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a b s t r a c t

Decades ago S. Lundquist, S. Chandrasekhar, P. H. Roberts and R. J. Tayler first posed
questions about the stability of Taylor–Couette flows of conducting material under the
influence of large-scale magnetic fields. These and many new questions can now be an-
swered numerically where the nonlinear simulations even provide the instability-induced
values of several transport coefficients. The cylindrical containers are axially unbounded
and penetrated by magnetic background fields with axial and/or azimuthal components.
The influence of the magnetic Prandtl number Pm on the onset of the instabilities is shown
to be substantial. The potential flow subject to axial fields becomes unstable against ax-
isymmetric perturbations for a certain supercritical value of the averaged Reynolds number
Rm =

√
Re · Rm (with Re the Reynolds number of rotation, Rm its magnetic Reynolds

number). Rotation profiles as flat as the quasi-Keplerian rotation law scale similarly but
only for Pm ≫ 1 while for Pm ≪ 1 the instability instead sets in for supercritical Rm
at an optimal value of the magnetic field. Among the considered instabilities of azimuthal
fields, those of the Chandrasekhar-type, where the background field and the background
flow have identical radial profiles, are particularly interesting. They are unstable against
nonaxisymmetric perturbations if at least one of the diffusivities is non-zero. For Pm ≪ 1
the onset of the instability scales with Re while it scales with Rm for Pm ≫ 1. Even
superrotation can be destabilized by azimuthal and current-free magnetic fields; this
recently discovered nonaxisymmetric instability is of a double-diffusive character, thus
excluding Pm = 1. It scales with Re for Pm → 0 and with Rm for Pm → ∞.

The presented results allow the construction of several new experiments with liquid
metals as the conducting fluid. Some of them are described here and their results will
be discussed together with relevant diversifications of the magnetic instability theory
including nonlinear numerical studies of the kinetic and magnetic energies, the azimuthal
spectra and the influence of the Hall effect.
© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

A large variety of astrophysical phenomena involves the interaction of rotating fluids and magnetic fields. An important
case in point is the magnetorotational instability, which is commonly considered the main driver of angular momentum
and mass transport in accretion disks, with enormous implications for cosmic structure formation. Magnetically triggered
instabilities also influence the rotational structure and chemical composition of stars at various stages of their evolution, and
might even contribute to the stellar dynamo mechanism. Beyond that, they play a crucial role in more earthly applications
such as fusion reactors, silicon crystal growth, aluminum reduction cells, and liquid metal batteries.

Taylor–Couette flow as the flow between two coaxial rotating cylinders is one of the most important paradigms of
fluid dynamics, exhibiting a great diversity of unstable flow regimes when changing the rotation rate of the two cylinders.
Exposing the (electrically conducting) fluid to magnetic fields leads to a further enhancement of flow phenomena which
then depend on the geometry and the strength of the magnetic field as well as on the ratio of viscosity and resistivity of the
fluid.

This review aims at giving a systematic and comprehensive overview about the diverse instabilities that occur in Taylor–
Couette flows under the influence of axial, azimuthal, and helical magnetic fields. Particular emphasis will be placed on the
recent liquidmetal experiments, and their numerical simulations. Yet, wewill also try to apply the gained insight for tackling
specific problems in the original astrophysical motivation.

1.1. History

1.1.1. Hydrodynamics
We shall set the scene by giving a historical account of the research on (magnetized) Taylor–Couette flows. In doing so,

we also introduce the most relevant dimensionless numbers such as the magnetic Prandtl number, the hydrodynamic and
magnetic Reynolds numbers, and theHartmannnumber (which in later sectionsmight be adapted to the needs of the specific
problem though).

For inviscid flows with an arbitrary rotation law Ω = Ω(R) the ‘Rayleigh condition’
1
R3

d
dR

(R2Ω)2 > 0 (1)

is sufficient and necessary for stability against axisymmetric perturbations [1]. Flows steeper than 1/R2 are unstable, but
the so-called potential flow Ω ∝ 1/R2 is of neutral stability. It is easy to see that it represents the radial profile with
curlU = 0 if Ω does not depend on z. The specific angular momentum R2Ω of the potential flow does not depend on
radius R. In 1923 G. I. Taylor considered the stability of a viscous flow between two axially unbounded cylinders rotating
about the same axis with different frequencies but the same sign [2]. By use of the narrow-gap approximation he found that
the flow can only be stable for rotation frequencies (normalized with the diffusion frequency) below a critical value that can
be expressed by a critical Reynolds number whose theoretical value has been confirmed by experiments. This was the start
of many theoretical developments towards an increasingly successful theory of hydrodynamic instabilities to understand
the experimental findings.

The standard model for Taylor–Couette flow uses a stationary outer cylinder. If the outer cylinder rotates, this tends to
stabilize the flow, the more so the flatter the rotation profile is. Flows with

µΩ = r2in, (2)

where

µΩ =
Ωout

Ωin
, rin =

Rin

Rout
, (3)

form the limit of neutral hydrodynamical stability as there the Reynolds number

Re =
ΩinR2

0

ν
(4)

for instability goes to infinity. Here Rin and Rout are the radii of the inner and outer cylinders, Ωin and Ωout are their rotation
rates, ν the microscopic viscosity and R0 =

√
Rin(Rout − Rin). The condition (2) is also called the ‘Rayleigh limit’ and the

associated flow is the potential flow with Ω ∝ 1/R2.
For the often used standard model with stationary outer cylinder, with Rout = 2Rin and for no-slip boundary conditions,

uR = uφ = uz = 0, (5)
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Chandrasekhar [3] first calculated for this geometry the critical Reynolds number Re0 = 68.2 characteristic for neutral
stability. For the nonaxisymmetric modes with the lowest azimuthal wave numbers m = 1 and m = 2 Roberts found
Re0 = 75 and Re0 = 127 (see [4]). As these numbers exceed Chandrasekhar’s value form = 0 the Taylor vortices excited for
the lowest rotation rate are basically axisymmetric about the z-axis.

1.1.2. With azimuthal fields
The present article reviews several new results for modifications of the stability condition (1) if the fluid is electrically

conducting and in the presence of magnetic fields with relatively simple geometry. The fields may have only axial
components or only azimuthal components or combinations of both. Michael [5] formulated the question how azimuthal
background magnetic fields modify the condition (1) for stability of ideal fluids (inviscid and perfectly conducting). His
criterion

1
R3

d
dR

(R2Ω)2 −
R

µ0ρ

d
dR

(
Bφ

R

)2

> 0 (6)

only ensures stability against axisymmetric perturbations. For Ω = 0 the requirement for stability is [6–8]

d
dR

(
Bφ

R

)2

< 0. (7)

It shows that an azimuthal magnetic field in stationary cylinders is unstable against axisymmetric perturbations for positive
n if it scales with radius R as R1+n. In contrast, the field Bφ ∝ 1/R due to an electric current along the central axis proves to
be stable, while the field Bφ ∝ R due to a uniform axial current has only marginal stability.

The condition (6) implies that combinations of stable flows with stable fields are always stable and that combinations
of unstable flows with unstable fields are always unstable, while the combination of stable and unstable flows and fields
leads to stability/instability depending on the relative amplitudes of the effects. Flows with highMach numbers (ratio of the
frequencies of global rotation and Alfvén rotation) are unstable if the rotation is unstable and stable if the rotation is stable.
However, the condition (6) is a local one which means that in dependence on the radial profiles Ω(R) and Bφ(R) its left-hand
side can change in sign between the boundaries and the system is unstable. This can in particular be true if Bφ(R) changes its
sign between the cylinders.

The full magnetohydrodynamic problem for real fluids with finite values of viscosity and magnetic diffusivity has been
formulated by Edmonds [9] andGotoh [10] for a finite gap between two corotating cylinders of perfectly conductingmaterial.
As Michael did, only axisymmetric perturbations were considered. The equation system was able to provide the critical
Reynolds number for marginal stability as a function of the magnetic field and the prescribed values of rin, µΩ and the
magnetic Prandtl number

Pm =
ν

η
(8)

as the ratio of the microscopic viscosity and the magnetic diffusivity η = 1/µ0σ (µ0 the vacuum permeability, σ the
electric conductivity) which we shall call – following [11] – the resistivity. Characteristically, the liquid metals used in MHD
experiments have very small magnetic Prandtl numbers, between 10−7 and 10−5. The idea that it might be reasonable to put
Pm = 0 in the equations (the so-called quasi-static or inductionless approximation) dominated the magnetohydrodynamic
theory over several decades [12–14]. The equations have been solved numerically for finite values of µΩ within a narrow
gap between the cylinders. Instability only occurred for µΩ < r2in which means that the magnetic field only suppressed the
centrifugal instability. The magnetic field did not generate any new instability against axisymmetric perturbations, which
indeed do not exist.

The stability criterion (6) for ideal fluids only holds for axisymmetric perturbations. Indeed, the inclusion of nonaxisym-
metric perturbations into the stability theory drastically changes the situation. Tayler considered the problem of stability
against nonaxisymmetric perturbations of an electric current within a stationary and axially unbounded cylinder [15]. The
fluid itself may be a perfect conductor surrounded by vacuum while the azimuthal field Bφ is proportional to R. A sufficient
condition for stability in this case resulted as m ≥ 2, so that among the nonaxisymmetric modes only the azimuthal wave
numberm = 1 can be unstable, excluding the instability of the modesm > 1.

A particular version of Tayler’s inequality for the azimuthal wave numberm = 1 is
d
dR

(RB2
φ) ≤ 0 (9)

as the sufficient and necessary condition for stability of a stationary ideal fluid against nonaxisymmetric perturbations [8].
All uniform and/or outwardly increasing fields are therefore not necessarily stable against perturbations with the mode
numberm = 1. This, in particular, is true for the field Bφ ∝ R due to a uniform electric current.

Lundquist [16] argued that a uniform electric current can be stabilized by application of a uniform axial magnetic field
if their energies are of the same order, i.e. 2⟨B2

z ⟩ > ⟨B2
φ⟩. The first experiments using mercury as a liquid conductor indeed

seem to point in this direction [17]. Roberts [18] found instability against perturbations with high azimuthal mode numbers
m for all ratios of azimuthal to axial field components. In his detailed paper, Tayler [19] discussed the overall problem of
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current-driven instability under the influence of a twisted magnetic field without rotation. The innovation is that here the
background field has its own nonvanishing current helicity J · B. Valid only for inviscid fluids, his Fig. 7 demonstrates how
positive growth rates ofm = 1 perturbationswithout axial field are transformed to negative growth rates under the presence
of an axial field of the samemagnitude. Chandrasekhar showed that a sufficiently strong axial field will always suppress any
axisymmetric instability of an azimuthal field by deriving the stability condition

IB2
z >

∫
ξ 2
R

R2

d
dR

(RBφ)2 dR, (10)

where I > 0 and ξR is the (purely real) radial eigenfunction. The condition (10) reduces to

d
dR

(RBφ)2 < 0 (11)

as a sufficient condition for stability against axisymmetric perturbations [3]. Howard & Gupta [20] included differential
rotation to extend this condition to

R
dΩ2

dR
−

1
µ0ρR3

d
dR

(
RBφ

)2
> 0. (12)

That this condition is violated somewhere between inner and outer cylinder is necessary for instability [21]. For the current-
free field Bφ ∝ 1/R only superrotating flows are stable against axisymmetric perturbations. Note that the condition (10) only
applies to axisymmetric perturbations and to ideal fluids. Belowwe shall demonstrate that dissipative super-potential flows
which are hydrodynamically stable can easily (i.e. with moderate Reynolds numbers) be destabilized by helical magnetic
fields with current-free azimuthal components. The resulting axisymmetric traveling wave instability has become known
as the Helical MagnetoRotational Instability (HMRI).

We also mention because of its astrophysical relevance a particular result by Tayler who also discussed the adiabatic
(ν = η = 0) stability of stars with mixed poloidal and toroidal fields [22]. For poloidal and toroidal field components of the
same order he suggested stability of the system but the final answer to this complex question remained open until now.

Taylor–Couette flowswith stationary inner cylinder have been considered as the prototype of hydrodynamic stability [23,
24]. Now we know, however, that for dissipative fluids with Pm ̸= 1 even superrotation may become unstable against
nonaxisymmetric perturbations under the influence of weak, strictly toroidal magnetic fields and for moderate Reynolds
numbers. Recently, for very large Reynolds numbers even the existence of a linear instability for superrotating nonmagnetic
Taylor–Couette flows has been reported [25].

1.1.3. With axial fields
The question how purely axial fields modify the rotating Taylor–Couette flow of conducting fluids has been addressed by

Chandrasekhar in Ref. [26]. For axisymmetric perturbations in an axially unbounded cylinder he formulated the complete set
of MHD equations, which leads to a 10th order system of differential equations. After elimination of the pressure by means
of the incompressibility condition div u = 0, six equations remain for the components of u, and four equations for the two
potentials of the field-perturbations b. Applying the inductionless approximation Pm → 0 (which is not identical to taking
ν = 0, see [27]) the system is reduced to 8th order.

The corresponding boundary conditions besides (5) follow from the general rule of electrodynamics that the normal
component bR of the magnetic field and the tangential component Ez of the electric field are continuous at the transition
from the fluid to either cylinder walls. If it is assumed that the cylinders are made from a highly conducting material, then
Ez = bR = 0 at R = Rin and R = Rout, resulting in the ‘Fermi conditions’

bR =
dbφ

dR
+

bφ

R
= 0. (13)

For a givenmagnetic field amplitude, Chandrasekhar then computed the critical Reynolds number for the onset of instability,
namely the smallest Reynolds number for all possible axial wave numbers. In allmodels the onset of the axisymmetric Taylor
vortices is suppressed, where the suppression is weaker for the insulating cylinders (Fig. 1). For these boundary conditions
the results perfectly reflect the experimental results of Donnelly & Ozima [4,28] obtained with mercury as the conducting
fluid, with Pm ≃ 10−7. Both cylinders were made from stainless steel with rin = 0.95, where the outer cylinder was
stationary. Niblett stressed the importance of insulating boundary conditions in theory and experiments [29].

Within the narrow-gap approximation and imposing axisymmetry, Kurzweg solved the 10th order system without
any restriction on the magnetic Prandtl number [30]. For small Pm the magnetic field suppresses the Taylor instability
but for large Pm and weak fields the instability is enhanced, leading to subcritical Reynolds numbers compared with the
nonmagnetic case. The magnetic boundary conditions in this work are somewhat oversimplified, and do not completely
match the formulation (13). Nevertheless, the new step to allow finite values of Pm was an important one for the following
reason. Assume that some unknown instability exists which for small Pm scales with moderate values of the magnetic
Reynolds number Rm = Pm Re. Then for small Pm the critical Reynolds numbers yield values that are too large for numerical
methods to cope with, since Pm → 0 and finite Rm yields Re → ∞. The numerical codes for the 8th order system (which
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Fig. 1. Using the inductionless approximation (Pm = 0), Chandrasekhar found for steep rotation laws the magnetic suppression of the Rayleigh instability
by a uniform axial magnetic field, in agreement with the measurements [3,28]. Open circles for rin = 0.9, solid circles are for rin = 0.95. Q here symbolizes
theHartmann number and Tc the critical Reynolds number. Boundary conditions: upper line for conductingwalls, lower line for insulatingwalls. The dashed
curve marks the asymptotic behavior.

always contain Re rather than Rm) could never find instabilities scaling with Rm for Pm → 0. For small Pm the numerical
calculations only lead to enhanced Reynolds numbers Re ≃ 10.4 · Ha with the Hartmann number

Ha =
B0R0

√
µ0ρνη

, (14)

while quite another scaling appears for Pm → ∞, i.e. Rm ≃ 3.2 S with the Lundquist number

S =
B0R0

√
µ0ρ η

, (15)

or S =
√
PmHa. This scaling leads to amagneticMach numberMm = Rm/S ≃ 3.2, so the instability exists for largemagnetic

Mach numbers.
Our calculations below for axial fields and µΩ = 0 confirm the result of Kurzweg that for large Pm and weak fields the

critical Reynolds numbers lie below the hydrodynamic value of 68 valid for rin = 0.5, which increases to 185 for the narrow
gap with rin = 0.95. The latter value describes the wide-gap mode of the viscosimeter of Donnelly. Both values rin = 0.5
and rin = 0.95 are still in use in MHD laboratories. Obviously, if the field is not too strong it can play a destabilizing role for
a Taylor–Couette flow. For the ideal hydromagnetic Taylor–Couette flow this was first discovered by Velikhov [6,31]. In the
MHD regime the Rayleigh criterion for stability against axisymmetric perturbations, µΩ > r2in, changes to

dΩ

dR
> 0 (16)

i.e. only flowswith superrotation are stable (see Fig. 1 in [6]). Velikhov found a growth rate along the Rayleigh line of 2Ωinrin.
A dispersion relation has been derived for the Fourier frequency ω which only indicates instability if the Alfvén velocity
UA = B0/

√
µ0ρ is smaller than the shear −R2dΩ/dR. His instability is thus again an instability for large magnetic Mach

numbers. We shall show that for dissipative fluids this new ‘magnetorotational instability’ (MRI) indeed scales for Pm → 0
with the magnetic Reynolds number

Rm =
ΩinR2

0

η
, (17)

which explains the absence of this mode in the early theories based on the inductionless approximation with Pm → 0 [32].
For Pm ≫ 1, on the other hand, the critical Rm does not remain constant but we shall find it growing with

√
Pm.

The most complete theory of the subject at the time was formulated by Roberts [33]. The MHD equations were written
for general magnetic Prandtl number, for a finite gap and with nonaxisymmetric modes included. The formulation of the
boundary conditions avoided the Fermi conditions for perfectly conducting cylinders: fluid andwalls have different but finite
electric conductivities where the conductivity of the cylinders exceed the conductivity of the fluid by a factor of only 1.37.
This problem proved much more difficult to solve than the problem with insulating walls. The critical Reynolds numbers
(meaning minimal with respect to all wave numbers) have been computed for given magnetic Hartmann number, with
the result that the Taylor instability is suppressed by the magnetic field and this happens more effectively for conducting
boundaries than for insulating boundaries (his Fig. 2).
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Following the experiments of Donnelly & Ozima, the magnetic Prandtl number used by Roberts was that of mercury
(10−7), and the outer cylinder was stationary. This was the reason that the standard MRI did not appear in this study.
As shown below for the rotation law satisfying Eq. (2), i.e. µΩ = 0.25 for rin = 0.5, the critical Reynolds number for
standard MRI is Re ≃ 66/

√
Pm (see Section 4.1). This is a rather small numerical value for, e.g., Pm ≃ 1, indicating a new

(magnetorotational) instability, as the Reynolds number for the nonmagnetic system at the Rayleigh limit is infinite. Roberts’
code was certainly able to handle the magnetohydrodynamics near the Rayleigh limit for not too small Pm.

1.2. Outline of the review

We shall revisit many of the mentioned questions (and preliminary answers) in the following where the stability of
cylindrical Taylor–Couette flows under the influence of large-scale magnetic background fields is considered when the fluid
between the cylinders is electrically conducting. Present-day and future experiments will always form the focus of the
calculations and simulations, as has already been done in the first papers initiating this special branch of Taylor–Couette
research at the beginning of this century [32,34–37].

As a warm-up, we start by considering the suppressing effect of axial and azimuthal magnetic fields on the instabilities
in classical Taylor–Couette flows with stationary outer cylinder. For much flatter rotation laws, at and beyond the Rayleigh
limit, we discuss in Section 4 the important standard version of theMRI, with a purely axial field being applied.Wewill focus
here on nonlinear simulations and on the resulting transport coefficient for angular momentum.

Section 5 dealswith anothermagnetic field topology, i.e. a purely azimuthal field being produced by a central axial current
that is insulated from the fluid. After a discussion of the so-called Azimuthal MRI (AMRI) for potential flow and Keplerian
rotation, we assess in detail the results of a liquidmetal experiment having shownAMRI slightly beyond the Rayleigh limit. A
further detailed discussion is devoted to the so-called Super-AMRI, the surprising magnetic double-diffusive destabilization
of flows whose angular frequency is steeply increasing with radius.

A particular aspect of AMRI is discussed in Section 6. Here we reconsider Chandrasekhar’s theorem that states, for ideal
fluids, the stability of rotating flows of any radial dependence under the influence of an azimuthal magnetic field whose
corresponding Alfvén velocity has the same amplitude and radial dependence as the rotation. For three representative cases,
i.e. potential flow, Keplerian rotation, and the rigidly-rotating z-pinch, we show that finite diffusivities can even destabilize
this class of Chandrasekhar-type flows.

Section 7 is devoted to the combination of axial and azimuthal fields which are current-free between the cylinders.
Actually, the resulting axisymmetric helical MRI (HMRI) had been found earlier than AMRI, with which it shares the
inductionless character and the corresponding scaling with the Reynolds and Hartmann numbers. The transition between
HMRI and AMRI will also be described before the results of the PROMISE experiments are discussed.

The additional or complementary energy source of axial electrical currentswithin the fluid, brieflymentioned in Section 6,
will dominate the discussions of Sections 8–10. In Section 8 we start with the basic case of the Tayler instability in a
stationary current-carrying cylinder, as realized in the liquid metal experiment GATE. Rotation will re-enter the scene
in Section 9, where the various effects of rigid-body rotation and negative or positive shear flows are investigated. The
additional complication of superimposing an axial field to this setting is discussed in Section 10.

After this comprehensive study of different combinations of rotation and backgroundmagnetic fields, Sections 11 and 12
are concerned with questions of specific astrophysical relevance. This applies to the numerical estimations (in Section 11)
of the eddy viscosity and the effective diffusivity which play a key role for angular momentum and species transport in
accretion disks and stars. The question of whether magnetic instabilities can lead to helicity and a corresponding α effect,
which may play an important role in nonlinear dynamo concepts such as the MRI dynamo or the so-called Tayler–Spruit
dynamo, is dealt with in Section 12. In Section 13 we assess the special effects that arise when the Hall effect is taken into
account, which is particularly important for neutron stars. The paper concludes with a short summary and a discussion of
some future developments.

2. Equations and model

The general MHD equations for the conducting fluid are

ρ

(
∂U
∂t

+ (U · ∇)U
)

= −∇P + ρ ν ∆U +
1
µ0

curlB × B (18)

and
∂B
∂t

= curl (U × B) + η ∆B, (19)

where U is the fluid flow, P the pressure, and B the magnetic field. The solutions must also fulfill the source-free conditions

divU = divB = 0. (20)

The quantity R0 =
√
Rin(Rout − Rin) is used as the unit of length, η/R0 as the unit of the perturbed velocity, ν/R2

0 as the
unit of frequency (inverse time). For both very wide and very narrow gaps it is often reasonable to replace R0 by the gap
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width d = Rout − Rin. Note that Rout = 2Rin is the only model with R0 = d. We also define a characteristic magnetic field
amplitude B0 as the unit of the magnetic field fluctuations, R−1

0 as the unit of the wave number and Ωin as the unit of Ω .
The dimensionless numbers of the problem are then the Reynolds number (4), the magnetic Prandtl number (8) and the
Hartmann number (14) which is formed with the geometric average of the diffusivities, η̄ =

√
νη. We shall see that in most

cases where no hydromagnetic instability exists, the magnetic Reynolds number Rm = Pm Re and the Lundquist number
S =

√
PmHa are better representations of the characteristic eigenvalues. There are also exceptions to this rule when the

stability/instability of rather steep rotation laws in the presence of toroidal fields is considered. Sometimes it also makes
sense to use the averaged Reynolds number

Rm =
√
ReRm =

ΩinR2
0

η̄
, (21)

formed with η̄ instead of η hence Mm = Rm/Ha. The magnetic Mach number

Mm =
Rm
S

=
Rm
Ha

, (22)

which does not involve any diffusivities, can be considered as a rotation rate normalized with the Alfvén frequency
B0/

√
µ0ρR2

0. The magnetic Mach numbers of astrophysical objects often exceed unity. Galaxies have Mm between 1 and
10, for the solar tachocline with a magnetic field of 1 kG one obtains Mm ≃ 30, and for typical white dwarfs and neutron
stars Mm ≃ 1000. For magnetars with fields of ∼ 1014 G and a rotation period of ∼1 s, the magnetic Mach number is
∼ 0.1 − 1.

In general, U , B and P may be split into mean and fluctuating components U = Ū + u, B = B̄ + b and P = P̄ + p.
In this work we immediately drop the bars from the variables again, so that the upper-case letters U , B and P represent
the large-scale or background quantities. By developing the disturbances u, p and b into normal modes, the solutions of the
linearized MHD equations are considered in the form

u = u(R)ei(ωt+kz+mφ), p = p(R)ei(ωt+kz+mφ), b = b(R)ei(ωt+kz+mφ) (23)

for axially unbounded cylinders. Here k is the axial wave number, m the azimuthal wave number and ω the complex
frequency including growth rate and a possible drift (or oscillation) frequency.

For viscous flows in the absence of any longitudinal pressure gradient the basic form of the radial rotation law in the
container is

Ω(R) = aΩ +
bΩ

R2 , (24)

where aΩ and bΩ are two constants related to the angular velocities Ωin and Ωout with which the inner and outer cylinders
rotate (we shall only be interested in positiveΩin andΩout).With Rin and Rout being the radii of the two cylinders, one obtains
the coefficients

aΩ =
µΩ − r2in
1 − r2in

Ωin, bΩ =
1 − µΩ

1 − r2in
ΩinR2

in, (25)

using the definitions (3).

2.1. Axial field

Fig. 2 displays the geometrical setup and repeats the main definitions of the input parameters. The relevant equations
follow fromEqs. (18)–(20) and canbewritten as a systemof ten first order equations. After eliminating p and bz , the linearized
equations become

d2uφ

dR2 +
1
R
duφ

dR
−

uφ

R2 −

(
m2

R2 + k2
)
uφ − i (mReΩ + ω) uφ +

+
2im
R2 uR − Re

1
R

d
dR

(
R2 Ω

)
uR −

m
k

[
1
R
d2uz

dR2 +
1
R2

duz

dR
−

(
m2

R2 + k2
)

uz

R
− i (mReΩ + ω)

uz

R

]
+

m
k
Ha2

[
1
R
dbR
dR

+
bR
R2

]
+

i
k
Ha2

(
m2

R2 + k2
)
bφ = 0, (26)

d3uz

dR3 +
1
R
d2uz

dR2 −
1
R2

duz

dR
−

(
m2

R2 + k2
)

duz

dR
+

2m2

R3 uz − i (mReΩ + ω)
duz

dR
−

−imRe
dΩ

dR
uz − Ha2

[
d2bR
dR2 +

1
R
dbR
dR

−
bR
R2 − k2bR +

im
R

dbφ

dR
−

im
R2 bφ

]
−ik

[
d2uR

dR2 +
1
R
duR

dR
−

uR

R2 −

(
k2 +

m2

R2

)
uR

]
− k (mReΩ + ω) uR − 2

km
R2 uφ − 2ikReΩuφ = 0. (27)
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Fig. 2. Geometry of hydromagnetic Taylor–Couette flowswith uniform axial fields B0 and/or circular azimuthal fields Bφ due to axial electric currents inside
the outer cylinder. The conducting fluid resides between the two concentric and axially unbounded cylinders with radii Rin and Rout rotating with Ωin and
Ωout prescribed by the boundary conditions. The cylinders are made either from perfectly conducting or insulating material. The relation RoutBout = RinBin
characterizes azimuthal fields which are current-free between the cylinders. Endplate effects are only discussed related to existing experiments. The
standard container is defined by Rout = 2Rin .

The field perturbations fulfill

d2bR
dR2 +

1
R
dbR
dR

−
bR
R2 −

(
m2

R2 + k2
)
bR −

2im
R2 bφ − iPm (mReΩ + ω) bR + ikuR = 0 (28)

and
d2bφ

dR2 +
1
R
dbφ

dR
−

bφ

R2 −

(
m2

R2 + k2
)
bφ +

2im
R2 bR − iPm (mReΩ + ω) bφ + ikuφ + Pm Re R

dΩ

dR
bR = 0 (29)

[38]. The last term in Eq. (29) describes the energy input by the induction of the global shear. It vanishes for Pm = 0 so
that in the inductionless approximation differential rotation cannot be destabilized by uniform axial fields (noMRI, see next
section). The hydrodynamic continuity equation

duR

dR
+

uR

R
+

im
R

uφ + ikuz = 0, (30)

completes the system. The rotation law Ω = Ω(R) in these relations is normalized with Ωin = Ω(Rin). The vertical
component bz follows from the continuity condition

dbR
dR

+
bR
R

+
im
R

bφ + ikbz = 0. (31)

An appropriate set of ten boundary conditions is needed to solve the system. For the hydrodynamic quantities we always
use the no-slip conditions for the velocity uR = uφ = uz = 0. Generally, the normal component of the magnetic field and
the tangential component of the electric field must be continuous. For perfectly conducting walls the conditions (13) apply
at Rin and Rout. For insulating walls the magnetic field at the boundaries must match the vacuum field with curl b = 0, hence

bR +
ibz

Im(kR)

( m
kR

Im(kR) + Im+1(kR)
)

= 0 (32)

for R = Rin, and

bR +
ibz

Km(kR)

( m
kR

Km(kR) − Km+1(kR)
)

= 0 (33)

for R = Rout, where Im and Km are the modified Bessel functions. The conditions for the toroidal field are simply kRbφ = mbz
atRin andRout. In both cases five conditions exist at each boundary, so that the necessary ten conditions can be formulated. For
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both sorts of magnetic boundary conditions the resulting eigenvalues are often close together but not always. It is important
in such cases to know the influence of a finite conductivity σcyl of the cylinder material in relation to the conductivity σfluid
of the conducting fluid between the cylinders. Note that the electric conductivity of copper (as the cylinder material) is only
five times higher than the conductivity of sodium, hence this constellation leads to σ̂ ≃ 5 for the ratio

σ̂ =
σcyl

σfluid
. (34)

One has to ask whether this value leads to stability maps close to those for perfectly conducting material or not. As the
derivation of these condition is rather cumbersome, only the final results may be given here, i.e.

bR +
ikbz

κ Im(κRin)

(
m

κRin
Im(κRin) + Im+1(κRin)

)
= −

imσ̂

κ2R2
in

(
dRbφ

dR
− imbR

)
, (35)

κbφ −
km
κRin

bz =
σ̂

RinIm(κRin)

(
m

κRin
Im(κRin) + Im+1(κRin)

)(
dRbφ

dR
− imbR

)
(36)

for R = Rin and

bR +
ikbz

κKm(κRout)

(
m

κRout
Km(κRout) − Km+1(κRout)

)
= −

imσ̂

κ2R2
out

(
dRbφ

dR
− imbR), (37)

κbφ −
km

κRout
bz =

σ̂

RoutKm(κRout)

(
m

κRout
Km(κRout) − Km+1(κRout)

)(
dRbφ

dR
− imbR

)
(38)

for R = Rout. The modified wave number κ results from the definition

κ2
= k2 +

i(ω + mΩ)
ηcyl

(39)

including the skin effect [33,39]. Because Ω is different at the two boundaries, they each have their own separate value of κ .
The boundary conditions for perfectly conducting or for insulating cylinder material obviously follow in the limits σ̂ → ∞

or σ̂ → 0. For axisymmetric perturbations Eqs. (36) and (38) form = 0 approximately provide

κbφ ≃
σ̂

Rin

dRbφ

dR
, κbφ ≃ −

σ̂

Rout

dRbφ

dR
(40)

for the inner and the outer boundary condition.
The homogeneous set of linear equations together with the choice of boundary conditions determines the eigenvalue

problem for any given value of Pm. The real part ℜ(ω) of ω describes a drift of the pattern depending on the rotational
symmetry: the drift is along the z-axis for m = 0 and it is along the azimuth for m ̸= 0. For a fixed Hartmann number, a
fixed Prandtl number and a given axial wave number one finds the eigenvalues Re andℜ(ω). For a certain axial wave number
a minimum of the Reynolds numbers exists, which is the desired critical Reynolds number.

2.2. Azimuthal field

The radial profile of an azimuthal background field in a dissipative system is

Bφ = aBR +
bB
R

, (41)

where aB and bB are defined by the values of the azimuthal magnetic field at the inner (Bin) and outer (Bout) boundaries as

aB =
Bin

Rin

rin(µB − rin)
1 − r2in

, bB = BinRin
1 − µBrin
1 − r2in

(42)

with

µB =
Bout

Bin
. (43)

The constants Bin and Bout are defined by the vertical electric currents inside the inner and outer cylinders. ForµB = 1/rin we
have bB = 0 so that the magnetic field is of the form Bφ ∝ R, describing a uniform axial current within R < Rout (‘z-pinch’).
For µB = rin we have aB = 0 and Bφ ∝ 1/R, which is current-free outside Rin. A field of the form bB/R is generated by
running an axial current only through the inner region R < Rin, whereas a field of the form aBR is generated by running a
uniform axial current through the entire region R < Rout including the fluid. As the standard choice in this paper will be
rin = 0.5 one finds µB = 0.5 for the solution which is current-free between the cylinders and µB = 2 for the solution with
uniform axial electric current between the cylinders. Another important radial profile of the background fieldwhichwe shall
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often consider is given by µB = 1, describing a solution with almost uniformmagnetic field between the cylinders. We have
bB/aB = R2

in/rin in this case. Expressing the electric currents in Ampere we obtain

Iaxis = 5RinBin, Ifluid = 5(RoutBout − RinBin) (44)

with Iaxis the axial current inside the inner cylinder and Ifluid the axial current through the fluid. Here R, B and I are measured
in centimeter, Gauss and Ampere. Expressing Iaxis and Ifluid in terms of the Hartmann number formed with the azimuthal
field strength Bin at the inner cylinder,

Ha =
BinR0

√
µ0ρνη

, (45)

so that

Iaxis = 5Ha
√

rin
1 − rin

√
µ0ρνη, Ifluid =

µB − rin
rin

Iaxis. (46)

Quite similar relations can be formulated by means of the Lundquist number for azimuthal magnetic fields

S =
BinR0

√
µ0ρ η

. (47)

For µB = rin we find Ifluid = 0 for the solution with aB = 0. On the other hand, for µB = 1/rin it is (1 − r2in)Iaxis = r2inIfluid
hence Iaxis = 0 for rin = 0 and Iaxis = Ifluid/3 for rin = 0.5. Note that for µB < rin the currents Iaxis and Ifluid have opposite
signs. In the present review the Hartmann number (45) – formed with the azimuthal field amplitude Bin – will be used in all
sections where azimuthal magnetic background field exist. As explained later on, Section 7 forms the only exception.

The dimensionless parameters of the instability problem are the same as defined above, but with Bin instead of B0 as in
(14). The necessary and sufficient condition for ideal flow stability is (6). Using (24) for the angular velocity and (41) for the
magnetic field and normalizing with r = R/R0, Eq. (6) takes the form

a2Ω +
aΩbΩ

r2
+

bB
(Mm)2r2

(
aB +

bB
r2

)
> 0 (48)

withMm = Ωin/(Bin/µ0ρR2
0)

1/2 as themagnetic Mach number representing a normalized rotation rate. The angular velocity
part of (48) is positive for hydrodynamically stable flows beyond the Rayleigh limit. Themagnetic part has a simple structure.
It vanishes for bB = 0. Hence, magnetic fields Bφ ∝ R have no influence on the axisymmetric mode of the instability for any
rotation profiles. On the other hand, the magnetic part in (48) is positive definite for aB = 0 so that magnetic fields which
are current-free in the fluid (Bφ ∝ 1/R) always stabilize any rotation profile.

Beyond these extremes it is always possible that themagnetic influence destabilizes rotation profiles beyond the Rayleigh
limit against axisymmetric perturbations. It is also obvious that for negative magnetic parts in (48) (i.e. µB > 1/rin) one
always finds values of the magnetic Mach number which are small enough to provide negative values for any µΩ . Some
sorts of magnetic fields with sufficiently strong currents can thus destabilize any rotation law even against axisymmetric
perturbations. This is in particular true in the Rayleigh limit where aΩ = 0 so that the nonmagnetic part in (48) vanishes
and all fields with bB < 0 become unstable, which according to (42) means µB > 1/rin.

