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Abstract. Reaction with the hydroxyl (OH) radical is

the dominant removal process for volatile organic com-

pounds (VOCs) in the atmosphere. Rate coefficients for re-

actions of OH with VOCs are therefore essential parameters

for chemical mechanisms used in chemistry transport mod-

els, and are required more generally for impact assessments

involving the estimation of atmospheric lifetimes or oxida-

tion rates for VOCs. Updated and extended structure–activity

relationship (SAR) methods are presented for the reactions of

OH with aliphatic organic compounds, with the reactions of

aromatic organic compounds considered in a companion pa-

per. The methods are optimized using a preferred set of data

including reactions of OH with 489 aliphatic hydrocarbons

and oxygenated organic compounds. In each case, the rate

coefficient is defined in terms of a summation of partial rate

coefficients for H abstraction or OH addition at each rele-

vant site in the given organic compound, so that the attack

distribution is defined. The information can therefore guide

the representation of the OH reactions in the next genera-

tion of explicit detailed chemical mechanisms. Rules gov-

erning the representation of the subsequent reactions of the

product radicals under tropospheric conditions are also sum-

marized, specifically their reactions with O2 and competing

processes.

1 Introduction

It is well documented that volatile organic compounds

(VOCs) are emitted into the atmosphere in substantial quan-

tities from both anthropogenic and biogenic sources (e.g.

Guenther et al., 2012; Huang et al., 2017). The degradation

of VOCs has a major influence on the chemistry of the tro-

posphere, contributing to the formation of ozone (O3), sec-

ondary organic aerosol (SOA) and other secondary pollu-

tants (e.g. Haagen-Smit and Fox, 1954; Went, 1960; Andreae

and Crutzen, 1997; Jenkin and Clemitshaw, 2000; Hallquist

et al., 2009).

The complete gas-phase oxidation of emitted hydrocar-

bons and oxygenated organic compounds into carbon dioxide

and water proceeds via highly detailed mechanisms, and pro-

duces a wide variety of intermediate oxidized organic prod-

ucts (e.g. Saunders et al., 2003; Aumont et al., 2005). As a

result of the complexity of the emitted speciation, and of the

degradation chemistry, the atmosphere contains an extremely

large number of structurally different organic compounds,

which possess a wide range of reactivities. For the major-

ity of these, reaction with the hydroxyl (OH) radical is the

dominant or exclusive removal process, such that it plays an

important role in determining the atmospheric lifetime and

impact of a given organic compound. As a result, quantified

rate coefficients for the reactions of OH with organic com-
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pounds are essential parameters for chemical mechanisms

used in chemistry transport models, and are invariably re-

quired more generally for environmental assessments of their

impacts, e.g. to estimate the kinetic component of ozone for-

mation potentials (Bufalini et al., 1976; Carter, 1994; Der-

went et al., 1998; Jenkin et al., 2017) or atmospheric life-

times for the calculation of global warming potentials (e.g.

Kurylo and Orkin, 2003). In addition to the total rate co-

efficient, quantification of the branching ratio for attack of

OH at each site within a given compound is required for ex-

plicit representation of the subsequent oxidation pathways in

chemical mechanisms.

As part of the present work, a set of preferred kinetic data

has been assembled for the reactions of OH with 556 or-

ganic compounds, based on reported experimental studies,

of which 489 are for aliphatics (see Sect. 2 for further de-

tails). Previous assessments using explicit organic degrada-

tion mechanisms have demonstrated that the atmosphere con-

tains an almost limitless number of organic compounds (e.g.

Aumont et al., 2005), for which it is impractical to carry out

experimental kinetics studies. This has resulted in the devel-

opment of estimation methods for OH rate coefficients (e.g.

see Calvert et al., 2015; and references therein), which have

been applied widely in chemical mechanisms and impact as-

sessments.

In the present paper, updated structure–activity relation-

ship (SAR) methods are presented for the reactions of OH

with aliphatic organic compounds, with the reactions of aro-

matic organic compounds considered in a companion paper

(Jenkin et al., 2018a). In each case, the rate coefficient is de-

fined in terms of a summation of partial rate coefficients for

H-atom abstraction or OH addition at each relevant site in

the given organic compound, so that the attack distribution is

also defined. Particular use is made of the methods reported

by Kwok and Atkinson (1995) and Peeters et al. (2007),

which are updated and extended on the basis of the current

preferred data. These approaches are also supplemented by

newly developed methods for some compound classes (e.g.

cumulative dienes and alkynes), and application of the meth-

ods is illustrated with examples in the Supplement.

The information is currently being used to guide the rep-

resentation of the OH-initiation reactions in the next genera-

tion of explicit detailed chemical mechanisms, based on the

Generator for Explicit Chemistry and Kinetics of Organics in

the Atmosphere (GECKO-A; Aumont et al., 2005), and the

Master Chemical Mechanism (MCM; Saunders et al., 2003).

It therefore contributes to a revised and updated set of rules

that can be used in automated mechanism construction, and

provides formal documentation of the methods. To facilitate

this, rules governing the representation of the initial rapid re-

actions of the product radicals under tropospheric conditions

are also summarized, specifically their reactions with O2 and

competing processes. The treatment of the subsequent chem-

istry (e.g. reactions of peroxy radicals) will be reported else-

where (e.g. Jenkin et al., 2018b).

2 Preferred kinetic data

A set of preferred kinetic data has been assembled from

which to develop and validate the estimation methods for

the OH rate coefficients. The complete set includes data

for 172 hydrocarbons and 384 oxygenated organic com-

pounds. The subset relevant to the present paper includes

298 K data for a total of 489 organic compounds, comprising

alkanes (49 reactions), alkenes/polyalkenes (92 reactions),

alkynes (6 reactions), saturated oxygenated organic com-

pounds (259 reactions) and unsaturated aliphatic oxygenated

organic compounds (83 reactions), with temperature depen-

dences also defined for a subset of 153 organic compounds.

In two cases, the preferred rate coefficient is an upper-limit

value, and in one case a lower-limit value. The information

is provided as a part of the Supplement (spreadsheets SI_1

to SI_5). As described in more detail in Sects. 3.2 and 4.2,

the oxygenates include both monofunctional and multifunc-

tional compounds containing a variety of functional groups

that are prevalent in both emitted VOCs and their degrada-

tion products, namely -OH, -OOH, -C(=O)-, -O-, -C(=O)O-,

-ONO2, -NO2 and -C(=O)OONO2. For a core set of 73 re-

actions, preferred kinetic data are based on the evaluations

of the IUPAC Task Group on Atmospheric Chemical Ki-

netic Data Evaluation (http://iupac.pole-ether.fr/; last access:

September 2017). The remaining values are informed by rec-

ommendations from other key evaluations with complemen-

tary coverage (e.g. Atkinson and Arey, 2003; Calvert et al.,

2008, 2011), and have been revised and expanded following

review and evaluation of additional data not included in those

studies (as identified in spreadsheets SI_1 to SI_5).

3 Saturated organic compounds

The reactions of OH with saturated organic compounds al-

most exclusively result in the abstraction of an H atom from

a C-H or O-H bond. The representation of H-atom abstrac-

tion reactions in the current methodology is an update and

extension to the widely applied SAR method of Kwok and

Atkinson (1995), for which selected updated parameters for

298 K have also been reported in some other more recent

studies (e.g. Atkinson, 2000; Bethel et al., 2001; Calvert

et al., 2008, 2011). The estimated rate coefficients are thus

based on a summation of rate coefficients for H-atom ab-

straction from the primary (-CH3), secondary (-CH2-) and

tertiary (-CH<) groups, and from any hydroxy (-OH) and hy-

droperoxy (-OOH) groups in the given organic compound,

which are calculated as follows:

k(CH3-X) = kprimF(X), (1)

k(X-CH2-Y) = ksecF(X)F (Y), (2)

k(X-CH(-Y)-Z) = ktertF(X)F (Y)F (Z), (3)

k(-OH) = kabs(-OH) , (4)

k(-OOH) = kabs(-OOH) , (5)

Atmos. Chem. Phys., 18, 9297–9328, 2018 www.atmos-chem-phys.net/18/9297/2018/
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Figure 1. (a) A log–log correlation of kcalc and kobs at 298 K for alkanes (for presentation purposes, the value for cyclopropane has been

scaled up by a factor of 2). The broken lines show the factor of 2 range (see Table S1 in the Supplement for identities of outliers). (b) A

correlation of the temperature coefficients (E/R)calc and (E/R)obs for alkanes. The broken lines show the ±200 K range.

where kprim, ksec and ktert are the respective group rate coef-

ficients for abstraction from primary, secondary and tertiary

groups for a reference substituent; and F (X), F (Y) and F (Z)

are factors that account for the effects of the substituents X,

Y and Z. The reference substituent is defined as “-CH3”, such

that F(-CH3) = 1.00 (Atkinson, 1987; Kwok and Atkinson,

1995). kabs(-OH) and kabs(-OOH) are the rate coefficients for

H-atom abstraction from -OH and -OOH groups, the values

of which are assumed to be independent of the identity of

neighbouring substituent groups, as also previously assumed

for kabs(-OH) by Kwok and Atkinson (1995).

A number of studies, including Kwok and Atkin-

son (1995), have defined rate coefficients for reaction at other

specific oxygenated groups, with these also being assumed

to be independent of the identity of neighbouring substituent

groups. These include abstraction of the H atom in carboxyl

(-C(=O)OH) groups (Kwok and Atkinson, 1995), and also

H-atom abstraction from the formyl group in formate es-

ters (Le Calvé et al., 1997; Calvert et al., 2015). In the present

work, it was found that the performance of the method for

some further organic oxygenates could be improved by as-

signing fixed rate coefficients for H-atom abstraction from

C-H bonds in specific environments, i.e. from formyl groups

in aldehydes, and adjacent to -O- linkages in ethers and di-

ethers. This is discussed further in Sect. 3.2.

www.atmos-chem-phys.net/18/9297/2018/ Atmos. Chem. Phys., 18, 9297–9328, 2018
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Table 1. Arrhenius parameters (k = Aexp(−(E/R)/T )) for the group rate coefficients for H-atom abstraction from -CH3, -CH2- and -

CH< groups; and the group rate coefficient values at 298 K.

Group Parameter A E/R k298 K

(10−12 cm3 molecule−1 s−1) (K) (10−12 cm3 molecule−1 s−1)

-CH3 kprim 2.90 925 0.130

-CH2- ksec 4.95 555 0.769

>CH- ktert 3.17 225 1.49

Table 2. The substituent factors, F (X), for alkyl groups,

and their temperature dependences described by the term

F (X) = AF(X) exp(−BF(X)/T ).

X AF(X) BF(X) F(X)298 K

(K)

-CH3 1.00 0 1.00

-CH2-, >CH-, >C< 1.00 −89 1.35

3.1 Alkanes

3.1.1 Acyclic alkanes

The values of kprim, ksec and ktert, and of the substituent

factors F (-CH2-), F (-CH<) and F (>C<), were initially op-

timized for 298 K, using the preferred kinetic data for

acyclic (non-methane) alkanes in the dataset, which com-

prise 12 linear (n-) alkanes and 14 branched alkanes. This

was achieved by minimizing the summed square deviation,

6((kcalc−kobs)/kobs)
2, where kobs is the preferred (observed)

value of the rate coefficient, and kcalc is the value calculated

using the SAR. As in previous studies (Kwok and Atkinson,

1995; Calvert et al., 2008), it was found that there was little

benefit in using independent values of F (-CH2-), F (-CH<)

and F (>C<), and a single value of F (-CH2-, -CH<, >C<)

was therefore optimized for simplicity. The resultant values

of the optimized parameters are given in Tables 1 and 2, and a

correlation of kcalc and kobs at 298 K is shown in Fig. 1a. The

updated method results in a value of 6((kcalc − kobs)/kobs)
2

that is lower than those obtained by using the parameters op-

timized to earlier datasets by Kwok and Atkinson (1995) and

Calvert et al. (2008), by factors of 1.6 and 1.1, respectively.

Temperature-dependent recommendations are available

for 17 acyclic (non-methane) alkanes in Arrhenius for-

mat (k = Aexp(−(E/R)/T ), as given in the preferred data

in the Supplement (spreadsheet SI_1). These were used

to provide optimized values of the temperature coeffi-

cient (E/R) and pre-exponential factor (A) for the group

rate coefficients, kprim, ksec and ktert (see Table 1), with

the assumption that the weak temperature dependence of

the substituent factor F (-CH2-, -CH<, >C<) can be ex-

pressed as AF(X) exp(−BF(X)/T ), with AF(X) = 1.00, as ap-

plied previously by Atkinson (1987) and Kwok and Atkin-

Table 3. Ring factors, Fring, for the reactions of OH with cyclic

alkanes, and their temperature dependences described by Fring =

AF(ring) exp(−BF(ring)/T ).

Ring (parameter) AF(ring) BF(ring) Fring (298 K)

(K)

3-member ring (Fring(3)) 0.395 920 0.018

4-member ring (Fring(4)) 0.634 130 0.41

5-member ring (Fring(5)) 0.873 70 0.69

6-member ring (Fring(6)) 0.95 0 0.95

7-member ring (Fring(7)) 1.12∗ 0 1.12∗

8-member ring (Fring(8)) 1.16∗ 0 1.16∗

Notes: ∗ to a first approximation, unity values of Fring can be applied to these

parameters for simplicity. Fring = 1.0 is also assumed for larger rings.

son (1995) (see Table 2). Optimization was achieved by cal-

culating values of kcalc at even 1/T intervals over the rec-

ommended temperature range for each alkane (with an im-

posed upper limit of 400 K, where applicable), and determin-

ing a composite (E/R)calc value from a least squares linear

regression of the data on an Arrhenius (i.e. ln(k) vs. 1/T )

plot. The values of (E/R)prim, (E/R)sec and (E/R)tert were

varied to minimize the summed square deviation in the com-

posite temperature coefficients, 6((E/R)calc − (E/R)obs)
2.

The resultant (E/R)calc values are compared with the recom-

mended (E/R)obs values in Fig. 1b (see also Fig. S1 in the

Supplement). The values of Aprim, Asec and Atert were au-

tomatically returned from the corresponding optimized E/R

and k298 K values. The resultant trend in (E/R)prim, (E/R)sec

and (E/R)tert values (Table 1) shows a logical progression,

indicative of the progressive weakening of the C-H bond in

primary, secondary and tertiary groups.

3.1.2 Cyclic alkanes

The parameter values determined above can also be applied

to calculate rate coefficients for the reactions of OH with

cyclic alkanes. As discussed previously by Kwok and Atkin-

son (1995), ring strain has an impact on the H-atom abstrac-

tion kinetics in cyclic systems. The data for 22 cyclic alka-

nes were therefore used to optimize empirical ring-strain fac-

tors, Fring, for 3-member through to 8-member rings, leading

to the values given in Table 3. These values need to be ap-

plied in conjunction with the neighbouring group (F(X)) fac-

Atmos. Chem. Phys., 18, 9297–9328, 2018 www.atmos-chem-phys.net/18/9297/2018/
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Table 4. Arrhenius parameters (k = Aexp(−(E/R)/T )) for the rate coefficients for H-atom abstraction from hydroxy and hydroperoxy

groups, and for the formyl group in RC(=O)H for various classes of R, and their values at 298 K. These values are applied independently of

neighbouring group substituent factors.

