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Senior Member, IEEEP0 YangMember, IEEE, Sung Wook BaikMember, IEEE

Abstract—Convolutional neural networks (CNN) have yielded
state-of-the-art performance in image classification and other
computer vision tasks. Their application in fire detection systems
will substantially improve detection accuracy, which will
eventually minimize fire disasters and reduce the ecological and
social ramifications. However, the major concern with
CNN-based fire detection systems is their implementation in
real-world surveillance networks, due to their high memory and
computational requirements for inference. In this work, we
propose an energy-friendly and computationally efficient CNN
architecture, inspired by the SqueezeNet architecture for fire
detection, localization, and semantic under standing of the scene of
the fire. It uses smaller convolutional kernels and contains no
dense, fully connected layers, which helps keep the computational
requirementsto a minimum. Despite its low computational needs,
the experimental results demonstrate that our proposed solution
achieves accuracies that are comparable to other, more complex
models, mainly due to its increased depth. Moreover, the paper
shows how a trade-off can be reached between fire detection
accur acy and efficiency, by considering the specific characteristics
of the problem of interest and the variety of fire data.

Index Terms— Convolutional Neural Networks, Deep
Learning, Fire Detection, Fire Localization, Fire Disaster, Image
Classification, Surveillance Networks

I. INTRODUCTION

$127.35 million [9]. According to an annual disaster regh}, [

fire disasters alone affected 494,000 people and resulted in a
loss of $3.1 billion USD in 2015. In orddo avoid such
disasters, it is important to detect fires at early stages utilizing
smart surveillance cameras.

Two broad categories of approach can be identified for fire
detection: traditional fire alarms and vision sensor-assisted fire
detection. Traditional fire alarm systems are based on sensors
that require close proximity for activation, such as infrared and
optical sensors. These sensors are not well suited to critical
environments and need human involvement to confirm a fire in
the case o&nalarm, involving a visito the location of the fire.
Furthermore, such systems cannot usually provide information
about the size, location, and burning degree of the fire. To
overcome these limitations, numerous vision sensor-based
methods have been explored by researcliershis field
[11-14]; these have the advantages of less human interference,
faster response, affordable cost, and larger surveillance
coverage. In addition, such systems can confirm a fire without
requiring a visitto the fire's location, and can provide detailed
information about the fire including its location, size, and
degree, etc. Despite these advantages, there are still some issues
with these systems, e.g. the complexity of the scenes under
observation, irregular lighting, and low-quality frames;
researchers have made several efforts to address these,aspects
taking into consideration both color and motion features.

ECENTLY, a variety of sensors have been introduced for Chen et al. [8] examined the dynamic behavior of fires using

different applications such as setting off a fire alarm [LRGB and HSI color models and proposed a decision

vehicle obstacle detection, visualizing the interior of theule-assisted fire detection approach, which uses the irregular
human body for diagnosis [2-4], animal and ship monitoringyroperties of fire for detection. Their approach is based on
and surveillance [5]Of these applications, surveillance hasrameto-frame differences and hence cannot distinguish
primarily attracted the attention of researchers due to thgtween fire and fire-colored moving regions. Marbach et al.

enhanced embedded processing capabilities of cameras. Us’tm investigated the YUV color space using motion
smart surveillance systems, various abnormal events suchjfsmation to classify pixels into fire and non-fire

road accidents, fires, medical emergencies etc. can be deteg&q\ponents. Toreyin et all§] used temporal and spatial

at early stages,

and the appropriate authority can
autonomously informed [6A fire is anabnormal event which
can cause significant damage to lives and property within
very short time [7]. The main causes of such disasters inclu
human error or a system failure which results in severe loss
human life and other damage [8]. In Europe, fire disasters aff

RRavelet analysiso determine fire and non-fire regions. Their
approach uses many heuristic thresholds, which greatly
roéstricts its real-world implementation. Han et al7][
c&mpared normal frames with their color information for tunnel
ite detection; thisnethod is suitable only for static fires, asitis

ased on numerous parameters. Celik etld]. ¢xplored the

10,000 km of vegetation zones each year; in North Americ . SN
and Russia, the damage is about 100,000 kndune 2013, fire YCDbCr color space and presented a pixel classification method

disasters killed 19 firefighters and ruined 100 houses in Arizofi@, flames. To this end, they proposed novel rules for separating

USA. Similarly, another forest fire in August 2013 in Californighe chrominance and luminance components. However, their
ruined an area of land the size of 1042koausing a loss of Method is unable to detect fire from a large distance or at small

scales, which are important in the early detection of fires. In
addition to these color space-based techniques, Borges et al.



[19] utilized the low-level features including color, skewness, framework improves fire detection accuracy and reduces

and roughness in combination with a Bayes classifier for firefalse alarms, compared to statiethe-art methods. Thus, our

recognition. algorithm can play a vital role in the early detection of fire to
Rafiee et al.2(0] investigated a multi-resolution 2D wavelet Minimize damage.

analysisto improve the thresholding mechanism in the RGE-We train and fine-tune an AlexNet architectu?é][for fire

color space. Their method reduced the rate of false alyms detection usinga transfer learning strategy. Our model

considering variations in energy as well as shape; howeverqutperform§ conventional hand-engineered features bqsed

false alarms can be higher in this approach for the case of rigi(ﬁ're detection methods. However, the model remains

body movements within the frames, such as the movement of gomparatlve!y Ie}rge In- size (238 MB.)’ mak|_ng Its

human arm in the scene. I21], the authors presented a implementation difficult in resource-constrained equipment.