The normalized equations with toroidal background fields are

d2uR

dR2 +
1
R
duR

dR
−

uR

R2 −

(
k2 +

m2

R2

)
uR − 2i

m
R
uφ − i Re(ω + mΩ)uR

+ 2ReΩuφ −
dp
dR

+ i
m
R
Ha2BφbR − 2Ha2

Bφ

R
bφ = 0 (49)

d2uφ

dR2 +
1
R
duφ

dR
−

uφ

R2 −

(
k2 +

m2

R2

)
uφ + 2i

m
R
uR − i Re(ω + mΩ)uφ − i

m
R
p −

Re
R

d
dR

(R2Ω)uR +

+
Ha2

R
d
dR

(
BφR

)
bR + i

m
R
Ha2Bφbφ = 0, (50)

d2uz

dR2 +
1
R
duz

dR
−

(
k2 +

m2

R2

)
uz − i Re(ω + mΩ)uz − i kp + i

m
R
Ha2Bφbz = 0 (51)

and

d2bR
dR2 +

1
R
dbR
dR

−
bR
R2 −

(
k2 +

m2

R2

)
bR − 2i

m
R2 bφ − i Pm Re(ω + mΩ)bR + i

m
R
BφuR = 0, (52)
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Fig. 3. Axial background fields: stability maps for the axisymmetric modes Taylor–Couette flows with stationary outer cylinder for perfectly conducting
(left) or insulating (right) boundary conditions versus the magnetic Prandtl number (marked). Re0 = 68 is the eigenvalue for marginal stability of the
hydrodynamic flow. Note the existence of magnetically induced subcritical excitation of instability for large Pm [30]. The influence of the two differing
boundary conditions is here only weak.m = 0, µΩ = 0, rin = 0.5, [41].

d2bφ

dR2 +
1
R
dbφ

dR
−

bφ

R2 −

(
k2 +

m2

R2

)
bφ + 2i

m
R2 bR − i Pm Re(ω + mΩ)bφ + PmReR

dΩ

dR
bR −

− R
d
dR

(
Bφ

R

)
uR + i

m
R
Bφuφ = 0, (53)

with the boundary conditions described above [40]. The system is again supplemented by the incompressibility condi-
tion (30). The vertical component bz follows from (31).

The axial wave number k is again varied until the Reynolds number for a given Hartmann number reaches its minimum.
The resulting wave number corresponds to the most unstable mode. Both the background flow and magnetic field are
normalized with their values at R = Rin, hence Ω̂ = Ω/Ωin, B̂φ = Bφ/Bin (and the hats are then immediately dropped).

This system has the characteristic symmetry that if k is kept fixed, but m is replaced by −m, and simultaneously the
eigenvalue iω, the flow u and the field b are transformed to their complex conjugates, then the overall system remains
unchanged. This means thatm = ±1 constitute a single solution, with the same drift rate ℜ(ω)/m, Reynolds and Hartmann
numbers.

3. Stationary outer cylinder

According to the Rayleigh criterion the ideal flow is stable whenever the specific angularmomentum increases outwards.
It is thus not stable if the outer cylinder is stationary so that (24) becomes

Ω(R) =
Ωin

1 − r2in

(
R2
in

R2 − r2in

)
. (54)

This is the rotation law whose stability characteristics in the presence of either axial or azimuthal magnetic background
fields are now discussed.

3.1. Axial field

Fig. 3 shows the neutral stability of axisymmetric modes for containers with both conducting and insulating walls with
stationary outer cylinder and for fluids of various magnetic Prandtl number. These results are merely a generalization of
the early findings in Ref. [33], where very similar methods were used to analyze the narrow-gap case rin = 0.95 for both
types ofmagnetic boundary conditions. For the small magnetic Prandtl number ofmercury the phenomenon of themagnetic
stabilization of the centrifugal instability has already been found, which can be observed in Fig. 3 presenting the stability
maps of the axisymmetric perturbations under the presence of axial fields. The magnetic suppression of the onset of the
centrifugal instability is stronger for conducting walls than for insulating walls. Re0 = 68 is the classical hydrodynamic
eigenvalue for m = 0, µΩ = 0 and rin = 0.5. Note the strong difference of the bifurcation lines for Pm ≳ 1 and Pm < 1. For
small Pm themagnetic field always suppresses the instability so that all the given critical Reynolds numbers exceed the value
68. For Pm → 0 the stability lines no longer differ for different Pm, which may be expressed as a statement that for small Pm
themagnetically suppressed instability scales withHa and Re. On the other hand, for Pm ≳ 1 the resulting Reynolds numbers
can be smaller than the nonmagnetic value Re0 = 68. For small Hartmann numbers (14) the magnetic field, therefore, does
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Fig. 4. Stability maps of the modes m = 0, m = 1 (blue lines) and m = 2 for perfectly conducting cylinders and axial fields for various Pm. From left to
right: Pm = 0.1, Pm = 1, Pm = 10. Observe the line crossings for m = 0 and m = 1 for small magnetic Prandtl number and large Hartmann numbers
which lead to nonaxisymmetric modes as the preferred excitations. µΩ = 0, rin = 0.5.

not stabilize the flow. This high-Pm phenomenon – which we shall often meet in the following – becomes more effective for
increasing Pm, but in all cases it vanishes for stronger magnetic fields. One can show that the minima which appear for high
Pm scale as Rm ≃ const, so that Re ∝ Pm−1/2, leading to Ω ∝ η̄ for fixed gap width with η̄ =

√
ν η. The critical rotation rate

of the inner cylinder only depends on the product of ν and η.
While Fig. 3 only provides the bifurcation lines for the axisymmetricmodes, Fig. 4 demonstrates the excitation conditions

of the nonaxisymmetric modes m = 1 and m = 2 for various Pm. The nonmagnetic Rayleigh instability for m = 0 leads to
Re0 = 68, 75, 127 form = 0, 1, 2.Withoutmagnetic fields the axisymmetric mode always has the lowest Reynolds number.
However, the plots in Fig. 4 also show crossings of the instability lines for axisymmetric and nonaxisymmetric modes of the
MHD flows with Pm ≤ 1. Belowwe shall demonstrate that this phenomenon also appears for containers with rotating outer
cylinder.

So far however, the crossover phenomenononly appeared in calculations using perfectly conducting boundary conditions.
In these cases the magnetic suppression of the instability against axisymmetric perturbations is much stronger than for
insulating boundary conditions. One can find this phenomenon also by comparison of the data in Fig. 3. The differences
of the critical Reynolds numbers of the nonaxisymmetric modes are much smaller than the differences for axisymmetric
modes so that crossovers of the lines for insulating boundary conditions cannot happen. The most striking phenomenon is
that for insulating cylinders the magnetic suppression of the axisymmetric mode is much weaker than the suppression of
the nonaxisymmetric modes so thatm = 0 is always the mode with the lowest Reynolds number [41].

3.2. Azimuthal field

We next consider Taylor–Couette flows with a stationary outer cylinder under the influence of an azimuthal magnetic
field. Ref. [9] showed that current-free toroidal fields (Bφ ∝ 1/R) suppress the axisymmetric Taylor vortices, at least in
the narrow-gap limit, with conducting boundaries, and dissipative fluids. This result holds true even if the narrow-gap
approximation is notmade. Allowing electric currents to flowwithin the fluid though can dramatically change the results. In
the followingwe shall apply the two extreme azimuthalmagnetic fields (with aB = 0 andwith bB = 0) to the rotation profile
having a stationary outer cylinder, and find completely different classes of solutions. In the first case Bφ may be assumed as
current-free, i.e. aB = 0 or µB = 0.5 if rin = 0.5. Fig. 5 (left) gives the resulting critical Reynolds numbers as functions of
the Hartmann number (45) for the modes with m = 0, m = 1 and m = 2. The three corresponding Reynolds numbers Re0
for the modes are (again) 68, 75 and 127 form = 0, 1, 2. The above statement for ideal fluids is confirmed that current-free
fields always suppress the axisymmetric modes as shown here for Pm = 1 and Pm = 10−5. The suppression is stronger for
smaller magnetic Prandtl numbers.

It is obvious that strong differential rotation leads to a suppression of the instability, as nonuniform rotation always
suppresses nonaxisymmetric modes for sufficiently high electric conductivity. On the other hand, weak differential rotation
may support the excitation of nonaxisymmetric modes in contrast to rigid rotation. A Taylor–Couette flow with stationary
outer cylinder may easily serve as a model to study such problems.

FromFig. 5we take that even current-free azimuthal fields suppress nonaxisymmetricmodes. The stabilizing action of the
field is stronger on nonaxisymmetric rather than on axisymmetric modes. This finding complies with the above mentioned
idea that differential rotation strongly amplifies the dissipation of nonaxisymmetric modes. Note that the calculated lines
of neutral stability of the mode m = 0 hardly differ for Pm = 1 and Pm = 10−5. The eigenvalues along the line of neutral
stability of the axisymmetric modes, therefore, appear to scale with Re and Ha for Pm → 0. In both cases the magnetic
field simply suppresses the axisymmetric mode as predicted by Eq. (48). The results, however, for the nonaxisymmetric
modes and for Pm = 1 are surprising with respect to the line crossings in the left panel of Fig. 5. For Ha < 18 the lowest
Reynolds number for instability is for m = 0 but for larger values m = 1 is preferred. For higher values of Ha even the
m = 2 mode overcomes the axisymmetric solution. The same phenomenon might happen for small Pm but for much higher
Hartmann numbers (not shown). We thus find again crossover effects for the instability of the rotation law with stationary
outer cylinder, quite similar to the interaction with axial fields (see Fig. 4). Magnetically influenced Taylor–Couette flows – if
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Fig. 5. Azimuthal background fields: critical Reynolds numbers (left) and the corresponding axial wave numbers (right) for the modes withm = 0,m = 1
and m = 2 of the flow with stationary outer cylinder subject to azimuthal fields which are current-free between the cylinders for Pm = 1 (solid) and
Pm = 10−5 (dashed). rin = 0.5, µΩ = 0, µB = 0.5. Perfectly conducting cylinders.

Fig. 6. Critical Reynolds numbers as function of theHartmannnumber for themodeswithm = 0 (blue) andm = 1 (red) for uniformaxial electric current and
stationary outer cylinder. The diamond indicates the eigenvalues where the symmetry of the modes with the lowest Reynolds number changes. rin = 0.5,
µΩ = 0, µB = 2, Pm = 1. Perfectly conducting cylinders.
Source: Adapted from [43].

the field is strong enough – appear to form nonaxisymmetric structures much easier than nonmagnetic flows. We shall see
below that the nonaxisymmetry of the instability pattern shown by Fig. 5 (left) proves to be a characteristic property also
of all Taylor–Couette flows subject to azimuthal fields formed by stable rotation with no electric current and/or no rotation
with electric current. We call phenomena related to the first case the Azimuthal MagnetoRotational Instability (AMRI) and
the second case the Tayler Instability (TI).

Another finding concerns the axialwavelengths of the unstablemodes. Under themagnetic influence they become shorter
and shorter except for m = 0, Pm = 1 and Ha ≥ 40. For this curve the axisymmetric Taylor vortex as the mode with the
lowest Reynolds number (see [42]) develops from nearly spherical cells to cells strongly elongated in the axial direction
under the influence of the current-free azimuthal magnetic field. The pattern becomes two-dimensional for Ha → ∞.
This surprising effect disappears for higher mode numbersm and for smaller magnetic Prandtl numbers. The real part of the
eigenfrequencyω, which for axisymmetricmodes often vanishes, has here finite values, indicating that the unstable patterns
oscillate or migrate in the azimuthal or the axial direction.

For the second case the combination of differential rotation and a magnetic field due to a uniform axial electric current is
considered (bB = 0). We shall find a completely different situation with respect to the axisymmetry of the solutions. Fig. 6
shows that the axisymmetric mode is not influenced by the magnetic field, in agreement with the consequences of Eq. (48).
However, already for Hartmann numbers of order 10, them = 1mode crosses the line form = 0. For stronger fields themost
easily excited azimuthal mode is that with m = 1. For Ha0 = 35.3 the line for the neutral stability of the mode m = 1 even
crosses the abscissa defined by Re = 0. The uniform axial electric current (the ‘z-pinch’) becomes unstable even without any
rotation (TI). We shall stress below that the characteristic Hartmann number Ha0 for Re = 0 never depends on the magnetic
Prandtl number Pm. The red line in this plot depend on the magnetic Prandtl number but the Hartmann number Ha0 for
stationary cylinders does not (see Section 8). We shall meet the value Ha0 = 35.3 for the stationary z-pinch inside perfectly
conducting cylinders several times in this paper. The corresponding value for insulating cylinders is Ha0 = 28.1.

One can also show that the growth rates of the m = 0 modes of the flow field for various magnetic field strengths are
identical. For m = 1 they become positive for Re ≥ 75 for weak fields, but for sufficiently strong fields they are already
positive for Re = 0. At the vertical axis (Re = 0) the growth rates increase with increasing Ha so that for large fields the
growth rate scales with the Alfvén frequency ΩA in perfect agreement with Fig. 6.
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Fig. 7. Isolines of the radial flow component measured as Reynolds numbers uRd/ν for a z-pinch with Re = 0 (left) for pure Tayler instability and with
Re = 350 (right). The numerical values of themaxima andminima are shown by the color bars (the negative signs in the left panel are hidden by the yellow
colors). The TI of the stationary flow produces a single nondrifting mode with m = ±1 (left panel). For Re = 350 also the axisymmetric mode is visible.
rin = 0.5, Ha = 80, µΩ = 0, µB = 2, Pm = 1. Perfectly conducting boundaries.

For information about the instability pattern and the energies which are stored in the various modes and in the flow
and field components, one needs a code solving the nonlinear MHD equations. To this end a spectral element code has been
developed from the hydrodynamic code of Fournier et al. [44]. It works with an expansion of the solution in azimuthal
Fourier modes. A set of meridional problems results, each of which is solved with a Legendre spectral element method as
in Ref. [45]. Between 8 and 16 Fourier modes are used. The polynomial order is varied between 10 and 16, with four or five
elements in radial direction where the largest resolution is used for the smallest magnetic Prandtl numbers. The number of
elements in axial direction ensures that the spatial resolution is the same as for the radial direction. At the inner and outer
walls perfect conducting boundary conditions are applied togetherwith no-slip conditions for the flow.With a semi-implicit
approach consisting of second-order backward differentiation and third-order Adams–Bashforth for the nonlinear forcing
terms time-stepping is done with second-order accuracy. Periodic conditions in the axial direction are applied to minimize
finite size effects. With the aspect ratio Γ = 8 (the height of the numerical domain in units of the gap width) all excitable
modes in the analyzed parameter region fit into the system.

As a first application of this code, the right panel of Fig. 7 shows the patterns of the radial flow component uR for uniform
axial electric current (µB = 2), rapid rotation (Mm = 4.4) and stationary outer cylinder [46]. As expected, the instability is
highly nonaxisymmetric. The axisymmetric mode also exists but does not dominate the structure which as a whole drifts
in the positive azimuthal direction. Clearly, the pattern with differential rotation is of the mixed-mode type, but without
rotation it is formed by a single nondrifting mode m = 1 (left panel). There is no axisymmetry in the solution as Fig. 6
suggests, and the complete pattern is stationary.

For the flowwith stationary outer cylinder and uniformaxial electric current the kinetic andmagnetic energy (normalized
with the centrifugal energy d2Ω2

in) have also been computed. The question is how much centrifugal energy is stored in the
nonaxisymmetric modes of flow and field and which sort of energy dominates. We write

⟨u2
⟩ = q̂kin Ω2

ind
2,

⟨b2
⟩

µ0ρ
= q̂mag Ω2

ind
2 (55)

and find the numerical values q̂kin ≃ 0.015 and q̂mag ≃ 0.012 for very rapid rotation (Fig. 8, dashed lines). For Mm ≫ 1 the
coefficients q̂kin and q̂mag no longer depend on the Reynolds number. The faster the rotation of the inner cylinder, therefore,
the more energy is stored in the nonaxisymmetric modes of the instability. Both energies can thus easily be expressed by
the global energy Ω2

ind
2.

A very similar formulation can be used for the nonmagnetic Taylor–Couette flow. The pink curve in the left panel of
Fig. 8 gives the kinetic energy in the nonaxisymmetric modes of the hydrodynamic Taylor–Couette flow. Clearly, it starts at
Re = 75 and grows for faster rotation. Surprisingly, for very large Reynolds numbers the energy approaches (from below)
the kinetic energy values of the MHD pattern for rapid rotation. Hence, for magnetized rapid rotators (with Pm = 1) the
energies in the hydromagnetic modes are continuously reduced by increasing rotation until they both reach just the same
value as the hydrodynamic Taylor–Couette flow produces. Fig. 8 also demonstrates that for Pm = 1 the kinetic andmagnetic
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Fig. 8. The kinetic (left) and magnetic (right) energy of the nonaxisymmetric modes normalized with the centrifugal energy Ω2
ind

2 for various Hartmann
numbers. The pink line in the left plot gives the kinetic energy of the nonmagnetic flow. rin = 0.5, µΩ = 0, µB = 2, Pm = 1. Perfectly conducting
boundaries.

Table 1
Parameters of the liquid metals as conducting fluids, where η̄ =

√
ν η.

Source: From [3,49].
ρ [g/cm3] ν [cm2/s] η [cm2/s] η̄ [cm2/s] Pm

Mercury 5.4 1.1 · 10−3 7600 2.9 1.4 · 10−7

Gallium 6.0 3.2 · 10−3 2060 2.6 1.5 · 10−6

Galinstan (GaInSn) 6.4 3.4 · 10−3 2428 2.9 1.4 · 10−6

Sodium 0.92 7.1 · 10−3 810 2.4 0.88 · 10−5

energies are almost in equipartition.We shall later see that themagnetic energy in such simulations only exceeds the kinetic
energy for large Pm.

4. Standard magnetorotational instability (MRI)

So far we have discussed the stability of the Couette flows (24), which by themselves can be hydrodynamically unstable.
If the fluid is electrically conducting and an axial magnetic field is applied then for small Pm the critical Reynolds number
increases with increasing magnetic field. Chandrasekhar explained the experimental data of Donnelly & Ozima for narrow
gaps and with Pm = 0 by a magnetic suppression of the Rayleigh instability (see Fig. 1, [3,28]).

The hydrodynamic Taylor–Couette flow is stable if its angular momentum increases with radius, but according to (16)
the hydromagnetic Taylor–Couette flow is only stable if the angular velocity itself increases with radius. This remains true
also for nonideal fluids subject to axial magnetic fields. Weak magnetic fields reduce the critical Reynolds number for
hydrodynamically unstable flows, and destabilize the otherwise hydrodynamically stable flow for r2in < µΩ < 1.

As we shall demonstrate, for small Pm and given Hartmann number (14) the Reynolds numbers for neutral stability scale
as 1/Pm for hydrodynamically stable flows, so that it is the magnetic Reynolds number Rm which controls the instability.
Because of the high value of the molecular magnetic resistivity η for liquid metals (Table 1) it is not easy to reach magnetic
Reynolds numbers of the required order of 10. This is the reason why the standard MRI has not yet been unambiguously
observed experimentally in the laboratory [47,48].

4.1. Potential flow

From all possible Couette flows only those with vanishing aΩ form an irrotational vortex with curlU = 0. For this flow
the specific angular momentum R2Ω is uniform in the radial direction. The rotation profile withµΩ = r2in (henceµΩ = 0.25
for rin = 0.5) is called the Rayleigh limit while the associated flow is called the ‘potential flow’. It plays an important role
in the general theory of Taylor–Couette flows. In pure hydrodynamics, negative values of the radial gradient of R2Ω are
destabilizing and positive values are stabilizing. Onemight expect that instabilities subject to uniform R2Ω should be easiest,
i.e. the excitation needs minimal Reynolds numbers.

For the potential flow a particular scaling of the solutions of the MHD equations (26)–(31) with axial background field
exists with respect to the magnetic Prandtl number. The quantities uR, uz, bR and bz scale as Pm−1/2 while uφ, bφ, k and
Ha scale as Pm0. Then for the axisymmetric modes it follows that the minimum Reynolds number scales as 1/

√
Pm, so

that Rm=const, independent of the boundary conditions [50]. One has thus only to solve the equations for Pm = 1 and
simultaneously knows the solutions for all other Pm. The minimum Reynolds number for Pm = 1 is 66 at a Hartmann
number Ha ≃ 7 [41]. Hence, the small minimum value of Re = 22,248 for Pm = 10−5 (liquid sodium) is needed (together
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Fig. 9. Stability maps for standard MRI of the potential flow for m = 0 with Pm = 10−5 (left) and the minimum Reynolds numbers for m = 0, m = 1
and m = 10 as functions of Pm (right). The curve in the left panel shows the axial wave numbers normalized with the characteristic scale R0 . rin = 0.5,
µΩ = 0.25. Perfectly conducting boundaries.
Source: Adapted from [51].

withHa = 7) which seems to be very promising for experiments (Fig. 9, left). Belowwe shall argue that significant problems
with accuracy prevent its realization thus far.

The axial wave numbers marked in the left panel of Fig. 9 demonstrate the increase of the axial scales with increasing
magnetic field in accordance with the magnetic analog of the Taylor–Proudman theorem. It is indeed known from early
experiments [52,53] and theoretical studies [54–57] that the correlation lengths in MHD turbulence become longer in the
field direction the stronger the applied background field is. On the other hand, if the wave number normalized with the gap
width is smaller than π (for our standard container) then the axisymmetric vortices in the Taylor–Couette flow are axially
aligned. The given numbers in the plot predict that the cells become longer and longer for growing Ha.

The right panel of Fig. 9 also demonstrates that the simple scaling of the Reynolds number with Pm−1/2 for the potential
flow only exists for the axisymmetric mode. For the modes with m = 0, m = 1 and m = 10 the dependencies
of the characteristic Reynolds numbers on the magnetic Prandtl number are plotted. One finds that for Pm → 0 the
nonaxisymmetricmodes followamuch steeper scalingwith Pm than the axisymmetricmode. For Pm of order unity, however,
the various Reynolds numbers for excitation of m = 0 and m = 1 do not differ much, as is also true down to Pm ≃ 0.1.
This is not true for Pm ≪ 1. Fig. 10 demonstrates for two different Hartmann numbers that for the supercritical Reynolds
number Re = 50,000 only the axisymmetric mode is excited. All modes with m > 0 decay. The instability pattern even
remains axisymmetric for similar examples with Re = 105 (not shown). The models prove the axisymmetry of standard
MRI also for very small magnetic Prandtl numbers such as Pm = 10−5, and this for not too high Reynolds numbers. Observe
that the resulting normalized magnetic perturbations are only weak compared with the background field. The two given
models with different Hartmann numbers may also serve to probe the prediction that the axial wavelength increases with
increasing magnetic field. This is indeed the case.

Only slightly beyond the Rayleigh limit (e.g. for µΩ = 0.255) and the other parameters left unchanged, the numerical
simulations no longer yield standard MRI. This is a direct consequence of different scalings of the solutions for small Pm for
different rotation laws (see Section 4.2).

4.2. Quasi-Keplerian flow

A quasi-Keplerian Couette flow may be defined by requiring that the cylinders rotate like planets following the Kepler
law Ω ∝ R−3/2. This becomes µΩ = r1.5in = 0.35 for rin = 0.5. Fig. 11 shows the eigenvalues of the axisymmetric modes
for this flow1 for the two magnetic Prandtl numbers Pm = 1 (left) and Pm = 10−5 (right). Compared with Fig. 3 the
eigenvalues forHa = 0 along the vertical axis disappear to infinity, but theminima for both flows remain almost unchanged.
For both magnetic Prandtl numbers the characteristic minima are at very different locations in the (Ha/Re) plane. Minimum
Reynolds and Hartmann numbers increase for decreasing magnetic Prandtl number. The characteristic Reynolds numbers
scale as Re ∝ 1/Pm — much steeper than the 1/

√
Pm scaling for the potential flow. For the Hartmann number the relation

Ha ∝ 1/
√
Pm results — also steeper than Ha ≃ const for the potential flow [37]. For the quasi-Keplerian flow one finds the

simple relations Rm ≃ const and S ≃ const for Pm → 0. For small magnetic Prandtl numbers the minima thus have very
similar coordinates in the (S/Rm) plane.We conclude that for Pm → 0 the characteristic minima for standardMRI scale with
the magnetic Reynolds number Rm and the Lundquist number S. Note that the microscopic viscosity does not play any role
in that formulation. This is in contrast to the inductionless approximation for Pm = 0, where the remaining eigenvalues
are Ha and Re and thus include the microscopic viscosity (see Section 6.1). The solutions of the MHD equations for Pm = 0,
therefore, also scale with the Hartmann number and the Reynolds number. As the standard MRI for finite magnetic Prandtl
numbers scales with S and Rm for small Pm the limit for Pm → 0 yields Ha → ∞ and Re → ∞, which can never form a
solution of the equations of the inductionless approximation. These equations, therefore, cannot contain any MRI solution
for uniform axial fields. The solutions only exist for arbitrarily small Pm, but they do not exist for Pm = 0 (see [3]).

1 For historical reasons given for µΩ = 0.33 instead of µΩ = 0.35 (quasi-Keplerian rotation).
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Fig. 10. Standard MRI of the potential flow subject to axial background field. Isolines of the azimuthal field component (normalized with B0) are shown for
Ha = 7 (left) and Ha = 50 (right). Only the axisymmetric mode is excited despite the high Reynolds number. Γ = 10, rin = 0.5, Re = 50,000, µΩ = 0.25,
Pm = 10−5 . Insulating boundaries, see Section 4.3.

Fig. 11. Stability maps of standard MRI for quasi-Keplerian MHD Taylor–Couette flows for Pm = 1 (left) and Pm = 10−5 (right). The combinations of
Reynolds and Hartmann numbers below the curves are stable. There are strong differences in the (Ha/Re) coordinate plane for small and large magnetic
Prandtl numbers. rin = 0.5, perfectly conducting boundaries.
Source: From [41].

It follows that for small Pm the transition from the potential flow to the non-potential flow might be a dramatic one. For
small Pm a vertical jump along the Rayleigh line from 1/

√
Pm to 1/Pm, i.e. by a factor of 1/

√
Pm must exist within a very

small interval δµΩ . For Pm = 10−5 the vertical jump is by more than two orders of magnitudes. For Pm = 1, on the other
hand, the transition from the potential flow to flatter radial flow profiles is much smoother.

Table 2 gives the numerical values for the excitation of the standardMRI in quasi-Keplerian flows, for perfectly conducting
and for insulating boundaries. The critical Reynolds numbers are lower for insulating cylinders, whereas the critical
Hartmann numbers are lower for conducting cylinders. The magnetic Mach numbers of the two examples, therefore, differ
by a factor of two. One also finds that for all Pm ≤ 1 the strong-field branches of the lines of neutral stability can be described
with Mm ≃ 4. The standard magnetorotational instability, therefore, only works for large Lundquist numbers (S > 1) and
large magnetic Mach numbers. However, we shall see below that for the nonaxisymmetric modes maximalMm exist above
which the fluid again becomes stable to these modes.

TheMRI is so elementary that its main rules already follow from a simple analysis with a local short-wave approximation
of the MHD equations (26)–(31). For disturbances with kR ≫ 1, the differential rotation can be approximated by a plane
shear flow [58]. For the simplest case of plane-wave disturbances with the axial wave number kz and Eq. (23) one finds the
algebraic relation(

iω + ηk2
)2 ((

iω + νk2
)2

+ 2 (2 − q) Ω̃2
)

+ Ω2
A

(
Ω2

A − 2qΩ̃2
+ 2

(
iω + νk2

) (
iω + ηk2

))
= 0 (56)
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Table 2
Coordinates of the absolute minima of the Reynolds numbers for quasi-
Keplerian rotation. rin = 0.5, µΩ = 0.33, Pm = 10−5 .

Perfectly conducting walls Insulating walls

Reynolds number 2.13 · 106 1.42 · 106

Mag. Reynolds number 21 14
Hartmann number 1100 1400
Lundquist number 3.47 4.42
Magnetic Mach number 6.05 3.16

Fig. 12. Stability lines for standard MRI with quasi-Keplerian flow for the modes m = 0, m = 1 and m = 2 (marked). Dark lines: Pm = 1. Left: Pm = 0.01
(red). Right: Pm = 10 (red). For small Pm the curves scale with Rm and S, for large Pm they scale with Rm and Ha. The weak-field branches show opposite
slopes for axisymmetric and nonaxisymmetric modes. Nonaxisymmetric modes decay for too high Reynolds numbers. rin = 0.5, µΩ = 0.35. Perfectly
conducting boundaries.

for the Fourier frequency ω, where Ω̃ = (kz/k)Ω , the Alfvén frequency ΩA = kVA (with the Alfvén velocity VA = B0/
√

µ0ρ)
and the local shear q = −d logΩ/d log R. The neutral line between stability and instability defined by ℑ(ω) = 0 yields

R̃m =
Pm + S̃2√

2
(
qS̃2 − 2 + q

) . (57)

Here, the dimensionless quantities S̃ and R̃m are redefined in terms of the wave number k and the modified rotation rate Ω̃

(R0 → k−1, Ω → Ω̃). Eq. (57) shows that the instability requires sufficiently large ˜Rm exceeding

R̃mmin =

√
2
q

(
Pm +

2 − q
q

)
. (58)

The associated Lundquist number is S̃min =
√
Pm + 2(2 − q)/q. For R̃m > R̃mmin the instability only exists for S̃ between a

lower and an upper limit, i.e. S̃ ≥
√
(2 − q)/q and Mm ≥ 1/

√
2q. For small Pm the expression (57) loses its dependence on

Pm so that the viscosity disappears from the theory. The instability in this limit is controlled by R̃m and S̃, which are only
formed with the magnetic resistivity η. For quasi-Keplerian flows (q = 3/2) one finds S̃ ≥ 1/

√
3 and for the slope of the

strong-field branchMm ≃ 1/
√
3. On the other hand, for large Pm theminima of the curves fulfill the conditions Rm = 2/

√
3

and Ha = 1.
The stability lines in Fig. 12 as the solutions of the MHD equations (26)–(31) for quasi-Keplerian rotation indeed show

for small Pm no clear dependence on Pm in the (S/Rm) plane, at least for the axisymmetric mode, true both for conducting
(left panel) and for insulating (right panel) boundary conditions. The right branch of the neutral stability lines at sufficiently
high Rm can be characterized by Mm = 1/

√
3. The left branch is controlled by the diffusivities. Its expression for large Rm

can be obtained by setting the denominator in (57) to zero, hence S = 1/
√
3 [59].

In Fig. 12 (right) the lines of neutral stability are compared for Pm = 1 (dark lines) with those for Pm = 10 (red
lines) in the (Ha/Rm) plane. The scaling with Ha and Rm for both axisymmetric and nonaxisymmetric solutions for large
Pm is obvious. This finding remains robust also for larger Pm. The numerical results for the global quasi-Keplerian flow
with rin = 0.5 confirm these findings for the axisymmetric and nonaxisymmetric modes. The graphs also demonstrate
that nonaxisymmetric modes require stronger fields for their excitation than axisymmetric modes. There is, however, an
even more interesting difference between the axisymmetric and nonaxisymmetric modes. For m = 0 and S ≥ 1 a single
critical Reynolds number always exists abovewhich theMRI is excited for all larger Rm. The nonaxisymmetricmodes behave
differently. For S > Smin ≃ 1 (Smin the smallest possible Lundquist number) there are always two critical Reynolds numbers
between which the nonaxisymmetric modes can exist. The nonaxisymmetric modes are thus stabilized by too slow and by
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Fig. 13. Wave numbers along the lines of neutral stability for the azimuthal modes m = 0, m = 1 and m = 2 (marked by m) for standard MRI with
quasi-Keplerian flow. Left: Pm = 0.01, right: Pm = 1. Dotted lines mark the limit k = π for circular cells in the (R/z) plane. The axisymmetric modes and
the strong-field solutions of the nonaxisymmetric modes are always prolongated in axial direction. rin = 0.5, µΩ = 0.35.

too fast rotation. If it is too strong, the differential rotation suppresses the nonaxisymmetric parts of the instability pattern. As
an estimation one finds thatMm ≃ 300 is the highest possiblemagneticMach number for the excitation of nonaxisymmetric
modes. The dependence of this value on themagnetic Prandtl number is weak. Form = 0 such an upper limit does not exist.

For small magnetic Prandtl numbers (here Pm = 0.01) we again find a crossing phenomenon for strong fields in the
neutral-stability curves for m = 0 and m = 1 [60]. In Fig. 12 (left) for perfectly conducting cylinders lines for m = 0
and m = 1 cross for S ≃ 20. For weaker fields the mode with the lowest Reynolds number is always axisymmetric, but
for stronger fields the Reynolds numbers for m = 1 are smaller than those for m = 0. In these cases the MRI sets in as
a nonaxisymmetric flow pattern. The nonaxisymmetric structure is lost, however, for too fast rotation when the magnetic
Reynolds number reaches the upper value of the marginal stability of the m = 1 curve. We have found this sort of mode-
crossing only for MHD flows with perfectly conducting boundary conditions.

One can show that a solution with a certain positive k is always accompanied by a solution with −k with the same
Reynolds number and drift frequency (for given Ha and m). As the pitch angle of the resulting spirals is given by ∂z/∂φ =

−m/k, it is clear that the two solutions have opposite pitch angles, so that the solution is always a combination of a left
screw and a right screw. In the ideal case the same number of left and right spirals will be excited as there is no reason
for a preference. Both the kinetic and magnetic helicities thus vanish on average. As a consequence, standard MRI does not
produce any α effect (see Section 12).

The governing equation system is also invariant under the simultaneous transformations m → −m, k → −k and
ℜ(ω) → −ℜ(ω), with ℜ(ω) as the real part of the mode frequency ω. Hence, the drift of both solutions and also the pitch
angles, i.e.

∂φ

∂t
= −

ℜ(ω)
m

∂z
∂φ

= −
m
k

, (59)

are equal so that the solutions are identical. It is thus enough to assume k > 0.
The vertical extent δz of the cells of the instability pattern, normalized by the gap width d = Rout − Rin between the

cylinders, is given by

δz
d

=
π

k

√
rin

1 − rin
. (60)

For rin = 0.5 it is simply δz/d = π/k so that for k ≃ π the cells are almost circular in the (R/z) plane, and for k ≫ π the
cells are very flat. Fig. 13 shows that for both values of Pm the azimuthal rolls of the axisymmetric modes become more and
more elongated in the vertical direction. Generally, only the cells of the weak-field branches of the nonaxisymmetric modes
are very flat while the other modes possess circular or prolate cells.

The real part ℜ(ω) of the frequency ω of the Fourier mode in units of the rotation rate of the inner cylinder

ωdr =
ℜ(ω)
Ωin

, (61)

which form ̸= 0 describes an azimuthal drift

φ̇

Ωin
= −

ωdr

m
(62)

of the instability pattern, in units of the inner cylinder’s rotation rate. For negative ωdr the pattern migrates in the direction
of the global rotation (eastward). Because of these definitions a drift value of −µΩ describes an exact corotation of the flow
pattern with the outer cylinder as we are working in the fixed laboratory system.
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Fig. 14. Instability patterns of standard MRI for quasi-Keplerian rotation for weak background field and increasing magnetic Mach numbers (from left
to right: Mm = 6.8, 96.2, 307.7). The magnetic Reynolds numbers are 88, 1250 and 4000 (from left to right). The numbers on the color bars yield the
amplitude of the local quantity bφ/B0 . rin = 0.5, µΩ = 0.35, S = 13, Pm = 1. Insulating boundaries (bφ = 0 at the cylinders).

4.3. Nonlinear simulations

Nonlinear numerical simulations reveal the axisymmetric character of the standard MRI for large magnetic Mach
numbers. The nonlinear three-dimensional time-stepping problem is solved using the MPI-parallelized code [61], which
itself is based on an earlier pipe flow solver by A.P. Willis.2 The spatial structures in z and φ are described by the standard
Fourier mode approximation, allowing energy spectra in these two directions to be easily constructed. The periodic domain
length in the axial direction is chosen as 10 times the gap width, to allow sufficiently large structures in z. The resolution
varies from 127×64×32 and 511×256×128, depending on the Reynolds number. In its present form the code only works
without endplates in axial direction and only for insulating radial boundaries.