Group Parameter A E/R k298 K

(10−12 cm3 molecule−1 s−1) (K) (10−12 cm3 molecule−1 s−1)

-OH kabs(-OH) 1.28 660 0.140

-OOH kabs(-OOH) 0.368 −635 3.10

RC(=O)H (R = -H)a – 2.70 −135 4.25

RC(=O)H (R = -CH3)b – 4.60 −350 14.9

RC(=O)H (R = -CH2X)c kabs(-CHO)n 5.08 −420 20.8

RC(=O)H (R = -CH(X)Y or -C(X)(Y)Z)d kabs(-CHO)st 5.22 −490 27.0

RC(=O)H (R = -CH2OX)e kabs(-CHO)n-αO 11.7 140 7.3

RC(=O)H (R = -CH(OX)Y or -C(OX)(Y)Z)f kabs(-CHO)st-αO 11.7k −25 12.7

RC(=O)H (R = β-hydroxyalkyl)g kabs(-CHO)-βOH 11.7k 78 9.0

RC(=O)H (R = -C(=O)H)h – 1.55 −340 4.85

RC(=O)H (R = -C(=O)X)i kabs(-CHO)-αCO 1.78 −590 12.9

RC(=O)H (R = >C=C<)j kabs(-CHO)-αC=C 3.07 −430 13.0

Notes: a parameter is specific to formaldehyde, and is shown to illustrate trend of increasing substitution in R. Value represents rate coefficient per formyl group. b Parameter is specific

to the formyl group in acetaldehyde, and is shown to illustrate trend of increasing substitution in R. c kabs(-CHO)n used for R = -CH2X, except where X is an oxygenated group (i.e. -OX)

for which kabs(-CHO)n-αO is applied. Parameter optimized using data for aldehydes where R is an n-alkyl or i-alkyl group. dkabs(-CHO)st used for R = -CH(X)Y or -C(X)(Y)Z, except

where X, Y or Z is an oxygenated group (i.e. -OX), for which kabs(-CHO)st-αO is applied. Parameter optimized using data for aldehydes where R is a sec-alkyl or tert-alkyl group.
e kabs(-CHO)n-αO used for R = -CH2OX. Parameter based on recommended rate coefficient for glycolaldehyde (i.e. -OX = -OH), but used as a default for aldehydes containing other

oxygenated groups (e.g. -OX = -OOH, -OR, -OOR or -ONO2). f kabs(-CHO)st-αO used for R = -CH(OX)Y or -C(OX)(Y)Z. Parameter optimized using data for aldehydes where R is an

α-hydroxyalkyl or α, β-dihydroxyalkyl group but used as a default for aldehydes containing other α-oxygenated groups (e.g. OX = -OOH, -OR, -OOR or -ONO2). g kabs(-CHO)-βOH
used for R = -CH(X)Y or -C(X)(Y)Z, when X, Y or Z = -CH2OH, -CH(OH)Y’ or -C(OH)(Y′)Z′. Parameter optimized using data for aldehydes where R is an β-hydroxyalkyl group.
h Parameter is specific to glyoxal, and is shown to illustrate trend of increasing substitution in R. Value represents rate coefficient per formyl group. i kabs(-CHO)-αCO used for

R = -C(=O)X. Parameter based on recommended rate coefficient for methyl glyoxal. j kabs(-CHO)-αC=C used for R = >C=C<, based on data for 13 α,β-unsaturated aldehydes (see

Sect. 4.2). k In the absence of temperature-dependence studies for this class of compound, “A” is assigned the same value as for kabs(-CHO)n-αO.

tors, such that the following equations apply to the calcula-

tion of H-atom abstraction rate coefficients from intra-cyclic

“-CH2-” and “-CH<” groups in monocyclic alkanes:

k(X-CH2-Y) = ksecF(X)F (Y)Fring, (6)

k(X-CH(-Y)-Z) = ktertF(X)F (Y)F (Z)Fring. (7)

For polycyclic alkanes, a value of Fring needs to be applied

for each ring for which the given “-CH2-” or “-CH<” group

is a component, as discussed by Kwok and Atkinson (1995).

Similarly to the values derived (or assumed) by Kwok and

Atkinson (1995), the optimized Fring values for 6-, 7- and 8-

member rings are close to unity, with a progressive decrease

in the values for the smaller more strained rings. Although

a 6-member ring is a classical example of a strain-free sys-

tem (e.g. Calvert et al., 2008), the recommended data for

most alkanes with 6-membered rings suggest a slight deacti-

vating effect relative to acyclic “-CH2-” groups, particularly

in the case of cyclohexane itself. A correlation of the opti-

mized 298 K values of kcalc and kobs is shown in Fig. 1a.

Temperature-dependent parameters are recommended for

the series of unsubstituted monocyclic alkanes, cyclopropane

through to cyclooctane, in Arrhenius format (see spreadsheet

SI_1). The recommended E/R values for the larger sys-

tems (cyclohexane, cycloheptane and cyclooctane) are sim-

ilar to those derived from the overall temperature coeffi-

cient ksecF(-CH2-)2 (= 377 K), derived above for H-atom

abstraction from “-CH2-” groups in long-chain acyclic alka-

nes. This is compatible with Fring having no significant tem-

perature dependence for 6-, 7- or 8-membered rings, and

also consistent with their near-unity 298 K values. In the

cases of cyclopentane, cyclobutane and, particularly, cyclo-

propane, the recommended E/R values are progressively

more elevated (450, 510 and 1300 K, respectively), and it

was necessary to assign temperature-dependent values of

Fring = AF(ring) exp(−BF(ring)/T ) for 3-, 4- and 5-member

rings, as shown in Table 3. In these cases, the values of

BF(ring) were once again varied to minimize the summed

square deviation in the composite temperature coefficients,

with values of AF(ring) automatically returned from the pro-

cedure. The resultant calculated values of E/R are compared

with the recommended values in Fig. 1b (see also Fig. S1).

3.2 Saturated organic oxygenates

3.2.1 Compounds containing carbonyl and

hydroxyl groups

Consistent with the approach adopted by Kwok and Atkin-

son (1995), the value of the rate coefficient for H-atom ab-

straction from a hydroxy group, kabs(-OH), is based on the rate

coefficient for abstraction from the -OH group in methanol,

as recommended by the IUPAC panel (see Table 4). The val-

ues of a number of other parameters, shown in Tables 5 and

6, were optimized using the preferred data for compounds

containing combinations of carbonyl and hydroxy groups.

www.atmos-chem-phys.net/18/9297/2018/ Atmos. Chem. Phys., 18, 9297–9328, 2018
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Table 5. Substituent factors, F(X), for hydroxy, hydroperoxy, peroxy and carbonyl groups, and their temperature dependences described by

F(X) = AF(X) exp(−BF(X)/T ).

X AF(X) BF(X) F(X)298 K

(K)

-OH, -OOH∗, -OOR∗ 0.497 −590 3.6

-CH2OH, -CH(OH)-, -C(OH)< 0.119 −930 2.7

-C(=O)-, -C(=O)C(=O)- 0.309 −350 1.0

-CH2C(=O)-, -CH(C(=O)-)-, -C(C(=O)-)< 0.0253 −1460 3.4

Notes: ∗ assumed to take the same value as F (-OH), due to limited data for compounds containing -OOH

groups and no data for compounds containing -OOR groups.

These included 33 alcohols and diols, 22 aldehydes, 17 ke-

tones, 6 dicarbonyls, 8 hydroxyaldehydes and 18 hydroxyke-

tones. In the original method of Kwok and Atkinson (1995),

abstraction of the H atom from the formyl group in aldehy-

des was logically represented by defining a substituent factor,

F (=O), which was used in combination with ktert and any

other relevant substituent factors. In conjunction with the up-

dates to substituent effects for hydroxy groups reported sub-

sequently by Bethel et al. (2001), the method has been shown

to provide a poor representation of the rate coefficients for

hydroxyaldehydes, with overestimates of up to a factor of 4

relative to the observed values (Baker et al., 2004; Mason et

al., 2010; Calvert et al., 2011). This suggests that hydroxy

groups have a significant deactivating effect on abstraction

from formyl groups, whereas they generally activate abstrac-

tion from alkyl groups (Bethel et al., 2001). In conjunction

with the observed increasing trend in k298 K with increasing

alkyl substitution in the organic group, it appears that the re-

activity of the formyl group is influenced by the inductive

effect of the organic group. Although outside the scope of

the present study, it is well known that the inductive effect of

halogens strongly deactivates the OH reactivity of the formyl

group in halogen-substituted aldehydes (e.g. Scollard et al.,

1993).

In the present work, the performance of the method is sig-

nificantly improved by defining a set of rate coefficients for

H-atom abstraction from formyl groups in RC(=O)H, for

a variety of different classes of R. These are shown in Ta-

ble 4, and are applied independently of substituent factors.

The displayed parameters (e.g. kabs(-CHO)n) are generic and

apply to the series of classes of R identified and described

in Table 4. They are also used as default rate coefficients

for additional classes containing substituents for which there

are currently no data (see Table 4 notes). The values of the

other (un-named) rate coefficients in Table 4 relate only to

specific compounds, and are included to illustrate trends of

increasing substitution in R.

The parameters in Table 4 were optimized in conjunction

with the substituent factors listed in Table 5, which relate

to the general influence of hydroxyl and carbonyl groups on

H abstraction from sites other than formyl groups in these

compounds. The parameter values were initially optimized

for 298 K, using a global fit to the preferred kinetic data in-

dicated above, using the values of kprim, ksec and ktert (and

values of Fring reported for cycloalkanes in Table 3). Con-

sistent with the approach in previous studies, the substituent

factors describe the effects of α- or β-carbonyl groups (Kwok

and Atkinson, 1995) and of α- or β-hydroxy groups (Bethel

et al., 2001). The resultant values of the optimized param-

eters are given in Tables 4 and 5, and a correlation of kcalc

and kobs at 298 K is shown in Fig. 2. As a result of the in-

clusion of the effects of β groups in determining kcalc, there

are instances where the neighbouring group substituent fac-

tor, F(X), is influenced by two groups (X1 and X2), such that

a combination of F(X1) and F(X2) needs to be applied. For

the present set of data, this occurs for nine compounds where

one or more sites is influenced by both a β-carbonyl and a β-

hydroxy group as part of the same substituent, e.g. contain-

ing a -CH(OH)(C(=O)-)- sub-structure. In these cases, it was

found that including the associated activating effect of both

groups (i.e. F(X) = F (X1) F (X2)) resulted in systematic

overestimation of the rate coefficients, whereas the data were

generally well described if the assumption, F(X) = (F (X1)

F (X2))
1/2, was applied. Where relevant, this approach was

therefore adopted throughout the present work for H-atom

abstraction reactions.

The estimation method reproduces the observed 298 K val-

ues to within a factor of 2 for almost all of the compounds

considered, with particularly good descriptions for aldehy-

des (within 30 %) and hydroxyaldehydes (within 10 %) due

in part to the adjusted methodology described above (see

Fig. 2). Similarly to the results of Bethel et al. (2001) and

Mason et al. (2010), the method systematically underes-

timates the rate coefficients for 1,3- and 1,4-di-alcohols,

by factors in the range 1.7–2.5. As also discussed previ-

ously (e.g. Mellouki et al., 2003; Calvert et al., 2011), this is

likely due to longer-range influences of hydroxy substituents

that are difficult to include in a practical SAR method.

Temperature-dependent recommendations are available

for 32 compounds containing combinations of carbonyl and

hydroxy groups (in addition to formaldehyde and glyoxal).

These were used to provide representative values of the tem-

perature coefficient (E/R) and pre-exponential factor (A)

for the group rate coefficients given in Table 4, and for
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Figure 2. (a) A log–log correlation of kcalc and kobs at 298 K for saturated organic oxygenates containing carbonyl and hydroxy groups.

The broken lines show the factor of 2 range (see Table S1 in the Supplement for identities of outliers). (b) A correlation of the temperature

coefficients (E/R)calc and (E/R)obs for the same compound classes. The broken lines show the ±200 K range.

the temperature coefficient (BF(X)) and pre-exponential fac-

tor (AF(X)) for the substituent factors given in Table 5. The

values of (E/R) for the group rate coefficients and BF(X) for

the substituent factors were varied with the aim of minimiz-

ing the summed square deviation in the composite temper-

ature coefficients, 6((E/R)calc − (E/R)obs)
2, for the con-

tributing set of compounds. The resultant (E/R)calc values

are compared with the recommended (E/R)obs values in

Fig. 2b (see also Fig. S2). The values of A were automat-

ically returned from the corresponding optimized E/R and

k298 K values, and AF(X) from the corresponding optimized

BF(X) and F(X)298 K values.

The preferred data also include rate coefficients for seven

cycloketones (specifically defined as compounds where the

>C=O group forms part of a cycle). These were not included

in the optimization procedure described above, because the

presence of the >C=O group can potentially modify the ring

strain substantially. Accordingly, use of the values of Fring

for cycloalkanes (Table 3) in conjunction with the parame-

ters optimized above, results in calculated rate coefficients at

298 K that are generally overestimated for cycloketones. A

set of adjusted values, denoted Fring-CO, were therefore de-

fined for 4-, 5- and 6-membered rings, based on the data for

cyclobutanone, cyclopentanone and cyclohexanone (see Ta-

ble 6). These are lower than those for cycloalkanes by re-

spective factors of 5.1, 2.2 and 1.6, with a trend that suggests

that the values of Fring-CO are once again tending towards

unity as the size of the ring increases. The preferred data also
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Table 6. Ring factors, Fring, for the reactions of OH with cyclic oxygenates, and their temperature dependences described by

Fring = AF(ring) exp(−BF(ring)/T ).

Ring Cycloketones Cyclic mono-ethers Cyclic di-ethers

Fring-CO (298 K) AF(ring-O) BF(ring-O)(K) Fring-O (298 K) AF(ring-O′) BF(ring-O′) (K) Fring-O′ (298 K)

3-member ring a b b 0.0079f a a a

4-member ring 0.080b,c b b 0.50g a a a

5-member ring 0.32b,d 1.20 55 1.00h b b 0.59k

6-member ring 0.61b,e 1.59 290 0.60i 2.53 535 0.42l

7-member ring a 1.61 190 0.85j 1.30 240 0.58m

Notes: a in the absence of data, Fring assumed to be the same as for cycloalkanes (Table 3). b In the absence of temperature dependence data, a value of AF(ring) = 1 is assumed,

such that Fring = exp(298 ln(Fring (298 K))/T ). c Based on cyclobutanone. d Based on cyclopentanone. e Based on cyclohexanone. f Based on oxirane. g Based on oxetane.

h Based on tetrahydrofuran and 2-methyl-tetrahydrofuran. i Based on tetrahydropyran. j Based on oxepane. k Based on 1,3-dioxolane. l Based on 1,3-dioxane, 1,4-dioxane and

4-methyl-1,3-dioxane. Data for 1,3,5-trioxane suggest factor is also reasonable for 6-member ring cyclic tri-ethers, with the value optimized to this compound alone being 0.33.
m Based on 1,3-dioxepane.

include rate coefficients for four C9 and C10 terpenoids (cam-

phenilone, camphor, nopinone and sabinaketone), which all

contain bicyclic ketone structures. The corresponding rate

coefficients calculated for these species using the optimized

values of Fring-CO are in good agreement with the preferred

data for camphenilone and camphor, but are underestimated

by factors of 3.9 and 1.5 for nopinone and sabinaketone, re-

spectively.

