuO (+), 
Fe2O3 (-), 

Fe3O4 (-), 

TiO2 (+), 
CuO (-), 

ZnO (+) 

Fe3O4 2 Alkaline None Y Y Y Y Y N N Y Y Y Y N Ahamed et 
al., 2013 

+ 

CuO 2 Alkaline None Y Y Y Y Y N N Y Y Y Y Y Isani et al., 
Gennaio 11 

- 

Fe2O3 2 Alkaline None Y Y Y Y Y N N Y Y Y Y Y Freyria et 

al., 2012 

+ 

SiO2 2 Very alkaline None Y Y Y Y Y N N N Y Y N N Wang et al., 

2007b 

- 

TiO2 2 Very alkaline None Y Y Y Y Y N N N Y Y N N Wang et al., 

2007c 

- 

CeO2 2 Alkaline None Y Y Y Y Y N N Y Y Y Y Y Kumari et 

al., 2014 

+ 

CeO2 2 Alkaline None Y Y Y Y Y N N Y Y Y Y Y Auffan et 
al., 2009 

+ 

Co3O4 2 Very alkaline None Y Y Y Y Y N N Y Y Y Y Y Alarifi et 
al., 2013b 

+ 
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Fe3O4 2 Alkaline None Y Y Y Y Y N Y Y Y Y N Y Könczöl et 

al., 2011 

+ 

SiO2 2 Alkaline 8oxodG Y Y Y Y Y N Y Y Y Y N N Jin et al., 
2007 

- 

TiO2 2 Alkaline None Y Y Y Y Y N Y Y Y Y Y Y Ghosh et 

al., 2013 

+ 

Fe2O3, 

Fe3O4, 
TiO2 

2 Alkaline FPG Y Y Y Y Y N Y Y Y Y Y Y Guichard et 
al., 2012 

Fe2O3 (-), 

Fe3O4 (-), 
TiO2 (+) 

TiO2, ZnO 2 Alkaline FPG Y Y Y Y Y N Y N Y Y Y Y 
Kermaniza

deh et al., 

2012 

+ 

TiO2 2 Alkaline None Y Y Y Y Y N Y Y Y Y N N Ghosh et 

al., 2010 

+ 

CuO 2 Alkaline None Y Y Y Y Y N Y Y Y Y Y Y Alarifi et 

al., 2013a 

- 

SiO2 2 Alkaline 
FPG and 

8oxoG 
Y Y Y Y Y N Y N Y Y N Y Gonzalez et 

al., 2010 

- 

TiO2 2 Very alkaline 8oxodG Y Y Y Y Y N Y N Y Y Y Y Wan et al., 
2012 

- 

SiO2 2 Alkaline FPG Y Y Y Y Y N Y Y Y Y Y Y Lankoff et 
al., 2013 

- 

ZnO 2 Alkaline None Y Y Y N Y N Y Y Y Y Y N Sarkar et 

al., 2014 

+ 

TiO2 2 Alkaline None Y Y Y Y Y N N Y Y Y Y Y 
Hackenberg 

et al., 

2011a 

- 

MgO, 

SiO2, 
TiO2, ZnO 

2 Alkaline FPG Y Y N Y Y N Y Y Y Y Y Y 
Gerloff et 

al., 2009 

MgO (-), 
SiO2 (-), 

TiO2 (+), 

ZnO (+) 
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Fe3O4 3 Alkaline None Y N N Y N Y Y Y Y Y Y N Gomaa et 

al., 2013 

+ 

CeO2 3 Alkaline None Y N Y N Y Y N Y Y Y Y Y Courbiere 
et al., 2013 

+ 

TiO2 3 Alkaline FPG Y Y N N Y N Y Y Y Y Y N Gurr et al., 

2005 

+ 

TiO2 3 Alkaline None Y Y N Y Y N N Y Y Y N N Botelho et 
al., 2014 

+ 

CuO 3 Alkaline None Y Y N Y Y N N Y Y Y Y Y Midander et 

al., 2009 

+ 

Fe2O3, 
TiO2 

3 Alkaline 8oxodG Y Y N Y N N Y Y Y Y Y Y 
Bhattachary
a et al., 

2009 

Fe2O3 (-), 
TiO2 (+) 

SiO2 3 Alkaline None Y Y Y N Y N N Y Y Y Y Y Gong et al., 

2012 

- 

CeO2 NR Alkaline None Y N N Y Y N N Y Y Y N N Pierscionek 
et al., 2010 

- 

CeO2, 

Co3O4, 

Fe3O4, 
NiO, SiO2 

NR Alkaline FPG Y N N Y Y N N Y Y Y Y Y 

Kain et al., 

2012 

CeO2(+), 

Co3O4 (+), 
Fe3O4 (+), 

NiO (+), 

SiO2 (-) 

SnO2 NR Alkaline None Y N Y N Y N N Y Y Y N Y 
Khan and 

Husain, 

2014 

- 

Fe3O4 NR _ _ _ _ _ _ _ _ _ _ _ _ _ _ Hong et al., 

2011 

excluded 

TiO2 NR Alkaline 
FPG and 

EndoIII 
Y N N Y N N N Y Y Y Y Y Sekar et al., 

2014 

+ 
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Table S1 B. Assessment of the size measurement and crystallographic characterization as was reported in the related literature sources: transmission electron 

microscopy (TEM), dynamic light scattering (DLS), SEM, PCS, expressed in nm, Brunette-Emmet- Teller (BET) and X ray diffraction analysis expressed in m2g-1, 

Metal oxides core Nominal size TEM analysis DLS analysis, SEM PCS BET specific surface area (m2g-1) X ray diffraction analysis (m2g-1) - Crystallographic 

shape is reported in the corresponding column. 

References 

Metal 

oxides 

core 

Nominal size 

(nm) 

Genotoxicity for each 

size reported in the 

same paper 

TEM (nm) 
DLS 

(nm) 
SEM PCS 

BET 

(m2g-1) 

XRD 

(m2g-1) 
Crystallographic shape 

Wang et al., 

2012 
CuO 10 + 20-40 276.4      

Auffan et al., 

2006 
Fe2O3 6 - 6       

Könczöl et al., 

2011 
Fe3O4 20-60 +    311    

Jin et al., 2007 SiO2 50 -        

Wang et al., 

2007a 
SiO2 12.2 -       Quarz 
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Roszak et al., 

2013 
TiO2 25 -  300   27.1  

Mixture of rutile and 

anatase 

Chen et al., 

2014 
TiO2 75±15 -  

473.6 

and 

486.5 

(depen

ding on 

the 

mediu

m) 

     

Hackenberg et 

al., 2011a 
TiO2 <25 - 285 ± 52       

Ghosh et al., 

2013 
TiO2 100 + 58.93±7.08 

6180.7

3      

Botelho et al., 

2014 
TiO2 21 and <25 +  

160.5 

and 

420.7 
     

Barillet et al., 

2010 
TiO2 NR + 12±3    17  

Anatase (75%), Anatase 

(100%) 
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Gurr et al., 

2005 
TiO2 10 and 20 +       Anatase 

Kang et al., 

2008 
TiO2 25 + 

Between 15 

and 30, 

agglomerati

on size 

285±52 

   50  
Mixture of Anatase (70%) 

and Rutile (85%) 

Reeves et al., 

2008 
TiO2 5 +       Anatase 

Shukla et al., 

2011 
TiO2 NR + 50 

124.9 

(water)      

Shukla et al., 

2013 
TiO2 NR + 30 to 70 

124.9 

(water) 

and 

192.5 

(mediu

m) 

    Anatase 

Rajapakse et 

al., 2013 
TiO2 NR + 15 820   190-290  Anatase 

Saquib et al., 

2012 
TiO2 NR +  

13 

(water), 

152 

   30.6 Polyhedral rutile 
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(mediu

m) 

Prasad et al., 

2013 
TiO2 27.5 +     49  

Mixture of anatase (86%) 

and rutile (14%) 

Hackenberg et 

al., 2011b 
ZnO <100 + 

86 ± 41 x 

42 ± 21       

Karlsson et al., 

2009 
CuO 42 + 

Between 20 

and 40 
200      

Karlsson et al., 

2009 
Fe2O3 29 - 30-60 1600      

Karlsson et al., 

2009 
Fe3O4 29 - 30-60 1600      

Karlsson et al., 

2009 
TiO2 63 + 20 to 100 300      

Yang et al., 

2009 
SiO2 NR + 20.2±6.4       
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Yang et al., 

2009 
ZnO NR + 20.2 ± 6.4       

Demir et al., 

2013 
Al2O3 16.7 -  

16.7±1.

3      

Demir et al., 

2013 
TiO2 2.3 +  1.8-2.8      

Demir et al., 

2013 
ZrO2 6 - 6 ± 0.8       

Pierscionek et 

al., 2010 
CeO2 NR - 5.5     6.3  

Kain et al., 

2012 
CeO2 <25 + 4-25 225      

Kain et al., 

2012 
Fe3O4 30 + 20-40 200      

Kain et al., 

2012 
NiO <50 + 

Between 2 

and 67 
167      
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Kain et al., 

2012 
SiO2 15 - 

Between 11 

and 27 
8.7      

Midander et 

al., 2009 
CuO 28 +   50     

Karlsson et al., 

2008 
CuO 42 + 20-40 220      

Karlsson et al., 

2008 
Fe2O3 29 - 30 and 60 1580      

Karlsson et al., 

2008 
Fe3O4 20-30 - 20-40 200      

Karlsson et al., 

2008 
ZnO 71 + 20-200 320      

Di 

Bucchianico et 

al., 2013 

CuO NR 
in RAW 264.7 + in 

PBL cells - 

7±1 

(spheres), 

7±1 x 

40±10 

(rodes), 

1200±250 x 

270±50 x 
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30±10 

(spindles) 

Bayat et al., 

2014 
CuO <50 +  

1511±4

68 

(water), 

3475±3

57 

(mediu

m) 

    Monoclinic crystals 

Bayat et al., 

2014 
TiO2 3-17 +  

99.20±

6.2     Rutile 

Bayat et al., 

2014 
ZnO <100 +  

612±10

.9 

(water) 

5294 ± 

3184 

(mediu

m) 

    Hexagonal wurtzite 

Guichard et al., 

2012 
Fe2O3 NR - 35±14 

900 

(water)   39   

Guichard et al., 

2012 
Fe3O4 NR - 27±8 Betwee

n 700 
  40   
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and 

800 

Guichard et al., 

2012 
TiO2 NR + 

14 ± 4 and 

25 ± 6    149   

Bhattacharya 

et al., 2009 
Fe2O3 90 - 93 68      

Ahamed et al., 

2013 
Fe3O4 NR + 24.83 

247 

(water), 

213 

(mediu

m) 

     

Gomaa et al., 

2013 
Fe3O4 NR + 8±2       

Gerloff et al., 

2009 
MgO 8 -     200   

Gerloff et al., 

2009 
SiO2* 50±3 -        
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Gerloff et al., 

2009 
TiO2 20-80 +     50  Mixture of anatase (80%) 

Gerloff et al., 

2009 
ZnO 10 and 20 +     70 and 50   

Barnes et al., 

2008 
SiO2 

Five 

different 

samples of 

nominal size 

: 30-400 

-       Amorphous 

Kermanizadeh 

et al., 2012 
TiO2 

Different 

samples of 7, 

10 and 94 

+ 

4-8/50-100, 

80-400, 1-

4/100/100-

200 

Differe

nt 

sample

s: 185, 

742, 

203-

1487, 

339 

     

Kermanizadeh 

et al., 2012 
ZnO 100 + 

20-250/50-

350 
306      

Demir et al., 

2014a 
TiO2 21 and 50 +  

21 ± 

0.8 and 

50 ± 

0.5 

    

Respectively the two 

samples are anatase and 

mixture of anatase and 

rutile 
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Demir et al., 

2014a 
ZnO ≤35 and 50 +  35±1.1      

Sekar et al. 

