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Abstract 

Recent studies have highlighted the potential role of basic numerical processing in the 

acquisition of numerical and mathematical competences. However, it is debated whether 

high-level numerical skills and mathematics depends specifically on basic numerical 

representations. In this study mathematicians and non-mathematicians performed a basic 

number line task, which required mapping positive and negative numbers on a physical 

horizontal line, and has been shown to correlate with more advanced numerical abilities and 

mathematical achievement. We found that mathematicians were more accurate compared to 

non-mathematicians when mapping positive, but not negative numbers, which are considered 

numerical primitives and cultural artefacts, respectively. Moreover, performance on positive 

number mapping could predict whether one is a mathematician or not, and was mediated by 

more advanced mathematical skills. This finding might suggest a link between basic and 

advanced mathematical skills. However, when we included visuospatial skills, as measured 

by block design subtest, the mediation analysis revealed that the relation between the 

performance in the number line task and the group membership was explained by non-

numerical visuospatial skills. These results demonstrate that relation between basic, even 

specific, numerical skills and advanced mathematical achievement can be artefactual and 

explained by visuospatial processing. 

 

Keywords: Mathematicians, cognitive expertise, numerical cognition, spatial cognition, 

high-level cognition, positive numbers, negative numbers 
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Basic and advanced numerical performances relate to mathematical expertise but are 

fully mediated by visuospatial skills 

An extensive body of research has focused on highlighting the contribution that 

cognitive processes and other academic skills can have on the acquisition of mathematical 

competences. The evidence that humans born equipped with the innate ability to discriminate 

between numerical quantities (Antell & Keating, 1983; Izard, Sann, Spelke, & Streri, 2009; 

Xu & Spelke, 2000) has provided strong support for the dominant theory that the acquisition 

of formal mathematical competences may rely on early non-symbolic numerical 

representations (Feigenson, Dehaene, & Spelke, 2004; Piazza, 2010), and what has been 

termed as the “number sense” (Berch, 2005). In this regard, several studies have found a 

significant correlation between non-symbolic numerical skills and math achievement 

(Halberda, Mazzocco, & Feigenson, 2008; Mazzocco, Feigenson, & Halberda, 2011; 

Nosworthy, Bugden, Archibald, Evans, & Ansari, 2013; Pinheiro-Chagas et al., 2014; 

Schleifer & Landerl, 2011; Sella, Lanfranchi, & Zorzi, 2013; Starr, Libertus, & Brannon, 

2013; for a different interpretation see Gilmore et al., 2013). However, the representation of 

symbolic quantities may play a crucial role in the development of mathematical skills 

(Butterworth, 2010; Reeve, Reynolds, Humberstone, & Butterworth, 2012). For instance, the 

performance in comparing digits has been found to correlate with mathematical achievement 

in children (Brankaer, Ghesquière, & De Smedt, 2014; Bugden & Ansari, 2011; Holloway & 

Ansari, 2009; Lyons, Price, Vaessen, Blomert, & Ansari, 2014; Mussolin, Mejias, & Noël, 

2010). In line with this results, Rousselle and Noël (2007) showed that children with 

developmental dyscalculia (i.e., a clinical condition characterized by an extremely poor 

mathematical achievement) displayed a deficit in comparing symbolic quantities (i.e., digits), 

whereas the ability to compare non-symbolic quantities seemed to be preserved. Besides the 

distinction between basic symbolic and non-symbolic numerical skills (for a review see De 
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Smedt, Noël, Gilmore, & Ansari, 2013), other authors have suggested that domain-general 

processes are primarily related to mathematical learning rather than domain-specific (basic 

numerical) skills (Passolunghi, Cargnelutti, & Pastore, 2014; Soltész, SzĦcs, & Szucs, 2010; 

SzĦcs, Devine, Soltesz, Nobes, & Gabriel, 2014). For example, Szücs and colleagues (2014) 

recently highlighted the role of an “executive memory function centric model” in the 

development of mathematical competences in primary school children. Other studies have 

also demonstrated that domain-general cognitive abilities (e.g., working memory) and 

intelligence can explain a consistent amount of variance in mathematical performance 

(Deary, Strand, Smith, & Fernandes, 2007; Spinath, Spinath, Harlaar, & Plomin, 2006). 

Nevertheless, both domain-general and domain-specific cognitive processes may contribute 

to the acquisition of advanced mathematical skills (Fuchs et al., 2010; Passolunghi & 

Lanfranchi, 2012; Träff, 2013). Finally, also language related abilities, such as phonological 

awareness and reading skills, have been found to contribute to the development of 

mathematical competences (Koponen, Aunola, Ahonen, & Nurmi, 2007; Lee, Ng, Ng, & 

Lim, 2004). In summary, mathematical learning appears to be the linked to both domain-

specific and domain-general cognitive processes as well as to other academic skills (e.g., 

reading). 

Much research in this field has primarily focused on explaining the inter-individual 

differences in mathematical achievement in children belonging to different age groups. 

