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Abstract 

Although the incidence is quite low, epithelial ovarian cancer (EOC) is the most 

lethal gynaecologic malignancy. The unfavourable prognosis and the high mortality 

rate associated with EOC are mainly owed to late diagnosis, frequent relapse and 

development of chemoresistance. Indeed, most of the patients who achieve a 

complete response to first-line platinum-based treatment eventually relapse often 

developing platinum-resistant disease. Due to their master regulatory role, miRNAs 

are considered powerful tools to obtain representative molecular portraits of 

specific tumour characteristics and behaviours. My laboratory performed microRNA 

expression profiles on advanced stage EOC patients and a cluster of miRNAs, 

including miR-506, located on ChrXq27.3 was identified as down-regulated in EOC 

early relapsing patients. Since I observed that expression of miR-506 was associated 

with EOC patients’ sensitivity to platinum treatment, the overall aim of this thesis 

was to better characterize the role of this miRNA in regulating response to 

chemotherapy. Among the miR-506 predicted targets, I identified several genes 

involved in DNA damage repair (DDR) pathway, like RAD51, RAD17, CHEK1 and WEE1 

and I concentrated on genes not previously studied in EOC. I validated RAD17 as a 

direct target of miR-506 and identified the miR-506-RAD17 axis as relevant in 

chemosensitising EOC cells to different treatments. I demonstrated that miR-506 

expression, by targeting RAD17, was able to mediate sensitisation to platinum 

treatment and accordingly RAD17 silencing exerted the same effect. MiR-506 

expression in EOC cells led to a reduced ability to properly sense DNA damage 

following platinum treatment causing mitotic defects, micronuclei formation, and 
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impairing the signalling cascade responsible for G2/M checkpoint activation upon 

DNA damage insults. This behaviour, recapitulating a BRCAness phenotype, would 

allow propagation of cells with unrepaired DNA damage with the subsequent 

sensitisation to DNA damaging drugs. Furthermore, miR-506 expression, by 

regulating RAD17, impairs ATM signalling pathway, sensitising EOC cells to PARP 

inhibitor olaparib. Acting in the same way, miR-506 expression was synthetic lethal 

with Chk1 and Wee1 checkpoint kinases inhibitors in agreement with recent data 

reporting RAD17 depletion to be synthetically lethal with these small molecules. 

Accordingly, RAD17 down-modulation phenocopied the effect of miR-506 

expression. Also combination treatments of Checkpoint kinases inhibitors with 

platinum resulted to be synergistic. Together the findings presented in this thesis 

support miR-506 as a key node in regulating DDR pathway in response to drug 

treatments and provide the rationale for its use to select EOC patients with 

BRCAness phenotype for efficient personalized therapeutic treatments. 
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1.1 Epithelial ovarian cancer 

1.1.1 Clinical aspects 

Epithelial ovarian cancer (EOC) is the leading cause of death among gynaecological 

cancers in the developed world1 and it is characterised by high pathological and 

molecular heterogeneity and with a high fatality rate2. The absence of early and 

specific symptoms and the lack of screening strategies3 contribute to late diagnosis. 

As a result, most cases of EOC do not come to clinical attention with a confined 

mass in the ovary, but more often patients present with advanced stage III/IV 

disease. According to International Federation of Obstetrics and Gynaecology 

(FIGO) criteria, the advanced stage is characterised by a widespread intraperitoneal 

disease with the involvement of different pelvic structures other than ovary and 

intra-abdominal ascites. The standard of care for EOC is cytoreductive surgery, 

followed by six to eight cycles of a combination of platinum- and taxane-based 

chemotherapy as first-line treatment for advanced EOC1. Although up to 80% of 

patients can be placed into remission after surgery and chemotherapy, the majority 

of them will relapse with a median progression-free survival of 18 months and a 5-

years survivorship being below 40% 2, 3. The length of the disease-free period 

categorises patients as: refractory or resistant if relapse occurs during or within 6 

months of the end of chemotherapy, partially sensitive when relapsing after 6 and 

before 12 months, sensitive when relapsing after 12 months from the end of 

treatment4. Disease relapse following front-line treatment is frequently associated 

with the development of chemoresistance that, together with a late detection of 

the disease represents the main problem to overcome in the management of EOC. 
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Unfortunately, no validated screening tests are available for the general population 

and the identification of new biomarkers for early diagnosis or disease progression, 

prognosis and response to therapy are of great interest to improve the 

management of this aggressive malignancy. 

1.1.2 Histological subtypes and Origins of ovarian cancer 

- Histological subtypes 

The three main types of ovarian cancer classified by the World Health Organization 

(WHO) include epithelial ovarian cancers (EOC), whose origin is still an area of active 

investigations (commented below), malignant germ cell tumours, which develop 

from the cells that produce the oocyte, and sex cord stromal tumours, which 

develop from connective tissue cells that hold the ovary5. EOC is the most common 

type and represents 90% of malignant ovarian tumours6. Histological subtypes of 

EOC include: high grade serous, low grade serous, endometrioid, clear cell and 

mucinous tumours7 as represented in Figure 1.  
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Figure 1: Defining EOC origins  

Site of origin of EOC is still debated. Recent evidences suggest that HGSOC originates from 

the fallopian tubes, and then metastasize to the ovary. Image from Ovarian Cancers. 

Evolving Paradigms in Research and Care (2016). 

 

Morphological and molecular genetic studies have elucidated our understanding of 

ovarian carcinogenesis.  Almost 10 years ago, a new classification was proposed 

that, according to cell type and molecular features and on the basis of a dualistic 

model of carcinogenesis, divides the histological types of EOC into two categories 

designated as type I and type II tumours8 (Figure 2). Type I tumours comprise Low 

Grade Serous Carcinomas (LGSOCs), low grade endometroid tumours, clear cells 

and mucinous carcinomas. Overall these tumours account for only 10% of deaths 

from EOC. They are generally indolent with a good prognosis when masses are 
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confined to one ovary (stage I) but with a poor outcome when diagnosed at 

advanced stage. Type I tumours are associated with frequent somatic mutations in 

KRAS, BRAF, CTNNB1, PTEN, PIK3CA, MAP, ERK and ARID1A, with rare mutational 

events occurring in TP539. In contrast, Type II tumours present at more advanced 

stages and constitute approximately 75% of ovarian tumours, and are responsible 

for 90% of EOC deaths. Type II tumours are largely composed of High Grade Serous 

Carcinomas (HGSOCs), carcinosarcoma and undifferentiated carcinoma. Extensive 

gene expression profiling studies, mostly performed in HGSOC, substantially 

improved the knowledge of EOC biology and were also expected to significantly 

improve the management of EOC patients. Novel molecular subtypes of EOC based 

on gene expression profile were firstly identified by the Australian Ovarian Cancer 

Study10, then the Cancer Genome Atlas (TCGA) validated the study identifying four 

molecular subtypes whose prognostic significance has been recently validated11, 12. 

However their clinical utility is still a challenge. HGSOCs are genetically unstable and 

almost all harbour a mutation in the TP53 13. These studies revealed the complexity 

and the molecular heterogeneity of HGSOC and indeed, the performance of these 

survival signatures differ among independent cohorts, indicating that the use of 

these signatures for EOC patient management is still a challenge. Moreover 

different abnormalities in homologous recombination repair (HRR) (such as 

mutations or epigenetic alterations in BRCA1 (Breast Cancer 1) and BRCA2 (Breast 

Cancer 2), and defects in Rb protein, Cyclin E1, FOXM1 and NOTCH3 signalling 

pathways often occur in type II tumours9, 12 (Figure 2).  
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Figure 2: The revised dualistic model in the pathogenesis of EOC 

Type I and Type II tumour classification with areas in individual histotypes reflecting their 

relative prevalence. The inner circle indicates the likely cell of origin of the different type I 

and type II tumours indicated in the external circle. The square boxes summarized the 

molecular tumour alterations of the different subtypes. HR: Homologous Recombination; 

DDR: DNA Damage Response. Image from Kurman and Shih11. 

 

- Origins of ovarian cancer 

The traditional dogma of ovarian carcinogenesis was that EOC arises from ovarian 

surface epithelium (OSE) which gives rise to cortical inclusion cysts (CICs) that 

undergo malignant transformation14. The fact that EOCs are composed of cells that 

do not resemble cells in the ovary made OSE origin theory hard to be sustained. It is 

now well sustained by several lines of evidence the hypothesis that many HGSOCs 

arise from high grade serous tubal intraepithelial carcinomas (STICs) that shed from 

the fallopian tube into the ovary15. This paradigm shift has profound implications in 
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the management of this disease and has begun to affect treatment strategies. 

However definition of site of origin is still a matter of debate16.   

The dualistic model dividing EOC in type I and type II tumours present limitations 

indeed dramatic differences between the two groups  are now emerging describing 

completely different groups of diseases and demonstrating that EOC is not a single 

disease but a set of different types of cancer with very different pathological and 

clinical features17-19. Thanks to the huge number of molecular and histopathological 

studies that have provided new insights into the origin and molecular pathogenesis 

of this disease, the standard model has been further revised and expanded11. It is of 

course important when studying ovarian cancer to distinguish by type taking into 

account also the huge quantity of molecular new data that are now available in 

order to improve diagnosis and treatment of this aggressive disease. 

 

1.1.3 Treatments 

The treatment of ovarian cancer is characterised by a combination of aggressive 

cytoreductive surgery followed by platinum based chemotherapy with new targeted 

therapeutic options now available for selected patients and driven by molecular 

characterisation of EOC (see section 1.1.5) The main purpose of the surgery is to 

remove the bulk of the tumour and establish the histopathological diagnosis (FIGO 

stage). As a result, the accurate resection of the entire visible tumour is of primary 

importance since residual disease remains a strong prognostic factors and optimal 

cytoreduction is associated with longer survival20. For advanced stage tumours, 

platinum-based chemotherapy remains the standard of care. 
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1.1.4 Platinum agents: mode of action and resistance in EOC 

- Mode of action 

The mechanism of action of platinum agents relies on their ability to bind to DNA to 

form bulky adducts which require effective repair to prevent apoptosis. Intra-strand 

DNA cross-links are the most common cytotoxic lesions caused by platinum 

treatments21, 22. These platinum-induced lesions cause distortions of the DNA 

structure that are recognized by multiple DNA Damage Repair (DDR) pathways23. In 

particular NER (nucleotide excision repair) and MMR (mismatch repair) repair 

pathways are primarily activated for the resolution of platinum lesions24, 25, then 

also HRR (homologous recombination repair) and ICL (interstrand crosslinks) repair 

are activated when lesions increase (overview of repair mechanisms in section 1.2). 

The cell cycle also takes a role in repair processes and if damage is limited, cells 

arrest in the S and G2 phase of the cell cycle to repair their damage, if the extent of 

lesions increases, cells are no longer able to repair the damage and are committed 

to death26. 

- Platinum resistance 

Drug resistance is a major problem associated with the use of platinum agents. 

While the intrinsic model of resistance is based on the pre-existence of a small 

proportion of chemotherapy-resistant tumour cells that after treatment repopulate 

the tumour and recurrence is observed (refractory disease), acquired resistance is 

based on an initial platinum sensitivity of tumour cells that, following multiple 

cycles of platinum-based chemotherapy, may acquire resistance. In both cases, 
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unravelling the mechanisms of resistance to platinum agents remains a critical goal 

for EOC therapy. 

Platinum resistance is a multifactorial event driven by different molecular 

mechanisms including genetic or epigenetic alterations, inaccessibility of drugs in 

cancer cells, increased ability to tolerate or repair DNA lesions27. Dysregulation of 

cell ability to repair DNA damage is one of the prevalent factors that lead to 

platinum resistance. Platinum-resistant cells acquire the ability to tolerate and 

repair platinum induced adducts through different mechanisms. Dysfunctions in 

genes involved in NER pathway such as overexpression of ERCC1 (Excision Repair 

Cross-Complementation Group 1), or ERCC2 (Excision Repair Cross-

Complementation Group 2), proteins participating in NER, have been correlated 

with poor survival in advanced EOC and were found to be markers of resistance to 

platinum-based drugs28, 29. Components of MMR, such as MSH2 (MutS Homolog 2) 

and MLH1 (MutL Homolog 1), are often mutated or low expressed in platinum-

resistant tumours, including EOC, where MLH1 promoter methylation predicted 

poor survival in relapsing patients30-33. Platinum induced adducts such as interstrand 

crosslinks, require also homologous recombination repair (HRR), an accurate type of 

repair with exchange of homologous DNA sequences in which BRCA1 and BRCA2 are 

major players. These genes are often mutated in HGSOC. Interestingly EOC patients 

carrying BRCA1/2 mutations are sensitive to platinum treatment and have a better 

overall prognosis34, 35. However, in platinum-resistant tumours compensatory 

mutations that restore BRCA function and re-establish a correct HRR have been 

shown to favour acquired chemoresistance36-38. In addition to DNA repair 
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dysfunction, the internalization and degradation of copper transporter 1 and 2 

(Crt1, Crt2), which mediate platinum uptake, also contributes to resistance in 

ovarian cancer due to reduced availability of the drug within the cell39, 40. Two other 

components of the copper family, ATP7A and ATP7B, mediate efflux of drugs and 

were reported to be overexpressed in platinum-resistant EOC cells41, 42. Interestingly 

Patch and colleagues performed a whole genome analysis on tumour samples from 

patients with primary refractory, resistant, sensitive and matched acquired resistant 

disease and observed heterogeneity of the genome under the selective pressure of 

chemotherapy. Among major findings, they observed changes in promoter 

methylation or reversion of mutational status of BRCA genes and up-regulation of 

multidrug-resistant protein 1 (MDR1) transporters, that mediate efflux of drugs43, 

mediated by a novel fusion gene not previously reported in which the promoter of 

SLC25A40 was juxtaposed with ABCB1 which encodes for MDR1. These findings 

further support the acquired platinum resistance model and the idea of cells 

adaptation to survive. 

1.1.5 Molecular driven therapeutics for EOC 

Advances in routine genomic studies (next-generation sequencing, expression 

profiles) are now providing new insight into individual genetic abnormalities for a 

more personalized medicine. Beyond platinum-based therapy, ovarian tumours can 

be now treated with targeted therapies as an alternative strategy for selected 

patients. One example is the case of tumours with BRCA abnormalities. As 

previously said, patients who harbour mutations in BRCA1 and BRCA2 show 

deficiencies in HRR, one of the main mechanisms for the repair of DNA double 
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strand break damage. These tumours appear sensitive to poly (ADP-ribose) 

polymerase (PARP) inhibitors and olaparib, rucaparib and niraparib are now 

therapeutic options for these patients44, 45 46 47. Moreover tumours presenting wild 

type BRCA1/2 but bearing HRR defects and therefore sharing molecular features of 

BRCA mutated tumours, may also respond to similar therapeutic approaches44 46 47. 

This concept, firstly introduced by Ashworth and collaborators more than 10 years 

ago and named BRCAness48, 49, is generally associated with mutations of other genes 

of the same signalling pathway and may thus have important implications for the 

clinical management of these cancers48, 50, 51.  

Another example of approved targeted therapy for ovarian cancer is Bevacizumab, 

a humanized monoclonal antibody that binds to vascular endothelial growth factor 

A (VEGF-A), a protein that promotes the formation of new blood vessels 

(angiogenesis) for nutrients delivery to tumour cells. Bevacizumab, blocking 

angiogenesis, blocks the growth by tumour cell starvation. Bevacizumab is also able 

to initiate vessel normalization leading to vessel permeability for an improved 

tumour drug uptake and increase of partial oxygen thus reducing hypoxia52, 53. 

Bevacizumab was recently approved as first line treatment and maintenance 

chemotherapy. This evidence suggests the importance of better defining the 

molecular landscape of the different subtypes of ovarian carcinoma in order to 

stratify patients for tailored therapy.  

1.2 DNA Damage Repair Mechanisms 

DNA is the repository of genetic information and maintaining its integrity and 

stability is essential to life. Many type of lesions can affect DNA including 
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endogenous metabolic products such as reactive oxygen species (ROS), external 

chemical agents such as cytotoxic chemotherapeutic agents (platinum-agents) or 

electromagnetic radiations (ionizing radiation or UV lights). When lesions happen in 

one strand of DNA, single strand breaks (SSBs) occur; when both strands of DNA are 

involved we observe double strand breaks (DSBs). DSBs are the most dangerous 

among lesions54 which if not correctly repaired can lead to genomic instability55. In 

order to avoid such genomic instability cells can use, the so called DDR (DNA 

Damage Response), to sense DNA damage and mediate appropriate cellular 

response and repair.  

1.2.1 DNA damage sensors 

DNA damage sensors detect the DNA lesions for initiating DDR. The Mre11–Rad50–

Nbs1 (MRN) complex is a sensor of the DNA damage responsible for processing DNA 

ends and recruits other molecules of the DDR at damaged sites26, 56. The DNA lesion 

recognition leads to activation of Ataxia Telangiectasia Mutated (ATM) or Ataxia 

Telangiectasia and Rad3 Related (ATR) kinases, in particular, ATM is activated by 

DSBs recognition while ATR by stalled replication forks57, 58. Then a signal cascade is 

propagated with the recruitment of the other members that participate in this 

complex pathway for DNA damage repair and the activation of checkpoints for cell 

cycle regulation (overview in section 1.3). 