3.2.2 Hydroperoxides

The preferred data for the reactions of OH with saturated hy-

droperoxides are limited to recommended values for methyl

hydroperoxide and t-butyl hydroperoxide, and a lower-limit

value for ethyl hydroperoxide. The temperature-dependent

rate coefficient for H-atom abstraction from a hydroperoxy

group, kabs(-OOH), was derived from the rate coefficient for

the reaction of OH with t-butyl hydroperoxide (Baasandorj

et al., 2010), which provides the most direct measurement.

The reported rate coefficient was corrected for (minor) reac-

tion of OH at the methyl groups, with the assumption that

there is no influence from the β-hydroperoxy group. The re-

sultant Arrhenius parameters describing kabs(-OOH) are given

in Table 4.

The limited data available suggest that a neighbouring hy-

droperoxy group has a significant activating effect on OH re-

activity, as discussed previously (Jenkin et al., 1997; Saun-

ders et al., 2003). In the present work, the value of F (-OOH)

is assumed to be identical to F (-OH), with the same value

also assumed for peroxy linkages (denoted F (-OOR)), in

the absence of kinetic and mechanistic data (see Table 5).

Use of this value of F (-OOH) (in conjunction with the

assigned value of kabs(-OOH)) results in an underestimated

rate coefficient for CH3OOH, and a rate coefficient for

C2H5OOH that is at the recommended lower-limit value (and

therefore possibly also an underestimate). However, it over-

estimates the reported contribution of H-atom abstraction

from the -CH(OOH)- group in the unsaturated isoprene-

derived hydroperoxide, 2-hydroperoxy-3-methyl-but-3-en-1-

ol, reported by St Clair et al. (2016), such that the assigned

value of F (-OOH) appears to represent a reasonable com-

promise. The overall rate coefficients and calculated distri-

butions of OH attack in CH3OOH and C2H5OOH at 298 K

are also in good agreement with the density functional the-

ory (DFT) calculations of Luo et al. (2011), which provides

some additional support for the assigned parameters.

3.2.3 Ethers

The values of a number of parameters relevant to the oxida-

tion of ethers are shown in Tables 7 and 8. These were op-

timized using the preferred data for 14 acyclic mono-ethers,

13 acyclic di-ethers and 8 acyclic hydroxyethers. The orig-

inal method of Kwok and Atkinson (1995) used the sub-

stituent factor F (-OR) to describe the effect of one or two

α-ether linkages, with the influence of a β-ether linkage

also subsequently considered in the review of Calvert et

al. (2011). Both studies report difficulties in recreating the

rate coefficients for the complete series of compounds, with

discrepancies of up to over a factor of 3 between estimated

and observed values. This was also considered previously in

the work of Porter et al. (1997), who proposed that these de-

viations may be a consequence of stabilization of the reaction

transition states by hydrogen bonding.

In the present work, the performance of the method is im-

proved by defining a set of three rate coefficients for H-atom

abstraction from carbon atoms adjacent to ether linkages (see

Table 7), which are applied independently of neighbouring

group substituent factors. Similarly to Calvert et al. (2011), a

substituent factor for β-ether groups, F (-CH2OR, -CH(OR)-,

-C(OR)<), is also defined for application to H abstraction

from other relevant sites in these compounds (see Table 8).

These parameters were initially optimized for 298 K, and a

correlation of kcalc and kobs at 298 K is shown in Fig. 3. The

updated method results in a value of 6((kcalc − kobs)/kobs)
2

that is lower than that obtained by using the parameters re-
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Table 7. Arrhenius parameters (k = Aexp(−(E/R)/T )) for the rate coefficients for H-atom abstraction from carbon atoms adjacent to

oxygen linkages in mono-ethers and di-ethers; from the formyl group in formate esters, and from the carboxyl group in carboxylic acids, and

their values at 298 K. These values are applied independently of neighbouring group substituent factors.

Group Parameter A E/R k298 K

(10−12 cm3 molecule−1 s−1) (K) (10−12 cm3 molecule−1 s−1)

-OCH3 kabs(-OCH3)
a 2.22 160 1.3

-OCH2R, -OCH2OR, -OCH(R)<, -OCH(OR)< kabs(-OR)
a,b 1.20 −460 5.6

-OCH2-C-OR, -OCH(-C-OR)< (acyclic) kabs(-OCCOR)
a,c 1.17 −760 15.0

ROC(=O)H kabs(ROCHO)
d 1.70 910 0.08

RC(=O)OH (R = -H) kabs(formic acid)
e 0.103 −380 0.37

RC(=O)OH (R = alkyl) kabs(RC(O)OH)
f 0.0287 −880 0.55

RC(=O)OH (R = -C(=O)-) kabs(RC(O)C(O)OH)
g 0.0477 −275 0.12

Notes: a applies specifically to abstraction adjacent to an ethereal oxygen linkage. b Based on data for relevant ethers and di-ethers, and applied when R is any organic or inorganic group.
c Applies to acyclic compounds only. Based on data for dimethoxyethane and diethoxyethane, and only applies when R is an alkyl or remotely substituted (i.e. β or higher) alkyl group. In all

other cases, kabs(-OR) should be applied. The d applies to abstraction of the formyl H atom in formate esters and formic acid, e applies to abstraction of the carboxyl H atom in formic acid

only, and is shown to illustrate trend of increasing substitution, f Based on data for higher alkanoic acids, but also applied as a default when R 6= -C(=O)-. g Based on recommended rate

coefficient for pyruvic acid, assuming reaction occurs exclusively at the carboxyl group.

Table 8. Substituent factors, F(X), for oxygenated groups in ethers, esters and carboxylic acids, and their temperature dependences described

by F(X) = AF(X) exp(−BF(X)/T ).

X AF(X) BF(X) F(X)298 K

(K)

-CH2OR, -CH(OR)-, -C(OR)< 0.122 −1000 3.5

-OC(=O)H 0.0251 −1050 0.85

-OC(=O)R 0.0310 −1270 2.2

-CH2C(=O)OR, -CH(C(=O)OR)-, -C(C(=O)OR)<a 0.0215 −1440 2.7

-C(=O)ORa 0.783 200 0.4

-C(=O)C(=O)OH, -C(=O)C(=O)ORb 0 0 0

Notes: a also applied to carboxylic acids (i.e. for -OR=-OH). b Based on recommended rate coefficient for pyruvic

acid, assuming reaction occurs exclusively at the carboxyl group.

ported by Calvert et al. (2011), by a factor of 1.7. It repro-

duces the observed 298 K values for ethers, di-ethers and hy-

droxyethers to within factors of 1.4, 2.0 and 1.4, respectively.

Temperature-dependent recommendations are available

for 22 of the above acyclic compounds. Of these, the data for

11 acyclic mono-ethers were used to provide optimized val-

ues of the temperature coefficients and pre-exponential fac-

tors for the group rate coefficients, kabs(-OCH3) and kabs(-OR)

in Table 7 and the substituent factor F (-CH2OR, -CH(OR)-,

-C(OR)<) in Table 8. The data for 1,2-dimethoxyethane and

1,2-diethoxyethane were used to optimize the parameters for

kabs(-OCCOR). The resultant (E/R)calc values are compared

with the recommended (E/R)obs values in Fig. 3b (see also

Fig. S3).

The preferred data also include rate coefficients for seven

cyclic mono-ethers and five cyclic di-ethers, which were not

included in the optimization procedure described above. The

limited dataset was used to define a set of Fring-O values for 3-

to 7-membered rings containing one ether linkage, and a fur-

ther set for 5-, 6- and 7-membered rings containing two ether

linkages (see Table 6), with the values being applicable to

298 K. Temperature-dependent recommendations are avail-

able for three cyclic mono-ethers (5- to 7-membered rings)

and four cyclic di-ethers (6- and 7-membered rings), which

were used to optimize the corresponding values of AF(ring-O)

and BF(ring-O) in Table 6.

3.2.4 Esters and carboxylic acids

Tables 7 and 8 also show the values of a number of param-

eters relevant to the oxidation of esters. These were opti-

mized using the preferred data for 6 formates, 10 acetates,

12 higher esters, 5 dibasic esters, 2 hydroxy esters (lac-

tates) and 1 carbonate. The original method of Kwok and

Atkinson (1995) used the substituent factors F (-OC(=O)R)

and F (-C(=O)OR) to describe the effects of ester groups,

with a specific rate coefficient for H-atom abstraction from

the formyl group in formate esters (denoted kabs(ROCHO)

here) subsequently introduced by Le Calvé et al. (1997).

In the present work, the method has been extended to in-

clude the parameter F (-CH2C(=O)OR, -CH(C(=O)OR)-,

-C(C(=O)OR)<) to represent the effect of a β-ester group,

and the parameter F (-OC(=O)H) that is specific to formate

esters. These parameters were initially optimized for 298 K,
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Figure 3. (a) A log–log correlation of kcalc and kobs at 298 K for saturated ethers, diethers and hydroxyethers (for presentation purposes, the

value for oxirane has been scaled up by a factor of 20). The broken lines show the factor of 2 range (see Table S1 for identities of outliers).

(b) A correlation of the temperature coefficients (E/R)calc and (E/R)obs for the same compound classes. The broken lines show the ±200 K

range.

leading to the values given in Tables 7 and 8. A correla-

tion of kcalc and kobs at 298 K is shown in Fig. 4. The up-

dated method reproduces the observed 298 K values for all

the monobasic esters (formates, acetates and higher esters)

and lactates to well within a factor of 2, although the rate

coefficients for C4–C7 dibasic esters are generally overesti-

mated (by factors in the range 2.2–4.0).

Temperature-dependent recommendations are available

for 18 of the above compounds. In contrast to most of the

preferred data, the preferred temperature dependences are

described by a modified Arrhenius expression of the form

k = AT 2 exp(−(E/R)/T ). Optimization was achieved by a

slightly modified procedure, in which values of both kcalc and

kobs were calculated at even 1/T intervals over the recom-

mended temperature range for each ester (with an imposed

upper limit of 400 K, where applicable), with the latter deter-

mined from the modified Arrhenius expression in each case.

Representative values of (E/R)calc and (E/R)obs were then

determined from a least squares linear regression of the data

on a standard Arrhenius plot. The values of temperature coef-

ficients of the relevant ester-specific parameters were varied

to minimize the summed square deviation in the represen-

tative temperature coefficients, 6((E/R)calc − (E/R)obs)
2,

leading to the values given in Tables 7 and 8. The resul-

tant (E/R)calc values are compared with the recommended

(E/R)obs values in Fig. 4b (see also Fig. S4).

The preferred data also include rate coefficients for six car-

boxylic acids, which include all the C1–C4 alkanoic acids
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Figure 4. (a) A log–log correlation of kcalc and kobs at 298 K for saturated esters and carboxylic acids. The broken lines show the factor

of 2 range (see Table S1 for identities of outliers). (b) A correlation of the temperature coefficients (E/R)calc and (E/R)obs for the same

compound classes. The broken lines show the ±200 K range.

and pyruvic acid (2-oxo-propanoic acid). As shown in Ta-

ble 8, the values of F (-C(=O)OR) and F (-CH2C(=O)OR,

-CH(C(=O)OR)-, -C(C(=O)OR)<) optimized above are also

assumed to apply to carboxylic acids (i.e. when -OR is -OH).

The original method of Kwok and Atkinson (1995) defined

a single rate coefficient for reaction at acid groups. In the

present work, this is extended to a set of three rate co-

efficient, shown in Table 8. These include kabs(formic acid),

which is specific to formic acid; and kabs(RC(O)OH), which

is a generic parameter that applies to all higher acids, ex-

cept those containing a 2-oxo group. In each case, the rate

coefficient represents abstraction of the carboxyl H atom. In

the case of formic acid, abstraction of the formyl H atom is

represented by the parameter kabs(ROCHO) optimized above.

For 2-oxo-carboxylic acids (e.g. pyruvic acid), a further

rate coefficient, kabs(RC(O)C(O)OH), is defined for abstraction

of the carboxyl H atom, and the substituent group factor

F (-C(=O)C(=O)OH) specific to this compound class is as-

signed a value of zero (see Table 8). The above parame-

ters were initially optimized for 298 K, leading to the values

given in Tables 7 and 8. A correlation of kcalc and kobs at

298 K is included in Fig. 4.

Temperature-dependent recommendations are available

for five of the above compounds. These were used to opti-

mize the values of E/R and BF(X) for the relevant parame-

ters (Tables 7 and 8). The resultant (E/R)calc values are com-

pared with the recommended (E/R)obs values in Fig. 4b (see

also Fig. S4).
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Table 9. Substituent factors, F(X), for oxidized nitrogen groups, and their temperature dependences described by F(X) =

AF(X) exp(−BF(X)/T ).

X AF(X) BF(X) F(X)298 K

(K)

-ONO2
a 0.127 −70 0.16

-CH2ONO2, -CH(ONO2)-, -C(ONO2)<a 0.0397 −640 0.34

-NO2
b,c – – 0

-CH2NO2, -CH(NO2)-, -C(NO2)<b,c – – 0.31

-C(=O)OONO2
c,d – – 0.1

Notes: a based on data for acyclic alkyl nitrates. b Based on atmospheric pressure data for

nitroalkanes, with an addition component to the reaction, kadd(-NO2) = 1.1 × 10−13 cm3 molecule−1

s−1, optimized simultaneously (see Sect. 3.2.5). c Parameters should provisionally be assumed to be

temperature independent. d Set so that kcalc is ≈ 50 % of the upper limit reported by Talukdar et

al. (1995).

3.2.5 Compounds containing oxidized nitrogen groups

The preferred data include rate coefficients for sets of com-

pounds containing nitrate (or nitro-oxy) groups (-ONO2) and

nitro groups (-NO2); and an upper-limit value for peroxy-

acetyl nitrate (PAN, CH3C(O)OONO2). The first set con-

tains data for 21 alkyl nitrates, 5 alkyl dinitrates, 12 hydrox-

yalkyl nitrates and 4 carbonyl nitrates, including both acyclic

and cyclic compounds. The data for acyclic alkyl nitrates

are the most extensive and well determined, and these were

used to optimize the 298 K values of the substituent factors

F (-ONO2) and F (-CH2ONO2, -CH(ONO2)-, -C(ONO2)<),

leading to deactivating values that are similar to those re-

ported in the revised method of Atkinson (2000) (see Ta-

ble 9). The correlation of kcalc and kobs for acyclic alkyl

nitrates (shown in Fig. 5) confirms that the trend in val-

ues is very well recreated. Figure 5 also compares kcalc and

kobs for a number of bifunctional nitrate classes, namely

dinitrates, hydroxy-nitrates and carbonyl nitrates, and also

cyclic compounds from all the considered classes. The val-

ues of kcalc were determined using the above optimized sub-

stituent factors, and the relevant parameters optimized for

other compound classes. The results indicate that the rate co-

efficients for acyclic dinitrates and hydroxynitrates are appar-

ently systematically underestimated, whereas those for the

cyclic compounds tend to be overestimated. Because the ob-

served (preferred) values for these compounds are generally

based on the results of single studies, the level of agreement

is currently considered acceptable. Indeed, the reported rate

coefficients for some acyclic dinitrates and hydroxynitrates

would apparently require the nitrate group substituent fac-

tors to be activating, which is contrary to all published as-

sessments. Further data on these compound classes would

therefore be valuable.