(2014) 
TiO2 NR +   

10–20 

(anatas

e), 20-

150 

(anatas

e and 

rutile) 

 

132.73 

(anatase), 

20.75 

(anatase 

and 

rutile) 

 Anatase and rutile 

Mu et al., 2014 ZnO NR + 40±20     90 - 160 Uncoated zincite 

Ghosh et al., 

2010 
TiO2 100 +        

Courbiere et 

al., 2013 
CeO2 3 +  350      

Kim et al., 

2009 
Al2O3 <50 +        

Liman, 2013 Bi2O3 90-210 +        
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De Marzi et 

al., 2013 
CeO2 40 +   

16 to 

22 nm.     

Isani et al., 

Gennaio 11 
CuO NR +  

500 ± 

20 nm 

20 to 

200 nm     

Alarifi et al., 

2013a 
CuO 10 + 

Between 20 

and 40 

276.4 

(water)      

Freyria et al., 

2012 
Fe2O3 <100 +  

50 

(water)      

Wang et al., 

2007b 
SiO2 NR -       Crystalline 

Choi et al., 

2011 
SiO2 10 +        

Gonzalez et al., 

2010 
SiO2 25 - 

16.4± 2.5 

and 60.4± 

8.3 

110 

and 70     Crystalline 

Gopalan et al., 

2009 
TiO2 NR +   40-70    Anatase 
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Gopalan et al., 

2009 
ZnO NR +   40-70     

Wang et al., 

2007c 
TiO2 NR +  

6.57 

nm; 8.2 

nm; 

196.52 

nm 

    Crystalline 

Woodruff et 

al., 2012 
TiO2 NR - 10x30      Anatase 

Wan et al., 

2012 
TiO2 28 -  280     

Anatase (90%) and rutile 

(10%) 

Petković et al., 

2011a 
TiO2 

<25 and 

<100 
+     

129.3 and 

116.7  Rutile and anatase 

Valdiglesias et 

al., 2013 
ZnO 100 +  243.7   100   

Sarkar et al., 

2014 
ZnO NR - 

45-150 (75 

± 5 average 

diameter) 

45-150      



150 

 

Demir et al., 

2014b 
ZnO 

35 nm; 50-

80 nm 
+  

36.42; 

50.75      

Kumari et al., 

2014 
CeO2 <25 + 25±1.512 269.7      

Auffan et al., 

2009 
CeO2 7 +  15      

Alarifi et al., 

2013b 

Co3O

4 
NR + 21 264.8     ? 

Lankoff et al., 

2013 
SiO2 NR -   

Averag

e size 

10 to 

50 

 640-260  

SiO2 with three types of 

functionlaisation, 

amorphous 

Gong et al., 

2012 
SiO2 15, 30, 100 + 

14.6; 20.4; 

169.2 

14.6±0.

3, 

20.4±1.

7 and 

169.2±

3.1 (M

edium) 

    Amorphous 

Gehrke et al., 

2011 
SiO2 12; 40 - 

16-40 and 

50-100 

165 

and 

271 
  

200; 50; 

4  Amorphous 
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Khan and 

Husain, 2014 
SnO2 NR - 25-32     11.2 Crystalline 

Bernardeschi 

et al., 2010 
TiO2 <25 +       Anatase 

Falck et al., 

2009 
TiO2 <25 +     222  Anatase (99.7%) 

Jugan et al., 

2012 
TiO2 12, 20, 25 + 12, 21, 24    

92; 73; 

46  Anatase and rutile 

Hamzeh and 

Sunahara, 2013 
TiO2 

5.9, 34.1, 

15.5, 1-10 
+  

460, 

400, 

420, 

600 

    Anatase and rutile 

Prasad et al., 

2014 
TiO2 27.5 +     49  

Anatase (86%) and rutile 

(14%) 

Petković et al., 

2011b 
TiO2 <25 +     129.3 18 Anatase 

Kermanizadeh 

et al., 2013 
TiO2 NR + 4-8/50-100, 

80-400, 80-
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400, 80-

400 

Sharma et al., 

2009 
ZnO NR + 17 263      

Alarifi et al., 

2013c 
ZnO NR + 

20-250/50-

350    14 
70 to > 

100 
Zincite 

Kermanizadeh 

et al., 2013 
ZnO NR + 

20–200/10–

450 and 

20–200/ 

10–450 

   14 and 18 

70 to 

>100 and 

58–93 

nm 

 

Kain et al., 

2012 
Co3O4 <50 + 9-62 222      

Landsiedel, 

2009 
V2O3 <50 +     

Average 

diameter 

25 nm 

Length 

100 – 

1.000 nm 

  

Landsiedel, 

2009 
V2O5 70 -     

Rod-

shaped, 

spherical 
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diam.170

–180 nm 

*luminescent silica nanoparticles 

  



154 

 

Table S2. Calculated values of the MOPAC descriptors reported in Table 6 (page 70), for all the nanomaterials reported in Table 5 (page 69)  

Metal 

oxides  

HF 

(KCAL/MOL) 

TE 

(eV) 

EE 

(eV) 

CORE 

(eV) 

COSMO-SA 

(A°2) 

COSMO 

(A°3) 

IP 

(eV) 

HOMO 

(eV) 

LUMO 

(eV) 

N.Fl 

(adimensional) 

MW 

(g/mol) 

Al2O3 -5162.20 -15398.50 -175859.00 160460.10 679.16 1280.89 7.32 -7.32 -1.37 180 1529.42 

Bi2O3 -277.49 -17963.90 -234375.00 216410.80 852.64 1858.52 6.43 -6.44 -2.48 224 7455.34 

CeO2 -4031.46 -20269.60 -286812.00 266542.40 878.68 1998.51 7.07 -7.07 -0.29 240 5507.67 

Co3O4 -445.89 -19078.70 -265366.00 246287.20 517.86 883.12 7.36 -7.36 -1.90 204 1926.38 

CuO -1947.87 -46652.20 -967883.00 921230.80 619.14 1027.11 6.84 -6.84 -3.62 408 3818.18 

Fe2O3 -5235.58 -57293.30 -1510297.00 1453004.00 1003.65 2418 8.51 -8.51 -5.22 578 5429.54 

Fe3O4 -1300.94 -19023.70 -233472.00 214448.10 538.81 968.38 8.76 -8.76 -4.39 192 1852.31 

MgO -3334.27 -10296.80 -101052.00 90755.60 516.44 948.36 7.29 -7.29 -3.84 128 1289.74 

NiO -1783.99 -21622.30 -415687.00 394064.50 462.73 749.07 3.46 -3.46 0.83 256 2390.7 

SiO2 -10558.30 -44533.20 -1040743.00 996210.20 1306.9 2961.68 7.74 -7.74 -3.67 512 3845.4 

SnO2 -3521.02 -32654.60 -652905.00 620250.90 1043 2362.53 6.94 -6.94 -1.54 384 7233.06 

TiO2 -4946.57 -21549.70 -320025.00 298475.60 823.4 1688.85 6.57 -6.57 -3.61 256 2556.76 

V2O3 -4329.18 -27328.50 -540060.00 512731.70 862.78 1869.59 4.94 -4.94 -1.80 336 3597.15 

V2O5 -2379.90 -13846.20 -158034.00 144188.10 501.4 816.4 6.05 -6.05 -1.90 160 1455.04 

ZnO -1666.65 -11658.30 -108506.00 96847.25 688.93 1058.82 6.10 -6.10 -2.52 144 2929.66 

ZrO2 -6591.16 -20819.40 -325388.00 304568.80 824.22 1875.04 2.18 -2.18 1.52 250 3669.34 
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Table S3. Scaled values of the quantum-chemically calculated descriptors of the metal oxide nanomaterials data set and the scale attributes 

Metal oxides 

core 

HF 

(kcal/mol) 

TE 

(eV) 

EE 

(eV) 

CORE 

(eV) 

COSMO

-SA 

(A°2) 

COSMO 

(A°3) 

IP 

(eV) 

HOMO 

(eV) 

LUMO 

(eV) 

N.Fl 

(adimensional) 

MW 

(g/mol) 

Al2O3 -1.1367 -0.5281 -0.2843 0.2719 0.8312 0.7381 1.0607 -1.0606 -0.4633 0.5696 0.3691 

Bi2O3 -0.0611 -0.6161 -0.3789 0.3666 1.0435 1.0710 0.9318 -0.9331 -0.8387 0.7088 1.7991 

CeO2 -0.8877 -0.6952 -0.4636 0.4516 1.0754 1.1516 1.0245 -1.0244 -0.0981 0.7595 1.3291 

Co3O4 -0.0982 -0.6544 -0.4290 0.4173 0.6338 0.5089 1.0665 -1.0664 -0.6425 0.6455 0.4649 

CuO -0.4289 -1.6001 -1.5646 1.5608 0.7578 0.5919 0.9912 -0.9911 -1.2242 1.2911 0.9214 

Fe2O3 -1.1529 -1.9651 -2.4415 2.4617 1.2284 1.3934 1.2332 -1.2331 -1.7653 1.8290 1.3102 

Fe3O4 -0.2865 -0.6525 -0.3774 0.3633 0.6594 0.5580 1.2694 -1.2693 -1.4846 0.6076 0.4470 

MgO -0.7342 -0.3532 -0.1634 0.1538 0.6321 0.5465 1.0564 -1.0563 -1.2986 0.4050 0.3112 

NiO -0.3928 -0.7416 -0.6720 0.6676 0.5663 0.4316 0.5014 -0.5013 0.2807 0.8101 0.5769 

SiO2 -2.3250 -1.5274 -1.6824 1.6878 1.5995 1.7067 1.1216 -1.1215 -1.2411 1.6202 0.9280 

SnO2 -0.7753 -1.1200 -1.0555 1.0508 1.2765 1.3614 1.0057 -1.0056 -0.5208 1.2151 1.7455 

TiO2 -1.0893 -0.7391 -0.5173 0.5057 1.0078 0.9732 0.9520 -0.9520 -1.2208 0.8101 0.6170 

V2O3 -0.9533 -0.9373 -0.8730 0.8687 1.0560 1.0773 0.7158 -0.7158 -0.6087 1.0632 0.8681 

V2O5 -0.5241 -0.4749 -0.2555 0.2443 0.6137 0.4704 0.8767 -0.8766 -0.6425 0.5063 0.3511 

ZnO -0.3670 -0.3999 -0.1754 0.1641 0.8432 0.6101 0.8839 -0.8839 -0.8522 0.4557 0.7070 

ZrO2 -1.4514 -0.7141 -0.5260 0.5160 1.0088 1.0805 0.3159 -0.3159 0.5140 0.7911 0.8855 

Scale Attribute 4541.26 29155.80 618599.8 590239.50 817.06 1735.37 6.90 6.90 2.96 316.02 4143.91 
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Table S4. The number of total studies evaluated, studies with size range 5-100 nm, categorized 

in each reliability class and the overall genotoxicity for each metal oxide nanoparticles. 