o . ., 3.To reduce the size of the model, we fine-tune a modelavith
modified version of 20] based on a YUC color model, which ™ .~ . ) .
btained better results than the RGB version. Another simil rS|m|Iar architecture to the SqueezeNet model for fire
obtained better results than the ersion. Another Similalyqiaction at the early stages. The size of the model was

method based on color information and an SVM classifier is reduced from 238 MB to 3 MB, thus saving an extra space of
presented inZ2]. This method can process 20 frames/sec; 535 MB  thus minimizing ,the cost and making its

however, it cannot detect a fire from a large distanc# small  jpjementation more feasible in surveillance networks. The
size, which can occur in real-world surveillance footage. proposed model requires 0.72 GFLOPS/image compared to
Color-based methods typicalfjenerate more false alarms due AlexNet, whose computational complexity is 2

to variations in shadows and brightness, and often mis-classif\GFLOPS/image. This makes our proposed model more
people wearing red clothes or red vehicles. Mueller eR8). [  efficient in terms of inference, allowing it to process multiple
attempted to solve this issue by analyzing changes in the shapgurveillance streams.

of a fire and the movement of rigid objects. Their algorithm caf An intelligent feature map selection algorithm is proposed for
distinguish between rigid moving objects and a flame, based orchoose appropriate feature maps from the convolutional
a feature vector extracted from the optical flow and the physicallayers of the trained CNN, which are sensitive to fire regions.
behavior of a fire. De Lascio et aR4 combined color and  These feature maps allow a more accurate segmentation of
motion information for the detection of fire in surveillance fire compared to other hand-crafted methods. The
videos. Dimitropoulos et al2f] used spatio-temporal features Segmentation information can be further analyzed to assess
based on texture analysis followed by an SVM classifier tothe essential characteristics of the fire, for instance its growth
classify candidate regions of the video frames into fire andfat€: Using this approach, the severity of the fire and/or its
non-fire. This method is heavily dependent on the parameter?um'ng qlegree can also .be dete;r'mlne'd. Apother npvel
used; for instance, small-sized blocks increase the rate of fals@h"’“"’wterIStIC of our system is the ability to identify the object

alarms while larger blocks reduce its sensitivity. Similarly, the which is on f'fe’ using a pre-trained model tralqed on 1,000
. i . . . classes of objects in the ImageNet dataset. This enables our
time window is also crucial to the performance of this system;

I I d the detecti hile | 'approach to determine whether the fire is in a car, a house, a
smaller values reduce the detection accuracy, while 1arg€, aqt or any other object. Using this semantic information,
values increase the computational

, nal - complexity.  Thesefirefighters can prioritize their targets by primarily focusing
dependencies greatly affect the feasibility of this approach forg, regions with the strongest fire.

implementation in real surveillance systems. Recently, the The remainder of this papés organized as follows. We
authorsof [21] proposed a real-time fire detection algorithmyropose our architecture in Section 2. Our experimental results
based on color, shape, and motion features, combined i dng benchmark datasets and a feasibility analysis of the
multi-expert system. The accuracy of this approach is highgfoposed work are discussed in Section 3. Finally, the
than that of other methods; however, the number of false alarfgnuscript is concluded in Section 4 and possible future
is still high, and the accuracy of fire detection can be furthggsearch directions are suggested.

improved. A survey of the existing literature shows that

computationally expensive methods have better accuracy, and II. THE PROPOSEDFRAMEWORK

simpler methods compromise on accuracy and the rate of falsiﬁ_

. . . ire detection using hand-crafted features is a tedious task,
positives. Hence, there is a need to find a better trade-%ff : . . . X
\ﬁﬂe to the time-consuming method of features engineering. It is

betw_een_these metrics_ for _seyeral applicgtion scenario; rticularly challenging to detect a fire anh early stage in
practical interest, for which existing computationally expensi €cenes with changing lighting conditions, shadows, and

methods do not fit well. _ _ _ fire-like objects; conventional low-level feature-based methods
To address the above issues, we investigate convoluﬂona@nerate a high rate of false alarms and have low detection

neural network (CNN)-based deep features for early fifgecyracy. To overcome these issues, we investigate deep
detection in_ surveillance networks. The key contributions C38arning models for possible fire detection at early stages
be summarized as follows: _ ~ during surveillance. Taking into consideration the accuracy, the
1.We avoid the time-consuming efforts of conventionabmpedded processing capabilities of smart cameras, and the

hand-crafted features for fire detection, and explore deggmper of false alarms, we examine various deep CNNs for the

learning architectures for early fire detection in closed-circUifrget problem. A systematic diagram of our framework is
television (CCTV) surveillance networks for both indoor a”%iven in Fig. 1.

outdoor environments. Our proposed fire detection
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Fig. 1: Overview of the proposed system for fire detectising a deep CNN

A, Convolutional Neural Network Architecture There are several motivational reasons for this selection,