1.2.2 Mechanisms of DNA repair 

Each type of damage acts in a specific way determining a different type of damage 

detection and repair mechanism activation as schematically shown in Figure 3. DSBs 

lesions are preferentially repaired by two pathways, the homologous recombination 
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repair (HRR) and non-homologous end joining (NHEJ). HRR is an error free repair 

pathway relying on the presence of a sister chromatid as template to for accurate 

DNA repair and is the most used mechanism by cells for repairing DSBs and 

restarting stalled replication forks. The error-prone NHEJ mediates the ligation of 

the two ends of DNA DSBs without the need of a homologous template59. SSBs are 

repaired by differ mechanisms in which the intact complementary strand can be 

used as a template to repair the damaged strand. In particular base excision repair 

(BER) resolves damage to a single base mainly caused by oxidation or alkylation; the 

nucleotide excision repair (NER) is activated for the repair of helix-distorting lesions 

(bulky adducts such as pyrimidine dimers) and mismatch repair (MMR) is activated 

to corrects errors of DNA replication and recombination56. 
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Figure 3: DNA damage sources and mechanisms of repair  

Schematic overview of the different environmental factors and endogenous cellular 

processes responsible for DNA damage. Cells have developed different repair mechanisms 

in order to fix these damages such as DNA base excision repair (BER), single strand break 

repair (SSBR), nucleotide excision repair (NER), mismatch repair (MMR), homologous 

recombination (HR), and Non-homologous End Joining (NHEJ), activated by different types 

of damage insults. Checkpoint signalling is also activated in order to arrest cell cycle 

progression to facilitate DNA repair.  

Image from http://www.genetex.com/Web/News/NewsList.aspx?id=322 

 

1.3 Cell cycle and checkpoints activation in cancer 

Among the events activated during DDR there is the delay or block of the cell cycle 

progression to give time for the cell to repair any DNA lesions prior to replication or 

mitosis. The cell cycle is an ordered series of events that regulate cell growth and 

proliferation leading to the formation of two daughter cells that receive a correctly 

duplicated copy of genome and organelles from the parental cell. Control 

mechanisms act during the cell cycle to ensure a correct duplication preventing cells 

http://www.genetex.com/Web/News/NewsList.aspx?id=322
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to divide under unfavourable conditions (for instance, when their DNA is damaged) 

and give them time to repair damage60. The G1 checkpoint (controlling the G1 to S 

transition), is the first restriction point after which cells become committed to 

entering the cell cycle61. Once the cell passes the G1 phase and enters S phase (DNA 

duplication phase), it becomes irreversibly committed to division. Cells have an 

additional checkpoint before M (mitosis) phase, called the G2 checkpoint. At this 

stage, the cell will check DNA integrity and DNA replication. If errors or damages are 

detected, the cell will pause at the G2 checkpoint to allow for repairs62, 63. Among 

Checkpoint kinases involved in DDR, ATM and ATR act as sensor proteins of the 

damage and consecutively phosphorylate mediator proteins, such as Chk1 

(checkpoint kinase 1) and Chk2 (checkpoint kinase 2), that transduce signal. Chk1 

and Chk2 block cell cycle progression through phosphorylation and inhibition of 

CDC25 phosphatases required for cyclin dependent kinase (CDK) activation. This 

results in sustained inhibitory phosphorylation of CDK1 and CDK2 leading to cell 

cycle arrest. Wee1 protein is also involved in the control of cell cycle progression 

being responsible of inhibitory phosphorylation of CDK1 and CDK264. In Figure 4 are 

summarized the molecular events of cell cycle checkpoints activation upon damage. 
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Figure 4: DNA damage-induced cell cycle checkpoints 

DNA double-strand breaks (DSBs) and single strand breaks (SSBs) induce activation of 

ataxia-telangiectasia mutated (ATM) and ataxia-telangiectasia and Rad3-related (ATR) 

kinases which phosphorylates and activates the checkpoint effector kinases CHK2 and CHK1 

respectively. CHK2 phosphorylates cell division cycle 25A (CDC25A), which can prevent 

replication of damaged DNA by activating p53 and p21, resulting in G1/S checkpoint arrest 

due to inhibition of CDK2-cyclin complex. CHK1 phosphorylates cell division cycle 25C 

(CDC25C) which dephosphorylates CDK1 resulting in CDK1-Cyclin /B complex inhibition thus 

inducing G2/M checkpoint arrest to allow DNA repair. In addition, G1/S and G2/M 

checkpoint are maintained blocked by WEE1 kinase that inhibit dephosphorylation of 

CDK1/2. Image from Lin AB et al64. 

 

p53 is a cell cycle G1 checkpoint regulator which, when impaired, forces cells to rely 

on other checkpoints for cell cycle regulation. Interestingly HGSOC are characterised 

by near universal aberration in the tumour suppressor TP53 13. Focusing on p53 

deficiency as the target selection criteria, it becomes evident that targeting the G2 



29 
 

checkpoint could represents a valuable strategy to kill cancer cells sparing normal 

cells protected by a p53-dependent response65 (Figure 5). As a result, maximising 

the DNA damage during G1 and prevent repair in G2 should be the goal for the use 

of DDR targeted therapy. Indeed G2/M checkpoint abrogation, can ultimately lead 

to mitotic catastrophe and cell death or senescence. 

 

 

 

Figure 5: Sensitizing cancer cells to DNA-damaging agents with checkpoint inhibitors 

Cancer cells deficient in p53 lack the G1 checkpoint and may depend more on the G2/M 

checkpoint to block cell cycle and repair damage. Checkpoint inhibitors in combination with 

DNA damaging therapy leads to the G2/M checkpoint abrogation that culminate in mitotic 

catastrophe and cell death. Notably, healthy cells are protected by p53-dependent 

response. Image from Benada J et al65. 
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1.3.1 RAD17 

RAD17 is a DNA damage checkpoint gene firstly identified in yeast 

Schizosaccharomyces pombe and the human homolog RAD17 has been also 

identified and characterised66, 67. It is thought to be a critical early sensor protein 

through which DNA damaging insults activate the ATR dependent signal cascade 

that lead to cell cycle arrest and DNA repair68. RAD17 is part of the RAD17-RFC 

(complex of Rfc1-5 subunits) complex which binds to single strand DNA (ssDNA) 

structures69. Acting as a clamp loader, RAD17 loads the complex Rad9-Hus1-Rad1 

(9-1-1 complex) onto DNA damage sites, an event that potentially create a 

chromatin location site for 9-1-1- sliding clamp to interact with other elements of 

the checkpoint machinery and facilitates ATR-dependent phosphorylation of 

downstream targets to fully activate the DNA damage response68 (Figure 6).  

 

Figure 6: Schematic illustration of RAD17 protein function in the activation of DDR 

When damage occurs, ssDNA at sites of damage is coated by Replication protein A (RPA) 

important event for the recruitment of ATR (ataxia-telangiectasia and Rad3-related) 

through a direct interaction with ATRIP (ATR interacting protein). At this point, the Rad17 

clamp loader load the 9-1-1 (Rad9-Hus1-Rad1) checkpoint clamp onto the junction of the 

ss/dsDNA (single strand/double strand DNA), event that promote the recruitment of 

TopBP1, an ATR kinase activator, that culminate in the activation of ATR kinase and in the 

phosphorylation of the Chk1 (checkpoint kinase 1), facilitated by claspin, for signal 

transduction. Image from Mohni KN et al70. 



31 
 

Beside the role of RAD17 in the ATR signalling, it has been recently shown that 

RAD17 is required for early ATM kinase activation and consequent ATM-mediated 

phosphorylation of downstream targets which promote HRR71 . The proposed role 

for RAD17 is the early recruitment and maintenance at damage sites of the MRN 

(Mre11-Rad50-Nbs1) complex thus allowing ATM activation by phosphorylation and 

subsequent phosphorylation of ATM targets (Figure 7), which are the essential steps 

for the detection of DSBs and initiation of DNA damage signalling cascade71. 

 

Figure 7: Illustration of the possible role of RAD17 in the ATM signalling pathway 

RAD17 play a role also in the ATM pathway by helping in the recruitment and retention at 

the sites of DNA damage of the MRN complex (upper panel). In this way, it would promote 

the phosphorylation mediated by ATM of downstream targets such as γH2AX and Mdc1 

amplifying the ATM-dependent DNA damage signalling cascade leading to homologous 

recombination repair. Image adapted from Paull TT and Lee JH72. 
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1.3.2 RAD17 and cancer 

The dysregulation of RAD17 was found to be associated with different types of 

tumours73-76; moreover RAD17 is located on chromosome 5q13.2, a region known to 

be deleted in a variety of human cancers77-79. For example, Ming Zhao et al 

identified loss of RAD17 expression, often due to genomic deletion, to be associated 

with genome instability in head and neck cancer73. On the other hand, an 

overexpression status of the RAD17 protein was detected in colon carcinoma 

compared to normal tissues by Bao S and colleagues74. Overexpression of the 

RAD17 gene was also identified to be associated with lymph node metastasis in 

breast and non-small cell lung cancers75, 76. Fredebohm and colleagues conducted a 

synthetic lethal RNAi screen and identified depletion of RAD17 to be linked with an 

increased sensitivity of pancreatic cells to gemcitabine80. Interestingly Shen and 

colleague identified RAD17 Knockdown as synthetically lethal with Checkpoint 

kinases inhibition in HeLa and LN428 cell lines81. Since its role in activating the DNA 

damage response and its altered expression in cancer cells, RAD17 represents a 

suitable target to be regulated in order to potentially obtain sensitisation to 

chemotherapy and DDR targeted therapy. 

1.3.3 DDR and cancer  

The DNA damage response is a complex signalling network, essential for 

maintaining the genomic integrity of the cell, and its disruption is one of the 

hallmarks of cancer82. Indeed proteins involved in DDR are frequently mutated or 

abnormally expressed in cancer cells83. Compared to normal cells, cancer cells often 

display defects in one or more DDR pathways leading to a higher dependency on 
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the remaining repair pathways26. One example is mutation in the TP53, the guardian 

of the genome, which is a common feature of late stage tumours and is responsible 

for tumour susceptibility13, 84. Upregulation of DDR factors such as Chk1, Chk2, 

RAD50 or NBS1 has been reported in several cancer types, while mutation or 

reduced expression of protein such as ATM RAD51 or BRCA1 has been also 

observed as reviewed by Hosoya and colleagues85. In particular in ovarian cancer 

mutations in BRCA1 and BRCA2, critical effectors proteins of the HR pathway are 

associated with tumorigenesis. Also mutations in ATM or RAD51 genes were found 

to correlate with hereditary ovarian cancer and increased risk of disease86, 87. 

1.3.4 DDR and targeted therapy 

Cancer cells display a major susceptibility to DNA-damaging agents compared to 

normal cells due to their DDR and DNA repair-deficiency. This feature of cancer cells 

can be used as a therapeutic opportunity by targeting protein components of the 

DDR system88, 89. For this reason, several DDR targeted therapies have been 

developed in the last 10 years in order to achieve what is defined as synthetic 

lethality. This approach is based on the concept that targeting two or more cancer 

relevant genes lead to cell death, whereas perturbation of only one does not. Such 

a mechanism provides significant patient benefit, enabling normal cells with a 

functional DDR to remain unaffected reducing general toxicity90. The best example 

of targeting DDR in a synthetic lethal way is probably the use of PARP inhibitors for 

BRCA1/2 mutated cancer cells91, 92. PARP1 is an enzyme that detects and binds to 

DNA SSBs initiating DNA repair by a variety of mechanisms such as BER and NER93, 94. 

Inhibition of PARP1 enzymatic activity causes the failure of SSBs lesions to be 
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repaired, resulting in their accumulation and conversion to deleterious DSBs that 

require HRR to be repaired and therefore functional BRCA1/2. Indeed, BRCA1/2 play 

a critical role in HRR facilitating the recruitment of RAD51 at ssDNA sites, a key 

molecule for homologous strand exchange in HRR pathway. Inactivating mutations 

of BRCA1/2 in cancer cells therefore cause severe defects in HRR and simultaneous 

inactivation of PARP1 enzymatic activity renders impossible the DNA repair thus 

causing cell death95, 96 (Figure 8). Of note, the PARP inhibitor olaparib, was recently 

approved by Food and Drug Administration (FDA) and European Medical Agency 

(EMA) as maintenance monotherapy for recurrant, platinum sensitive ovarian 

cancer patients bearing germline BRCA1/2 mutations97, 98 and represents one of the 

best examples to date of personalized therapy for ovarian cancer99,100, 101. 

 
 

Figure 8: Synthetic lethality induced by Inhibition of PARP1 enzymatic activity. 

In normal cells, DNA damage is repaired by different DDR pathways, such as base-excision 

repair mediated by PARP1 activity, and homologous recombination mediated by BRCA 

proteins function (left panel). In cancer cells with mutation in BRCA1 or BRCA2, homologous 

recombination is non-functional and when PARP1 is inhibited, both base-excision repair and 

homologous recombination pathway are no more available and cells are committed to 

death (right panel). Image adapted from Iglehart JD et al102. 
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Besides homologous recombination, also targeting replication stress, another 

hallmark of cancer103, can be of great value. Replication stress, typically occurring 

during DNA replication, is characterised by generation of stalled replication forks 

and induction of a DDR in order to stabilize them to prevent replication forks 

collapse and generation of cytotoxic DNA DSBs104. Both ATR-Chk1 pathway and 

Wee1-CDK1/2 pathway are important regulators of replication stress thus 

representing attractive DDR targets105, 106. Several inhibitors of these molecules are 

currently being investigated in clinical trials such as inhibitors of ATR (AZD6738, 

VX970), Chk1 (LY2606368, MK8776) and Wee1 (AZD1775) also in the context of 

EOC107. 

1.3.5 Combining DDR inhibitors with DNA damaging drugs 

Platinum agents (cisplatin, carboplatin), alkylating agents (temozolomide) and 

inhibitors of topoisomerase (topotecan, irinotecan, doxorubicin) are commonly 

used DNA damaging drugs and interesting data on combination with DDR inhibitors 

has been presented in preclinical83, 108, 109 and clinical studies110 thus representing 

important opportunities for cancer therapy. Importantly it has been observed that 

combinatorial strategies can re-sensitise resistant tumours as in the case of 

platinum resistant lung cancer patients which displayed a re-sensitisation to 

platinum treatment when exposed to the Wee1 inhibitor AZD1775 110. Moreover 

DDR-DDR agent combinations are being tested and several clinical trials are 

underway107 as in the case of the combination of PARP inhibitor and Wee1 inhibitor 

(Clinicaltrials.gov ID NCT02272790). However, successful combination of DDR 
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inhibitors or DDR inhibitors and DNA damaging drugs will depend on the right 

association of cancer genetic background with the specific DDR dependency. 

1.4 MicroRNAs 

1.4.1 Biogenesis and role of miRNAs as regulator of gene expression 

MicroRNAs (miRNAs) are a class of endogenously expressed non-coding RNA, with a 

length of 19–25 nucleotides, discovered over two decades ago, now recognized as 

one of the major regulators of gene expression111. Thousands of different miRNAs 

have been identified in animals and plants, and more than 2500 in humans as 

documented in the Sanger miRBase sequence database (http://www.mirbase.org). 

A large number of miRNAs are conserved in closely related species and many have 

homologs in distant species, suggesting that their function could also be conserved 

throughout evolution112. RNA polymerase II transcribes microRNA molecules from 

genomic DNA into a primary microRNA molecule (pri-miRNA). Pri-miRNA molecules 

that contain a stem-loop structure are recognized by the RNAse III DROSHA and its 

partner protein DGCR8, which cuts the double-stranded RNA into ~70-nucleotide 

precursor microRNA (pre-miRNA) in the nucleus. Pre-miRNA molecules are exported 

to the cytoplasm by exportin-5 and are processed by DICER, an RNAse III, into two 

unique single-stranded mature microRNA molecules representing each side of the 

stem loop structure. Mature microRNA molecules are loaded onto the Argonaute-

containing RNA-induced silencing complex (RISC). Within this structure, mature 

microRNA molecules function to repress gene expression by complementary 

binding of the 3′ untranslated region (UTR) of the target gene to the miRNA seed 

sequence, constituted by nucleotides 2–8 of the mature miRNA molecule, leading to 
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transcript degradation or translation inhibition depending on the level of 

complementarity113 (Figure 9).  

Figure 9: Biogenesis of miRNAs and their regulatory function in cells Image from  

Barca-Mayo O and Lu QR114. 

 

1.4.2 MicroRNA and cancer  

Each miRNA has multiple target genes and regulate different physiologically 

important processes in the body, such as cell proliferation, differentiation, 

metabolism, regulation of immune response and cell cycle resulting very important 

in maintaining the integrity of a cell. Moreover the same target gene can be 
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influenced by multiple miRNAs, so it is not surprising that abnormalities in their 

expression are implicated in the pathogenesis of several diseases including 

cancer115-117. Global alteration in miRNA expression patterns was identified in cancer 

cells compared to normal tissues linking miRNA deregulation to tumorigenesis118. 

Deregulated miRNA expression can be partially attributed to genomic alterations in 

miRNA loci and in miRNA copy number variations. Indeed miRNAs often maps in 

particular genomic regions prone to alteration in cancer as fragile sites or region 

with high frequency of LOH (loss of heterozigosity), deletion and amplification 

events contributing to their deregulation116, 119. First evidences of these genomic 

alterations were for example the loss of miR-15a/16 cluster region at chromosome 

13q14 in B-cell leukemia120 or the amplification of miR-17–92 cluster gene in B-cell 

lymphomas and lung cancer121, 122.  

Upregulations and downregulations of different miRNAs have been identified as 

critical for various aspects of tumorigenesis, from transformation to metastatic 

events and dissemination and chemoresistance mechanisms of many cancers. 

Several studies correlated miRNA expression with different tumour types and their 

expression is often exclusively of specific tissue type. MiRNAs acting as key 

regulators of gene expression can be classified as tumour suppressor miRNAs or 

oncomiRNAs based on their function in regulating tumour phenotype116, 123. For this 

reason miRNA expression profiles provides an additional layer of information 

compared to the mRNA profiles, thus increasing the accuracy for tumour diagnosis 

and improving prediction of therapeutic responses and overall survival (OS) of 

cancer patients.  
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1.4.3 MicroRNA and EOC  

Most of publications focusing on miRNAs in EOC have been published in the last 5 

years indicating the increasing interest in defining their role in this malignancy. The 

possibility to better define miRNA-driven mechanisms regulating EOC phenotype 

represents an exciting opportunity in EOC cancer therapeutics. Several miRNA 

profiling studies discovered aberrant expression of miRNAs associated with EOC 

tumorigenesis and progression, providing improved diagnostic, prognostic and 

therapeutic approaches124-126. A general downregulation trend of miRNA expression 

in EOC compared to normal counterpart has been observed by different authors 

and similar set of dysregulated miRNAs were identified. In a study performed by 

Iorio and Croce127 using ovarian cancer tissues and cell lines compared to normal 

counterpart (normal ovarian tissues sample), 25 out of 29 dysregulated microRNAs 

were found to be downmodulated, and 4 microRNAs were found to be 

upmodulated. The overall miRNA expression was able to differentiate normal versus 

tumour samples. Zhang and collaborators128 found a similar trend of significantly 

differentially expressed microRNAs with 31 out of 35 miRNAs downregulated in EOC 

cell lines compared to IOSE (immortalized ovarian surface epithelium) cells. 