 

  

Metal 

oxides 

core 

All 

studies 

studies 

with 

sizes 5-

100 Nm 

Class

1 

Class

2 

Class

3 

Class

4 

Positive 

results 

Negative 

results 

Overall 

genotox-

icity 

Al2O3 2 2 
 

2 
  

1 1 + 

NiO 1 1 
   

1 1 
 

+ 

Co3O4 2 2 
 

1 
 

1 2 
 

+ 

CuO 8 6 
 

5 1 
 

5 1 + 

Fe2O3 6 6 1 4 1 
 

1 5 - 

Fe3O4 7 7 
 

5 1 1 4 3 + 

TiO2 35 12 3 8 1 
 

8 4 + 

ZnO 15 15 2 13 
  

15 
 

+ 

SiO2 12 12 
 

10 1 1 3 9 - 

V2O3 1 1 
 

1 
  

1 
 

+ 

V2O5 1 1 
 

1 
   

1 - 

MgO 1 1 
 

1 
   

1 - 

ZrO2 1 1 
 

1 
   

1 - 

CeO2 6 5 
 

3 
 

2 4 1 + 

Bi2O3 1 1 
 

1 
  

1 
 

+ 

SnO2 1 1 
   

1 
 

1 - 
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Introduction 

Identification, classification, and risk assessment of carcinogenic chemicals by international 

organizations and national agencies of health and safety have made remarkable progress in 

recent years. The European Commission (EC) substantially modified and replaced the Directive 

67/548/EEC and 93/101/EEC with Regulation (EC) 1272/2008 on risks and hazards of 

carcinogens and mutagens [1]. The new regulation introduced the globally harmonized system of 

classification and labelling of chemicals. Under these directives experimental data studies on 

chemical carcinogens have been digitally collected with the aim of harmonizing national 

ABSTRACT 
In this study, new molecular fragments associated with genotoxic 

and nongenotoxic carcinogens are introduced to estimate the 

carcinogenic potential of compounds. Two rule-based 

carcinogenesis models were developed with the aid of SARpy: 

model R (from rodents’ experimental data) and model E (from 

human carcinogenicity data). Structural alert extraction method of 

SARpy uses a completely automated and unbiased manner with 

statistical significance. The carcinogenicity models developed in 

this study are collections of carcinogenic potential fragments that 

were extracted from two carcinogenicity databases: the 

ANTARES carcinogenicity dataset with information from 

bioassay on rats and the combination of ISSCAN and CGX 

datasets, which take into accounts human-based assessment. The 

performance of these two models was evaluated in terms of cross-

validation and external validation using a 258 compound case 

study dataset. Combining R and H predictions and scoring a 

positive or negative result when both models are concordant on a 

prediction, increased accuracy to 72% and specificity to 79% on 

the external test set. The carcinogenic fragments present in the two 

models were compared and analyzed from the point of view of 

chemical class. The results of this study show that the developed 

rule sets will be a useful tool to identify some new structural alerts 

of carcinogenicity and provide effective information on the 

molecular structures of carcinogenic chemicals. 
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measures on classification, packaging, and labelling of dangerous substances, to facilitate the 

establishment of a single market and to provide protection for public health and the 

environment. The new regulation complements the REACH regulation on the registration, 

evaluation, authorization, and restriction of chemicals. 

Research has provided evidence that chemicals may cause cancer in animals and humans by 

one of several general mechanisms of action (MoA), generally classified into genotoxic and 

nongenotoxic. Genotoxic carcinogens cause damage to DNA, thus, many known mutagens are 

in this category, and often mutation is one of the first steps in the development of cancer [2]. 

Epigenetic or nongenotoxic carcinogens do not bind covalently to DNA, and are usually 

negative in the standard mutagenicity assays [3]. The unifying feature of all genotoxic 

carcinogens is that they are either electrophiles or can be activated to electrophilic reactive 

intermediates. On the contrary, nongenotoxic carcinogens act through a large variety of different 

and specific mechanisms. 

For more than 35 years, many chemicals have been tested by government agencies, private 

companies, and research institutes using the two-year rodent carcinogenesis bioassay. Most of 

the chemicals or processes that have been associated with human carcinogenicity, as studied by 

epidemiological investigations, are shown to cause tumors in rats and mice [4–6]. However, all 

compounds shown to induce cancer in laboratory rats and mice are not necessarily human 

carcinogens [7]. 

In the past ten years, research into the MoA and carcinogenesis has increased and the 

relevance of the carcinogenicity findings in rodents to human risk has been investigated in many 

publications [8–10]. The results of research demonstrated that doses used in the bioassays may do 

not develop toxicity in humans exposed to same levels of these chemicals; in addition, rats and 

mice tumors occur in a sex, age, and strain- or stock-dependent manner. In consequence of these 

points, the regulatory agencies consider that the high occurrence of tumors in the standard 

twoyear rodent carcinogenesis bioassay is often not relevant to risk evaluation of human 

carcinogenesis [11]. Variability of the tumors in rodents is another problem of this assay. To deal 

with the problems of two-year rodent carcinogenesis bioassay alternative methods are suggested 
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by scientists and regulatory agencies. These methods include use of the toxicity level (LD50) in 

rodents, [12] in vitro cell transformation and other assays, in silico methods, or computerized 

prediction of carcinogenicity based on structure and chemical class [13] .Each method has its own 

strengths and weaknesses, and analysis of carcinogenicity of a specific chemical and its MoA in 

human is better to be assessed based on the weight of evidence. 

Among the in silico methods, the use of various computational techniques such as 

(quantitative) structure-activity relationship ((Q)SAR) modelling is supported by several 

legislative authorities [14–16]. (Q)SAR models consist of mathematical relationships between 

physicochemical properties of chemicals and their biological activity, thus being able to 

calculate a quantitative value (for the activity) given the structure of a chemical. These 

mathematical relationships can be simple linear regression equations, or more complex 

nonlinear algorithms, and can be developed using several approaches such as neural networks, 

support vector machines, decision trees, and many others. Conversely, SAR identifies the 

differences of compounds in two categories (e.g., active or inactive) and predicts an untested 

compound as “toxic” in case it has a toxic potential or “nontoxic” if not. Overall, (Q)SAR 

models are useful for the prediction of toxicity of untested chemicals saving costs and the need 

for testing on animals [17,18]. 

Following the theory of electrophilic reactivity of (many) carcinogens of James and Elizabeth 

Millers, [19,20] the advancement of the knowledge of carcinogenic chemicals have received 

distinguished contributions from many scientists. The salmonella typhimurium mutagenicity 

assay by Bruce Ames [7] and the compilation of the lists of carcinogenic and mutagenic 

structural alerts (SA) by John Ashby [21] were two fundamental contributions to this field. SAs 

identified and collected by John Ashby’s are indeed reactive functional groups responsible for 

the induction of mutation or cancer, and are so-called genotoxic carcinogens. On the other hand, 

the Salmonella assay is the most predictive assay for genotoxic carcinogens and no other 

nongenotoxic mutagenicity test exists [22]. Despite the extensive knowledge of genotoxic SAs, 

the use of SAs for identifying nongenotoxic carcinogens is restricted. Nongenotoxic carcinogens 

use many different MoA and they lack an apparent unifying mechanism. According to this 

diversity, different (Q)SAR models have been developed and made available for analysis and 
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identification of SAs. A number of nongenotoxic SAs and their characteristics have been 

published in Woo and Lai [3]. 

One of the most recent rule sets defined by human expert for mutagenic carcinogenicity has 

been developed by Benigni and Bossa [23,24]. The updated version of this rule set [24] is 

implemented in Toxtree version 2.6.13,[25] a software application that investigates the presence 

of the genotoxic and nongenotoxic SAs in the chemical structures of the compounds. Alongside 

the rule-based (Q)SAR software that check the presence of human expert SAs in the chemical 

structures, there are statistically based (Q)SARs, which create models by using categorized 

active and inactive chemicals in a learning set to identify SAs that are associated with a 

particular toxicological activity. The high accuracy of the predictions performed by data mining 

and artificial intelligence has made these methods important tools to be used for preliminary 

research and for discovery of the mechanism of action that are still unknown. These methods, 

however, comparing to rule-based models are less transparent to the end user. Historically, the 

Computer Automated Structure Evaluation (CASE/MultiCASE) [26] program is a SAR expert 

system that identifies two-dimensional structural features or biophores, which can be used for 

the prediction of unknown compounds as potential toxins. This statistically based program does 

not use the knowledge on the mechanisms of action, but reanalyze the dataset of chemicals 

trying to link the structures of chemicals into their toxic activity. On the other hand, SAs 

developed by human experts were integrated in software such as OncoLogic [27] and DEREK [28]. 

In this study we used SARpy, [29] a commercially free statistically based program, for the 

extraction of potential carcinogenic SAs from two different learning sets. The approach that we 

have taken in developing the two new carcinogenicity models is mainly based on statistical 

evaluation of the chemicals in our learning sets categorized in two groups of carcinogens and 

noncarcinogens. The SARpy’s method of identification of the SAs that are associated with a 

particular biological or toxicological activity does not demand a priori knowledge about MoA of 

the compounds and performs purely on a statistical basis. Two different carcinogenicity datasets 

have been prepared as learning sets and SARpy extracted two different models from these two 

datasets. The internal and external evaluation of the models have been assessed 
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thoroughly.Thechoiceoftakingintoconsiderationtwosubstantiallydifferentlearning sets and 

developing two models is due to different characterization of these data. The first dataset 

contains exclusively rodent carcinogenicity data based on presence of carcinogenic effects in 

male or female rats, while the second dataset takes into account human-based assessments and 

data retrieved from different assays. This suggests to obtain two different carcinogenicity 

models. 

Finally, the SAs in the two rule sets are analyzed from the point of view of chemical class 

and the same SAs present in both rule sets are revised. The two developed models have been 

made available inside VEGA (http://www.vega-qsar.eu/), [30] an open source platform that 

already offers several (Q)SAR models. 

Material and methods 

Carcinogenesis data sources 

ANTARES carcinogenicity dataset: Rat carcinogenesis learning set 

Compounds for the first model’s learning set were obtained from the carcinogenicity database 

of EU-funded project ANTARES [31]. The ANTAREs’ carcinogenicity database is a collection of 

chemical rat carcinogenesis data (presence of carcinogenic effects in male or female rats) 

obtained from the EU-funded project CAESAR[32] dataset and the “FDA 2009 SAR 

Carcinogenicity—SAR Structures” database. The CAESAR toxicity values were originated 

from the Distributed Structure-Searchable Toxicity DSSTox database, which was built from the 

Lois Gold’s Carcinogenic Potency Database [33]. The compounds with a definite TD50 (which is 

the dose that produces an increase of 50% of the tumors in animals) value for rat in this dataset 

were labeled as carcinogenic, while the remaining were labeled as noncarcinogenic. Additional 

738 chemicals different from the 805 CAESAR compounds were added. The added chemicals 

are from the “FDA 2009 SAR Carcinogenicity— SAR Structures” database using the 

Leadscope database [34]. Here a categorical label for carcinogenicity was already contained in the 

original dataset and again the compound was labeled as carcinogenic if a positive outcome was 

detected in male or female rats. So a total number of 1543 compounds constituted the 

ANTARES dataset. 

http://www.vega-qsar.eu/
http://www.vega-qsar.eu/
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ISS carcinogenicity database and carcinogenicity genotoxicity experience dataset: 

Different species carcinogenesis learning set 

The ISS Carcinogenicity (ISSCAN) database [35] is provided by the Istituto Superiore di Sanità 

(ISS). It is originally aimed at developing predictive models for carcinogenicity of chemicals. 

The great part of the chemicals in this database are classified as carcinogens by various 

regulatory agencies and scientific bodies. The database has been specifically designed as an 

expert decision support tool and contains information on chemicals tested with the long-term 

carcinogenicity bioassay on rodents (presence of carcinogenic effects in male or female rats and 

mice). This carcinogenicity dataset contains 622 carcinogens, 210 noncarcinogens and 58 

equivocals. 

Compounds for the second model’s learning set were obtained by merging the ISSCAN 

database and the Carcinogenicity Genotoxicity eXperience (CGX) database. More information 

on the CGX database can be found in Kirkland and colleagues [36]. In this study, compounds 

used for development of the new models had to be either positive or negative; thus, compounds 

with equivocal results in the databases have been removed. In particular, from the original 

ISSCAN dataset with 890 compounds, we removed 58 compounds, while the CGX database did 

not contain any equivocal result. 

All compounds in the combined dataset have been checked for their consistency between the 

two sources. We found 651 compounds in common, 15 of them with inconsistent 

carcinogenicity values. These compounds have been removed from the combined dataset. 