CNNs have shown encouraging performaimc&umerous _SUCh as a lower cc_)mr_nun|cat|on_ (?OSt betvv_een d'ﬁere_”F _servers
the case of distributed training, a higher feasibility of

computer vision problems and applications, such as objecd'{] | licati ific | d circui
detection and localization2], 28], image segmentation, eployment on FPGAs, application-specific integrated circuits,

super-resolution, classification24:31], and indexing and and other harcjware architectures with memory constraints and
retrieval B2]. This widespread success is due to theirlower bandwidth. The model consists of two regular
hierarchical structure, which automatically learns very strongtonvolutional layers, three max pooling layers, one average
features from raw data. A typical CNN architecture consists offooling layer, and eight modules calléfire modules”. The
three well-known processing layers: 1) a convolution layer,input of the model is color images with dimensions of
where various feature maps are produced when differenR24x224x3 pixels. In the first convolution layer, 64 filters of
kernels are applietb the input data; 2) a pooling layer, which size 3x3 are applietb the input image, generating 64 feature
is used for the selection of maximum activation considering amaps. The maximum activation§these 64 features maps are
small neighborhood of feature maps received from theselected by the first max pooling layer with a stride of two
previous convolution layer; the goal of this layer is to achievepixels, using a neighborhood of 3x3 pixels. This reduces the
translation invariance to some extent and dimensionalitysize of the feature maps by factor of two, thus retaining the
reduction; and 3) a fully connected layer which models most useful information while discarding the less important
high-level information from the input data and constructs itsgetails, Next, we use two fire modules of 128 filters, followed
global representation. This layer follows numerous stacks OEy another fire module of 256 filters. Each fire module
convolution and pooling layers, thus resulting in a high-leveln, a5 two further convolutions, squeezing, and expansion.
L?g:aersci?éztllg?c%t?cil;?gustu?;ﬁt?ﬁ;ﬁﬁzeoljgeurtsoirgnae”lznged ! ; ce each module consists of multiple filter resolutions and
P Yer aCly ere is no native support for such convolution layers in the

as the inpubf the next layer. During the training phase, the Caffe framework 34], an expansion layer was introduced,

weights of all neurons in convolutional kernels and fully it t ¢ lution | . h fi dule. Th
connected layers are adjusted and learnt. These weights mod§|" WO separate convoiution fayers in €ach fire moduie. The

the representative characteristics of the input training data, anffst COI’IVO!UtIOﬂ layer gontalns 1 x 1 filters, while the secont_j
in turn can perform the target classification. layer consists of 3x3 filters. The output of these two layers is

We use a model with an architecture similar to that of¢oncatenated in the channel dimension. Following the three

SqueezeNet 33|, modified in accordance with our target fire modules, there is another max pooling layer which
problem. The original model was trained on the ImageNetoperates in the same way as the first max pooling layer.
dataset and is capable of classifying 1000 different objects. Ifrollowing the last fire module (Fire9) of 512 filters, we
our case, however, we used this architecture to detect fire anghodify the convolution layer according to the problem of
non-fire images. This was achieved by reducing the number oihterest by reducing the number of classes to two (M=2 (fire
neurons in the final layer from 1000 to 2. By keeping the restand normal)). The output of this layer is passed to the average
of the architecture similar to the original, we aimed to reuse theyooling layer, and result of this layer is fed directly into the
parameters to solve the fire detection problem moreSoftmax classifier to calculate the probabilities of the two
effectively. target classes.



A significant number of weights need to be properly at the same level of depth in the NN. For example,
adjusted in CNNs, and a huge amount of training data ignception-vl modules have multiple instances with 1x1, 3x3,
usually required for this. These parameters can suffer fron@ind 5x5 filters alongside each other. This arose the relevant
overfitting if insufficient training data is used. The fully question"how does a CNN architect decide how many of each
connected |ayers usua”y contain the most parameters, arﬁ-jze of filter to have in each module?" Some versions of the
these can cause significant overfitting. These problems can b@ception modules have 10 or more filter banks per module.
avoided by introducing regularization layers such as dropoutpo'”"g careful A/B comparisons of "how many of each type of
or by replacing dense fully connected layers with convolution filter” would easily lead to a combinatorial explosion. But, in
layers. In view of this, a number of models were trained base he Fire modulgs, there are just 3 filter banks (1x1_1, }xl_2,
on the collected training data. Several benchmark datase nd 3x3_2). With this setup, it can be further asked that: What

P re the tradeoffs in "many 1x1_2 and few 3x3_2" vs "few
were then used to evaluate the classification performance o . .
) i . 1x1_2 and many 3x3_2" in terms of metrics such as model size
these models. During the experiments, a transfer Iearnln%

. . nd accuracy? From [1], it is evident that 50% 1x1_2 and 50%
strategy was also explored in an attempt to further improve they, 3  fiers generate the same accuracy level as 99% 3x3_2.
accuracy. Interestingly, we achieved an improvemient 3 4

avy. k But there is a significant difference in the model size and
classification accuracy of approximately 5% for the test datacompuytational footprint of these models. The lesson learnt is
after fine-tuning. A transfer learning strategy can solvethe syjtability to adopt, to some extent, a simple bteptep
problems more efficiently based on the re-use of previouslymethodology: look for the point where adding more spatial
learned knowledge. This reflects the human strategy Ofesolution to the filters stops improving accuracy, and stop
applying existing knowledgto different problems in several there; otherwise computation and model parameters are being
domains of interest. Employing this strategy, we used awasted.

pre-trained SqueezeNet model and fine-tuned it according to  Also, in comparison to other network models like
our classification problem with a slower learning rate of 0.001.AlexNet [26] and GoogleNet [27]. Our proposed network is
We also removed the last fully connected layers to make thdight-weight, requiring a memory of 3 MB which is less than
architecture as efficient as possible in terms of classificatiorAlexNet and GoogleNet. It also is computationally
accuracy. The process of fine-tuning was executed for 10nexpensive, requiring only 0.72 GFLOPS/image compared to

epochs; this increased the classification accuracy from 89.898ther networks such as AlexNet (which needs 2
to 94.50%, thagiving an improvement of 5%. GFLOS/image). Thus, our proposed model maintains a better

trade-off between the computational complexity, memory
requirement, fire detection accuracy and number of false
alarms compared to other networks.