Temperature-dependent recommendations are available

for methyl nitrate, ethyl nitrate and 2-propyl nitrate. These

data were used to provide optimized values of the temper-

ature coefficients and pre-exponential factors for the nitrate

group substituent factors, as shown in Table 9. The resul-

tant (E/R)calc values are compared with the recommended

(E/R)obs values in Fig. 5 (see also Fig. S4).

The preferred data for compounds containing nitro groups

include rate coefficients for a series of five nitroalkanes,

based on the atmospheric pressure study of Nielsen et

al. (1989). As discussed previously (e.g. Calvert et al., 2011),

these rate coefficients are systematically higher than those

reported at low pressure (e.g. by Liu et al., 1990), partic-

ularly for nitromethane. This has been interpreted in terms

of the reaction proceeding by partial addition of OH to the

-NO2 group (Kwok and Atkinson, 1995), with this repre-

sented by the rate coefficient kadd(-NO2). The data were there-

fore used to optimize the 298 K values of the substituent

factors F (-NO2) and F (-CH2NO2, -CH(NO2)-, -C(NO2)<)

given in Table 9, in conjunction with an optimized value

of kadd(-NO2) = 1.1 × 10−13 cm3 molecule−1 s−1. The resul-

tant correlation of kcalc and kobs for nitroalkanes is shown in

Fig. 5. In the present work, the R(OH)NO2 adduct formed

from the addition component is assumed to decompose to

yield NO2 and the alcohol ROH. This is the only case where

the reaction of OH with a saturated organic compound is not

represented to result in abstraction of an H atom from a C-H

or O-H bond. For larger organic compounds containing ni-

tro groups, however, this will generally account for a small

fraction of the reaction (e.g. 4 % for 1-nitropentane).

The preferred data also include an upper-limit rate coeffi-

cient for peroxyacetyl nitrate (PAN), based on the study of

Talukdar et al. (1995). The value of the substituent factor

F (-C(O)OONO2) in Table 9 is set so that kcalc is ≈ 50 % of

the reported upper limit, which is consistent with the range

of rate coefficients measured by Talukdar et al. (1995).

4 Unsaturated organic compounds

containing C=C bonds

The reaction of OH with a given unsaturated organic com-

pound can occur by both addition of OH to either side of
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Figure 5. A log–log correlation of kcalc and kobs at 298 K for saturated organic nitrates and nitroalkanes. The broken lines show the factor

of 2 range (see Table S1 for identities of outliers). The inset plot shows a correlation of the temperature coefficients (E/R)calc and (E/R)obs

for methyl-, ethyl- and 2-propyl-nitrate. The broken lines show the ±200 K range.

each C=C bond, and by abstraction of H atoms from the or-

ganic substituents. The estimated rate coefficient is therefore

given by kcalc = kadd + kabs, where kadd and kabs are summa-

tions of the partial rate coefficients for OH addition and H-

atom abstraction for each attack position in the given organic

compound.

The estimation of rate coefficients for H-atom abstrac-

tion (kabs) makes use of the method and parameters opti-

mized above for the reactions of OH with saturated organic

compounds, with additional substituent factors defined to ac-

count for H-atom abstraction adjacent to C=C bonds, to form

resonance-stabilized allyl-type radicals (as discussed further

below). The estimation of rate coefficients for OH addition

to C=C bonds (kadd) is based on the method described by

Peeters et al. (2007), but is extended to include the effects of

hydrocarbon and oxygenated substituent groups. In contrast

to the earlier SAR methods (e.g. Kwok and Atkinson, 1995),

the Peeters et al. (2007) approach represents addition of OH

to either end of the C=C bond explicitly, and therefore al-

lows the attack distribution to be defined.

4.1 Alkenes and polyalkenes

4.1.1 Acyclic monoalkenes

For isolated C=C bonds in monoalkenes and polyalkenes,

the Peeters et al. (2007) method defines site-specific param-

eters for addition to form primary, secondary and tertiary β-

hydroxyalkyl radicals as follows:

k(-C=CH2) = kprim-add , (8)

k(-C=CH-X) = ksec-addF
′(X), (9)

k(-C=C(-X)-Y) = ktert-addF
′(X)F ′(Y), (10)

where kprim-add, ksec-add and ktert-add are the respective group

rate coefficients for OH addition to form primary, secondary

and tertiary β-hydroxyalkyl radicals; and F ′(X) and F ′(Y)

are factors that account for the effects of the substituents

X and Y. The reference substituent is defined as “-CH3”,

such that F ′(-CH3) = 1.00. In the original work of Peeters et

al. (2007), all alkyl and alkenyl substituents in monoalkenes

and polyalkenes were also assigned a factor of F ′(X) = 1.00,

and this assumption is also largely applied in the present

work. However, a small size-dependent substituent factor is

considered for the specific case of acyclic linear alkyl sub-

stituents (-CnH2n+1), to help account for the reported in-

crease in kadd with alkene size for homologous series of

alk-1-enes, 2-methyl-alk-1-enes and trans-alk-2-enes (As-

chmann and Atkinson, 2008; Nishino et al., 2009).

The values of kprim-add, ksec-add and ktert-add were initially

optimized for 298 K, using the preferred kinetic data for the

44 acyclic monoalkenes in the preferred dataset. In general

accordance with the analysis of Nishino et al. (2009), a value

of F ′(-CnH2n+1) = (1+ε[1−exp(−0.35(Cn−1))]) was ap-

plied for each linear alkyl substituent, where Cn is the car-

bon number of the substituent and ε is a scaling factor. The

relevant H-atom abstraction substituent factors, F (-C=CH2),

F (-C=CHR) and F (-C=CR2), were also defined as part of

the same procedure, where “R” denotes any alkyl group. The

values of F (-C=CH2) and F (-C=CHR) were constrained to

obtain total branching ratios for H-atom abstraction of 6 %

for but-1-ene and 3 % for trans-but-2-ene, as reported by Loi-

www.atmos-chem-phys.net/18/9297/2018/ Atmos. Chem. Phys., 18, 9297–9328, 2018
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Table 10. Arrhenius parameters (k = Aexp(−(E/R)/T )) for the group rate coefficients for OH addition to C=C bonds in monoalkenes and

polyalkenes; and the group rate coefficient values at 298 Ka.

Group Parameter A E/R k298 K

(10−12 cm3 molecule−1 s−1) (K) (10−12 cm3 molecule−1 s−1)

isolated C=C bonds

-C=CH2 kprim-add 2.04 −215 4.2

-C=CHCH3 ksec-add 4.30 −540 26.3

-C=C(CH3)2 ktert-add 8.13 −550 51.5

conjugated C=C-C=C bondsb

-C=CHC=CH2 ksec,prim 6.74 −445 30

-C=C(CH3)-C=CH2 ktert,prim 13.70 −445 61

-C=CH-C=CHCH3 ksec,sec 8.99 −445c 40

-C=C(CH3)-C=CHCH3 ktert,sec 16.62 −445c 74

-C=CH-C=C(CH3)2 ksec,tert 10.56 −445c 47

-C=C(CH3)-C=C(CH3)2 ktert,tert 22.24 −445c 99d

cumulative C=C=C bonds

-C=C=C kv 0.777 −75 1.0

-C(=CH2)2 kpp 6.22 −75 8.0

-C(=CH2)=CHCH3 kps 5.13 −495e 27

-C(=CH2)=C(CH3)2 kpt 9.27 −525e 54

-C(=CHCH3)=CHCH3 kss 8.17 −540e 50f

-C(=CHCH3)=C(CH3)2 kst 12.04 −545e 75g

-C(=C(CH3)2)=C(CH3)2 ktt 15.79 −550e 100h

Notes: a reference parameters are defined for degrees of substitution by -CH3 (see Sect. 4.1). Values shown in bold were optimized by the procedures

described in Sect. 4.1. Other values could not be fitted, owing to insufficient data, but were estimated as described in the following notes. b Product

radicals are assumed to be formed 50 % E- and 50 % Z- unless specific information is available. c Assumed equal to that optimized for ksec,prim and

ktert,prim. d Estimated value, unchanged from Peeters et al. (2007). e E/R values based on the weighted average of those for the corresponding

combinations of kprim-add, ksec-add and ktert-add. f kss estimated to be ≈ 2ksec-add at 298 K. g kst estimated to be ≈ ksec-add + ktert-add at 298 K.

h ktt estimated to be ≈ 2ktert-add at 298 K (see Sect. 4.1.6).

son et al. (2010); and F (-C=CR2) was assumed to be equal

to F (-C=CHR). The values of kprim-add, ksec-add, ktert-add and

ε were varied iteratively to minimize the summed square de-

viation, 6((kcalc − kobs)/kobs)
2, for the set of alkenes. Fig-

ure 6 shows a correlation of the optimized values of kcalc with

kobs at 298 K.

The resultant values of the optimized parameters are given

in Tables 10, 11 and 12. The values of kprim-add, ksec-add

and ktert-add are slightly different from (but consistent with)

those reported previously by Peeters et al. (2007), ow-

ing to optimization to the complete monoalkene dataset,

and explicit consideration of H-atom abstraction. The op-

timized value of 0.14 for ε indicates that the enhance-

ments in ksec-add and ktert-add are up to 14 % for each lin-

ear alkyl substituent. This effect is somewhat smaller than

reported by Nishino et al. (2009), because the rate coeffi-

cients applied to account for H-atom abstraction from the

alkyl groups in that study are smaller than those deter-

mined here. The values of F (-C=CH2), F (-C=CHR) and

F (-C=CR2) in Table 12 are consistent with a significant ac-

tivating influence on H-atom abstraction adjacent to C=C

bonds, resulting from the formation of resonance-stabilized

radicals, as considered in detail previously in the DFT study

of Vereecken and Peeters (2001). The corresponding rate co-

efficients for abstraction from primary, secondary and ter-

tiary groups adjacent to a C=C bond thus lie in the re-

spective ranges 0.11–0.27, 1.3–3.2 and 6.8–17 (in units of

10−12 cm3 molecule−1 s−1 per H-atom), which compare very

well with the representative ranges calculated by Vereecken

and Peeters (2001), 0.15–0.25, 1.5–3.0 and 8–15. Partly as

a result of this, H-atom abstraction appears to be the dom-

inant effect in accounting for the reported general increase

in k with alkene size for homologous series of alk-1-enes,

2-methyl-alk-1-enes and trans-alk-2-enes, as illustrated in

Fig. S5. To a first approximation, therefore, the optimized

size-dependent substituent factor for acyclic linear alkyl sub-

stituents (-CnH2n+1) can be considered as optional, and a

value of F ′(X) = 1.00 could alternatively be applied for sim-

plicity.

Temperature-dependent recommendations are available

for eight of the acyclic monoalkenes in Arrhenius format,

as given in the preferred data in the Supplement (spread-

sheet SI_3). These were used to provide optimized values of

the temperature coefficient (E/R) and pre-exponential fac-

tor (A) for the group rate coefficients, kprim-add, ksec-add and

ktert-add (see Table 4), using the same procedure described

Atmos. Chem. Phys., 18, 9297–9328, 2018 www.atmos-chem-phys.net/18/9297/2018/
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Figure 6. (a) A log–log correlation of kcalc and kobs at 298 K for alkenes (for presentation purposes, the values for ethene and propadiene

have been scaled up by a factor of 2). The broken lines show the factor of 2 range. (b) A correlation of the temperature coefficients (E/R)calc

and (E/R)obs for the same compound classes. The broken lines show the ±200 K range.

above for the alkane H-atom abstraction reactions. The resul-

tant (E/R)calc values are compared with the recommended

(E/R)obs values in Fig. 6 (see also Fig. S6).

4.1.2 Acyclic unconjugated (isolated) dienes

The parameter values determined above were also applied

to calculate rate coefficients for the reactions of OH with

six acyclic unconjugated (isolated) dienes (i.e. with re-

mote C=C bonds) for which preferred kinetic data are

available in the database. Three of these possess C=C

bonds that are separated by a chain of two single C-

C bonds, such that H-atom abstraction at the interme-

diate -CH2- group forms a “superallyl” resonant struc-

ture. Because the two “-C=C-” substituents cannot there-

fore be regarded as independent, a relevant set of compos-

ite H-atom abstraction substituent factors, F ((-C=CH2)2),

F ((-C=CH2)(-C=CHR)), F ((-C=CH2)(-C=CR2)), F ((-

C=CHR)2), F ((-C=CHR)(-C=CR2)) and F ((-C=CR2)2)

was defined, as indicated in Table 12. There are insufficient

data to optimize these factors, and indeed only two of the six

relevant structures are included in the set of unconjugated di-

enes. The factors were therefore assumed to be equal to the

corresponding sum of those for formation of the component

allyl structures, e.g. F ((-C=CH2)2) = 2 × F (-C=CH2), as

shown in Table 12. As discussed further below (Sect. 4.1.7),

this assumption appears to provide reasonable estimates of

branching ratios for H-atom abstraction, where information

www.atmos-chem-phys.net/18/9297/2018/ Atmos. Chem. Phys., 18, 9297–9328, 2018
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Table 11. Substituent factors, F ′(X) = AF ′(X) exp(−BF ′(X)/T ), for the addition OH to C=C bondsa.