Comparison with the ANTARES dataset 

We compared the final list of compounds with the ANTARES carcinogenicity dataset prepared 

for the development of the first model. We found 105 compounds with conflicting values when 

compared with the compounds in the ANTARES dataset. In order to develop a more 

conservative model, we opted to remove only 15 compounds which had positive result in the 

ANTARES dataset and negative results in the combined second dataset, and left as carcinogenic 

those that had carcinogenicity result the opposite way. Consequently, there are 90 positive 

compounds in the combined database which are negative in the ANTARES dataset. Afterward, 
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we checked and cleaned the structures manually, and by the help of the istMolBase [37] and 

InstantJChem [38] software formed the final dataset. 

In addition, the compounds have been checked for their molecular structure. We adopted only 

the substances with connected molecular structure; those which had unconnected structures 

have been removed from the dataset. The overall dataset consisted of 986 compounds with 734 

carcinogens and 252 noncarcinogens. Each compound in the list had a chemical name, a CAS 

number, a Simplified Molecular Input Line Entry Specification (SMILES), [39] and its 

categorical designation (i.e., carcinogen or noncarcinogen). In the present study, this combined 

dataset is conventionally called ISSCAN-CGX. 

Data for model validation 

ECHA database 

We prepared an external test set for the validation of the developed models from carcinogenicity 

the eChemPortal inventory [40]. For this purpose, we made two queries on this database. The first 

query contained the following restrictions: 

• Study result type: experimental result 

• Reliability: 1 and 2 

• Species: mouse and rat • Maximum number of studies: 4 The second query consisted of: 

• Study result type: experimental result 

• Reliability: 1 and 2 

• Species: mouse and rat 

• Sources: any guideline and exposure route 

The list resulted from the first query comprised 308 compounds, whereas the second query 

returned a list of 166 compounds, which were mostly in common with the results of the first 

query. The studies conducted for the first list of compounds have been manually evaluated. 

Afterward, we looked into the Classification Labelling and Packaging (CLP) inventory [41] for 

the positive (i.e., carcinogenic) chemicals collected by the previous queries. Inside the CLP 

inventory we found 68 compounds, which were already present in our data collection. The latter 

search confirmed the carcinogenic property of these compounds. 
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The dataset consisted of 64 positive compounds, 169 negative compounds, and 90 equivocal 

compounds. The equivocal results are due to the presence of conflicting information in different 

sources or different studies in the same source. 

It should be noticed that for already classified compounds (no conflicting information), the 

level of uncertainty in the assignment is not homogeneous, because some of the compounds 

were classified on the basis of a single study (i.e., data present in one single source). 

From the reliability point of view, in the data collected in our dataset, 49 positive compounds 

have positive carcinogenic effect in at least two sources. Fifty-seven negative compounds are 

noncarcinogenic in both lists, and they are not present in the list of compounds retrieved from 

the CLP inventory. Sixty-four compounds are considered as noncarcinogens because of the 

presence of only one single study in the two lists. 

SARpy 

The SAR in Python (SARpy) program is a Python script based on the OpenBabel chemical 

library. SARpy creates classification models by using categorized active and inactive chemicals 

in a learning set to identify molecular fragments that are associated with a particular biological, 

pharmaceutical, or toxicological activity. The algorithm generates molecular substructures of 

arbitrary complexity, and the fragments candidates to become SAs are automatically selected on 

the basis of their prediction performance in a learning set. 

The output of SARpy consists in a set of rules in the form: 

IF contains THEN, 

where the SA is expressed as a SMARTS string, for use by human experts or other chemical 

software. SMARTS notations are text representations of substructures [36] that allow 

specification of wildcard atoms and bonds, which can be used to formulate substructure queries 

for a chemical database. Those rules can be used as a predictive model simply by calling a 

SMARTS matching program. For the matching phase, SMILES and the SMARTS strings are 

translated into graphs and the two graphs are compared to each other [42]. 

Extracting active fragments 

R (rat) model 



 

171 

 

To obtain a more comprehensive collection of potential carcinogenic fragments, five learning 

sets were randomly created from the ANTARES carcinogenicity dataset with 1543 compounds, 

preserving 80% for the learning set and 20% for the evaluation set. In other words, for each 

model a random set of 20% of chemicals in the learning set was removed, with the remaining 

80% of the compounds a model was developed and the activity of the compounds left out was 

predicted with the same model. We combined the five models and put together the lists of the 

potential active fragments, removed the duplicates and eliminated the SAs with likelihood ratio 

lower than two. We opted for the likelihood ratio threshold of two in order to retain the SAs that 

are statistically more significant. A measure of each fragment’s association with biological 

activity is determined by SARpy as “training likelihood ratio,” and it is given along with the list 

of the potential fragments or the rule set in the output. The likelihood ratio can be taken into 

account to determine the goodness of a SA identified by SARpy. Even if a SA that is associated 

with activity (i.e., carcinogenicity) is present in a molecular structure, the molecule may contain 

other fragments that make it inactive (i.e., noncarcinogen), thus the specific SA might not be 

expected to be found only in active compounds. This evidence is the basis of the determination 

of the likelihood ratio. 

Using the SARpy software, each chemical in the learning set was fragmented in silico into all 

possible fragments meeting user-specified criteria. For this study we extracted only the 

“ACTIVE” fragments (or SAs) and the default values for the minimum and maximum number 

of atoms in a fragment were set for the fragment extractions of each model (minimum = 2; 

maximum = 18). Another configuration to establish by the user is the minimum number of 

compounds in the learning set in which an active (or inactive) fragment is found. In our 

analysis, the minimum number of compounds that contain a potential active fragment was set to 

three. Conventionally, in this study we call this model R. 

E (expert) model 

SARpy was used for model development and statistical analysis using the ISSCANCGX 

dataset. 
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The extraction settings are as follows: the minimum number of atoms in a fragment is equal 

to four, whereas the maximum number of atoms is equal to 10, and the minimum number of 

compounds containing the active fragment is six. These configurations have been set in favor of 

a model with a more balanced sensitivity and specificity values. In order to assess the 

predicitivity of the model, statistical analysis have been conducted in terms of accuracy, 

sensitivity, and specificity using cross validation routine as an internal evaluation, in addition to 

an external evaluation using an external test set. In this article, we name this model E. 

Internal evaluation of the models 

Accuracy, sensitivity, and specificity have been determined for the internal evaluation of each 

model using the SARpy program. For the internal validation, fivefold cross-validation routine 

was conducted for each model. In the five-fold cross validation the learning set is randomly 

partitioned into five equal sized subsets. For each iteration, a single subset of chemicals was 

retained as the validation data for testing the model, and the remaining subsets were used as 

training data. The cross validation process was repeated five times (the folds). The evaluation 

results of five iterations were then averaged to produce a single estimation. Accuracy, 

sensitivity, and specificity of the internal evaluation are assessed in addition to the Matthews 

correlation coefficient (MCC). 

External evaluation of the models 

The predictability of the models has been evaluated on two external test sets: the first external 

set is the dataset used as the learning set of the opposite model (e.g., for the R model we used 

ISSCAN-CGX dataset and vice versa), and the second dataset is a collection of 258 compounds 

collected from the eChemPortal inventory. Accuracy, sensitivity, specificity, and the MCC for 

the external evaluation are determined using SARpy. Although the external evaluation is 

considered the best mean for the assessment of the predictive ability of a (Q)SAR model,[43,44] 

the results of the external evaluation of any model are highly related to the relative similarity of 

the external evaluation set in relation to the learning set. 
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Table 1. R model internal and external validation for five different splits and the average of the model 

performance. 

  1° split (59 

active rules) 
2° split (65 

active rules) 
3° split (61 

active rules) 
4° split (58 

active rules) 
5° split (57 

active rules) 
Average 

Learning set 
(778 compounds) 

Accuracy 71% 72% 71% 70% 71% 71% 

 Sensitivity 75% 75% 71% 73% 70% 73% 

 Specificity 65% 69% 71% 66% 72% 69% 

Test set (337 

compounds) 
Accuracy 63% 60% 64% 65% 62% 63% 

 Sensitivity 68% 58% 62% 67% 61% 63% 

 Specificity 56% 63% 66% 61% 64% 62% 

 

Results and discussions 

R model 

Each learning set produced its own model, which is a collection of active SAs with their 

likelihood ratios. The final model merging all sets of SAs consisted of 127 active SAs. Table 1 

shows the predictive performance of five models developed based on five different splits of the 

ANTARES database. The performance of each model has been evaluated on its own learning 

set using cross-validation analysis. Further, an external evaluation using the corresponding test 

set is performed on each model. To have an overview of the statistical analysis of the 

performance of the models, we calculated the average of the predictive values of all the five 

models, and reported in Table 1 as well. The averages of accuracy, sensitivity, and specificity 

for the 778 compound internal cross-validation using five rule sets extracted from the 

ANTARES dataset were 71%, 73%, and 69%, respectively. The average of accuracy, 

sensitivity, and specificity for 337 compounds in the test set as an external validation of these 

models, were 63%, 63%, and 62%, respectively. 

Using the R model, the results of cross-validation on the whole training set were 66% accuracy, 

83% sensitivity, 48% specificity, and 0.34 the MCC (Table 2). Analysis of the external 

validation for the R model demonstrated that the concordance between experimental and 

predicted value on the ECHA dataset is higher than using the ISSCAN-CGX dataset. The 

accuracy of the R model on the ECHA dataset was 67%, compared to 58% of accuracy for the 

ISSCAN-CGX dataset. The complete list of these alerts are presented in the VEGA platform. 



 

174 

 

Table 2. R model and E model internal and external validation. 

 

External 

 Crossvalidation validation 

on 
ISSCAN 

and CGX 

data 

External 
validation 
on 
ECHA data 

Crossvalidation External 
validation 
on 
ANTARES 

data 

External 
validation 
on 
ECHA 

data 

Accuracy 66% 58% 67% 73% 59% 64% 

Sensitivity 83% 76% 62% 77% 77% 48% 
Specificity 48% 40% 70% 62% 41% 72% 
TPa 651/783 593/735 55/89 562/735 599/783 43/89 
TNb 367/760 142/254 119/169 157/254 315/760 121/169 
FPc 393/760 112/254 50/169 95/254 445/760 48/169 
FNd 132/783 142/735 34/89 172/735 184/738 46/89 
MCCe 0.34 0.35 0.31 0.36 0.19 0.20 

aTrue positive; bTrue negative; cFalse positive; dFalse negative; eMatthews Correlation Coefficient. 

 

E model 

With the configuration set as mentioned above, SARpy extracted 43 active rules from the 

ISSCAN-CGX learning set. Analysis of the cross-validation for the E model demonstrated that 

the second model produced an accuracy of 73%, with a sensitivity of 77% and a specificity of 

62% (Table 2). The MCC value for this analysis is 0.36. The accuracy values for the external 

evaluation of the E model on the ANTARES dataset and the ECHA database were 59% and 

64%, respectively. Analysis of the external validations for the E model demonstrated that the 

model produced a higher sensitivity (77%) compared with the specificity (41%) of the R model. 

On the contrary, the specificity of the external evaluation on the chemicals from the ECHA 

database was higher (72%) compared to its sensitivity (48%) (Table 2). The complete list of the 

SAs present in this model is accessible through VEGA. 

Analysis of the combination of the prediction results of the R and the E models 

Another analyses has been done on the prediction results of the R model and the E model. In 

this new approach, we considered the final results as correctly predicted only in case both 

models have predicted them consistently. Table 3 summarizes the results of combining the R 

and E model external validation predictions on the chemicals from the ECHA database. 

The results suggested that when both models are concordant on a negative prediction for a 

compound the reliability of the result is much higher than in case a positive prediction is done. 