The equations for the quasi-Keplerian flow have been solved in axially unbounded containers with insulating boundary
conditions. The right panel of Fig. 12 shows the neutral stability curves. For a weak field Fig. 14 shows the isolines of the
azimuthal components of themagnetic field for models with increasing Reynolds numbers. At Rm = 88 the lowest Reynolds
number lies below the instability curve of the nonaxisymmetric m = 1 mode, so that the exact ringlike geometry of the
left plot in Fig. 14 is not a surprise. The cells are nearly circular in the (R/z) plane. For faster rotation (Rm = 1250, middle)
nonaxisymmetric structures occur but remainweak.Nevertheless, the cell structure changes as the cells becomemore oblate,
which cannot be understood bymeans of the nonmagnetic Taylor–Proudman theorem. This trend is continued for even faster
rotation (Rm = 4000) where again the axisymmetry of the solution prevails.

For stronger fields the nonaxisymmetric modes are obviously excited, but only for not too low and not too high
Reynolds numbers. The right panel of Fig. 15 shows that very large Reynolds numbers indeed prevent the excitation of
nonaxisymmetric modes. The instability map suggests that for S = 30 the Reynolds number 4000 lies outside the instability
domain form = 1 (see Fig. 12, right). For S = 100 only the model with Rm = 1000 (i.e. magnetic Mach number of order 10)
shows a nonaxisymmetric pattern with lowm, while the models with faster rotation become more and more axisymmetric
with increasing axial wave numbers (see Fig. 16).

We also note that for all models with fixed Lundquist number the amplitude of the bφ-component grows for growing Rm,
i.e. for stronger shear. The magnetic energy averaged over the whole container should be increasingly relevant. For several
models with different magnetic Prandtl number Pm the normalized magnetic energy

Q =
⟨b2

⟩

B2
0

(63)

is given in Fig. 17 in its dependencies on themagnetic Reynolds number and the Hartmann number. The blue (red) curves are
for weak (medium) background fields; they only differ by Pm (the circles and triangles are for Pm = 1). One finds Q ∝ Rm,
the Pm-dependence as rather weak, and an anticorrelation between Q and Ha. There is, however, another clear relation to
report. For the magnetic Elsasser number

Λ =
⟨b2

⟩

µ0ρηΩin
(64)

2 See www.openpipeflow.org.

http://www.openpipeflow.org
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Fig. 15. As in Fig. 14 but for S = 30. Magnetic Reynolds numbers are Rm = 500, 1500, 4000 and magnetic Mach numbers are Mm = 16.7, 50, 133 (from
left to right).

Fig. 16. As in Fig. 14 but for S = 100. Magnetic Reynolds numbers are Rm = 1000, 10 000, 20 000 and magnetic Mach numbers are Mm = 10, 100, 200
(from left to right).

one finds from the right panel of Fig. 17 the linear relation Λ ≃ 0.007 Rm for large Rm and independent of Pm, leading to
the simple result ⟨b2

⟩ ≃ 0.007 · µ0ρR2
0Ω

2
in which is identical to

Q ≃ 0.007Mm2. (65)

Note that for Kepler disks Mm2 equals the plasma-β as the ratio of kinetic pressure and magnetic pressure as in such disks
the averaged pressure equals ρd2Ω2. The plasma-β value of 400 used in Ref. [62] corresponds to Mm = 20, close to the
minimum values used in the simulations which lead to Figs. 14–19. According to Eq. (65) the resulting Q will be expected
as of order unity.

The normalizedmagnetic energy of the perturbations does not depend on themicroscopic diffusivities. Not even 1% of the
rotation energy of the Taylor–Couette flow exists in the form of stochastic perturbations of the magnetic field. Nevertheless,
as the MRI occurs for large magnetic Mach numbers, Eq. (65) leads to the conclusion that the energy of the magnetic
perturbations may easily exceed the energy of their magnetic background fields. It is unlikely that this finding is changed
for much smaller or larger magnetic Prandtl numbers, as the dependence of the standard MRI on Pm is basically weak. If
a magnetically induced viscosity is defined in a heuristic manner by νT ≃ ⟨b2

⟩/µ0ρΩ one finds νT ≃ 0.007R2
inΩin, which

might be relevant for the angular momentum transport in the unbounded differentially rotating container. One can also
understand such expressions as a realization of the β viscosity concept [63–65].

Closing this section, the calculations presented in Fig. 14 may be repeated with a basically smaller magnetic Prandtl
number. The identical models represented in the (S/Rm) system are numerically repeated for Pm = 0.01 rather than Pm = 1
(Fig. 18). The magnetic Mach numbers are thus reduced by a factor of 100; they are now of order unity. The differences
between the results in Figs. 14 and 18 are surprisingly small, which demonstrates the basic role of the magnetic Reynolds
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Fig. 17. Left: Magnetic energy (63) for standard MRI averaged over the whole container as functions of the magnetic Reynolds number and for various
magnetic field amplitudes. Right: The magnetic Elsasser number (64). The circles and the green triangles correspond to Pm = 1 (increasing Ha) while the
other symbols belong to Ha = 50 and Pm = 0.1 (blue crosses) and Pm = 0.2 (red squares). The dependencies on S and Pm are rather weak. rin = 0.5,
µΩ = 0.35, perfectly conducting cylinders.

Fig. 18. As in Fig. 14 but for Pm = 0.01 and S = 13. Magnetic Reynolds numbers are Rm = 400, 1250, 4000 and magnetic Mach numbers are
Mm = 30.8, 96.2, 307.7 (from left to right).

number (for fixed Lundquist number) for geometry and energy of the MRI perturbations with axial fields. In this sense the
role of the magnetic Prandtl number for excitation and formation of the MRI is only small.

Realizations of standard MRI for large magnetic Prandtl number (Pm = 100) are given by Fig. 19. The values of the
averaged Reynolds number Rm and Hartmann number Ha correspond to those used in Fig. 14. Fig. 14 for Pm = 1 and Fig. 19
for Pm = 100 withMm = 7, 100, 300 provide the same series of magnetic Mach numbers. In all cases the maximum values
of bφ/B0 grow linearly with growing magnetic Mach numbers so that the relation (65) is indeed approached.

The models with magnetic Prandtl numbers in the interval between 0.01 and 100 (Figs. 14, 18, 19) have been used to
calculate the ratio ε of magnetic to kinetic energy

ε =
Ha2

Pm
⟨b2

⟩

⟨u2⟩
(66)

averaged over the container for various magnetic Reynolds numbers. Here u2 and b2 have the same dimension. The results
showonly a slight dependence of the energy ratio on themagnetic Prandtl number ε ∝ Pmκ with κ ∼ 0.4 (Fig. 20). The larger
Pm the larger the magnetic energy related to the kinetic energy. For small Pm the fluid becomes less and less magnetized.
On the other hand, the magnetic energy dominates the kinetic energy only for large values of Pm. Written with a more
appropriate normalization one finds for the normalized kinetic energy

⟨u2
⟩

Ω2
inR

2
0

=
0.007

ε
≃ 0.007 Pm−κ . (67)
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Fig. 19. As in Fig. 14 but for Pm = 100. Ha = 13. It is Rm = 88, 1250, 4000 for the averaged Reynolds number and the magnetic Mach numbers are
Mm = 6.8, 96.2, 307.7 (from left to right).

Fig. 20. The ratio (66) of the magnetic and the kinetic energy for the modes with m > 0 of standard MRI with quasi-Keplerian rotation law and magnetic
Prandtl numbers in the interval between 0.01 and 100, 18, 19). rin = 0.5, µΩ = 0.35, S = 13.

with κ ≲ 0.4. Again, for ε ≃ 1 the kinetic energy is also only about 1% of the rotational energy of the system, but it is
much higher for small Pm. The influence of the magnetic Prandtl number on this result is not very strong. It is weaker than
the expected coefficient of order unity and it is slightly larger than the κ ≃ 0.2 which has been derived from numerical
shearing-box simulations [66]. For the very small magnetic Prandtl numbers of liquid metals, however, one expects much
smaller ε-values hence the MHD turbulence is only weakly magnetized. Nevertheless, the small exponents κ suggest the
standard MRI as rather robust against variations of the magnetic Prandtl number.

4.4. Angular momentum transport

In Keplerian accretion disks the rotation velocities are supersonic with RinΩin ≫ cac with cac as the speed of sound, so
that in particular the magnetically induced viscosity may adopt high values. The angular momentum transport by MRI thus
plays an important role in theoretical astrophysics and should thus be considered here in more detail. The radial angular
momentum transport by MHD turbulence can be expressed by the component

TRφ = ⟨uRuφ −
1

µ0ρ
bRbφ⟩ (68)

of the Reynolds and Maxwell stresses. The averaging procedure may be an integration over time and the whole container.
Within the Boussinesq approximation one always has TRφ · dΩ/dR < 0, as the angular momentum transport TRφ is thought
to be opposite to the gradient of Ω [67]. It is thus convenient to introduce a scalar factor, the so-called eddy viscosity νT,
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Fig. 21. αmri versus the Lundquist number S for quasi-Keplerian rotation. Each symbol represents many models with varying Re and for Pm between
Pm = 0.1 and Pm = 1. αmri linearly grows with S. rin = 0.5, µΩ = 0.35. Perfectly conducting boundaries.
Source: From [60].

by

TRφ = −νTR
dΩ

dR
(69)

with positive νT. The sign of these correlations can even be computed with the linear theory. Here we shall use nonlinear
simulations to also compute the amplitude of the eddy viscosity.

One may introduce dimensionless coefficients α via TRφ = αΩ2R2
0 [68]. Hence, the MRI α can be computed with the

definition αmri = TRφ/Ω2R2
0. Note that this definition differs from the one used in astrophysics unless R0 ≃ H , which is only

fulfilled for thick accretion disks. It follows
νT

ν
=

αmri

q
Re, (70)

where the rotation profile Ω ∝ R−q has been used (q = 3/2 for Keplerian rotation).
As a first step we compute αmri with µΩ = 0.35 by averaging only over the azimuth. One finds that the angular

momentum transport is positive everywhere, with a rather weak indication of a cell structure. The angular momentum
transport shown in Fig. 21 is again only due to the nonaxisymmetric modes with m > 0. Only these modes have here been
defined as the fluctuations in the definitions of u and b. Let the averaging procedure concern the entire container. Our results
for αmri lead to the linear relation

αmri = 5 · 10−5 S (71)

(Fig. 21). The numerical value of αmri depends linearly on the amplitude of the magnetic field, the size of the disk or torus
and the electric conductivity. This relation proves to hold for all Reynolds numbers andmagnetic Prandtl numbers. Note that
αmri does not vary with the rotation rate and/or the microscopic viscosity. There is thus no dependence of the αmri on the
magnetic Prandtl number. It does not, in particular, decrease for decreasing magnetic Prandtl number as suggested by a few
shearing-box simulations [69,70]. For the models used in Fig. 20 which all belong to one and the same Lundquist number
S = 13, Eq. (71) leads to αmri = 0.65 ·10−3, in accordance with results of the box simulations in Ref. [66] — also with respect
to the nonexistence of a Pm-dependence of αmri.

For two examples for Pm = 1 (green diamonds in Fig. 21) even the outer boundary condition has been changed from
perfectly conducting to insulating. The numbers do not show any influence of the boundary conditions on the resulting αmri.
Eq. (71) also implies that themicroscopic viscosity has no essential influence on the angularmomentum transport parameter
αmri and, moreover, does not influence the eddy viscosity values, see Eq. (70).

As an astrophysical application of the compact result (71), we ask how strong the axial magnetic field must be in
order to produce αmri = 1. For a protoplanetary disk η = 1015cm2/s and ρ = 10−10g/cm3 can be assumed [71]. Hence
S ≃ 103(B0/1G)(R0/10AU), so that B0 = 1 G is needed for αmri = 0.05. It is obvious that the magnetic field amplitude must
not be much smaller than about 1 G in order to get αmri values of the needed order. The immediate consequence is that
dipolar large-scale stellar fields as the source of the background fields for MRI-induced eddy viscosities must be excluded.

5. Azimuthal magnetorotational instability (AMRI)

According to Michael’s criterion (6) hydrodynamically stable flows are also stable under the influence of curl-free
azimuthal magnetic fields, i.e. Bφ ∝ 1/R. On the other hand, all (sub-)rotation laws between two insulating cylinders
in the presence of toroidal fields due to an axial current inside the inner cylinder are stable against axisymmetric
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Fig. 22. Stability lines of the potential flow for various magnetic Prandtl numbers influenced by current-free azimuthal magnetic fields. Left: all curves for
Pm < 10−4 are basically identical (for small Pm the curves scale with Ha and Re). The dotted lines mark the location with maximal growth rates. Right: for
large Pm the potential flow scales with the magnetic Reynolds number Rm.m = 1, µB = rin = 0.5, µΩ = 0.25, perfectly conducting boundaries.
Source: From [75].

perturbations [6,72]. The reason is simple: the axisymmetric version of Eq. (52) fully decouples from the system so that
this magnetic component decays because of missing energy sources. In particular, it cannot generate induction energy by
the differential rotation term in Eq. (53). An axisymmetric magnetorotational instability with purely azimuthal fields is thus
not possible. These results, however, only hold for axisymmetric perturbations so that we have to ask for possible instability
of nonaxisymmetricmodes, which can indeed arise [73,74]. Because of the absence of large-scale electric currents in the fluid
between the cylinderswehave called this phenomenon theAzimuthalMagnetoRotational Instability (AMRI).We shall derive
in this section the theoretical background of this nonaxisymmetric instability, including its first experimental realization in
a laboratory. In the entire section the Hartmann number is defined in accordance with (45).

5.1. Potential flow

For the curl-freemagnetic field with Bφ ∝ 1/R (i.e.µB = rin), Fig. 22 shows the lines of marginal stability for the potential
flowwith Ω ∝ 1/R2. Note that precisely this combination fulfills the condition Bφ ∝ Uφ which corresponds to a very special
type of MHD flow (Chandrasekhar-type flows, see Section 6). One finds that the instability form = 1 always exists between
a minimum and a maximum Reynolds number. Too slow or too fast rotation enforces stability. The upper branch limits the
instability domain by suppressing the nonaxisymmetric instability by too strong shear while the lower branch is defined by
the minimum shear energy needed for the instability. The location of the maximum growth rate marked by dots in the left
panel of Fig. 22 is closer to the lower branch than to the upper branch.

The curves in the (Ha/Re)-plane converge for small Pm and are no longer visible as distinct curves. For increasingmagnetic
Prandtl number the value of theminimumReynolds number decreases, and the smallest criticalHartmannnumber is reached
for Pm ≃ 0.1. For very small Pm the minimum of the instability cone scales with Re, here with a value of about Re ≃ 800,
while the associatedHartmannnumber is ten times less. The coordinates of the characteristicminimumof the lines of neutral
stability for all m and for small magnetic Prandtl numbers are given in Fig. 24. The curves in this plot demonstrate how for
Pm → 0 the lines in the (Ha/Re) plane no longer depend on the value of Pm, that is, the instability scales with Re and Ha for
small Pm.

The right panel of Fig. 22 demonstrates the scaling of the instability curves for large Pm in the (Ha/Rm) plane. The curves
converge for Pm → ∞ for magnetic Reynolds number of about 1000 and with minimal Hartmann number of about 100.
The use of the average Reynolds number Rm =

√
Re · Rm as the vertical axis leads to additional findings. The dotted line in

Fig. 22 (right) represents the location of the limit Mm = 1. Note that the main part of the cones for Pm > 1 lies above the
dotted line while it lies below this line for Pm < 1. For Pm → 0 the entire instability domain no longer reaches values with
Mm > 1. The relevance of AMRI for super-Alfvénic astrophysical applications might thus be rather restricted. On the other
hand, for Pm → ∞ the instability cone never reaches values withMm < 1.

The eigenvalues for modes withm > 1 are given in Fig. 23 for two different magnetic Prandtl numbers. These curves also
have the characteristic form consisting of lower and upper branches with positive slopes, so again the rotation can be too
slow or too fast for instability. For higher m the instability domains are smaller than for lower m. For all m the minima of
the curves for Pm → 0 move below the dashed line Mm = 1. The absolute minimum values of Re and Ha of all curves are
plotted in Fig. 24. It shows the m = 1 mode as the most unstable mode with the lowest Reynolds and Hartmann numbers.
Decreasing Pm shifts the minimum values to higher values of Re and Ha, and this the more the greater m is. For small Pm
the excitation of the higher modes requires much higher Reynolds and Hartmann numbers than for Pm = 1. The plots also
show that for Pm → 0 all the considered azimuthal modes scale with Re and Ha. Because of Mm =

√
PmRe/Ha for small

Pm all minima are thus sub-Alfvénic. We shall demonstrate below that these results are typical for the Chandrasekhar-type
MHD flows. These results do not remarkably depend on the choice of the boundary conditions.

Fig. 25 (left) gives an example for the drift rate (61) along the lines of neutral stability. In this normalization the outer
cylinder has a rotation rate of µΩ . The real part of the Fourier frequency ω has the opposite sign as the azimuthal migration
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Fig. 23. Stability maps for the modes with m ≥ 1 (marked) for potential flow with Pm = 10−4 (left) and Pm = 1 (right). All curves for Pm < 10−4 are
identical. The dotted lines mark Mm = 1. For sufficiently small Pm all curves are located below Mm = 1. For fixed Ha the unstable modes decay for too
slow and too fast rotation. µB = rin = 0.5, µΩ = 0.25. Insulating boundaries.

Fig. 24. The Pm-dependence of the minimum Reynolds numbers (left) and Hartmann numbers (right) of the modes m = 1, 2, 3 taken from many models
similar to those used in Fig. 23.

Fig. 25. Left: the drift frequency (61) along the lines of neutral stability are always negative (prograde migration). The dotted line marks the value −0.25
indicating exact corotationwith the outer cylinder. All curves for Pm < 10−4 are identical. Right: growth rates (72) along a line of constant Reynolds number
(Re = 3000). The lines from top to bottom correspond to Pm = 10−2

− 10−6 . The curves for Pm < 10−4 are almost identical. m = 1, µB = rin = 0.5,
µΩ = 0.25. Perfectly conducting boundaries.

of the pattern. Since always ωdr < 0, the instability pattern drifts in the direction of the basic rotation (prograde migration).
A typical value of the drift in units of Ωin for small Pm is −0.25 (marked in the plot), so that for µΩ = 0.25 the pattern
basically corotates with the outer cylinder. For stronger fields the drift is slower.

We have still to ask how the growth rates behave between the two branches of neutral stability for a given Reynolds
number. The growth rate is the negative imaginary part of the eigenfrequency ω. In relation to the experiment described in
Section 5.3 we take Re = 3000 for the fixed Reynolds number. The right panel of Fig. 25 clearly shows the convergence of
the growth rates

ωgr = −
ℑ(ω)
Ωin

(72)

for small Pm so that it makes sense to probe their saturation between the two branches. It is obviously enough for the limit
of small Pm to calculate the growth rates along the upper dotted line in Fig. 22. The growth rates grow for growing Hartmann
numbers. The maximum growth rate for very rapid rotation is 0.050 Ωin, so that the shortest growth time of AMRI for the
potential flow is about 0.9 rotation times of the outer cylinder, which is just of the order of the growth time for the standard
MRI [76].
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Fig. 26. Snapshot of the isolines of axial flow (left) and radial magnetic field (right) patterns for axially unbounded containers. The flow component uz is
given in form of Reynolds numbers uzd/ν and the field component bR is normalized with Bin . The modes withm = ±1 drift in the positive φ direction with
identical rates. The axial flow pattern is also nonaxisymmetric, but there is a remarkable phase shift to the radial field. The cells are slightly elongated in
axial direction. The energy ratio (66) is O(10−5) determined with the maximal values of uz and bR . Re = 1500, Ha = 100, µB = rin = 0.5, µΩ = 0.26,
Pm = 10−5 . Insulating boundary conditions.

Fig. 27. Ratio (66) of magnetic to kinetic energy as function of Rm. µB = rin = 0.5, µΩ = 0.25. Ha = 600, insulating boundaries.

For the small magnetic Prandtl number Pm = 10−5 in Fig. 26 the isolines of the axial component of the flow and the radial
component of themagnetic field for axially unbounded containerswith nearly potential flow are given. The flow ismeasured
in the form of Reynolds numbers uRd/ν, and the field is normalized with Bin. The shear parameter µΩ = 0.26 (as also in
Figs. 33 and 34) has been chosen here to correspond to the experiments described in Section 5.3. For small Reynolds numbers
the pattern is nonaxisymmetric with m = 1. The maximal flow amplitude exceeds the maximal field amplitude by many
orders of magnitudes, contrary to the common assumption that kinetic and magnetic energies of magnetohydrodynamic
turbulence ‘ought’ to be equipartitioned. It is thus necessary to study the ratio of both energies inmore detail, which leads to
a surprising result. The left panel of Fig. 27 shows the ratio (66) for various Reynolds numbers as a function of the magnetic
Prandtl number. The Hartmann number is fixed. The result is that for small magnetic Prandtl number (Pm ≲ 10−2) a relation
ε ∝ Pm seems to hold, which implies that η⟨b2

⟩/µ0ρ ≃ ν⟨u2
⟩, or equivalently brms = O(

√
Pmurms). This dependence is

weaker than that used earlier as brms = O(Pmurms) for small Pm [33]. For Reynolds numbers up to 50,000, and magnetic
Prandtl numbers smaller than a value of (say) 0.01, the instability pattern is always dominated by the kinetic fluctuations.
The critical Pm, however, depends on the applied Reynolds number; it becomes smaller for increasing Re. The plot also shows
that the influence of the global Reynolds number on this relation is only weak. For faster rotation the ratio (66) is somewhat
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Fig. 28. Stability maps of AMRI for quasi-Keplerian flow. The curves are marked with Pm. For insulating boundaries (left) the curves scale with S and Rm
for Pm → 0, unlike for perfectly conducting boundaries (right). The dotted lines represent Mm = 1. The instability flow becomes super-Alfvénic (at least
for insulating boundary conditions). µB = rin = 0.5. µΩ = 0.35.

larger than for slower rotation. For forced MHD turbulence models a similar behavior for the viscous and Ohmic dissipation
has been found [77].

In Fig. 27 (right) the same ratio ε is plotted as it depends on the magnetic Reynolds number Rm, which yields a much
clearer scaling of the data. The magnetic energy exceeds the kinetic energy only for Rm ≳ 200. For larger Rm the energy
ratio seems to remain constant. The models with Rm < 200 are only weakly magnetized, while for larger Rm the pattern is
magnetically dominated. If this is true, experiments with liquid metals as the fluid between the cylinders will always lead
to ε ≪ 1 unless the Reynolds number exceeds 107. Working with the maximal values of field and flow given in Fig. 26, we
have ε = O(10−5) for Rm = 0.015, in agreement with the numbers given in Fig. 27 (right) and far away from equipartition.
It thus makes sense in related experiments to observe the flow pattern rather than the magnetic pattern.

5.2. Quasi-Keplerian rotation and beyond

If a flatter rotation profile is considered the situation can be different. For quasi-Keplerian rotation (µΩ = 0.35) the
neutral stability curves for the two possible boundary conditions are plotted in Fig. 28. They show a different scaling behavior
for Pm → 0. For insulating boundaries (left panel) the curves with Pm ≪ 1 are almost identical in the (S/Rm) plane. They
lie above the line Mm = 1. The instability, therefore, also exists for rapid rotation. In contrast, the potential flow for small
Pm always scales with Ha and Re (see Fig. 22) with severe consequences for the excitation conditions for rapid rotation. As
Mm =

√
PmRe/Ha one always findsMm ∝

√
Pm for instabilities which scale withHa and Re for Pm → 0. Hence, for Pm → 0

the Mach number also vanishes and the instability only exists for slow rotation.
Surprisingly, the instability for quasi-Keplerian flow with perfectly conducting boundaries does not scale with S and Rm

for small Pm. It thus makes sense to use another coordinate system. We have plotted the stability maps for quasi-Keplerian
flow and perfectly conducting cylinders in the (Ha/Rm) plane (Fig. 28, right). Note that simplyMm = Rm/Ha, hence Rm = Ha
defines the location of Mm = 1. One finds that the curves for large and medium Pm satisfy Mm > 1 (as also for insulating
boundaries), while very small Pm yieldsMm < 1, similar to the potential flow. It should also be stressed that for Pm = 1 the
excitation of the m = ±1 modes is (slightly) easier for insulating than for perfectly conducting conditions. Nevertheless,
substantial differences of the excitation conditions for small Pm for different boundary conditions are unexpected. The
smooth transition from the scaling with Ha and Re for µΩ = 0.25 to the scaling with S and Rm for µΩ = 0.35 and Pm → 0
for insulating boundary conditions [78] is not visible for fluids between conducting cylinders. It is not known whether this
transition only needs much smaller Pm for different boundary conditions.

The even flatter rotation profile with µΩ = 0.5 as the next example demonstrates that now the same scaling laws for
Pm → 0 exists for both sorts of boundary conditions (Fig. 29). A much weaker influence of the boundary conditions than
for the quasi-Keplerian flow appears. The differences between the neutral stability curves for both boundary conditions are
very small. The scaling for Pm → 0 with S and Rm no longer depends on the boundary conditions; the instability curves for
Pm → 0 always converge in the (S/Rm) plane. The important difference to the potential flow is that now all curves lie above
the lineMm = 1, so that this instability also exists for rapid rotation. For all Pm themagnetic Mach numberMm lies between
low and high rotation limits but it is always super-Alfvénic, e.g., for Pm = 1 AMRI exists for

1 ≲ Mm ≲ 3. (73)

Again, both the magnetic field and the rotation rate can be too weak or too strong for AMRI and again the excitation of the
instability for Pm = 1 is slightly easier for insulating boundary conditions. Fig. 29 also demonstrates that for Pm > 1 the
scaling switches from S and Rm (valid for Pm < 1) to Ha and Rm. For both limits the influence of the boundary conditions
is very weak. It seems to be clear, however, that the magnetic Mach numbers move from large values for small Pm to small
values for large Pm. This is insofar surprising as the definition of the magnetic Mach number is entirely free of diffusivities.
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Fig. 29. Stability maps for AMRI with quasi-uniform flow of the modesm = ±1 for small Pm (left) and large Pm (right). The curves scale with S and Rm for
Pm → 0 and with Ha and Rm for Pm → ∞. The dotted lines define Mm = 1, the instability is super-Alfvénic for small Pm and sub-Alfvénic for large Pm.
µB = rin = 0.5, µΩ = 0.5. Perfectly conducting or insulating boundaries.

Fig. 30. Growth rate (72) for quasi-uniform flow versus Lundquist number for various magnetic Reynolds numbers. The curves are marked with Rm. The
normalized growth rates grow linearly with Rm.m = ±1, Pm = 1 (left), Pm = 0.01 (right), µB = rin = 0.5, µΩ = 0.5. Perfectly conducting cylinders.

For various Rm and Pm the growth rates (72) have been calculated between the two limiting values S where it vanishes;
it is maximal somewhere between the two limits. In Fig. 30 the normalized growth rate is plotted for the parameters Rm and
Pm. One finds quasilinear relations

ωgr ≃ ϵgr Rm (74)

with ϵgr varying slightly from 1.5 · 10−4 for Pm = 1 to 2.1 · 10−4 for Pm = 0.01 [76]. The growth rate slowly increases for
smaller Pm but this effect is weak. The growth time in units of the rotation time is thus τgr/τrot ≃ 103/Rm. Of course, the
linear relation can only hold for small Rm. For Rm ≫ 1 the growth rate no longer depends on Rm, so then ωgr ≤ 0.14. The
growth time of the instability for µΩ = 0.5 can therefore never be shorter than one rotation time.

The growth rates of the instability pattern and its axial wave number can be used to compute the characteristic Strouhal
number3 The

St =
urms

ℓωgr
, (75)

with the axial cell size ℓ = π/k. The growth rates have been calculated from linear models for various Hartmann numbers
along the lines of maximal instability such as in Fig. 22 (left). The rotation profiles vary in the wide interval between
µΩ = 0.25 and µΩ = 0.5. For the rms velocity only the axial intensity ⟨u2

z ⟩
1/2 is derived by the nonlinear code described in

Section 3.2 for conducting boundary conditions (Γ = 8).
The numerical results underline the exceptional importance of the Strouhal number. The Strouhal number is almost unity

for steep rotation profiles and magnetic Prandtl numbers of order unity, in confirmation of often-used assumptions. This is
certainly not a trivial result for consistent models of MHD flows. The self-consistent models of MHD instability (not driven
turbulence!) indeed lead to Strouhal numbers of order unity. It becomes only slightly smaller for smaller Pm and for flatter
rotation profiles (Fig. 31). Consequently, the nonlinear turbulence intensity ⟨u2

z ⟩ can indeed be estimated by means of the
characteristic quantities k and ωgr of the linear theory alone. For dissipation coefficients such as the magnetic resistivity it
should be allowed to move from the well-founded relation

ηT ≃

∫
∞

−∞

⟨ui(t)ui(t − τ )⟩ dτ (76)

3 Often in fluid dynamics the reciprocal definition Sr = 1/St is called the Strouhal number.
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Fig. 31. Strouhal number (75) versus growth rate for various Pm and shear parameters µΩ as indicated. The models possess the maximal growth rates. The
Strouhal numbers of AMRI are always of order unity. µB = rin = 0.5. Perfectly conducting boundaries.

to ηT ≃ urmsℓ as a good estimation [79]. This does not mean, however, that the effective viscosity can be estimated just with
these quantities if the effect of the magnetic fluctuations cannot be neglected [80].

5.3. The AMRI experiment

In this section, we will present results of a liquid metal experiment devoted to the investigation of AMRI and the helical
version of the magnetorotational instability (to be discussed in Section 7). The switch of the scalings for fluids with low
magnetic Prandtl number from Rm and S to Re and Ha allows experiments to work with slow rotation and weak fields,
provided that the rotation profile is not too far from the potential flow. The most popular candidates for experiments with
liquid metals are given in Table 1. Generally, they combine the viscosity of water with the electrical conductivity of the solar
plasma. The low values of the magnetic Prandtl numbers of liquid metals in comparison to the solar plasma are due to their
low viscosities. If liquidmetal AMRI experiments are carried out close to the Rayleigh line, only the values of ν and η̄ =

√
ν η

are relevant. Themagnetic Prandtl numbers vary by two orders ofmagnitudes, but close to the Rayleigh limit this is not really
important. The viscosity varies by a factor of only seven among the metals in Table 1, and the averaged diffusivity η̄ =

√
ν η

is also very similar for all fluids.
While sodium,with its lowmagnetic diffusivity, is the liquid of choice for experiments that require high values of Rm (and

S), such as dynamo experiments and experiments on standard MRI, GaInSn is more convenient for experiment governed by
Re (and Ha). This has mainly to do with the much milder safety requirements compared to sodium, but also with the fact
that GaInSn is liquid at room temperatures. While the latter advantage is shared by mercury, the health risks in dealing
with that metal made it disappear from most liquid metal labs. As a first guide to the experimentally relevant parameter
space, Fig. 32 shows the growth rate and the drift rate (both normalized with the rotation rate of the inner cylinder) for a
Reynolds number of Re = 3000 and low magnetic Prandtl number. The parameters strongly differ from the values used in
Fig. 30. The main difference, however, is the different scalings of AMRI for steep (µΩ = 0.26) and flat (µΩ = 0.5) rotation
laws [78] so that, as a consequence, (74) does not hold for the potential flow. The maximum growth rate lies between the
two values of neutral stability and takes a value of 0.02, which corresponds to a growth time of about 8 rotation times of the
inner cylinder. Compared with MRI, the AMRI also scales with the rotation time but is somewhat slower. The onset of the
instability is at Ha ≃ 85, corresponding to an axial electric current of 10.9 kA. It is very characteristic that for much higher
Hartmann numbers (Ha > 400 in Fig. 32, left) the instability disappears. The right panel of Fig. 32 gives the normalized
azimuthal drift ωdr of the pattern of the m = 1 mode. The dotted line represents the relation φ̇ = µΩΩin = Ωout where
the pattern corotates with the outer cylinder. Note that the instability pattern indeed corotates with the outer cylinder for
Ha ≃ 110, which is only slightly greater than the lower Hartmann number for neutral stability. The measurements will
confirm this prediction.

A serious difficulty to realize AMRI (and all other versions ofMRI) in the laboratory are the endplate effects of finite-length
devices. Fig. 33 shows simulations for a data set close to experimental realizations for a height-to-gap ratioΓ = 10 andwith
very small Pm. The corresponding version for Γ → ∞ (i.e., with periodic boundary conditions), as given by Fig. 26, leads
to an energy ratio ε ≃ 10−5 which for Γ = 10 is not basically changed. The endplates have two main effect: First, there is
some concentration of the energy close to the endplate where the flow intensity is drastically enhanced. Second, we observe
a symmetry breaking between left and right handed spirals which appear now preferentially in the lower/upper half of the
cylinder (in contrast to the equal distribution as visible in Fig. 26).

The facility Promise (Potsdam ROssendorfMagnetic InS tability Experiment) is shown in Fig. 35. Its heart is a cylindrical
vessel made of copper. The inner wall extends in radius from 22 to 32 mm; the outer wall extends from 80 to 95 mm. This
vessel is filled with the liquid alloy GaInSn whose material parameters are given in Table 1.
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Fig. 32. Growth rate ωgr (left) and drift rate ωdr (right) as functions of Ha for quasi-potential flow. The hatched area marks instability between the two
limits of neutral stability, the dotted line in the right panel marks corotation with the outer cylinder. The maximal growth time of the instability is about 2
rotation times of the outer cylinder.m = 1, Re = 3000, µB = rin = 0.5, µΩ = 0.26, Pm = 10−6 . Perfectly conducting boundaries.
Source: From [76].

Fig. 33. As in Fig. 26 but for an axially bounded containerwithΓ = 10 and insulating endplateswhich are split like the endplates of the Promise experiment
(see Section 7.6). Because of the endplates a slight equatorial antisymmetry occurs and the flow amplitudes enhance near the two lids. The magnetic
perturbations are hardly modified. The power supply is perfectly axisymmetric along the z-axis. Re = 1500, Ha = 100, µB = rin = 0.5, µΩ = 0.26,
Pm = 10−5 . Perfectly conducting cylinders.

Fig. 34. Vertical flow speeds as in Fig. 33 (left) but for a very nonaxisymmetric lead wire system with m = 1 symmetry (left) and a lead wire system with
m = 2 symmetry (right).

In the real experiment, however, the electric current is provided by a closed wire system which forms an external
magnetic field which modulates the prescribed axisymmetric azimuthal field by a weak nonaxisymmetric component. One
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Fig. 35. The Promise facility. Schematic sketch of the central Taylor–Couette setup and the coil for producing the axial field (left) and photograph of the
installation, with the 20kA power supply (right).

easily finds that this modulation corresponds to an additional m = 1 component which strongly influences the excitation
of the m = 1 AMRI mode (see Fig. 34, left). This unfortunate situation can be overcome by a more complicated lead wire
system providing an external magnetic modulation with m ̸= 1. To produce the constellation given in Fig. 34 (right) two
lead wires have been used in the same plane (at top and bottom of the container) separated by angles of 180◦. The results
are a good match to the vertical velocity component of the unbounded system (Fig. 26, left).

The copper vessel is fixed via a spacer on a precision turntable. The outer wall of the vessel thus serves as the outer
cylinder of the Taylor–Couette device. The inner cylinder is fixed to an upper turntable, and is immersed into the GaInSn
from above. It has a thickness of 4 mm, extending from 36 to 40 mm. The actual Taylor–Couette flow then extends between
Rin = 40 mm and Rout = 80 mm. In the present configuration of the experiment the lower and upper lids are electrically
insulating and split at a well defined intermediate radius of 56mmwhich had been found in [82–85] tominimize the Ekman
pumping. The endplates are made of plexiglass which are split into two rings where the inner one is attached to the inner
cylinder and the outer one to the outer cylinder.