X AF ′(X) BF ′(X) F ′(X)298 K

(K)

-CnH2n+1 (acyclic linear alkyl)b – – 1 + 0.14[1 − exp(−0.35(Cn − 1))]

other alkyl and alkenyl (and default)c 1.0 0 1.0

-OHd 0.249 −515 1.4

-CH2OH, -CH(OH)-, -C(OH)<, 0.951 −190 1.8

-C-CH2OH, -C-CH(OH)-, -C-C(OH)<e

-CH2OOH, -CH(OOH)-, -C(OOH)<f,g – – 1.2

-C(=O)Hh 0.423 145 0.26

-C(=O)-i 0.328 −180 0.6

-C(=O)OH, -C(=O)ORj 0.094 −480 0.47

-OC(=O)Rk 0.508 −180 0.93

-C-OC(=O)Rl 0.319 −230 0.69

-CH2ONO2, -CH(ONO2)-, -C(ONO2)<g,m – – 0.26

-C-CH2ONO2, -C-CH(ONO2)-, -C-C(ONO2)<g,n – – 0.6

-C(=O)OONO2
g,o – – 0.47

-NO2
p – – 0.0

-CH2NO2, -CH(NO2)-, -C(NO2)<g,q – – 0.3

Notes: a F ′(X) quantifies the effect of replacing a -CH3 substituent by the given group. Where F ′(X) is influenced by two groups, X1 and X2,

F ′(X) = F ′(X1) F ′(X2). b Based on results of Aschmann and Atkinson (2008) and Nishino et al. (2009), and applied to acyclic linear alkyl

groups only. Results in enhancements of up to 14 % and can be ignored to a first approximation. Assumed to be temperature independent. c Also

used as a default for groups with remote substituents. d Based on limited information (three hydroxy ketones), and primarily optimized using

temperature-dependent data for 4-hydroxy-pent-3-en-2-one. e Primarily based on data for 10 α,β-unsaturated (allylic) alcohols (four

temperature-dependent) and five β,γ -unsaturated alcohols (two temperature-dependent), but also taking account of data for multifunctional

compounds containing hydroxyl groups; f Based on room temperature data of St Clair et al. (2016) for two α,β-unsaturated hydroperoxides.
g F ′(X) should provisionally be assumed to be temperature independent. h Primarily based on data for seven α,β-unsaturated aldehydes (six

temperature-dependent) and six α,β-unsaturated dialdehydes (none temperature-dependent). i Data do not give a well defined value. Assigned

factor is based on temperature-dependent data for methylvinyl ketone, the most studied compound in this class. j Based on room temperature data

for propenoic acid and data for six acrylate and methacrylate esters (five temperature-dependent). k Based on temperature-dependent data for

vinyl acetate and i-propenyl acetate. l Based on temperature-dependent data for allyl acetate. m Based on room temperature data for two

α,β-unsaturated dinitrates, four α,β-unsaturated hydroxynitrates and one α,β-unsaturated nitro-oxy aldehyde. n Based on room temperature data

for three β,γ -unsaturated dinitrates. o Based on room temperature data for MPAN. p Based on room temperature data for nitroethene and

1-nitrocyclohexene (NB kadd(-NO2) assumed to take a value of zero for 1-nitroalkenes). q Based on room temperature data for 3-nitropropene.

is available. A correlation of the optimized values of kcalc

with kobs at 298 K is shown in Fig. 6. The optimized method

reproduces all the observed values to within 23 %.

4.1.3 Cyclic alkenes and cyclic unconjugated dienes

The optimized parameter values were also used to estimate

rate coefficients for the reactions of OH with 22 cyclic

alkenes and cyclic unconjugated dienes for which preferred

kinetic data are available in the database. For these calcu-

lations, no adjustments were made for possible impacts of

ring strain or steric effects on the OH addition rate coeffi-

cients, although the empirical ring-strain factors, Fring, deter-

mined above for 3-member through to 8-member rings were

assumed to apply to the calculation of partial rate coefficients

for H-atom abstraction. In addition to this, relevant tertiary

(-CH<) groups at the bridgehead of strained bicyclic struc-

tures were assumed to be unable to form resonant allyl-type

radicals upon abstraction of the H-atom, owing to the un-

favourable orientation of the radical orbital, as discussed for

α-pinene by Vereecken and Peeters (2001). In these specific

cases, the activating substituent factors in Table 12 were not

applied.

A correlation of the optimized values of kcalc with kobs

at 298 K is shown in Fig. 6. The estimation method repro-

duces 15 of the observed values to within 20 %, 18 to within

40 % and all 22 values to within about a factor of 2. In

the four cases for which the absolute deviations are greater

than 40 % (bicyclo[2.2.2]-oct-2-ene, α-pinene, sabinene and

longifolene), it is not straightforward to rationalize the level

of disagreement or modify the estimation method, because

the deviations for some structurally similar compounds are

either much smaller or in the opposite sense (e.g. α-pinene

vs. 3-carene; sabinene vs. β-pinene). Nevertheless, the level

of performance of the estimation method can be regarded

as acceptable, given that the series of compounds comprises

complex bicyclic and polycyclic structures.

Temperature-dependent parameters are recommended for

limonene, α-pinene and β-pinene in Arrhenius format. As

shown in Fig. 6b, the values of E/R calculated from the

parameters optimized above using the monoalkene dataset

are in reasonable agreement with those observed (see also

Fig. S6).
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Table 12. Substituent factors F(X) related to the H-atom abstraction reactions of OH adjacent to C=C bondsa, and their temperature

dependences described by F(X) = exp(−BF (X)/T ).

X F(X)298 K BF(X) (K)

-C=CH2 2.5 −275

-C=CHR 6.2 −545

-C=CR2 6.2 −545

-C=C=C< 1.0b 0

(-C=CH2)2 5.0c,d −480

-C=CH-C=CH2, (-C=CH2)(-C=CHR) 8.7c,e −645

-C=C(R)-C=CH2, (-C=CH2)(-C=CR2) 8.7c,f −645

-C=CH-C=CHR, (-C=CHR)2 12.4c,g −750

-C=C(R)-C=CHR, -C=CH-C=CR2, (-C=CHR)(-C=CR2) 12.4c,h −750

-C=C(R)-C=CR2, (-C=CR2)2 12.4c,i −750

Notes: a R denotes any alkyl group. Values shown in bold were optimized or assigned by the procedures described in

Sect. 4.1. Other values could not be fitted owing to insufficient data, but were estimated as described in Sect. 4.1 and

the following notes. For clarity, residual substituents are not shown on intermediate carbon atoms, but can be either H

or R. b Assumed to have no activating influence because the resonant radical possesses partial vinyl character.
c Substituent factors related to formation of “superallyl” resonant structures assumed equal to the corresponding sum

of those for formation of the component allyl structures. d Assumed equal to 2F (-C=CH2). e Assumed equal to

F (-C=CH2) + F (-C=CHR). f Assumed equal to F (-C=CH2) + F (-C=CR2). g Assumed equal to 2F (-C=CHR). h

Assumed equal to F (-C=CHR) + F (-C=CR2). i Assumed equal to 2F (-C=CR2).

4.1.4 Acyclic conjugated dienes

The estimation of rate coefficients for OH addition to conju-

gated diene systems is also based on the method described

by Peeters et al. (2007). Site-specific rate coefficients for ad-

dition of OH to the internal carbon atoms of the diene sys-

tem can be estimated using the parameters optimized above

for monoalkenes. Addition of OH to the outer carbon atoms

of the diene system generates resonance-stabilized hydroxy-

substituted radicals, for which a further set of site-specific

parameters is defined (see Peeters et al., 2007):

k(-C=CH-C=CH2) = ksec,prim, (11)

k(-C=C(X)-C=CH2) = ktert,prim(F ′(X))1/2, (12)

k(-C=CH-C=CHX) = ksec,sec(F
′(X))1/2, (13)

k(-C=C(X)-C=CHY) = ktert,sec (F ′(X)F ′(Y))1/2, (14)

k(-C=CH-C=C(X)Y) = ksec,tert (F ′(X)F ′(Y))1/2, (15)

k(-C=C(X)-C=X(Y)Z)

= ktert,tert (F ′(X)F ′(Y)F ′(Z))1/2. (16)

The k parameters (e.g. ksec,prim) are the respective group

rate coefficients for OH addition to form the corresponding

resonance-stabilized radicals. In the first case, for example,

the product is a resonance stabilized secondary-primary rad-

ical:

HO-C-ĊH-C=CH2 (secondary)

↔ HO-C-CH=C-ĊH2 (primary).

As above, F ′(X), F ′(Y) and F ′(Z) are factors that account

for the effects of the substituents X, Y and Z. Based on the

limited data available for resonant radicals containing oxy-

genated substituents (presented in Sect. 4.2), the combined

effect of the substituents is raised to the power of 1/2 for

these resonant systems. This assumption has almost no ef-

fect for the dienes considered here because, with one ex-

ception, they contain no ≥C2 linear alkyl substituents such

that F ′(X) = 1.00 (in the exceptional case of trans-hexa-1,3-

diene, there is a single ethyl group, which has a near-unity

substituent factor, F ′(X) = 1.04).

The values of the group rate coefficients were initially

optimized for 298 K, using the preferred kinetic data for

the 11 acyclic conjugated dienes in the database, with 2 of

these (β-myrcene and β-ocimene) being trienes that pos-

sess an additional unconjugated C=C bond. Abstraction

of an H atom at a carbon atom adjacent to the conju-

gated diene system generates a resonance-stabilized super-

allyl radical, and a corresponding set of H-atom abstrac-

tion substituent factors, F (-C=CH-C=CH2), F (-C=C(R)-

C=CH2), F (-C=CH-C=CHR), F (-C=C(R)-C=CHR), F (-

C=CH-C=CR2) and F (-C=C(R)-C=CR2) was therefore

defined, as indicated in Table 12. Once again, the fac-

tors were assumed to be equal to the corresponding sum

of those for formation of the component allyl structures,

e.g. F (-C=CH-C=CH2) = F (-C=CHR) + F (-C=CH2), as

shown in Table 12. The corresponding rate coefficients for H-

atom abstraction from primary, secondary and tertiary groups

adjacent to a C=C-C=C bond system thus lie in the re-

spective ranges 0.38–0.54, 4.5–6.4 and 24–34 (in units of

10−12 cm3 molecule−1 s−1 per H atom), which compare rea-

sonably well with the representative ranges calculated by

Vereecken and Peeters (2001), 0.6–1.0, 6–10 and 30–60.

The value of one of the group rate coefficients (ktert,tert)

was left unchanged from that estimated by Peeters et

www.atmos-chem-phys.net/18/9297/2018/ Atmos. Chem. Phys., 18, 9297–9328, 2018
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al. (2007), owing to the absence of kinetic data for acyclic

conjugated dienes containing the relevant structure. The val-

ues of the other five (ksec,prim, ktert,prim, ksec,sec, ktert,sec and

ksec,tert) were varied to minimize the summed square devia-

tion, 6((kcalc −kobs)/kobs)
2, for the set of acyclic conjugated

dienes. The resultant values of the optimized parameters are

given in Tables 10 and 12. The values of ksec,prim, ktert,prim,

ksec,sec and ksec,tert are slightly different from (but consis-

tent with) those reported previously by Peeters et al. (2007),

owing to explicit consideration of H-atom abstraction in the

present work. A correlation of the optimized values of kcalc

with kobs at 298 K is shown in Fig. 6. The estimation method

reproduces all the observed values to within 13 %.

Temperature-dependent recommendations are available

for buta-1,3-diene and isoprene in Arrhenius format. These

were used to optimize values of the temperature coefficient

(E/R) and pre-exponential factor (A) for the group rate co-

efficients, ksec,prim and ktert,prim (see Table 10). The tem-

perature dependences for both buta-1,3-diene and isoprene

are well described by using a value of −445 K for both

(E/R)sec,prim and (E/R)tert,prim, and this value was therefore

also adopted for (E/R)sec,sec, (E/R)tert,sec, (E/R)sec,tert and

(E/R)tert,tert. The values of the pre-exponential factors, A,

were automatically returned from the corresponding E/R

and k298 K values. The resultant (E/R)calc values are com-

pared with the recommended (E/R)obs values in Fig. 6 (see

also Fig. S6).

4.1.5 Cyclic conjugated dienes

The optimized parameter values were also used to estimate

rate coefficients for the reactions of OH with five cyclic con-

jugated dienes for which preferred kinetic data are available

in the database. As above, no adjustments were made for the

possible impacts of ring strain or steric effects on the OH ad-

dition rate coefficients, but the empirical ring-strain factors,

Fring, determined in Sect. 3.2 for 6- and 7-member rings were

assumed to apply to the calculation of partial rate coefficients

for H-atom abstraction.

A correlation of the optimized values of kcalc with kobs at

298 K is shown in Fig. 6. The estimation method reproduces

the observed values for cyclohexa-1,3-diene, cyclohepta-1,3-

diene and β-phellandrene to within 18 %. The deviations

for the highly reactive monoterpenes, α-phellandrene and α-

terpinene are larger, the calculated values being about 30 %

lower than those observed.

4.1.6 Acyclic cumulative dienes

Preferred kinetic data are available for the reactions of OH

with four cumulative dienes, namely propadiene, buta-1,2-

diene, penta-1,2-diene and 3-methyl-buta-1,2-diene. Addi-

tion of OH to these structures cannot be described by the

parameters defined above, so a further set of site-specific pa-

rameters is defined here, as summarized in Table 10. The rate

kv is a generic group rate coefficient describing OH addition

to each of the outer carbon atoms of the diene system, lead-

ing to the formation of an alkenyl (vinyl) radical. Because the

substitution of the radical site is invariant, this rate coefficient

is assumed to be identical in all cases. The other k parame-

ters (e.g. kpp) are the respective group rate coefficients for

OH addition to the central carbon atom, which leads to the

radical centre being on either of the two outer carbon atoms.

The subscripts (p = primary; s = secondary; t = tertiary) de-

scribe the level of substitution of the possible product radical

centres. The parameter kpp is specific to propadiene, with the

total rate coefficient being kpp+ 2kv. Daranlot et al. (2012)

have inferred that the reaction occurs 80 % via addition to

the internal carbon atom, based on a combination of exper-

imental results and theoretical calculations. This branching

ratio was therefore used to constrain the relative values of

kpp and kv in the present work, i.e. kpp = 8kv.

The values of the group rate coefficients were optimized

for 298 K, using the preferred kinetic data for the four cu-

mulative dienes. Abstraction of an H atom at a carbon atom

adjacent to the diene system potentially generates a reso-

nant radical. However, because of the vinyl character of one

of the resonant forms, the corresponding substituent fac-

tor, F (-C=C=C<), is assumed not to be activating (see Ta-

ble 12). As above, the appropriate value of F ′(R) was ap-

plied to account for the activating effect of linear -CnH2n+1

groups, although this only results in a very small adjustment

in the one case of penta-1,2-diene, and is therefore not fully

tested by the current dataset.

The values of kv, kpp, kps and kpt were varied to mini-

mize the summed square deviation, 6((kcalc − kobs)/kobs)
2,

for the set of cumulative dienes. The resultant values of the

optimized parameters are given in Table 10. A correlation of

the optimized values of kcalc with kobs at 298 K is shown for

the four cumulative dienes in Fig. 6. The estimation method

reproduces the observed values to within 13 %. The values

of the other parameters (kss, kst and ktt) could not be opti-

mized, owing to the absence of the relevant structures in the

set of compounds for which data are available. However, it is

noted that kpp ≈ (2kprim-add), kps ≈ (kprim-add + ksec-add) and

kpt ≈ (kprim-add + ktert-add). The values of kss, kst and ktt are

therefore provisionally set to be approximately the sum of

the corresponding combinations of ksec-add and ktert-add. Data

for larger cumulative dienes are required to test this assump-

tion.

A temperature-dependent recommendation is available for

propadiene in Arrhenius format. A corresponding rounded

value of E/R was therefore assigned to both (E/R)v and

(E/R)pp (see Table 10). In all the other cases, the provi-

sional E/R values are based on the weighted average of

those for the corresponding combinations of kprim-add, ksec-add

and ktert-add. The values of the pre-exponential factors, A,

were automatically returned from the corresponding E/R

and k298 K values.
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Table 13. Comparison of estimated and observed total branching ra-

tios for H-atom abstraction, kabs/(kabs+kadd). The estimated values

correspond to 298 K, and the observed values are for temperatures

at or near 298 K.