Furthermore a trend of downregulation of differentially expressed miRNA was 

observed in late compared to early stages and in high compared to low-grade 

EOC128. In addition, miRNAs differentially expressed in omental secondary lesion 

compared to primary tumour were found to be responsible of increased cancer 

cells’ survival and drug tolerance129 suggesting the important role of miRNAs both in 
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the disease progression and response to therapy. Data in the table list the principal 

dysregulated miRNAs in ovarian cancer (Table 1). 

Table 1: miRNAs found to be consistently dysregulated in ovarian cancers compared to 
different normal counterpart (adapted from Zhang S et al77). 
 

Alteration miRNAs Counterpart Effect Mechanism of Deregulation Targets 

Down-
regulated 

Let-7a/b/d/f 
OSE, IOSE, ovary, fallopian 
tube from fimbriated end 

tumour 
suppressor 

promoter methylation, copy 
number variations  

KLK10, HMAG2 

miR-22 OSE 
tumour 

suppressor 
  

ARRB1, CLIP2, 
EVI1,FRAT2, EDC3 

miR-31 OSE 
tumor 

suppressor 
copy number variation E2F2, STK40, CEBPA 

miR-34a/b/c 
 IOSE, ovary, fallopian tube 

from fimbriated end 
tumour 

suppressor 

promoter methylation, copy 
number variations and TP53 

mutations  
MET, CDK4 

miR-125b 
OSE, IOSE, ovary, fallopian 
tube from fimbriated end 

putative tumour 
suppressor   

BCL3,VEGF,HIF-1α,HER3 

miR-127-3p OSE, NOSE, ovary, serum 
related to drug-

resistant 
imprinting, copy number 

variations, promoter methylation 

 

miR-152 
OSE, IOSE, fallopian tube 

from fimbriated end 
putative tumour 

suppressor 
promoter methylation 

  

miR-155 IOSE, blood, serum 
putative tumour 

suppressor     

miR-181a-3p OSE, ovary, blood 
  

copy number variations, promoter 
methylation   

miR-382 HOSE 

  

copy number variations, promoter 
methylation 

  

Up-
regulated 

miR-15a/16 
OSE, fallopian tube from 

fimbriated end 
  

promoter methylation Bmi-1 

miR-20a 
OSE, fallopian tube from 

fimbriated end 
oncogenic 

miRNA   
APP 

miR-23a/b ovary 
  

copy number variations, promoter 
methylation   

miR-30a/b/c 
OSE, IOSE, fallopian tube 

from fimbriated end 
related to drug-

resistant 
copy number variations AVEN, GALNT1 

miR-92 
OSE, fallopian tube from 

fimbriated end 

putative 
oncogenic 

miRNA     

miR-93 ovary 
putative 

oncogenic 
miRNA 

copy number variations, promoter 
methylation 

  

miR-106a 
OSE, fallopian tube from 

fimbriated end 

putative 
oncogenic 

miRNA 
    

miR-146b 
OSE, IOSE, fallopian tube 

from fimbriated end 

putative 
oncogenic 

miRNA 
copy number variations   

miR-182 
OSE, IOSE, ovary, fallopian 
tube from fimbriated end 

putative 
oncogenic 

miRNA 

copy number variations, promoter 
methylation 

PDCD4 

miR-200 
OSE, ovary, fallopian tube 

from fimbriated end 

putative 
oncogenic 

miRNA 
copy number variations 

ZEB, c-Myc,TUBBIII,FN1, 
NTRK2,QKI 

miR-203 
OSE, ovary, fallopian tube 

from fimbriated end 
  promoter methylation   

miR205 
OSE, ovary, fallopian tube 

from fimbriated end 

putative 
oncogenic 

miRNA 
promoter methylation   

miR-223 OSE 
putative 

oncogenic 
miRNA 

  SEPTIN6, MMP9, USF2 
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1.4.4 MiRNAs as early diagnostic, prognostic and predictive biomarkers in EOC 

The lack of reliable biomarkers for EOC early diagnosis, prognosis or for monitoring 

drug response during chemotherapy, and the lack of reliable patients’ stratification 

strategies before starting treatment, represent gaps to be covered in order to 

improve success in treating EOC. It is now emerging that microRNAs are good 

candidates to be taken into account to achieve this goal. They maintain stability also 

in formalin fixed tissues, which represent the commonest source of samples for 

biomarkers analysis, and are also abundantly present in body fluids such as blood, 

where they can circulate and regulate the gene expression of recipient cells130, 131. 

Many studies showed that the blood miRNAs of patients affected by various 

diseases is altered compared to that of healthy subjects132-134. MiRNAs in the blood 

stream are resistant to degradation by RNAse enzymes and are high stable135, 136, 

since they are complexed with proteins such as Ago2 (Argonaute 2) or are 

transported by vesicles such as exosomes137. For all these reasons, circulating 

miRNAs represent minimally invasive promising category of early diagnostic 

markers also for EOC138. Dysregulated expression of microRNAs at tissue level as 

potential prognostic and predictive markers has been also deeply investigated in 

recent years. MiR-200 family members, known epithelial to mesenchymal transition 

(EMT) regulators, are deregulated in ovarian cancer as reported by several 

authors127, 139 and their expression correlate with progression-free survival (PFS) and 

OS in EOC patients. In particular, in stage I EOC low expression level of miR-200c 

was shown to be an independent prognostic factor of poor survival and a biomarker 

of disease relapse by Marchini and collaborators140. Let-7b, was reported to be an 
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unfavourable prognostic biomarker in HGSOC and was able to stratify patients in 

distinct risk groups with different survival rate141. Calura et al performed a study on 

203 early stage snap-frozen EOC samples, collected at surgery, showing that a 

miRNA signature, combined with a gene expression profile, was able to provide a 

prognostic cell pathway, composed of 16 miRNAs and 10 genes, that was associated 

with OS and progression free survival PFS142. Another important prognostic model 

was developed and validated by my research group analyzing the miRNA expression 

profile of 894 EOC samples, the largest EOC collection so far available, with the aim 

of identifying a miRNA signature associated with progression and relapse. A 

signature based on 35 miRNAs, MiROvaR (miRNA-based predictor of Risk of Ovarian 

Cancer Relapse or progression), was developed143. This signature was able to predict 

the risk of progression or early relapse in EOC, allowing patient stratification into 

low- and high-risk groups, with a difference in the median progression-free survival 

of 20 months between the high-risk and low-risk groups. MiROvaR maintained its 

prognostic independency when adjusted for stage and residual disease, the two 

most important clinical prognostic factors in EOC. Among microRNAs that most 

contributed to MiROvaR and found to be downregulated in the group with high risk 

of relapse there were the miR-200 family and the miR-506 family. Interestingly we 

previously reported the miR-506 family to be downregulated in early relapsing 

advanced stage EOC patients144 and we contributed with other groups to show that 

miR-506 is involved in EMT process145, tumour proliferation146 and chemotherapy 

response147. Overall, these studies strengthen the role and the ability of miRNAs in 

stratifying patients into risk classes. Furthermore both Calura’s and Bagnoli’s 
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studies142, 143 showed that the prognostic role associated with their miRNA 

signatures is independent from histological subtype, further supporting the use of 

miRNAs as prognostic biomarkers in EOC. 

1.4.5 MiR-506 

We previously identified a cluster of eight miRNAs mapping on the chromosome X 

in the q27.3 region (ChrXq27.3 cluster) whose down-regulation is independently 

associated with early relapse in advanced stage high grade EOC patients144. MiR-506 

belongs to this cluster and it represents the most investigated among the family and 

probably the driver miRNA of the cluster, being a key node in regulating EMT in 

EOC. MiR-506 functional and biological characterization revealed its involvement in 

regulation of both cell plasticity and drug response to chemotherapy145, 148. 

Furthermore, many different studies so far demonstrated the tumour suppressor 

role of miR-506 across different tumour types149-152 through regulation of different 

target genes involved in several biological processes such as cell growth, migration 

and invasion, apoptosis and chemoresistance (Figure 10). 

Interestingly miR-506 and the other microRNAs of the ChrXq27.3 cluster are all 

included in the MiROvaR predictor identified by my research group further 

supporting its important role in EOC and our interest in better define its 

contribution to this aggressive disease. 
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Figure 10: Tumour suppressive role of miR-506 on different biological processes 

Mir-506 is often downregulated in various types of cancer and putative binding sites of 

transcription factors have been identified upstream of miR-506 gene. Acting as a tumour 

suppressor miRNA, it regulates important genes involved in different cellular processes, 

such as ROCK1, N-RAS, VIM, RAD51, CDK4/6. Image from Li Jet al 2016153. 

 

-MiR-506 in ovarian cancer 

Many studies have shown the important role of miR-506 in regulating important 

cellular processes in ovarian cancer. We reported that miR-506 reintroduction was 

able to inhibit cell proliferation and increase cell sensitivity to platinum treatment in 

EOC cell lines144. Yang D and collaborators showed that miR-506 through direct 

targeting of SNAI2, a transcriptional repressor of the epithelial phenotype marker E-

cadherin, inhibited cell migration and invasion, induced E-cadherin expression and 

was able to abolish a TGF-β induced mesenchymal phenotype in EOC cellular 

models148. Moreover miR-506 suppresses other components of the EMT network, 



45 
 

Vimentin and N-cadherin, two important mesenchymal markers, thus inducing a 

reversion versus a more epithelial and less aggressive phenotype145. An anti-

proliferative effect of miR-506 was shown by the same authors on EOC cells due to 

the suppressive effects on the CDK4/6-FOXM1 signalling pathway, usually activated 

in serous EOC. By a direct targeting of CDK4 and CDK6, cyclin-dependent kinases 

involved in cell cycle progression, miR-506 promoted cell senescence146. 

Due to the increasing evidences of the involvement of EMT in EOC 

chemoresistance154-156, we contributed with Liu G and colleagues to unravel the role 

of miR-506 in chemoresponse showing that miR-506 is associated with a better 

response to therapy and longer PFS ad OS in high grade ovarian cancer. MiR-506, 

through direct targeting of RAD51, involved in double strand DNA (dsDNA) repair 

through HRR process, is able to sensitise cells to platinum and PARPi olaparib 147. All 

these findings support the important role of miR-506 as tumour suppressor in 

ovarian carcinoma. 
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2. Aims of the Project 

Despite optimal surgery and chemotherapy, the majority of EOC patients 

experience relapse of the disease. Thus a major challenge in EOC remains prediction 

of chemoresistant relapse and definition of mechanisms of chemoresistance. 

MiRNAs are considered important tools through which to obtain a molecular 

portrait of EOC chemoresistance and represent possible therapeutic targets to be 

used in the clinic. We previously identified the ChrXq27.3 miRNA cluster as 

downregulated in early relapsing advanced stage EOC patients and we defined miR-

506, belonging to the ChrXq27.3 miRNA cluster, as potentially relevant as regulator 

of EOC cellular plasticity and response to therapy. 

Thus this thesis aimed to dissect the miR-506-driven molecular mechanisms 

involved in regulating response to chemotherapy by: 

1. Investigating the potential role of miR-506 in the response to chemotherapeutic 

treatments and identifying possible miR-506 targeted genes involved in chemo-

response; 

2. Define the miR-506-driven molecular mechanisms at the basis of chemo-

response. 
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3. Materials and Methods 
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3.1 Cell biology technique 

3.1.1 Cell Cultures  

Human ovarian carcinoma cell lines 

Several EOC cell lines, resembling tumour heterogeneity, and their characteristics 

are listed in Table 2. 

 

Table 2: Ovarian cancer cell lines 

Cell lines Histology TP53 mutational status Source 

OAW42 SEROUS WT 

Dr. Ullrich, Max-Plank 
Institute of 

Biochemistry, 
Martinsried, Germany 

SKOV3 
ENDOMETRIOID/CLEAR 

CELL 
NULL ATCC 

A2774 ENDOMETRIOID  MUT ATCC 

IGROV1 MIXED  MUT 
Dr. J. Bernard, Institute 

G. Roussy, Villejuif, 
France. 

OVCAR3 HIGH GRADE SEROUS MUT ATCC 

OVCAR5 SEROUS NULL Dr.R. Camalier, NCI, 
Frederick, MD 

OVSAHO HIGH GRADE SEROUS  MUT 
Dr. Baldassarre, CRO 

Aviano,Italy 

COV362 HIGH GRADE SEROUS MUT 
Dr. Baldassarre, CRO 

Aviano,Italy 

A2780 
ENDOMETRIOID/CLEAR 

CELL 
WT ECACC 

WT: wild type; MUT: mutated. ATCC: American Type Culture Collection; ECACC: 
European Collection of Cell Culture. Histological types are reported as described  157 

 

Besides the EOC cell lines the following were used: HEK293T (ATCC), a human cell 

line isolated from human embryonic kidneys (HEK) was used for luciferase assays. 

A431 (epidermoid carcinoma), H460 (non small cell lung cancer), PC3, DUI45, LNCAP 

(prostate cancer), MDA-MB-468, MCF-10 (breast cancer), and HCT-116 (colon 

cancer) cancer cell lines were used for RNA extraction and real time PCR 

experiments. All human cell lines used in this thesis were cultured at 37°C with 5% 
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CO2  and maintained in RPMI 1640 (Lonza) supplemented with 10% heat-

inactivated fetal bovine serum (FBS) (Gibco®, life technologies) and 2 mM L-

glutamine (Sigma-Aldrich, St. Louis, MO, USA) except for OAW42 which was 

maintained in MEM (Gibco®, life technologies) supplemented with 10% heat-

inactivated FBS 2mM L-glutamine and 1% non-essential amino acids (100X stock; 

Euroclone, Italy), HEK293T in DMEM (Gibco®, life technologies), supplemented with 

10% heat-inactivated FBS and 1% glutamine and OVCAR3 which was maintained in 

RPMI supplemented with 20% heat-inactivated FBS 2mM L-glutamine and 1% 

sodium pyruvate. 

Cells were confirmed to be mycoplasma-free using MycoAlertPlus detection kit 

(Lonza) and subjected to short tandem repeat (STR) DNA profiling in accordance 

with the ATCC guidelines, and the genetic profiles were compared with those of 

publicly available databases to verify their authenticity. Analysis was performed by 

our Genomic Facility at INT, Milan. 

3.1.2 Drug used and treatments 

Cis-diamminedichloroplatinum (DDP) (Teva Pharmaceuticals Industries Ltd) (3.3 

mM) was used at doses ranging from 0.1 to 100 µM depending on the cell line used. 

The PARP inhibitor (PARPi) olaparib (selleckchem.com) was reconstituted in 

dimethyl sulfoxide (DMSO) to a concentration of 10 mM and stored at -20°C. It was 

used at doses ranging from 0.5 to 10 µM depending on the cell line used. 

The Chk1 inhibitor LY2603618 (selleckchem.com) was reconstituted in DMSO to a 

concentration of 10 mM and stored at -20°C. It was used at doses ranging from 50 

to 300 nM depending on the cell line used. 
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The Wee1 inhibitor AZD1775 (Biovision Inc. Milpitas, CA; USA) was reconstituted in 

DMSO to a concentration of 100 mM and stored at -20° C. It was used at doses 

ranging from 0.25 to 200 nM depending on the cell line used. 

For short term cell survival assays cells were plated in 96 wells at the concentration 

of 2500-5000 cells per well depending on the cell type. Then platinum titration 

curves were obtained by treating cells (n=6 wells per treatment) for 7h, and effects 

observed after 72h. Control cells were treated with appropriated medium.  

For clonogenic assays cells were plated in 6 wells at the concentration of 1000 cells 

per well. Drug titration curves were obtained by treating cells (n=3 well per 

treatment) with different drugs for 10-14 days. Control cells were treated with 

appropriated medium. 

3.1.3 Transient transfection 

Transfection experiments in this thesis include: 

 miRNA transfections, into the cells to examine their biological effects on cell 

function; 

  miR-target protector (TP) transfection, to protect a single miRNA target 

gene; 

  siRNA transfections, to reduce mRNA and protein levels of a target gene; 

  plasmid transfections, for luciferase assay.  

All the transfections were performed with liposome-mediated methodology using 

Lipofectamine® 2000 (Thermo Fisher Scientific) and Opti-MEM (Gibco®, life 

technologies), a specific medium with reduced serum, or serum-free media. 

Transfection was performed with suspended cells with Lipofectamine® 2000 used at 
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a ratio of 1:1 with exogenous nucleic acid and, after 15’ incubation at room 

temperature (RT) to allow lipidic incorporation of exogenous nucleic acid, the 

transfection mix was added to the cells and incubated at 37°C, in a 5% CO2 

incubator for 4.5 hours. Transfection mix was then removed by centrifugation and 

complete medium added. Cells were seeded and allowed to grow at 37°C, in a 5% 

CO2 incubator for the appropriate amount of time before the subsequent 

treatment. 

MiRNAs transfection was performed with 60 nM per 105 cells of mirVANA miRNA 

mimic and negative scramble miR (Thermo Fisher Scientific). To evaluate 

transfection efficiency, a real-time PCR for transfected miRNA was carried out at 

48/72h post transfection. 

SiRNA transfection was performed with 60 nM per 105 cells of siRNA molecules 

(siGENOME Smart Pool small interfering RNA) or non targeting siRNA used as 

control (Dharmacon Inc, Horizon Discovery Group plc). SiRNA mediated knock-down 

of target gene and protein was checked 48h/72h after transfection by qRT-PCR and 

western blot analysis, respectively. 