This represents a major advantage compared to the initial version of Promise [84,86,87] in which the upper endplate
was a plexiglass lid fixed to the frame while the bottom was simply part of the copper vessel, and hence rotated with the
outer cylinder, producing strong Ekman pumping and a clear top/bottom asymmetry with respect to both rotation rates and
electrical conductivity. This central module is embedded into a 2 × 39-winding coil for the production of a vertical field
(which only becomes relevant when discussing the helical MRI in Section 7). The axial velocity perturbations are measured
by two ultrasonic sensors from Signal Processing SAwith aworking frequency of 4MHzwhich are fixed into the outer plastic
ring, 12mm away from the outer copper wall, flushmounted at the interface to the GaInSn (see Fig. 35). Since this outer ring
is rotating, it is necessary to transfer the signals into the laboratory frame by the use of a slip ring contact. The advantage of
the ultrasound Doppler Velocimetry is that it provides full profiles of the axial velocity uz along the beam-lines parallel to
the axis of rotation.

The azimuthal magnetic field is produced by a water-cooled copper rod going through the center of the setup. In the
present configuration the current is supplied by a 20kA switching mode power supply. Significant effort was spent on
severe problems of electromagnetic interference [88], before the (initially extremely noisy) UDV data could be utilized for
characterizing the AMRI. As mentioned above. the central copper rod is connected to the power supply in an asymmetric,
one-sided manner.

With the container data the unit of velocity is ν/d ≃ 8.5 ·10−3 mm/s.With themaximal uz ≃ 100 taken from Fig. 34 (left)
the maximal axial velocity which can be expected for the AMRI experiment as 0.85 mm/s. The experimental data have been
analyzed in detail resulting in maximal values of 0.4 mm/s which can be considered as a rather good empirical confirmation
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Fig. 36. Results of the AMRI experiment for the original asymmetric lead wire system. Left: experimental results for the vertical flow inmm/s. The data also
exhibit the (slight) equatorial antisymmetry predicted by the simulations (see Fig. 34, left). Themagnetic symmetry breaking due to the one sided wiring of
the central current makes the upward and downward traveling waves interpenetrate each other in the upper and lower halves of the cylinder. Re = 1480.
Right: drift frequencies measured in positive azimuthal direction. The solid line corresponds to the line in Fig. 32 (right) but for µΩ = 0.26. One finds a
nearly perfect agreement of the experiment with the simulations. Re = 2960, µB = rin = 0.5, µΩ = 0.26.
Source: Experimental data from [81].

of the simulations [81]. Note that the simulations of cylinders with Γ → ∞ provide the lower value of about 20 and also
the optimized container with Γ = 10 exhibits only 70 as the relevant quantity. The more perfect the experiment the lower
amplitudes of the maximal uz appear.

The relation Iaxis = 5RinBin connects the toroidal field amplitude Bin at Rin with the axial current inside the inner cylinder.
Iaxis, Rin and Bin must be measured in A, cm and G. Hence,

Ha =
1
5

Iaxis
√

µ0ρνη
. (77)

The radial size of the container does not appear in this relation. For the gallium alloy GaInSn the value of the square root in
(77) is 25.6. The resulting electric current for marginal instability is 10.9 kA, hence Bin = 545 G.With the largest fluctuations
of bφ/Bin ≃ 6 · 10−6 taken from Fig. 33, one finds 3 mG as the maximum field fluctuation.

Analyzing more experimental runs we have compiled the dependence of quantities on the applied axial currents. Fig. 32
(left) shows the theoretical growth rate for the infinite length system. The growth rates under the axisymmetric field
condition give a consistent picture with a sharp onset of AMRI at Ha ≃ 80 corresponding to current of 10.9 kA.

The left panel of Fig. 36 shows a typical experimental result for Re = 1480, µΩ = 0.26, and Ha = 124, which
demonstrates how the upward and downward traveling waves interpenetrate each other in the upper and lower halves
of the cylinder. Evidently, the selective occurrence of upward and downward traveling waves in the upper and lower halves
which resulted from the first symmetry breaking in axial direction (due to the endcaps, see Fig. 34, left), is neutralized here
by the second symmetry breaking in azimuthal direction (due to the one sided wiring).

Here we focus on the dependencies of the numerically and experimentally determined drift frequencies on the applied
current, which proves to be a very robust property of the instability. From Fig. 32 (right), the pattern corotates with the outer
cylinder for Ha ≃ 120. In the right panel of Fig. 36 a nearly perfect agreement between theory and experiment can be seen.
The theoretically expected enhanced frequency for lower Ha and a slightly reduced frequency for higher Ha can also easily
be identified in the experimental data.

To summarize this section, the experiments revealed the existence of AMRI close to the Rayleigh line.While the observed
and numerically confirmed effects of the double symmetry breaking on the AMRI are interesting in their own right, a new
system of wiring of the central current, comprising a ‘pentagon’ of 5 back-wires situated around the experiment, is presently
commissioned for further investigations.

5.4. Eddy viscosity

The instability-induced angular momentum transport which was calculated in Section 4.4 for MRI under the influence of
an axial field will now similarly be computed for AMRI under the influence of a current-free azimuthal field.

We shall simulate AMRI for two different rotation profiles, i.e. Ω ∝ 1/R2 and Ω ∝ 1/R. The eddy viscosities are
numerically computed in the instability cones for fixed Reynolds and Hartmann numbers, with the general result that νT
peaks at the location of the maximum growth rates (dotted lines in Fig. 22, left). The effective viscosity is calculated by
computing the right-hand side of the relation (68)within the instability domain in Fig. 22 (left). For a given Reynolds number,
the Hartmann number is varied until the maximum value of νT is found, always close to the line of maximum growth rate.
Finally, the maximum viscosity between the inner and outer cylinder is taken. The average procedure in (68) concerns only
the azimuthal and axial directions.

For various magnetic Reynolds numbers, this procedure yields viscosities which grow linearly for increasing Rm. This is
true for all rotation profiles between 1/R2 and 1/R, including Keplerian (Fig. 37). For the magnetic Reynolds numbers of the
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Fig. 37. Normalized viscosity for µΩ = 0.25 (left) and µΩ = 0.5 (right). The maximal values optimized with Ha are given for fixed Rm. Pm = 0.1 − 1 as
indicated. For variation of the rotation law the numerical values seem to vary as 1/

√
µΩ . µB = rin = 0.5, perfectly conducting boundaries [89].

order of 103 we do not find any indication of a saturation. For Pm < 1 the resulting viscosity scales as νT/ν ∝ Rm/
√
Pm,

which can also be written as
νT

ν
≃ 5 · 10−3Rm (78)

using the averaged Reynolds number (21). Unlike the MRI case, for AMRI we find a (weak) dependence of the viscosity on
the magnetic Prandtl number, i.e. νT ∝

√
PmΩinR2

0. The numerical factor is taken from Fig. 37. Note that we always only
looked for the maximal values belonging to a given Re. We can thus assume that at least for Re ≲ 103 the effective viscosity
does not exceed the given value. Refs. [90,91] have suggested though that the effective viscosities can become considerably
enhanced once Rm ≳ 102, when the turbulence is effectively triggered twice over, once by having Re sufficiently large, and
again by having Rm sufficiently large.

With the results in Section 4.4 the eddy viscosities arising from MRI and AMRI can be compared. One finds

νT,amri

νT,mri
≃

100
Hamri

. (79)

Obviously, the effective angularmomentum transport for both instabilities also depends on the axial magnetic field strength
B0. As the AMRI values are maximal values and as Hamri ≲ 100 in our simulation in Section 4.4, we find both viscosities to
be of the same order. If, however, the relation (79) is still valid for stronger fields (which we do not know) then ultimately
the angular momentum transport by axial fields would be more effective than that by azimuthal fields.

5.5. Super-AMRI

In the following the stability of superrotation is considered, i.e. rotation profiles with positive shear dΩ/dR > 0. Flows
with stationary inner cylinder are the prototype of stable flows in hydrodynamics [24,92], but see [25]. The nonlinear
behavior is less clear as Taylor–Couette experiments have shown instability in this regime [23,93–95]. There are several
present-day experiments with Reynolds numbers of order 106 with various gaps between the cylinders and various aspect
ratios Γ = H/d (with H as the height of the container). The Princeton experiment has the smallest aspect ratio (Γ ≃ 2)
with precisely controlled endplates split into several independently rotating rings [65,94,96–99]. Other experiments have
considerably greater aspect ratios, and also direct torque measurements, but no split-ring endplates, and hence potentially
greater end-effects [100–104]. The measured torques are significantly greater than the results inferred in the Princeton
experiment.

It is clear that superrotation cannot be destabilized by the standard magnetorotational instability with axial background
fields. A WKB method for inviscid fluids in current-free helical fields has been applied providing two limits of instability in
terms of the shear in the rotation law [105–107]. In the sameWKB framework, the existence of the upper threshold was also
found for purely azimuthal fields [108]. Any upper threshold suggests a magnetic destabilization of superrotating flows for
sufficiently strong positive shear. It has already been shown, however, that for rapid rotation the current-driven instability
of toroidal fields may always be stabilized by positive shear [109]. It thus only remains to probe superrotating flows with
slow rotation for instability.

The following models of Taylor–Couette flows in narrow gaps between perfectly conducting cylinders are considered,
where the outer cylinder rotates faster than the inner one. It thusmakes sense to heremodify the definitions of theHartmann
and Reynolds numbers as

Ha =
Bind

√
µ0ρνη

, Reout =
Ωoutd2

ν
(80)
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Fig. 38. Stability maps for superrotation and small Pm (Pm = 10−5 , left) and large Pm (Pm = 10, right). The lines are marked with their values of µΩ > 1.
Reynolds numbers are formed with the outer rotation rate. We find the curves converging for large µΩ . A stationary inner cylinder can thus be modeled
with µΩ → ∞. µB = rin = 0.95, perfectly conducting cylinders.

Fig. 39. Minimal Hartmann numbers and corresponding Reout for superrotating flows with (almost) stationary inner cylinder vs. Pm. No solution exists for
Pm = 1. µΩ = 128.m = 1, µB = rin = 0.90, perfectly conducting cylinders.

with d as the gapwidth. Thewave numbers k and the eigenfrequenciesω will also be normalizedwith d and the rotation rate
Ωout of the outer cylinder. Wave numbers of π , therefore, describe a circular cell geometry in the meridional plane between
the cylinders, and a drift value of ωdr = −1 describes corotation with the outer cylinder. Cells with k < π are prolate while
cells with k > π are oblate with respect to the rotation axis.

According to our experience the instability of superrotation inwide gaps requires very highReynolds numbers. The critical
Reynolds number only falls below 104 for rin ≳ 0.7. In terms of future experiments it makes thus sense to restrict ourselves
to consider narrow gaps in the present section. The lines in Fig. 38 represent the instability limit for the background field
which is current-free in the very narrow gap (rin = 0.95) between the cylinders. The curves cannot cross the horizontal
axis. The three hydrodynamically stable rotation laws have positive shear with µΩ = 4, 8, 128 and are magnetically
destabilized in fluids with Pm = 10−5 (left panel) and Pm = 10 (right panel). The instability curves disappear for Pm = 1,
demonstrating that the differential rotation is able to deliver the entire energy for themaintenance of the instability patterns
only for Pm ̸= 1; the magnetic field only acts as a catalyst. Instabilities which only exist for ν ̸= η belong to the class of
double-diffusive instabilities [109]. They do not appear for Pm of order unity. The basic Pm-dependence of the characteristic
eigenvalues for a Taylor–Couette flowwith almost stationary inner cylinder (µΩ = 128) is shown by Fig. 39. Themodel with
µΩ = 128 already gives an excellent approximation for the rotation profile with stationary inner cylinder.Hamin denotes the
smallest possible Hartmann number and Reout the corresponding Reynolds number after (80). Both values go to infinity for
Pm → 1. For Pm > 1 the magnetic Reynolds number is given instead of the ordinary Reynolds number for Pm < 1 because
of the different scaling behaviors for Pm ̸= 1.

The numerical results given in Fig. 38 also show that for small Pm the instability scales with the Reynolds number of
the outer cylinder. The frequency of the inner cylinder does not play an important role. Note, however, that the rotation
profile with the slowest inner cylinder becomes unstable most easily. The curves converge for Ωin → 0. It is also interesting
to see how easily the flow can be destabilized for large Pm. While the Hartmann numbers for small and large Pm are very
similar, the Reynolds numbers differ strongly. Obviously, for given molecular viscosity the excitation is easier the smaller
the magnetic diffusivity.

Edmonds [9] argued that in narrow gaps the radial profiles of the azimuthal fields between the cylinders are almost
uniform with only small influences on the excitation conditions. Test calculations indeed provided instability even for
fields with uniform Bφ for very similar Reynolds numbers and Hartmann numbers. One may assume that for Pm ̸= 1 the
superrotation becomes unstable under the mere presence of any toroidal field, but for Pm = 1 the dissipation processes
prevent the excitation of this slow instability.
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Fig. 40. Reout versus Hartmann number for superrotation in a narrow gap with perfectly conducting and insulating cylinders. Left: Pm = 10−5 . Right:
Pm = 10, here the two lines cannot be separated. All solutions are sub-Alfvénic and do not exist for Pm = 1.m = ±1, µB = rin = 0.9. µΩ = 5.

Fig. 41. As in Fig. 40 but for axial wave numbers k (left) and drift frequencies ωdr (right) for Pm = 10−5 and Pm = 10. The dotted line (3π ) in the left panel
gives the location of cells circular in the meridional (R/z) plane. The cells for small (large) magnetic Prandtl number are prolate (oblate) in this meridian.
The drifts have opposite signs for small and large Pm.

5.5.1. Influence of boundary conditions
To investigate the influence of the boundary conditions, Fig. 40 gives the instability map for the rotation law µΩ = 5 in

models with slightly broader gaps (rin = 0.9) for the two cases of perfectly conducting and insulating boundary conditions.
Themagnetic Prandtl number is taken to be small (Pm = 10−5, left) and large (Pm = 10, right). In the first case for insulating
boundaries the superrotation laws are much more stable than for perfectly conducting boundaries. For conducting walls,
both the Reynolds and Hartmann numbers aremuch smaller than they are for the insulating case. This is a striking difference
to other magnetic instabilities. For the classical AMRI with negative shear the critical Hartmann numbers for both kinds of
boundary conditions only differ slightly. Often, however, insulating boundary conditions lead to an easier excitation of the
instability than conducting boundaries do. For large Pm, however, the differences for the twoboundary conditions completely
disappear as the two curves cannot be distinguished. One finds again positive slopes of both branches of the lines of neutral
instability; only between them is the system unstable. Note also that all curves of marginal stability fulfill the condition
Mm < 1 describing slow rotation.

The left panel of Fig. 41 gives the axial wave numbers of the flow pattern along the branches of neutral stability for small
and large Pm. The limit k = π for nearly circular cells in themeridional (R/z) plane is marked by a horizontal dotted line. The
cell geometry indeed depends on the magnetic Prandtl number. For small Pm the axial wave numbers are smaller than for
large Pm, hence the cells are prolate. Along the strong-field branch of the instability cone the wave numbers exceed those at
the weak-field branch where the cells are almost circular in the meridional plane. For Pm ≫ 1, however, the wave numbers
at both branches are much larger so that the cells are always very flat. Note that the influence of the boundary conditions is
only weak; for Pm = 10 it vanishes completely.

The drift rates even possess a very strong Pm-dependence. They are given in the right panel of Fig. 41 as the real parts ωdr
of the frequency ω of the Fourier mode of the instability normalized with the rotation rate of the outer cylinder. From (62)
the azimuthal migration has the opposite sign of ωdr. For small Pmwe find positive ωdr hence the instability pattern rotates
backwards. Unlike for the AMRI with negative shear, large Pm yield negative drift values, and the pattern migrates with the
rotation. For the lowest Hartmann number one even findsωdr = −1 so that in this particular case the pattern corotates with
the outer cylinder. Again, for high values of Pm the influence of the boundary conditions even vanishes.

We have seen that for small Pm theminimal Hartmann numbers for perfectly conducting cylinders aremuch smaller than
those for insulating cylinders. Almost all theoretical investigations only worked with these extremal boundary conditions.
They, however, are far from reality. E.g., the conductivity of copper (as the cylinder material) is only about five times higher
than that of liquid sodium (as the fluid), hence the conductivity ratio (34) for this combination approaches the value of 5.
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Fig. 42. Reout (left panel) and normalized wave numbers (right panel) versus Hartmann number for superrotation in a narrow gap between cylinders of
finite conductivity. The curves are marked with their values of σ̂ : σ̂ = 0 (blue), σ̂ = 1 (red), σ̂ = ∞ (black). The vertical dotted line indicates the global
minimumHartmann number. At the horizontal dotted line the cells are almost circular in the (R/z) plane.m = ±1, µB = rin = 0.9. µΩ = 128. Pm = 10−5 .

Fig. 43. Critical Reynolds numbers (left panel), critical normalized wave numbers (central panel) and the corresponding drift rates (right panel) versus
Hartmann number for superrotating flowswith (almost) resting inner cylinder (µΩ = 128). The cells prove to be always oblate.µB = rin = 0.9, Pm = 10−5 ,
perfectly conducting (‘cond’) and insulating (‘vac’) cylinders.m = ±1, 2.

The question is thus whether such a small conductivity ratio of cylinders and fluid still leads to magnetic fields for the onset
of instability close to the results for perfectly conducting material or not.

The boundary conditions for finite values of the ratio σ̂ are given in Section 2.1 following Eq. (35). With these conditions
the left panel of Fig. 42 presents the instability maps for µΩ = 128, Pm = 10−5 and for various σ̂ in the (Ha/Re) plane.
While the critical Reynolds numbers only slightly depend on the cylinder conductivity the critical Hartmann numbers do
not. The absolute minimum of the critical Hartmann number belongs to the perfectly conducting boundary condition. The
(red) line for σ̂ ≃ 1 lies approximately in the middle of the instability domain defined by the two extremes for the cylinder
conductivity. The solutions for (say) σ̂ > 5 are located close to the line for σ̂ = ∞. On the other hand, the solutions for
σ̂ < 1/5 are located rather close to the line for σ̂ = 0. Both the minimum Hartmann number and the associated Reynolds
number for σ̂ > 5 thus only differ slightly from the values for perfect conductors.

The influence of the boundary conditions on the shape of the instability cells is also strong. The wave numbers in Fig. 42
must be interpreted using (60) so that for kR0 ≃ 3π (horizontal dotted line) the cells are almost circular in the (R/z) plane.
Below the horizontal dotted line the cells are all oblong with respect to the rotation axis. Contrary to the Hartmann numbers
the wave numbers for σ̂ = 1 are already close to the values for perfectly-conducting cylinders.

5.5.2. Higher modes
The plots in Fig. 43 show the Reynolds numbers, the critical wave numbers and the corresponding drift rates as function

of the Hartmann number defined by Eq. (80) for marginal instability for a narrow-gap model with rin = 0.9 and a very high
value of µΩ . The results for such large µΩ are also representative for µΩ → ∞. The results hardly change for even slower
inner rotation. As the stability lines for the fixed smallmagnetic Prandtl number (Pm = 10−5) are given for the two boundary
conditions, i.e. perfect-conducting (solid lines) and insulating (dotted lines). The lines are calculated for the two azimuthal
modes with m = 1 and m = 2. From the stability lines of the left panel in Fig. 43 one immediately finds that in both cases
the excitation of the higher modes requires higher values of Reynolds number and Hartmann number than the excitation of
the lower mode. There is no indication, however, for a different scaling of the critical values with Pm for the different mode
numbersm (as we shall find below in Figs. 48 and 65). Also for the highermodes the insulating boundary condition increases
the critical magnetic fields for the onset of the instability.

As expected the azimuthal drift (62) shown in the right panel of Fig. 43 is almost independent of themode numberm. The
same is true for the normalized wave number divided bymwhich, however, strongly depends on the choice of the boundary
conditions. Similar to the argumentation for the azimuthal drift rate (62) as almost independent of m it is also true that the
pitch angle ∂z/∂φ = −m/k does here not depend on the mode number m. It thus makes sense to expand the solutions as
the Fourier modes exp(im(ωt + kz + φ)).
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Fig. 44. Minimal Hartmann numbers, the related outer Reynolds numbers and the necessary axial electric currents (in kA, along the inner rod) for rin = 0.75
(left) and rin = 0.9 (right) with almost stationary inner cylinder as functions of the magnetic Prandtl number. Left: µB = rin = 0.75, right: µB = rin = 0.9.
In all cases the instability appears to scale with Ha and Re for Pm → 0. The necessary axial electric currents Iaxis (blue lines) become weaker (!) for wider
gaps. They do not depend on the size of the container. µΩ = 128. Perfectly conducting boundaries.

5.5.3. Electric currents
Here we are also interested in the values of the absolute minimum of the Hartmann number for neutral stability in order

to discuss the possibility of laboratory experiments. The minimum Hartmann numbers have been defined for Fig. 39 and
characterizes the absolutely minimummagnetic field for possible experimental realizations of the super-AMRI phenomena.
For two narrow-gap models with (almost) stationary inner cylinders for the modes with m = 1 the Hamin and the related
Reynolds numbers are given in Fig. 44 as functions of the magnetic Prandtl number.

For small Pm the resulting values of Ha and Re do not depend on Pm, hence the eigenvalues scale for small Pm with Ha
and Re. For large enough positive shear these solutions thus also exist in the inductionless approximation. The question is
still open whether an absolute minimum value of µΩ,0 > 1 exists below which only stability occurs. The limit mentioned
at the end of Section 7.4 for rin = 0.9 is only µΩ,0 = 2.7 but it concerns them = 0 solutions of the HMRI. No solution exists
for Pm ≤ 1 larger than the values shown in Fig. 44; fluids with Pm = 1 are always stable. Also solutions for Pm ≫ 1 exist
(Fig. 40, right) but the scaling of the eigenvalues for Pm → ∞ is still unknown.

Note also the rather different Reynolds numbers between the left and the right panel of Fig. 44 if Pm ≪ 1. For the reduction
of the gap width from 0.25 to 0.10 the critical Reynolds number for the onset of instability decreases by a factor of 10.

In order to transform the Hartmann numbers to the generating axial electric currents (i.e. within the inner cylinder) the
relation Iaxis = 5RinBin can be rewritten as

Iaxis = 5
Rin

d
Ha

√
µ0ρνη, (81)

where RinHa/d represents a Hartmann number formed with Rin instead with d. Eq. (81) gives the minimum current for
instability, since the numbers in Fig. 44 also hold for the Hartmann numbers which are the lowest for marginal instability.

The marginal values are independent of Pm provided Pm ≪ 1. One also finds the minimal Hartmann numbers almost
independent of the gapwidth. The consequence is that the corresponding axial electric current decreases for wider gaps. The
minimum current in the calculations is 26 kA for the gap with rin = 0.75. For wider gaps the necessary Hartmann number
increases strongly, and also the necessary electric current. The linear size of the container does not influence the excitation
of the instability. In all cases the critical Reynolds number of the outer cylinder (the inner-one is stationary) is of order 103,
which should also be possible to be realized in the laboratory.

6. Chandrasekhar-type flows

The combination of a magnetic field Bφ ∝ 1/R (current-free for R > 0) and a rotation profile Ω ∝ 1/R2 (the potential
flow) constitutes an example of a particular class of MHD flows defined by Chandrasekhar [110] as

U = UA, (82)

or more generally,

U = Mm UA (83)

with the magnetic Mach number Mm taken as constant here. The radial profiles of U and UA = B/
√

µ0ρ are required to
be identical, but there may be a constant of proportionality between the two [111]. As shown by Chandrasekhar, all basic
states satisfying (82) are stable in the absence of dissipation. In Section 5.1, however, we found that the potential flow can
be destabilized by a toroidal magnetic field with Bφ ∝ 1/R if at least one of the two molecular diffusivities ν and η is
non-zero.
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Taking Ω ∝ R−q and Bφ ∝ R1−q (thereby satisfying Eq. (83) with non-negative q) Michael’s relation (6) yields
(2 − q)Mm2

+ q > 0 as a sufficient condition for stability of the m = 0 mode. All Chandrasekhar states with 0 ≤ q ≤ 2
are thus stable against axisymmetric perturbations, as any state satisfying (83) is stable for ideal fluids. It becomes clear
that the condition (6) is not a necessary condition for stability. The relations Ω ∝ R−q and Bφ ∝ R1−q defining the class of
Chandrasekhar-type flows which we shall consider lead to

µΩ = rinµB, (84)

so that for rin = 0.5 simply µB = 2µΩ . As an example, for the very wide gap with rin = 0.05 and for rigid rotation the value
is µB = 20.

The Chandrasekhar condition (84) can also be fulfilled with negative values describing profiles Ω(R) and Bφ(R) changing
in sign somewhere between the boundaries. The cylinders are then counterrotating. Both themagnetic field and the rotation
law with negative µ’s can be unstable against axisymmetric perturbations ( [10], see also Fig. 71). The combination of both
unstable profiles leaves stability for Pm = 1 only in a very narrow strip along the lineMm = 1 [112,113].

6.1. Inductionless approximation

Following [3,12] we transform Eqs. (18) and (19) with respect to the inductionless approximation. A linearized and
dimensionless version of these equations reads

Re
(∂u

∂t
+ (U · ∇) u + (u · ∇)U

)
= −∇P + ∆u + Ha2(curl b × B + curlB × b) (85)

and

Pm Re
(∂b

∂t
− curl (U × b)

)
= curl (u × B) + ∆b. (86)

The magnetic fields in these equations are normalized with characteristic B0 of the background field. The mean flow U is
normalizedwith a flow amplitudewhile the flow perturbations are normalizedwith η/d (with distance d). Reynolds number
and Hartmann number are formed with these scales. Obviously, the limit Pm → 0 is only allowed for finite Re, hence the
solutions within the inductionless approximation must possess finite Reynolds number. On the other hand, solutions of the
linearized MHD equations which do not scale for small Pm with Re and Ha cannot possess a solution for Pm = 0. We shall
see in this section that the entire class of Chandrasekhar-type flows (82) possesses marginal instabilities scaling with Re and
Ha for small Pm (at least for the fundamental mode m = 1) so that they also exist for Pm = 0 — in great contrast to the
eigensolutions of the standard MRI in Section 4 which do not exist for Pm = 0 [32]. Also, the results of the inductionless
approximation basically differ from those of the inviscid approximation. All eigensolutions which for small Pm scale with S
and Rm should also fulfill the inviscid MHD equations with ν = 0.

6.2. Potential flow

The potential flowwith q = 2under the influence of a current-free background field simultaneously belongs to the classes
of Chandrasekhar-type flows and of AMRI. Uφ and Bφ are both proportional to 1/R, hence µB = 2µΩ = 0.5 for rin = 0.5.
Stability maps (Figs. 22 and 23) show that just for this case and for Pm → 0 the Reynolds and Hartmann numbers (45) for
neutral stability do not depend on the magnetic Prandtl number. We show here that this particular scaling (which is the
basis of the technical realization of several MHD experiments with fluid metals) is characteristic for all Chandrasekhar-type
flows fulfilling the relation (84). The potential flow with µΩ = 0.25 fulfills this condition and therefore scales with Re and
Ha for small Pm, while quasi-Keplerian flows µΩ = 0.35 or quasi-uniform flows (Uφ ≃ const) with µΩ = 0.5 together
with current-free fields (µB = 0.5) do not fulfill this condition, resulting in a different scaling for Pm → 0 as known from
Section 5.

Consider the dotted line in Fig. 45 (left), which represents the location of Mm = 1. For different Pm it crosses the lines
of neutral stability at different values of the averaged Reynolds number Rm. Following Chandrasekhar such solutions do not
exist for ideal media withMm = 1 [110]. As they only exist for finite values of the diffusivities, the described instability is of
diffusive nature. For small Pm the numerical values Rm of the crossing points increase for decreasing Pm, which is true for the
models with perfectly conducting and insulating cylinders. Both cases lead to very similar results. In the limit Pm → 0 the
Hartmann numbers and Rm of the crossing points scale with Pm−1/2, so that Rm and S remain finite. One finds for Pm → 0
values of Rm ≃ S ≃ 0.8 (perfectly conducting cylinders) and Rm ≃ S ≃ 2 (insulating cylinders), for which solutions with
Mm = 1 exist. The molecular viscosity no longer appears in the theoretical results.

In the limit Pm → ∞ the opposite is true. Solutions with Mm = 1 only exist for finite values of Re = Ha/
√
Pm. For

Pm → ∞ the averaged Reynolds number Rm grows with Pm1/2, so that the Reynolds number Re remains finite in this limit.
The magnetic resistivity completely drops out of the theory. Obviously, the Chandrasekhar theorem of the nonexistence
of unstable solutions with Mm = 1 fails for potential flows if either of the two molecular diffusivities is non-zero. The
suppression of the instability withMm = 1 which appears in the right panel of Fig. 45 for Pm → 1 again reflects the original
result of Chandrasekhar that this flow is stable for ideal fluids.
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Fig. 45. Potential flow of various magnetic Prandtl numbers. Left: Lines of neutral stability in the (Ha/Rm) plane. The dashed line marks Mm = 1. Right:
averaged Reynolds number Rm of the crossing points where the parameters for neutral stability fulfill the Chandrasekhar condition (83) with Mm = 1.
Solid lines: perfectly conducting boundaries, dashed line: insulating boundaries. µB = 2µΩ = rin = 0.5,m = 1.
Source: From [75].

Fig. 46. Lines of neutral stability for quasi-Keplerian Chandrasekhar-type flow in two different coordinate systems. In the (Ha/Re) plane (left) the
convergence of the curves for Pm → 0 is visible. The solutions plotted in the (Ha/Rm) plane show that the curves for Pm → 0 lie below Mm = 1
(dotted line), that is, they are sub-Alfvénic (right). rin = 0.5, µB = 2µΩ = 0.7. Insulating boundaries.
Source: Adapted from [75].

In Section 5.1 it was also mentioned that for the potential flow the instability domain for very large Pm lies above the line
Mm = 1, while for very small Pm it lies below this line. In the first case the crossing points belong to the lower branches
of the instability cone while in the second case they belong to the upper branches. Fig. 22 also contains the scaling laws
of the lines of neutral instability for the two limits of Pm. For Pm → 0 the lines converge in the (Ha/Re) plane while for
Pm → ∞ they converge in the (Ha/Rm) plane. We shall demonstrate that the Re-scaling for small Pm is a general feature of
the Chandrasekhar-type flows but the scaling laws for Pm → ∞ are more diverse. Systems with less but finite (negative)
shear will scale with Rmwhile the system with vanishing shear again changes the scaling law for large Pm (see Section 6.5).

6.3. Quasi-Keplerian flow

For the quasi-Keplerian flow within the Chandrasekhar class, Fig. 46 provides quite a similar behavior. The left panel
demonstrates that for small Pm the m = 1 mode also scales with Ha and Re. The minimum critical Hartmann and Reynolds
numbers exceed the corresponding values for the potential flow by almost one order of magnitude. The scaling with Ha
and Re for small Pm differs strongly from that of the AMRI combination of quasi-Keplerian rotation (µΩ = 0.35) with the
current-free magnetic field (µB = 0.5), which is known to scale with Rm and S (see Section 5.2). Here the additional energy
source connected with the axial electric current in the fluid determines the scaling rules for small Pm.

A serious consequence of the result is that the instability of the m = 1 modes only exists for slow rotation, Mm < 1.
Including higher azimuthal modes, however, changes the situation. As seen in Figs. 47 and 48, the critical parameters are Re
and Ha only for m = 1. For m = 2 and m = 3, the instabilities scale with Rm and S. As a consequence, these modes should
also exist for vanishing viscosity. Fig. 48 shows that for Pm → 0 the magnetic Mach number Mm = Rm/S easily exceeds
unity. The new scalings, therefore, generate astrophysical applications of these instabilities, where small Pm and large Mm
are often associated.

The crossing points of the instability lines with Mm = 1 are given as a function of Pm for quasi-Keplerian flows for both
sets of boundary conditions in Ref. [75]. In contrast to the situation for the potential flow there is no clear scaling with Rm
or Rm for small Pm. One finds Rm ∝ Pm1/3. For Pm → 0 the magnetic Reynolds number does not remain finite. There is thus
no solution for ν = 0 as exists for the potential flow.
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Fig. 47. Neutral stability curves for quasi-Keplerian Chandrasekhar-type flow for Pm = 10−4 (left) and Pm = 1 (right). The curves are marked with their
values ofm. For small Pm only them = 1 curve lies below theMm = 1 line (dashed). rin = 0.5, µB = 2µΩ = 0.7. Insulating boundaries.

Fig. 48. Minimal magnetic Reynolds numbers (left) and Lundquist numbers (right) of the neutral stability curves in Fig. 47 as functions of Pm. The scaling
rules are two-fold: for Pm → 0 them > 1 curves scale with Rm and S, unlike form = 1 which scales with Re and Ha. The solution with the lowest Reynolds
and Hartmann numbers is alwaysm = 1. For small Pm the instability is super-Alfvénic only for the modesm > 1.

6.4. Quasi-uniform flow

Even the simplest model, with approximately uniform flow and field, belongs to the Chandrasekhar class of MHD flows
which scale with Re and Ha for Pm → 0. If µB = 2µΩ = 1, then Uφ and Bφ have the same values at both cylinders (for
rin = 0.5). Background flow Uφ and background field Bφ are approximately uniform. The magnetic profile is not current-free
between the cylinders. Evenwithout rotation the electric current thus becomes unstable against perturbationswithm > 0 at
Hartmann numbers Ha0 = 109 for insulating boundaries and Ha0 = 151 for perfectly conducting boundaries. These values
do not depend on Pm [114]. This Tayler Instability will be discussed in more detail in Section 8. The left panel of Fig. 49 also
shows an extra instability domain for rapid rotation which has no direct connection to Ha0. It can thus not be due to the
instability of electric current; indeed, the magnetic profile of µB = 1 also contains the profile 1/R which is responsible for
AMRI. This AMRI domain (withMm > 1) is easily visible in Fig. 29, which also shows that for Pm ≪ 1 the necessary Reynolds
numbers for AMRI are too high for Fig. 49. The two instabilities are separated by a stable branch with Mm ≃ 1, where the
differential rotation has a stabilizing effect. The extension of the stable branch depends strongly on the boundary conditions.
It is very long – possibly infinitely long – for perfectly conducting boundaries, but rather short for insulating ones. Even for
perfectly conducting cylinders the stable branch disappears for small Pm ̸= 1. Obviously, the narrow stable branches in
Fig. 49 for Pm = 1 reflect the stability of all ideal MHD flows fulfilling the Chandrasekhar condition (84). This the more as
for Pm = 1 the relationMm = 1 transforms the relation (83) to (82). The diffusive influences allow stability only in a rather
narrow strip close to the lineMm = 1.

Very slow rotation stabilizes the system slightly, but for faster rotation (Mm ≳ 1) and Pm ≳ 1 the instability becomes
subcritical, i.e. it onsets for smaller Hartmann numbers than it does without rotation (Ha < Ha0). The phenomenon of
subcritical excitation for large Pm is very characteristic for Chandrasekhar-type flows. It only appears for slow rotation and
Pm ≲ 1. The resulting stable branch around the lineMm = 1 is also characteristic for this sort of stabilitymap. It separates the
region of the TI (for slow rotation) from the region of the AMRI (due to differential rotation). This separation effect does not
exist for rigid rotation. As expected forMm ≫ 1 the strong differential rotation suppresses the nonaxisymmetric instability
pattern, but again the effect is small for small Pm.

It remains to clarify the asymptotic behavior of the stability lines of the m = 1 mode for large Pm. We shall find a
substantial discrepancy between the instability domains for small and large magnetic Prandtl numbers. While for small Pm
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Fig. 49. Quasi-uniform background flow for perfectly conducting boundaries (left) and insulating boundaries (right) for various Pm. The lines for Pm = 10−5

are valid for all Pm ≲ 0.01. For Pm = 1 the dotted lines represent Mm = 5. m = 1, rin = 0.5, µB = 2µΩ = 1.

Fig. 50. Neutral stability curves (left) and drift rates ωdr (right) for quasi-uniform field and for large Pm (marked). For Pm > 1 the curves converge in the
(Ha/Rm) plane. For Pm = 1 the dotted line represents Mm = 1. The sign of ωdr differs for small and large Pm, changing for Pm ≃ 0.1. m = 1, rin = 0.5,
µB = 2µΩ = 1. Perfectly conducting boundaries.

the curves converge in the (Ha/Re) plane, for large Pm they converge in the (Ha/Rm) plane (Fig. 50, left). SinceMm = Rm/Ha,
it is obvious that for large Pm the instability also exists for largemagneticMachnumbers. Rapid rotationdoes not suppress the
instability in this case. For large Pm combinations of Reynolds and Hartmann numbers with Mm > 1 also become unstable,
which is not the case for very small Pm. Another consequence is that for a fixed Hartmann number the critical Reynolds
numbers behave like Re ∝ Pm−1/2 for Pm → ∞, so that the magnetic Reynolds number increases as Rm ∝ Pm1/2 for large
Pm. The drift rates also depend on the magnetic Prandtl numbers. Fig. 50 (left) shows these to be negative for Pm ≥ 1 and
positive for Pm ≪ 1.