Compound Branching ratio Comment

Calculated Observed

propene 1.0 % < 2 % a

but-1-ene 6.1 % < 10 % b

< 10 % c

(8 ± 3) % a

(5 ± 2) % d

trans-but-2-ene 3.0 % (3 ± 1) % a

cyclohexa-1,3-diene 15.6 % 8.9 % e

(15 ± 6) % f

< 10 % g

(8.1 ± 0.2) % h

cyclohexa-1,4-diene 14.7 % (15.3 ± 0.3) % e

(26 ± 9) % f

(12.5 ± 1.2) % i

limonene 13.7 % (34 ± 8) % j

α-phellandrene 21.3 % (28 ± 7) % f

(27 ± 10) % g

α-terpinene 17.9 % (30 ± 8) % f

(30 ± 7) % g

γ -terpinene 15.5 % (31 ± 9) % j

(13.6 ± 2.5) % k

Comments: observed values reported in the following studies: a Loison et al. (2010);
b Hoyermann and Sievert (1983); c Atkinson et al. (1985); d Loison et al. (2010)

re-evaluation of Biermann et al. (1982); e Ohta (1984); f Peeters et al. (1999a);
g Peeters et al. (1999b); h Jenkin et al. (2005); i Tuazon et al. (2003);
j Rio et al. (2010);
k Aschmann et al. (2011).

As indicated above, addition of OH to the central carbon

atom of a cumulative diene system leads to the radical centre

being on either of the two outer carbon atoms. In the ab-

sence of data, the formation ratio of the two possible radical

products in asymmetric systems is also based on the relative

values of the relevant rate coefficients, kprim-add, ksec-add and

ktert-add, leading to the more substituted product radical being

favoured. Clearly additional information is required to con-

firm this approach.

4.1.7 Branching ratios for H-atom abstraction

The site-specific partial rate coefficients estimated by the

above methods also define the branching ratios for both OH

addition and H-atom abstraction for the reaction of OH with a

given alkene. The total 298 K branching ratios for H-atom ab-

straction, kabs/(kabs + kadd), are presented for all compounds

in Fig. S7, which are calculated to lie in the range 0–33 % us-

ing the methods presented above. These values suggest that,

although OH addition remains the dominant process for all

the compounds, H-atom abstraction is potentially significant

in many cases. Reported branching ratios for H-atom abstrac-

tion are available for a subset of nine of the compounds con-

sidered in the present work. The values are listed in Table 13,

along with the corresponding 298 K values calculated by the

SAR method presented here. The values are also compared

in a correlation plot, shown in Fig. S8, confirming that the

SAR broadly recreates the trend in the observed values.

4.2 Organic oxygenates containing C=C bonds

The preferred 298 K data include rate coefficients for re-

actions of OH with 81 unsaturated oxygenated compounds

containing C=C bonds. These include data for 18 al-

cohols, 16 aldehydes, 17 ketones and hydroxyketones,

2 hydroxy-hydroperoxides, 13 esters, 1 acid (propenoic

acid), 7 hydroxy-nitrates, 2 dinitrates, 1 carbonyl nitrate

(trans-2-methyl-4-nitrooxy-2-buten-1-al), 1 peroxyacyl ni-

trate (MPAN), and 3 nitroalkenes. In practice, only five of

these compounds contain conjugated double bonds, with

the oxygenated substituents limited to aldehyde and ketone

groups. As a result, the methods optimized below are mainly

based on the impacts of oxygenated groups on isolated dou-

ble bonds and, in some cases, are derived from very sparse

datasets.

Table 11 presents substituent factors, F ′(X), for a vari-

ety of oxygenated substituents, where each quantify the ef-

fect of replacing a -CH3 substituent with the given group.

These were initially optimized for 298 K, by minimizing the

summed square deviation, 6((kcalc−kobs)/kobs)
2, for the sets

of compounds summarized in the notes to Table 11. This pro-

cedure also took account of the contributions from H-atom

abstraction reactions at relevant sites within the compounds,

using the methods presented above. For H-atom abstrac-

tion adjacent to C=C bonds (forming resonance-stabilized

allyl-type radicals), the factors for alkenes and dienes (e.g.

F (-C=CHR)) given in Table 12 were modified to account for

the effects of oxygenated substituents to the double bonds,

using the relevant values of the H-atom abstraction sub-

stituent factors, F(X), given in Tables 5, 8 and 9, for exam-

ple:

F(-C=CHX) = F(-C=CHR)F (X) (17)

F(-C=C(X)-C=CHY)

= F(-C=C(R)-C=CHR) (F (X)F (Y))1/2. (18)

Parameters calculated in this way currently only apply to a

limited number of unsaturated oxygenates for which kinetic

data are available, and the corresponding abstraction routes

generally make relatively minor contributions to the overall

calculated rate coefficient. As a result, this approach must be

regarded as provisional, with further information required for

its full validation. In the specific case of H-atom abstraction

from a formyl group adjacent to a C=C bond, formation of

a resonant radical is not possible (owing to the perpendicular

alignment of the unpaired electron), and a single rate coeffi-

cient (kabs(-CHO)-αC=C) was simultaneously optimized, based

on data for 13 α,β-unsaturated aldehydes (see Table 4). As
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Figure 7. (a) A log–log correlation of kcalc and kobs at 298 K for unsaturated organic oxygenates. The broken lines show the factor of 2

range (see Table S1 for identities of outliers). (b) A correlation of the temperature coefficients (E/R)calc and (E/R)obs for the same

compound classes. The broken lines show the ±200 K range.

with the other formyl group rate coefficients in Table 4, this

rate coefficient is applied independently of substituent fac-

tors. A correlation of the resultant values of kcalc with kobs at

298 K is shown in Fig. 7a.

Temperature-dependent recommendations are available

for a subset of 22 unsaturated organic oxygenates. Where

possible, these were used to provide representative values of

the temperature coefficients (BF(X)) and pre-exponential fac-

tors (AF(X)) for the substituent factors given in Table 2. The

values of BF(X) were varied with the aim of minimizing the

summed square deviation in the composite temperature coef-

ficients, 6((E/R)calc − (E/R)obs)
2, for the contributing sets

of compounds. The resultant (E/R)calc values are compared

with the recommended (E/R)obs values in Fig. 7b (see also

Fig. S9). The values of AF(X) were automatically returned

from the corresponding optimized BF(X) and F(X)298 K val-

ues. An optimized temperature-dependence expression for

kabs(-CHO)-αC=C was also determined as part of this proce-

dure, as given in Table 4.

The site-specific partial rate coefficients estimated by the

above SAR methods can also be used to define the branching

ratios for both OH addition and H-atom abstraction for the

reaction of OH with a given unsaturated oxygenate. Where

available, the present methods appear to provide a reasonable
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representation of reported product yields and mechanistic in-

formation (e.g. see examples given in the Supplement).

5 Unsaturated organic compounds containing

C≡C bonds

Reported kinetic data for the reactions of OH with alkynes

are available for ethyne (acetylene), propyne, but-1-yne, but-

2-yne, pent-1-yne and hex-1-yne. These data suggest that the

rate coefficient for OH addition to C≡C bonds in alkynes

cannot be estimated in an analogous way to that applied to

alkenes above (i.e. by adding partial rate coefficients for ad-

dition of OH to each side of the triple bond). In this case, the

addition rate coefficient is based on a single parameter for

the C≡C group (kC≡C), which is modified on the basis of the

identities of the two substituent groups:

k(X-C≡C-Y) = kC≡CFC≡C(X)FC≡C(Y). (19)

The values of kC≡C and relevant FC≡C(X) were opti-

mized using the preferred dataset, with rate coefficients

based on high pressure limiting values. For this procedure,

FC≡C(-H) was assigned a value of 1.00, and the abstraction

of H atoms from the substituent alkyl groups was treated us-

ing the method optimized above in Sect. 3, with F (-C≡C-)

also assumed to take a value of 1.00 (as previously ap-

plied by Kwok and Atkinson, 1995). This resulted in an

optimized value of kC≡C = 9.4 × 10−13 cm3 molecule−1 s−1,

with FC≡C(-CH3) = 4.8 for a methyl substituent, and

FC≡C(-R) = 8.0 applied to all other alkyl substituents (al-

though the data are limited to alkynes possessing C1–C4 lin-

ear alkyl substituents). Figure 8 shows a correlation of the

optimized values of kcalc and kobs, demonstrating that the

trend of rate coefficients for this series of alkynes is well

reproduced using these parameters. The kinetics have been

reported to be only weakly dependent on temperature at high

pressures (Boodaghians et al., 1987; Zádor and Miller, 2015)

and the above values of kC≡C, FC≡C(-CH3) and FC≡C(-R)

are therefore assumed to apply over the tropospheric temper-

ature range.

The addition of OH can potentially occur at the car-

bon atoms on either side of the triple bond. Product

yields reported for propyne in some experimental stud-

ies (Hatakeyama et al., 1986; Lockhart et al., 2013), and

a theoretical appraisal of the propyne system (Zádor and

Miller, 2015), suggest that formation of the more substi-

tuted product radical is strongly favoured, but with evidence

for addition to both sides of the C≡C bond reported by

Yeung et al. (2005). It is therefore assumed that the ra-

tios for formation of the product radicals, HO-C(-Y)=Ċ(-X)

and HO-C(-X)=Ċ(-Y), are given by FC≡C(X) / (FC≡C(X)+

FC≡C(Y)) and FC≡C(Y) / (FC≡C(X) + FC≡C(Y)), respec-

tively. However, this provisional assumption is based on lim-

ited information, and further product studies for the reactions

of OH with asymmetric alkynes are required to test this ap-

proach.

At present, data for compounds containing both a C≡C

bond and an oxygenated substituent appear to be limited

to prop-2-yn-1-ol and 3,5-dimethyl-hex-1-yn-3-ol. Based on

the 298 K preferred values of kobs for these compounds, the

presence of a hydroxy substituent on the carbon atom adja-

cent to the C≡C bond has an additional optimized activating

effect of a factor of 3.5 relative to the values of FC≡C(-CH3)

and FC≡C(-R) indicated above. The resultant values of kcalc,

based on this enhancement, are compared with kobs in Fig. 8.

Clearly additional data are also required to confirm the reli-

ability of this provisional estimate, and to allow factors for a

variety of oxygenated substituents to be defined.

6 Reactions of organic radicals with O2 and

competing processes

Carbon-centred organic radicals (R) formed from the reac-

tions that initiate VOC degradation (or from other routes,

such as decomposition of larger oxy radicals) can re-

act with molecular oxygen (O2) under tropospheric condi-

tions, to form the corresponding thermalized peroxy radi-

cals (RO2), the chemistry of which will be summarized else-

where (Jenkin et al., 2018b):

R + O2 (+M) → RO2 (+M), (R1)

where M denotes a third body, most commonly N2 or O2

under atmospheric conditions. Rate coefficients for organic

radicals containing three or more heavy atoms (i.e. C, O and

N) are expected to be close to the high-pressure limit un-

der tropospheric conditions. Table 14 (comment a) shows

representative values of the rate coefficients (based on C4

alkyl radicals), which are consistent with Reaction (R1) typ-

ically occurring on a timescale of ≤ 25 ns in air at atmo-

spheric pressure. In the absence of competing processes, Re-

action (R1) therefore does not need to be included explic-

itly in atmospheric mechanisms, which is the case for the

large majority of R. The remainder of this section summa-

rizes the exceptions to this rule, where either R or the initially

formed peroxy radical adduct, [ROO]‡, undergoes competi-

tive or exclusive decomposition or rearrangement. In addi-

tion, the treatment of Reaction (R1) for systems with an allyl

resonance (i.e. where O2 can add at two positions) is also

described. Abstraction of a hydrogen atom from hydroxy

and hydroperoxy groups in VOCs results in formation of or-

ganic oxy and peroxy radicals, respectively. The treatment of

these species will be summarized elsewhere (e.g. Jenkin et

al., 2018b).
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Table 14. Representative rate coefficients for rapid decomposition or ring-opening reactions of thermalized organic radicals (kdec), relative

to those for addition of O2 (kO2
) for primary, secondary and tertiary radicalsa.

Radical Product(s) kdec/kO2
Relative Comment

rateb

>Ċ-OOH

>Ċ-OOR

>Ċ-ONO2

>C=O + OH

>C=O + RO

>C=O + NO2

– – c

-C(=O)Ċ=O -Ċ=O + CO 2.35 × 1021 exp(−1405/T ) 4.1 d

(1) (2) (2) = primary radical

8.9 × 1023 exp(−3445/T ), (1) = primary 1.7 e,f

4.2 × 1023 exp(−3445/T ), (1) = secondary 0.79

3.1 × 1023 exp(−3445/T ), (1) = tertiary 0.58

(2) = secondary radical

8.9 × 1023 exp(−2905/T ), (1) = primary 10 e,f

4.2 × 1023 exp(−2905/T ), (1) = secondary 4.8

3.1× 1023 exp(−2905/T ), (1) = tertiary 3.5

(2) = tertiary radical

8.9 × 1023 exp(−2510/T ), (1) = primary 38 e,f

4.2 × 1023 exp(−2510/T ), (1) = secondary 19

3.1 × 1023 exp(−2510/T ), (1) = tertiary 13

O (1)

O

10.4 × 1023 exp(−2200/T ), (1) = primary 130 g,f

4.9 × 1023 exp(−2200/T ), (1) = secondary 60

3.6 × 1023 exp(−2200/T ), (1) = tertiary 44

O
uncompetitive < 10−3 g

Comments: a rate coefficients adopted for reactions of primary, secondary and tertiary alkyl peroxy radicals with O2 (kO2
, in units

10−12 cm3 molecule−1 s−1) are 8, 17 and 23, respectively; based on the (high pressure limit values) reported by Lenhardt et al. (1990) for

1-butyl, 2-butyl and 2-methyl-2-propyl radicals. These values are expected to have a weak temperature dependence, and are assumed here to be

independent of temperature over the tropospheric range. b Illustrative value of kdec/kO2
[O2] for air at 298 K and 760 Torr. c These processes are

estimated to occur spontaneously on the picosecond timescale (Vereecken et al., 2004; Vereecken, 2008) and can be assumed to occur exclusively

for all relevant organic radicals. d Based on the relative rate coefficient reported by Jagiella and Zabel (2008) for thermalized CH3C(=O)Ċ=O

radicals. NB chemically activated [R′C(=O)Ċ=O]‡ radicals, formed specifically from the reactions of OH with R′C(=O)CHO, are assumed to

decompose exclusively to R′ĊO + CO (60 %) and R′ + 2 CO (40 %), based on the observations of Baeza-Romero et al. (2007) for the reaction of

OH with methyl glyoxal (CH3C(=O)CHO) (see Sect. 6.1). e Based on the average of rate coefficients reported by Bowry et al. (1991) for a series

of cyclopropyl-alkyl radicals, representing the value per relevant bond. f The values of kdec/kO2
shown for the secondary and tertiary reagent

radical (1) can be adjusted approximately for the effects of a substituent group, X, in cyclo-propyl-ĊH-X and cyclo-propyl-Ċ(R′)-X, using the

following temperature-independent factors: i Fdec/O2
(-OH) = 0.6, based on rate coefficients reported for reactions of O2 with the α-hydroxyalkyl

radicals, CH3ĊHOH (http://iupac.pole-ether.fr/; last access: September 2017), C2H5ĊHOH (Miyoshi et al., 1990) and CH3Ċ(OH)CH3 (Miyoshi

et al., 1990); (ii) Fdec/O2
(-C(=O)-) = 7.0, based on rate coefficients reported for reactions of O2 with the β-oxoalkyl/vinoxy radicals

CH3C(=O)ĊH2 (http://iupac.pole-ether.fr/; last access: September 2017) and CH3ĊHC(=O)H (Oguchi et al.,

2001); (iii) Fdec/O2
(-C(OH)<) = 1.7, based on rate coefficients reported for reactions of O2 with the β-hydroxyalkyl radicals CH3ĊHCH2OH and

CH3CH(OH)ĊH2 (Miyoshi et al., 1990); (iv) Fdec/O2
(=O) = 4.5, based on rate coefficient reported for reaction of O2 with

CH3ĊO (http://iupac.pole-ether.fr/; last access: September 2017); and (v) Fdec/O2
(=C<) = 0.9, based on rate coefficient reported for reaction of

O2 with CH2=ĊH (Matsugi and Miyoshi, 2014). For other substituents, Fdec/O2
= 1.0 is assumed, in the absence of data. g Based on the rate

coefficients calculated for the oxiranyl-methyl radical in the theoretical study of Smith et al. (1998). The rate coefficient for C-O bond breaking

agrees with the lower-limit value at 343 K, reported by Krosley and Gleicher (1993).