-Co-transfections 

In case of simultaneous transfection of miRNAs and DNA, cells were first transfected 

with miRNAs following the protocol described above and 24h later transfected with 

DNA (pmirGLO vector plasmid at the concentration of 0.5 µg per 105 cells) used for 

luciferase assays. In the case of simultaneous transfection of miRNAs and miScript 

Target Protectors (QIAGEN), a co-transfection was performed using 60 nM of both 
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for 4.5 hours. Successful transfection of miRNAs and TP in the cells were checked at 

both protein and mRNA level by western blot and qRT-PCR assays respectively. 

3.1.4 Clonogenic assay 

Clonogenic assay is an in vitro cell survival assay used to measure response to 

chemotherapeutic agents. After transfection/silencing according to the type of 

experiment, cells were seeded in six-well plates in triplicate at the concentration of 

1000 cells per well. Cells were then exposed to drug treatments, and the ability of a 

single cell to grow into a colony was evaluated after 10-14 days. Colonies were 

gently washed with PBS 1X, fixed with ice-cold methanol (stored at -20°C) for 10 

min on ice, stained with 0.5% Crystal violet solution (Sigma-Aldrich, St. Louis, MO, 

USA) for 10 min at RT and washed with ddH2O for colony visualization. Colonies 

with more than 50 cells were counted using an optical microscope. 

 

3.1.5 Test of cell viability and proliferation assays 

-Trypan blue exclusion assay 

Cell viability was assessed by trypan blue exclusion staining. Cell suspension was 

mixed in a 1:1 ratio with trypan blue (Sigma-Aldrich, St. Louis, MO, USA) and 

counted with an optical microscope using a boyden chamber. An automated cell 

count was also performed using a Countess® Automated Cell Counter (Invitrogen) 

mixing 10 µL of sample with 10 µL of trypan blue stain (0.4%), and pipetting 10 µL of 

the suspension mix into a disposable Countess® chamber slide.  
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-CellTiter-Glo® Luminescent Cell Viability Assay 

The effect on cell growth was assessed using a CellTiter-Glo® Luminescent cell 

viability assay (Promega Corporation, Madison, USA), that measure ATP generated 

by metabolically active cells, following manufacturer's instruction. Briefly, 

2500/5000 cells per well, depending on the cell line used, were plated in sterile 96-

wells in complete medium. At the end of the 100 μL of CellTiter-Glo® reagent was 

added to cells left in 100 μL of medium for cell lysis. After 10 min incubation at 

room temperature, the luminescence was recorded in a luminometer (TecanUltra, 

Tecan trading AG, Switzerland). The luminescence signals for treated cells were 

normalized by the luminescence signal obtained from control cells according to 

specific experimental design. 

 

3.1.6 Cell cycle analysis by flow cytometry 

Cell cycle analysis by flow cytometry is a method that allow researcher to 

distinguish cells in different phases of the cell cycle according to their DNA content. 

Propidium Iodide (PI) is a fluorescent dye that stains DNA quantitatively and the 

relative DNA amount of cells in the different phases (G0, G1, S, G2 and M) can be 

determined. Cells were collected, washed with PBS 1X and fixed in 700 µL of 70% 

cold ethanol for at least 30 min at 4°C. Fixed cell were then centrifuged at 2000 rpm 

for 5 min and washed once with PBS 1X, in order to remove ethanol. Pellet was then 

resuspended in 100 µL of PBS 1X-Ribonuclease-A (Sigma-Aldrich, St. Louis, MO, USA) 

100 ug/ml and incubated at RT for 10 to 30 min to degrade RNA molecules. DNA 

was stained with PI 50 ug/ml for 10 min before analysis. Cell cycle was determined 
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using a BD LSRII Fortessa instruments (BD Biosciences, Franklin Lakes, NJ) and 

results analysed using FlowJo software (Tree Star Inc, Ashland, OR). 

 

3.2 Biochemical techniques 

3.2.1 Cell lysis and assessment of protein concentration 

Cells were left to grow until desired confluence, then washed once in ice-cold 

PBS/sodium orthovanadate (0.1 mM), lysed with appropriate volume of lysis buffer 

(10 mM Tris-HCl pH8.0, 1 EDTA 0.5 mM, EGTA 0.1%, SDS 0.1%, Deoxycholic acid 140 

mM, NaCl 1%, Triton X-100, H2O, proteases/phosphatases inhibitor cocktails (1 tab 

in 10 mL of lysis buffer) (Roche, Italy) at 4°C for 30 min, and then centrifuged at 

13000 rpm for 5 min at 4°C. Whole cell lysates were normalized for protein 

concentration using bicinchoninic acid (BCA) protein assay reagent according to the 

manufacturer’s instructions (Pierce, USA). BSA (1 mg/ml) was used to prepare 

protein standards. Absorbance at 562 nm was measured using a 

spectrophotometer. Protein concentration was determined against the BSA 

standard curve. Alternatively cells were washed once with ice-cold PBS/sodium 

orthovanadate (0.1 mM) (Sigma-Aldrich, St. Louis, MO, USA) and then lysed with 

NuPAGE™ LDS Sample Buffer (1X) (Thermo Fisher Scientific, Waltham, MA, USA) 

diluted in dH2O plus β-Mercaptoetanol 0.1% (Sigma-Aldrich, St. Louis, MO, USA), 

that provides the optimal conditions for reduction of protein disulfide bonds and 

denaturation. Samples were analysed immediately or stored at -20°C for future 

analysis. Before loading into polyacrylamide gel, samples were boiled at 95°C for 5 

min. 
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3.2.2 SDS-PAGE 

SDS-PAGE (Polyacrylamide gel electrophoresis) was performed using the NuPAGE™ 

electrophoresis system (Thermo Fisher Scientific) with pre-casted NuPAGE™ Novex 

gels. Based on the molecular weight of proteins to be separated, different types of 

pre-casted gels were used: 3-8% polyacrilamide Tris-Acetate gels and 4-12% 

polyacrylamide Bis-tris gels. Run was performed at 100 V with specific buffers (Tris-

Acetate for 3-8% gels and 3-N-morpholino propanesulfonic acid (MOPS) for 4-12% 

gels). Novex™ Sharp or SeeBlue™ Plus2 Pre-stained Protein Standards (Thermo 

Fisher Scientific), were used as protein molecular weight marker; 500 µL of 

NuPAGE™ antioxidant (Thermo Fisher Scientific) were added to the running buffer 

in order to protect disulfide bonds from oxidation. 

3.2.3 Western blot 

After SDS-PAGE, proteins were transferred to nitrocellulose membrane using 

iBlot2TM Dry Blotting System (Invitrogen) consisting of the iBlot2TM Gel Transfer 

Device and associated iBlot™ 2 Transfer Stacks that have integrated the 

nitrocellulose transfer membranes. Transfer of protein was carried out in 7 min at 

20-25 Volts. After transfer the membrane was stained with Ponceau Red (Sigma-

Aldrich, St. Louis, MO, USA) to verify efficiency of transfer, then rehydrated with 

Tris-buffered saline with Tween 20 (TBS-T) buffer [20 mM Tris, 150 mM NaCl, pH 

7.6, 0.1% Tween 20] and saturated with milk (skim milk powder, Merck Millipore) to 

prevent non-specific interactions between the membrane and the detecting 

antibodies. Membranes were incubated overnight at 4°C with 5 ml of the 

appropriate antibody diluted in TBS-T or non-fat dry milk as specified by antibody 
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datasheet. After hybridization with primary antibody, membranes were washed 

three times with TBS-T for 5 min and incubated for 30’-60’ RT with the peroxidase- 

or biotin- conjugated secondary antibodies (GE healthcare) from rabbit (1:200 

dilution), mouse (1:1000 dilution) or goat (1:1000 dilution) depending on the source 

of the primary antibody. Signal was revealed using a ChemiDoc XRS system and the 

ECL chemoluminescence system (BIO-RAD, Hercules, CA, USA). Quantity One® 

software (BIO-RAD, Hercules, CA, USA) was used for quantification of band 

intensities. Membranes were then treated with a stripping solution (Restore™ 

western blot stripping buffer (Thermo Fisher Scientific) for 15 min at 37°C to allow 

further hybridizations with other antibodies. Antibodies used are listed in Table 3. 

 

Table 3: List of the antibodies used 

Antibody Clone and catalog N Supplier 

VINCULIN E1E9V 13901 Cell Signaling TECHNOLOGY®, Danvers, MA,USA 
β-ACTIN A2066 Sigma-Aldrich, St Louis MO, USA 
RAD17 R8654 Sigma-Aldrich 
RAD51 H-92: sc-8349 Santa Cruz, CA, USA 
CHK1 2G1D5 2360 Cell Signaling TECHNOLOGY®, Danvers, MA,USA 

pCHK1(S296) D309F 90178 Cell Signaling TECHNOLOGY®, Danvers, MA,USA 
γ-H2AX A300-081A-M Bethyl Laboratories, Inc, Montgomery, TX, USA 

ATM Y170 ab32420 Abcam, Cambridge, UK 
pATM(S1981) D25E5 13050 Cell Signaling TECHNOLOGY®, Danvers, MA,USA 
CDK1/CDC2 POH1 9116 Cell Signaling TECHNOLOGY®, Danvers, MA,USA 

pCDK1/CDC2(Y15) 10A11 4539 Cell Signaling TECHNOLOGY®, Danvers, MA,USA 
WEE1 D10D2 13084 Cell Signaling TECHNOLOGY®, Danvers, MA,USA 

pWEE1(S645) D47G5 4910 Cell Signaling TECHNOLOGY®, Danvers, MA,USA 
p-HISTONE H3(S10) 9701 Cell Signaling TECHNOLOGY®, Danvers, MA,USA 

CYCLIN B1 D5C10 12231 Cell Signaling TECHNOLOGY®, Danvers, MA,USA 

3.2.4 Immunofluorescence 

Immunofluorescence (IF) is used to visualize target molecules by labelling them with 

fluorescent dyes. Cells were seeded on sterilized glass coverslips in 24 well plates or 

in appropriate 8-well glass chamber slides (Nunc, Thermo Fisher Scientific). Cells 
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were then fixed with 4% paraformaldehyde for 20 min, permeabilized with PBS 1X 

with Triton X-100 at 0,5% for 10 min and saturated with PBS 1X with BSA 2% for 30 

min. Cells were then incubated with appropriated concentration of the primary 

antibody diluted in PBS 1X with 1X BSA for 1h at RT, washed three time with PBS 1X 

with BSA 1% to removed antibody excess and stained with the appropriate 

secondary antibody Alexa Fluor® (Invitrogen/Molecular Probes®) diluted in PBS 1X 

and BSA 1% for 1h at RT in the dark (for Alexa Fluor® 488 (green), 1:500 dilution, for 

Alexa Fluor® 546 (red), 1:1000 dilution). After washing three times with PBS 1X and 

BSA 1% coverslips were mounted on glass microscope slides with Prolong Gold 

Antifade with DAPI to stain nuclei (Thermo Fisher Scientific). IF were evaluated with 

a Nikon TE2000-S microscope with a 40X PlanFluor objective (Nikon). Images were 

acquired with ACT-1 software (Nikon). 

 

3.3 Cloning techniques 

3.3.1 Design and annealing of oligonucleotides 

The 3’ UTR of RAD17 cloning was performed according to protocol from pmirGLO 

Dual-Luciferase miRNA Target Expression Vector (Promega Corporation, Madison, 

USA) which allow the cloning of putative miRNA binding site of a gene into the 

vector. The sequence of the 3’UTR of RAD17 was obtained from UCSC Genome 

Browser (http://genome.ucsc.edu/index.html). Oligonucleotides pairs were 

synthesised by IDT (Integrated DNA Technologies, Coralville, Iowa, USA) in order to 

contain the desired miR-506 target region (seed sequence):  

forward: 5'-AAATAGCGGCCGCTACGAGTGTAAACTGTGTGCCTTATTTACT-3' 

http://genome.ucsc.edu/index.html
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reverse: 5'-CTAGAGTAAATAAGGCACACAGTTTACACTCGTAGCGGCCGCTATTT-3' 

(the 3’UTR cloned in bold and the seed region in bold and underscored). 

Oligonucleotides were modified to include DraΙ and XbaΙ restriction sites at the 5’ 

and 3’end respectively of each oligonucleotide. Oligonucleotides were diluted to 1 

µg/µL in sterile water, and then 2 µL of each dilution were combined to 46 µL of 

Oligo Annealing Buffer (Promega Corporation, Madison, USA) following the 

manufacturer’s instruction. Annealing procedure was performed at 90°C for 3 min, 

then 37°C for 15 min following manufacturer’s instructions. 

 

3.3.2 Restriction digests of vector 

In order to obtain a pmirGLO vector with the overhangs complementary to the 

annealed oligonucleotide overhangs, 20 µg pmirGLO vector (Promega Corporation, 

Madison, USA) was digested in a two-step digestion overnight at 37°C in a 100 µL 

reaction containing 4 µL (80 units) of XbaI or DraI enzymes (New England Biolabs) 

and 10 µL of the appropriate buffers (buffer 2 and 4 respectively, New England 

Biolabs), with the remaining volume made up of DNA and nuclease-free water. BSA 

was required for DraI enzyme. Purification was performed with the Wizard® Plus 

Minipreps DNA Purification System kit (Promega Corporation, Madison, USA). To 

verify plasmid linearization and length 500 ng purified digested vectors were run on 

ethidium-bromide-stained 1% agarose gel electrophoresis alongside non-digested 

controls. Bands-signal was revealed using a Bio-Rad Gel Doc XR System (BIO-RAD, 

Hercules, CA, USA) and images were acquired using Quantity One® software. 
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3.3.3 Ligation of insert and vector 

Annealed oligonucleatides were diluted to a final concentration of 4 ng/μL and then 

8 ng were ligated to 100 ng of linearized vector in a 21 μL reaction containing 1 μL 

quick ligase (New England Biolabs), 10 μL of 2X quick ligase reaction buffer and 

DNA-free water to reach final volume. The ligation reaction was carried out by 

incubating samples RT for 5 min and immediately purified using the Wizard® Plus 

Minipreps DNA Purification System kit (Promega Corporation, Madison, USA). 

3.3.4 Transformation of competent E. coli cells and isolation of plasmid DNA 

To carry out transformation 50 μL electrocompetent E. coli TG1 cells were defrosted 

on ice prior to addition of 2 μL of purified ligation reaction. Cells were 

electroporated with MicroPulserTM electroporator (BIO-RAD, Hercules, CA, USA) 

then 10 μL or 100 μL of cells were spread onto a Petri dish of Tryptone Yeast-extract 

(TYE) broth medium [15 g bacteriological agar type A, 10 g tryptone USP, 5 g yeast 

extract (Diagnostic International Distribution SPA), 8 g NaCl: add ddH2O to 1 liter], 

containing 100 μg/ml of ampicillin sodium salt (Sigma-Aldrich, St. Louis, MO, USA) 

and glucose 1%, then incubated overnight at 37°C. Colonies were isolated and 

picked the following day to be screened by PCR to verify the presence of the insert. 

Screening PCR was carried out in 50 μL reactions with: 1 μL of forward and 1 μL of 

reverse primers (forward: 5’-TCCGCGAGATTCTCATTA-3’; reverse: 5’-

TCAGCTTCCTTTCGGGCT-3’) annealing on the vector at the sides of the insert, 10 μL 

of 5X Green GoTaq® Reaction Buffer, 2 μL of PCR nucleotide mix, 0.25 μL of Taq 

enzyme 5u/μL (GoTaq® G2, Promega Corporation, Madison, USA) and 35.75 μL of 

sterile water. PCR was carried out with an initial stage of 95°C for 10 min followed 
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by 35 cycles of 95°C for 1 min, 49°C for 1 min and 72°C for 10 min, with a final step 

of 72°C for 1 min. PCR products were run on a 3% agarose gel in order to verify the 

presence of the insert, then the correct orientation and sequence of the insert was 

verified by sequencing, using the above primers, performed by Eurofins Genomics-

genomic service (MWG Eurofins). The bacterial colony carrying the plasmid with the 

right insert was grown overnight at 37°C and 250 rpm in 60 ml of 2xTY medium 

[16gr tryptone USP, 10gr yeast extract (Diagnostic International Distribution SPA), 

5gr NaCl: add ddH2O to 1 liter], supplemented with 100 μg/ml of ampicillin sodium 

salt and glucose 1% to allow plasmid replication. The day after the recombinant 

plasmid was extracted from bacterial cell culture using QIAfilter Plasmid Midi Kit 

(QIAGEN), resuspended in Tris-EDTA buffer pH 8.0 and quantified with NanoDrop™ 

2000c (Thermo Fisher Scientific) and 500 ng were run on a 1% agarose gel to verify 

plasmid integrity. 

3.4 Molecular biology technique 

3.4.1 RNA extraction 

Total RNA was extracted with NucleoSpin® miRNA kit (Macherey-Nagel, GmbH & 

Co, Düren, Germany) following the manufacturer’s instruction. Briefly cells were 

harvested with trypsin and washed with PBS 1X, then centrifuged at 1500 rpm and 

stored as a pellet at -20°C until RNA extraction. At the moment of extraction, cell 

pellets were resuspended with 800 µL of TRIzol Reagent (Thermo Fisher Scientific), 

then 160 µL of chloroform were added and samples vortexed. Then samples were 

centrifuged at 12000 x g for 15 min at 4°C and aqueous phase recovered and loaded 

into columns. Samples were then washed with different buffers and RNA eluted in 
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30 µL of RNase-free water. RNA was then quantified using a spectrophotometer 

NanoDrop™ 2000c. 

3.4.2 Total RNA and microRNA reverse transcription 

RNA extracted from cells was reverse transcribed to cDNA to analyse genes and 

miRNAs expression via quantitative real time PCR.  