An exception from this rule, however, is given by the potential flow with µB = 2µΩ = 0.5 which in Section 5.1 has
been discussed as a prominent application of AMRI. The result was that the stability lines of the potential flow converge for
Pm → ∞ in the (Ha/Rm) plane (Fig. 22) so that the stability curve scales for large Pm with the magnetic Reynolds number
Rm rather than with the average Reynolds number Rm.

The profileΩ ∝ 1/R characterizes the rotation of galaxies in their outer parts. If it is further assumed that their azimuthal
fields are approximately uniform in this region, then Chandrasekhar states with µB = 2µΩ = 1 may well apply to galaxies.
The axial component of the magnetic field is maximally 10% of the azimuthal field. Also typical for galaxies is the relation
Mm ≃ 5, as given in Fig. 49 (right) by a dashed line. This line is located almost everywhere to the right of the instability
lines for Pm ≲ 1, so that galactic fields together with the rotation according to Uφ ≃const should develop nonaxisymmetric
magnetic perturbations.4

Interesting is also the stable branch in Fig. 50 which for Pm = 1 separates the unstable areas close to the line Mm = 1.
Below this stable branch one may consider the unstable solutions as due to TI under the influence of differential rotation
while above they represent AMRI solutions under the influence of weak electric currents. For too high Hartmann numbers
these currents become too strong so that the stable branch disappears. We know that the combination of quasi-uniform
field and quasi-uniform flow (i.e. µB = 2µΩ = 1) is stable for ideal fluids. The stable ‘finger’ in Fig. 50 (left) which only
appears for Pm = 1 can be understood as a consequence of the stability theorem for ideal flows as indeed Pm = 1 best fits
magnetohydrodynamics of ideal media [112].

We have also computed (not shown) the stability maps for µB = 2µΩ = 1.5 between the models with quasi-uniform
field (µB = 1) and the rigidly rotating z-pinch (µB = 2). The critical Hartmann number without rotation is Ha0 = 57 for all

4 Estimates for galaxies are Re ≃ 1000, Ha ≃ 200 and Pm ≃ 1, the latter due to the interstellar turbulence.
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Fig. 51. Stability maps for the only unstable mode m = 1 of the rigidly rotating z-pinch for perfectly conducting (left) and insulating (right) boundaries.
The curves are marked with Pm; they always converge for Pm → 0. The two (different) values of Ha0 for Re = 0 do not depend on Pm. rin = 0.5,
µB = 2µΩ = 1/rin .

Pm and for perfectly conducting boundaries. Again the curves converge for small Pm in the (Ha/Re) plane and they converge
for large Pm in the (Ha/Rm) plane — as is also true for µB = 2µΩ = 1 (Figs. 49 and 50). It is thus finally clear that between
the rotation laws Ω ∝ 1/R2 and Ω = const the Chandrasekhar-type flows (83) indeed scale in the described sense for small
and large Pm.

6.5. Rigidly-rotating z-pinch

Even rigid-body rotation with µΩ = 1 can be a prominent example of the Chandrasekhar theorem, provided that the
associated magnetic profile also satisfies the condition (84). This implies a uniform current throughout the entire region
R < Rout, known as a z-pinch configuration in plasma physics. Any resulting instability is purely current-driven. Such
instabilities can occur for Re = 0 but not for Ha = 0. A nonrotating pinch is only unstable against nonaxisymmetric
perturbations with m = 1 [15]. Acheson showed that the necessary condition for magnetic instability with m > 1 is
not fulfilled for this flow [109]. This finding remains true for rigid rotation: we found no unstable modes with m > 1.
For rigidly rotating Taylor–Couette flows in a wide gap with Bφ ∝ R global calculations provided stability in the inviscid
approximation [115].

The stability curves form = 1 are shown in Fig. 51 for conducting and insulating boundary conditions. The curves basically
differ from the former examples as the characteristic minima no longer exist. For both boundary conditions the stabilizing
effect of rigid rotation on the Tayler instability is clearly demonstrated for Pm = 1 [116]. In this representation the rotational
suppression becomes weaker for smaller (and larger, not shown) magnetic Prandtl numbers. In the (Ha/Re) plane the curves
converge for Pm → 0, hence the eigenvalues also scale with Re and Ha. We find that for all models along the Chandrasekhar
sequence in the (Ha/Re) plane the lines of marginal stability for m = 1 do not depend on Pm for sufficiently small Pm. The
magnetic Mach number

Mm =
√
Pm

Re
Ha

(87)

of the solutions for small Pm remains smaller than unity. A rotating pinch with small Pm andMm > 1 is always stable.
Fig. 51 also illustrates the influence of the boundary conditions. Perfectly conducting cylinders yieldHa0 = 35.3, whereas

insulating cylinders yield Ha0 = 28.5. For the conducting boundary conditions a subcritical excitation for slow rotation is
clearly visible, Ha < Ha0, but only if Pm < 1. The solutions for Pm = 1 show the rotational suppression for all Reynolds
numbers, while for Pm < 1 the suppression only exists for sufficiently rapid rotation.Without rotationωdr = 0 always holds,
and the pattern is stationary in the laboratory system. For the rotating pinch the instabilities drift in the rotation direction
for Pm ≥ 1, but in the opposite direction for Pm < 1. For Pm → ∞ the lines in the right panel of Fig. 51 converge slightly
below the line for Pm = 1 (see Fig. 82). We have thus the exceptional situation that both the limits for very small and very
large Pm appear in one and the same coordinate system. The consequences of this phenomenon are described in Section 9.2.

One may ask whether the rotational stabilization can also be probed in the laboratory. A rigidly rotating wide pinch
with rin = 0.05 and µB = 1/rin with insulating cylinders is thus considered for the small magnetic Prandtl numbers of
liquid metals. The Chandrasekhar condition (84) is fulfilled with rigid rotation (µΩ = 1). Without rotation the inner critical
Hartmannnumber according to (45) isHa0 = 0.31 for this container,5 independent of Pm.We find the rotational stabilization
is rather weak for not too fast rotation (Fig. 52). The figure also perfectly shows the scaling of the eigenvalues in the (Ha/Re)
plane which is typical for the Chandrasekhar-type MHD flows. For a Reynolds number Re ≃ 103 the supercritical magnetic
field needed for instability is (only) two times larger than Ha0. It should thus easily be possible to find the basic effect of the
rotational suppression of the pinch-type instability in the laboratory. The constellation analyzed by Fig. 52 forms an ideal
experimental setup for studies of the instability characteristics of a Chandrasekhar-type MHD flow.

5 With outer values and the definition (95) it is Haout = 28.4.
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Fig. 52. A rigidly rotating z-pinch in a wide gap for small Pm (marked). The curves in the (Ha/Re) plane coincide for small Pm. The Hartmann number (45)
is formed with the inner magnetic field (see text).m = 1, µB = 1/rin , µΩ = 1, rin = 0.05. Insulating boundary conditions.

Fig. 53. Rigidly rotating z-pinch. Left: energy ratio (66) formanymodels as function of themagnetic Reynolds number. Themodels showequipartition of the
two energies (see the dotted line) only for Rm ≃ 20. Dominating magnetic energy requires higher magnetic Reynolds numbers [117]. Right: cross-helicity
measured in units of νBin/R0 . Re = 200, Pm = 0.1–1. rin = 0.5, µB = 2µΩ = 2. Insulating boundary conditions.

6.6. Energies and cross-helicity

For the energy ratio ε of magnetic to kinetic energy defined by Eq. (66) one finds similar properties as for the potential
flow. For the latter it is known that the ratio of the energies is small for small Rm (Fig. 27). The same is true for the rigidly
rotating z-pinch. Fig. 53 demonstrates the result of the numerical simulations, that ε of the pinch scales with Rm. Almost
independent of Pm, ε exceeds unity only for Rm ≳ 20, or in other words, if the numerical product of Re and Pm exceeds about
20. The same result also holds for the Chandrasekhar-type flow with quasi-Keplerian rotation [117].

For the rotating pinch the pseudo-scalarΩ · J should exist, linear in the magnetic field. The question is whether the cross-
helicity ⟨u · b⟩ becomes non-zero in the fluid. For the stationary pinch the cross-helicity must vanish. Indeed, the numerical
simulations for the rotating pinch by means of the nonlinear code described in Section 4.3 provide the surprisingly simple
result that for weak fields

⟨u · b⟩ = hcrossHa UinBin, (88)

(with Uin = R0Ωin). This result has been tested for several combinations of low values of Re andHa. One finds from the linear
part of the curve in Fig. 53 (right) that hcross ≃ 1.3 · 10−3, almost independent of the magnetic Prandtl number. The parallel
components of the flow and field fluctuations are correlated due to the Coriolis force. Only the global rotation generates
such a correlation averaged over the entire container. The expression (88) is symmetric in the dissipation coefficients ν

and η via the Hartmann number. Being linear in Ha, the relation is only valid for not too large Ha. For stronger fields the
numerical coefficient hcross is magnetically suppressed. The robustness of the result (88) also shows that the cross-helicity is
not a consequence of the initial conditions, which could potentially have been the case as cross-helicity is conserved in ideal
fluids [11].
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Fig. 54. Azimuthal spectra of the magnetic fluctuations (solid lines) and kinetic fluctuations (dashed lines) for two different Chandrasekhar-type flows
of various magnetic Prandtl numbers. Left: potential flow (µB = 2µΩ = 0.5) with Re = 10,000 and Ha = 600. Right: a rigidly rotating z-pinch
(µB = 2µΩ = 2) with Re = 1000 and Ha = 1000. Insulating boundary conditions.

6.7. Azimuthal spectra

For the rigidly rotating pinch only m = 1 is unstable, but the energy is nonlinearly transferred to modes with higher
wave numbers. Fig. 54 shows the resulting power spectra of this model for fixed Reynolds and Hartmann numbers but
various magnetic Prandtl numbers. The Mach number varies between Mm = 0.2 for Pm = 0.01 and Mm = 2 for Pm = 1.
Only the modem = 1 provides the energy to initiate the nonlinear cascade so that the spectrum is rather steep. Neither the
Iroshnikov–Kraichnan spectrum (m−3/2, [11]) nor the Kolmogorov spectrum (m−5/3, [118]) fit the resulting curves. A scaling
m−2 that is found in forced turbulence [119] comes much closer.

It is typical for the magnetic instability that only the modes with the lowest m ̸= 0 become unstable for finite Ha and
Re. The rotating pinch gives an example where only a single linearly unstable mode (m = 1) injects the energy into the
system. For the AMRI with µB = 2µΩ = 0.5 modes with higher m also become unstable. For given Ha and Re the number
of unstable modes decreases for decreasing magnetic Prandtl number. This is a consequence of the fact that for AMRI all
azimuthal modes scale with Re and Ha for Pm → 0. Fig. 54 (right) shows the kinetic and magnetic energies for all modes m
for a fixed magnetic field with Ha = 600 and the high Reynolds number of Re = 10,000, but for several Pm. The magnetic
and kinetic spectra have a similar shape, but they are only close together for large Pm. For small Pm the magnetic spectrum
lies below the kinetic one. For Pm of order unity the spectrum is rather flat on the lowm side, and rather steep for small Pm.

It is also obvious that the spectra for the kinetic andmagnetic fluctuations have similar shapes. If a power law is fitted, both
would slightly favor the Iroshnikov–Kraichnan spectrum compared with the Kolmogorov spectrum, but the differences are
not significant. Although the Iroshnikov–Kraichnan profile is favored forMHD turbulence [120], Kolmogorov-like spectra are
also known from themeasurements of turbulence in the solar wind [121], as well as the result of 3DMHD simulations [122].
Often, however, the direct numerical simulations are done for Pm of order unity [77]. A clear preference between Iroshnikov–
Kraichnan and Kolmogorov scaling cannot be made.

7. Helical magnetorotational instability (HMRI)

To the azimuthal magnetic field – current-free between the cylinders – discussed in Section 5with respect to its stability
a uniform axialmagnetic fieldmay be added resulting in a helicalmagnetic configuration. After Eq. (12)with ideal flows such
a system can be unstable against axisymmetric perturbations for negative shear (dΩ/dR < 0) but they should be stable for
positive shear (dΩ/dR < 0). However, in case of instability the toroidal field basically acts stabilizing with respect to the
standard MRI of purely axial fields. The parameter β describes the inner value Bin of the azimuthal field normalized with the
uniform vertical field, i.e.

β =
Bin

B0
. (89)

The numerical value of β gives the angle between the field line and the axial direction. Almost axial fields possess only small
values of β . With this parameter in mind the dispersion relation (56) for ideal fluids takes the form

(ω2
− Ω2

A − 2(2 − q)Ω̃2)(ω2
− Ω2

A) − 4(Ω̃ − β̃ω)2Ω2
A = 0 (90)

with β̃ = (kz/k)β and Ω̃ = (kz/k)Ω (see the definitions below Eq. (56)). The potential flow rotates with q = 2, the quasi-
Keplerian flow with q = 3/2 and rigid rotation leads to q = 0. Negative q represent superrotation. The solutions of (90)
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Fig. 55. Rotation rate Ω̃/ΩA (black) and travel frequencyℜ(ω)/ΩA (green) for marginal stability of ideal flows. The curves aremarkedwith their value of β̃ .
Potential flow has q = 2, rigid rotation has q = 0, the shear of the Kepler law is marked by the dotted vertical line. Solutions for negative q (superrotation)
even for very large β̃ do not exist.

for marginal stability (with ℑ(ω) = 0) are given in Fig. 55 for positive values of β̃ . Both the critical rotation rate Ω̃ and a
travel frequency ℜ(ω) are given in units of the Alfvén frequency ΩA. The latter only exists for β ̸= 0 but does not depend on
the value of β . The figure demonstrates that without dissipation finite values of β always suppress the standard MRI which
appears for β = 0 with Ω̃/ΩA = 1/

√
2q. All curves for β ̸= 0 lie above this minimum limit. For the potential flow one

simply finds Ω̃ ≃ βΩA = ΩA,in for all positive β .
Eq. (90) does not provide solutionswithℑ(ω) = 0 for positive shear q. The numerical results thus confirm the formulation

below Eq. (12) that dissipationless superrotating flows also in helical fields are stable against axisymmetric perturbations.
Fluidswith negative shear, however, can be unstable but the azimuthal components of themagnetic field always suppress the
axisymmetric standard MRI with purely axial fields [123]. All phenomena of subcritical excitation by additional azimuthal
background fieldswhichwe shall describe in the present section are thus of diffusive naturewhich only exist if at least one of
the diffusion coefficients ν or η have finite values. One can repeat the calculations within the inductionless approximation
(Pm = 0, see Section 6.1) and finds solutions only for q > 1.66 but also for q < −9.66. Finite values of the magnetic
resistivity, therefore, stabilize flat rotation laws with negative shear but they even destabilize steep enough rotation laws
with positive shear [27,105,124,125], see Section 7.4.

To study the stability of helical background fields in the presence of differential rotation is insofar of particular interest
as the fundamental (‘lowest’) modes with axial field are axisymmetric while those with azimuthal current-free fields are
nonaxisymmetric. The first question concerns the symmetry type of the instability of such helical (or better: twisted) fields
with a preferred handedness. It has been shown that possible instabilities of helical background fields can never be stationary
so that a possible axisymmetricmodemust travel along the rotation axis [21,123,124,126]. The symmetry of the background
field is changed as z and −z are no longer equivalent. One can speculate to utilize this axial drift to observe the instability in
a laboratory experiment. To this end it would be important to know the oscillation frequency and its dependence on basic
parameters. The following examplesmainly concern the right-handed twistedmagnetic fieldwithβ = 2where the axial and
the azimuthal field components are of the same order. The Hartmann numbers are now formedwith the axial field amplitude
B0 as defined by (14) — only for the exceptional case of β = ∞ the toroidal field Bin as in (45) is used. The geometry of the
mixed field instability modes can be described via the relations (59) and

∂z
∂t

⏐⏐⏐⏐
φ

= −
ωdr

k
, (91)

which describes the phase velocity in the axial direction of the modes at a fixed azimuth. The wave is traveling upwards if
the real part of the eigenfrequency, ωdr, is negative.

Thewave numbers k andm are both real values, andwithout loss of generality one of them, e.g. k, can be taken as positive.
Then m must be allowed to have both signs. The sign of β fixes the spiral geometry of the background field with respect to
the rotation axis. If the axisymmetric background field possesses positive Bz and Bφ (asmostly used for the calculations here)
then it forms a right-hand spiral.

The introduction of the new parameter β makes the situation complex. In the present section we thus only consider
azimuthal fields which are current-free in the fluid between the cylinders, i.e. µB = 0.5 for rin = 0.5. The cylinders always
form perfectly conducting boundaries. The only exception is Fig. 58, where for a demonstration of scaling laws for small Pm
an almost uniform azimuthal magnetic field is considered.

Wemust also question the scaling of the results for smallmagnetic Prandtl number. From the foregoing sectionswe know
that the MRI scales with Rm and S for Pm → 0. The consequence is that the ordinary Reynolds number cannot remain finite
for Pm → 0. The same is true for the AMRI with vanishing axial electric current within the non-potential flows. We should
thus expect that the HMRI also scales with Rm and S for Pm → 0. However, all models of the Chandrasekhar-type with
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Fig. 56. Stability maps for quasi-uniform flow with uniform axial fields (MRI, left) and with current-free azimuthal fields (AMRI, µB = rin , right), . Note
the different definitions of the Hartmann numbers: Eq. (14) for the left panel and Eq. (45) for the right panel. Solid lines: m = 1, dotted line: m = 0. The
slopes dRe/dHa of the solid lines (m = 1) are always positive but they are not for the dotted line (m = 0). The modes with the lowest Reynolds numbers
are axisymmetric for MRI and nonaxisymmetric for AMRI. µΩ = rin = 0.5, Pm = 1. Perfectly conducting boundaries.

Fig. 57. Critical magnetic Reynolds numbers for excitation of HMRI modes with β = 2 for various m (marked). Pm = 0.01 (left) and Pm = 1 (right). The
background field is current-free and the flow is quasi-uniform. Negativem describe right-hand spirals, positivem describe left-hand spirals and the dotted
lines representm = 0. Lundquist and Hartmann numbers are formed as in (14). µΩ = µB = rin = 0.5. Perfectly conducting cylinders.
Source: From [127].

U = UA scale with Re and Ha for Pm → 0. It is thus an open question how the eigenvalues for decreasing Pm behave for
HMRI of the potential flow. Another prominent example is the Chandrasekhar-type flow with µB = 2µΩ = 1 describing a
rotation law with almost uniform azimuthal flow Uφ and azimuthal field Bφ .

7.1. From AMRI to HMRI

We start with the stability of the flow Uφ ≃ const in the presence of a purely axial field. In this case both axisymmetric
and nonaxisymmetric modes may be excited, with the axisymmetric m = 0 mode being the one with the lowest Reynolds
number (Fig. 56, left). For Pm = 1 this overall minimum occurs for Ha ≃ 10 and Re ≃ 80. For larger Ha there is a switch
to m = 1 being the mode with the lowest Reynolds number. The axisymmetric mode only dominates for weak fields, but
including also the global minimum Re value. It also dominates the weak-field branch of the instability curve. This branch of
the axisymmetric instability curve tilts to the left, whereas the strong-field branch tilts to the right. For the nonaxisymmetric
mode both branches tilt to the right, forming a characteristic tilted cone. A purely azimuthal field without electric currents
between the cylinders and subject to the same rotation law yields an instability for m = 1 for Ha ≳ 80 and Re ≳ 150
(Fig. 56, right). Both the upper and lower branches of the instability curve tilt to the right. For a given Hartmann number, the
instability therefore only exists within a finite range of Reynolds numbers.

Fig. 57 (left) shows the results for the combination of azimuthal and axial fields with β = 2. One finds the same general
pattern as before: only the weak-field branch of the m = 0 mode tilts to the left; both branches of all nonaxisymmetric
modes tilt to the right. Up to Ha ≈ 50 the axisymmetric mode is preferred, just as before for the standard MRI. For Ha > 50
the m = 1 spiral is preferred. Note also that the minimum Hartmann number for excitation is much smaller than for fields
with B0 = 0.

Obviously, the (axisymmetric) standard MRI and the (nonaxisymmetric) AMRI are basic elements both influencing the
excitation conditions if the background field has a twisted geometry. More specifically, one finds that the weak-field branch
of the instability in Fig. 57 is very similar to the weak-field branch of the MRI, while the strong-field branch resembles
the strong-field branch of AMRI. The absolute minimum values of the Reynolds and Hartmann numbers always belong to
the axisymmetric mode. The similarity of the instability maps in Fig. 57 for Pm = 1 and Pm = 0.01 also indicates that
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Fig. 58. Stability maps for background fields with β = 2 for small Pm (left) and for large Pm (right). The curves are marked with their values of Pm. The
azimuthal field and the flow are both quasi-uniform. One finds the same scaling laws as for standard MRI (see Fig. 12). rin = 0.5, m = 0, µB = 2µΩ = 1.
Perfectly conducting boundary conditions.

Fig. 59. Drift rates ωdr for β = 2 (solid) and β = −2 (dashed) for the models of Fig. 57 (right). The curves are marked with the azimuthal wave numbers
m. m = 0, 1, 2. The axisymmetric modes possess small ωdr of same sign as β leading to upward or downward axial pattern migration. The negative ωdr of
the nonaxisymmetric modes provide azimuthal migration in positive φ-direction. µB = µΩ = rin = 0.5, Pm = 1. Perfectly conducting boundaries.

the HMRI scales with Rm and S for Pm → 0. This finding remains true if the background field satisfies the condition (84)
for Chandrasekhar MHD flows. Fig. 58 demonstrates that the instability lines of this axisymmetric mode for this magnetic
configuration converge in the (S/Rm) plane for Pm → 0 and in the (Ha/Re) plane for Pm → ∞. This scaling rule of the
eigenvalues form = 0 in the presence of axial fields is opposite to the rules of Chandrasekhar-type flows form = 1 without
any axial field. Obviously, the helical structure of the total background field changes the scaling rules in the sense as they
exist for MRI. The fields in Figs. 57 and 58 only differ by the parameter µB. In the second case the azimuthal field is of
Chandrasekhar-type and in the first case it is not. In both cases, however, the scaling for small Pm is that of the MRI, which
makes experiments with liquidmetals so challenging. Consequently, the two branches of each curve in Fig. 58 have opposite
slopes: the weak-field branch goes to the left while the strong-field branch goes to the right (which is also typical for the
axisymmetric modes of MRI rather than for AMRI). Generally, for background fields forming a right-hand spiral (β > 0) the
left-hand modes (m > 0) require a lower Hartmann numbers for their excitation.

Another key phenomenon is the different character of the eigenfrequencies: MRI is stationary, AMRI drifts in azimuthal
direction, but the HMRI drifts in z as a necessary consequence of the ±z symmetry-breaking. The oscillatory nature of the
axisymmetric HMRI is reflected by the finite values of the drift frequency ωdr for m = 0. They have the same sign as the
parameter β (Fig. 59). Positive β generate positive ωdr (downwards traveling) and vice versa. Vanishing β leads to ωdr = 0,
i.e. to stationary axisymmetric instability patterns. The drift rates for m = 0 (axial migration) are very low while for the
nonaxisymmetric modes (azimuthal migration) they are large and negative for β = ±2.

Note that for all m and all β the migration frequencies (62) of the nonaxisymmetric modes have very similar negative
values,whichmeans that allmodes approximately corotatewith the inner cylinder. They aremuchhigher than the frequency
of the axial drift. The negative values demonstrate that all nonaxisymmetric instability patterns migrate in the positive φ

direction. They exceed the value µΩ = 0.5 (the rotation rate of the outer cylinder in the laboratory system) so that they
are always overtaking the outer cylinder. One may assume that the drift rates of the nonaxisymmetric modes are due to
the rotation rates while the axial-traveling frequency scales with the viscosity frequency which is here only 1% of the global
rotation.

A direct consequence of the±z symmetry-breaking, and the associated axial drift of the axisymmetricHMRImodes, is that
the distinction between convective and absolute instabilities becomes important, especially in axially unbounded cylinders.
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Fig. 60. Critical Reynolds numbers (left), critical Hartmann numbers (middle) and the corresponding wave numbers (right) of the axisymmetric modes
for various β and at and beyond the Rayleigh line. The cells prove to be always elongated in axial direction. µB = rin = 0.5 (vacuum field), Pm = 10−5 ,
perfectly conducting cylinders.
Source: From [132].

Convective instabilities are disturbances that growonly in a reference framemovingwith the perturbation,whereas absolute
instabilities grow even at a fixed point in space, as the perturbation drifts past. Absolute instability is thus a more restrictive
condition than convective instability. Correspondingly, the analysis of [128,129], inwhich the axial wavenumber k is allowed
to be complex, shows that the absolute HMRI exists in a somewhat narrower parameter range than the convective HMRI.
The basic scalings and transitions between scalings remain the same though. See also [130], who computed fully nonlinear
solutions in background fields that varied periodically on very long axial wavelengths, and found absolute and convective
instabilities to behave similarly even in the nonlinear regime. All nonlinear calculations in axially bounded cylinders are
automatically also computing absolute rather than convective instabilities. It is nevertheless important to take cylinders
that are sufficiently long, as modulations may develop on sufficiently long axial length scales [130,131].

7.2. Quasi-potential flow

Fig. 58 demonstrates that a helical field with µB = 2µΩ = 1 (Chandrasekhar-type) with a uniform axial magnetic
component becomes unstable for eigenvalues Rm and S which are independent of Pm for small Pm. Standard MRI and AMRI
for this flow also scale with Rm and S for small Pm. As the potential flow in the presence of current-free fields also belongs to
the class of Chandrasekhar-type flows with µB = 2µΩ = 0.5, it is thus expected that the combination with a uniform axial
field also scales with Rm and S for small Pm. The calculations, however, do not confirm this expectation. The explanation of
the low-Re and low-Ha phenomenon for the potential flow in the presence of axial fields is not based on the fact that the
current-free azimuthal field together with the potential flow belongs to the class of Chandrasekhar-type MHD flows.

The transition of HMRI with β ̸= 0 from the potential flow to the quasi-Keplerian flow will now be discussed. The
Fig. 60 give a detailed insight into how the critical Reynolds number, Hartmann number and wave number behave for small
Pm for the potential flow and beyond. Standard MRI is described by β = 0; immediately beyond the Rayleigh limit its
critical Reynolds number jumps to values of 106 (not shown). This is no longer true for finite β . For β of order unity the
Reynolds number takes much lower values at and close the Rayleigh line. For β = 2 and for (say) µΩ = 0.27 (within the
hydrodynamically stable area) low values for Re ≃ O(103) and Ha ≃ O(10) are sufficient to excite the HMRI. Such values
can easily be realized in the MHD laboratory by use of sodium or GaInSn as the fluid.

If, opposite to the standard MRI, the instability for quasi-potential flow (close to the Rayleigh limit) scales with Ha and
Re for small Pm, then as in Section 6.1 the solution in the inductionless approximation exists and equals the solution of
the full equation system for the limit Pm → 0. Extensive numerical simulations for axially periodic boundary conditions
and perfectly conducting cylinders have thus been done in the quasistationary approximation Pm = 0 for axisymmetric
perturbations, based on the code developed and described by [14]. For infinite cylinders and for µΩ = 0.27 the flow is
always hydrodynamically stable, but with helical magnetic background field with β = 4 it loses its stability already for the
small Reynolds number Recrit = 842. This result well agrees with the value of the linear theory given in the left panel of
Fig. 60. Fig. 61 shows the downward drift of the streamlines of the HMRI cells without and with (insulating) endplates. The
fluid moves along the given contourlines of the streamfunction (positive streamfunction: clockwise, blue color; negative
streamfunction: counterclockwise, red color). For µΩ between 0.25 and 0.27 the wave travels with ωdr ≃ 0.13 in the
axially periodic container, and with ωdr ≃ 0.12 in the container with top and bottom endplates. In both cases there is a
weak anticorrelation between the values of µΩ and ωdr. These values agree with the results of the linear analysis (see the
right panel of Fig. 62). The axial travel speed of the unbounded model with supercritical Re ≃ 1600 is about 1 mm/s for
gallium [133]. Also the structure and evolution of the Ekman–Hartmann layers which develop at the special endplates of the
container has been discussed in detail [83].

To observe the influence of the boundary conditions in the right panel of Fig. 61 the lower endplate rests in the laboratory,
while the upper endplate corotates with the outer cylinder. Observe that the perturbing influence on the traveling instability
pattern is much stronger for the stationary lower lid than it is for the rotating upper lid. These extreme endplates do not
prevent the travelingwave though; even the agreement between the linear and the nonlinear results proved to be satisfying.
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Fig. 61. Simulated snapshots (sequenced in time) of numerical simulations representing downward-travelingwave (forβ > 0)without (left panel) andwith
endplates (right panel). The axisymmetric contourlines of the streamfunction of the flow are shown (solid lines: clockwise, dashed lines: counterclockwise).
Left: Re = 900, β = 4. Right: Re = 1480, β = 6, H = 10d. The upper lid corotates with the outer cylinder while the lower lid is stationary in the laboratory.
It is Ha = 9.5, µΩ = 0.27, Pm = 0. Perfectly conducting cylinders, insulating endplates.
Source: From [133].

Fig. 62. Drift frequency (top) and axial drift speed (bottom) versus Hartmann numbers for marginal stability of flows with µΩ = 0.25 (left), µΩ = 0.26
(middle) and µΩ = 0.27 (right). The maximum Reynolds number is Re = 4000 (blue lines). The red dots concern real experiments discussed below.
µB = rin = 0.5, Pm = 10−5 . Perfectly conducting cylinders.
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Fig. 63. Quasi-Keplerian flow subject to twisted background field with current-free azimuthal component: critical Reynolds numbers (left) and Hartmann
numbers (right) as function of the magnetic Prandtl number for β = 0 (blue lines) and for β = 2, 4, 10. Hartmann number defined by (14). Observe that
β = 0, 10 scale with Rm and β = 2, 4 scale with Re. Vertical dotted lines mark the magnetic Prandtl number of liquid sodium. m = 0, rin = 0.5, µB = rin ,
µΩ = 0.35, perfectly conducting cylinders.

For the maximal axial velocity of the traveling pattern for the models with β = 4 and Re = 1500 the simulations provided
1 mm/s in both cases, close to empirical data for the Promise container (see below).

For marginal stability Fig. 62 provides the corresponding travel frequencies ωdr and the travel speeds ωdr/k as functions
of Ha and β from the linear theory. The travel frequency is the lowest frequency in the system. A typical value for medium
β is ωdr ≲ 0.1. A deeper inspection of the plots in the top row of Fig. 62 suggests that at least for µΩ = 0.25, only a very
weak dependence of the frequencies on the values of β exist. Moreover, the travel frequencies normalized with the viscosity
frequencyων = ν/R2

0 written as functions of β and Ha show almost no dependence on the value of β . It has also been shown
that only a slight dependence on themagnetic Prandtl number, i.e.ωdr ∝ ωνPm−1/4, exists, without any influence of β [124].
For the phase velocity at the Rayleigh line the numerical value ωdr/k ≃ 0.01 − 0.02 results, almost independent of β and
scaling linearly with Ha. For the flows slightly beyond the Rayleigh limit the normalized travel velocity also hardly depends
on the value of β if the Hartmann number is not too large. For the quasi-Keplerian flow the influence of β becomes much
stronger and even depends on the boundary conditions.

7.3. Boundary conditions

It is also worth comparing the results for perfectly conducting cylinders with those obtained with insulating ones [134].
The numerical values explicitly mentioned in this paper are for µΩ = 0.27 and β = 4, which yield Re = 1521 and Ha = 16.
For the model with perfectly conducting cylinders we find the smaller values Re = 842 and Ha = 9.5. Insulating boundaries
thus increase both Re and Ha by almost a factor of two. Hence, an experiment with perfectly conducting boundaries would
be the most promising design for exploring the magnetorotational instability in the laboratory. Note, however, that for TI
the situation is different: Reynolds numbers for insulating cylinders are lower than for conducting ones, but the Hartmann
number behaves opposite.

The material of the endplates for axially bounded containers also plays an important role. It is known that in the
transition zone between differentially rotating fluid and rigid endplates an Ekman–Hartmann layer develops in the presence
of an axial magnetic field [135]. This magnetized shear layer induces electric currents beneath the layer in the bulk of the
container. Their radial component, together with the axial background field, provides azimuthal Lorentz forces accelerating
or decelerating the global rotation. The rotation is suppressed in the range between the cylinders if the endplates corotate
with the outer cylinder. For perfectly conducting endplates the Hartmann current reduces the rotation rate within the gap
between the cylinders by almost 50% (for Ha ≃ 10), but this effect is much weaker for insulating endplates. The material
for the endplates, therefore, should ideally be a good insulator [83,136]. The dramatic consequences of ‘wrong’ endplates
for the rotation profile in the midplane (!) between the endplates are shown in Ref. [82] for various amplitudes of the axial
magnetic field. This effect is not weak; the profile becomes very steep close to the inner cylinder and rather flat in the gap
between the cylinders. Close to the outer cylinder the shear even changes its sign.

7.4. Quasi-Keplerian rotation

Another question related to boundary conditions is whether the HMRI for quasi-Keplerian rotation and small Pm also
scales with Re and Ha or with Rm and S. In a local and inviscid approximation it has been shown that solutions do not
exist for rotation laws with µΩ > 0.32, which would suggest the quasi-Keplerian law with µΩ ≃ 0.35 to be stable [105].
Calculations for containers with perfectly conducting cylinders and finite Pm do not confirm this strict result. Fig. 63 shows
for quasi-Keplerian rotation that for small Pm the scaling with Re exists, but only for not too large β . A scaling with Re only
exists for the narrow range of β ≃ 2 − 4 but no longer for β ≳ 10. Very small β (MRI) and very large β (AMRI) both lead to
a scaling with Rm and S for Pm → 0, yielding very high Reynolds and Hartmann numbers as eigenvalues for small Pm. For
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Fig. 64. Isolines of Reynolds numbers as functions ofµΩ andβ for insulating (left) and perfectly conducting (right) inner cylinder. Re = 103 (blue), Re = 104

(green), Re = 105 (red). The dotted vertical line marks the quasi-Keplerian rotation law. µB = rin = 0.5, Pm = 0.

Pm = 10−5 and β = 4, the critical Reynolds number at about 6000 is still rather low in comparisonwith valuesO(106) which
are characteristic for MRI. This finding is always true if at least one of the cylinders is perfectly conducting (see below).

Fig. 63 also demonstrates that for Pm = 1 the eigenvalues for β > 0 exceed the eigenvalues for β = 0.When Re = Rm the
toroidal field, therefore, basically suppresses the standard MRI. This fact has been formulated long ago for ideal fluids [21].
One can indeed argue that large values of Re = Rmmaymimic the case of vanishing ν and η of ideal fluids [112]. For the ideal
potential flow also the dispersion relations provide an increase of the critical rotation rate with increasing β; the reduction
of the critical rotation rate comparedwith that for β = 0 (as in Fig. 63, left) is a double-diffusive phenomenon. This picture is
confirmed by the analytic result that the travel frequency of the instability pattern for the potential flow equals the viscosity
frequency ων which vanishes for ideal flows [51,124].

A similar statement holds for AMRIwith quasi-Keplerian rotation as demonstrated in Section 5.2. As expected, for Pm → 0
the eigenvalues for potential flow (µΩ = 0.25) converge in the (Ha/Re) plane, and for the quasi-uniform flow (µΩ = 0.5)
they converge in the (S/Rm) plane. The quasi-Keplerian flowwith its shear between the two examples scales with S and Rm,
but only for insulating boundary conditions (Fig. 28, left panel). For conducting boundaries, the eigenvalues behave similarly
to those of the potential flow. Obviously, this particular flow forms the transition between the scaling laws for Pm → 0 of
the models with steep and flat radial profiles of the angular velocity.