6.1 Competitive decomposition or rearrangement of R

Table 14 summarizes the instances where the thermalized or-

ganic radical, R, is represented to undergo a rapid decom-

position or rearrangement that is either its exclusive fate

under atmospheric conditions or is competitive with Reac-

tion (R1). Organic radicals with -OOH, -OOR′ (where R′ is

an organic group) or -ONO2 groups α- to the radical centre

are estimated to decompose spontaneously on the picosec-

ond timescale (Vereecken et al., 2004; Vereecken, 2008), as

shown in Table 14. These processes can therefore be assumed

to occur exclusively for all relevant organic radicals. The

other processes shown in Table 14 are estimated to compete

with addition of O2 (Reaction R1), and the rate coefficient
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Figure 8. A log–log correlation of kcalc and kobs at 298 K for alkynes and alkynols. The broken lines show the factor of 2 range.

ratios allow the relative importance of the two processes to

be represented in each case.

In some cases, organic radicals formed specifically from

the reactions of OH with VOCs are formed chemically acti-

vated, [R]‡, and the rate of decomposition or rearrangement

is enhanced. These are represented as follows:

i. Abstraction of the formyl H atom in methylglyoxal

(CH3C(=O)CHO) via reaction with OH has been re-

ported to generate activated [CH3C(=O)CO]‡ radicals

which decompose promptly and exclusively (Baeza-

Romero et al., 2007). This is therefore also assumed for

[R′C(=O)CO]‡ formed specifically from the reactions

of OH with higher analogues (where R′ is any organic

group), leading to the following overall reaction:

OH + R′C(=O)CHO

→ R′ + CO + CO (+H2O) (40%) (R2a)

→ R′Ċ = O + CO (+H2O) (60%). (R2b)

For thermalized R′C(=O)ĊO radicals, formed via other

routes (e.g. decomposition of larger oxy radicals), de-

composition is assumed to occur in competition with

reaction with O2, as shown in Table 14, based primarily

on the results of Jagiella and Zabel (2008) for thermal-

ized CH3C(=O)Ċ=O radicals.

ii. The addition of OH to unsaturated VOCs generates

chemically activated β-hydroxy organic radicals. In

most cases, these subsequently become fully thermal-

ized under atmospheric conditions, and react exclu-

sively with O2 via Reaction (R1) to form the corre-

sponding β-hydroxy peroxy radicals. In a few cases,

however, prompt rearrangements are represented to

compete with stabilization, as shown in Table S2. These

specifically include structures where the radical cen-

tre is on the carbon atom adjacent to a cyclopropyl,

oxiranyl or gem-disubstituted cyclobutyl ring, radicals

formed from the addition of OH to the central car-

bon atoms of conjugated dienes, and structures where

the radical centre is on the carbon atom adjacent to an

-OOH, -C(=O)OOH or -C(=O)OONO2 group.

6.2 Competitive decomposition or rearrangement of

chemically activated [ROO]‡ adducts

Table 15 summarizes the instances where chemically acti-

vated [ROO]‡ adducts, formed initially from the reactions

of specific organic radicals with O2, are represented to un-

dergo a prompt decomposition or rearrangement that is ei-

ther its exclusive fate under atmospheric conditions or com-

petes with stabilization to form the thermalized peroxy rad-

ical, RO2. These specifically include those formed from the

reactions of O2 with α-hydroxy organic radicals, vinyl radi-

cals, 2-hydroxyvinyl radicals and cyclohexadienyl radicals.

i. The reactions of O2 with α-hydroxy organic radi-

cals, >ĊOH, are reported to form both chemically ac-

tivated [>C(OH)OO]‡ adducts and thermalized per-

oxy radicals, >C(OH)O2, with the yield of the lat-

ter increasing with radical size. The chemically acti-

vated [>C(OH)OO]‡ adducts are estimated to isomerize

and decompose promptly and exclusively (i.e. on the

sub-nanosecond timescale) as follows (Dibble, 2002;

Capouet et al., 2004; Hermans et al., 2005):

>ĊOH + O2 → [>C(OH)OO]‡

→ >C(=O) + HO2. (R3)
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Table 15. Prompt rearrangements of chemically activated [ROO]‡ adducts, formed from the reactions of organic radicals with O2.

Radical Products Comment

>ĊOH [>C(OH)OO]‡

→ >C=O + HO2 (1-β)

→ >C(OH)O2 (β)

a

>C=ĊR′ [>C=C(R′)OO]‡

→ >C=O + R′ + CO (65 %)

→ >C=O + R′Ċ=O (35 %)

b

-C(OH)=ĊR′ [-C(OH)=C(R′)OO]‡

→ -C(=O)C(=O)R′ + OH (70 %)

→-C(=O)OH + R′ + CO (30 %)

c

+ HO2
d

Comments: a the fractional formation of thermalized >C(OH)O2 radicals (β) is defined in terms of the size of the

organic group, >COH (see Table 16, Fig. S10 and Sect. 6.2). b Product channels reported for the reaction of O2
with vinyl radicals (e.g. Carpenter, 1995; Eskola and Timonen, 2003; Matsugi and Miyoshi, 2014). Product ratios

applied here are based on observations for the reaction of O2 with the methylvinyl radical (Orlando et al., 1999),

formed during the OH-initiated oxidation of methacrolein (see Sect. 6.2). c Product channels reported for the

reaction of O2 with 2-hydroxyvinyl radicals, formed from the addition of OH to alkynes (e.g. Hatakeyama et al.,

1986; Yeung et al., 2005; Lockhart et al., 2013). Product ratios applied here are based on OH yields reported by

Lockhart et al. (2013) for ethyne, propyne and but-1-yne, and informed by the observations of α-dicarbonyls

(-C(=O)C(=O)R′) and carboxylic acids (-C(=O)OH) reported by Hatakeyama et al. (1986) and Yeung et

al. (2005) (see Sect. 6.2). d Applies generally to cyclohexadienyl and alkyl-substituted cyclohexadienyl

radicals (see Sect. 6.2). Products are based on the reported formation of aromatic hydrocarbon products in a

number of studies (Ohta et al., 1984; Tuazon et al., 2003; Jenkin et al., 2005; Aschmann et al., 2011). Reaction

may proceed either via formation of an [ROO]‡ adduct, or via a direct H-atom abstraction mechanism.

As will be discussed in more detail elsewhere (Jenkin

et al., 2018b), the thermalized >C(OH)O2 radicals can

also isomerize and decompose to form a carbonyl prod-

uct (denoted >C(=O)) and HO2, and this may also

be the dominant fate under atmospheric conditions

in many cases. However, this occurs on millisecond

timescales, such that other competitive isomerization

reactions may need to be considered for specific per-

oxy radical structures, and bimolecular reactions (e.g.

with NO) can compete for all such peroxy radicals un-

der chamber conditions with ppm levels of NOx . Ev-

idence for the formation of thermalized peroxy radi-

cals has been reported in both laboratory studies (e.g.

Orlando et al., 2000; Jenkin et al., 2005; Aschmann

et al., 2010) and theoretical studies (Capouet et al.,

2004; Hermans et al., 2005), with the data suggest-

ing that the fraction of thermalized radicals increases

with radical size (see Table 16 and Fig. S10). Based

on this information, the fraction of thermalized radi-

cals (β) is provisionally defined in terms of the number

of heavy (C, O and N) atoms the organic group (R) con-

tains, denoted nCON, as follows: β = 0 for nCON ≤ 5;

β = [1 + exp(−0.75(nCON−10))]−1 for 6 ≤ nCON ≤ 14;

and β = 1 for nCON ≥ 15. It is noted that this represen-

tation is based on a limited dataset, and that further sys-

tematic information is required to refine the structural

dependence of fractional formation of thermalized α-

hydroxy peroxy radicals.

ii. The reactions of O2 with vinyl radicals, >C=ĊR′, form

chemically activated [>C=C(R′)OO]‡ adducts, which

isomerize and decompose to form a carbonyl product

and a chemically activated acyl radical (e.g. Carpenter,

1995; Eskola and Timonen, 2003; Matsugi and Miyoshi,

2014):

>C=ĊR′ + O2 → [>C=C(R′)OO]‡

→ >C(=O) + [R′Ċ=O]‡. (R4)

The chemically activated acyl radical, [R′Ċ=O]‡, is

shown to either decompose to form R′ and CO (65 %)

or to be stabilized to form R′ĊO (35 %), leading to the

overall chemistry shown in Table 15. These ratios are

based on observations for the reaction of O2 with the

methylvinyl radical, formed during the OH-initiated ox-

idation of methacrolein (Orlando et al., 1999), although

dominant decomposition of [HĊ=O]‡, formed from the

reaction of O2 with the vinyl radical, has also been re-

ported (Matsugi and Miyoshi, 2014). In the absence of

additional systematic data, these product ratios are ap-

plied generally to the reactions of O2 with vinyl rad-

icals, with the exception of 2-hydroxyvinyl radicals,

which are considered below.

iii. The reactions of O2 with 2-hydroxyvinyl radicals,

-C(OH)=ĊR′ (formed, for example, from the addi-

tion of OH to alkynes), form chemically activated [-

C(OH)=C(R′)OO]‡ adducts. Based on the products
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Table 16. Reported fractional formation of thermalized α-hydroxy peroxy radicals (β) from the reactions of α-hydroxy radicals with O2.

Radical nCON Thermalization Comment

fraction (β)

ĊH2OH 2 0 a

CH3ĊHOH 3 0 b

(CH3)2ĊOH 4 0 b

OH

7 0.016–0.077 b

CH3(CH2)5ĊHOH 8 0.13 c

CH(=O)CH=CH(CH2)2ĊHOH 8 (0.50 ± 0.25) d

O OH

12 0.75 e

OHO

12 0.9 e

Comments: a based on the theoretical studies of Dibble (2002) and Hermans et al. (2005). b Based

on the theoretical study of Hermans et al. (2005), with support from the laboratory observations of

the OH-initiated oxidation of small alkenes and alcohols in the presence of NO (e.g. Niki et al.,

1978; Carter et al., 1979). c Based on HCOOH formation during the OH-initiated oxidation of

7-tetradecene in the presence of NO, reported by Aschmann et al. (2010). d Based on HCOOH

formation during the OH-initiated oxidation of cyclohexa-1,3-diene in the presence of NO,

reported by Jenkin et al. (2005). An approximate value of β was extracted from simulation of a

complex system, and the wide error bars are assigned here, based on comments in Jenkin et

al. (2005). e Based on the theoretical study of OH-initiated α-pinene oxidation by Capouet et

al. (2004), with support from the laboratory observations of HCOOH formation during the

OH-initiated oxidation of a series of monoterpenes in the presence of NO (Orlando et al., 2000).

reported for the OH-initiated oxidation of several

alkynes (e.g. Hatakeyama et al., 1986; Yeung et al.,

2005; Lockhart et al., 2013), [-C(OH)=C(R′)OO]‡ is

represented to isomerize and decompose via two path-

ways as follows (leading to the overall chemistry shown

in Table 15):

[-C(OH)=C(R′)OO]‡

→ -C(=O)C(=O)R′ + OH (70%) (R5a)

→ -C(=O)OH + R′ + CO (30%). (R5b)

The assigned product ratios are based primarily on the

OH yields reported by Lockhart et al. (2013) for ethyne,

propyne and but-2-yne, but are also informed by the ob-

servations of α-dicarbonyls (-C(=O)C(=O)R′) and car-

boxylic acids (-C(=O)OH) reported by Hatakeyama et

al. (1986) and Yeung et al. (2005).

iv. The reactions of O2 with cyclohexadienyl and alkyl-

substituted cyclohexadienyl radicals (formed from the

abstraction of an H atom from cyclohexadiene and

alkyl-substituted cyclohexadienes), have been reported

to generate an aromatic hydrocarbon product and HO2

in a number of studies (Ohta et al., 1984; Tuazon et

al., 2003; Jenkin et al., 2005; Aschmann et al., 2011),

with the reaction proceeding either via formation of

an [ROO]‡ adduct, or via a direct H-atom abstraction

mechanism. Based on those studies, this reaction chan-

nel is represented to occur exclusively for this radical

class. As discussed in the companion paper (Jenkin et

al., 2018a), the same process also partially occurs for

hydroxy-substituted cyclohexadienyl radicals formed

from the addition of OH to aromatics, but with other

pathways also contributing in those cases.

6.3 Reversible addition of O2 to allyl radicals

If an organic radical possesses an allyl resonance, there are

two possible addition sites for O2. Furthermore, the reverse

decomposition of the two RO2 radicals to reform the al-

lyl radical is reported to occur at a rate that is competitive

with those for the alternative reactions that are available to

the RO2 radicals under typical atmospheric conditions. This

therefore needs to be taken into account when representing

the reactions of O2 with asymmetric allyl radicals, because

the relative formation of the two RO2 radicals may depend

on the prevailing atmospheric conditions.

The reversible addition of O2 to allyl radicals can be repre-

sented schematically as follows (substituents have been omit-

ted for clarity):
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Figure 9. Root mean square error (RMSE), mean absolute error

(MAE), mean bias error (MBE) and box plot for the error dis-

tribution in the estimated log k298 K values for various subsets of

aliphatic hydrocarbons. The bottom and the top of the box are the

25th (Q1) and 75th percentiles (Q3), the black band is the median

value. The whiskers extend to the most extreme data point which

is no more than 1.5 × (Q3–Q1) from the box. The points are the

extrema of the distribution. The black dotted lines correspond to

agreement within a factor 2.