For total RNA reverse transcription 2 µg of total RNA were reverse transcribed to 

cDNA with High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems™, 

Foster City, CA, USA) using random hexamer primers following the manufacturer’s 

instruction. Reverse transcription of RNA was conducted in 100 μL reactions 

containing: 10X RT buffer (10 μL), 100 mM 25X dNTP Mix (4 μL), 50 μM Random 

Primers (10 μL), 0.5 U/μL RNAse inhibitor (0.8 μL), 50 U/μL multiscribe™ reverse 

transcriptase (5 μL), 100 ng/mL RNA (10 μL) and nuclease-free water (21 μL). Cycling 

conditions used were as follows: 25°C for 10 min, 37°C for 120 min, 85°C for 5 min. 

cDNA was stored at -20°C. 

For miRNA reverse transscription 10 ng of total RNA was reverse transcribed to 

cDNA with TaqMan® MicroRNA Reverse Transcription Kit (Applied Biosystems™, 

Foster City, CA, USA) using specific stem-loop reverse transcription primers 

following the manufacturer’s instruction. Reverse transcription of miRNA was 

conducted in 15 μL reactions containing: 100 mM dNTPs (0.15 μL), 10X RT buffer 

(1.5 μL), 20 U/μL RNase inhibitor (0.19 μL), 50 U/μL multiscribe reverse 

transcriptase (1 μL), nuclease-free water (4.16 μL), primer (3 μL), and 5 μL of total 

RNA diluted to 2 ng/μL. The cycling conditions used were as follows: 16°C for 30 

min, 42°C for 30 min, 85°C for 5 min. cDNA was stored at -20°C. 
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3.4.3 Quantitative Real time PCR (qRT-PCR) 

Real time PCR was used to quantify relative expression levels of genes or miRNAs of 

interest monitoring their amplification during the PCR in real time. I used TaqMan® 

assays based on TaqMan chemistry. The probe is labelled with a reporter 

fluorophore at the 5’ end and a non-fluorescent quencher at the 3’ end. When 

intact the quencher suppresses fluorescent emission by the reporter. In the 

presence of target sequence the probe anneals and is then cleaved upon 

amplification of the target sequence by the forward and reverse primers, contained 

in the TaqMan® assay. This produces separation of the quencher from the reporter 

and a fluorescent signal can be detected. Data is acquired whilst PCR is in the 

exponential phase and is measured when the reporter dye emission reaches a 

threshold, known as the cycle threshold (Ct). Results were normalised to 

housekeeping genes whose expression is known to remain stable, to correct for any 

errors in RNA content. Results are relative quantifications (RQ). The 2-∆∆Ct or the 2-∆Ct 

methods were used, when normalised to a reference gene or to the experimental 

control respectively, as specified for each experiment. qRT-PCR was performed 

using TaqMan® gene expression assays (Table 4) or TaqMan® MicroRNA Assays 

(Table 5). Twenty μL reactions were prepared for each sample containing: 2X 

TaqMan®Universal MasterMix II (10 μL), probe (1 μL), RNAse free water (8 μL) and 1 

μL cDNA. Samples were run in technical triplicates on a 96 well plate. qRT-PCR was 

run in a ABI Prism 7900HT sequence detection system (Applied Biosystems™ Foster 

City, CA, USA) using the following cycling conditions: 50°C for 20 sec, 95°C for 10 

min, 40 cycles of 95°C for 15 sec then 60°C for 60 sec. Glyceraldehyde 3-phosphate 
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dehydrogenase (GAPDH), and ribosomal protein L13A (RPL13A) were used as stably 

expressed housekeepers for gene expression, while RNU44 and RNU48 for miRNA 

expression. 

 

Table 4: List of the TaqMan® probes used 

Gene TaqMan Assay ID gene ID 

GAPDH Hs03929097_g1 2597 

RPL13A Hs01926559_g1 23521 

RAD17 Hs00607830_m1 5884 

RAD51 Hs00153418_m1 5888 

 

 

Table 5: List of the TaqMan® miRNA probes used 

miRNA TaqMan Assay ID MIRBASE ID 

RNU44 001094 
 

RNU48 001006 
 

hsa-miR-506-3p 001050 MIMAT0002878 

 

 

3.4.4 Luciferase assay 

Luciferase reporter assay is the most commonly used strategy to verify the direct 

interaction of a miRNA with a candidate target. It is based on the insertion of the 

miRNA target site (seed sequence) downstream of the Luciferase gene in a dual 

luciferase reporter vector, then the activities of the two luciferases are measured 

sequentially from a single sample. The wild-type miR-506 binding sites (portion 

including the seed sequence) of RAD17 were cloned downstream of Firefly 

luciferase gene in pmirGLO Dual-Luciferase miRNA Target Expression Vector 
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(Promega Corporation, Madison, WI). This vector contains Firefly luciferase (luc2) as 

primary reporter to monitor miRNA regulation and Renilla luciferase (hRluc-neo) as 

a control reporter for transfection normalization and selection. For the Dual-

Luciferase® Reporter Assay (Promega Corporation, Madison, WI), subconfluent 

HEK293T cells in 24-well plates were transfected with a triplicate repeat of pmirGLO 

reporter plasmid (0.5 μg) wild-type 3′-UTR construct alone or with miR-506 mimic 

or miR-ctrl (60 nM), and Lipofectamine® 2000 (1:1 ratio) (Invitrogen). Forty-eight 

hours after transfection, Dual-Luciferase® Reporter Assay was performed and Firefly 

and Renilla luciferase luminescence signals were determined following 

manufacturer’s instructions. Briefly cells were lysed with passive lysis buffer (PLB 

Buffer) and the culture plates rocked at RT for 15 min. Three μL of lysate were 

added to 100 μL of luciferase assay reagent (LARII) per tube and firefly 

measurement was performed using TD-20/20 luminometer (TURNER DESIGNS). 

Then 100 μL of Stop & Glo® reagent was added and the Renilla bioluminescence 

measured. Ratio of Firefly:Renilla was determined. 

3.5 Bioinformatic studies: miRNA Target prediction and identification of 

deregulated functions with Ingenuity Pathway Analysis 
 

Identification of miRNA binding sites within the 3’UTR of target genes (seed 

sequence), allows to obtain information on putative miR:mRNA interactions, thanks 

to the use of algorithms based on different factors for the more appropriate target 

prediction. Human miRNA target predictions were obtained from:  

 TargetScan 6.2 (http://www.targetscan.org/); 

 microRNA.org (http://www.microrna.org/microrna/home.do) database; 

http://www.targetscan.org/
http://www.microrna.org/microrna/home.do


65 
 

  Diana-microT-CDS (http://www.microrna.gr/microT-CDS.); 

  PITA (https://genie.weizmann.ac.il/pubs/mir07/mir07_prediction.html).  

In particular TargetScan6.2, version released in June 2012, focus on the prediction 

of protein coding gene to be a target of a miRNA if the 3’ UTR of the target harbours 

a conserved 7mer or 8mer motifs that can bind to the seed region. Diana-microT-

CDS and Pita, analogously to TargetScan, use the 5’ end of the miRNA to identify 

targets but with minor differences among length of the seed. Conservation across 

species and target sites free energy are considered. In order to identify commonly 

predicted mRNA targets, intersection of lists of mRNA targets, obtained from the 

different algorithms, was performed. I used VENNY 2.0 software, an interactive 

web-based tool that allow to compare up to four lists of elements and returns to 

the user Venn diagrams (http://bioinfogp.cnb.csic.es/tools/venny/index2.0.2.html). 

IPA (Ingenuity Pathway Analysis) is a powerful analysis tool that helps researchers in 

analyzing data in order to evaluate molecular and chemical interactions, cellular 

pathways and disease processes within a system. IPA returns to the user networks 

that help to understand how genes in a given dataset appear to work together at 

the molecular level. 

 

 

 

http://www.microrna.gr/microT-CDS
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3.6 Ovarian cancer patients selection 

3.6.1 INT-MI/CRO OC72 case material 

Seventy-two high-grade, advanced stage (III-IV) fresh frozen EOC samples collected 

at time of primary surgery were retrospectively selected from patients with optimal 

debulking (residual disease <1 cm) followed by standard chemotherapeutic 

treatment with platinum and taxanes. In detail, 20 patients underwent primary 

surgery at the Fondazione IRCCS Istituto Nazionale dei Tumori (INT), Milan, Italy, 

while 52 patients at the IRCCS Centro Riferimento Oncologico (CRO) Aviano, Italy, 

after signing the informed consent. All samples were reviewed by a pathologist and 

only tumors with at least 70% of cellularity were included. All biological material 

was subjected to molecular analysis, gene expression and miRNA expression 

profiles by the Genomic Facility at INT and associated to complete clinical 

informations and follow up data.  

The time to recurrence after platinum treatment determines platinum sensitivity. 

EOC patients were defined as resistant, partially sensitive and sensitive if relapse 

occurred respectively within 6 months, between 6 and 12 months and after 12 

months from the end of first line platinum therapy. 

This current classification is based on the clinical observation that when patients 

who responded to first line treatment were re-treated with platinum analogs, the 

response was better the longer the interval from the last platinum dose was. This 

classification is now used as stratification criteria in clinical trials  

The complete data of the clinical case material are shown in Table 6. Samples were 

profiled for miRNA expression using Illumina v2 miRNA Chip (1145 miRNA assays) 
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and subsequently profiled for gene expression using Agilent SurePrint G3 Human 

gene expression 8x60K. 

 

Table 6: Clinical and pathological data of OC72 case material  

 
OC72 (n = 72) 

  N° % 

Age, years 
       median, range  54; 30-71 

Histology 
       Serous 53 74 

     Undifferentiated 8 11 

     Clear Cells 1 1 
     Endometroid 4 6 
     Others + Mixed 5 7 
     NA 1 1 
Stage (FIGO) 

  
     III 69 96 
     IV 3 4 
Grade 

  
     2 moderately differentiated 16 22 
     3, poorly differentiated 53 74 
     Undifferentiated 1 1 
     NA 2 3 

Amount of residual disease 
  

     NED 31 43 
     <1 cm, mRD 41 57 
Relapsing patients 

  
      R*<6 months      -refractory and resistant 20 28 
  6<R*<12 months   -partially sensitive 15 21 

     R*>12 months     - sensitive 37 51 

R*= relapse from the end of therapy; NED: non evident disease;  

mRD: minimal residual disease. 
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3.6.2 OC179 case material 

One hundred-seventy-nine (OC179) samples (chemo naive tumours obtained at 

primary surgery) from formalin-fixed paraffin embedded (FFPE) was retrospectively 

collected from Multicentre Italian Trial in Ovarian cancer clinical trial 2 (MITO2)158. 

All samples were reviewed by a pathologist and only tumors with at least 70% of 

cellularity were included. RNA was extracted at INT-Pascale Naples for miRNA 

expression profile and for forty-four samples (OC44) out of 179 RNA aliquots were 

available for qRT-PCR miRNA expression validation. Clinical and pathological 

characteristics of OC44 are listed in Table 7. 
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Table 7: Clinical and Pathologic characteristics of OC44 case material 

 
OC179 (n = 44) 

  N° % 

Age, years 
       median, range  58; 38-74 

Histology 
       Serous 36 82 

     Undifferentiated 1 2 
     Clear Cells 1 2 
     Endometroid 4 9 
     Others + Mixed 2 5 
Stage (FIGO) 

  
     IIc 1 2 
     III 34 77 

     IV 9 20 
Grade 

  
     1 well differentiated 1 2 

     2 moderately differentiated 3 7 
     3, poorly differentiated 37 84 
     Undifferentiated 1 2 
     NA 2 5 
Treatment 

  
     Carboplatin + Paclitaxel 23 52 
     Carboplatin + PLD 21 48 
Amount of residual disease 

  
     NED 8 18 

     <1 cm 7 16 
     >1 cm 28 64 

PLD: Pegylated Liposomal Doxorubicin; NED: non evident disease.  
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3.7 Statistical analysis 

Statistical analyses were performed using GraphPad Prism 5 and 6 (GraphPad 

Software). This software was used to make graphs after analysis. Statistical 

significance of differences was determined using one-way ANOVA, two-way ANOVA 

or two-tailed Student’s t-test as specified for each analysis. Significance was 

indicated as * when p<0.05; ** when p<0.01; *** when p<0.001. 

Quantification of western blot bands was performed by Quantity One software. 

KM-plotter (http://kmplot.com/analysis/) and OvMark 

(http://glados.ucd.ie/OvMark/index.html) online tools were used to assess the 

effect of the RAD17 on ovarian cancer prognosis. 

CompuSyn software (CompuSyn, Inc), based on the Chou-Talalay's CI method for 

determining synergism or antagonism automatically, was used to calculate 

combination index (CI) in drug combination experiments.  
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4 Results 
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AIM 1: Investigating the potential role of miR-506 in the response to 

chemotherapeutic treatments and identifying possible miR-506 targeted genes 

involved in chemo-response 

4.1 Clinical impact of miR-506 expression in EOC patients  

My research group previously published that the down-modulation of ChrXq27.3 

miRNA cluster (miR-506 family) was independently associated with early relapse in 

advanced stage EOC patients and that miR-506 ectopic expression in EOC cells 

increased their sensitivity to chemotherapeutic agents144. Taking advantage of the 

miRNA expression profiles analyses performed by my research group on 

independent EOC case materials, I explored the possible association between miR-

506 expression levels and response to platinum-based therapy. As shown in Figure 

11 panel A, high miR-506 expression in OC72 case material was significantly 

associated with platinum sensitivity supporting the data observed in vitro following 

its transfection in EOC cells144. As shown in Figure 11 panel B I have been able to 

validate, by real time quantitative PCR (qRT-PCR), the clinical association of miR-506 

expression with platinum sensitivity in further 44 EOC samples derived from a case 

material associated to the MITO2 clinical trial143, 158, 159. 

These observations led me to hypothesize for miR-506 a key role in EOC response to 

drug treatment and I therefore search for the appropriated cellular models for 

further biological assays. 
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Figure 11: Expression of miR-506 correlates with EOC patients’ platinum sensitivity  

A) MiR-506 expression assessed by microarray analysis in OC72 case material. MiR-506 Log2 

expression intensity plotted B) qRT-PCR validation of miR-506 expression in 44 

retrospectively collected EOC patients from the MITO2 clinical trial. RNU48 and RNU44 

were used for normalization in qRT-PCR experiment. -ΔCt values plotted. Patient 

s were categorized in both datasets for response to platinum treatment as: resistant (PFS < 

6 months), partially sensitive (PFS from 6 to 12 months), sensitive (PFS > 12 months). P 

value from one-way analysis of variance with Tukey’s multiple comparison as post-test (** 

p<0.01; ***p<0.001).  

 

 

4.2 MiR-506 is expressed at low level in EOC cell lines 

In order to identify EOC models with different expression levels of miR-506 to be 

used for gain or loss of function experiments, I screened for miR-506 expression 

level a panel of EOC cell lines available at my laboratory by qRT-PCR analysis. As 

internal controls I used RNA samples obtained from EOC patients included in 

previous study of my research group144 and known to have high (1H, 2H) or low (3L, 

4L) miR-506 expression. As shown in Figure 12 (left panel) all EOC cell lines 

displayed lower expression level of miR-506 compared to positive controls 1H and 

2H. To make sure that the downregulation of miR-506 in EOC cell models was not a 

phenomenon related to the ovarian cancer histotype, I extended the analysis to a 
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number of cancer cell lines of different histotypes: epidermoid carcinoma (A431), 

large cell lung cancer (H460), prostate cancer (PC3, DUI45, LNCAP), breast 

carcinoma (MDA-MB-468, MCF-10) and colon cancer (HCT). Similarly to what 

observed in EOC cell lines, qRT-PCR analysis showed again very low expression 

levels of miR-506 compared to positive controls (Figure 12, right panel). These 

results are in line with data from other publications reporting miR-506 low 

expression levels in cancer cell lines160-162. These observations led me therefore to 

use my in vitro EOC models essentially for gain of function experiments aimed to 

achieve higher expression of miR-506. The p53 null platinum resistant SKOV3 and 

the p53wt platinum sensitive OAW42 cell lines were selected for the majority of 

further biological assays. 

 

Figure 12: MiR-506 expression level in cancer cell lines 

MiR-506 was tested in a panel of EOC cell lines (left panel), as well as in a panel of cancer 

cell lines other than ovary (right panel), using qRT-PCR method. RNU48 and RNU44 were 

used for normalization. Values are expressed as relative quantification value (RQ, 2-ΔΔCt). 

Expression levels of miR-506 were compared to those of positives (1H and 2H) and 

negatives (3L and 4L) controls from patients analysed for miRNA expression level and 

identified as miR-506 high- or low-expressing patients in previous study of my research 

group144 . Data are mean ± SD. 
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4.3 MiRNAs transient transfection is a suitable method for long-term biological 

evaluations 

To perform gain of function experiments I transiently transfected miR-506 or 

scrambled miRNAs in my in vitro EOC cellular models. In order to assess the extent 

of miRNA expression over time, following transient transfection, SKOV3 cell line was 

evaluated by qRT-PCR for expression of transfected miRNAs at different time points. 

I obtained a consistent induction of miR-506 expression 48 hours after transfection 

(Figure 13), in accordance with the transfection protocol which indicates this time 

point as the best in order to observe maximal transfection efficiency. Moreover, I 

was able to observe that the high expression of miR-506 remained essentially 

unchanged up to 96 hours after transfection (Figure 13). These results indicate that 

miR-506 expression upon transient transfection is persistent enough to observe 

biological changes over time, and support the efficacy of this protocol for 

experiments requiring long observation time such as clonogenic survival assay used 

to test cell sensitivity to drug treatments.  

Figure 13: Expression of miR-506 is maintained over time  

qRT-PCR experiment reporting that miR-506 expression is stable, with no substantial 

changes, for up to 96h following miR-506 mimic transfection. RNU48 and RNU44 were used 

for normalization. Values are relative quantifications (RQ, 2-ΔΔCt). scr: scramble miR; 506: 

miR-506 mimic. Data are mean ± SD of a representative experiment out of two performed. 
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4.4 MiR-506 overexpression enhances sensitivity to platinum  

Upon miR-506 overexpression, we previously described an increased response to 

platinum (DDP) treatment in the p53wt DDP sensitive OAW42 cell line144. In order to 

check miR-506 contribution in response to platinum treatment also in resistant EOC 

cells, I transiently transfected miR-506 mimic or scramble control miR in the EOC 

cell lines SKOV3 and A2774, carrying null and mutated p53 respectively. The day 

after transfection I exposed cells to serial dilution of DDP (from 0.1 to 100 µM) and 

percentage of growth was assessed 72 hours later. MiR-506 transfection efficiency 

was evaluated 48h after transfection by qRT-PCR in both cell lines (Figure 14D). 