Conversely, few studies have been conducted on individuals with a wide mathematical 

expertise, such those who are attending or completed a degree in mathematics. 

Professional mathematicians usually display high intelligence and good reasoning 

skills, whereas their calculation skills might be above the average but not necessarily 

exceptional (Pesenti, 2005). In fact, exceptional calculation skills might be the consequence 

of an intensive and protract drill, which may become an obsessive-compulsive behaviour as 
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in clinical conditions such as Asperger and savant syndrome (Fehr, Weber, Willmes, & 

Herrmann, 2010). In one of the first studies exploring mathematicians’ numerical skills, 

Dowker (1992) asked a group of professional mathematicians to perform a computational 

estimation task. In such a task, participants were presented with arithmetical problems (e.g., a 

complex multiplication with two-digit numbers) and were asked to estimate plausible 

answers without actually calculating the correct solutions. Mathematicians displayed accurate 

estimates along with a vast repertoire of appropriate arithmetical strategies (e.g., rounding 

one or two numbers, use of fractions). In a subsequent study, Dowker and colleagues (1996) 

administered a computational estimation task to mathematicians, accountants, psychology 

students, and English students. In line with previous results, mathematicians displayed more 

accurate estimates compared to accountants and psychology students, whereas English 

students had the lower performance. Again, mathematicians adopted appropriate arithmetical 

strategies when providing estimations to the proposed arithmetical problems. Therefore, 

mathematicians possess excellent computational estimation skills compared to highly 

educated people with expertise in different academic and professional fields. In fact, as 

Levine (1982) originally observed, American college students (with no mathematics majors) 

displayed imprecise estimations and a reduced repertoire of strategies. Interestingly, the 

accuracy in estimating was related to calculation abilities, thereby suggesting a link between 

computational estimation and exact calculation skills. Accordingly, college students’ 

estimation skills have been found to correlate with the mathematics subscale scores of the 

Scholastic Assessment Test (College Board, 1999; Hanson & Hogan, 2000).   

Regarding basic numerical skills, Castronovo and Göbel (2012) asked undergraduates 

and post-graduates from the faculties of mathematics and psychology to complete symbolic 

and non-symbolic numerical tasks. Participants with expertise in mathematics displayed a 

better performance in estimating non-symbolic numerosity and in comparing two-digit 
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numbers. Conversely, the two groups showed a similar performance when comparing non-

symbolic numerosities (i.e., sets of dots). Therefore, the intentional processing of symbolic 

quantities (i.e., Arabic numbers) seems to be linked to advanced mathematical skills. In a 

recent study, Cipora and colleagues (2015) used a digit parity judgment task to verify 

whether the Spatial-Numerical Association Response Code effect (i.e., faster responses with 

the right hand for larger numbers and faster responses with left hand for smaller numbers; 

Dehaene, Bossini, & Giraux, 1993; van Dijck, Gevers, & Fias, 2009) varied depending of 

participants’ mathematical expertise. The authors found that mathematicians lacked the 

automatic spatial-number association, which was instead found in professionals who used 

mathematics for their job (e.g., engineers) but were not mathematicians and doctoral students 

from humanities and social sciences. The authors concluded that mathematicians may possess 

a more flexible representation of symbolic numbers, which lacks a rooted spatial connotation. 

To sum up, mathematicians usually display more advanced calculation skills with a 

flexible and strategic use of their arithmetical knowledge. Basic domain-specific numerical 

skills have been to some extent linked to superior mathematical competences but it remained 

unclear whether this connection can be mediated by cognitive processes from different 

domain (e.g., visuospatial skills). For instance, Wei and colleagues (2012) investigated the 

contribution of basic numerical, complex numerical, spatial, language, and general cognitive 

processes to advanced mathematical performance in a sample of general university students. 

The authors used an extensive cognitive battery composed of several tasks to assess specific 

skills (e.g., digit comparison, computation, mental rotation, word rhyming, progressive 

matrices, etc.), which have been found to differently contribute to advanced mathematics. 

The authors also directly compared basic numerical processing and spatial processing to 

verify which component was more relevant for advance mathematical achievement. Spatial 

skills remained significantly correlated with advanced mathematical abilities even when the 
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effect of other factors (basic numerical, language, and general cognitive) was statistically 

controlled. Conversely, no one of the tasks assessing basic numerical competences displayed 

a significant partial correlation. Therefore, spatial abilities, as measured by mental rotation, 

spatial working memory, and figure analysis, explained the variability in advanced 

mathematical competences in non-mathematicians. However, the advanced math abilities 

were assessed only using a task related to the acquisition of new advanced mathematical 

concepts and the solving of mathematical problems. Moreover, the participants were adults 

without an advanced expertise in mathematics (Wei et al., 2012). Therefore, it remains 

unclear the effect that basic domain-specific numerical processes and domain-general 

processes can have on advanced mathematical abilities, especially in those individuals with a 

vast expertise in mathematics (i.e., mathematicians).  