 

OO

OO

RaO2

RbO2

kfa[O2]

kfb[O2]

krb

kra

The total rate coefficient for addition of O2 is given

by (kfa+ kfb), where the terms represent partial rate coeffi-

cients for the association reactions forming RaO2 and RbO2,

respectively. The reverse rate coefficients, kra and krb, char-

acterize the decomposition rates of the individual peroxy rad-

ical structures.

Reported experimental kinetic and thermodynamic data

are limited to information on the reactions of O2 with

the two simplest allyl radicals, CH2CHCH2 (allyl) and

CH3CHCHCH2 (1-methylallyl) (Ruiz et al., 1981; Morgan

et al., 1982; Jenkin et al., 1993; Knyazev and Slagle, 1998;

Rissanen et al., 2012). This information allows representa-

tive rate coefficients to be defined for forward and reverse

reactions for alkyl-substituted allyl radical + O2 systems, as

summarized in Tables 17 and 18.

Peeters et al. (2014) have estimated parameters for a set of

hydroxy-substituted allyl radicals formed from the addition

of OH to isoprene, using a combination of DFT and ab ini-

tio methods. Suggestions for refinements were subsequently

made by Peeters (2015), taking account of provisional labo-

ratory results reported by Crounse et al. (2014). Those rec-

ommendations (given in Table S3) were previously adopted

for use in MCM v3.3.1 (Jenkin et al., 2015), and remain the

Figure 10. Root mean square error, mean absolute error, mean

bias error and box plot for the error distribution in the estimated

log k298 K values for various subsets of monofunctional aliphatic

species. The bottom and the top of the box are the 25th (Q1) and

75th percentiles (Q3), the black band is the median value. The

whiskers extend to the most extreme data point which is no more

than 1.5 × (Q3–Q1) from the box. The points are the extrema of the

distribution. The black dotted lines correspond to agreement within

a factor 2.

Figure 11. Root mean square error, mean absolute error, mean bias

error and box plot for the error distribution in the estimated log

k298 K values for the full set and various subsets of aliphatic species

in the database. The bottom and the top of the box are the 25th (Q1)

and 75th percentiles (Q3), the black band is the median value. The

whiskers extend to the most extreme data point which is no more

than 1.5 × (Q3–Q1) from the box. The points are the extrema of the

distribution. The black dotted lines correspond to agreement within

a factor 2.
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Table 17. Partial rate coefficients for the addition of O2 to radicals possessing an allyl resonancea,b.

Reaction kf Comment

(10−13 cm3 molecule−1 s−1)

unsubstitutedc

-C=C-ĊH2+ O2 → -C=C-CH2O2 3 e

-C=C-ĊHR + O2 → -C=C-CH(O2)R′ 10 f

-C=C-ĊR2+ O2 → -C=C-C(O2)R′
2

10 g

β-/δ-hydroxy substitutedc,d

(E) -C(OH)-C=C-ĊH2+ O2 → (E) -C(OH)-C=C-CH2O2 5 h,i

(Z) -C(OH)-C=C-ĊH2+ O2 → (Z) -C(OH)-C=C-CH2O2 26 h,j

(E or Z) -C=C-ĊH-C(OH)- + O2 → -C=C-CH(O2)-C(OH)- 35 h,k

(E or Z) -C=C-Ċ(R′)-C(OH)- + O2 → -C=C-C(O2)(R′)-C(OH)- 30 h,l

Comments: a rate coefficients are high pressure limits and are assumed to be independent of temperature over the relevant atmospheric range.
b Each partial rate coefficient represents addition of O2 at one of two possible sites in a given allyl radical (or of three possible sites in a superallyl

radical). c Unspecified substituents are either H atoms or alkyl groups, but the parameters are also used as defaults for organic groups containing

remote oxygenated substituents for which no information is available (see Sect. 6.3). d Formed specifically from the addition of OH to conjugated

dialkene structures. e Based on a reported total rate coefficient of 6 × 10−13 cm3 molecule−1 s−1 for CH2CHCH2+ O2 (Jenkin et al., 1993;

Rissanen et al., 2012). f Based on reported total rate coefficients of 6 × 10−13 cm3 molecule−1 s−1 for CH2CHCH2+ O2 (Jenkin et al., 1993;

Rissanen et al., 2012) and 1.3 × 10−12 cm3 molecule−1 s−1 for CH3CHCHCH2+ O2 (Knyazev and Slagle, 1998). g Assumed equivalent to rate

coefficient for -C=C-ĊHR + O2 → -C=C-CH(O2)R. h Based on a geometric average of rate coefficients calculated for (or assigned to) relevant

structures formed from addition of OH to isoprene. As recommended by Peeters (2015), these are based on those calculated by Peeters et al. (2014),

but with each increased by a factor of 5 on the basis of the experimental characterization of the equilibration of peroxy radicals in each subset, as

reported in preliminary form by Crounse et al. (2014) and applied in MCM v3.3.1; see Table S3 for further details. i Based on the 298 K rate

coefficients for trans-1-OH + O2 → E-1-OH-4-OO and trans-4-OH + O2 → E-4-OH-1-OO (see Table S3), and also applied to corresponding

secondary and tertiary radicals in the absence of data. j Based on rate coefficients for cis-1-OH + O2 → Z-1-OH-4-OO and

cis-4-OH + O2 → Z-4-OH-1-OO (see Table S3), and also applied to corresponding secondary and tertiary radicals in the absence of data. k Based

on rate coefficients for cis-4-OH + O2 → 4-OH-3-OO and trans-4-OH + O2 → 4-OH-3-OO (see Table S3). l Based on rate coefficients for

cis-1-OH + O2 → 1-OH-2-OO and trans-1-OH + O2 → 1-OH-2-OO (see Table S3).

preferred values for the hydroxyalkyl-substituted allyl and al-

lyl peroxy radicals formed specifically from the addition of

OH to isoprene. Because the addition of OH to conjugated

dienes represents an important source of allyl radicals, the

information has also been used to define approximate rate

coefficients for a generic set of hydroxyalkyl-substituted al-

lyl and allyl peroxy radicals for provisional application to

other systems, which are also summarized in Tables 17 and

18.

The treatment of allyl radicals containing a number of oxy-

genated substituents is significantly simplified. Addition of

O2 is assumed to occur exclusively (and irreversibly) at the

site possessing the substituent that is higher in the follow-

ing list: -OH/-OR/-OOH/-OOR > -OC(=O)H/-OC(=O)R >

alkyl/-H > -C(=O)H/-C(=O)R > -C(=O)OH/-C(=O)OR >

-ONO2 > -NO2. If both sites possess an oxygenated sub-

stituent of the same rating, O2 addition is assumed to occur

equally at each site. For other allyl radicals containing sub-

stituents with more remote oxygenated groups, the rate coef-

ficients for alkyl-substituted allyl radical + O2 systems given

in Tables 17 and 18 are used as a default.

7 Conclusions

Updated and extended structure–activity relationship (SAR)

methods have been developed to estimate rate coefficients

for the reactions of the OH radical with aliphatic organic

species. The group contribution methods were optimized us-

ing a database including a set preferred rate coefficients for

489 species. The overall performance of the SARs in deter-

mining log k298 K is now summarized.

The distribution of errors (log kcalc/kobs), the root mean

squared error (RMSE), the mean absolute error (MAE) and

the mean bias error (MBE) were examined to assess the over-

all reliability of the SAR. The RMSE, MAE and MBE are

here defined as:

RMSE =

√

√

√

√

1

n

n
∑

i=1

(logkcalc − logkobs)
2, (20)

MAE =
1

n

n
∑

i=1

|logkcalc − logkobs| , (21)

MBE =
1

n

n
∑

i=1

(logkcalc − logkobs) , (22)

where n is the number of species in the dataset. The assess-

ment was performed for various subsets to identify possible

biases within a category of species (e.g. saturated vs. un-

saturated, cyclic vs. acyclic, hydrocarbons vs. functionalized

species). Errors computed for the various subsets are summa-

rized in Fig. 9 for hydrocarbons, Fig. 10 for monofunctional

species and Fig. 11 for the full set of species.

The calculated log k298 K shows no significant bias, with

MBE remaining below 0.05 log units for the various sub-
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Table 18. Arrhenius parameters (kr = Ar exp(−(E/R)r/T )) for the rate coefficients for the decomposition of allyl peroxy radicals; and the

rate coefficient values at 298 Ka.

Reaction Ar (E/R)r kr 298 K Comment

(1014 s−1) (K) (s−1)

unsubstitutedb

-C=C-CH2O2 → -C=C-ĊH2+ O2 0.16 8900 1.7 d,e

-C=C-CH(O2)R′ → -C=C-ĊHR′ + O2 1.6 9610 1.6 d,f

-C=C-C(O2)R′
2

→ -C=C-ĊR′
2
+ O2 1.6 9610 1.6 g

β-/δ-hydroxy substitutedc

(E) -C(OH)-C=C-CH2O2 → (E) -C(OH)-C=C-ĊH2+ O2 2.5 9510 3.5 h,i

(Z) -C(OH)-C=C-CH2O2 → (Z) -C(OH)-C=C-ĊH2+ O2 40 10 050 9.0 h,j

-C=C-CH(O2)-C(OH)- 210 11 640 0.23 h,k

→ (Z) -C=C-ĊH-C(OH)- + O2 (50 %)

→ (E) -C=C-ĊH-C(OH)- + O2 (50 %)

-C=C-C(R′)(O2)-C(OH)- 170 11 030 1.4 h,l

→ (E) -C=C-Ċ(R′)-C(OH)- + O2 (50 %)

→ (Z) -C=C-Ċ(R′)-C(OH)- + O2 (50 %)

Comments: a rate coefficients are high pressure limits. Parameters are also assumed to apply to superallyl peroxy radicals. b Unspecified

substituents are either H atoms or alkyl groups, but the parameters are also used a defaults for organic groups containing remote oxygenated

substituents for which no information is available (see Sect. 6.3). c Formed specifically from the addition of OH and O2 to conjugated dialkene

structures. d Determined from the expression kr = kf/K , where K is the equilibrium constant (K) and kf is the rate coefficient for the

corresponding association reaction (given in Table 17). K determined from a modified van ’t Hoff plot over the temperature range 280–320 K

using reported values of 1H◦
298 K and 1S◦

298 K. e Based on consensus values of 1H◦
298 K = −76.5 kJ mol−1 and

1S◦
298 K = −124.0 J mol−1 K−1 reported for the CH2CHCH2+ O2 system by Rissanen et al. (2012), also taking account of the results of Ruiz

et al. (1981), Morgan et al. (1982) and Knyazev and Slagle (1998). f K for the CH3CHCHCH2+ O2 system calculated using

1H◦
298 K = −81.05 kJ mol−1 and 1S◦

298 K = −132.25 J mol−1 K−1, being the average of values reported for the cis-CH3CHCHCH2+ O2
and trans-CH3CHCHCH2+ O2 systems by Knyazev and Slagle (1998). K assumed to be made up of a linear combination of 1/1.3

“-C=C-ĊHR + O2” and 0.3/1.3 “-C=C-ĊH2+ O2”, based on the relative importance of the association reactions (Table 17). g Assumed

equivalent to rate coefficient for -C=C-CH(O2)R → -C=C-ĊHR + O2. h Based on a geometric average of rate coefficients calculated for (or

assigned to) relevant peroxy radical structures formed from addition of OH and O2 to isoprene. As recommended by Peeters (2015), these are

based on those calculated by Peeters et al. (2014), but with each increased by a factor of 5 on the basis of the experimental characterization of

the equilibration of peroxy radicals in each subset, as reported in preliminary form by Crounse et al. (2014) and applied in MCM v3.3.1; see

Table S3 for further details. i Based on rate coefficients for E-1-OH-4-OO → trans-1-OH + O2 and E-4-OH-1-OO → trans-4-OH + O2 (see

Table S3) , and also applied to corresponding secondary and tertiary radicals in the absence of data. j Based on rate coefficients for

Z-1-OH-4-OO → cis-1-OH + O2 and Z-4-OH-1-OO → cis-4-OH + O2 (see Table S3) , and also applied to corresponding secondary and

tertiary radicals in the absence of data. k Based on rate coefficients for 4-OH-3-OO → cis-4-OH + O2 and 4-OH-3-OO → trans-4-OH + O2 (see

Table S3). l Based on rate coefficients for 1-OH-2-OO → cis-1-OH + O2 and 1-OH-2-OO → trans-1-OH + O2 (see Table S3).

sets, and with median values of the error distributions close

to zero (see Figs. 9–11). For the hydrocarbons, the SARs

show similar performances for the alkane and the alkene

subsets, with a RMSE of the order of 0.05 and 0.10 log

units for acyclic and cyclic species, respectively (see Fig. 9).

For monofunctional species, RMSE ranges from 0.07 (alde-

hyde subset) to 0.21 (nitro subset) (see Fig. 10). For this

category of species, the SAR provides better estimates for

the saturated subset of species (RMSE = 0.11) compared to

the unsaturated subset (RMSE = 0.16). For the full database,

however, the SARs show similar performances for both

cyclic/acyclic structures and saturated/unsaturated carbon

skeletons (see Fig. 11). Figure 11 also shows that the re-

liability of the SARs decreases with the number of func-

tional groups on the carbon skeleton. Indeed, the RMSE in-

creases from 0.07 for hydrocarbons to 0.13 for monofunc-

tional species and reaches 0.22 for multifunctional species,

i.e. a relative error for the calculated k298 K of 17, 35 and

66 %, respectively. This reflects the effects of the presence of

polar oxygenated functional groups, and difficulties in ac-

counting fully for their long-range influences through sta-

bilization of transition states by hydrogen bonding (e.g.

Porter et al., 1997; Smith and Ravishankara, 2002; Mel-

louki et al., 2003; Calvert et al., 2011). In the multifunc-

tional subset (124 species), most of the species are bifunc-

tional compounds (116 species), with a limited contribution

from trifunctional compounds. The reliability of the SARs

for species with more than two functional groups can there-

fore not be assessed. The atmospheric oxidation of hydro-

carbons and organic oxygenates likely leads to a myriad

of highly functionalized species (e.g. Aumont et al., 2005,

2012; Goldstein and Galbally, 2007; Mentel et al., 2015).

Extrapolation of the SAR to this category of compounds is

therefore required in models aiming to describe atmospheric

oxidation explicitly. Additional rate coefficients would there-

fore be highly valuable for further assessment and constrain-

ing of SARs for multifunctional species. Finally, for the full

database, the SARs give fairly reliable k298 K estimates, with

a MAE of 0.09 and a RMSE of 0.15, corresponding to an

overall agreement of the calculated k298 K within 40 %.
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This work has focused on the reactions of OH radicals with

hydrocarbons and oxygenated organic compounds, which

play a central role in tropospheric chemistry. Although out-

side the scope of the present study, it is noted that devel-

opment of SAR methods for reactions with emitted organic

compounds containing halogens, sulfur and nitrogen would

also be of value.
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