MiR-506 expression was able to significantly re-sensitise A2774 cell line with a drop 

of IC50 of 3 fold as compared to scr control (Figure 14A, left panel), while no 

induced sensitivity to DDP was observed in SKOV3 cell line (Figure 14A, right panel). 

Since miR-506 reintroduction was not able to induce a DDP sensitisation in the 

SKOV3 resistant cell model, I then performed on this cell line a clonogenic assay as 

alternative approach to assess response to DDP at longer time points adjusting drug 

concentration according to literature data. MiR-506 and scr transfected SKOV3 cells 

seeded in six-well plates, were exposed to different doses of DDP ranging from 0.3 

to 1 µM and the ability of a single cell to grow into a colony was evaluated after 10-

14 days. In this experimental conditions, miR-506 forced expression significantly 

enhanced SKOV3 cells sensitivity to DDP treatment compared with control cells 

(Figure 14B). As expected similar results of increased sensitisation to DDP treatment 

following miR-506 forced expression was observed in the sensitive OAW42 cell line 

(Figure 14C). MiR-506 transfection efficiency was evaluated 48h after transfection 
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by qRT-PCR (Figure 14D). Taking into account that SKOV3 is considered a particular 

resistant cell line, these results further highlights the role of miR-506 as chemo-

sensitising miRNA.  
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Figure 14: Forced expression of miR-506 increased platinum sensitivity in EOC cell lines 

A) A2774 and SKOV3 cell lines were transfected with miR-506 (506) and scramble control 

(scr), seeded in 96 well plates, treated with DDP at at the indicated μM concentrations and 

evaluated by CellTiter-Glo® assay 72h after DDP treatment. B) and C) Clonogenic assay on 

SKOV3 (B) and OAW42 (C) cell lines. Percentage of relative colony formation rate of miR-

506 vs scr transfected cells (left panels). Clonogenic assay performed in SKOV3 and OAW42 

cell lines (right panels) treated or not (NT) with DDP at the indicated μM concentrations. 

For each experimental condition a representative well of three independent experiments, 

each one performed in triplicates, is reported. Colonies were counted using optical 

microscope. D) qRT-PCR experiments performed 48h following miR-506 mimic transfection 

in order to evaluate miR-506 transfection efficiency. RNU48 and RNU44 were used for 

normalization. Values are relative quantifications (RQ, 2-ΔΔCt). scr: scramble miR; 506: miR-

506 mimic. Data are mean ± SD of at least three experiments. Two way ANOVA and 

Bonferroni’s post test was used to compare miR-506 transfected cells vs scr transfected 

cells (*p<0.05; ** p<0.01; ***p<0.001). 
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4.5 Identification of miR-506 target genes and functional analysis of miRNAs 

targets by Ingenuity Pathway analysis (IPA) 

In order to identify the molecular mechanisms by which miR-506 sensitise EOC cells 

to platinum treatments, I looked at genes potentially targeted by miR-506. I took 

advantage of the use of publicly available software programs such as TargetScan6.2, 

Diana-microT, PITA, based on different algorithms/computational methods which 

apply as determinants: perfect base pairing with the miRNA seed region (the 2-7 

nucleotides on the 5’ end of a miRNA), accessibility of binding sites, thermodynamic 

stability of binding sites, target-site abundance, evolutionary conservation of the 

seed and binding position in the 3’ UTR. Since none of the software used consider 

all the aspects of miRNA-mRNA interactions I intersected the target lists obtained 

from the different prediction algorithms using VENNY 2.0 software. As reported in 

the Venn diagram in Figure 15A, around 500 entries were found to be common 

genes in the three data sets and therefore considered as reliable targets to be 

validated. Among top score predicted genes I identified: RAD17 and RAD51 both 

related to DNA repair, CHK1, WEE1 and CHK2 related to cell cycle and CDH2, VIM, 

SNAI2 and VCAN related to epithelial mesenchymal transition (EMT) and 

extracellular matrix. 

The list of common predicted genes targeted by miR-506 was challenged with IPA 

tool, which help to understand how genes in a given dataset appear to work 

together at the molecular level. Deregulated pathways were derived with top score 

functions listed in Figure 15B. The most significant molecular networks (pathway’s 

score>20), were associated with DNA replication, recombination and repair, cell 

cycle and cellular assembly and organization, related to EMT process. These results 
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are consistent with the role of miR-506 both in the regulation of genes involved in 

alteration of the normal organization of the extracellular matrix and with EMT and 

in the process of DNA damage repair (DDR). 

 

 

 

Figure 15: Identification of miR-506 target genes and related deregulated cell functions  

A) Venn diagram of the target genes of miR-506 predicted by the three algorithms Diana, 

Pita and TargetScan. B) The first 5 networks identified by IPA on the bases of the 500 

commonly predicted mi-506 target genes, with their p-score are shown. The score takes 

into account the number of genes in the network and the size of the network to 

approximate how relevant this network is to the original list of genes and allows the 

networks to be prioritized for further studies.  

  

Among  the common predicted target genes 
with the highest score we identified: 
RAD51, RAD17, CHEK1, CHEK2, WEE1 (DNA 

Damage Response (DDR) pathway)
CDH2, VIM, SNAI2, VCAN  (related to EMT)
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4.6 RAD51 and RAD17 are regulated by miR-506 

To decipher the role of miR-506 in modulating EOC sensitivity to drug treatment, 

among genes found to be potentially targets of miR-506, I focused on RAD51 and 

RAD17 genes, both involved in DNA damage repair pathway. Acting as damage 

sensors (RAD17) or damage signal mediators (RAD51), these genes are important 

for the recruitment of BRCA1 and BRCA2 to the DNA damage sites activating repair 

processes. In this perspective, EOC is an intriguing challenge, indeed it has been 

shown that in these tumours both germline and somatic mutational inactivation of 

genes related to DNA repair pathway (i.e. BRCA1 and BRCA2) is associated with a 

more favorable outcome, causing sensitisation to DNA damaging drugs 34, 35. I 

hypothesized that if miR-506 consistently regulates the above mentioned genes 

related to DNA repair, its expression could confer a BRCAness phenotype 

characterised by increased platinum sensitivity without BRCA1/2 mutations and 

might contribute in determining the overall cell sensitivity to DNA damaging agents. 

To determine whether miR-506 modulation could affect RAD51 and RAD17 

expression in my in vitro models I ectopically expressed miR-506 in a panel of EOC 

cell lines: SKOV3, OAW42, A2774 and IGROV1. I performed western blot analysis 

48/72 hours after transfection and I was able to detect an evident reduction of both 

RAD51 and RAD17 protein expression levels, compared to scramble transfected 

control cells (Figure 16A). MiR-506 overexpression significantly decreased also 

RAD51 and RAD17 mRNA levels as confirmed by qRT-PCR (Figure 16B). The miR-

506-RAD51 axis was investigated in the framework of a collaborative study between 

my group and Dr Wei Zhang at the MD Anderson Cancer Center147. However, RAD17 
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involvement in EOC biology has never been investigated and it could possibly give 

new insights about mechanisms of drug resistance. I therefore decided to focus my 

attention on miR-506 direct modulation on RAD17 and performed functional 

analysis to better characterize its role in EOC progression. 
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Figure 16: miR-506 regulates expression of RAD17 and RAD51  

Four EOC cell lines (OAW42, IGROV1, SKOV3, A2774) were transfected with miR-506 mimic 

(506) or scr-miR (scr). Proteins and mRNA levels were evaluated at 48 hours after 

transfection. A) Western blot analysis was carried out in order to check RAD17 and RAD51 

protein levels. β-actin was used as loading control. Quantification of protein expression by 

QuantityOne software was performed and bar chart representing protein expression fold 

change of miR-506 transfected cells versus controls for both RAD17 and RAD51 is reported 

below each western blot panel. A representative experiment out of three performed is 

shown. B) qRT-PCR analysis of RAD17 (left panel) and RAD51 (right panel) mRNA expression 

levels in the same EOC cell lines. GAPDH was used for normalization. Values are percentage 

of down-regulation of RAD17 and RAD51 in miR-506 reconstituted cells versus scr 

transfected cells. Data are mean ± SD of at least three experiments. 
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4.7 RAD17 is a direct target of miR-506  

The RAD17 mRNA contains one miR-506 binding site in its 3'UTR as detected by 

different prediction algorithms (Figure 17, upper panels). I therefore hypothesized 

that RAD17 was regulated by miR-506 through direct targeting to its 3’UTR. To test 

this hypothesis, I performed a Dual-Luciferase® Reporter assay. A 40 base pair 

region of the RAD17-3’UTR containing the miR-506 seed sequence was firstly cloned 

into the pmirGLO vector downstream of Firefly luciferase gene, under the control of 

the human phosphoglycerate kinase (PGK) promoter and the sequence of the insert 

was confirmed by sequencing. HEK293T cells were co-transfected with pmirGLO 

empty vector, as control, and with pmirGLO vector containing the miR-506 seed 

region alone or in combination with miR-506 or scr-miR.  

Dual Luciferase activity was assayed 24 hours post transfection and Firefly luciferase 

activity normalized (firefly luciferase activity/Renilla luciferase activity). Expression 

of miR-506 significantly reduced the normalized luciferase activity in HEK293T cells 

compared to the empty vector transfected control cells (Figure 17, lower panel). To 

confirm that miR-506 specifically regulated this gene, I transfected cells also with 

another miRNA (miR-unrelated) whose sequence does not have complementary 

seed in the 3’ UTR of RAD17. I observed a luciferase activity comparable to the scr 

transfected cells and significantly higher than the luciferase activity detected in miR-

506 transfected cells (Figure 17 lower panel). Overall these results demonstrate that 

the overexpression of miR-506 causes a decrease in RAD17 mRNA and protein 

expression through direct binding on the RAD17 3'UTR.  
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Figure 17: RAD17 is a direct target of miR-506 

Images from microRNA.org and TargetScan prediction tools showing the alignment of miR-

506 within the predicted binding site in the RAD17 3’UTR (upper panels). Dual-Luciferase® 

Reporter assay confirming RAD17 as a direct target of miR-506 (lower panel). HEK293T cells 

were transfected with pmiRGLO empty vector (pmiRGLO, white bar), or pmiRGLO 

containing the putative binding site of miR-506 in the RAD17 3’UTR in combination with a 

scrambled miRNA (scr) (pmiRGLO+miR-scr, black bar), miR-506 (pmiRGLO+miR-506, gray 

bar) and an unrelated miRNA (pmiRGLO+miR-unrelated, dotted bar). Results are 

percentage of Relative Luminometer Units (RLU) of the ratio Firefly/Renilla. Data are mean 

± SD of at least three experiments. Student’s t-test was used to compare miR-506 

transfected cells versus scr transfected cells (** p<0.01). 
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4.8 Clinical relevance of RAD17 in EOC patients 

In order to confirm my in vitro data on the correlation between RAD17 and miR-

506, I analysed their expression on EOC patients from OC72 case material for whom 

both miRNA and mRNA profiles were available. As reported in Figure 18A, RAD17 

expression was significantly anti-correlated with miR-506 expression (p=0.039) 

further supporting the importance of this direct regulation. With the aim to 

correlate RAD17 gene expression levels with patients’ clinical outcome I 

interrogated the online tool OvMark, that integrate gene expression profiles data 

from up to 2129 EOC samples (around 17000 genes; 14 datasets), and in particular I 

selected patients for whom information about a platinum therapy was annotated. 

The RAD17 high expression levels identified patients with worse prognosis; Figure 

18B left panel reports the Kaplan-Meier (KM) curves for Disease Free survival (DFS), 

HR= 1.48, 95% CI=1.22–1.79, log‐rank P=0.000053; Figure 18B right panel reports 

KM curves for overall survival (OS), HR=1.61, 95% CI=1.26–2.05, log‐rank 

P=0.000092, using median cut off to determine high and low expressing patients. 

These results suggest a prognostic role for RAD17 expression. Concordantly, high 

expression of miR-506 has been associated with a favorable prognosis147. 
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Figure 18: RAD17 is anticorrelated with miR-506 and associates with poor prognosis in 

EOC samples 

A) RAD17 expression by gene expression analysis in EOC patients from OC72 case material. 

RAD17 expression resulted to be anti-correlated with miR-506 expression. Data are log2 

RAD17 expression intensity. Student’s t-test was used to compare miR-506 high expressor 

patients versus miR-506 low expressor patients (* p=0.039).  

B) Prognostic significance of RAD17 expression levels evaluated with the online tool 

OvMark (http://glados.ucd.ie/OvMark/index.html) generating DFS (left panel) and OS (right 

panel) curves in patients for whom information about platinum treatment was specified in 

the datasets (GSE30161, GSE9899 and GSE32062). KM curves were generated using a 

median cut off. Black and Grey lines indicate OC patients with high and low RAD17 

expression, respectively. The total number (n) of patients in the two categories is shown. 

Hazard ratios (HR) with CI (confidence interval) and p values (log rank p, for evaluation of 

significance) are shown at the top of each panel.  
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4.9 RAD17 silencing sensitises EOC cells to platinum  

According to its role in DDR acting as a sensor of DNA damage, I hypothesized that 

RAD17 activity could be involved in response to DNA damaging drugs. In order to 

evaluate whether RAD17 reduction could be critical for platinum sensitivity in EOC 

cells, I performed CellTiter-Glo® assays in SKOV3 and OAW42 EOC cell lines. Specific 

inhibition of RAD17 gene expression was obtained by RNA interference method. In 

particular I transiently transfected cells with a pool of 4 siRNAs against RAD17 

(siRAD17) or with a siRNA control sequence (siCTRL). Silencing efficacy was 

evaluated 72 hours after transfection at protein level, obtaining an almost totally 

reduction of protein expression in both cell lines as compared to their controls 

(Figure 19A-B). RAD17 silenced SKOV3 cells resulted more sensitive to platinum 

treatment across the dose range as compared to siCTRL transfected cells with a 

drop in the IC50 of 3 fold (Figure 19C). A significant effect of sensitisation upon 

platinum treatment was observed also in the OAW42 cell line with a drop in the 

IC50 of 2.5 fold (Figure 19D). Effect of RAD17 silencing in inducing sensitisation to 

DDP treatment was similar to miR-506 reconstitution effect as shown previously in 

Figure 14B and 14C. Overall these data are suggestive of the important role of 

RAD17 expression in modulating platinum sensitivity in EOC cell lines. 
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Figure 19 Effect of RAD17 silencing on sensitivity to platinum  

SKOV3 and OAW42 cell lines were transfected with RAD17 (siRAD17) and ctrl (siCTRL) 

siRNAs and seeded in 96 well plates for CellTiter-Glo® assays. The day after transfection 

cells were treated with serial dilution of DDP as indicated in the graphs. A-B) Western blot 

analysis of RAD17 silencing efficacy in SKOV3 and OAW42 cell lines. C) SKOV3 and D) 

OAW42 cell lines treated with DDP. Percentage of viability of siRAD17 and siCTRL 

transfected SKOV3 (C) and OAW42 (D) cells was evaluated by CellTiter-Glo® assay 72h after 

DDP treatments. Data are mean ± SD of at least three experiments. Two way ANOVA and 

Bonferroni’s post test was used to compare siRAD17 transfected cells versus siCTRL 

transfected cells (*p<0.05; ** p<0.01; ***p<0.001). 
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4.10 RAD17 is directly involved in miR-506-induced drug sensitisation 

To verify that RAD17 is a key factor in determining sensitisation induced by miR-506 

expression, I employed single-stranded modified RNAs, named target protectors 

(TP) that are designed to specifically interfere with the interaction of a given miRNA 

with its specific target gene (Figure 20A). By complementary binding to the seed 

sequence in the 3’UTR of the targeted gene, TP compete with the miRNA for 

binding to the target and block miRNA-mediated repression of a specific mRNA 

without affecting other targets. To this aim I co-transfected miR-506 reconstituted 

SKOV3 cells with or without two different concentrations (40 nM and 60 nM) of a TP 

designed to be fully complementary to miR-506 binding site within the RAD17 

3’UTR (RAD17-TP), thus preventing the interaction of miR-506 with RAD17 mRNA. I 

found that RAD17-TP was able to significantly recover RAD17 expression at both 

mRNA and protein level in miR-506 reconstituted SKOV3 cells compared to miR-scr 

transfected cells in a dose dependent way (Figure 20B and 20C, respectively). As 

shown in Figure 20C, RAD51 protein downregulation mediated by miR-506 was not 

affected by RAD17-TP, further supporting the specificity of the system. The same 

transfected cells were plated to perform a clonogenic assay following platinum 

treatment. Interestingly the co-transfection with TP-RAD17 was able to almost 

completely abrogate the platinum-sensitisation effect induced by miR-506 

reconstitution in a dose dependent way (Figure 20D). These results indicate that 

despite the large number of miR-506 targets, the rescue in sensitisation to platinum 

treatment is at least in part a result of RAD17 regulation by miR-506 thus confirming 

a central role of this direct regulation in chemoresponse. 
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Figure 20: RAD17 contributes to mediate miR-506 induced chemosensitisation 

A) Mechanism of action of miScript target-protector (TP) adapted from Zhang et al163. 