In the present study, we investigated whether basic numerical skills are connected to 

more complex arithmetical abilities in a group of mathematicians in comparison with highly 

educated non-mathematician academics.  

For the assessment of basic symbolic skills, the administered tasks should be designed 

to reduce the confounding involvement of domain-general cognitive processes (e.g., verbal 

working memory), thereby lessening their influence on the outcome measure. Moreover, 

when accomplishing the task, more emphasis should be put on accuracy rather than reaction 

times in order to minimize the influence of speed of processing. In this regard, the Number 

Line task (NL; Siegler & Opfer, 2003) can be considered an excellent tool to compare basic 

intentional numerical skills in mathematicians and non-mathematicians. In this task, 

participants are asked to place target numbers (e.g., 25) on a horizontal line comprising a 

specific numerical interval (e.g., from 0 to 100). Siegler and Opfer (2003) originally observed 

that, in the number line from 0 to100, first graders overestimated the magnitude of small 

numbers and slightly underestimated the magnitude of large numbers, thereby yielding a 
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biased log-like pattern of estimates which is consistent with the notion of a logarithmically 

compressed mental number line (Dehaene, Izard, Spelke, & Pica, 2008; Dehaene, 2003). 

Conversely, on the same 0-100 interval, third graders displayed an accurate linear mapping. 

Although this developmental shift from a logarithmic to a linear representation has been 

repeatedly observed in different contexts (Berteletti, Lucangeli, & Zorzi, 2012; Sella, 

Berteletti, Lucangeli, & Zorzi, 2015; Siegler, Thompson, & Opfer, 2009), some authors have 

suggested that the NL task lacks any assessment of the internal representation of numbers 

(Karolis, Iuculano, & Butterworth, 2011). Furthermore, the biased pattern estimates can be 

also fit by other functions (e.g., bi-linear, power function) and thus explained by adopting 

different theoretical perspectives (Barth & Paladino, 2011; Bouwmeester & Verkoeijen, 

2012; Cohen & Sarnecka, 2014; Ebersbach, Luwel, Frick, Onghena, & Verschaffel, 2008; 

Moeller, Pixner, Kaufmann, & Nuerk, 2009; Opfer, Siegler, & Young, 2011; Slusser, 

Santiago, & Barth, 2013). Beyond this theoretical debate and more importantly, the accuracy 

in placing numbers on the line has been repeatedly correlated with the performance in other 

numerical tasks, as well as with children mathematical achievement (Berteletti, Lucangeli, 

Piazza, Dehaene, & Zorzi, 2010; Booth & Siegler, 2006, 2008; Geary, 2011; Sasanguie, De 

Smedt, Defever, & Reynvoet, 2012). Accordingly, children with mathematical difficulties 

show a less accurate mapping of numbers compared to typically developing children (Geary, 

Hoard, Byrd-Craven, Nugent, & Numtee, 2007; Landerl, Bevan, & Butterworth, 2004; 

Landerl, 2013; Sella, Berteletti, Brazzolotto, Lucangeli, & Zorzi, 2014). To sum up, the 

adoption of the NL with familiar target numbers should ensure a valid measure of basic 

symbolic skills in both mathematicians and non-mathematicians.   

 Another issue regarding the basic symbolic representations is understanding whether 

they are numerical primitives or cultural artefacts (Kallai & Tzelgov, 2009; Pinhas & 

Tzelgov, 2012; Tzelgov, Ganor-Stern, & Maymon-Schreiber, 2009). The term “primitives” 
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refers to numbers that can be automatically and holistically retrieved from memory. For 

example, the magnitude of single digit numbers is automatically accessed when the task does 

not require processing the numerical meaning (parity judgment; Dehaene et al., 1993). 

Conversely, “cultural artefacts” denotes those numbers whose magnitude representation is 

generated online in order to perform a specific task (Kallai & Tzelgov, 2009; Pinhas & 

Tzelgov, 2012; Tzelgov et al., 2009). For example, the processing of multi-digit numbers 

appears to be less automatic and related to the separate processing of number components 

(i.e., decade, unit) rather than to a direct magnitude retrieved from long term memory (for a 

detailed review see, Tzelgov, Ganor-stern, Kallai, & Pinhas, 2015). It has been suggested that 

positive integers constitute the primitive of the numerical system, while negative integers are 

a cultural artefacts (Tzelgov et al., 2015, 2009). Indeed, children’s progressive experience 

with positive numbers leads them to automatically access their numerical magnitude (Girelli, 

Lucangeli, & Butterworth, 2000; Rubinsten, Henik, Berger, & Shahar-Shalev, 2002). 

Conversely, negative numbers are learned lately in the development, lack any real physical 

reference, and are less likely to be used in everyday life. In this regard, the processing of 

positive numbers should be familiar to the vast majority of population, whereas only expert 

individuals (i.e., mathematicians) may demonstrate a more accurate and automatic processing 

of negative numbers. Alternatively, mathematicians might have a more refined representation 

of number primitives. The impact of numerical/mathematical expertise on the processing of 

positive numbers remains unknown. 