We know, however, that for HMRI the scaling for small Pm switches from Re ≃ const close to the Rayleigh line to
Rm ≃ const formore flat rotation profiles (see Fig. 65). Solutions in the inductionless approximation, therefore, can only exist
close to the Rayleigh line. For vanishing magnetic Prandtl number they must thus disappear for a critical µΩ,0 somewhere
beyond this line. The exact value of this limit depends on the construction of the model. Details are given in Fig. 64 where
for Pm = 0 the isolines of Reynolds number and Hartmann number are plotted as functions of β and the shear parameter
µΩ for two different inner boundary conditions. The outer boundary is always taken as insulating. As expected, one finds
for both models maximal values µΩ,0 which, however, differ strongly for differing boundary conditions [129,137]. There are
only small differences for small Re and at the Rayleigh line but drastic differences occur beyond this line. For insulating inner
boundary rotation profiles with µΩ > 0.31 require Reynolds numbers exceeding 104 to become unstable. With conducting
inner boundary Reynolds numbers of 104 are sufficient to destabilize flatter profiles up to µΩ ≃ 0.34 (with β ≃ 4). The
quasi-Keplerian rotation becomes unstable at Re = 105, but only if the inner cylinder is perfectly conducting. Insulating inner
cylinders stabilize the quasi-Keplerian flow unless the Reynolds number exceeds a value of 106. The plots for the Hartmann
numbers are very similar.

In Ref. [105] with µΩ,0 = r−9.66
in also an upper limit is given for HMRI stability, i.e. µΩ,0 ≃ 776 for rin = 0.5. If existing,

one would interpret this number as a suggestion that for strong superrotation (better, for stationary inner cylinder) there is
another branch for HMRI scaling with Re and Ha, which exists in the inductionless approximation. In Section 5.5.3 we have
shown that indeed for superrotation at least with β = 0 eigensolutions appear even for Pm → 0.

7.5. Nonaxisymmetric modes

Surprisingly enough, the nonaxisymmetric modes for twisted background fields behave similarly to the axisymmetric
mode of MRI if the critical Reynolds and Hartmann numbers are considered as functions of Pm. In Fig. 63 for quasi-Keplerian
flow the steep blue lines for m = 0 and β = 0 also represent the nonaxisymmetric mode m = 1 and β ̸= 0. For Pm → 0
they all scale with S and Rm (so that for small Pm very high Reynolds and Hartmann numbers are needed for excitation [51]).
This is not only true for quasi-Keplerian rotation but also for all flows including the potential flow. The behavior of the
Reynolds numbers is shown in Fig. 65 for µΩ ≥ 0.25 and Pm = 10−5. The solid lines represent the axisymmetric solutions
whereas the dashed lines denote the nonaxisymmetric modes with m = ±1. The critical Reynolds numbers of the modes
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Fig. 65. Critical Reynolds numbers for excitation of the nonaxisymmetric modes m = 1 (dashed lines) in comparison to the axisymmetric modes m = 0
(solid lines) for β = 0, 1, 2. The nonaxisymmetric modes always scale with Rm for Pm → 0 (as for the standard MRI) while close to the Rayleigh line the
axisymmetric modes with β = 1, 2 scale with Re. µB = rin = 0.5. Pm = 10−5 , perfectly conducting cylinders.

withm > 0 hardly change betweenµΩ = 0.25 andµΩ = 0.4; they always exceed 106. There is no actual change of scalings
for Pm → 0 for the nonaxisymmetricmodes between the potential flow and beyond. The rather low Reynolds andHartmann
numbers shown for Pm → 0 in Fig. 63 for β ̸= 0 close to the Rayleigh line are thus a basically axisymmetric phenomenon.
Nonaxisymmetric modes can hardly be observed along this way.

Fig. 65 also demonstrates how for nonvanishing β the Reynolds number for the axisymmetric mode is reduced by orders
of magnitude if the rotation law becomes steeper until the Rayleigh line is reached. The potential flow with axial fields and
azimuthal fields of the same order thus becomes unstable against axisymmetric perturbations already for Reynolds numbers
of O(103). This is a consequence of the fact that for azimuthal fields which are current-free in the fluid the potential flow
(i.e. Uφ ∝ Bφ ∝ 1/R) belongs to the Chandrasekhar-type of MHD flows and the quasi-uniform flow does not.

7.6. Experiment Promise

The simplest idea to realize the MRI in an experiment concerns a Rayleigh-stable flow between differentially rotating
cylinders. Such a flow can be destabilized by an externally imposed magnetic field. If the imposed field is purely axial,
however, the relevant parameter for the onset of the instability is the magnetic Reynolds number which must exceed about
10 [34,36]. The kinetic Reynolds number for excitation of the MRI then becomes 106 or even 107 because of the small
magnetic Prandtl numbers of liquid metals. Such large Reynolds numbers are not only difficult to realize in experiments
but also end-effects become very important [138].

For a combined axial and azimuthal field the relevant parameter slightly beyond the Rayleigh limit is Re, which must
only be O(103) for instability (Fig. 65). For decreasing β the Reynolds number gradually rises until for β = 0 the necessary
Reynolds number is O(107), known for MRI with Pm ≃ 10−6. The main difference of the solutions to those for purely axial
imposed fields is that the HMRI pattern drifts along the rotation axis of the cylinders. In both cases themodeswith the lowest
Reynolds numbers are axisymmetric. Provided B0 > 60 G and β ≃ 3, Reynolds numbers of only 103 are sufficient to excite
the instability waves for conducting cylinders. The threshold numbers for insulating boundaries are higher.

However, the existence of the viscous endplates results in Ekman layers in which the velocity differs from the prescribed
rotation law. A globalmeridional circulationwith two Ekman vortices is the immediate consequence. As known for nonrotat-
ing endplates a radial inflow close to the boundaries appears and for solid-body rotation a radial outflow appears [83]. Fig. 66
demonstrates the Ekman layer phenomenon for different sorts of endplates.While for the left panel the rigid endplates rotate
with the angular velocity of the outer cylinder the endplates in the middle panel are split at Rsplit = Rin + 0.4d; the inner
part is attached to the inner cylinder and the outer part is attached to the outer cylinder. Meridional planes are presented
for the variables Uφ and the streamlines of the meridional flow. We notice for rigid endplates that the mean flow Uφ in this
case significantly depends on z and that two strong Ekman vortices fill the whole container. If the plates are replaced by two
rings then Uφ is almost independent of z in the bulk of the container and the Ekman circulation is strongly suppressed. If
the axial magnetic field is applied (for the plots of the right panel with the two rings attached to the two cylinders) it looks
even better as the Ekman vortices are further reduced. The rotation profiles are almost unchanged when compared to the
hydrodynamic case. For this result insulating endplates must be used as for perfectly conducting lids the Ekman–Hartmann
layer produces basically stronger modifications of the rotation law.

The experiments were done at the Promise facility as described in Section 5.3. This time, however, the coil for the
production of an axial field was also used. Since this coil is not cooled, the current in the windings is restricted to values of
around 150 A, which corresponds to a Hartmann number of 23.7. The endplates are made of plexiglass which are split into
two rings where the inner one is attached to the inner cylinder and the outer one to the outer cylinder. Based on numerical
simulations the splitting position is at Rsplit = 56 mm, minimizing the Ekman pumping of rigid endplates [82,84,85]. See
also [98,99] for similar calculations designed to minimize end-effects in the Princeton experiment.
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Fig. 66. Simulated snapshots representing the flow pattern for rigidly rotating endplates (left) and for endplates formed by two rings attached to the
cylinders (middle, right). The isolines of the azimuthal flow and the contourlines of the streamfunctions of the flow are shown. Axial magnetic fields
(Ha = 10) are applied only in the simulations for insulating endplates shown by the right panel. Re = 1000, Pm = 0, β = 0, µΩ = 0.27.
Source: From [82].

Fig. 67. As in Fig. 62 but for a fixed Reynolds number of Re = 2959. µΩ = 0.25 (left), µΩ = 0.26 (middle) and µΩ = 0.27 (right). The solutions are of
neutral stability only along the blue lines. The red symbols mark the locations of the values Ha and β used in real experiments measuring the travel speeds.
Perfectly conducting cylinders.

The azimuthal magnetic field is imposed by a current up to 7 kA through a water-cooled rod along the central axis.
The field within the fluid is current-free. The fluid within the vessel is the GaInSn alloy with the material parameters
given in Table 1. For experiments with this apparatus as an improved version of Promise 1 (which worked with rigidly
rotating endplates, see [86,87]) detailed predictions are possible. The main target for the experiments are measurements
of the vertical travel velocity uz = ω/k by two ultrasonic high-focus transducers mounted on opposite sides of the top
endplate.

For the marginal instability with the wave number k leading to the lowest Reynolds number for given Ha and β , the
resulting normalized drift rates ωdr and axial phase speeds ωdr/k are given in Fig. 62 for the shear values µΩ = 0.25− 0.27.
They are normalizedwithΩin and R0Ωin, respectively. ThemaximumReynolds number for the calculations is 4000 (the blue
lines in the plots). The minima of the lines define the necessary minimal β values with which an instability appears. This
minimum β becomes smaller for greater Reynolds numbers. The limit β → 0 would require Re = 55,780 for µΩ = 0.25
(and for galinstan as the fluid conductor) together with ωdr = 0. The corresponding critical Hartmann number is simply 7,
independent of themagnetic Prandtl number (see Section 4.1). There is obviously a smooth transition fromHMRI to standard
MRI by this constellation. Along the low-field branches of the blue lines the travel frequency ωdr hardly varies (top row in
Fig. 67). This is in particular true for µΩ = 0.25, and means that in this case Re · ωdr ≃ const, so that it is shown that in this
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Fig. 68. Axial travel speedmeasuredwith Promise for β = 2.6 (lower line) and β = 4.5 (upper line) as a function of the shear parameterµΩ . The values for
the crosses are taken from Fig. 67 while the diamonds are results of nonlinear simulations with Pm = 10−6 , which also yield the values marked as squares
during the onset phase of the instability. The vertical line indicates the Rayleigh limit. The linear speed of the inner cylinder is uin = 2.51 cm/s. Ha = 12,
Re = 2959. Perfectly conducting walls, no endplates. See [139].

case the drift frequency is determined by the viscosity frequency independently of β and Re. Beyond the Rayleigh line the
relations are more complicated.

In Fig. 67 the linear calculations for axially unbounded cylinders shown in Fig. 62 are repeated but with a fixed
and supercritical Reynolds number (Re = 2959) prescribed for all curves. Again the red symbols mark the parameters
characterizing the main experiments with Promise 2. The Reynolds number and the axial magnetic field have been fixed
to B0 = 77.2 G (Ha = 12.2). The azimuthal field is then varied by the application of an axial electric current with 4 kA
(β = 2.6) or 7 kA (β = 4.5). The empirical results for the rotation ratios µΩ = 0.23 − 0.27 have been described in detail
in Ref. [139]. For the Rayleigh limit µΩ = 0.25 the measured travel speed for the two β values varies between 1.5 mm/s
and 1.8 mm/s, increasing slightly with β (Fig. 68). With the nonlinear code described in Section 4.3 (insulating cylinders, no
endplates) these measurements can be reproduced exactly (the diamonds in Fig. 68). The linear approximation with fixed
Reynolds number, however, yields values that are too small (the red and blue crosses). Fig. 67 shows the axial phase speed
ω/k for the Rayleigh limit and Pm = 0. For Ha = 12.2 one finds ω/k = 0.03 for both β values, hence uz ≃ 0.75 mm/s.
Interestingly enough, if the velocities are measured with the code during the linear onset of the instability (the squares in
Fig. 68) then the results perfectly match the data of the linear theory taken from Fig. 67.

For µΩ = 0.26 the agreements are even better; now also the two linear results are close to the measurements. For
µΩ > 0.26, however, all theoretical phase speeds increase for reduced shear while the experimental values decrease. Note
that the given theoretical results were obtained for an unbounded container. The wave numbers given in the right panel
of Fig. 60 (for the easiest excitation) represent wavelengths of about 15 cm, but the real container has a height of only
40 cm.

Fig. 69 illustrates the observed variation of β in further detail. Fixing Ωin = 0.38 s−1, µΩ = 0.26, Icoil = 76A, the axial
current is varied between 0 and 7kA so that the maximal magnetic field at the inner cylinder is 350 G. We observe the
HMRI wave only above 4kA or equivalently, for β ≥ 1.9. The endplates are rather different, resulting in axial differences
of the wave trains which become weaker for increasing β . The upper endplate is insulating and stationary while the lower
endplate is conducting and rotates with the outer cylinder (see the right panel of Fig. 61). A comparison of the experimental
results with numerical predictions is shown in Fig. 70. The 3D simulations have been done without endplate effects. The
values are averaged over the whole container including the near-wall domains where the vertical flow in the cells is larger
than in the middle of the gap between the cylinders. The results obtained with an inductionless axisymmetric 2D code for
Pm = 0 concern the central part between the endplates [139]. The two very different codes provide very similar results for
the maximum intensities also in agreement with the measurements. The critical β values, however, vary between the red
symbols at the horizontal axis indicating the numerically determined threshold values for the convective and the absolute
instability [128]. The experimental data well fit the numerical approaches. The 2D simulations for the bounded container
reflect the onset of the absolute instability while for the unbounded container the onset of the convective instability is
simulated.

By definition of the averaging procedure, the systematic phase velocity (ωdr/k) of thewaves is not reproduced in the plots.
The instability starts with rather small intensities at the threshold value β0 = 1.9 which is known from the linear theory
(see Fig. 60, left). For slightly larger values the intensity grows like the difference β −β0. Much stronger saturated intensities
are reached for β values larger than the theoretical value for the absolute instability. The values are averaged over the axial
coordinate z, explaining that they are smaller than the amplitude values given in Fig. 68. The typical value of the axial rms
velocity for larger β is 0.2 mm/s.
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Fig. 69. Upward traveling HMRI wave of Promisewhen varying the axial current Irod (opposite provides downward waves). The height in the cylinders and
the time are measured along the axes. Measured UDV signals in dependence on time and vertical position, for 8 different axial current values. The phase
velocity for the experiment with 7 kA is 0.9 mm/s. The different structure of the endplates (see text) leads to asymmetric wave trains in the axial direction.
Icoil = 76A (Ha = 12), Re = 1775, rin = 0.5, µΩ = 0.26. Conducting cylinders.

Fig. 70. The axial energy ⟨u2
z ⟩ at the UDV sensor position in dependence on the normalized toroidal field β . Same parameters as in Fig. 69. Dashed lines

show numerical results, the full line gives the experimental data. The 2D simulation for Pm = 0 (from [139]) concerned a container with split endcaps
while the 3D simulation for Pm = 10−5 used axial periodicity with Γ = 10. The red marks at the horizontal axis indicate the predictions for the onset of
the convective instability (circle) and the absolute instability (diamond). See the remark at the end of Section 7.1.

8. Tayler instability (TI)

Almost all applications in the foregoing sections concern toroidal magnetic fields which are current-free in the fluid
between the cylinders. In these cases the instability cannot exist without global differential rotation. In Sections 6.3 and
6.5, however, models with Re = 0 also proved to be unstable against nonaxisymmetric perturbations for azimuthal fields
with µB > rin. Hence, aB ̸= 0 in Eq. (42), so that axial electric currents exist in the fluid. It is also interesting to combine
the stability criteria (7) for axisymmetric modes and (9) for nonaxisymmetric modes. As illustrated in Fig. 71 the solution
Bφ ∝ 1/R (i.e. µB = 0.5) is always stable while the profiles Bφ ≃ const and Bφ ∝ R (i.e. µB = 1 and µB = 2) are unstable
against nonaxisymmetric perturbations. That the z-pinch with uniform electric current between the cylinders is always
stable againstm = 0 follows from the simplified Eq. (53), i.e.

d2bφ

dR2 +
1
R
dbφ

dR
−

bφ

R2 − k2bφ − i Pm Re ωbφ − R
d
dR

(
Bφ

R

)
uR = 0, (92)
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Fig. 71. Critical Hartmann numbers Ha(m)
0 for m = 0 (thin lines) and m = 1 (thick lines) for perfectly conducting (red) and insulating (blue) boundary

conditions for azimuthal fields with various µB . The profiles in the central area around µB = rin = 0.5 (left dotted line) are stable against axisymmetric
and nonaxisymmetric perturbations. The right dotted line at µB = 1/rin = 2 represents the z-pinch which is stable against axisymmetric perturbations
but unstable against nonaxisymmetric perturbations withm = 1. The related electric currents (in kA) are calculated from (46) for liquid sodium. Hartmann
numbers Ha0 do not depend Pm.
Source: Data from [140].

which for Bφ ∝ R fully decouples from the hydrodynamics as it also does bφ in accordance with (52). All magnetic
perturbations, therefore, decay because of missing energy sources. The last term in (92) is only able to destabilize fields
with radial profiles steeper than Bφ ∝ R against axisymmetric perturbations.

It may be worth to consider the occurrences of instability against axisymmetric perturbations withm = 0 shown by this
line in Fig. 71. It is no surprise that in accordance with the condition (7) axisymmetric instabilities exist for µB > 2 (right
vertical dotted line). More interesting is the existence of an axisymmetric instability for toroidal fields which change the sign
between the boundaries, i.e. µB < 0. Note that the electric current Ifluid given by Eq. (46) changes its sign at µB = rin (left
vertical dotted line). Because of

µB = rin
(
1 +

Ifluid
Iaxis

)
(93)

negative µB result for electric currents with opposite signs, Ifluid < −Iaxis. Fig. 71 demonstrates that such fields are unstable
against m = 0 perturbations for µB < −1. The reason is that the left hand side of the relation (7) changes in sign leading
to instability against axisymmetric perturbations which even (for perfectly conducting cylinders) can possess the lowest
eigenvalue.

For real fluids in the presence of azimuthal fields the equation system is given in Section 2.2 with the definition (45).
Without rotation for any value of µB and for a given mode number m, the resulting eigenvalue for neutral stability is the
Hartmann number Ha0. One can easily show that for Re = 0 the drift value ωdr vanishes, and Ha0 does not depend on the
magnetic Prandtl number [114,141]. The critical Hartmann numbers for the excitation of the axisymmetric mode (m = 0)
and the nonaxisymmetric modes with m = ±1 for −10 ≤ µB ≤ 10 are given for rin = 0.5 in Fig. 71. Of particular
importance here are the values for µB = 1 and µB = 2, describing (approximately) uniform fields and uniform electric
currents, respectively. For µB = 1 the critical Hartmann numbers for excitation of the m = 1 mode are Ha0 = 151 and 109
for conducting and insulating cylinders, respectively; for µB = 2 the values are Ha0 = 35 and 28. Uniform currents lead to
easier excitations.

Fig. 71 also reveals the nontrivial influence of the boundary conditions. For perfectly conducting cylinders and negative
µB the axisymmetric instability will be excited with the lowest Hartmann number (as in [10]) while for insulating cylinders
the mode with m = 1 is the preferred one. For positive µB and insulating cylinders the nonaxisymmetric m = 1 mode will
be excitedwith the lowest Hartmann number while for perfectly conducting cylinders the numerical value ofµB determines
the fundamental mode.

For Hartmann numbers exceeding Ha0 the equation system yields finite growth rates. It is known that the growth rate
of TI grows for growing magnetic fields. The open question is the influence of the magnetic Prandtl number. Fig. 72 shows
the growth rates for a purely toroidal field with rin = 0.5 and µB = 1 (almost uniform magnetic field) and µB = 2 (uniform
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Fig. 72. Growth rates of stationary flows normalized with the dissipation frequency ω =
√

ωνωη versus supercritical Hartmann numbers (45) for µB = 1
(left) and µB = 2 (right). Pm = 1 (blue lines), Pm = 0.1, 0.01, . . . (dashed lines) and Pm = 10, 100, . . . (dotted lines). The critical values H0 do not depend
on Pm. The fastest growth belongs to Pm = 1.m = 1, Re = 0, rin = 0.5, perfectly conducting boundaries.

Fig. 73. Instability patterns of a purely toroidal quasi-uniform background field without rotation. The twomodes are equivalent: their kinetic helicities are
±6.0 · 10−4 and their current helicities are ±3.5 · 10−3 (both in units of Ω2

AR0). rin = 0.5, µB = 1, Ha = 200, Pm = 1, perfectly conducting boundaries.
Source: From [142].

electric current) for various Pm. In this representation they scale almost linearly6 with the Hartmann number, with a weak
dependence on Pm. Due to the normalization of the growth rates with the averaged frequency ω = η/R2

0, one obtains

ωgr = F (Pm) ΩA, (94)

with the Alfvén frequency ΩA = ω Ha and F as a function of the magnetic Prandtl number. The amplitudes for µB = 1
(uniform field) are F (1) = 0.1 and for µB = 2 (uniform current) it is F (1) = 1. In this representation the fastest instability
belongs to Pm = 1. Such fluids are thusmore unstable than those with Pm ̸= 1. The function F (Pm) becomes rather small for
small and large Pm. For a purely toroidal field the azimuthal wave numbers of the modes in Fig. 73 are m = ±1, where the
left spiral has m = 1 and the right spiral m = −1. The left-handed and right-handed spirals are degenerate, having exactly
the same growth rate. These modes do not drift in the azimuthal direction. Fig. 73 shows that the nonlinear solutions do not
consist of equal mixtures of both modes. Instead, either the left or the right mode suppresses the other. Which mode wins
depends on the initial conditions. If the initial condition allows the excitation of both modes, it is the numerical noise that
determines thewinningmode. Both the kinetic and current helicities of the two possible solutions have the samemagnitude
but opposite signs. The solution consisting of an equal mixture of both modes proves to be unstable. Other examples of
spontaneous parity-breaking bifurcations of this type have been described in Refs. [143–145].

8.1. Wide gaps

Containers with rin = 0.05 may be considered as approaching pipe flows within the outer cylinder. For such models the
influence of the inner boundary condition should become negligible. It makes sense for all such cases to work with an outer

6 The below discussion of a wide gap flow reveals a quadratic behavior.
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Fig. 74. Outer Hartmann number (95) for stationary z-pinches in wide gaps with rin ≤ 0.1. For rin → 0 the values converge for perfectly conducting (solid
line) and insulating (dashed line) cylinders.Haout = 28.4 for rin = 0.05 (vertical dotted line) and conducting cylinders. All values independent of Pm.m = 1,
Re = 0, µB = 1/rin .
Source: From [146].

Fig. 75. Left: growth rates of the z-pinch normalized with the dissipation frequency ω =
√

ωνωη versus outer Hartmann numbers (95) for rin = 0.05.
Right: Γgr (marked with Pm) from Eq. (96) for various rin . Observe Γgr for small Pm as almost independent of both rin and Pm. Pinch-type field withm = 1,
Re = 0, µB = 1/rin , perfectly conducting cylinders.
Source: From [147].

Hartmann number according to the rule

Haout =
BoutRout
√

µ0ρνη
=

Ha√
(1 − rin)r3in

. (95)

Fig. 74 demonstrates the behavior of the outer Hartmann number for rin → 0 for both types of boundary conditions. For
rin → 0 the two nearly horizontal curves approach (as they should); the dependence on rin is very weak for rin ≪ 1. Note
that insulating boundary conditions lead to (slightly) more unstable flows.

The growth rates of the m = 1 instability of this pinch-type flow for Ha > Ha0 are plotted in Fig. 75 (left) with the same
normalization as used in Fig. 72. One finds that the (physical) growth rates in wide gaps behave like

ωgr = Γgr
B2
out

µ0ρη
, (96)

where the coefficient Γgr varies only by a factor of four when the magnetic Prandtl number varies by four orders of
magnitude [147]. The linear size of the container does not occur in Eq. (96). It is also surprising that the growth rate is
inversely proportional to the diffusion frequency ωη = η/R2

out, which means that the growth time reduces for increasing
electric conductivity (in opposition to the diffusion times). For small Pm, Γgr no longer depends on the magnetic Prandtl
number (Fig. 75, right). Pm = 1 and rin = 0.05 yield Γgr = 0.0009. Note also that the growth rates for the wide gap
container are much smaller than those of the standard gap displayed by Fig. 72.

It remains to describe the experimental implication of the critical value Ha0 ≃ 30 for the neutral instability taken from
Fig. 75 (left). The solution of the stationary induction equation inside the outer cylinder in the presence of a uniform electric
current Ifluid yields Bφ = Ifluid/(5Rout). With (95) it follows

Ifluid = 5Haout
√

µ0ρνη (97)



G. Rüdiger et al. / Physics Reports 741 (2018) 1–89 61

Fig. 76. Azimuthal velocity component uφR0/ν of the z-pinch instability for a wide gap. Left: Haout = 40, middle: Haout = 200, right: Haout = 600.
rin = 0.05, µB = 1/rin , Re = 0, Pm = 10−5 . Insulating cylinders.

Fig. 77. As in Fig. 76 but for the azimuthal magnetic component bφ/Bin .

with
√

µ0ρνη = 8.2 in cgs units for liquid sodium.7 Hence, the characteristic value of Haout ≃ 30 leads to (only) 1.2 kA
and/or Bout ≃ 50 G for (say) Rout = 5 cm.

8.2. Kinetic and magnetic energy

For the very small magnetic Prandtl number Pm = 10−5 and for stationary cylinders the TI for increasing electrical
currents have been numerically simulated. Figs. 76 and 77 show the azimuthal components of flow and field for Haout = 40
toHaout = 600.While for theweak-field case the expected regular nonaxisymmetric pattern can be observed, stronger fields
produce more and more elongated structures and intermittency. Strong currents simultaneously lead to much larger and
much smaller axial scales. This effect can be observed at least for the spectrum of the kinetic fluctuations rather than in the
spectrum of themagnetic fluctuations. This might be a consequence of the very small magnetic Prandtl number, which leads
by the high value of η to an effective smoothing of small scales of the magnetic fluctuations.

The consequences of this situation for the resulting energiesmay also be discussed. The normalizedmagnetic energy (63)
is plotted in the left panel of Fig. 78 in its dependence on the inner Hartmann number. It is a steep function, Q = qHa4, with

7 √
µ0ρνη = 25.8 in cgs units for liquid gallium.
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Fig. 78. Dependence of Q from (63) (left) and the ratio ε from (66) of magnetic to kinetic energies (right) for the stationary z-pinch on the Hartmann
number. These results lead to the relation (98) between themagnetic energy and themicroscopic magnetic Reynolds number Rm′ . The energy of them = 1
mode is given by the dashed lines. µB = 1/rin , rin = 0.05, Re = 0, Pm = 10−5 , insulating cylinders.

q ≃ 4 · 10−8. On the other hand, the energy ratio (66) only grows linearly with Ha, i.e. ε = EHa with E ≃ 0.2 (right panel).
From these expressions it is easy to derive the relation between Q and Rm′ in the form

Q ≃ 92 Rm′1.6, (98)

with Rm′
= urmsR0/η. The resulting exponent lies well between the values 1 and 2 for driven turbulence with high and low

conductivity [148]. It also follows that

Rm′
≃ 2.5 S2.5, (99)

if S =
√
Pm Ha is used. The stationary pinch with Pm ≪ 1 is not magnetically dominated.

8.3. The GAllium-Tayler-Experiment ( Gate)

The stationary TI leads to a nondrifting nonaxisymmetric steady-state solution. Because of Re = 0 the eigenvalues Ha0
do not depend on the magnetic Prandtl number, and can thus be computed for all rin with a code for (say) Pm = 1 (Fig. 74).
On this basis and the calculation of the growth times an experiment can be designed to probe the theoretical predictions
for Re = 0 as a first step. The experiment Gate consists of an insulating cylinder with a height of 75 cm and a radius
Rout = 5 cm which is filled with GaInSn (Fig. 79). The liquid column is in contact with two massive copper electrodes which
are connected by water cooled copper tubes to an electric power supply providing up to 8 kA. With 14 fluxgate sensors the
modifications of the magnetic fields due to the TI are detected. Eleven of these sensors are positioned along the vertical axis,
while the remaining three are positioned along the azimuth in the upper part. Such measurements give the geometry of
the field, thus its shape in azimuthal and axial direction as well as the scaling of the growth rates with the applied electric
current [149].

In all cases of instability the observed pattern of the magnetic perturbations is nonaxisymmetric with m = 1. Fig. 80
shows the resulting growth rates and the calculations according to Eq. (96) for three containers with wide and very wide
gaps (rin ≤ 0.25). Note that for small Pm and for very small values of rin < 0.1 the theoretical growth rates are almost
independent of rin (Fig. 75, right). The predicted threshold value for the electric current is 2.8 kA. For low growth rates the
experimental data for all threemodels fit the theoretical curves verywell. The theory always providesmaximal growth rates,
optimized over the wave number. The theoretical values should thus always lie above the observed data, which is indeed
the case for the container with rin = 0 (black circles). One finds a relation ωgr ≃ γ (I2 − I2crit) with γ = 2.7 · 10−10, so that
Γgr ≃ 0.038 results. Nearly the same value can be taken from the theoretical results plotted in Fig. 75.

Also for the container with the very thin inner cylinder almost all red triangles lie below the theoretical curve. The
agreement is less perfect for the container with the relatively wide inner cylinder. However, for any fixed growth rate even
for this example all measured values (green crosses) lie at the right-hand side of the red triangles which conforms with the
theoretical result (green dashed line). It is even quite natural that the agreement between observed and calculated becomes
less perfect the larger the growth rate and the thicker the inner cylinder. For the lowest growth rates in Fig. 80, i.e. for the
determination of the amplitudes of the electric currents for the onset of instability, the agreement between theory and
observation is Fig. 80 is almost perfect.

9. Tayler–Couette flow

In this section the influence of rotation on the Tayler instability will be described. The rotation law Ω = Ω(R) shall
have the form (24) as a stationary solution of the angular momentum equation varying from Ω ∝ 1/R2 (negative shear) via
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Fig. 79. Construction of Gate as operated by the Helmholtz-Zentrum Dresden-Rossendorf [149].

Fig. 80. Observed and calculated growth rates for the stationary z-pinch for small rin (black: rin = 0, red: rin = 0.12, green: rin = 0.25). The measured
values for the container without inner cylinder (black circles) do not exceed the calculated ones, indicating almost perfect agreement between experiment
and theory [146].
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Fig. 81. Suppression of TI by rigid rotation in z-pinches within a narrow gap (left, rin = 0.95), a medium gap (middle, rin = 0.5) and a wide gap (right,
rin = 0.05) plotted in the (Ha/Rm) coordinates. The curves are marked with their magnetic Prandtl numbers. Pm = 1 always plays an exceptional role. For
Pm ̸= 1 the Mach numbers are larger than for Pm = 1. m = 1, µB = 1/rin , µΩ = 1. Perfectly conducting cylinders [114].

rigid-body rotation to superrotation with positive shear. Also the radial profile of the azimuthal magnetic field is a function
of two free parameters in accordance to (41). Amongmany other possibilities the examples of quasi-uniform fields (µB = 1)
and the z-pinch due to a uniform electric field (µB = 2) will be discussed in detail.

9.1. Rigid rotation

Themost prominent example of this class is formed by a rigidly rotating z-pinch due to an uniform axial electric current. It
belongs to the Chandrasekhar-type flows, and hasm = 1 as the only unstable mode. The eigenvalues Re and Ha for small Pm
donot dependon Pm. Fig. 81 shows the influence of themagnetic Prandtl number on the suppression of the instability by rigid
rotation for three values of the gap width. It makes sense to interpret the results bymeans of the averaged Reynolds number
Rm, because of the convenient possibility to define themagneticMach number as the ratio of Rm andHawhere the quantities
on both axes are symmetric in ν and η. The dashed lines in the plots correspond to Mm = 1. The rotational suppression of
TI in this representation is strongest for Pm = 1. For very small and very large Pm there is almost no rotational suppression
of TI. In this sense the magnetic Prandtl number Pm = 1 plays an exceptional role. Depending on the magnetic Prandtl
number a fluid with identical Reynolds numbers and Hartmann numbers can be stable or unstable. One needs basically
stronger fields to destabilize rigid rotation for Pm = 1 rather than for Pm ̸= 1. Clearly, for the magnetic Prandtl numbers
used in the middle panel of Fig. 81 the Tayler instability for rigid rotation is a sub-Alfvénic phenomenon only for Pm = 1.
For smaller and larger Pm the lines of marginal stability cross the dashed line for Mm = 1 and the instability becomes
super-Alfvénic.

This, however, is not the whole truth. Fig. 82 reflects the influence of the magnetic Prandtl number on the strength of
the rotational suppression for two different radial field profiles in the standard gap (rin = 0.5). The left panel concerns
the pinch-type field with uniform electric current and right panel concerns the almost uniform field. The magnetic Prandtl
number varies overmany orders ofmagnitude. The ordinary Reynolds number and theHartmann numbers are used. The two
standard values Ha0 = 35 and Ha0 = 150 (for rin = 0.5 and perfectly conducting cylinders) appear. There are differences
between the panels, but the common feature is that the rotational suppression becomes very weak for very small Pm. Note
that in the left panel the stability curves for Pm → 0 converge, unlike the curves in the right panel. For this field profile
the magnetic Mach number Mm =

√
PmRe/Ha shifts to zero for Pm → 0, as for Bφ ∝ R and rigid rotation Re and Ha are

independent of Pm for small Pm. Indeed, for µB = 2µΩ = 2 the condition (84) of Chandrasekhar-type flows is satisfied, so
that the convergence of the stability lines for small Pm in the (Ha/Re) plane is not surprising. In summary, for very small
magnetic Prandtl numbers z-pinches for Pm → 0 are unstable forMm → 0; all stability curves move more and more below
the dashed lines in Fig. 81. This is not true for the alternative field profile with µB = 1 (right panel of Fig. 82) which can thus
easily reach super-Alfvénic values.

Fig. 82 (left) provides another surprise. The plot demonstrates that the curves in the (Ha/Re) plane not only converge
for Pm → 0 but also for Pm → ∞. The rigidly rotating z-pinch with perfectly conducting cylinders, therefore, is stable for
Re > γHa where γ = G is a large number for Pm ≪ 1 and a small number γ = g (of order unity) for Pm ≫ 1. Hence, the
pinch is stable ifMm > G

√
Pm for Pm ≪ 1 andMm > g

√
Pm for Pm ≫ 1. The rigidly rotating z-pinch is thus easier to keep

stable for very small Pmwhile for very large Pm the stabilization requires very rapid rotation.
Considered in the (Ha/Rm) coordinate system the fluids with Pm ̸= 1 are less suppressed by rigid rotation than those

with Pm = 1. Numerical simulations with Pm = 1 may thus be stable although the stability is lost for Pm ̸= 1. Instability
for Pm = 1 requires fields with ΩA ≥ Ωin while much weaker fields become unstable for Pm ̸= 1.

9.2. Differential rotation

For the normalizations used in Fig. 72 the growth rates for the m = 1 instability of the stationary pinch are maximal
for Pm = 1, but for the rigidly rotating pinch Pm = 1 leads to a maximal stabilization (Fig. 81). We shall find that also the
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Fig. 82. Stabilization by rigid rotation of quasi-uniform magnetic field (µB = 1, left) and of fields due to uniform current (µB = 2, right) for various Pm
(marked) plotted in the (Ha/Re) plane. The parameters used for the right panel satisfy the Chandrasekhar condition (84). The curves converge in the (Ha/Re)
plane for both limits Pm → 0 and Pm → ∞ (not true in the left panel).m = 1, rin = 0.5, µΩ = 1, perfectly conducting boundaries.