Looking at GoogLeNet-vl, some of the Inceptidn-
modules are set up such that the early filter banks have 75%
the number of filters as the late filter banks. This is like they
have a "squeeze ratio" (SR) of 0.75. Another interesting point
was to find the tradeoffs that emerge if the number of filters at
the beginning of each module are more aggressively cut down.
It was experimentally found, again, that there is a saturation
point where going from SR=0.75 to SR=1.0; here, the increase
in computational footprint and model size does not correspond
to a significant improvement, but it does not improve accuracy.
Thus, the Fire modules have been very useful in our
experience for understanding the tradeoffs that emerge when
selecting the number of filters inside of the CNN modules.

C. Deep CNN for Fire Detection and Localization
Although deep CNN architectures learn very strong

c. Fire: 40.91%, Normal: 59.09% . Fire: 13.56%, Normal: 86.44% featurgs automaticall.y from raw data,. some eiixawequifed
Fig. 2 Prediction scores for a set of query images using the propesed 1O tra!n the approprlate model considering the quality and
CNN. guantity of the available data and the nature of the target

problem.We trained various models with different parameter
settings and following the fine-tuning process obtained an
The key difference of our proposed CNN architecture in Fig.3pptimal model which can detect fire from a large distance and
with SqueezeNet [28] is that our model simplifies the at a small scale, under varying conditions, anboth indoor
SqueezeNet model by removing no residual connectionsgnd outdoor scenarios.
which is more light-weight and balanced computational  Another motivational factor for the proposed deep CNN
efficiency. was the avoidance of pre-processing and features engineering
As shown in Fig.3, looking at the architectural similarity \yhich are required by traditional fire detection algorithms. To
between our CNN's Fire and Inception modules, note that iRest a given image, it is fed forward through the deep CNN,
Inception modules, Fire modules have multiple sizes of filtersyhich assigns a label ofire’ or ‘normal’ to the input image.

B. Difference with other network models



This label is assigned based on probability scores computed

pyAlgorithm 1. Feature Map Selection Algorithm for Localization

the network. The higher probability score is taken to be th
final class label of the input image. A set of sample image
with their predicted class labels and probability scores is give
in Fig. 2. To localize a fire in a sample image, we employ th

framework given in Fig3.
Fire
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Fig. 3 Fire localization using the proposed deep CNN.

First, a prediction is obtained from our deep CNN. In non-fire

cases, no further action is performed; in the case of fire, w

perform further processingf its localization, as given in
Algorithms 1 and2.

After analyzing all the feature maps of the different layers o
our proposed CNN using Algorithm 1, feature maps 8, 26, an
32 of the“Fire2/Concdt layer were found to be sensitive to
fire regions and to be appropriate for fire localization. W

[ Input: Training samples (TS), ground truth (GT), and the propg
sdeep CNN model (CNN4)
N1. Forward propagate TS through CNN-M

2. Select the feature maps ffom layer L of CNNM
3. Resize GT andn-to 256x256 pixels
4. Compute mean activations magar-for Fv
5. Binarize each feature mapds follows:

1 FXxy) > Fuad)

0, Otherwise

. Calculate the hamming distance Higtween GT and each
feature map #n () as follows:

HD, =|F,) —GT]|

This results in TS Fn hamming distances
Calculate the sum of all resultant hamming distances, and
shortlist the minimum hamming distances using threshold
8. Select appropriate feature maps according to the shortlisted
hamming distances
Output: Feature maps sensitive to fire

F (X, y)bin(i) =

7.

Algorithm 2. Fire Localization Algorithm

Input: Image | of the video sequence and the proposed deep
model (CNNM)
1. Select a frame from the video sequence and forward propag
through CNN-M
2. IF predicted label = non-fireHEN
No action
ELSE
a) Extract feature maps 8, 26, and 32, {fzs, F32) from
the“Fire2/Concat” layer of CNN-M
b) Calculate mean activations magfy for Fs, Fzs, and
Fs2
c) Apply binarization on ka through threshold T as

follows:
1 F>T
I:Localize = .
0, Otherwis

d) Segment fire regions fromvix
END
Output: Binary image with segmented firgchize

d

therefore fused these three feature maps and applied
binarization to segment the fire. A set of sample fire images

with their segmented regiomsgiven in Fig.4.

[ll. EXPERIMENTAL RESULTS ANDDISCUSSION

The segmented fire is used for two further purposes: 1) The experiments performéalverify the performance of our

determining the severity level/burning degree of the scen

regions from the original input image. The resultant zone o

model B3], which predicts its label from 1000 objects. The

eapproach are described in this section. Starting with the
under observation; 2) finding the zone of influence from theexperimental details, we give information about the system
input fire image. The burning degree can be determined fronspecification and the datasets used for the experiments.
the number of pixels in the segmented fire. The zone ofFollowing this, the experimental results for various fire
influence can be calculated by subtracting the segmented firdatasets are presented, followed by a comparison with existing
approaches in terms of fire detection and localization. Finally
influence image is then passed from the original SqueezeNate describe tests verifying the superiority of our method from
the perspective of robustness. Our approach is referred to as

object information can be used to determine the situation in th€CNNFire” throughout the experiments.
scene, such as a fire in a house, a forest, or a vehicle. This
information, along with the severity of the fire, can be reported

to the fire brigade to take appropriate action.
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Fig. 4 Sample images and the corresponding localized firemsgising our approach. The first row shows the origmagies, while the second row shows the
localized fire regions.