In our study, mathematicians and non-mathematicians completed the NL task 

mapping positive and negative numbers in order to examine the nature of numerical symbolic 

processing as a function of expertise. Indeed, the processing of negative numbers, which may 

be considered as non-primitive cultural artefacts, may be strongly linked to high-level 

numerical skills. Conversely, the numerical expertise may be associated with the ability to 
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process better positive numbers, which based on theories outlined earlier, serve the building 

block for more advanced numerical skills. Participants also completed two additional tasks to 

evaluate their advanced arithmetical skills: a computational estimation task (adapted from 

Levine, 1982) in which they had to provide approximate results for arithmetical problems; 

and a numerical agility task to evaluate their flexible use of arithmetic operations. Finally, a 

numerical Stroop task was proposed as control task to assess whether mathematicians 

performed generally better on basic numerical tasks, beside the NL, that involved numbers 

but an automatic and not intentional numerical processing (Bugden & Ansari, 2011; Cohen 

Kadosh, Henik, & Rubinsten, 2008; Girelli et al., 2000; Rousselle & Noël, 2008; Rubinsten 

& Henik, 2005; Tzelgov, Meyer, & Henik, 1992). 

We expected mathematicians to outperform non-mathematicians in the computational 

estimation and in the numerical agility tasks. The groups might differ in their performance on 

the NL task, and this can depend on the number’s polarity. Moreover, a detailed analysis of 

the NL task may reveal whether negative and positive numbers are mapped differently and 

whether their processing is related to the level of numerical expertise. Finally, we assessed 

how basic numerical processing, as indicated in the NL task, is linked to advanced numerical 

skills and group membership (mathematicians vs. non-mathematicians) via mediation 

analysis. We further examined whether such a relationship can be explained by non-

numerical cognitive abilities (visuospatial skills, as measured by block design subtest).  

  

Method 

Participants 

Thirty-eight right-handed academics (PhD students and postdoctoral fellows) from the 

Department of Mathematics (n = 19), and their peers from the Humanities Division (n = 19), 
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were recruited from the University of Oxford (Table 1). Participants were reimbursed at £10 

per hour. The study was approved by the Berkshire Research Ethics Committee.  

 

Stimuli, Procedure, and Design 

Participants completed the following tasks:  

- The Number Line task (Siegler & Opfer, 2003). This task requires spatial positioning of a 

given number on a horizontal continuum where only the extremes of the line are labelled.  

Stimuli were displayed on a 19-inch Dell monitor at a distance of 55 cm (Thompson, Nuerk, 

Moeller, & Cohen Kadosh, 2013). On each trial, participants were presented with a blue, 

horizontal line (approximately 40 cm long) stretching from left to right. The line was centred 

vertically on a black background and labelled with an anchor number on each end, with the 

numerically smaller anchor always on the left. To avoid centre- or side-bias, target numbers 

were displayed in both the upper-left and upper-right corners above the numerical anchors (-

1000 and 1000). To differentiate between target and anchor numbers, target numbers 

appeared in yellow. The participants completed 30 trials of the task (15 positive numbers: 85, 

127, 216, 265, 372, 415, 482, 521, 612, 689, 770, 809, 872, 910, 966; and 15 negative 

numbers: -67,  -98, -152, -223, -275, -356, -427, -493, -576, -623, -691, -727, -865, -889, -

955, administered in a mixed order which differed for each participant)1.The participants 

gave a mouse click on the number line where they believed the given target number should 

be mapped. Each trial was presented immediately following the mouse click of the previous 

trial. Trials were not restricted in terms of time, but participants were instructed to respond as 

fast as possible while maintaining high accuracy. We calculated the absolute deviation 

                                                 
1 Although different target numbers were presented for the negative and positive polarity, the two sets had a 
similar absolute mean (t(28)=.43, p>.66) and a similar variance (Levene’s test on means: F<1, p>.93).  



12 

 

between the target number and the estimated number following this formula2: |estimate-target 

number|. Better performance on this task is reflected in a smaller difference between the 

estimated mapping and the objective location of the number on the axis.  

- Numerical Stroop task (Henik & Tzelgov, 1982). We used this task to assess whether 

mathematicians performed generally better on basic numerical tasks that involved numbers, 

or whether this was limited to the NL task. Subjects were presented with pairs of digits that 

could differ in both their numerical value and physical size. These stimuli could be either 

incongruent (the physically larger digit is numerically smaller, e.g., 2 4), neutral (the stimuli 

differ only in the physical size, e.g., 2 2), or congruent (the physically larger digit is also 

numerically larger, e.g., 2 4). Participants were asked to choose the physically larger stimulus 

on the screen, while ignoring the numerical value. Both accuracy and reaction times were 

measured. A congruity effect reflects conflict between task demands and automatic numerical 

processing, and is indicated by longer reaction times for incongruent trials in comparison to 

congruent trials. Such an effect with symbolic numbers characterizes numerical competence 

(Cohen Kadosh, Soskic, Iuculano, Kanai, & Walsh, 2010; Girelli, Lucangeli, & Butterworth, 

2000; Rubinsten & Henik, 2005, 2006; Rubinsten, Henik, Berger, & Shahar-Shalev, 2002). 