Fig. 83. Left: Stability lines for the quasi-uniformmagnetic field influenced by differential rotation for small Pm. The curves are marked with their values of
µΩ . For slow rotation the rotation profile with µΩ = rin (uniform flow, dashed) separates amplification and suppression. As (only) this choice of µΩ fulfills
the Chandrasekhar condition (84), the dashed line is valid for all Pm ≪ 1. µB = 1, Pm = 10−5 . Right: Stability map of the z-pinch for quasi-Keplerian flow.
The curves are marked with their values of Pm. The subcritical excitation with Ha < Ha0 due to differential rotation almost disappears for Pm < 1 [150].
µB = 2, µΩ = 0.35.m = 1, rin = 0.5, perfectly conducting boundaries.

combination of the almost uniform magnetic fields µB = 1 with differential rotation lead to a basic role of the magnetic
Prandtl number. For perfectly conducting boundary conditions the critical Hartmann number for Re = 0 is Ha0 = 150 (see
Fig. 49, left). The form Ω = Ω(R) of the rotational profile plays an important role for the destabilization of the toroidal
fields. For small magnetic Prandtl number Fig. 83 demonstrates various possibilities for modest Reynolds numbers and for
quasi-uniformmagnetic field. Rigid rotation basically stabilizes the field as instability requires increasingHartmannnumbers
for increasing Reynolds numbers. This stabilization is much weaker for rotation laws with negative shear. For fixed Re the
field amplitudes which become unstable are much weaker for subrotation than for rigid rotation, hence steep rotation laws
effectively destabilize the field. Even a subcritical excitationwithHa < Ha0 exists, but only forµΩ < rin. Note thatµΩ = 0.5
and µB = 1 in Fig. 83 according to relation (84) belongs to the class of Chandrasekhar-type flows which for Pm → 0 scale
with Re and Ha. The nearly vertical dashed line in Fig. 83 is valid for all Pm < 1. It is the rotation law for quasi-uniform linear
velocity, Uφ ≃ const. The calculations show that for this particular rotation profile the rotational support or suppression
of TI is minimized for moderate Reynolds numbers. For very large Reynolds numbers, however, all curves turn to the right,
describing an effective stabilization of the magnetic fields by differential rotation (see the right panel of Fig. 85).

In order to reveal the Pm dependence of the effectiveness of subcritical excitation the right panel of Fig. 83 presents the
stability map for the pinch-type field with quasi-Keplerian rotation in the standard gap with rin = 0.5, for various magnetic
Prandtl numbers Pm ≤ 1. The critical Hartmann number for Re = 0 does not depend on the magnetic Prandtl number, but
surprisingly the instability curves for all Pm < 1 also hardly differ if Re < 1000. As in Fig. 49 (left) the rotational suppression
almost disappears for Pm < 1. For slow rotation and for Pm ≃ 1 the instability even becomes subcritical (Ha < Ha0),
and the stabilization switches to destabilization. For faster rotation the subcritical excitation disappears, but the rotational
suppression is weaker than for rigid rotation. For the phenomenon of subcritical excitation the influence of the magnetic
Prandtl number is obviously strong. Note that Pm = 0.1 already belongs to the small Pm regime where the subcritical
excitations are very weak. Here also fluids with Pm = 1 behave exceptionally.

The described effect of missing rotational suppression is demonstrated inmore detail by Fig. 84 for variousmagnetic field
profiles and magnetic Prandtl numbers. Indeed, for small magnetic Prandtl number the lines of marginal stability for both
examples become more and more perpendicular, fulfilling the condition Ha ≃ Ha0. The entire domain with Ha > Ha0 is
unstable, independent of the Reynolds number as long as the rotation is slow enough.

As another example for the complex character of the rotational stabilization/destabilization, Fig. 85 shows the results of
varying rotation profiles on the z-pinch with uniform axial electric current (µB = 1/rin) in a narrow gap. Rotation profiles
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Fig. 84. Stabilization by uniform flow with µΩ = rin of the quasi-uniformmagnetic field (µB = 1, left) and of fields due to uniform current (µB = 2, right)
for various Pm (marked). The parameters used for the left panel satisfy the Chandrasekhar condition (84). For small magnetic Prandtl number the lines of
marginal stability become almost perpendicular to the abscissa (Ha ≃ Ha0 , blue lines) so that the rotational suppression of TI disappears. The patterns of
these modes are stationary in the laboratory system.m = 1, rin = 0.5. Perfectly conducting boundaries.

Fig. 85. Stability maps for z-pinches in a narrow gap with differential rotation; the curves are marked by the rotation rate ratio µΩ . Left: slow rotation
(µΩ = 0.5 is hydrodynamically stable). µΩ = 0.92 represents quasi-Keplerian rotation. Right: for higher Reynolds numbers stronger fields are needed for
instability. For large Reynolds numbers rotational stabilization exists for all types of differential rotation. m = 1, Pm = 1, rin = 0.95, µB = 1/rin . Perfectly
conducting boundaries, [114].

with both negative and positive shear are considered. In this container the profile µΩ = 0.5 is centrifugally unstable even
without magnetic fields, but note that the magnetic field destabilizes the flow. The other rotation laws are stable in the
hydrodynamic regime. Rigid rotation and also superrotation stabilize the magnetic field. For subrotation the behavior is
opposite. While for rigid rotation and superrotation the critical Hartmann numbers grow for growing Reynolds number
with Ha > Ha0, for (slow) subrotation the associated Hartmann numbers represent subcritical excitation, i.e. Ha < Ha0.
Again, the characteristic rotation parameter µΩ ≃ rin seems to separate the two regimes. One should think that strong
rotational shear of any sign tends to suppress nonaxisymmetric patterns. We therefore expect that for sufficiently large Re
the subrotation curves would eventually also turn over towards larger Hartmann numbers. As seen in Fig. 85 (right panel),
this is indeed the case, for both rigid rotation and subrotation. Rigid rotation seems to be more effective in stabilizing the
TI. The critical Hartmann numbers required for instability are much higher for rigid rotation than for differential rotation.
There is thus an extra destabilization effect by differential rotation suppressing the nonaxisymmetric field perturbations.
The magnetic Mach number for strongest fields remain smaller than unity for rigid rotation, in opposition to subrotation
where the given parameters yieldMm ≫ 1. However, the curves suggest that in all casesMm < 1 for Ha → ∞.

The flow pattern for a supercritical z-pinch under the influence of quasi-Keplerian rotation is shown in Fig. 86 for three
Reynolds numbers. The Hartmann number is fixed (Ha = 80). The magnetic Prandtl number Pm = 0.1 is small enough,
according to the classification suggested by Fig. 83 (right). The instability is clearly nonaxisymmetric and the velocity
amplitude increases linearly with the Reynolds number. Within the same interval the axial wavelength grows for faster
rotation. Surprisingly, detailed numerical simulations lead to the result that the rms value of the radial velocity remains
constant for faster rotation. Simultaneously, the fluctuations becomemore andmore asymmetric so that, e.g. the rms values
of the axial flow perturbations grow for growing Reynolds numbers [150].

9.3. Superrotation

The stability of the almost uniform field µB = 1 for rotation profiles with negative and positive shear is studied next, in
dependence on the magnetic Prandtl number. For the narrow gap with rin = 0.95 Fig. 87 gives maps for Pm = 0.1, Pm = 1
and Pm = 10. The Hartmann number without rotation is Ha0 ≃ 8945. For Pm = 1 rigid-body rotation and superrotation
are always stabilizing (Ha > Ha0), opposite to subrotation with µΩ < rin. Sufficiently strong subrotation leads to subcritical
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Fig. 86. z-pinch and quasi-Keplerian rotation: isolines of uR given as Reynolds numbers uRR0/ν for Re = 500 (left), Re = 1000 (middle) and Re = 1500
(right). Ha = 80. rin = 0.5, µB = 1/rin = 2, µΩ = 0.35, Pm = 0.1. Perfectly conducting cylinders.

Fig. 87. Quasi-uniform field and differential rotation of negative and positive shear in a narrow gap for Pm = 0.1 (left), Pm = 1 (middle) and Pm = 10
(right). The curves are marked with µΩ . rin = 0.95, µB = 1, m = ±1, perfectly conducting boundaries. See the corresponding plots for the z-pinch with
µB = 1/rin in Ref. [151].

excitation with Ha < Ha0. Rotation laws with negative shear (here µΩ = 0.93) are strongly destabilizing. For small Pm the
domain of stability in Fig. 87 is larger. For sufficiently rapid rotation, however, the lines for subrotation must also turn to
the right, stabilizing the system, since strong shear of either sign always suppresses nonaxisymmetric patterns. The lines of
marginal stability for rigid rotation and for superrotation lie belowMm = 1.

Note, however, that for both Pm > 1 (right panel) and Pm < 1 (left panel) and for slow rotation, the rotation profiles with
positive shear lead to subcritical excitations, but not for Pm = 1. Superrotation can only provide subcritical excitation for
ν ̸= η (double-diffusive instability). The magnetic Mach number for the subcritical excitation and for both magnetic Prandtl
numbers is only Mm ≃ 0.05. The curves for rigid rotation and for superrotation are again always located below the line
Mm = 1. To exist forMm > 1 the TI needs the action of a differential rotation law with strong negative shear.

Superrotation at high Reynolds numbers is stabilizing for all Pm, with the effect greater for small Pm than for large Pm.
For Pm = 10 the stabilization by superrotation is even weaker than that of rigid rotation. Here also large Pm destabilize
nonuniform rotation, while small Pm stabilize them. The question arises about the possible existence of a minimum
Hartmann number for steeper and steeper superrotation laws. The existence of such a limit is suggested by the suppression
of nonaxisymmetric magnetic field perturbations by differential rotation whose effectiveness grows with increasing shear.
The line of marginal stability can never cross the vertical axis, since nonmagnetically superrotation is always stable. Fig. 88
for a z-pinch with uniform electric current shows converging lines up to µΩ → 128, so that a minimum Hartmann number
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Fig. 88. Stability maps for the z-pinch in a narrow gap subject to superrotation for small and large Pm (left: Pm = 10−5 , right: Pm = 10); the lines are
marked with their values of µΩ . Note that the Reynolds numbers are defined with the outer rotation rate. m = 1, µB = 1/rin , rin = 0.95, µΩ = 1 − 128.
Perfectly conducting cylinders.

Hamin exists and can be estimated as smaller by a factor of three compared with Ha0 = 3060. For the small magnetic Prandtl
number used for Fig. 88 (left) the ratio Hamin/Ha0 is surprisingly small. For large Pm (right panel of Fig. 88, Pm = 10) the
subcritical excitation also occurs with similar values. For larger Reynolds numbers almost all curves (except the curve for
rigid rotation) are nearly identical; they onlyweakly depend on the numerical values of shear and electric current. Compared
with the curves for small Pm, however, the curves have a different form.

Another striking feature results from the comparison of Figs. 38 and 88, both for Pm ̸= 1 and for narrow gaps. The radial
profiles of the magnetic fields completely differ: AMRI (no background current between the cylinders) for Fig. 38 and TI
(background current between the cylinders) for Fig. 88. For the rapid-rotation branches the dependence of the Reynolds
number on the Hartmann number is extremely weak. These plots show, however, that the dependence of the eigenvalues
on the radial profile of Bφ(R) is extremely weak. The lines of neutral stability of the flow with and without axial current for
rapid rotation almost coincide. For positive shear and rapid rotation the presence of the electric current becomes irrelevant
for the occurrence of an instability. One can show that all possible radial magnetic profiles between Bφ ∝ 1/R and Bφ ∝ R
provide more or less the same instability curves, revealing that any differential rotation for Pm ̸= 1 is able to deliver the
entire energy for the maintenance of the instability patterns. The magnetic field only acts as a catalyst.

9.4. Influence of the boundary conditions

For wide gaps there is a surprisingly strong influence of the boundary conditions, similar to the combination of AMRI
and superrotation (see Section 5.5.1). Fig. 89 shows the stability maps for the standard container with rin = 0.5 for perfectly
conducting and insulating cylinders. Note that the values forHa0 for stationary perfectly conducting cylinders are larger than
for stationary insulating cylinders. On the other hand, the critical Hartmann numbers for faster rotation (say, Re ≳ 150) are
nearly equal for both boundary conditions. The subcritical excitationwhich can be observed in the left panel of Fig. 89 (where
the superrotation laws are characterized by 1 < µΩ ≤ 128) is a simple consequence of the strong influence of the boundary
conditions for slow rotation (TI) and the weak influence of the boundary conditions for fast rotation (AMRI). For comparison
also the rotation law with µΩ = 0.25 is used, which shows the instability-supporting behavior (i.e. subcritical excitation,
Ha < Ha0), for both boundary conditions occurring for all rotation laws with negative shear. For positive shear, however,
this behavior only exists for cylinders made from perfectly conducting material. With insulating boundary conditions the
superrotation laws stabilize the pinch with the uniform electric current (Ha > Ha0 = 35). Observe the convergence of the
eigensolutions for µΩ → ∞. For large µΩ the Reynolds numbers taken for the outer cylinder also hold for the case of
stationary inner cylinder.

For fast rotation (large Reynolds number) all nonaxisymmetric magnetic instabilities are suppressed, reducing the strong
influence of the boundary conditions. Note, however, how easily a z-pinch can be stabilized by means of a slowly rotating
outer cylinder made from insulating material. This effect vanishes for high-conductivity material, large magnetic Prandtl
number and fast rotation.

10. Twisted fields

For combined axial and azimuthal background fields the nonaxisymmetric modes with m and −m (corresponding to
left and right spirals) differ by the excitation conditions. If the imposed field has both axial and azimuthal components, the
system no longer exhibits ±z symmetry [123]. We shall see that for nonaxisymmetric modes, therefore, the ±z asymmetry
of the background field breaks the±m symmetry of the instabilities. Spiraling either in the same or the opposite sense of the
twisted field geometry is possible. This azimuthal-symmetry breaking by helical background fields forms a characteristic
difference between rapid rotation (AMRI) and slow rotation (TI). For rapid rotation the most unstable mode spirals opposite
to the imposed field; for slow rotation it spirals in the same sense (see Fig. 92 as an illustrative example).
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Fig. 89. Stability maps of the z-pinch in a wide gap subject to superrotation for small Pm and for perfectly conducting (left) and insulating (right) cylinders.
The Reynolds numbers are defined with the outer rotation rate, the curves are marked with their values of µΩ . The solutions for rigid rotation (µΩ = 1)
and the potential flow (µΩ = 0.25) are given for comparison. Subcritical excitation (Ha < Ha0) for superrotation does not exist for insulating boundary
conditions. For subrotation (µΩ = 0.25, dotted lines) it exists independent of the boundary conditions. m = 1, µB = 1/rin , rin = 0.5, Pm = 10−5 ,
µΩ = 1 − 128. Perfectly conducting cylinders.

We are interested in the linear stability of the background field B = (0, Bφ(R), B0) with Bz = B0 = const. For the current
helicity of the background field one finds curlB · B = 2aBB0, which may be either positive or negative. Both signs yield the
same instability curveswith left and right spirals interchanged. This current helicity vanishes for fieldswhich are current-free
between the cylinders (aB = 0). In accordance with Eq. (45) the Hartmann number will be defined with the azimuthal field
value Bin, contrary to the definition (14) used in Sections 4 and 7.

10.1. Quasi-uniform azimuthal field

Following Refs. [127,147,152] we start to consider quasi-uniform azimuthal fields Bφ with µB = 1 and turn later to
the pinch-type fields due to homogeneous electric currents with µB = 2. As in (89) the inner field amplitude Bin will be
normalized with the uniform axial field B0. Then the current helicity of the background field is

curlB · B =
2β
3

B2
0

Rin
(100)

with β = Bin/B0. The sign of β determines the sign of the helicity of the background field. Interchanging ±β simply
interchanges left and right spirals. As an exception, for almost uniform azimuthal background fields with µB = 1 both the
Hartmann number and the ratio β can also be imagined to be formed with the outer field amplitudes. If the axisymmetric
background field possesses positive Bφ and Bz then its current helicity is positive forming a right-hand spiral.

The phase relation (59) gives the angle between the components of the perturbation field patterns. If the axial wave
number k is defined as a positive number (as we shall always do) then m must be allowed to have both signs. Negative m
describe right-hand spirals, and positivem describe left-hand spirals.

The critical Hartmann numbers Ha0 for nonrotating containers do not depend on Pm. Hence, the results for Ω = 0 in
Fig. 90 for the modes with m = −1, . . . ,−5 are valid for large magnetic Prandtl numbers and also for the small magnetic
Prandtl numbers of liquid metals. For µB = 1,m = 1 and for perfectly conducting boundaries we have Ha0 = 150 for purely
toroidal fields, i.e. β → ∞. For decreasing β the critical Hartmann number is reduced to about 100. Themost unstable mode
ism = −1 for β ≳ 8. For β of order unity themodewithm = −2 yields the lowest Hartmann number. For β ≲ 0.4 themode
withm = −3 starts to be preferred. Even higherm occur for smaller β but an increase of the axial field component (β ≪ 1)
is strongly stabilizing, more so as the normalized differences of the critical Hartmann numbers for variousm become smaller
and smaller. The energy needed to excite the nonaxisymmetric unstablemodes grows stronglywith decreasing β . If the axial
field for β < 2 starts to dominate the azimuthal field then the system becomes more and more stable. In the limit β → 0
there is no unstable mode remaining. These results do not change if formulated with the Hartmann number of the axial field
rather than with the Hartmann number of the toroidal field. For positive β the twist of the background field is right-handed
as is the twist of the most unstable modes. While without rotation for Bz = 0 no preferred helicity exists for the instability
pattern, with axial field the resulting twist is the same as that of the background field.

If the nearly homogeneous field with µB = 1 is subject to differential rotation with Ω ∝ 1/R (quasi-uniform
rotation velocity), then the field and the flow belong to the Chandrasekhar-type considered in Section 6. For Pm → 0 the
corresponding eigenvalues Re and Ha lose their dependence on Pm. For Pm = 1 the instability curves for µB = 2µΩ = 1 are
given in Fig. 91. For β ≲ 1 the m = 0 mode (dotted line) yields the instability with the lowest Reynolds number. As also in
Fig. 49 for β of order unity a stability branch develops along the line for Mm = 1. We find for the AMRI domain (Mm > 1)
that for large β the lowest Reynolds number belongs to nonaxisymmetric modes. The transition from nonaxisymmetry to
axisymmetry can be accomplished simply by increasing the axial component of the background field. It is thus clear that
there is a smooth transition from AMRI to the standard MRI.
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Fig. 90. Twisted background fields: Hartmann numbers Ha0 versus the ratio β > 0 for stationary cylinders. The curves are marked with their value of m,
they are invariant against the simultaneous transformation m → −m, β → −β . Twisted fields are more unstable than non-twisted fields. Strong axial
magnetic field components have a stabilizing influence. µB = 1 (left), µB = 2 (right). rin = 0.5, Re = 0, all Pm. Perfectly conducting cylinders.
Source: From [127].

Fig. 91. Stable (hatched) and unstable domains in the (Ha/Re) plane for quasi-uniform azimuthal field, quasi-uniform flow and for various β . Left: β = 0.1,
middle: β = 2, right: β = 10. The curves are marked with their values of m, for m = 0 the lines are dotted. Negative m stand for right-hand spirals and
positivem stand for left-hand spirals. rin = 0.5, µB = 2µΩ = 1, Pm = 1, perfectly conducting cylinders.

Fig. 92. The radial component of the magnetic pattern for models taken from the right panel of Fig. 91. Left: fast rotation with Mm = 2.5 (Re = 200,
Ha = 80, AMRI-type). Right: slow rotation with Mm = 0.23 (Re = 30, Ha = 130, TI-type). The fields are normalized with Bin . µB = 2µΩ = 1, β = 10,
Pm = 1, perfectly conducting cylinders.
Source: Adapted from [127].

The middle plot of Fig. 91 for β of order unity shows as Fig. 90 that the mode m = −2 indeed possesses lower Ha0 than
m = −1 (see [153]). Small shear and larger β , however, bring m = −1 back to the leading mode with the lowest critical
Hartmann number.

Note also that the slopes of the lines in Fig. 91 change from positive for nonaxisymmetric modes to negative for
axisymmetric modes. If the preferred modes with the lowest Reynolds numbers are nonaxisymmetric (for large β) then
the spirals are always left-handed in the AMRI domain (Mm > 1) and right-handed in the TI domain (Mm < 1).

For nonlinear simulations we begin by noting that transforming β → −β has the expected result that positive/negative
β do indeed yield right/left spirals. The helical structure of all solutions is clearly visible, dominated by low Fourier modes
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Fig. 93. Numerical simulation of the instability patterns of a twisted background field of pinch-type without rotation with β = −0.5 (left) and β = 0.5
(right). The signs of the helicities of background field and instability always coincide. rin = 0.5, µB = 1/rin , Re = 0, Ha = 150, Pm = 0.1.

m = 1 and/or m = 2 in agreement with the linear analysis. The solutions are stationary, except for a drift in the azimuthal
direction. Fig. 92 (left) concerns the AMRI domain for fixed β = 10. One finds the expected m = 1 left-hand spirals in
agreement with the linear results in Fig. 91. The nonaxisymmetric modes in the AMRI domain for large β have the signature
m = 1. For the TI domain the most unstable mode is m = −1 for β ≳ 10 and m = −2 for β ≃ 1. Obviously, the unstable
modes which characterize AMRI and TI according to the magnetic Mach number have different helicities. No mode mixture
exists.

The simulations also provide the amplitudes of the kinetic helicity ⟨u · curl u⟩ of the perturbations (averaged over φ).
The two models of Fig. 92 with positive β = 10 provide negative values of order of ⟨u2

⟩/R0. The signs of the kinetic helicity
and the current helicity of the background field are opposite. According to Fig. 92 AMRI with Mm > 1 produces instability
patterns with higher field strengths than TI with Mm < 1 does. This effect may be due to the action of the differential
rotation. Indeed, the magnetic energy Q (normalized with B2

in) calculated with the amplitudes of both examples differs by a
factor of almost 20, which is just of the order of the ratio of the two magnetic Mach numbers.

10.2. Uniform axial current

We turn next to the pinch-type field due to a uniform electric current, Ref. [147]. Without rotation the critical Hartmann
number Ha0 does not depend on Pm and the azimuthal drift of the nonaxisymmetric instability pattern vanishes. We also
know that for the nonaxisymmetricmodewith |m| = 1 for very largeβ wehaveHa0 = 35 forµB = 2. This value is reduced if
a small uniform axial field is added to the system. The axial field supports the pinch-type instability of the toroidal field. The
critical Hartmann number reduces to Ha0 ≃ 30. However, for |m| > 1 the destabilization of the toroidal field by axial fields
is much stronger, so that for β of order unity all modes with different mode numbersm possess the same critical Hartmann
number. We thus find a destabilizing effect by axial fields components compared to fields of purely toroidal fields. If Bφ and
Bz are of the same order then the field is more unstable than it is for Bz = 0 or Bφ = 0.

For β = 4 we find Ha0 = 29 as the absolute minimum of the stability curve for m = −1. For stronger axial fields, the
critical Hartmann number increases strongly to reach values of about 500 for β ≃ 0.1. Again, for strong axial fields the
modes with m < −1 possess lower critical Hartmann numbers than those with m = −1. For the smallest β in Fig. 90 (left)
the m = −4 mode possesses the lowest critical Hartmann number. However, the pinch-type instability of toroidal fields in
the presence of a uniform axial magnetic field without rotation is strongly suppressed by strong axial fields. The maximal
stabilization happens form = −1. With a sufficiently strong axial field rather strong toroidal fields can be stabilized.

The growth rates in units of the diffusion frequency ωη = η/R2
0 for fixed β = 1 and Pm = 1 are plotted in the left

panel of Fig. 94. The plot clearly demonstrates that the growth rates scale with the Hartmann number. For stronger fields,
differences for the growth rates of various m appear. One finds the maximum growth rates belonging to azimuthal wave
numbers |m| > 1.

These findings are confirmed by numerical simulations of the instability. They show the dependence of the handedness of
the patterns on the sign of the helicity of the background field, i.e. the sign of β (Fig. 93). There is no clear dependence of the
results on themagnetic Prandtl number. Themain result concerns the azimuthal wave numberm. The nonlinear simulations
indeed show the prevalence of the higher modes m = −3 or m = −4 within the instability patterns. While the instability
pattern of the nonrotating pinch with Bz = 0 is dominated by the mode with |m| = 1, the addition of a uniform axial field
leads to the excitation of much more complex instability patterns.
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Fig. 94. Growth rates normalized with the resistivity frequency ωη without rotation (left) and under the influence of rigid rotation (µΩ = 1, middle) and
differential rotation (µΩ = 0.5, right). The dashed line represents the growth rates for the axisymmetric MRI modem = 0. The curves are invariant against
the simultaneous transformationm → −m, β → −β . rin = 0.5, Ha = 80, µB = 1/rin , β = 1, Pm = 1. See [147].

Fig. 95. Growth rates for m = −1 normalized with the dissipation frequency ω =
√

ωνωη in dependence on the averaged Reynolds number Rm and the
magnetic Prandtl number Pm (marked) for quasi-uniform flow. The fastest growth of the perturbations for all Rm (Ω = 0 included) belongs to Pm = 1.
m = 1, Ha = 80, β = 1, rin = 0.5, µB = 1/rin , µΩ = 0.5. Perfectly conducting cylinders.

Rigid rotation stabilizes the magnetic perturbations while differential rotation supports the instability. For the z-pinch
with µB = 2 the growth rates were calculated for supercritical Ha and for β = 1 (Fig. 94, middle). The critical Ha0 for β = 1
is ∼ 35. For Ha = 80 one finds positive growth rates for slow rotation while for rapid rotation there is stability. For Re = 0
the mode with m = −3 grows fastest. The instability does not survive for Mm > 1. The mode with m = −1 withstands
the rotational suppression best. The modes with the highest m are already suppressed by lower Reynolds numbers. The
dominance of the modes with |m| > 1 disappears for rigid rotation. Note that the pinch with µB = 2µΩ = 2 is a
Chandrasekhar-type flow which for Pm → 0 scale with Ha and Re. The only unstable mode is |m| = 1.

Another situation holds for nonuniform rotation. The growth rates for Ha = 80 and the rotation law with µB = 0.5
are given in the right panel of Fig. 94. The slow rotation curve is almost identical to the rigid rotation curve. The modes are
rotationally stabilized. Only |m| = 1 has positive growth rate for all rotation rates. Modes with |m| > 1 do not contribute to
the instability for high Reynolds numbers because they are damped by strong differential rotation. For Mm ≳ 1, however,
the magnetic instability is re-animated, but at most for the lower modes including the axisymmetric MRI mode withm = 0.
Finally the m = 0 mode becomes dominant because its growth rate becomes higher and higher, finally scaling with the
rotation frequency. ForMm > 1 the growth rate increases with increasing Ω rather than with ΩA.

The dependence of the growth rates on the magnetic Prandtl number is a puzzling problem which can be demonstrated
by use of new variables. Fig. 95 demonstrates that the mode with |m| = 1 grows fastest for Pm = 1 if the growth rate is
normalized with the geometrical average η =

√
νη of both diffusivities. This is also valid for stationary cylinders. A flow

can thus be unstable for Pm = 1 whereas it is stable for Pm ̸= 1. For differential rotation with µΩ = 0.5 (almost uniform
Uφ) Fig. 95 gives the growth rates for a supercritical Hartmann number. The growth rates of the mode m = −1 and the
global rotation rate are again normalized with η. One again finds that with the special normalization models with Pm = 1
always have maximum growth rates for slow and fast rotation. Both small or large magnetic Prandtl numbers lead to slower
growth of the instability. This effect is so strong that the considered field pattern can even be stabilized for too small or too
large Pm. This is a remarkable restriction for numerical simulations with Pm = 1. Magnetic instability strongly depends
on the magnetic Prandtl number of the fluid. For a fixed Hartmann number two regimes for the rotational influence on the
growth rates exist. There is only a weak influence of small Rm on the growth rate. For large averaged Reynolds numbers Rm
one finds linearly increasing growth rates. High values of Rm strongly accelerate the instability in accordance with ω ∝ Rm,
which leads to ωgr ∝ Ωin. In this case the physical growth rate results in 0.2Ωin, so that the growth time is shortened by the
rotation to approximately only one rotation time.



G. Rüdiger et al. / Physics Reports 741 (2018) 1–89 73

Fig. 96. Left: Axial component uRbφ − uφbR of the electromotive force for the stationary z-pinch with Pm = 0.1 (left) and Pm = 0.01 (right). Right: The
z-component of the electromotive force after averaging time and azimuth for Re = 0 (solid lines) and Re = 500 (dashed lines) for quasi-Keplerian flow is
always negative. Upper curves: Pm = 0.01, lower curves: Pm = 0.1. Ha = 100, rin = 0.5, µB = 1/rin . Insulating boundary conditions.

11. Transport coefficients by the pinch-type instability

A consistent model for magnetoturbulence might easily be originated by the nonaxisymmetric pinch-type instability
which appears in an axially unbounded Taylor–Couette flow of an electrically conducting fluid between the stationary or
rotating cylinders. The fluid is permeated by a homogeneous and axial currentwhich produces a radius-dependent azimuthal
magnetic field. The simplest case of this configuration with stationary cylinders forming a wide gap has been realized in a
laboratory experiment Gate (Section 8). The resulting flow and magnetic field fluctuations are able to transport magnetic
flux, angular momentum, or passive scalars like concentration of chemicals or temperature.

The Hartmann number is defined by Eq. (45). First estimates of the perturbation velocity and the cell size for the unstable
pinch are simple and can be taken from the information given by Fig. 86. The vertical cell size roughly equals the gap width,
and for the Reynolds number of the fluctuation, Re′

= urmsd/ν, the value 10 is provided. One obtains, therefore, 10ν for
the product of flow speed and cell size, which is often used as a first orientation for the viscosity or the resistivity of a
turbulent fluid. Taking into account the standard correction factor of order 0.1, then the value for the instability-generated
diffusivities is only ηT ∼ ν, which is certainly a rather small value. We shall probe the relation of the eddy diffusivities to
the pinch parameters in the following with more sophisticated methods. For the numerical simulations the nonlinear code
described in Section 3.2 is used. Up to M = 16 Fourier modes are used, and the order of the polynomials is varied between
N = 8 and N = 12. The cylinder material is perfectly conducting and the container is axially periodic.

11.1. Electromotive force

By definition, the eddy diffusivity connects the turbulence-induced electromotive force with the axial electric current in
the pinch, i.e.

⟨u × b⟩ = −ηTcurlB, (101)

where for simplicity all possible anisotropies due to rotation and magnetic field are ignored, see [154–156]. The axial
component of the electromotive force is Ez = ⟨uRbφ − uφbR⟩, hence

ηT = Rin
⟨uφbR − uRbφ⟩

2Bin

1 − r2in
µBrin − r2in

. (102)

As the angular momentum transport is also due to the Maxwell stress of the fluctuations, the turbulent viscosity should
always exceed the molecular viscosity. The question is whether this is also the case for the instability-induced magnetic
resistivity. First nonlinear simulations for not too small magnetic Prandtl numbers revealed the axial component of (101) as
negative in the entire container, which ensures the expression (102) as positive definite [157]. The resulting eddy resistivity
ηT did not depend strongly on themagnetic Prandtl number and the Reynolds number of rotation. The simulations presented
below in particular focus on the influence of the strength of the background field. The applied magnetic field must be due to
an axial current; calculations for pure AMRI are thus not possible.

11.1.1. Stationary pinch
We start with the stationary pinch with µB = 1/rin – which strongly simplifies (102) – for various magnetic field

amplitudes. Fig. 96 (left) presents snapshots of the non-averaged axial EMF for two models with one and the same Ha
but different magnetic Prandtl numbers. The fluctuating axial EMF values are always negative. The dependence on the
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Fig. 97. Instability-induced resistivity ηT/η for the stationary z-pinch (left) and for quasi-Keplerian rotation with Re = 500 and Re = 1000 (right, Re = 0
also included) as function of the Lundquist number for various Pm. The dotted line gives S/10. rin = 0.5, µB = 1/rin .

magnetic Prandtl number seems to be strong in the sense that the values scale with 1/Pm. This is also shown by the radial
profiles of the axial EMF after averaging over all snapshots and the meridional planes. As shown by Fig. 96 (right) the
influence of the basic rotation is very weak, but the maxima of the curves are anticorrelated with the magnetic Prandtl
number.

Fig. 97 gives the final eddy resistivity values after averaging over the radius and normalizedwith themolecular resistivity
for variousmagnetic Prandtl numbers as a function of the Lundquist number S for stationary cylinders. In this representation
the influence of the magnetic Prandtl number almost vanishes, though Pm varies over two orders of magnitude. This is
because of the fact that the normalization used in Fig. 96 also scales with 1/Pm.

For small Lundquist number S the curve scales with S4, while a much flatter linear dependence on S appears for models
with S > 10. The form of the curve even suggests a saturation of ηT/η for large S. For those central parts of the curve
where ηT/η ∝ S, the eddy resistivity loses its dependence on the molecular diffusivity, so that simply ηT ∝ ΩAR2

0 with the

Alfvén frequency ΩA = Bin/

√
µ0ρR2

0. On the other hand, if by Eq. (99) S ∝ Rm′0.4, then for the central parts of the curves
one finds

ηT

η
≃ 0.7 Rm′0.4. (103)

For the steep weak-field part of the profile with S4 this yields ηT/η ∝ Rm′1.6. Very similar relations are empirically known
from liquid-metal experiments [158].

The values of ηT/η for the stationary pinch are numerically small. For the smallest S the eddy resistivity is ηT ≪ η, while
even the much larger fields with S ≃ 1000 only yield ηT/η ≃ 10. The transition ηT ≃ η happens at S ≃ 30, this value only
depending on the value of rin. A rough description of the results is given by ηT/η ≃ 0.1S, again leading to ηT ≃ 0.1ΩAR2

0.
As the typical Lundquist number for experiments with liquid metals does not exceed unity, one can hardly expect to find
values of ηT > η [158–163].

11.1.2. Quasi-Keplerian flow
It is no problem to extend the calculations to the presence of (differential) rotation. The right panel of Fig. 97 gives the

results of many simulations for slow and modest quasi-Keplerian rotation. The three lines in the plot belong to stationary
cylinders, Re = 500 and Re = 1000. Comparedwith the findings for Re = 0 for small S the lines are almost identical. Hence, a
rotational influence of the small magnetic Reynolds numbers Rm ≲ 2 cannot be observed. The curves for the larger Reynolds
numbers, however, are located below the one for the stationary pinch. A rotational suppression is clearly visible but only for
larger Lundquist numbers S ≳ 10. On the other hand, for even larger S there is no rotational suppression for the Reynolds
numbers shown. The conclusion is that the rotational suppression scales with the magnetic Mach number Mm = Rm/S. As
a rough description of the data for S ≳ 10 the relation ηT/η ∝ S/(1 + Mm2) can be considered. Hence, for small Pm the
molecular viscosity does not influence the results for the instability-induced resistivity and its rotational quenching.

11.2. Angular momentum transport

The same simulations can serve for calculations of the eddy viscosity by use of relation (69). It is sufficient to compute
the angular momentum transport (68) for various µB. The angular momentum transport should change its sign for uniform
rotation; it indeed is positive for negative shear profiles, and negative for positive shear profiles [164].

The model already discussed in Fig. 97 for the z-pinch in the presence of quasi-Keplerian rotation will now be applied to
the calculation of the eddy viscosity. In dimensionless form it is

νT

ν
=

1
qRe

⟨uRuφ −
Ha2

Pm
bRbφ⟩ (104)
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Fig. 98. The quantity qνT/η for quasi-Keplerian rotation as a function of S, similar to Fig. 97. The dotted line gives S/100. rin = 0.5, µB = 1/rin , µΩ = 0.35.
Perfectly conducting boundaries.

as the sum of Reynolds stress and Maxwell stress, with the radial function q

q = −
R

Ωin

dΩ

dR
. (105)

The dimensionless flow components are here measured in the form of Reynolds numbers, and the field components are
normalized with Bin. For the quasi-Keplerian flow a simple approximation is q = 1.5Ω/Ωin, which for rin = 0.5 is of order
unity. Fig. 98 leads to the estimate qνT/η ≃ 0.01 S or simply to νT ≃ 0.01ΩAR2

0.
For the instability-induced magnetic Prandtl number one immediately finds νT/ηT ≃ 0.1/q, independent of Pm. The

magnetic Prandtl number due to the pinch-type instability falls below unity. This is unexpected as for driven turbulence the
eddy viscosity is formed by both the Reynolds stress and the Maxwell stress, while only the kinetic energy contributes to
the eddy diffusivity [80]. Hence, one should expect the turbulent Prandtl number to be larger than unity, which is not the
case though for these magnetically-induced instabilities under the influence of differential rotation.