SKOV3 cells were transfected with miR-506 (506) or scramble (scr) in presence or absence 

of RAD17 target protector (RAD17-TP) at two different concentrations. B) qRT-PCR showing 

RAD17 expression level reconstitution after RAD17-TP co-transfection in miR-506 or scr 
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transfected cells. GAPDH and RPL13A were used for normalization C) Western blot analysis 

showing RAD17 protein level after RAD17-TP co-transfection. RAD51 protein expression 

level was used as positive control of miR-506 efficacy (left panel). Relative protein 

quantification of RAD17 normalized against vinculin (VINC) performed by Quantity One 

software and represented as ratio of RAD17 band intensity of miR-506 vs scr for each 

couple. VINC was used as loading control (right panel). D) Percentage of relative colony 

formation rate following treatment with platinum (DDP) at indicated doses of miR-506/scr 

SKOV3 reconstituted cells alone or co-transfected with RAD17-TP (two different doses, 40 

nM dashed lines, 60 nM dotted lines). Data are mean ± SD of at least three experiments. 

Two way ANOVA and Bonferroni’s post test was used to compare miR-506 transfected cells 

versus miR-506+RAD17-TP 60 nM transfected cells (** p<0.01; ***p<0.001). 
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AIM 2: Define the miR-506-driven molecular mechanisms at the basis of chemo-

response. 

4.11 Effect of miR-506-RAD17 regulatory axis on sensitivity to PARP inhibitors 

I showed that miR-506 reintroduction was able to sensitise EOC cells to platinum 

treatment. Since cells with defects in DNA repair pathway has been shown to be 

sensitive to DNA-damaging drugs and to PARP inhibitors164, and since miR-506 

targets and regulates important components of the DNA damage response (such as 

RAD17 and RAD51), I hypothesized that this miRNA could modulate also response 

to PARP inhibitors. I therefore tested my hypothesis on EOC cells treating them with 

olaparib, a commercially available PARP inhibitor. To this end I selected the p53null 

SKOV3 and the p53wt OAW42 cell lines and transfected them with miR-506 mimic 

or a scramble control miR. Cells were seeded in 6 well plates in order to perform a 

clonogenic assay. The day after cells were exposed to different doses of olaparib 

ranging from 1 to 10 µM and the ability of a single cell to grow into a colony was 

evaluated after 10-14 days. MiR-506 forced expression significantly enhanced 

SKOV3 and OAW42 cells sensitivity to olaparib treatment as compared with control 

cells (Figure 21A) with drop in the IC50 of 2 fold for both cell lines. Importantly, I 

obtained the same sensitisation to PARP inhibitor olaparib in both cell lines when I 

performed a phecocopy experiment by silencing of RAD17 expression with siRNAs, 

as shown in Figure 21B with drop in the IC50 of 2 fold for SKOV3 and 1.5 fold for 

OAW42. These results further suggest that miR-506 induced olaparib sensitisation is 

also a result of RAD17 direct targeting and are supportive of the importance of this 

new regulatory axis in interfering with DNA repair machinery thus modulating drug 
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response. Furthermore they suggest the possible use of miR-506 expression level to 

assess EOC BRCAness phenotype and therefore sensitivity to PARP inhibitors. 

 

Figure 21: Forced expression of miR-506 induce sensitivity to PARP inhibitors and the 

effect is phenocopied by RAD17 silencing 

SKOV3 and OAW42 cell lines were transfected with miR-506 (506) and control scramble-

miR (scr) or silenced with siRNA against RAD17 (siRAD17) or with a control siRNA (siCTRL) 

and seeded in 6 well plates for clonogenic assays. Percentage of relative colony formation 

rate of A) miR-506 versus scr transfected cells and of B) siRAD17 versus siCTRL transfected 

cells are reported. Colonies were counted using optical microscope. Data are mean ± SD of 

at least three experiments. Two way ANOVA and Bonferroni’s post test was used to 

compare miR-506 transfected cells versus scr transfected cells (*p<0.05; ** p<0.01; 

***p<0.001).  
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4.12 MiR-506 increases frequency of chromosomes breaks and causes 

abnormalities in mitotic progression in platinum treated cells 

It has been recently reported that RAD17 deletion trigger genomic instability and 

led to DNA fragmentation and mitotic catastrophe in gemcitabine-treated 

pancreatic cancer cells80, 165. I tested whether miR-506 reintroduction could be 

responsible of such instability, mimicking the effects of RAD17 depletion. To this 

purpose I selected SKOV3 cells as most representative of the majority of EOC and I 

transfected cells with miR-506 mimic or scr and, 48 hours after DDP treatment, I 

performed an immunofluorescence analysis to evaluate its role in inducing mitotic 

defects. Immunostaining of acetylated alpha-tubulin to visualize the mitotic spindle, 

phosphorylated histone H3 (ser10) as marker of mitotic cells, and DAPI to 

counterstained nuclei, revealed in miR-506 reconstituted cells the presence of 

aberrant mitotic figures, such as monopolar and multipolar spindles or lagging 

chromosomes, resulting from asynchronous chromosomes movements at mitosis 

anaphase (Figure 22B, 22C, 22D), while normal mitosis were observed in scr control 

transfected cells (Figure 22A). Moreover, I assessed the effect of miR-506 on the 

appearance of micronuclei, small extra-nuclear chromatin-containing bodies which 

result from unrepaired chromosome breaks or lagging chromosomes. In response to 

DDP treatment, miR-506 reconstituted SKOV3 cells displayed higher number of 

micronuclei compared to scr control cells (Figure 22E), which reflected elevated 

genomic instability of platinum treated cells induced by miR-506 transfection. 

Overall these results suggest that sensitisation to drug treatments induced by miR-

506 reintroduction may be also a consequence of failure of cell division processes.  
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Figure22: MiR-506 reintroduction causes abnormal mitotic figures following drug 

treatment 

MiR-506 reconstituted SKOV3 cells were treated with 3 µM of DDP. 48 h after transfection 

cells were fixed and immunofluorescence analysis was carried out for Acetylated alpha-

tubulin (α-tubulin-ac, green), phosphorylated histone H3 (pH3, red) and DAPI (nuclei, blue). 

A) Normal mitosis occurring in scr cells, B) monopolar mitosis, C) multipolar mitosis, D) 

lagging chromosomes. E) Micronuclei in miR-506 transfected cells and scr control. 

Magnification 40X. 
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4.13 MiR-506 impacts on DNA Damage 

Given the effects of miR-506 reconstitution in inducing aberrant mitotic figures 

upon DDP treatment, together with the evidence that miR-506 directly targets and 

regulates different molecules involved in DDR, I further investigated the impact of 

miR-506 reintroduction on DNA damage. To this end I analysed the expression level 

of γH2AX (phosphorylated in serine 139), a recognized marker of DNA DSBs. SKOV3 

cells were transfected with miR-506 and scr control. The day after, cells were 

treated with DDP at the concentration of 3 µM for 24 hours to induce DNA damage 

and western blot analysis was performed. I observed a decrease in γH2AX 

expression level in miR-506 treated cells compared to scr control treated cells 

(Figure 23A). I also performed immunofluorescence analysis in order to visualize 

γH2AX localization at DSBs sites upon platinum treatment. Figure 23B shows a 

reduced number of γH2AX positive cells, containing more than 15 foci, in miR-506 

reconstituted cells, with a mean percentage reduction of 30% in miR-506 

transfected cells compared to scr control cells (Figure 23C). Similar to miR-506 

reconstitution effects, RAD17 silencing was responsible of the reduction of γH2AX 

expression level in DDP treated cells, (Figure 23D). These results suggest that miR-

506 reduces γH2AX recruitment at DSBs sites thus impairing DNA damage response.  

RAD17 is a DNA damage sensor protein important for ATR checkpoint signalling in 

response to DNA damage insults, such as platinum treatments. It has been recently 

shown that RAD17 play a role also in the early recruitment and maintenance at 

damage sites of the MRN (MRE11-RAD50-NBS1) complex, promoting ATM 

checkpoint response and homologous recombination repair71. Since miR-506 
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negatively regulate RAD17, I hypothesized that miR-506 reintroduction could impair 

also ATM signalling activation occurring upon DNA damage recognition. In order to 

validate RAD17 new proposed role in my model of EOC I firstly silenced SKOV3 cells 

with siRAD17 and siCTRL siRNAs and upon DDP treatment I observed in RAD17 

silenced cells a reduced phosphorylation, thus activation, of ATM (Figure 23E, left 

panel). More importantly, when I ectopically expressed miR-506 in the same cell 

line, I obtained a reduced activation of ATM after DDP treatment (Figure 23E, right 

panel), similar to RAD17 silencing effect. These observations further support the 

important role of miR-506 and its regulation on RAD17 gene expression in DNA 

damage response and in promoting early ATM checkpoint response. Overall these 

results suggest that miR-506 may lead to a delayed recruitment of DNA damage 

proteins at damage sites and a delayed activation of signal cascade upon treatment.  
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Figure 23: miR-506 reintroduction impairs response to DNA damage 

A) Western blot analysis of γH2AX expression in SKOV3 cells transfected with miR-506 

mimic or scr control miR and treated with platinum (DDP). Lysates collected at 24 hours 

after treatment. Vinculin was used as loading control. Inset in the right panel representing 

RAD51 downregulation used as positive control of miR-506 transfection. B) Representative 

images of the immunofluorescence staining of γH2AX in SKOV3 transfected with miR-506 or 

scr control and treated with or without platinum at the concentration of 3 µM for 24h. 

Magnification 40X. C) Percentage of γH2AX-positive cells following DDP treatment at 3 µM. 

Cells with more then 15 foci were considered as γH2AX-positive. Data are mean ± SD of two 

experiments (** p<0.01). D) Western blot analysis of γH2AX expression in SKOV3 cells 

silenced for RAD17 and treated with platinum (DDP) at 1 and 3 µM. Vinculin was used as 

loading control. E) Western blot analysis of pATM expression upon DDP treatment in both 

miR-506 and scr transfected and siRAD17 and siCTRL silenced SKOV3 cells. β-actin was used 

as loading control. 
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4.14 MiR-506 causes a delay in platinum-induced G2 cell cycle arrest 

Sensing and repair of DNA damage are finely regulated events during cell cycle 

progression. G2/M cell cycle checkpoint is an important surveillance mechanism 

used by cells in response to DNA damage. Its function is to prevent entry into 

mitosis of damaged cells. Since miR-506 reintroduction was able to induce a 

possible delay in sensing DNA damage I decided to investigate the potential role of 

miR-506 in regulating progression of cell cycle in response to platinum treatment. 

SKOV3 cells were transfected with miR-506 mimic or scramble control miR and 

treated with DDP at the concentration of 1 µM and 3 µM. Cells were collected at 

different time points (24h, 48h and 72h) after treatment and their cell cycle 

analysed by FACS. As expected, gradual accumulation of cells blocked in S and G2/M 

phase of the cell cycle was evident over time in scr treated cells (Figure 24A, upper 

panels). MiR-506 reconstituted cells showed instead a marked delay in 

accumulation of cells in G2/M phase of the cell cycle particularly evident at 48 hours 

from DDP treatment compared to scr control cells (Figure 24A, lower panels) (25% 

versus 53% cells at G2/M phase for miR-506 and scr cells respectively, Figure 24B). 

After 72 hours of treatment however, both miR-506 and scr cells showed the same 

extent of block in G2/M phase (Figure 24B). These data suggested that miR-506 

reconstitution induced a delay in G2/M cell cycle arrest upon platinum treatment. 

This delay could allow cells to propagate into the cell cycle with an unrepaired 

extensive DNA damage with premature entry into mitosis which will cause cell 

death. 
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Figure 24: MiR-506 reconstitution affects cell cycle progression 

Flow cytometry analysis of the cell cycle distribution after DDP treatment in miR-506 and 

scr control transfected SKOV3 cells using propidium iodide staining. A) Representative 

images showing delayed accumulation of cells in phase G2/M of the cell cycle after 3 µM 

DDP treatment in miR-506 reconstituted cells (lower panels) compared to scr tranfected 

cells (upper panels). B) Quantification of cell cycle distribution in percentage during time 

(24h and 48h) upon 1 and 3 µM DDP treatment, with the percentage of cells in G1 phase 

(light grey), S phase (grey), and G2/M phase (dark gray). C) Quantification of cell cycle 

distribution following 72h of DDP treatment. 
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Since the observed effect in impairing the G2/M block of cells upon DDP treatment, 

I decided to assess if miR-506 reconstitution may cause major alterations in the 

signal transduction pathway activated upon DNA damage and related to cell cycle 

G2/M checkpoint activation. Western blot analysis revealed that in SKOV3 cells the 

ectopic expression of miR-506 drastically abrogated G2/M checkpoint activation 

signal cascade consistent with its role in delaying block of cells in G2/M phase of the 

cell cycle upon DDP treatment (Figure 25B). More in detail, I observed a reduction in 

phosphorylated Chk1 kinase in Serine 296, one of the DNA damage induced 

phosphorylation sites, which in turn abolished cyclin-B1-CDK1 complex activation, a 

key event that initiates mitotic entry. Indeed, upon miR-506 reconstitution, a 

reduction of cyclin-B1 levels was observed in treated cells and abrupt 

dephosphorylation of the inhibitory phosphorylation site of CDK1 (tyrosine 15, Y15). 

Moreover CDK1 remained dephosphorylated, thus active, also by the lack of the 

inhibitory phosphorylation exerted by Wee1 kinase. Indeed I observed a decreased 

expression and a proportional decreased activation (phosphorylation) of Wee1 

protein, which as well as Chk1 resulted impaired following miR-506 transfection. 

These results further support the role of miR-506 in abrogating G2/M checkpoint in 

response to DNA damage allowing the entry of damaged cells into mitosis. 
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Figure 25: Abrogation of G2/M cell cycle checkpoint in miR-506 reconstituted cells 

A) Schematic illustration of the main molecular actors involved in G2/M checkpoint 

activation. Upon DNA damage, Cyclin-B1-CDK1 complex is activated leading to activation of 

G2 checkpoint in order to block cell cycle before to give time to cells for repair their 

damage before enter in mitosis (M). Among key events, CDK1 is phosphorylated in its 

inhibitory phosphorylation site (Y15) mediated by Chk1 and Wee1 kinases. On the contrary, 

when Cyclin-B1 is degraded by ubiquitination (ub) and CDK1 dephosphorylated, the Cyclin-

B1-CDK1 complex is inactive and cells enter into M phase of the cell cycle. B) SKOV3 cells 

were transfected with miR-506 (506) or scr-miR (scr) and treated or not with 1 and 3 µM of 

platinum (DDP) for 24 and 48 hours, time points at which lysates were collected and 

western blot analysis was performed. Images are representatives of at least three 

experiments. Vinculin was used as loading control.  
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4.15 RAD17 is synthetically lethal with Chk1 and Wee1 inhibitors in EOC models 

in vitro 

In recent years many efforts are being made to map synthetic-lethal interactions in 

cancer for the design of targeted therapies in human cancers166. It has been shown 

by Shen and co-authors81 that RAD17 loss of function was synthetically lethal with 

Chk1 and Wee1 Inhibitors. In light of this evidence obtained in Hela and LN428 

cellular models displaying inactive p53, I wanted to verify if RAD17 suppression 

could reproduce the same effect in EOC model. For this purpose I silenced RAD17 

expression with siRNAs in SKOV3 p53null and OAW42 p53wt cell lines and I 

evaluated by clonogenic assays the effects of treatment with AZD1775, an inhibitor 

of Wee1 and with LY2603618, an inhibitor of Chk1 at different doses. Silencing 

efficacy was evaluated 72h after each transfection at protein level in both cell lines. 

The Wee1 Inhibitor AZD1775 was significantly more toxic in RAD17 depleted cells 

compared to control cells in both cell lines with a drop in the IC50 of 3.5 fold for 

SKOV3 and 2 fold for OAW42 (Figure 26 upper panels). RAD17 silencing induced the 

same significant effect of enhanced toxicity also upon treatment with the Chk1 

inhibitor LY2603618 in the same cell lines with a drop in the IC50 of 1.5 fold for 

SKOV3 and 3.5 fold for OAW42 (Figure 26 lower panels). These results suggest that 

depletion of RAD17 is involved in inducing synthetic lethal effect with checkpoint 

kinases inhibitors also in EOC model further supporting the concept that checkpoint 

kinases inhibitors could be most active in tumours with defects in DNA damage 

repair such as RAD17 loss of function. 
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Figure 26: Synthetic lethal effect of RAD17 depletion with checkpoint kinases inhibitors 

SKOV3 and OAW42 cell lines were silenced or not for RAD17 using siRNAs (siRAD17 or 

siCTRL) and seeded in 6 well plates for clonogenic assays. The day after transfection cells 

were treated with serial dilution of Wee1 inhibitor AZD1775 (upper panels) or the Chk1 

inhibitor LY2603618 (lower panels) at indicated concentrations. Percentage of relative 

colony formation rate of siRAD17 versus siCTRL transfected and treated cells were 

evaluated. Colonies were counted under optical microscope. Data are mean ± SD of at least 

three experiments. Two way ANOVA and Bonferroni’s post test was used to compare 

siRAD17 transfected cells versus siCTRL transfected cells (*p<0.05; ** p<0.01; ***p<0.001, 

****p<0.0001). 
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4.16 MiR-506 reintroduction causes synthetic lethality with Chk1 and Wee1 

Inhibitors resembling RAD17 silencing. 

Since RAD17 silencing was able to sensitise EOC cells to Chk1 and Wee1 inhibitors, I 

wanted to evaluate if reintroduction of miR-506, through modulation of RAD17 

expression, could reproduce the same effect of sensitiveness to these checkpoint 

kinases inhibitors. For this purpose SKOV3 and OAW42 cells transfected with miR-

506 mimic or the miR-scramble control were treated with the Wee1 inhibitor 

AZD1775, or with the Chk1 inhibitor LY2603618, at different doses and the 

treatment effects were evaluated by clonogenic assay. MiRNA transfection 

efficiency was evaluated 48h after transfection by qRT-PCR in both cell lines. 