We calculated a single score for this task by calculating the numerical Stroop ratio using the 

following equation: 

Numerical Stroop Ratio = (Incongruent RT-Congruent RT)/Neutral RT 

This analysis takes into account the general response speed as indicated by the neutral 

condition, which could augment the congruity effect when RTs are slow (Schwarz & 

Ischebeck, 2003).  

                                                 
2 Given that the numerical interval was constant (i.e., from -1000 to 1000), the absolute deviation perfectly 
correlated with the widely adopted Percentage of Absolute Error (Siegler & Opfer, 2003).  
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- The Computational Estimation task (Dowker, Flood, Griffiths, Harriss, & Hook, 1996; 

Levine, 1982). Ten multiplication and division problems were chosen from Levine’s original 

paper: 76×89, 145×37, 64.6×0.16, 12.5×11.4, 0.47×0.26, 4645÷18, 648.9÷22.4, 546÷33.5, 

66÷0.86, 0.76÷0.89. The participants were asked to give their best estimation of these 10 

multiplication and division problems within 10 minutes. They did not have a pen and paper 

for this task, and were explicitly told to estimate, and not calculate, the exact answer, and to 

provide their strategy after each item. None of their answers provided the exact answer. For 

each item, we calculate the proportion of the absolute deviation from the actual answer 

(|estimate-target number|/target number), and used the median of the calculated proportions 

as their global score. 

- The Numerical Agility task. Participants were asked to repeatedly generate the number 24 

from 4 presented numbers. Five problems were presented in total (see Appendix 1). The 

problems were administered in order of difficulty, and for the earlier items, hints (such as the 

structure of the answer) were provided. There was a two-minute time limit  for each item. The 

instructions made it clear that only the 4 basic operations (×, /, +, −) were allowed, such that 

any individual having completed secondary school should be able to solve these problems. 

For each item, 2 points were awarded if  the correct answer was achieved within one minute, 

1 point was awarded if  it was achieved within two minutes, and no points were awarded 

otherwise. 

- Wechsler Abbreviated Scale of Intelligence, WASI-II  (Wechsler & Chou, 2011). 

Participants completed two verbal subtests (i.e., Vocabulary and Similarities) and two 

performance tests (i.e., Block Design and Matrix Reasoning) of the intelligence scale, which 

allows an estimation of Verbal and Performance IQ as well as the Full Scale IQ. In the 

Vocabulary subtest, participants defined the meaning of visually and verbally presented 

words. This subtest is designed to assess words knowledge and verbal concepts construction. 
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In the Similarities subtest, participants have to describe how two objects or concepts are 

similar, thereby assessing verbal concepts formation and reasoning skills. The Block Design 

subtest requires participants to assemble red and white cubes to reproduce a model picture 

within a given time limit. This task assesses the ability to analyse and spatially manipulate 

visual stimuli. Finally, in the Matrix Reasoning subtest, an incomplete matrix is presented 

and the participant has to select from available images the one that completes the series. This 

subtest is widely considered a measure of fluid intelligence, perceptual organization, and 

reasoning. 

Results 

Groups matching 

The two groups were perfectly matched for gender, handedness, and academic status (14 

males and 5 females, all right handed, 17 PhDs and 2 Post-docs in each group). Both groups 

had a similar age, Verbal IQ, and Full scale IQ (see Table 1). Conversely, mathematicians 

displayed a higher Performance IQ compared to non-mathematicians. A deeper analysis 

revealed that mathematicians displayed better performance in the Block Design subtest 

compared to non-mathematicians, whereas the two groups had a similar performance in the 

Matrix Reasoning subtest. 

 

-------------------------------------- Please insert Table 1 here ---------------------------------------- 

 

Numerical tasks  

For the NL task, we firstly excluded from the analysis responses involving polarity 

errors, which is placing positive numbers on the left side of the line or placing negative 

numbers on the right part of the line (2% of trials). Thereafter, we analyzed the absolute 

deviation of estimates in a mixed ANOVA with Polarity [Positive, Negative] as within-
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subjects factor and Group [Mathematicians, Non-mathematicians] as between-subjects factor. 

The interaction between Group x Polarity was significant (F(1,36)=7.17, MSE=164, p<.01, 

pڦ
2=.17, Figure 1). Further analyses indicated that mathematicians were more accurate 

compared to non-mathematicians at mapping positive, but not negative, numbers (Table 2 

and Figure 2). Interestingly, only mathematicians showed a better performance in mapping 

positive numbers compared to negative numbers, t(18)=3.2, p=.005. As expected, 

mathematicians also showed better performance compared to non-mathematicians on both 

the Numerical Agility task and the Computational Estimation task. In contrast, no group 

differences were observed in the Numerical Stroop task (see Table 2).  