We observe an improvement of the results compared to the use of the individual models, for 

accuracy (72%) and specificity (79%). In fact, combining the predictions of the two models the 
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MCC is increased to 0.37, compared to 0.31 for the R model and 0.20 for the E model. Only 

sensitivity is higher using the R model (62%). Thus, users may choose a solution or another 

depending if they prefer a conservative or a realistic assessment. 

Table 3. The combination of the predictions of the R and E models on the ECHA external validation 

set. 

 Combined model  

TPa  33/89 

TNb  96/169 

FPc  25/169 

FNd  24/89 

Accuracy  72% 

Sensitivity  58% 

Specificity  79% 

MCCe  0.37 

Coverage  178/258 

aTrue positive; bTrue negative; cFalse positive; dFalse negative; eMatthews correlation coefficient. 

 

Fragments analysis 

Comparison of the SAs in the R and E models 

The SAs present in the R and E models have been compared and those that are in common 

between the two rule sets categorized into chemical classes and listed as follows. The SAs in the 

R model are presented with their ID number and written in order of their correspondence to the 

identical SAs in the E model. 

1. Aromatic amine (R model: 6, 41, 36, 22, 10 / E model: 27, 31, 33, 38, 104) 

2. Aromatic heterocyclic (R model: 12, 19, 2 / E model: 75, 108, 117) 

3. Hydrazide (R model: 28, 27 / E model: 2, 50) 

4. N-Nitroso (R model: 1 / E model: 8) 

5. Phenyl-Hydrazine (R model: 32 / E model: 48) 

6. α,β- Haloalkanes (R model: 25 / E model: 56) 

7. Sulfite (R model: 8 / E model: 68) 

8. Nitrogen Mustard like (R model: 11 / E model: 73) 

9. Phosphonite (R model: 15 / E model: 98) 

Categorization of the SAs in the R and E models 
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The SAs present in the models R and E are categorized from a chemical class point of view. The 

substructures within each category are presented with their ID number in their original rule set 

and are as follows: 

Nitrogen containing substructures (Azo type): 

1. Aromatic amine (R model: 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36,37, 38, 40, 

42, 83, 104, 110, 113 / E model: 6, 10, 22, 31, 35, 36, 41, 42) 

2. Aromatic heterocycles containing Nitrogen (R model: 74, 75, 80, 81, 83, 95,113, 122 / E 

model:12, 17, 43) 

3. Azine (Hydrazine) (R model:46, 47, 49, 50, 51, 53, 54, 55, 101 / E model: 27,32) 

4. Azide (Hydrazide) (R model: 2, 3, 44, 45, 52 / E model: 3, 28) 

5. Nitrosamine (R model:4, 5, 7, 9, 10 / E model: not found (NF)) 

6. Nitrogen or sulfur mustard (R model: 72, 73, 115 / E model: 11, 34) 

7. Aromatic methylamine (R model: 30, 34, 36 / E model: NF) 

8. Aliphatic N-Nitroso (R model: 62, 63/ E model: NF) 

9. Aromatic Nitro (R model: 90, 123 / E model: NF) 

10. 1 aryl 2 monoalkyl hydrazine (R model: 48 / E model: NF) 

11. Aziridine (R model:120 / E model: NF) 

12. Aromatic hydroxylamine (R model: 32 / E model: NF) 

13. Diazo (R model:92 / E model: NF) 

14. Aromatic Azo (R model: 71 / E model: NF) 

15. Aromatic Nitroso (R and E models: NF)  

 

Other substructures: 

1. (1,2, and 3 membered) Aromatic Heterocycles (R model: 74, 75, 80, 81, 83, 90, 95, 103, 

108, 113, 117, 121, 122, 123 / E model: 2, 12, 17, 19, 43) 

2. Aliphatic halide (R model: 57, 58, 59, 70, 125 / E model: 18, 25) 

3. Heterocyclic Alkane (R model: 84, 105, 109, 120 / E model: 23) 

4. Polycyclic aromatic systems (R model: 39, 43, 60, 61 / E model: 30) 

5. Sulfonate bonded carbon (R model: 67, 68 / E model: 8) 

6. Epoxide (R model: 105 / E model: 23) 

7. B propiolactone (R model: 114 / E model: NF) 

 

Not only SARpy was able to find the already known carcinogen substructures that were 

represented by the SAs of Kazius and colleagues, [45] but a number of SAs have been identified 

for the first time. Table 4 demonstrates the new identified SAs that have been classified into six 

chemical classes. The substructures within each category are listed with their ID number and are 

as follows: 

1. Nitrosurea (R model: 12, 13, 14, 19 / E model: NF) 

2. Nitrogen or sulfur mustard like (R model: 72, 115 / E model: 34) 

3. Benzodioxole and Benzendiol (R model: 17, 18 / E model: 9) 

4. Tertiary amine substituted by a Sulfur atom (E model: 24) 

5. α,β-oxy and carboxy substitutions (R model: 20, 21, 76 / E model: NF) 

6. α,β-haloalkanes (R model: 56, 69 / E model: 25) 



 

177 

 

7. Oximes (R model: 78 / E model: NF) 

 

For the sake of example, we illustrated the chemicals from which the SA 24 (form the 

chemical class tertiary amine substituted by a Sulfur atom) in the E model has been extracted 

(Table 5). All the chemicals that contain the previously mentioned SA in the ISSCAN-CGX 

data set are carcinogenic. 

Discussion 

Automated extraction of SAs has been implemented by the statistically-based program SARpy 

on two learning sets. The ANTARES learning set collects rodent bioassay carcinogenicity data 

on 1543 chemicals, while ISSCAN-CGX database containing 986 chemicals takes into account 

human-based assessments and data retrieved from different assays. The predictive performance 

of the developed models were evaluated internally as well as using a 258 compound external 

validation dataset collected from the ECHA inventory. The two developed models for 

carcinogenicity have been implemented in the VEGA platform and are indeed freely available 

for end users. 

Recent progresses in data mining provide effective competence in the automated discovery of 

SAs associated with toxicological endpoints. An important contribution of the statistically based 

methods to the carcinogenicity field is identification of new SAs, which help us in refining the 

existing rule sets. While the most known carcinogenicity rule sets [23] are composed on the basis 

of human expert judgement, the SAs identified in our study are extracted in an unbiased manner 

by SARpy with no a priori knowledge about the MoA of the chemicals. This approach sheds 

light to the new clues about genotoxic and nongenotoxic SAs. Some primary analyses have 

been provided on the SA lists; chemical classes of the identified SAs have been evaluated; 

however, further study for the new SAs should be performed considering other collections of 

alerts [45]. SARpy SAs resulting from the current analysis on the ANTARES and ISSCAN-CGX 

data sets follow the SAs presented by Kazius and colleagues [46]. 
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Table 4. New carcinogenic structural alerts identified by SARpy in the R and E models. 

 

Further, the models are developed on the basis of two learning sets with different 

carcinogenicity data from the point of view of origin and provenance. Concerning the learning 

sets with substantially variant carcinogenicity data assessed within different properties, each set 

of the extracted SAs constituted a purpose-oriented model. The user may consider the results of 

the model with more realistic predictions or the one with more conservative assessments. 

  

 

 

 

 

 

 

α, β-oxy and carboxy substitutions 

α, β-haloalkanes: 
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Table 5. Chemicals structures in the ISSCAN-CGX data set from which structural alert 24 has been extracted. 

 

Generally, the best approach in making a conclusion to estimate the reliability of a prediction 

is combining evidence from different information sources such as (Q)SAR model predictions, in 

vitro and in vivo test results. This is reflected in the general trend of developing ensemble 

models and/or combining the output of different existing models. An example of the latter 

approach has been done on a similar endpoint, mutagenicity (Ames test), by the integration of 

the different models available on the VEGA platform [47]. The advantage of having the two 

presented models available on the VEGA platform, where other models for the same endpoint 

are available, is also the possibility of performing a similar activity to make a conclusion. 

Finally, the results of the presented models will be exploited for the improvement of 

ToxRead (http://www.toxgate.eu), a recent platform that uses set of rules for different endpoints 

to filter and select similar compounds and assist the user in performing read-across studies [48,49] . 

Also, these rules can be compared and possibly explained considering reasoning about 

mechanisms, including adverse outcome pathways [50]. 
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Structural Alerts for Carcinogen Compounds (R Model) 

Following, the list of the 127 rules for carcinogenicity, expressed as SMARTS strings: 

SA 1: CN[N+]=O 

SA 2: NNC=O 

SA 3: CN(C=O)N=O 

SA 4: CCCCCCN(C)N=O 

SA 5: CCCN(CCC)N=O 

SA 6: CNCCNN=O 

SA 7: CNCCN(C)N=O 

SA 8: CCNN=O 

SA 9: CCCCCN(C)N=O 

SA 10: CCCCN(C)N=O 

SA 11: CC(O)CNN=O 

SA 12: CN(N=O)C(=O)NCCO 

SA 13: NC(=O)N(CCO)N=O 

SA 14: CN(N=O)C(N)=O 

SA 15: CCCNN=O 

SA 16: O(c1ccccc1)c2ccccc2 

SA 17: COc1cccc(O)c1 

SA 18: CCc1ccc(OC)cc1O 

SA 19: CCCNCNN=O 

SA 20: CCOC(=O)C(C)(C)O 

SA 21: CC(C)(O)C(O)=O 

SA 22: Cc1ccccc1-c2ccc(N)cc2 

SA 23: Nc1ccc(cc1)-c2ccc(N)cc2 

SA 24: Nc1ccc(cc1)-c2ccccc2 

SA 25: Nc1ccc(C=C)cc1 

SA 26: Nc1cccc(c1)-c2ccccc2 

SA 27: Cc1ccc(N)c(C)c1 

SA 28: Cc1ccccc1N 

SA 29: Nc1ccc(Cc2ccc(N)cc2)cc1 

SA 30: CN(C)c1ccc(Cc2ccccc2)cc1 

SA 31: Cc1ccc(N)cc1 

SA 32: Cc1ccc(NO)cc1 

SA 33: Cc1cccc(N)c1 

SA 34: CNc1ccc(C=C)cc1 

SA 35: Nc1ccc2ccccc2c1 

SA 36: CNc1ccc(N)cc1 
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SA 37: Nc1ccccc1O 

SA 38: COc1ccccc1N 

SA 39: Oc1cccc2ccccc12 

SA 40: Nc1ccc(O)c(N)c1 

SA 41: CC(C)C(C)(O)CO 

SA 42: Nc1cccc(c1)S(O)(=O)=O 

SA 43: Cc1cccc2ccccc12 

SA 44: NNCO 

SA 45: CN(N)CO 

SA 46: CC(O)CNN 

SA 47: NNCCO 

SA 48: NNc1ccccc1 

SA 49: NNCC=C 

SA 50: CCNN 

SA 51: CCCNN 

SA 52: CC(=O)NN 

SA 53: CCCN(N)CCC 

SA 54: CCCN(C)N 

SA 55: NN 

SA 56: ClCCCl 

SA 57: CCl 

SA 58: CCBr 

SA 59: CBr 

SA 60: c1ccc2cc3c(ccc4ccccc34)cc2c1 

SA 61: c1ccc-2c(c1)-c3cccc4cccc-2c34 

SA 62: CN=O 

SA 63: N=O 

SA 64: NO 

SA 65: Oc1cccc(c1)-c2cccc(O)c2 

SA 66: OS(O)(=O)=O 

SA 67: COS(O)=O 

SA 68: COS(=O)=O 

SA 69: ClC1CCCC(Cl)C1Cl 

SA 70: CC(Cl)CCCCCl 

SA 71: c1ccc(cc1)N=Nc2ccccc2 

SA 72: CCNCCCl 

SA 73: ClCCNCCCl 

SA 74: Cc1ccncn1 

SA 75: c1cncnc1 
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SA 76: CC(=C)C(O)=O 