A Experimental Setup and Datasets therefore introduced in this dataset to make it as challenging as

We conducted the experiments using a system with tR@ssible. This is the primary reason for the selection of this
following specifications: NVidia GeForce GTX TITAN X dataset for the experimental evaluation of our work. Further
(Pascal) with 12 GB onboard memory using a deep |eamiﬁ‘gormat|on about Datasetl is given in Tahlé\ set of sample
framework B4] and Ubuntu OS installed can Intel Core i5 images from Datasetl are given in Fg.and the collected
CPU with 64 GB RAM. A total of 68,457 images were used experimental results using Datasetl are tabulated and compared
the experiments; these were obtained from well-known fitith related methods in Tablé. o
datasets including those of Foggia et @1][with 62,690 Fig. 5 shovys a set of representative images from _Datasgtl.
frames, Chino et al.3F] with 226 images, and other dataset! "€ top four images were taken from videos containing a fire,
sources 14, 36]. For the training and testing phases of th@nd the remaining four are from videos without a fire. As
experiments, we followed the experimental strategy2d], [ describedat the start of this section, this dataset has many
where 20% and 80% of the data are used for training aRpallenges, Wh|ch are evident from the given set of images. The
testing, respectively. Using this strategy, we trained oglataset contains videos captured in both indoor and outdoor
proposed SqueezeNet model with 5,258 fire images and 5,08vironments (see Figs. 5 (i) and (vii) for indoor andsFig
non-fire images, resulting in a training dataset of 10,31@ (iii-vi), and (viii) for outdoor examples). The distance a# th
images. The details of the experiments using the different fig&@mera from the fire and the size of the fire also vary a lot in the
datasets and their comparison with switéhe-art techniques videos of Datasetl. For example, Fig. 5 (i) illustrates a video

are given in subsequent sections. where the fire is far away and the size is very small; conversely,
) the size of the fire in Fig. 5 (iii) is much larger, and it is at a
B. Experiments on Datasetl shorter distance. Fig. 5 (i) represents an indoor environment

Our experiments for testing the performance of the proposaith a small fire. Fig. 5 (iv) contains both a fire at a medium
framework are mainly based on two datasets: 1) Foggia et @istance and red objects; this is similar to Fig. 5 (viii) extmpt
[21] (Dataset), and Chino et al.3p] (Dataset). The reasons the fact that the latter contains no fire. This poses a challenge
for using each of these datasets are provided in the relevantl can be used to evaluate the effectiveness of color-based fire
sections. Datasetl contains a total of 31 videos captureddietection algorithms. Figs. 5 (v) and (vi) represent normal
different environmentsOf these videos, 14 videos include images with smoke and sunlight, which both look like fire. A
fire, while 17 are normal videos. A variety of challengessimilar effect is illustrated in the indoor scenario in Fig. 5 (vii),
including its larger size compared to other available datasetg)ere the sun is rising and is reflected in the window. These
make this dataset particularly suitable for these experimentsriations make the dataset much more challenging for fire
For example, some of the normal videos include fire-likdetection algorithms.
objects; this makes fire detection more challenging, and hence~or a comparison of our results with state-of-the-art methods
fire detection methods using color features may wronglipr Datasetl, we selected a total of six related works. This
classify these frames. In addition, a set of videos are capturedalection was based on criteria including the features used in
mountain areas and contain clouds and fog, for whiahe related works, their year of publication, and the dataset
motion-based fire detection schemes may not work properiynder consideration. We then compared our work with the
These situations can occur in the real world, and they afglected fire detection algorithms, as shown in THble



(i) Fire2
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(v) Fire18

(vii) Fire24 (viii) Fire19

(vii) Normal086 (viii) Normal088
Fig. 5: A set of representative images from Datasetl. The togrfages are  Fig. 6: Representative images from Dataset2. The top four imagesié fires,

taken from videos of fires, while the remaining four insgee from non-fire ~ While the remaining four images represent fire-like normal &sag

videos . .
The selected works use various low-level features and differentAIeXNet model with alow leaming rate of 0.001 and

datasetsand their year of publication ranges from 2004 to 201%1_0d|f|ed the last fully connected layer according to our

The results show that Celik et alg] and Foggia et al2[1] are problem. Interesotlngly, we qbtalr)ed an |mpr9vement n
. ; ; accuracy of 4.33% and reductions in false negatives and false
the best algorithms in terms of false negatives. However, their .. .
sitivesof up to 8.52% and 0.15%, respectively.

results are not impressive in terms of the other metrics of falgd '
Although the results of the proposed fine-tuned AlexNet

positives and aceuracy. From the perspective of false posmvg§e good compared to other existing methods, there are still
the algorithm of Habibuglu et al2®] performs best, and A . ; . .
certain limitations. Firstly, the size of this model is

dominates the other methods. However, its false negative rat% I8 parativelv large (approx. 238 MB), thereby restricting its
14.29%, the worst result of all the methods examined. The P 'y larg PProx. ' y g

: implementation in CCTV networks. Secondly, the rate of false
accuracy of the four other methods is also better than thj

. . ARarms (false positives) is 9.07%, which is still high and would
e o xSl bt . best_pe prolematc or re brigates and st managemen
the accur'acy could be further improved ' » ANBams. With these strong motivations, we explored SqueezeNet