The interested reader can view the correlations between the numerical tasks for the 

entire sample as well as separately for mathematicians and non-mathematicians in Table 3. 

 

-------------------------------------- Please insert Table 2 here ---------------------------------------- 

 

-------------------------------------- Please insert Table 3 here ---------------------------------------- 

 
 
 
-------------------------------------- Please insert Figure 1 here --------------------------------------- 

 

-------------------------------------- Please insert Figure 2 here --------------------------------------- 

 

NL advanced analyses 

Problem size effect on absolute deviation 

From the visual inspection of the Figure 2, it seemed that the absolute deviation 

tended to increase as a function of target magnitude from left (negative numbers) to right 

(positive numbers). We verified whether the absolute deviation tended to increase from left to 
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right by running, for each participant, a series of regression analyses on individual absolute 

deviations as a function of target numbers leaving one estimate out each time (i.e., leave-one-

out). Therefore, for each participant, we used the median of the obtained distribution of 

standardized beta coefficients (i.e., positive values = increasing absolute deviation as a 

function of target size; negative values = decreasing absolute deviation as a function of target 

size) as a robust index of the tendency to provide worse (or better) estimates when target 

numbers increased. Mathematicians displayed a lower mean of beta coefficient (M=-0.05, 

SD=0.13) compared to Non-mathematicians (M=0.1, SD=0.17), t(34)=2.94, p=.006, d=0.98. 

Interestingly, the mean of beta coefficients was significantly different from zero only for 

Non-mathematicians, t(18)=2.54, p=.02, whereas this was not the case for mathematicians, 

t(16)=1.61, p=.126. Non-mathematicians displayed more absolute deviation moving from left 

to right on the visual line. 

 

R2 of the linear fit 

To further investigate the performance in the NL task, we fit the linear and 

logarithmic model on individual estimates as a function of target numbers separately for 

positive and negative polarity. Due to a computer back-up problem, the raw estimates of two 

mathematicians were lost. As for the analysis of mean absolute deviation, we excluded 

additional responses involving polarity errors (1.72% of trials). We compared the absolute 

residuals of the linear and logarithmic fit with a paired t test (Siegler & Opfer, 2003)3. We 

analysed the individual linear R2 in a mixed ANOVA with Polarity [Positive, Negative] as a 

within-subjects factor and Group [Mathematicians, Non-mathematicians] as a between-

subjects factor (Figure 2). The main effect of Polarity was not significant, F(1,34)=2.87, 

                                                 
3 The result of the t test was not significant only for 2 mathematicians and 2 non-mathematicians, whereas for all 
the other participants the linear fit yielded less absolute residuals (i.e., better fit). However, for all the 
participants both logarithmic and linear models were significant and the linear fit always displayed the highest 
R2. 
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MSE=0.002, p=.10, ڦp
2=.078, whereas the main effect of Group reached significance 

F(1,34)=4.78, MSE=0.006, p=.036, ڦp
2=.123. The interaction Polarity x Group also reached 

significance, F(1,34)=4.44, MSE=0.002, p=.043, ڦp
2=.115. Planned comparisons revealed 

that mathematicians showed a significantly higher R2 compared to the non-mathematicians 

only when mapping positive numbers, t(34)=2.53, p=.016, d=0.85. 

 

-------------------------------------- Please insert Figure 3 here --------------------------------------- 

 

The position of the zero  

In the NL task, participants possibly used the perceived position of the zero (i.e., the 

central point on the line) as landmark to anchor other estimates. In this regard, the perceived 

position of the number zero possibly influenced the whole mapping performance. The 

position of the zero can be inferred as the intercept of the regression line interpolating all the 

estimates as a function of the target numbers. In this case, the intercept literally represents the 

estimated value on the y-axis when the value on x-axis is zero. We used a robust leave-one-

out analysis to estimate the perceived position of the number zero: For each participant, we 

ran a series of regression analyses on individual estimates as a function of target numbers 

separately for positive and negative polarity leaving one estimate out at time. Therefore, for 

each participant, we used the median of the obtained distribution of intercepts as a robust 

estimation of the position of the zero on the line. We analyzed the obtained medians of 

intercept in a mixed ANOVA with Polarity [Positive, Negative] as within-subjects factor and 

Group [Mathematicians, Non-mathematicians] as between-subjects factor. The main effect of 

Polarity was the only significant one, F(1,34)=48.05, MSE=3513, p < .001, ڦp
2=.59. Indeed, 

the mean estimated zero point was 10 (SD=61) for positive numbers and -87 (SD=62) for 

negative numbers. Importantly, neither the main effect of the Group, F(1,34)=0.59, 
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MSE=4082, p=.447, ڦp
2=.02, nor the interaction Polarity x Group were significant, 

F(1,34)=0.62, MSE=3513, p=.437, ڦp
2=.02, thereby suggesting that the two groups had a 

similar perception of the position of the number zero on the line.     