SA 77: CC=C(C)CO 

SA 78: CC(C)=NO 

SA 79: CC(C)=N 

SA 80: Cn1cncn1 

SA 81: c1ncnn1 

SA 82: COc1ccc(CC=C)cc1 

SA 83: Nc1ncc2ncn(CCCCO)c2n1 

SA 84: OCC1OC(CC1O)n2cnc3cncnc23 

SA 85: CC1CCC=C(C)C1 

SA 86: C1C=CCC=C1 

SA 87: O=C(OCc1ccccc1)c2ccccc2 

SA 88: CCOCc1ccccc1C 

SA 89: C(=Cc1ccccc1)c2ccccc2 

SA 90: [O-][N+](=O)c1ccco1 

SA 91: CCNCC(C)=O 

SA 92: N=[N+] 

SA 93: Cc1ccc(cc1)S(O)(=O)=O 

SA 94: O=C1c2ccccc2C(=O)c3ccccc13 

SA 95: Cc1cccnc1 

SA 96: CCCCC(O)CCCCC(O)CCC 

SA 97: Clc1cccc(Cl)c1Cl 

SA 98: COP=O 

SA 99: CC(CN)c1ccccc1 

SA 100: OCC#C 

SA 101: NNCc1ccccc1 

SA 102: C1CCc2ccccc2C1 

SA 103: c1ccsc1 

SA 104: Nc1ccccn1 

SA 105: C1CO1 

SA 106: CC(O)CCCC=O 

SA 107: C[S]=O 

SA 108: c1cscn1 

SA 109: CC1COCO1 

SA 110: Nc1ccc([S]c2ccccc2)cc1 

SA 111: Cc1ccc(cc1)C(N)=O 

SA 112: CN(C)P(N(C)C)N(C)C 

SA 113: [N+]c1cncn1 

SA 114: O=C1CCO1 
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SA 115: OCCNCC=C 

SA 116: CCNCCCC(C)C 

SA 117: c1ccoc1 

SA 118: CCOC(N)=O 

SA 119: C=CCCCCC=O 

SA 120: C1CN1 

SA 121: c1cc2ccccc2s1 

SA 122: Cc1ncc[nH]1 

SA 123: [O-][N+](=O)c1ccc(o1)-c2cscn2 

SA 124: C#C 

SA 125: CCF 

SA 126: CN=[N+] 

SA 127: CCCN=CN 
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Structural Alerts for Carcinogen Compounds (E model) 

Following, the list of the 43 rules for carcinogenicity, expressed as SMARTS strings: 

SA 1: O=NNCC 

SA 2: c1occc1 

SA 3: O=CN(N)C 

SA 4: CCCN(CC)CC 

SA 5: C1CC(=CC)CCC1 

SA 6: Nc1ccc(cc1C)C 

SA 7: NCCCN 

SA 8: O=S(=O)(OC) 

SA 9: c1ccc2OCOc2c1 

SA 10: Nc1ncccc1 

SA 11: N(CCCl)CCCl 

SA 12: c1cn(cnc1) 

SA 13: C=C(C=C)C 

SA 14: O=NNC 

SA 15: O=P(OC) 

SA 16: O(c1ccc(cc1)CC=C) 

SA 17: c1ncn(c1)C 

SA 18: C(CCCC(CC)Cl)Cl 

SA 19: c1ncsc1 

SA 20: C=CCN 

SA 21: O=Cc1ccccc1O 

SA 22: O(c1ccc(cc1N))C 

SA 23: O1CC1C 

SA 24: SN(C)C 

SA 25: C(CCl)Cl 

SA 26: c1c(cc(cc1Cl)Cl)Cl 

SA 27: NNCC 

SA 28: O=CN(N) 

SA 29: C(OC)C(C)C 

SA 30: c1ccc2cc(ccc2c1) 

SA 31: Nc1cccc(c1C)C 

SA 32: NNc1ccccc1 

SA 33: c1cc(ccc1C)Cl 

SA 34: N(CCO)CCO 

SA 35: Nc1ccc(cc1N) 

SA 36: c1ccc(cc1N)C 
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SA 37: O(c1ccc(cc1)C)C 

SA 38: C(c1ccccc1)CO 

SA 39: C(=CCC)CC 

SA 40: N(Cc1ccccc1)C 

SA 41: Nc1ccc(cc1)C 

SA 42: Nc1ccccc1 

SA 43: n1cccc(c1) 
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Abstract 

 

ToxDelta is a new tool for the evaluation of the toxicity of chemicals based on a modified version of the fmcs_R 

package. Two structurally similar molecules share a maximum common substructure (MCS). In order to evaluate if two 

similar molecules have different effects, we focused our attention on the molecular fragments which are not in the MCS. 

These parts may increase or decrease the value of the property. We considered a variation of the MCS concept of 

efficient relevance in toxicity assessment where the rings of molecules must not be broken. To assess the toxicity of the 

target chemical, ToxDelta extracts the MCS and delineates the remaining fragments. Each of these moieties represents 

a difference between two molecules and its relevance in the toxicity assessment is evaluated against a knowledge-

based list of active and inactive fragments. ToxDelta considers the dissimilarities of the molecules in a read-across 

approach. 
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Introduction 

The European REACH legislation for industrial chemicals promotes the use of alternative 

methods, and explicitly mentions and regulates the use of read-across and quantitative structure-

activity relationships (QSAR), jointly named non-testing methods (NTM). Often, one of the 

problems of QSAR models is their poor interpretability. Along with the assessment of the 

predictive power and statistical quality, the interpretability of the QSAR models is an important 

issue for the regulatory bodies. Furthermore, since read-across is related to the concept of 

similarity, it is closer to evidence and apparently easier to be accepted, although similarity 

cannot be univocally defined. The European Chemicals Agency (ECHA) published a document 

with the purpose to communicate the framework applied within the agency to evaluate the 

assessment done with read-across [1]. In 2014, it was reported that the most common and 

widely used NTM consisted in building categories and predicting properties by read-across. Up 

to 75% of the analysed dossiers contained read-across at least for one endpoint. The ECHA 

guidance on QSARs and grouping of chemicals introduces a flowchart [2] for the generation and 

use of non-testing data in the regulatory assessment of chemicals. This flowchart consists of a 

sequence of operations (eight steps), which starts with information collection and terminates 

with the final assessment exploiting the functionalities of a vast range of computational tools 

and databases. Depending on the chemical and property of interest these steps can be omitted or 

performed in a different order. In our new tool ToxDelta, we have addressed two of these steps: 

“Search for structural alerts” and “read-across”. Even though read-across has been used much 

more than QSAR for registrations, it has been studied much less than QSAR. There are many 

open issues on the use of this approach. Read-across is typically subjective, and strongly relies 
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on the individual expert, the expert’s background and experience, and is difficult to reproduce 

[3].  

In order to solve the above mentioned problems of interpretation and to help the expert to get a 

documented, transparent and reproducible evaluation on the activity of the target compound, our 

group developed a new read-across tool: ToxRead [3,4]. This tool assists experts in the 

evaluation of the biological activity/toxicity of compounds, offering known elements affecting 

the activity within the same picture. 

Recently, we published the results of an exercise on read-across. Participants made their 

assessment using the approach they preferred. The group of scientists who used ToxRead gave 

consistent assessment for the same chemical, while those who used other programs typically 

gave conflicting assessment [5]. This indicates that the subjectivity of the assessment may 

introduce a source of variability which may make read-across an unreliable strategy without a 

proper reproducible scheme. 

Generally, the programs assisting the expert in read-across are based on similarity measuring 

software. Examples of these programs are ToxRead, the OECD QSAR toolbox [6], ToxMatch 

[7] and AMBIT [8]. VEGA, which is commonly used for QSAR, can be also used as a read-

across tool, as it shows the similar compounds and in many of its models also the alerts [3]. 

Similarity is basically measured on the basis of the chemical structure. In some cases additional 

toxicological considerations are added. These programs just show the most similar compound(s) 

to the target substance, and the user can decide the biological activity/toxicity of the target 

compound on the basis of the activities of the similar compounds used as source compounds. 

Furthermore, some of these programs (e.g. ToxRead) provide the value predicted by the 

software. 
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In combinatorial chemistry, the use of similarity and diversity methods addresses the similarity 

property principle. This principle states that structurally similar molecules have similar 

biological activity [9]. This statement is questioned by various experiences with contradictory 

results [10]. In fact, structural similarity does not always imply similarity in either activity [11] 

or descriptors [12]. Minor modifications can make active molecules to lose their activities 

completely and vice versa. Intrinsically, the similarity concept includes the fact that the two 

molecules are different. Thus, the expert should evaluate not only how similar the two 

substances are, but also whether the differences trigger an opposite behaviour. 

Many similarity measuring methods have been proposed to quantify the similarity between 

chemical compounds especially in drug discovery research. One of the most famous methods is 

the study of substructure and superstructure relationships of the chemicals. Two molecules may 

share some common properties due to their common substructure. This search strategy does not 

provide any quantitative similarity measurement. Hence, it is a very knowledge-based approach 

in which every substructure used in a query needs to be well defined. Structural descriptor-based 

methods are another commonly used structural similarity searching approach in which the 

similarity of the chemical compounds can be quantified. Structure similarity search does not 

require an exact match and the search results are ranked by scores. One of the important 

structural-based search methods is fingerprint [13]. In this method, the chemical structure is 

disclosed in a highdimensional space. Many models for predicting biological activities are based 

on the similarity coefficient provided by such methods, such as neural networks [14], fuzzy 

adaptive least squares [15] and inductive logic programming [16]. Structural descriptor-based 

methods are computationally simple, but they are unable to identify local similarities between 

structures.  

Maximum common substructure (MCS) is an encouraging approach for similarity searching and 

biological activities predictions in chemoinformatics. The MCS is a problem of graph matching 

that involves 2D or 3D chemical structures of two chemicals and identifies the largest 

substructure present in both molecule structures. The MCS-based methods have all the 

advantages of the substructure and superstructure -based methods and in addition does not need 

an exact match procedure. Compared to structural descriptor–based methods, MCS provides a 
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similarity score for each comparison and can perform local similarity identification. MCS is a 

straightforward concept of determining similarities with a clear chemical meaning and is 

principally independent of the fingerprints. Several available MCS algorithms in the literature 

do not satisfy the graph representation of the chemical compounds. Barrow and Burstall in 1976 

[17] used the MCS concept for the sub-graph isomorphism for the first time. After that, Cone et 

al. [18] introduced the use of MCS for similarity search for molecular comparison. The 

approach did not receive a notable consideration due to its complexity. Later, other MCS-based 

similarity search algorithms have been presented [19-21]. The concept of MCS in the molecule 

structures has been applied in different chemoinformatic concepts, such as classification models 

using the structural similarities [22], enrichment of chemical libraries [23] and clustering 

molecules with similar structural features [24]. The MCS search methods are mainly divided 

into “clique” [17,25] and “backtracking” [26,27]. The computational problem of finding all the 

largest complete sub-graph(s) (maximal clique) is called the clique problem. The clique problem 

is NP-complete, i.e., no polynomial time algorithm has been found to solve the general problem. 

However, many algorithms for computing cliques have been developed, both complete and 

approximate. The basic algorithm is due to Ullmann [28] who introduced backtracking to reduce 

the size of the search space. The MCS extraction algorithm of the FMCS R package is based on 

backtracking search method. 

We considered a variation of the MCS concept of efficient relevance in toxicity assessment, 

where the rings of molecules must not be broken. We modified the MCS algorithm of the 

fmcs_R package [29] for finding the MCS between two given similar molecule graphs subject to 

this constraint. The similarity index is determined by the VEGA similarity indication which is 

described described by Floris et al. [30]. The new software, ToxDelta is a novel read-across tool 

developed to identify and extract the differences between the target and the reference 

compounds for the further evaluation of the biological activity/toxicity of the target molecule. 