; . . - a lightweight architecture, for this problem. We repeated the
To achieve a high accuracy and a low false positive rate, Vé’?periments for this new architecture and achieved an
explored the use of dee.p features_ for fire. detecti_o n. We.ﬁri?ﬁprovement of 0.11% in accuracy. Furthermore, the rate of
used the AlexNet architecture without fine tuning, Wh'dfalse alarms was .reduced from 9.0.7% to 8.87%.' The rate of

resulted inan accuracy of 90.06% and reduced false posmvet%lse negatives remained almost the same. Finally, thermajo

0 5 ; ;
from 1.1'674’ t0 9.22%. In t.h('a'bgselme AlexNet arcmecwr%bhievement of the proposed framework was the reduction of
the weights of kernels are initialized randomly and these :kr??e

modified during the training process considering the error r e model size from 238 MB to 3 MB, thus saving an extra 235

/ B, which can greatly minimize the cost of CCTV surveillance
and accuracy. We also applied the strategy of transfer learnin
oo ) ; systems.
[37] whereby we initialized the weights from a pre-trained



TABLE |

Details of Datasetl

Video Name Resolution Frames FrameRate | Modality Description
Firel 320x240 705 15 Fire Fire inabucket with person walking around it
ire 320x240 i ire atacomparatively long distance from the camera in a bucket
Fire2 116 29 Fire F p ly long d from th buck
Fire3 400x256 255 15 Fire A large forest fire
Fire4 400%x256 240 15 Fire Same descriptioasFire3
Fire5 400x256 195 15 Fire Same descriptioasFire3
Fire6 320x240 1200 10 Fire Fire on the ground with red color
Fire7 400%x256 195 15 Fire Same descriptioasFire3
Fire8 400%x256 240 15 Fire Same descriptioasFire3
Fire9 400x256 240 15 Fire Same descriptioasFire3
Firel0 400x256 210 15 Fire Same descriptioasFire3
Firell 400%256 210 15 Fire Same descriptioasFire3
Firel2 400x256 210 15 Fire Same descriptioasFire3
Firel3 320%x240 1650 25 Fire An indoor environment with fire in a bucket
Firel4 320x240 5535 15 Fire A paper box, inside which a fire is burning
) Normal Smoke visible froma closed window with the appearance of a
Firel5 320x240 240 15 reflection of the sun on the glass
Firel6 320%240 900 10 Normal | smoke from a pot near a red dust bin.
Firel7 320x240 1725 25 Normal Smoke on the ground with nearby trees and moving \eshicl
Firel8 352x288 600 10 Normal Smoke on the hills, far from the camera
Fire19 320%x240 630 10 Normal | smoke on red-colored ground
Fire20 320%240 5958 9 Normal | smoke on the hills, with nearby red buildings
Fire21 720x480 80 10 Normal Smoke at a larger distance behind trees
Fire22 480x272 22500 25 Normal | smoke behind hills in front of UOS
Fire23 720x576 6097 7 Normal | smoke above hills
Fire24 320%x240 342 10 Normal Smoke inaroom
Fire25 352x288 140 10 Normal Smokeat a larger distance fromcamera in a city
Fire26 720x576 847 7 Normal | same descriptioasFire24
Fire27 320x240 1400 10 Normal | same descriptioasFire19
Fire28 352x288 6025 25 Normal Same descriptioasFire18
Fire29 720x576 600 10 Normal Redbuildings covereih smoke
Fire30 800x600 1920 15 Normal A lab with a red front wall, where a person movesing a red ball
Fire31 800x600 1485 15 Normal A lab with red tables, and a person moving witled bag and a ball
TABLE 11
TABLE llI Comparison of various fire detection methods for Dataset
Comparigon of different fire deFe‘ction methods ford3at2 Technique Fa_l_se Falge Accuracy
Technique Precision | Recall F-Measure Positives | Negatives
Proposed after FT 8.87% 2.12% 94.50%
Proposed After FT 0.86 0.97 091 Proposed before FT 9.99% | 10.39% | 89.8%
Method AlexNet after FT 9.07% 2.13% 94.39%
Before FT 0.84 0.87 0.85 AlexNet beforeFT 9.22% 10.65% | 90.06%
AlexNet after FT 0.82 0.98 0.89 Foggia et al.21] 11.67% 0% 93.55%
AlexNet before FT 0.85 0.92 0.88 De Lascio et al.74] 13.33% 0% 92.86%
Chino et al. (BowFire)35] 0.51 0.65 057 Habibuglu et al.22] 5.88% 14.29% | 90.32%
Rudz et al. 39 0.63 0.45 0.52 Rafiee et al. (RGB)Z0] 41.18% 7.14% 74.20%
Rossi et al.40] 0.39 0.22 0.28 Rafiee et al. (YUV)2Q] 17.65% 7.14% 87.10%
Celik et al. L§ 0.55 0.54 0.54 Celik et al. 18] 29.41% 0% 83.87%
Chen et al. [8] 0.75 0.15 0.25 Chen et al. [8] 11.%% 14.29% 87.10%