Interestingly upon miR-506 reconstitution I was able to obtain a significant 

sensitisation to both Wee1 and Chk1 inhibitors in SKOV3 cell line (Figure 27, left 

panels) similar to what obtained following RAD17 depletion, with drop in the IC50 

of 1.6 fold for AZD1775 and 2 fold for LY2603618 compared to scr cells. MiR-506 

reconstitution in OAW42 cell line was synthetically lethal with the Wee1 inhibitor, 

with a drop in the IC50 of 1.5 fold compared to scr transfected cells, while no 

significant effect was observed upon treatment with the Chk1 inhibitor (Figure 27, 

right panels). These results indicate that miR-506 is able to sensitise EOC cells to 

Chk1 and Wee1 checkpoint kinases inhibitors resembling the effects induced by 

RAD17 silencing. Taken together these data highlight the important role of miR-506 

in regulating RAD17 expression and function, sustain a synthetic lethal approach 

based on RAD17 function and checkpoint kinases activity and also support the 

possibility of using miR-506 expression as a marker of response to checkpoint 

kinases inhibitors.   
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Figure 27: Synthetic lethality effects of miR-506 reconstitution with checkpoint kinases 

inhibitors 

SKOV3 and OAW42 cell lines were ectopically reconstituted with miR-506 mimic (506) or 

scramble miR (scr) and seeded in 6 well plates for clonogenic assays. The day after 

transfection, cells were treated with serial dilution of AZD1775, the Wee1 inhibitor (upper 

panels), or LY2603618, the Chk1 inhibitor (lower panels), at the indicated concentrations. 

Percentage of relative colony formation rate of miR-506 versus scr transfected cells were 

evaluated. Colonies were counted under optical microscope. Data are mean ± SD of at least 

three experiments. Two way ANOVA and Bonferroni’s post test was used to compare miR-

506 transfected cells versus scr transfected cells (*p<0.05; **p<0.01; ***p<0.001, 

****p<0.0001).  
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4.17 Combination of Chk1 or Wee1 inhibitors with platinum showed a 

synergistic effect in miR-506-reconstituted SKOV3 cells 

Platinum represents the standard of care for EOC patients but development of 

platinum resistance remains a major problem in the treatment of these patients. I 

then wanted to evaluate whether combination treatment strategies, combining 

platinum and checkpoint kinases inhibitors, could sensitise platinum-resistant cells. 

To this end I ectopically expressed miR-506 in the platinum resistant SKOV3 cell line 

and then I treated cells with the inhibitor of Wee1 AZD1775, or with the inhibitor of 

Chk1 LY2603618, alone or in combination with 0.5 µM of platinum (DDP) 

corresponding to the IC50. The data indicated that the combination of platinum and 

AZD1775, as well as platinum and LY2603618 were substantially more effective than 

mono-treatments in reducing colony formation rate. The reduction on IC50 due to 

treatment combination was evident in scr transfected cells from 200 nM to 135 nM 

for AZD1775 and from 450 nM to 300 nM for LY2603618. More important when 

miR-506 reconstituted cells were treated with combination therapy a dramatic 

effect was observed with an IC50 reduction of 60% (2 fold decrease) for both 

AZD1775/DDP and LY2603618/DDP combinations (Figure 28, left panels). Moreover 

the two combination treatments induced synergistic effect in miR-506 reconstituted 

cells compared with scr control cells as determined by combination index (CI) 

analysis (Figure 28, right panels). These results suggest that DDP-AZD1775/DDP-

LY2603618 combination treatments have an important effect on 

chemosensitisation in the setting of miR-506 expression compared to individual 

drugs and induced synergistic effects in miR-506 reconstituted SKOV3 resistant 
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cells. This could minimize drug concentrations and therefore reduce non-specific 

effects and general toxicity upon treatment. 

Figure 28: Inhibition on Wee1 or Chek1 in mR-506 reconstituted cells results in synergistic 

effect with platinum treatment. 

SKOV3 cell line was treated with platinum (DDP) (held constant at 0.5 µM) and AZD1775 or 

LY2603618 at different concentrations as reported in the graphs. Left panels: percentage 

colony formation rates of miR-506 reconstituted cells treated with AZD1775 and LY2603618 

alone or in combination with DDP (dashed lines). Data are mean ± SD of at least three 

experiments. Two way ANOVA and Bonferroni’s post test was used to compare miR-506 

transfected cells treated with AZD1775 or LY2603618 versus combinations with DDP 

(*p<0.05; **p<0.01; ***p<0.001, ****p<0.0001). Right panels: combination Index (CI) 

analysis was performed using the CompuSyn system. SKOV3 percentage colony formation 

rate were converted to growth inhibition (Fraction Affected, F) and plotted against CI. The 

first three doses for each checkpoint kinase inhibitor were plotted. Dotted blue lines on the 

graph designates a CI equal to 1 (dark blue line) and equal to 0.3 (light blue line). 

Combination Index indicates additivity when CI value is 1, antagonism when CI>1, 

synergism when CI<1 and strong synergism when CI<0.3. 
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5 Discussion 

The general aim of this thesis was to identify and better characterize the miRNA-

driven role in response to chemotherapy in EOC. EOC patients are usually diagnosed 

at advanced stages of the disease and often experience disease relapse with 

instauration of a chemotherapy resistant condition with a consequent poor 

prognosis1-3. One of the major challenges remains the identification of patients with 

increased risk of disease recurrence for the design of new therapeutic strategies to 

overcome resistance to treatment. To address these questions, genomic based 

approaches are needed to deeply characterize this highly heterogeneous disease at 

the molecular level. Molecular-driven approaches for EOC are recently becoming 

real therapeutic options in combination to platinum agents as in the case of the 

addition of the anti-angiogenic drug Bevacizumab167 or the use of PARP inhibitors in 

specific molecular subsets44, 168. MiRNAs, small non-coding RNAs that regulate gene 

expression at the post-transcriptional level, represent an important layer of 

information that could help to explain the behaviour of EOC tumour cells in 

different processes including chemoresponse124. In recent years my laboratory 

analysed the miRNA expression profiles in EOC patients identifying a cluster of eight 

miRNAs (ChrXq27.3 cluster) found to be downregulated in high grade advanced 

stage early relapsing patients144 and included in a miRNA-based predictor of early 

relapse143, suggesting a role of this cluster in disease progression and 

chemoresponse. I decided to focus on miR-506, belonging to the cluster, the most 

characterised miRNA and probably the driver of the cluster. I knew by previous 

works of my group that miR-506 was able to sensitise EOC cells to platinum 
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treatment in p53wt setting supporting its role in chemoresponse and in disease 

relapse144. In this thesis I have confirmed in two new EOC case cohorts previous 

observations. Searching for the appropriated cellular models I found that all the 

EOC cell lines tested presented very low levels of miR-506 expression, a 

characteristic shared with cell lines of histotypes different from ovary160-162. The low 

expression of miR-506 is a common feature also in EOC patients. Indeed previous 

analysis of my research group of the microRNA expression profiles in independent 

cohorts of EOC patients including the TCGA dataset showed that miR-506 was 

expressed at detectable levels only in 30% of patients143, 144. The association of low 

expression of miR-506 and of the entire cluster with patients’ early relapse supports 

its role as oncosuppressor miRNA.  

MiRNAs expression can be regulated by different mechanisms such as major 

genomic rearrangement, epigenetic events169-171 or transcription factor 

deregulations172. It is likely that such regulations are responsible for the low 

expression level I found in my cellular models and in patients. Interestingly 

ChrXq27.3 miRNAs cluster maps near to an X fragile site region, however no copy 

number variations of this region were detected in TCGA study148, and no studies on 

evaluation of presence of micro-deletion such as LOH have been performed so far. 

The most studied aspect is epigenetic regulation. Indeed, by analyzing EOC cell lines, 

in the promoter region of miR-506 Yang and co-workers identified five CpG sites, 

regions rich in cytosine that can be highly methylated, thus silenced, therefore 

changing gene expression levels. Treatment with demethylating agents such as 5-

aza-2’-deoxycytidine (5-Aza-dC) significantly restored miR-506 levels suggesting that 
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epigenetic silencing can be responsible for the low expression of miR-506 148. They 

were not able to evaluate the methylation status of the miR-506 promoter in the 

cohort of patients of the TCGA study due to the lack of the coverage of the 

ChrXq27.3 in the methylome platform used. However, by pyrosequencing analysis 

performed on an independent cohort of patients they identified a negative 

correlation between methylation and miR-506 expression although it was not 

statistically significant. Similar results were obtained by Li j and collaborators in the 

context of pancreatic cancer further indicating that DNA methylation contributes to 

miR-506 gene silencing153. Moreover binding sites of putative transcriptional factors 

have been identified in the promoter region of miR-506 family. In breast and lung 

cancer, a crosstalk between NF-kB and p53 was shown to regulate miR-506 

expression. However, the final effect (inhibitory or promoting) was dependent on 

the tumour type173 174. The causes of miR-506 deregulation in EOC have to be yet 

investigated. Indeed, given the peculiar way of growth and dissemination of EOC 

and the well known bidirectional communication between cancer cells and the 

tumour microenvironment175, it cannot be excluded also that paracrine signal from 

tumour microenvironment could play a role in regulation of miR-506 expression176. 

The improving in generation of organotypic tridimentional culture system that 

mimic the in vivo situation could help in elucidating the mechanisms responsible for 

miR-506 deregulation that need to be further investigated.  

Once defined that I could only rely on cellular models allowing gain of function 

experiments, I explored and confirmed the ability of miR-506 to re-sensitise to 

platinum treatment EOC cells with p53 mutational status. To investigate the role of 
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miR-506 in chemotherapy response and identify miR-506 target genes potentially 

involved in this process, I performed an in silico identification of putative miR-506 

target genes and related functions, using publicly available softwares. Besides genes 

involved in EMT such as SNAI2, VIM and N-CADH145, 148, I identified genes regulating 

DNA repair pathway such as RAD51, involved in homologous recombination repair, 

and RAD17 an early sensor of DNA damage. The mechanism of miR-506-RAD51 has 

already been explored147 while no data are available concerning RAD17 in EOC. I 

therefore concentrated on this miR-506-RAD17 regulatory axis, supposing its 

involvement in EOC response to therapy. After confirming that RAD17 was a direct 

target of miR-506, I showed that the platinum sensitisation induced by miR-506 

expression was related to RAD17 regulation. Indeed by performing RAD17 target 

protector experiments, I demonstrated that the miR-506 induced sensitisation to 

platinum treatment was directly depending on the possibility of miR-506 to regulate 

RAD17 expression. The effect, indeed, was lost when targeting of miR-506 was 

impaired by the target protection sequence. Moreover, being an early event in DDR 

and therefore acting upstream of many DDR molecules RAD17 could orchestrate 

the entire response. Importantly, I found RAD17 to be anti-correlated with miR-506 

expression in EOC patients, validating my in vitro results. As expected RAD17 

expression was associated with poor prognosis when I interrogated online available 

datasets suggesting its prognostic role and clinical relevance in EOC. Strongly in 

accordance with my finding, miR-506 expression was associated with EOC good 

prognosis147, 148. 
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DDR dependency in cancer is currently being exploited to generate new cancer 

therapeutic strategies. Recent findings demonstrated that PARP inhibitors, which 

act in the BER pathway by inhibiting PARP activity to sense and repair ssDNA breaks, 

which in turn can lead to dsDNA breaks177, are particularly effective in patients 

harbouring BRCA1/2 mutations. Indeed these patients display defects in HRR, a 

mechanism required for dsDNA repair. The contemporaneous blocking of both 

repair pathways lead to cell death by synthetic lethality. The use of PARP inhibitors 

represents one of the best examples of synthetic lethal approach in cancer for the 

management of significant subset of tumours including EOC57-59. It has to be taken 

into consideration that HRR deficiency has been observed also in EOC patients with 

loss of function of genes other than BRCA1/2 such as RAD51, ATM, ATR178, 179. These 

patients display a 'BRCAness' phenotype, characterised by the ability to respond to 

multiple platinum treatments, similar to that of BRCA1/2 mutated patients. Given 

the complexity of the DDR pathway and the crosstalk between the different DNA 

repair components involved in such pathway, it is likely that a single biomarker may 

not be sufficient to predict the benefit of PARP inhibitor therapies44. In this thesis I 

demonstrated that also miR-506-RAD17 axis was able to sensitise EOC cells to the 

PARP inhibitor olaparib. The involvement of RAD17 in inducing sensitisation to PARP 

inhibitors could be explained by recent findings on the new role proposed for 

RAD17 as necessary for activation of the ATM signalling pathway71, which promote 

HRR. Accordingly I found that miR-506 expression was able to impair ATM activation 

similar to RAD17 silencing. Thus miR-506, impairing HRR by acting on both RAD17 

and RAD51, could represent a possible new biomarker for the selection of patients 
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that can benefit from PARP inhibitors treatment. Indeed it would be very interesting 

to evaluate the expression of miR-506 in BRCA1/2 proficient EOC patients 

responding to PARP inhibitors. Accordingly also the loss of function of RAD17 could 

confer a BRCAness phenotype and therefore being considered a useful biomarker. 

The RAD17 mediated activation of MRN/ATM signalling cascade has been recently 

shown to contribute in maintaining genomic integrity71 and its depletion has been 

associated with genome instability in head and neck cancer73 and associated with 

DNA fragmentation and mitotic catastrophe180 in gemcitabine treated pancreatic 

cancer cells80, 165. In my cellular model I observed that sensitisation to platinum 

treatments induced by miR-506 expression was associated with aberrant mitotic 

figures and micronuclei formation resulting from asyncronous chromosomes 

segregation, which are correlated with mitotic catastrophe180. The actual 

contribution of miR-506 in this phenomenon is currently under investigation. I also 

found that miR-506 reintroduction caused an impairment and overall attenuation of 

DDR signalling in EOC cells following platinum treatment. This reduction could be 

due to a decreased RAD17 expression that in turn causes a delay in the recruitment 

of DDR proteins at damaged sites. I hypothesized that miR-506 expression, by 

regulating different molecules of the DDR involved in the correct propagation of the 

signal upon DNA damage, could deceive the tumour cell reducing its ability to 

properly sense the damage entity. Then, the cells would go ahead into the cycle in 

spite of their accumulating damages and will be finally committed to death. Indeed I 

demonstrated that miR-506 expression induced impairment in G2/M checkpoint 

activation with reduced accumulation of cells in G2 phase of the cell cycle following 
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platinum treatment by impairing the signalling pathway at the basis of the G2/M 

block. However the effects on G2 block was transitory, sustaining the hypothesis of 

a delay in activation of DNA repair mechanisms that may contribute to an increase 

of genomic instability with a subsequent sensitisation to DNA damaging drugs. 

The central role of RAD17 in DDR is highlighted also by recent studies on networks 

of synthetic-lethal interactions that identified RAD17 knockdown to be synthetically 

lethal with different tumour suppressor and druggable genes81, 166. In this thesis I 

demonstrated that RAD17 silencing, besides being synthetically lethal with PARP 

inhibitors, exerted the same effects with Chk1 and Wee1 Checkpoint kinases 

inhibitors and, accordingly, miR-506 expression induced the same synthetic lethal 

effect. As expected the synthetic lethality observed in the context of p53null cell 

line was more efficient than in a p53wt context181. This could be explained by the 

fact that cancer cells which retain p53 function can activate a series of mechanisms 

in response to DNA damage insults, like cell cycle arrest in G1 phase. p53 mutated 

cells loose this ability therefore targeting G2/M checkpoint in p53 mutated setting 

can be a valid therapeutic alternative strategy particularly in HGSOCs patients which 

display a near universal p53 aberration. The two checkpoint kinases inhibitors that I 

used in this thesis are selective for the proteins they targets with reduced possibility 

of off-target effects. This characteristic makes these drugs particularly attractive for 

cancer therapy. In particular the Wee1 inhibitor is currently in clinical development 

in combination with chemotherapy in patients with platinum-resistant EOC 

(NCT02272790). 
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Of note I identified also WEE1 and CHEK1 among the putative miR-506 predicted 

target genes. Therefore, it cannot be exclude that the miR-506 induced sensitivity to 

Chk1 and Wee1 checkpoint kinases inhibitors could be a results of the 

combinatorial effect of miR-506 targeting on different molecules that regulate DNA 

damage repair pathway at different levels. All together these findings suggest miR-

506 to be a key node in the regulation of DDR in response to drug treatments.  

Reduce the general toxicity and over treatment of EOC patients still remain a 

problem. I demonstrated that the combination treatment of platinum with Chk1 

and Wee1 checkpoint kinases inhibitors resulted to be more effective than mono 

treatments in EOC cells and synergistic in the context of miR-506 expression. This 

combinatorial effect may potentiate drug clinical efficacy with the consequent 

reduction in general toxicity182, 183.  

MiR-506 pleiotropic effects on DDR pathway need to be better clarified and lay the 

ground to future studies aimed to identify all the possible synthetic lethal pairs that 

can be therapeutically targeted. 
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6 Conclusions and Future perspectives 

The work presented in this thesis highlighted the importance of miR-506 as a 

chemosensitizing miRNA in EOC acting as a key node in the regulation of DNA 

damage response pathway. The identification of a new miR-506-RAD17 axis could 

represent a new biomarker to be proposed as selection criteria for patients 

susceptible to DNA damaging drugs in combination with different new small 

molecules that target DDR. 

Since I have observed that expression of miR-506 in platinum treated cells caused 

mitotic defects and micronuclei appearance, the occurrence of mitotic cell death by 

mitotic catastrophe, as final outcome, remain to be assessed. Time lapse 

microscopy analysis (live imaging) on EOC cells will be performed in order to 

monitor cell division and cell fate in the setting of miR-506 expression and drug 

treatment. 

To assess the important role of the miR-506-RAD17 axis in EOC, the effects of its 

modulation will be assessed in additional cell lines representative of high grade 

serous ovarian cancer and in patients’ derived cells as more appropriated model. 

Since its pleiotropic role in modulating different molecules of the DDR pathway, I 

will better define the miR-506-driven molecular mechanisms related to sensitisation 

to drug treatments on different target genes. In particular the assessment of the 

direct targeting of miR-506 on WEE1 and CHEK1 by luciferase assay will be tested.  

RAD17 expression at protein level will be assessed by IHC analysis in EOC tissues 

from datasets already profiled for miRNA expression in order to correlate miR-506 

and RAD17 expression  
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