These differences are depicted as molecular substructures. Their possible role in amplifying or 

reducing the activity/toxicity of a compound is queried in an a priori prepared data set of 

molecular structural alerts (SA). 
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We added the constraint of keeping the aromatic or aliphatic rings present in the target or the 

reference molecule complete during the process of the MCS extraction. Indeed, this decision is 

made due to the important role that rings play in the mutagenicity and carcinogenicity SAs. For 

example, polycyclic aromatic hydrocarbons (PAHs) that are composed of multiple aromatic 

rings are a class of mutagens. In addition, PAHs are linked to skin, lung, bladder, liver, and 

stomach cancers in confirmed animal models. The increasing number of aromatic rings in PAHs 

helps the metabolic activation to reactivate diol epoxide intermediates and consequently their 

binding to DNA [31]. In addition, the mutagenicity of the aliphatic epoxides has been 

determined by the Ames test [32]. Historically, a very effective list of the SAs has been created 

and revised by Ashby in 1985 and 1988, respectively [33,34]. The Ashby’s well-known poly-

carcinogen list contains aromatic nitro groups, aromatic azo groups, aromatic rings N-oxides, 

aromatic mono- and di-alkylamino groups, aromatic amines and aliphatic and aromatic 

epoxides. The extended SAs list according to Kazius et al. [35] contains groups of specific 

aromatic nitro and amine, aliphatic halide, polycylic aromatic system and other SA with 

aromatic or aliphatic rings. Also, the Benigni’s [36] list includes an important number of forms 

of aromatic and aliphatic rings. 

In our study, we combine a substructure identification tool with a tool for the assessment of the 

related fragments which are not in common, in order to evaluate the toxicity of the two chemical 

compounds under examination. 

At present, ToxDelta performs only mutagenicity assessment of the chemical substances. The 

mutagenicity SAs collection of this tool is extracted from the Ames test results. Ames test is the 

gold standard for initial examination for detecting chemically induced gene mutations of new 

chemicals and drugs. Bruce Ames created the Ames assay in the 1970s [37]. The assay’s 

sensitivity towards many types of mutagens has been improved over the years [38,39]. Specific 

distinct mutations in the histidine and tryptophan synthetic pathways of Salmonella typhimurium 

and Escherichia coli have been created respectively, that result in the requirement for an 

exogenous supply of those amino acids for growth. Using genetically bacterial strains, the Ames 

test produces a high rate of inter-laboratory reproducibility (85%-90%) [40]. This assay has 

been proved to be the most predictive in vitro assay for rodent and human carcinogenicity 

https://en.wikipedia.org/wiki/Lung_cancer
https://en.wikipedia.org/wiki/Lung_cancer
https://en.wikipedia.org/wiki/Bladder_cancer
https://en.wikipedia.org/wiki/Liver_cancer
https://en.wikipedia.org/wiki/Stomach_cancer
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[37,41]. Additionally, the Ames test results have been demonstrated to be in agreement with 

rodent carcinogenicity or in vivo genetic toxicity about 65% [42].  

Materials and Method 

Database of active and inactive structural alerts 

In a previous study, a very sophisticated collection of mutagenicity SAs has been created and 

implemented in ToxRead for the read-across mutagenicity assessment [4]. This set of rules 

associated to bacterial mutagenicity has been identified and extracted by analyzing more than 

6000 chemicals from different chemical classes. A set of rules related to both mutagenicity and 

lack of mutagenicity were found. These SAs have been sorted in a hierarchy of rules and used to 

identify the active or inactive mutagenic substructures present in the target compounds. The 

hierarchical order of the SAs makes it possible to identify first the exact rule that matches the 

target molecule and then other, more generic ones, which may match with the target molecule. 

Besides rules for mutagenicity and non-mutagenicity, the identified potential rules include 

exceptions and modulators of activity. These rules can be also used to predict mutagenicity 

concerning the influence of each SA found in the molecule. Accuracy and p-value are two 

statistical characterizations which are assigned to each SA of the mutagenicity list; these values 

show the accuracy of the SA based on the number of chemicals in the original training set 

containing the SA, and the prevalence of one of the categories: Mutagenic or non-mutagenic. 

These SAs are those implemented within ToxRead. In the case of the module for mutagenicity, 

there are about 800 SAs each with a high level of detail such as accuracy and statistical 

significance.  

The MCS algorithm: ToxDelta advances ToxRead for it supports the reasoning based on the 

differences, as well as similarity of molecules. The degree of similarity and dissimilarity 

between pairs of molecules is computed from their structures. Molecular structures can be 

encoded in several computer formats which basically contain the topological information about 

the structure, as well as other chemical information such as atom charges, aromaticity, etc. 

Among several available formats, we relied on SMILES strings [43] and structure data formats 

(SDF). 
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The algorithm proposed in the fMCS_R package [44] performs MCS computation via a novel 

backtracking algorithm by incrementally computing a search tree of correspondences between 

nodes of the two graphs under investigation. Each node in this tree is a set of atom 

correspondences while leafs are the connected sub-graphs we are looking for; the deepest leafs 

are the MCSs. 

The aromatic and non-aromatic rings as structural properties of molecules and their role in the 

biological activities of the molecules are important issues. Indeed, among the identified 

mutagenic and carcinogenic SA, aliphatic and aromatic rings play an important role. In this 

regard, an important number of forms of rings are established [36]. For this reason, we applied 

the constraint that the rings present in the input molecular graphs must be retained by the MCS 

by adding an additional check in the backtracking algorithm of the fmcs_R library, as opposed 

to the original R package (fmcs_R). In other words, we decided to maintain all the rings entire 

and not break these rings during the process of the MCS extraction. Our modification to the 

original code of this library consists mainly in adding a restriction during the process of the 

atom selection for the MCS. For each atom belonging to a ring, this restriction checks if the 

atom resides in an equivalent ring in the target and the reference molecule. Since the fmcs_R 

algorithm does not consider rings as such, it may break some rings, i.e. if it is necessary it 

selects only a subset of atoms in a ring. This leads to a significant loss of structural information 

and consequently the implication of the extracted MCS which is meant to be equal for both 

molecules may differ for each compound. We can finally extract the structural differences 

between the two compounds under investigation: we overlap each graph with the MCS and 

highlight all the sub-branches not in the MCS (Figure 1). 
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ToxDelta Implementation 

The user can evaluate the evidences obtained by ToxDelta and make a decision regarding the 

toxicity of a compound under evaluation, in a weight of evidence approach. Figure 2 shows the 

flow chart of the implementation of the ToxDelta program for the mutagenicity endpoint. The 

new tool relies on ToxRead for the evaluation of the degree of similarity between similar 

Figure 1: The MCS between two molecules is shown with bold lines and the other 

branches are the differences. 

Figure 2: The flow chart of ToxDelta: The molecular similarity/dissimilarity 

structure analysis software for the mutagenicity endpoint.  
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compounds. The similarity algorithm has been described elsewhere [30]. A stand-alone version 

of ToxDelta is accessible on the VEGA home page (https://www. vegahub.eu/). ToxDelta will 

be implemented inside ToxRead and the dissimilar substructures will be computed between the 

target molecule and any source molecule selected by the user. ToxRead associates the most 

similar molecules present in its data base to the target molecule, pointing out the mutagenic (or 

non-mutagenic) fragment(s) as toxicity rules present in both the target and the similar chemical 

compounds. ToxRead identifies the mutagenic or non-mutagenic SAs in common between the 

target and the source chemicals. Thus, these SAs belong by definition to the MCS of the pair of 

compounds under investigation. At this point, the integration of ToxDelta inside ToxRead will 

allow further investigation of the pair of compounds, identifying the dissimilar moieties and 

providing the most similar SAs for each of them in the collection of the known SAs. To obtain a 

conceivable result, the structure of the target and the source molecules in the comparison need to 

be sufficiently similar. If the structures of the molecules compared by ToxDelta do not share a 

significant MCS, the dissimilarities may not be interpretable to an acceptable level. In other 

words, whenever the structures of two molecules are strongly dissimilar, the user may not 

expect a significant MCS. In this regard the VEGA chemical similarity index 30 is used as a 

screening before applying the MCS approach. 

Provided that the identified dissimilar fragment in the target molecule is an SA along with the 

assigned active or inactive toxicity effect information, there are three possible scenarios that 

may help the user to move in a certain direction for toxicity decision-making. These three 

scenarios about the dissimilar fragment found in the target molecule are as following: 

1. The SA is an active fragment with strong evidence which increases the effect; 

2. The SA is an inactive fragment with strong evidence which decreases the effect; 

3. The SA is a fragment without any relevant impact on the effect. 

In case 1 and 2 the SA is more likely to modulate the effect of the whole molecule, while in case 

3 the SA is a neutral fragment and does not have an impact on the modulation of the effect. 

Nevertheless, the software provides documentation on the SAs of case 3, which indicates the 

existence of a certain fragment with no impact on the effect. Documentation is an important 

factor in the acceptance of the read-across results. This whole list of SAs is used by ToxDelta to 

https://www.vegahub.eu/
https://www.vegahub.eu/
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assess whether the fragments resulting from the subtraction of the MCS from the molecule are 

associated to an increased or decreased or neutral effect. 

The program returns as output all the possible MCSs of the same length (the number of the 

atoms is equal in all the MCSs) extracted from two molecules of interest. The user can choose 

one of the MCSs found and evaluate the dissimilarities calculated based on the chosen MCS. 

The different fragments present in both molecules, are the result of the subtraction of the MCS 

and the target or source molecules. 

Evaluation of ToxDelta  

In order to evaluate the new tool and to investigate its dissimilarity approach theory, we 

performed tens of in-house tests while studying and developing the proposed methodology. We 

selected two pairs of molecules with known mutagenicity (Ames test) experimental value as 

case studies, to show how our approach works and how it could be useful in the toxicity 

assessment. Even though there is no similarity threshold determined by this tool, for the 

molecules selected as case studies, we chose two pairs of molecules, case 1 and case 2, with a 

cut-off value of 0.7 for the VEGA similarity index [30]. The results provided by ToxDelta for 

the molecules with a small MCS may not have a significant interpretation. In both cases, we 

chose two compounds with different toxicity activity (one mutagenic and the other one non-

mutagenic), as this scenario represents exactly the type of situation in which ToxDelta can 

provide useful insight. To check whether the structural differences between these molecules 

have a significant role in their toxicity or non-toxicity property, we assume that one of the 

molecules in each pair is the target molecule and the other one is the source molecule. We 

selected two pairs of derivatives from two relevant pharmaceutical classes: benzodiazepines and 

androstane derivatives. We chose diazepam, first came on the market as Valium, a 

benzodiazepine drug typically producing a calming effect. It is commonly used to treat anxiety, 

alcohol withdrawal syndrome, benzodiazepine withdrawal syndrome, muscle spasms, seizures, 

trouble sleeping, and restless legs syndrome. Flunitrazepam, known as Rohypnol, is a 

benzodiazepine derivative that can cause anterograde amnesia; its importation has been banned 

by the U.S. Government (https://chem.nlm.nih.gov/ chemidplus/name/flunitrazepam). The 

similarity VEGA index value between these two benzodiazepines is 0.87. Despite this, they 

https://en.wikipedia.org/wiki/Benzodiazepine
https://en.wikipedia.org/wiki/Anxiety_disorder
https://en.wikipedia.org/wiki/Anxiety_disorder
https://en.wikipedia.org/wiki/Alcohol_withdrawal_syndrome
https://en.wikipedia.org/wiki/Alcohol_withdrawal_syndrome
https://en.wikipedia.org/wiki/Benzodiazepine_withdrawal_syndrome
https://en.wikipedia.org/wiki/Benzodiazepine_withdrawal_syndrome
https://en.wikipedia.org/wiki/Muscle_spasms
https://en.wikipedia.org/wiki/Seizure
https://en.wikipedia.org/wiki/Seizure
https://en.wikipedia.org/wiki/Insomnia
https://en.wikipedia.org/wiki/Restless_legs_syndrome
https://en.wikipedia.org/wiki/Restless_legs_syndrome
https://en.wikipedia.org/wiki/Benzodiazepine
https://chem.nlm.nih.gov/chemidplus/name/flunitrazepam
https://chem.nlm.nih.gov/chemidplus/name/flunitrazepam
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exhibit different toxicological profiles: Indeed Diazepam is experimentally non-mutagenic while 

flunitrazepam is mutagenic. As second case study, we provided two androstane derivatives: 

mepitiostane and a structural analogue, cholestan-6-one, 3-bromo-, cyclic 1,2-ethanediyl 

mercaptole, S,S,S',S'-tetraoxide, (3-beta,5-alpha)-. Metpitiostane is an antineoplastic agent 

inhibiting the expansion of estrogen-stimulated cancers by a competitive inhibition mechanism 

for the estrogen receptor (https:// 

pubchem.ncbi.nlm.nih.gov/compound/mepitiostane#section=Pharm acology-and-Biochemistry). 