C. Experiments on Dataset2

Dataset2 consists of 226 images, with 119 fire images a W 1 =T CNNFire (T=040) 77
107 non-fire images. The dataset was obtained fB&n4nd is % | | CNNFire (T=045) %
relatively small but contains several challenges such as red ¢ 0. * * CNNFire (T=050) %
fire-colored objects, fire-like sunlight, and fire-colored lighting 0 i ’
in different buildings. For illustration purposes, a set 0 i Color Classification []
representative images are shown in Biglt should be noted § 064 @) L | BoWFire m
that none of the images from Dataset2 were used in the train ¢ & cellk 0
processes of either AlexNet or our proposed model. T}Zg ¢ L
experimental results obtained from Dataset2 using the propos & 04 O Celik + Texture @
architecture are presented in Tablé. We compared our ¢ - | Chen A
results with four other fire detection algorithms in terms of the Chen+Texture A
relevancy, dataset, and year of publication. To ensure a f 021 A [ | Rossi
evaluation ad a full overview of the performance of our
approach, we considered another set of metrics (precisic - | Rossi+Texture ¥V
recall, and F-measur8g]) as used byd5]. In a similar way to T ) ) P i e L o
the experiments on Datasetl, we tested Dataset2 using ‘ ' r;'a|se Po'smve Raie ' | Rudze Texture

fine-tuned AlexNet and our proposed fine-tuned SqueezeN..
mOde| FOl‘ the f|ne'tuned AleXNet, an F'measure score Of 089 F|g 7: Comparison of our CNNFire approach with otimethods
was achieved. Further improvement was achieved using our
model increasing the F-measure score from 0.89 to 0.91 andFig. 9 highlights the performance of all methods for another
the precision from 0.82 to 0.86. It is evident from Tdlblehat sample image, with a higher probability of false positives.
our work achieved better results than the stétine-art Although BoWFire has no false positives for this case, it misses
methods, confirming the effectiveness of the proposed despme fire regions,as is evident from its result. Color
CNN framework. classification and Celik detect the fire regions corredilyt
. o . . give larger regions as false positives. Chen fails to detect the
D. Fire Localization: Results and Discussion fire regions of the ground truth images. Rossi does nottdetec
In this section, the performance of our approach is evaluatgg regions at all for this case. The false positive rate of Rudz is
in terms of fire localization and Understandiﬂgthe SCeNe gimilar to our CNNFire7 but the fire pixe|s detected by this
under observation. True positive and false positive rates WeiSproach are scarce. Although our method gives more false
computed to evaluate the performance of fire localization. Thgsitives than the BowFire method, it correctly detects the fire
feature maps we used to localize fire were smaller than t ions which are more similar to the ground truth images
ground truth images, and were therefore resized to match thgn addition to fire detection and localization, our system can
size of the ground truth images. We then computed the numbgitermine the severity of the detected fire and the object under
of overlapping fire pixels in the detection maps and grounghservation. For this purpose, we extracted the zone of
truth imageS, and used these as true pOSitiveS. Slmllarly, YW&luence (ZO|) from the input image and Segmented fire
also determined the number of non-overlapping fire pixels i@agions. The zOl image was then fed forward to the
the detection maps and interpreted these as false positives. @f8eezeNet model, which was trained on the ImageNet dataset
further reason for using SqueezeNet was the ability of th@ith 1000 classes. The label assigned by the SqueezeNet model
model to give larger sizes for the feature maps by using smaligrthe zOI image is then combined with the severity of the fire

kernels and avoiding pooling layers. This allowed us to perforgr reporting to the fire brigade. A set of sample cases frésn th
a more accurate localization when the feature maps wefgperimenis given in Fig.10.

resized to match the ground truth images. . )
Our system selects suitable features which are sensitiveRo Robustness of the Proposed Fire Detection Methadrsy
fire using Algorithm 1, and localizes the fire using Algorithm 2Attacks
These localization results are compared with those of severaln addition to comparingur results with statef-the-art
stateef-the-art methods such as Chen et al. [8], Celik e1 8], [ methods, we tested the performance of our model against
Rossi et al.40], Rudz et al. 39], and Chino et al. (BoWFire) numerous attacks, i.e. all effects that can negatively affect the
[35], as shown in Fig7. We report three different results forcorrect detection of a fire. Possible attacks include rotations,
our CNNFire based on the threshold T of the binarizatiocropping, and noise. All attacks and their effects on
process in Algorithm 2. It can be seen from Fig. 7 that oyerformance were checked using a test image, as shown in Fig.
approach maintains a better balance between the true posithle(a), which is labeled as fire with an accuracy of 99.24% by
rate and false positive rate, making it more suitable for fireur algorithm. In Figs. 11 (b) and (e), parts of the fire are
localization in surveillance systems. blocked by cropping a normal section from the same image and
Fig. 8 shows the results of all methods for a sample imag#acing it over parts of the fire. The resultantimages are labeled
from Dataset2. The results of BoWFire, color classificatiorgs normal with an accuracy of approximately 99% when passed
Celik and Rudz are almost the same. Rossi gives the watstough the proposed fire detection model.
results in this case, and Chen is better than Rossi. Thesresult
from CNNFire are similar to the ground truth.
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" (a) Input image: Fire021 (b) Ground Truth (c) BoWFire

(e) Celik (f) Chen

(h) Rudz (i) CNNFire

Fig. 8: Visual fire localization results of our CNN&iapproach and other fire localization methods

(b) Ground Truth (c) BoWFire

(e) Celik (f) Chen

(h) Rudz (i) CNNFire
Fig. 9: Fire localization results from our CNNFire astter schemes with false positives