 

Confidence in mapping numbers 

To further investigate mapping strategy, we calculated for each target number the 

standard deviation of estimates separately for mathematicians and non-mathematicians. A 

large SD across target numbers means that a group displayed more variability in placing 

numbers independently from the accuracy of the positioning. Note that as in this analysis the 

target numbers are treated as cases, we were not able to run ANOVA on the data. Both 

negative and positive target numbers showed less variability when estimated by 

mathematicians (Negative: M=49, SD=15; Positive: M=49, SD=18) compared to non-

mathematicians (Negative: M=68, SD=26; Positive: M=85, SD=34), t(28)=2.57, p<.016, 

d=0.94, and t(28)=3.62, p<.001, d=1.32, respectively (Figure 3).  

 

-------------------------------------- Please insert Figure 4 here --------------------------------------- 

 

RT analysis 

We analysed the median reaction times in a mixed ANOVA with Polarity [Positive, 

Negative] as a within-subjects factor and Group [Mathematicians, Non-mathematicians] as a 

between-subjects factor. The main effects of Group (p=.25) and Polarity (p=.71) and the 

interaction Group x Polarity (p=.37) did not reach significance. Therefore, no differences 

emerged in term of response speed for the polarity or between groups.  

 

Mediation Analyses between basic and advanced numerical skills 
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We ran two path analyses to see if  the ability to map respectively positive and 

negative numbers was associated with a higher chance of being a mathematician and if  this 

relationship was mediated by computational estimation and/or arithmetic agility. We used the 

PROCESS module in SPSS (Hayes, 2013; IBM Corp., 2013) to run the mediation analyses 

(all one-tail p values) and to estimate the bootstrapped (10,000 resamples) 95% confidence 

intervals for the specific indirect effects.  The mediation analysis verified whether the effect 

of an independent variable (X) on a dependent variable (Y), denominated c path, is mediated 

by one or more variable(s) called mediator(s) (M). The c path corresponds to the beta 

regression coefficient of the linear regression with Y as dependent variable and X as 

predictor. The connections between the independent variable (X) and the mediators (M) are 

denominated a paths, whereas the connections between the mediators (M) and the dependent 

variable (Y) are denominated b paths. Each a path corresponds to the beta coefficient of the 

linear regression with the mediator (M) as outcome variable and the independent variable (X) 

as predictor. Each b path, instead, corresponds to the beta coefficient of the linear regression 

with the dependent variable (Y) as outcome and the mediator (M) as predictor when also the 

independent variable (X) is inserted in the model. In the case of a dichotomous outcome 

variable (Y), the logistic regression is implemented to assess the regression coefficients for 

the b and the c paths. The product of a and b paths represents the indirect effect of the 

independent variable (X) on the dependent variable (Y) through the mediator (s) (M) and its 

significance is evaluated adopting a resampling technique to obtain a bootstrapped 

distribution of ab products. Despite the a and b paths may be themselves statistically 

significant, a robust way to establish a specific indirect effect of the independent variable (X) 

on the dependent variable (Y) through the mediator (M) is to observe whether the 95% of the 

bootstrapped distribution of the ab products does not overlap zero (Hayes & Scharkow, 2013; 

Hayes, 2013).  
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Mapping of positive numbers in the NL Task 

Regressing participant group onto the positive numbers absolute deviation resulted in 

a significant association between the variables (b=-.06, SE=.023, p=.007; Figure 5, panel A), 

indicating that individuals who were more accurate at mapping positive integers in the NL 

task were more likely to be mathematicians, which is consistent with the ANOVA results. 

We then entered the two mediators, numerical agility and computational estimation scores 

into the model. The mapping of positive numbers in the NL task was significantly associated 

with the score in Numerical Agility task (b=-.059, SE=0.017, p<.001) and in the 

Computational Estimation task (b=.003, SE=.001, p=.001). Both scores in the Numerical 

Agility task (b=0.6, SE=.31, p=.027) and in the Computational Estimation task (b=-17.44, 

SE=10.19, p=.043) were, in turn, significantly associated with group. Once the mediators 

were entered into the model, the direct association between the mapping of positive integers 

in the NL task and group became non-significant (b=-.022, SE=.032, p=.24; Figure 5, panel 

B). Bias-corrected bootstrapped confidence intervals for the specific indirect effects of the 

mapping of positive numbers on group membership through Computational Estimation task 

(-0.6, 95%CI=-0.23 to -0.001) and Numerical Agility task (-0.35, 95%CI=-0.17 to -0.002) 

were both below zero. This result supports an indirect effect of the mapping of positive 

numbers on group through the scores in the Numerical Agility and in the Computational 

Estimation task. 