The similarity index value between these two chemicals is 0.77. We processed the selected 

molecules using ToxDelta to explain the discrepancy between mutagenic activities for each pair. 

The results of the ToxDelta tool are discussed in the results section.  

Results 

The new ToxDelta software uses the structures of the two chemicals to be compared as input. 

The two substances are introduced as SMILES [43]. The MCS is the common part present in 

both molecules and it is shown (Table 1). This MCS is usually a large part of the molecules to 

be assessed. Indeed, the application of ToxDelta is useful for substances that are structurally 

similar. The MCS typically, even if implicitly, represents the driving force in the read-across 

procedure. This is the logical process which identifies the analogies among substances. In this 

scheme, ToxDelta does not contradict but complements the read-across conceptual strategy. The 

risk of the read-across strategy is to miss the differences between two molecules. The similarity 

should not erase the possible opposed behaviour of the two similar compounds. But how to 

avoid the error of ignoring factors which may provoke opposite behaviour? ToxDelta wants to 

address this issue. It carefully identifies the differences and the related toxicological meaning. 

The theoretical basis is closely related to the SA paradigm. Thus, ToxDelta complements the 

ToxRead software, which exploits all the SAs of the target compound. Beyond this global 

assessment, done by ToxRead, it is useful to apply ToxDelta for a closer look at the two 

substances (i.e. the target and the reference compounds), in particular, when they may have 

opposite toxicological properties. Indeed, it should be reminded that ToxRead predicts the 
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toxicological property of the target compound, and thus the predicted value of the target 

compound may be the opposite of the experimental value of the similar compound.  

Table 1: The two case studies: Case study 1) target molecule: Diazepam, source molecule: Flunitrazepam; Case 

study 2) target molecule: cholestan-6-one, 3-bromo-, cyclic 1,2-ethanediyl mercaptole, S,S,S',S'-tetraoxide, (3-beta,5-

alpha)-, source molecule: mepitiostane and the results of ToxDelta: Maximum common substructure and dissimilar 

fragments. 
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Case study 1: Benzodiazepine derivatives  

Source molecule 1: Flunitrazepam 

Systematic name: 1,3-dihydro-5-(o-fluorophenyl)-1-methyl-7nitro-2H-1,4-benzodiazepin-2-one 
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SMILES: c12C(=NCC(=O)N(c1ccc(c2)[N+](=O)[O-])C)c1c(cccc1)F 

Experimental activity: Mutagenic in Ames test [45] 

CAS number: 1622-62-4 

Target molecule 1: Diazepam  

Systematic name: 1-methyl-5-phenyl-7-chloro-1,3-dihydro-2H1,4-benzodiazepin-2-one 

SMILES: O=C1N(c3ccc(cc3(C(=NC1)c2ccccc2))Cl)C 

Experimental activity: Non-mutagenic in Ames test [45] 

CAS number: 439-14-5 

 

ToxDelta identifies “1-methyl-5-phenyl-2,3-dihydro1H-1,4-benzodiazepin-2-one” as MCS 

shared by these two chemicals (Table 1). ToxDelta also extracts three fragments of 

dissimilarities: the nitro group, the fluorine and chlorine atoms, each linked to an aromatic 

carbon. Diazepam lacks the first two fragments, which are present in Flunitrazepam. The 

nitroaromatic moiety matches two ToxRead SAs for mutagenicity both referring to the generic 

nitroaromatic ring; the Benigni–Bossa alert does not include chemicals with orthodistribution 

and with a sulphonic group on the nitroaromatic ring. This leads to a slight difference in the 

accuracies of these fragments, which are respectively 85% and 87%. ToxDelta identifies also 

the fluorine and chlorine atoms linked to aromatic carbons as dissimilarity fragments between 

the two molecules. These moieties do not match any rule for Ames mutagenicity included in the 

ToxRead “libraries” of SAs [3,4]. As a conclusion, ToxDelta immediately reports as a key 

difference the presence of the nitroaromatic fragment, which is at the basis of the different 

mutagenicity value of the two substances.  

Case Study 2: Androstane derivatives 

Source molecule 2: cholestan-6-one, 3-bromo-, cyclic 1,2-ethanediyl mercaptole, S,S,S',S'-

tetraoxide, (3-beta,5-alpha)- 

Systematic name: Cholestan-6-one, 3-bromo-, cyclic 1,2-ethanediyl mercaptole, S,S,S',S'-

tetraoxide, (3-beta,5-alpha)- 
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SMILES:  O=S5(=O)(CCS(=O)(=O)C35(CC1C4CCC(C(C) 

CCCC(C)C)C4(C)(CCC1C2(C)(CCC(CC23)Br))) 

CAS number: 133331-34-7 

Experimental activity: Mutagenic in Ames test [45] 

Target molecule 2: mepitiostane 

Systematic name: 5-alpha-Androstane, 2-alpha,3-alpha-epithio-17beta-(1-

methoxycyclopentyloxy)- 

SMILES: O(C)C6(OC2CCC3C4CCC1CC5C(CC1(C) 

C4(CCC23(C)))S5)(CCCC6) 

CAS number: 21362-69-6 

Experimental activity: Non-mutagenic in Ames test [45] 

ToxDelta identifies the androstane tetracyclic system as MCS shared by these two chemicals 

and extracts five fragments of dissimilarity (Table 1). Three of these are aliphatic rings: the 

thiirane, 1,1-dimethoxycyclopentane, and 1,3-Dithiolane 1,1,3,3-tetraoxide rings and two are 

aliphatic chains: the 2-methylheptyl group and a bromine atom, both linked to an aliphatic 

carbon ring. The cyclic moieties and the alkyl carbon chain do not match any rule potentially 

responsible for mutagenic/non-mutagenic activity listed in the ToxRead software. Conversely, 

the bromine atom linked to an aliphatic carbon ring corresponds to two ToxRead SAs both 

referring to bromo-/haloethyl moieties with different levels of specificity and a prevalence of 

mutagenic activity of 71% and 67%, respectively. These rules, which are present in the source 

molecule but not in the target chemical, give a first indication of different toxicological profiles 

for these chemicals.  

Evaluating the two case studies, it is important to notice that sometimes the identified dissimilar 

fragment is not an entire SA. In many cases the fragment of dissimilarity is a fraction of the 

whole rule (an already existing rule in the rule set) and the rest of the SA appears in the MCS. 

This issue is completely solved by the ToxRead software. In fact, the dissimilarities examination 

of ToxDelta takes place after the visualization of the results of ToxRead, when the user has 
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already observed all the existing SAs that are matched with the target molecule and are in 

common between the target molecule and a set of structurally similar molecules. 
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Discussion and Conclusion 

ToxDelta is a new tool for read-across concept not aimed at substituting other tools, but to 

complement them. It has been designed to match certain features of ToxRead, but it can also be 

used alone. It is important to underline that ToxDelta addresses differences between two 

molecules, and per se it does not address the overall toxic property of the molecule, while this 

aim may be accomplished by other tools, like ToxRead, covering the assessment of the target 

molecule. The main advantage of ToxDelta to the other read-across programs is its focus on 

dissimilarities in addition to the similarities and the resembling properties between structurally 

similar compounds. It exploits the adverse effects that these dissimilar fragments may trigger in 

the biological activities or properties of the chemical substances. 

ToxDelta provides a further insight by analysing the modulations of the effects which are 

expected in relation to the presence of the additional fragments in one of the two molecules 

under evaluation. Compared to other tools for read-across, ToxDelta is more “local”, and this 

fact makes it an ideal tool to evaluate the effect of the metabolites and the impurities related to a 

compound having at hand the experimental values for the parent compound. Two important 

fields in which this issue can be applied are impurities in pharmaceutics and pesticides. The 

Food and Drug Administration (FDA) has provided a guideline for industry about the 

mutagenicity of the pharmaceutical impurities [46] that describes a practical framework for 

identification and control of the identified mutagenic impurities in order to limit potential 

carcinogenic risk. Another appropriate field of application for this tool is in pesticides 

assessment. The European Food Safety Authority (EFSA) has addressed the possible use of in 

silico methods for the evaluation of the effects of metabolites of pesticides [47]. ToxDelta may 

represent an ideal tool for pesticides, biocides and pharmaceutical compounds; because in these 

cases the experimental property values of the parent compound is requested by the relative 

regulations and ToxDelta can provide this information. Thus, ToxDelta may be particularly 

useful in those cases where data for the parent compound are available, and the user is interested 

not in the absolute effect of the related compound, but the possible increase of effect in an 

impurity product. For instance, if the toxicity level of the impurities is similar to the parent 

compound, this fact does not affect the way the substance with the impurity should be handled 
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and regulated. Conversely, if the impurity represents an increased hazard, this may be a serious 

issue. To overcome this kind of problems, local tools that deal with measuring the relative 

increase or decrease of the effects are probably more accurate than absolute de novo predictions. 

ToxDelta aims to address an important issue associated with read-across. Although the use of 

read-across approaches is widespread, the acceptance of the dossiers using read-across is not 

straightforward. Detailed documentation has to be provided by the expert. One of the main 

sources of scepticism on the assessment of read-across is that there are two (or more) substances 

under consideration, the target compound, lacking of data, and the reference compound, which 

is assumed to represent the properties of the target compound. So far the existing software for 

read-across have focused on the assessment of similarity between the target and the source 

compounds, with the idea that the higher the similarity is, the higher is the likelihood that the 

properties of the two compounds will be similar. However, authorities often argue that even 

minor modifications of the chemical structure may provoke a dramatic change in the property 

value. To complement the existing software addressing similarity, we focused our attention on 

the differences between two compounds, introducing ToxDelta. 

It is noticeable that unlike other read-across programs, the SAs within ToxRead and ToxDelta 

do not exclusively contain active fragments, but also inactive fragments. This advantage allows 

exploring positive and negative modulations of the effect, and recognizing whether any relevant 

impact is expected. These SAs are associated to statistical characterizations, based on the 

number of chemicals containing the fragment, and on the prevalence of one of the categories: 

toxic or non-toxic. As a result, the user has both, the evidence that a certain fragment is 

associated to a certain effect and the statistics related to the prevalence of active or inactive 

compounds containing that SA. ToxRead provides all the data available on mutagenicity and 

BCF endpoints, and enables the user to access the available knowledge in a read-across 

approach. This software with its genuine graphical user interface organizes different groups of 

similar molecules and allows the user to move in different levels of reasoning. ToxDelta nicely 

complements ToxRead, offering additional focus on all the fragments which may affect the 

toxicity. 
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Currently, a beta version of ToxDelta is freely available on the VEGA platform 

(https://www.vegahub.eu/) and the toxicity endpoint for which this tool can be used is 

mutagenicity. Other endpoints will be added to the software in the next future. 
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