11.3. Mixing of a passive scalar

The transport of a passive scalar is governed by the diffusion equation
∂ρC
∂t

+ div (ρCU − ρD∇C) = 0, (106)

where C is the fluctuating concentration,U the fluctuating flow field andD themicroscopic diffusion coefficient. ForD → ∞

all possible fluctuations are immediately smoothed out and any mean-field transport decays. The adiabatic approximation
requires D = 0. In the sense of the anelastic approximation we shall always apply the source-free condition of themass flux,
div ρu = 0. As usual, the concentration is split into a mean and a fluctuating part, C = C̄ + c , so that the diffusion equation
in the presence of turbulence becomes

∂ρC̄
∂t

+ div
(
ρ⟨cu⟩ − ρD∇C̄

)
= 0 (107)

with u as the fluctuations of the flow and C̄ as the large-scale part of the concentration field. The influence of a possible
large-scale meridional circulation is neglected here. The bars denoting the average procedure are dropped in the following.
The ensemble-average will also be replaced by averaging over the azimuthal coordinate and time. We have thus to compute
the turbulent concentration flux vector ⟨cu⟩, which is necessary to formulate the mean-field diffusion equation. In the sense
of Boussinesq the concentration-flux vector may be written as an anisotropic diffusion in terms of the mean concentration
gradient, i.e.

⟨cui⟩ = −Dij
∂C
∂xj

(108)

[67]. This is only reasonable, of course, if scales are considered which exceed the correlation scales (in space and time). The
framework ofmagnetically-induced instabilitiesmaywell serve as a tool to study the various approximations of the diffusion
theory in detail.

A basic anisotropy results if the turbulence is subject to a global rotation. Then the structure of the diffusion tensor is

Dij = DT (d1δij + d2ΩiΩj), (109)
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Fig. 99. DT/η versus Lundquist number S of all computed diffusion models. Red symbols mark nonrotating models. The dotted line represents a linear
dependence, ηT ∝ S. rin = 0.5, µB = 1/rin , µΩ = 0.35. Perfectly conducting boundaries, [150].

which describes an extra diffusion in the z-direction as a consequence of the Taylor–Proudman theorem. Terms linear in Ω

do not exist.
Note that thematerial mixing occurs only by the action of the kinetic part of the momentum transport tensor rather than

by its magnetic part, so that the diffusion tensor can be approximated by

Dij ≃
1
2
τcorr ⟨ui(x, t)uj(x, t)⟩. (110)

There is no magnetic influence on the diffusion coefficient except the magnetic suppression of the correlation tensor of the
fluctuations. A nonlinear code must be used to compute the eddy diffusion of a passive scalar in the radial direction. The
time-dependent dimensionless transport equation

∂C
∂t

+ div(CU ) =
1
Sc

∆C (111)

for the fluctuating concentration values C is added to the equation system. The microscopic Schmidt number

Sc =
ν

D
(112)

is used in Eq. (111) with D as the molecular diffusivity of the fluid. No concentration fluxes are allowed through the walls of
the container.

Almost all of the existing simulations work with Sc = 1, e.g. [165]. The Schmidt number for gases is of order unity, while
for fluids it is O(100). In the present section the molecular Schmidt number is varied from Sc = 0.1 to Sc = 2. The effective
diffusivity can be modeled by the sum Deff = D + DT, where DT is due only to the magnetically-induced instability. To
find DT/D a numerical simulation is performed until the instability is fully developed. Then the transport equation (111) is
switched on and several models with different Sc numbers are simulated for quasi-Keplerian rotation and with Pm = 0.1.
The simulations indicate that DT/D always scales linearly with Sc, so that the striking relation DT ∝ ν results for Sc > 0.1.
As it must, the effect vanishes for Sc → 0. Schatzman suggested such a relation DT = Re∗ ν with Re∗

= O(100) in order to
explain diffusion processes in radiative zones of stars [166–169]. Obviously, the factor Re∗, which in a wider sense can be
considered as a microscopic Reynolds number (of a pattern cell) can be computed as due to magnetic instability with the
presentedmodels. For slow rotation, Re∗ scales linearly withMm, then reaches amaximum atMm ≃ 2, and finally decreases
rapidly for largerMm, saturating around Re∗

= 1. The magnetic Mach numberMm represents the global rotation in relation
to the magnetic field strength.

In the right panel of Fig. 99 all models simulated in Ref. [150] are summarized, showingDT/η as functions of the Lundquist
number S defined by Eq. (47). Nonrotating models are marked in red, and are located among the other models. The dotted
line represents the relation DT/η = 0.01S or DT ≃ 0.01ΩAR2

0, similar to Fig. 98 for the instability-induced viscosity. The
corresponding Schmidt number resulting from the simulations of differentially rotating z-pinches is thus also of order unity.

12. Helicities, alpha effect

Numerical simulations suggest that the MRI alone should be sufficient for the operation of the accretion disk dynamo
[170–172]. For low Pm it remained uncertain though whether the MRI dynamo has physical or numerical origin [173]. An-
other possibilitywas discussed by Spruitwho suggested that differential rotation and TI can jointly drive a dynamo [174,175].
Radial displacements converting toroidal into poloidal field are necessary for any dynamo. A dynamo effect, however, is not
guaranteed by the joint action of differential rotation and amagnetic instability converting toroidal field into poloidal. There
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are doubts especially concerning the TI which, in contrast to MRI, develops at the expense of magnetic energy. Estimations
of dynamo parameters are necessary to probe the dynamo effectivity of a magnetic instability. The ability of turbulence to
produce a mean electromotive force (EMF) along the backgroundmagnetic field plays a basic role in turbulent dynamos, i.e.

⟨u × b⟩ = αB − . . . , (113)

where the term on the right side of this relation is called the α effect which, by definition, must be odd in the magnetic
field. The α value (or better, the α tensor) and also the kinetic and/or current helicity represent pseudo-scalars (or better,
pseudo-tensors), and must be even in B. In rotating, radially stratified cosmic bodies the pseudo-scalar g · Ω (with g as
the vector of stratification) always exists. In Taylor–Couette flows unbounded in the axial direction no stratification vector
parallel to the rotation axis exists. The only possible pseudo-scalar even in B is of magnetic nature: B · curlB exists when
the field geometry allows electric currents parallel to field components. For such fields the instabilities may produce finite
values for the helicities and the α effect. Sign and amplitude of these quantities will now be discussed for twisted fields
where axial currents are indeed parallel to an axial field component.

Helicity and α effect only exist in rotating turbulent and stratified media. In order to obtain finite values of these
pseudo-scalars after the averaging procedure the density and/or the turbulence intensity must be nonuniform. The latter
always happens close to the boundaries. A typical example of helicity formation due to the boundary effect without density
stratification showed that in a geodynamo model the helicity mainly appears along the tangential cylinder of the inner
spherical core similar to a boundary layer effect [176]. Another situation exists in cases with any axial stratification. The
stability of a systemwith axial magnetic fields and an axial gradient of the angular velocity has been considered in Ref. [177].
A pseudo-scalar BiBjΩi,j exists in this system, yielding finite values of the helicities and the α effect (see below).

12.1. Tayler instability

We proceed by evaluating the kinetic and current helicities and the α effect for the TI. Solving the linear stability problem
may serve to estimate the sign and latitudinal profile of the kinetic and current helicities

Hkin
= ⟨u · curl u⟩, Hcurr

= ⟨b · curl b⟩, (114)

which for driven turbulence both contribute to the α effect [71,178]. The averaging in Eqs. (113) and (114) is over the
azimuth. If only the toroidal background field is present it follows that the helicity has opposite signs for positive andnegative
azimuthal wave numberm, i.e.Hkin(m = 1) = −Hkin(m = −1), see [40]. For any unstable mode with finite helicity, there is
thus another unstable mode with the same growth and drift rates but opposite helicity (see Fig. 73). If all modes are excited,
and there is no symmetry-breaking bifurcation in the nonlinear regime, the instability of purely toroidal field cannot produce
finite kinetic helicity, as the resulting net helicity vanishes [142]. The same argument leads to the same conclusion for the
current helicityHcurr. The EMF also reverses when the sign ofm is changed hence the α effect also vanishes. The same is true
for a possibleΩ × J-term which may appear in the expression (113) for the EMF as a consequence of a rotationally-induced
anisotropy of the diffusivity tensor. The Ω × J effect due to the Tayler instability of toroidal fields also does not exist.

12.2. Twisted background fields

The Hartmann number is defined by Eq. (45). For twisted background fields with finite azimuthal (Bφ) and axial (B0)
components, we present two series of solutions with helical fields. The definition (89) is used for the ratio β of the azimuthal
and axial field components. The profiles of the azimuthal flow and field components form a system of the Chandrasekhar-
type with µB = 2µΩ = 1. We present Ha = 100, Re = 200 for the first series, and Ha = 200, Re = 20 for the second, with
Pm = 1 for both. The first series is rotationally dominated (Mm > 1) in contrast to the second one (Mm < 1). For the two
parameter sets Fig. 100 shows the ratio ε of the magnetic and kinetic energies. For sufficiently large β the axial magnetic
component is too weak to have any significant influence. Generally, ε > 1 for all parameters, which for large β is consistent
with the results plotted in Figs. 26 and 53. This is not true for small β , where the axial field starts to dominate. For β < 1 the
instability is so strongly stabilized that the resulting energies of the perturbations are reduced.

The helicities for the two runs are presented in Fig. 101. For both series, both helicities have the same sign but opposite
to the sign of β . For β of order unity the background field has a strong twist that forces the instabilities to have a parity of
opposite sign. If one then gradually increases β , each time using the previous solution as the new initial condition, this parity
of the instabilities is preserved all the way to β → ∞, where the basic state no longer has a twist, and both left and right
instabilities could exist equally well as in Fig. 73. For large β the basic state makes sufficiently little distinction between left
and right modes that both could exist, but because of the way we have reached the model with β = 500, we consistently
obtain the right mode although a left mode would also be possible. This feature that both left and right modes are allowed
for sufficiently large β but not for smaller β is analogous to an imperfect pitchfork bifurcation. It is thus important to specify
carefully the nature of the initial conditions used in each run.

We are also interested in the signs and amplitudes of the α effect, in both azimuthal and axial directions. According to the
general rule that the azimuthal α effect is anticorrelated with the (kinetic) helicity, we expect the azimuthal α effect to be
positive for β > 0. The expected sign of the axial α effect is not clear. There are theories and simulations leading to αφφ and
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Fig. 100. Ratio (66) of magnetic to kinetic energy for models with Mm < 1 (blue line) and Mm > 1 (red line) and large magnetic Reynolds numbers. See
Fig. 92 for the special case β = 10. Ha is defined with the azimuthal field Bin . rin = 0.5, µB = 2µΩ = 1, Pm = 1. Perfectly conducting cylinders.

Fig. 101. Kinetic helicity (solid lines) and current helicity (dashed lines) as defined by (114) as functions of β for models taken from Fig. 100 for small and
largemagneticMach numbers. The dashed lines indicate the limits±6·10−4 of the kinetic helicity of themodes in Fig. 73. Helicities andβ are anticorrelated.

αzz with opposite signs ([179] for an overview). The numerical results for slow and rapid rotation with the dimensionless α
effect in the form

Cα =
αR0

η
(115)

are here given only for αφφ . It yields Cα > 0 almost everywhere in the meridional plane. The influence of rotation on α
is not strong, but Cα is smaller for rapid rotation than for slow rotation (Fig. 102). This surprising result is opposite to the
well-known behavior of the α effect for rotating and stratified convection. The signs of αφφ and β coincide. The plot mainly
shows how the amplitudes of αφφ vary with β , being roughly inversely proportional in both cases. For large values of β the
α effect scales as c/β with c ≃ 0.05, so that for Bin ≫ B0 we have Cα ≪ 1.

Obviously, Cα is much too small for the operation of an α2 dynamo. On the other hand, an αΩ dynamo always leads
to large β , which leads to small Cα . Too small Cα requires stronger differential rotation to maintain the dynamo action.
Stronger differential rotation, however, leads to higher β , and so on. The formal argument is as follows: Dynamo waves
of αΩ type require for self-excitation that CαCΩ ≥ 1, with the magnetic Reynolds number of the differential rotation
CΩ = −R3

0/η dΩ/dR. The amplitudes of the field components Bφ and BR can be estimated by

|Bφ |

|BR|
≃

√
CΩ

Cα

(116)

so that dynamo excitation requires
|Bφ |

|BR|
Cα ≥ 1. (117)

Hence, with Cα ≃ c/β

c >
|BR|

|Bz |
(118)
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Fig. 102. Dimensionless Cα according to (115) of αφφ as a function of β for slow and rapid rotation. One finds α effect and background helicity as positively
correlated. Note that for Mm > 1 (red line) αφφ → 0 for β → ∞, as it must. The blue line for Mm < 1 reflects for very large |β| the effect of spontaneous
parity breaking in accordance to Fig. 101 (right). rin = 0.5, µB = 2µΩ = 1, Pm = 1. Perfectly conducting cylinders.

Fig. 103. Axial shear Ω ∝ z and uniform axial field B0 . Left: lines of neutral stability for small Pm; for small Pm the curves scale with S and Rm. Right:
Pm-dependence of the αzz in units of the maximal velocity of the driving endplate. The dashed line suggests a possible extrapolation to smaller Pm (not yet
confirmed). Rm = 25, S = 10. Perfectly conducting boundaries.

results for dynamo action by differential rotation and current-driven α effect. For disk dynamos BR dominates Bz , and for
spherical dynamos BR is comparable to Bz . The condition for self-excitation thus becomes c > 1, which cannot be fulfilled.
On the basis of the numerical results given in Fig. 102 anαΩ dynamo cannot operate for this particular choice of themagnetic
Prandtl number [142,180].

12.3. Axial shear

In the majority of the models the radial profile of the toroidal field was prescribed. The simplest way to obtain a natural
radial profile is to consider the result of an axial shear dΩ/dz acting on a given uniform axial field B0 [177]. If the induced
toroidal field Bφ becomes strong enough a Tayler instability can be observed, leading to a growing nonaxisymmetric field.
Not only must the magnitude of Bφ be strong enough, but also a certain limit Bφ/B0 must be exceeded, as an additional
poloidal field component suppresses the instability. As an illustration we mention that for Pm = 15 the instability sets in
at a Lundquist number of the axial field of order 20 [181]. The excitation condition for lower magnetic Prandtl numbers
are given in Fig. 103 (left). The curves for small Pm seem to converge. The minimum values of Rm are about 20, while the
corresponding S defined by (15) are of order 10. These numbers correspond to the values for MRI given in Table 2 which for
small Pm indeed lead to Reynolds numbers exceeding 106.

A new nonlinear relation between the α effect and the external field and differential rotation is

α ∝ Bi Bj Ωi,j, (119)

where Bi means the axial external field and Ωi,j the axial shear of the basic rotation. The sign of this pseudo-scalar does not
depend on the sign of the magnetic field, but does depend on the sign of the shear. The relation (119) requires a quadratic
law, α ∝ B2

0, which is indeed confirmed by the simulations.
The data of the right panel of Fig. 103 have been obtained for amodel with piecewise constantΩ and a jump between the

two cylinder parts. Only one of the endplates must be forced to rotate so that Rmout = O(10) should be possible. The axial
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component αzz is directly computed for positive and negative shear via the z-component of the electromotive force (113).
One finds the same signs for αzz and dΩ/dz. The rotating endplate with a radius Rout may rotate with an angular velocity
of Ωout. Then Fig. 103 yields αzz ≃ 0.02RoutΩout. In the sense of an order-of-magnitude estimate the normalized α thus
becomes

Cα =
|αzz |Rout

η
≃ 0.02 Rmout (120)

with

Rmout =
R2
outΩout

η
. (121)

The Pm-dependence is very weak. With Rmout ≃ 10 the Cα is maximally of order 0.2.
In order to probe the observability of this effect we start with the potential difference for axial shear between the

endplates as

∆Φ = 10−8αzzB0H, (122)

measured in Volt, Gauss and cm/s and with H the height of the container. With (120) follows

∆Φ = 10−8CαηB0Γ . (123)

Hence, with η ≃ 103 cm2/s for sodium or gallium, 1 kG for the axial field and Γ = H/Rout = 10 a potential difference
of ∆Φ ≃ 0.1Cα (in V) is generated, which according to (120) leads to about 10 mV. For longer containers the potential
difference grows linearly. The container filled with a liquid metal acts as a generator of an observable potential difference
between its endplates – if the above mentioned instability conditions can be fulfilled.

The α experiment in Rigaworkedwith B ≃ 1 kG and velocities of the order ofm/s, so that∆Φ exceeded 10mV [182]. This
experiment, however, used a prescribed helical geometry tomimic the symmetry-breaking between left and right helicities.
It has not been demonstrated so far that a rotating fluid with a non-prescribed helicity leads to an observable α effect. By
nonlinear numerical simulations with the Pencil code the mean electromotive force in plane Couette flows of a nonrotating
conducting fluid under the influence of a large-scale magnetic field on driven turbulence has been calculated. A vertical
stratification of the turbulence intensity results in an observable α effect owing to the presence of horizontal shear [183].

13. Influence of the Hall effect

Fluids with Hall effect can be described as conductors with conductivity tensors with off-diagonal elements. Under these
conditions a feedback of toroidal to poloidal field exists which in combination with differential rotation – inducing toroidal
fields from poloidal ones – makes the magnetic field unstable even for an axisymmetric geometry. The instability, however,
can only exist if the timescale of the Hall effect is shorter than the diffusion time and longer than the shear time. Otherwise
the diffusion or the Hall effect would dominate, destroying any instability. We shall first show that the growth time of such
an instability is determined by the rotation time, so that the instability is basically fast.

13.1. The Shear-Hall Instability (SHI)

It is known that a stable rotational shear in a fluid with Hall effect can destabilize amagnetic background field [184–186].
This ‘shear-Hall instability’ is a basic property of only the induction equation without any contribution by the momentum
equation. The mechanism is reminiscent of global dynamo models where the differential rotation transforms poloidal
field components to toroidal field components and the meridional flow generates the poloidal fields from the toroidal
fields [187]. According to Cowling’s theorem such a mechanism can only maintain nonaxisymmetric fields against the
magnetic resistivity losses. It is indeed possible to imagine a replacement of the meridional flow by the Hall term which
itself is also able to produce poloidal fields from toroidal ones. As even axisymmetric field configurations can be destabilized
by this process it is immediately clear that SHI is by no means a dynamo mechanism. One needs nondecaying background
fields to feed the entire system.

The induction equation with Hall effect included is
∂B
∂t

= curl (U × B) + η∆B − βHall curl (curlB × B) (124)

where the Hall parameter βHall does not depend on the magnetic field. One can show that the Hall effect exactly conserves
the magnetic energy. The only source of energy is due to the shear, so that the Hall term alone is unable to feed an
instability [188,189]. The sign of the Hall parameter βHall depends on the definition of the elementary charge; we shall only
use it as a positive number.

The linearized version of Eq. (124) for a current-free background field becomes
∂b
∂t

= curl (u × B) + curl (U × b) + η∆b − βHall curl (curl b × B). (125)
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Fig. 104. Shear-Hall instability with axial magnetic fields for positive shear. As must be the case, Pm = 10−5 and Pm = 1 provide identical curves which
have been calculated for µΩ > 1 as dedicated. Their minima possess large magnetic Mach numbers. Hall parameter β0 = −1. m = 0, rin = 0.5, insulating
boundary conditions.

If the Hall term exceeds the first term on the right side of this equation then the induction equation decouples from the
Navier–Stokes equation, and one may ask whether the remaining equation can have its own solution. This is indeed the
case. For plane short waves subject to a global rotation with Ω ∝ R−q a dispersion relation

(ω̃gr + 1)2 + Rb(Rb − q ˜Rm) = 0 (126)

results where ω̃gr is the growth rate normalized with the resistivity frequency ωη = ηk2 (with k as the wave number). ˜Rm
is also formed with ηk2. Note that for neutron stars the ratio

Rb =
τdiff

τHall
=

βHallB0

η
(127)

lies between 1 and 100 for magnetic fields of order 1012 G. In dependence on the orientation of the field this parameter can
have both signs. An instability can indeed exist if for positive or negative Rb we have |Rb| < |q| ˜Rm and q and Rb are of the
same sign. There must also be a lower bound of Rb, as the Hall effect can also be too weak for an instability. It can also be too
strong as only the shear produces the needed energy rather than the Hall effect. For a rotation profile depending only on the
radial coordinate the necessary condition for shear-Hall instability is

(k · B) kz
∂Ω

∂R
< 0 (128)

[190]. For axial B this condition simplifies to qBz > 0, hence there is instability if the signs of the two factors are equal. SHI
is thus even able to destabilize flows with positive shear dΩ/dR if the magnetic field is antiparallel with the rotation axis.
That the sign of the magnetic field here plays an important role is a direct consequence of the Eq. (124).

Introducing a dimensionless quantity which only includes material parameters we write

β0 =
Rb
S

(129)

with the Lundquist number S =
√
PmHa and Ha defined by Eq. (14). The parameter β0 may also have both signs, depending

on the orientation of the magnetic field relative to the rotation axis. The amplitude of β0 can be imagined as smaller than
O(1).

Fig. 104 illustrates SHI of superrotating fluids for insulating boundary conditions. The boundary conditions for the
hydromagnetic Taylor–Couette flow are not influenced by the Hall effect. The calculation of the Hartmann number uses
the axial field strength as prescribed by the definition (14). The flow is unstable only for β0 < 0 when rotation axis and
magnetic field are antiparallel. Eq. (125) has been solved for three rotation profiles with positive shear. The rather strong
differences of the resulting characteristic Reynolds numbers for fixed Hartmann number demonstrate how important the
differential rotation for the instability mechanism is. For weaker shear one needs faster rotation to excite the instability.
In Fig. 104 for Prandtl numbers differing by five orders of magnitude the differences of the curves number are very small.
Hence, the eigenvalues scale for Pm → 0 with the Lundquist number S and the magnetic Reynolds number Rm. It is then
easy to calculate the magnetic Mach number asMm = Rm/S. In all cases with Pm ≲ 1 the instability exists for rapid rotation
with Mm > 1.

With spherical models it has been shown that the growth rates of SHI scale with the rotation rate and not with the rather
long Hall time [191,192]. The dispersion relation (126) leads to the same conclusion. The maximum of the first bracket as a
function of Rb is taken for Rb = q ˜Rm/2 so that ω̃gr,max + 1 = q ˜Rm/2. Dropping the tildes indeed leads to ωgr,max ∝ Ω for the
growth rates of SHI.
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Fig. 105. Stability maps for quasi-Keplerian flow subject to axial fields with (red) and without (black) Hall effect form = 0 (dashed lines) andm = 1 (solid
lines). Red lines: β0 = 1 (left), β0 = −0.1 (middle) and β0 = −1 (right). Quasi-Keplerian rotation is maximally destabilized by positive Hall effect (field
parallel to rotation axis). rin = 0.5, µΩ = 0.35, Pm = 1. Insulating boundary conditions.

13.2. Hall-MRI

Flows with negative shear (positive q) are much more complicated, as they can even be unstable in the presence of
magnetic fields without Hall effect. We expect, however, that for positive Rb the shear-Hall instability supports the MRI but
the strength of the support must be calculated. The dark lines in Fig. 105 indicate marginal stability without Hall effect for
axisymmetric and nonaxisymmetric MRI modes. As usual the instability domain for the nonaxisymmetric mode is much
smaller than for the axisymmetric mode. It is increased, however, for fluids with Hall effect if the magnetic axis and the
rotation axis have the same orientation so that BzdΩ/dR < 0. This case is realized in the left panel of Fig. 105 for strong
Hall effect with β0 = 1. The minimum Lundquist number for instability is now smaller than for MRI, but for large magnetic
fields the critical Reynolds number with Hall effect becomes greater than without Hall effect. Hence, for positive β0 the Hall
effect destabilizes for weak fields and stabilizes for strong fields. The red dashed lines representing the m = 1 mode with
Hall effect are also shifted so that nonaxisymmetric modes become more (less) unstable for weak (strong) fields. Note also
that the dashed red line for the modem = 1 in the left panel of Fig. 105 no longer has the positive slope of both branches as
it appears for nonaxisymmetric MRI modes without Hall effect. In the Hall regime the nonaxisymmetric mode has the same
open geometry as the axisymmetric mode of MRI, so that it is not suppressed for rapid rotation. The different geometry
of the neutral stability curves of the nonaxisymmetric modes with and without Hall effect seems to be the most striking
consequence of the Hall-MRI. The Hall-MRI thus produces much more complex patterns than the axisymmetric rings which
are mainly excited by standard MRI without Hall effect. The minimum magnetic Reynolds number is also reduced by the
Hall effect, but this reduction remains small. One only finds a reduction by a factor of ≲ 2, as realized in Fig. 105 (left) for
strong positive Hall effect.

For the opposite case of negative Hall effect, for fields antiparallel to the rotation axis, the MRI is suppressed for weak
fields and enhanced for strong fields. In Fig. 105 the plots for negative β0 (middle and right panels) show the red lines for
Hall-MRI as shifted towards large S. Even the small value β0 = −0.1 gives a drastic stabilization of the axisymmetric and
nonaxisymmetric modes. Moreover, both branches of the m = 1 mode have the typical positive slopes, so that there is
also a maximum Reynolds number beyond which the nonaxisymmetric modes are suppressed. The characteristic Lundquist
numbers for instability at the global minimum Reynolds number also strongly increase for β0 = −1. It seems that the
stabilization by negative β0 appears to be much more effective than the destabilization by positive β0.

13.3. Hall-TI

Another situation holds if the magnetic background field contains electric currents. The influence of the electric current
is twofold. It enters the expression of the Hall effect in Eq. (124) and produces an own pinch-type instability, so that strong
modifications of the TI must be expected [193]. We start with the Chandrasekhar-type flow with almost uniform toroidal
field, i.e. µB = 2µΩ = 1, for which we know that for Pm → 0 it scales with Reynolds number and Hartmann number. For
azimuthal fields the Hartmann number is defined by Eq. (45). The numerical results are given in Fig. 106 for Hall parameters
β0 between −0.5 and 0.5. The value β0 and the magnetic Prandtl number Pm are the free parameters of the system for a
prescribed hydromagnetic Taylor–Couette flow. We again define Ha as positive and use both signs of β0 corresponding to
opposite magnetic field orientations.

The Hall-free curves start at Ha0 = 150 for Re = 0. For β0 ̸= 0, Ha0 > 150. The increase does not depend on the
sign of the Hall term. For either sign, in stationary containers the Hall effect stabilizes the azimuthal field. For β0 < 0 the
rotation together with the Hall effect has a strongly stabilizing influence. To become unstable the magnetic field must be
much stronger under the influence of rotation than without rotation. On the other hand, for β0 > 0 the Hall effect has a
destabilizing influence (Ha < Ha0) if the rotation is not too rapid. The destabilization is thus similar to that of the shear-Hall
instability with axial fields. Axial fields with positive β0 also destabilize flows with negative shear.



G. Rüdiger et al. / Physics Reports 741 (2018) 1–89 83

Fig. 106. Hall-TI of quasi-uniform azimuthal fields and quasi-uniform flows with two magnetic Prandtl numbers. The curves are labeled by the Hall
parameter β0 . Pm = 0.1 (left), Pm = 1 (right). Note the increase of Ha0 for both signs of β0 (blue line β0 = 0). The plots for β0 → −β0 and simultaneously
m → −m are identical. m = 1, rin = 0.5, µB = 2µΩ = 1. Perfectly conducting boundaries.

Fig. 107. Same as in Fig. 106 (right) but for wave numbers (left) and drift rates (right) along the neutral lines of the Hall-TI. The lines are marked with β0;
the blue line denotes β0 = 0. The influence of the Hall effect is only weak.m = 1, rin = 0.5, µB = 2µΩ = 1, Pm = 1. Perfectly conducting boundaries.

In accordance with the relation (128), for azimuthal fields the positive Hall effect also destabilizes flows with negative
shear. For positive β0 the stability domain is reduced, and for negative β0 it is increased. The stabilization (destabilization)
of negative (positive) Hall β0 is a common phenomenon of all models. In other words, for positive q, positive Bφ (i.e. β0 > 0)
lead to smaller critical field amplitudes than negative Bφ (i.e. β0 < 0). If the nonaxisymmetric Tayler instability would limit
the strength of the toroidal fields Bφ , then the resulting amplitudes are different for different signs of Bφ due to the action of
the Hall effect. The effects, however, are not substantial. Wave number and drift rates are influenced even less by the Hall
effect (Fig. 107). Generally, positive (negative) Hall effect decreases (increases) the axial size of the instability cells. If the Hall
effect destabilizes then it acts against the Taylor–Proudman theorem. On the other hand, a stabilizing Hall term elongates
the cells in the axial direction.

The question still remains how the Hall effect modifies the growth times of the TI. Fig. 108 shows the growth rates of
the Hall-TI for various parameters. They are computed for Ha = 300 and for increasing rotation rates. The growth rates –
normalized here with the viscosity frequency ων = ν/R2

0 – vanish at the stability lines. One finds that for the considered
parameters the Hall effect strongly influences the growth rates of TI. For negative β0 the rotational stabilization of TI is
amplified. For positive β0, however, the rotational suppression without Hall effect is compensated by the Hall effect. Hence,
the maximal growth rate is always given by the value for Ω = 0, and this quantity in the normalization used scales with
Ha/

√
Pm, so that the physical growth rate for Ω = 0 scales with the Alfvén frequency ΩA. The positive Hall effect (almost)

reproduces this value at a certain magnetic Reynolds number where the Hall-influenced growth rate has its maximum. This
surprising phenomenon only occurs for positive Hall effect and under the presence of differential rotation. For positive Hall
effect the TI grows much faster than for negative Hall effect. These findings strongly resemble the consequences of the SHI
effect for axial fields described in Section 13.1. Indeed, the relation (128) does not exclude the existence of an azimuthal SHI.
Contrary to the solutionswith positivem, however, form < 0 (if kz is assumed as positive definite) the destabilization occurs
for negative β0 rather than for positive values. For destabilization the product ofmβ0 must be positive, while for stabilization
it must be negative.

The situation at the vertical axis, Re = 0, is also of interest. The Hall effect considerably reduces the growth rates of
TI without rotation, and this reduction is the same for both signs of β0. On the other hand, the growth rates vanish for
characteristic upper Reynolds numbers beyond which the TI withm = 1 decays. These Reynolds numbers Remax also reflect
the suppressing action of negative β0, and the enhancing action of positive β0. These actions, however, are asymmetric: the
increase of Remax for positive β0 compared with Remax for β0 = 0 (blue lines) is much larger than the same difference for
negative β0.
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Fig. 108. Growth rates for Hall-TI normalizedwithων with andwithout Hall effect forHa = 300. Pm = 0.1 (left) and Pm = 1 (right). The curves aremarked
by their Hall parameter β0; the blue lines give the TI without Hall effect.m = 1, rin = 0.5, µB = 2µΩ = 1. Perfectly conducting boundaries.

Fig. 109. Stability map (left) and growth rate in units of ων (right, Ha = 300) for Hall-TI with large Pm. The curves are marked by their Hall parameter β0;
the blue lines are for β0 = 0. m = 1, Pm = 10, rin = 0.5, µB = 2µΩ = 1. Perfectly conducting boundaries.

One also finds that even aweakHall effect – resulting in a long Hall time of order of the diffusion time – does not generally
prolong the growth time of the Tayler instability, which also in this case scales with the Alfvén time. In this sense the Hall
effect is only a modification of another instability and does not impose its own timescale on the instability.

The results for large Pm are also interesting. Without Hall effect the differential rotation strongly supports the TI as long
as the rotation is slow and the magnetic Prandtl number is large. The blue line in the left panel of Fig. 109 reflects a distinct
subcritical excitation with Ha < Ha0 for the lower Reynolds numbers. Because of the action of the differential rotation
on nonaxisymmetric modes this phenomenon is finally compensated, leading to Ha > Ha0 for sufficiently large Reynolds
numbers.We take from Fig. 109 that the negative Hall effect destroys the subcritical excitation for slow rotation. The positive
Hall effect produces a stable branch in the (Ha/Rm) plane which separates two unstable branches. The large-field branch
shows no subcritical excitation behavior but the weak-field branch introduces extremely weak fields for which the system
becomes unstable. This instability domain has no relation to the TI but it is due to the SHI for negative shear. According to
the condition (128) it will disappear form = −1.

14. Prospect of future experiments

Wehave systematically assessed the instabilities that arise in Taylor–Couette flows under the influence ofmagnetic fields
with diverse geometries. Starting with the classical problems of flows with stationary outer cylinder and the standard MRI
for quasi-Keplerian rotation, the focus has moved to various types of diffusive instabilities, in particular AMRI, HMRI and TI,
which survive also at lowmagnetic Prandtl numbers. One finds for their lines of neutral stability convergence in the (Ha/Re)
coordinate plane for decreasing magnetic Prandtl number Pm → 0, which can also be obtained with the inductionless
approximation of the MHD equations for Pm = 0. Both issues are typical for the special class of MHD flows introduced by
Chandrasekhar [31]which is definedby identical radial profiles of the background field and the flow. Thepotential flowunder
the influence of a current-free azimuthal field aswell as the rigidly rotating z-pinch are examples of suchChandrasekhar-type
flows which have been discussed in detail. It is this very feature which makes them suitable for being investigated in liquid
metal experiments with comparably low effort. We have discussed in detail the experiments on HMRI and AMRI carried out
at the Promise facility, and the TI experiment at the Gate facility.

A new large-scale liquid sodium Taylor–Couette experiment, which is presently under construction in the framework of
the Dresdyn project [194], will achieve significantly higher magnetic Reynolds numbers (Rm ≈ 40) and Lundquist numbers
(S ≈ 10) than the Promise experiment. The same split-lid technique as successfully used in the Promise experiment will be
applied, with the fallback option of developing a more complicated multi-ring lid systemwith planetary gears. The first and
foremost aim of this new experiment will be to approach standardMRI supposed to start at Rm ≃ 20 and S ≃ 4 (see Table 2)
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by setting out from the regime of HMRI and increasing Rm and S, while simultaneously decreasing the ratio of azimuthal to
axial field. This is a legitimate procedure, since HMRI and standardMRI are indeed connected in a continuous andmonotonic
manner, although this connection is quite subtle as the standard MRI does not exist for Pm = 0.

The second aim of the large Taylor–Couette experiment will be to study various combinations of MRI and TI by adding,
to the axial current along the central axis, some parallel current in the liquid sodium. A specific goal here is to prove the
extension of HMRI and AMRI to Keplerian rotation just by slightly flattening the radial profile of the azimuthal magnetic
field. The corresponding quasi-Keplerian Chandrasekhar-type flow will be destabilized for Re ≈ 105 and Ha ≈ 300 (from
Fig. 46) which is achievable with the new experimental setting.

The technical feasibility of another liquid sodium experiment devoted to Super-AMRI is presently under scrutiny. The
principle of such an experiment, and the necessity for using a narrow-gap setup has been demonstrated in Section 5.5, where
also the very strong influence of the boundary conditions on the critical values of the Hartmann and Reynolds numbers (for
small Pm) is demonstrated. Perfectly conducting boundaries lead to a reduction of the values needed for the onset of the
instability by a factor 3 compared with insulating boundaries. The use of copper walls, having a conductivity ∼ 5 times
higher than liquid sodium, should indeed make such an experiment possible.

Finally, it is noteworthy howmuchwork remains to be done to explore the fully nonlinear regime for all of the instabilities
presented in this review. There are somany parameters in the problem –Ωin, Ωout, Bin, Bout, Bz, Pm – that simplymapping
out how the linear onset depends on all of themhas been amajor undertaking, as presented in this review. Understanding the
nonlinear equilibration, both computationally and analytically (e.g. [195]) is the next task, and will undoubtedly reveal new
results, such as subcritical instabilities (e.g. [172]), or connections between instability modes that are completely separate
in the linear regime. Nonlinear theories and computations, including in the fully turbulent regime, will allow the more
thorough calculation of turbulent transport coefficients, such as eddy viscosity and effective diffusivity, aswell as the possible
occurrence of helicities and the corresponding α effect. The implications of these findings for basic astrophysical problems,
such as angular momentum transport or nonlinear dynamo action in accretion disks and the radiative interior of massive
stars, are also a matter of ongoing research.
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