In Figs. 11 (c), (f), and (g), different types of noise areeddd especially the parts showing the fire. The probability scores of
to the original image, andts behavior is investigated. Figs. 11 (c) and (g) are higher than Fig. 11 (f), since the latter
Interestingly, we found that the proposed model still labelddhage of fire is more affected by the noise. Fig. 11 (d)
them as firedespite a change in the quality of the images arilustrates another special test aimed at evaluating the capability
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of our model in terms of early fire detection. A small amount afurveillance systems is investigated. For this purpose, we
fire is cropped from another image and is added to Fig. 11 (bpnsidered two different experimental setups with
The resultant image is passed through our model, whispecifications as follows: 1) NVidia GeForce GTX TITAN X
identifies this as fire with a probability score of around 78.11%Pascal) with 12 GB onboard memory using a deep learning
Lastly, we investigated the behavior of the proposed modeamework B4] and Ubuntu OS installed cen Intel Core i5
under rotation. For this purpose, we rotated the test image 62U with 64 GB RAM ésdescribed in Section Il (A)); and 2)
90° and 180° and passed these images through our fireRaspberry Pi 3 with 1.2 GHz 64-bit quad-core ARMv8
detection architecture. It can be seen from Figs. 11 (h) and @idrtex-A53 and a Broadcom BCM2837, equipped with 1024
that both images are correctly labeled as fire. We included thB SDRAM [41]. Using these two specifications, our system
evaluation in experiments since in real-world surveillancean process 20 frames/sec and 4 frames/sec, respectively, with
systems, video frames can be exposed to different typesaof accuracy of 94.50% and a false positive rate of 8.87%. It is
noise due to varying weather conditions. Thus, a fire detectimorth noting that conventional cameras can acquire
system with the capability to withstand various attacks is moegpproximately 25-30 frames/sec and processing a single
suitable for robust surveillance systems. Hence, our propodeaime/sec for the possible detection of fire is sufficient due to
architecture can be effectively used in current CCTthe minor changes between frames. Similar work was done
surveillance systems for fire detection with better accuracy afetl], where they achieved 60 frames/sec using a traditional PC
under a range of conditions, as verified by experiments. (Intel dual core T7300 with 4 GM RAM) and 3 frames/sec
based on a Raspberry Pi B (ARM processor with 700 MHz and

i _ o ) ~ 512 MiB RAM). These authors reported an accuracy of 93.55%
In this section, the feasibility of the proposed fire detectiofjth a false positive rate of 11.67%.

method in terms of its implementation in real-world CCTV

F. Feasibility Analysis

Features ZOl with predicted
Input images maps Segmented fire class Report to fire brigade
(F8, F26, F32)

‘ [Fire on Castle ]

a. Fire: 98.76%
Normal: 1.24%

‘ [Fire on Car ]

Car: 0.37
b. Fire: 98.8%
Normal: 1.2%

‘[Fire on Church ]

c. Fire: 99.53% Church: 0.14

Normal: 0.47%

Fig. 10: Sample outputs from our overall system: the firdtiiwm shows input images with labels predicted by our @htdlel and their probabilities, with the
highest probability taken as the final class label;gbeond column shows three feature maps (F8, F26, andselg2ted by Algorithm 1; the third column
highlights the results for each image using Algorithm 2 folieth column shows the severity of the fire and #fidges with a label assigned by the SqueezeNet
model; and the final column shows the alert that shbalsent to emergency services, such as the fire brigade
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Related work done by the same group is reporte@4h [ IV. CONCLUSION AND FUTURE WORK

where they obtained 70 frames/sec using the above traditionalrhe empedded processing capabilities of smart cameras have
PC with 92.59% accuracy and a 6.67% false positive rate groyigen rise to intelligent CCTV surveillance systems. Various

is reported in24], where they obtained 70 frames/sec using thgy ,,rma| events such as accidents, medical emergencies, and
above traditional PC with 92.59% accuracy and a 6.67% falgg.s can be detected using these smart can@fakese, fire is
positive rate Another similar work is reported ir2%], where = e ot dangerous abnormal event, as failing to contraait at

the authors achieved 20 frames/sec with a dual core 2.2 G ly stage can result in huge disasters, leading to human
system with a 5.88% false positive rate and 90.32% accuragyyiogical and economic losses. Inspibgthe great potential
However, these scores were collected using a smaller datasetonns. we propose a lightweight CNN based on the
than the ones used here and2d][ Our proposed deep CCN g eezeNet  architecture for fire detection in CCTV

architecture, which has a much smaller size (3 MB) compargfjyeillance networks. Our approach can both localize fire and
to the AlexNet architecture (238 MB), can successfully dete entify the object under surveillance. Furthermore, our

fire at an early stage with 4 frames/sec and resolution 320x24(},,5seq system balances the accuracy of fire detection and the
W|th_ a 8.87% fa_lse positive rate a_md_ 94.50% accuracy. TRge of the model using fine-tuning and the SqueezeNet
motivation for using a Raspberry Pi 3 is its affordable price Qfchjtecture, respectively. We conduct experiments using two
$35 USD. In view of these statistics, it is evident that thgenchmark datasets and verify the feasibility of the proposed
performance of our model is bgtter than Sme'art system for deployment in real CCTV networks. In view of the
methods, and that it can be easily integrated with curreg model’s reasonable accuracy for fire detection and

surveillance systems. Finally, it is worth mentioning that 0Yp.ajizationjts size, and the rate of false alarms, the system can
proposed model requires 0.72 GFLOPS/image compared§@ pe|pful to disaster management teams in controlling fire
AlexNet’s 2 GFLOPS/image, which makes it more efficient in  isasters in a timely manner, thus avoiding huge losses.

inference, allowing it to process multiple surveillance streams. This work mainly focuses on the detection of fire and its
localization, with comparatively little emphasis on
understanding the objects and scenes under observation. Future
studies may focus on making challenging and specific scene
understanding datasets for fire detection methods and detailed
experiments. Furthermore, reasoning theories and information
hiding algorithms 42-44] can be combined with fire detection
systems to intelligently observe and authenticate the video
stream and initiate appropriate action, in an autonomous way.
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