Mapping of Negative numbers in the NL Task 

Previous researchers call into question the necessity of first showing a direct effect 

between the independent variable and dependent variable before testing for an indirect effect 

(Alwin & Hauser, 1975; Hayes, 2009; Kenny, 2008; Mathieu & Taylor, 2006; Rucker, 

Preacher, Tormala, & Petty, 2011; Zhao, Lynch Jr., & Chen, 2010). An independent variable 
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may very well influence a dependent variable only through indirect means; finding such an 

effect would have important implications regarding theory surrounding the effects. It is quite 

possible that good performance on mapping of negative numbers in the NL task might not 

directly affect whether someone belongs to the mathematician group, but it may be possible 

that this relation is still mediated advanced numerical tasks. Missing such an indirect effect 

would equate to committing a Type II  error. Indeed, MacKinnon et al. (2002), in comparing 

14 methods of mediational analysis, showed that Baron and Kenny’s (1986) requirement that 

a relationship between the independent and dependent variable exists before testing for a 

mediated effect led to the most Type II  errors.  

We therefore ran the same mediation analysis as specified above with negative, rather 

than positive, numbers in the NL task. Consistent with the ANOVA results, regressing group 

onto the mapping of negative numbers in the NL task resulted in a non-significant association 

(b=-.008, SE=.013, p=.26; Figure 5, panel C). We next entered the mediators into the path 

analysis. The absolute deviation in mapping negative numbers in the NL task was not 

associated with score in the Numerical Agility task (b=-.02, SE=.016, p=.09) whereas it was 

associated with the scores in the Computational Estimation task (b=.002, SE=.001, p=.023). 

The scores in the Numerical Agility and in the Computational Estimation task were 

significantly associated with group (b=.71, SE=.31, p=.01 and b=-17.06, SE=9.18, p=.03; 

Figure 5, panel D). Bias-corrected bootstrapped confidence intervals for the specific indirect 

effects of the mapping of negative numbers on group membership through Computational 

Estimation task (-0.35, 95%CI=-0.167 to 0.013) and Numerical Agility task (-0.016, 

95%CI=-0.092 to 0.017) overlapped zero.  This result also fails to support an indirect effect 

of the mapping of negative numbers on group through the scores in the Numerical Agility 

and in the Computational Estimation task. 

 
Number-space mapping and visuospatial skill: a mediation analysis. 
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The results of the mediation analysis suggest that the connection between basic 

numerical skills (i.e., mapping of positive numbers) and mathematical expertise is fully 

mediated by advanced numerical skills. While these results cannot provide a causal inference 

of the role of basic numerical skills in mathematical expertise, they are in line with the 

theoretical view that formal mathematical competences may rely on basic numerical 

representations (De Smedt et al., 2013; Feigenson, Libertus, & Halberda, 2013; Halberda et 

al., 2008). Moreover, they also support the view that numerical polarity is dissociable (for a 

detailed review see, Tzelgov et al., 2015) and therefore plays a role in the link between 

numerical skills and whether a given participant is mathematician.  

However, these results might be in turn mediated by different cognitive process. In 

fact, despite a fine matching between the two groups on several dimensions, we observed that 

mathematicians outperformed non-mathematicians at visuospatial abilities as indexed by the 

scores in the Block Design subtest (Groth-Marnat & Teal, 2000). To clarify this issue, we 

verified whether the scores in the Block Design subtest influenced the performance in the NL 

task. Thus, we run ANCOVA with absolute deviation of positive numbers as dependent 

variable, Group as independent variable, and Block Design scores as covariate. The effect of 

the Group was no longer significant, F(1,35)=1.51, MSE=357, p=.23, ڦp
2=.04, thereby 

suggesting that the difference between mathematicians and non-mathematicians in mapping 

positive numbers disappeared when visuospatial skills are taken into account. Following this 

reasoning, we re-ran the mediation model in which the association between mapping positive 

integers in the NL task and belonging to the group of mathematicians is mediated by the 

scores on the Numerical Agility task and the Computational Estimation task, this time adding 

the scores in the Block Design as covariate. Regressing participant group onto the positive 

numbers absolute deviation resulted in a non-significant association between the variables 

(b=-.03, SE=.024, p=.10; Figure 5, panel E), which is consistent with the ANCOVA results. 
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We then entered the two mediators, numerical agility and computational estimation into the 

model. The mapping of positive numbers in the NL task was still associated with the scores 

in the Computational Estimation task (b=.003, SE=.001, p=.008), but not with the scores in 

the Numerical Agility task (b=-.024, SE=.019, p=.10). Both scores in the Numerical Agility 

task (b=0.58, SE=.33, p=.038) and in the Computational Estimation task (b=-17.06, 

SE=10.41, p=.05) were, in turn, significantly associated with group. After the mediation, the 

direct association between the mapping of positive integers in the NL task and group 

remained non-significant (b=-.019, SE=.036, p=.30; Figure 5, panel F). Bias-corrected 

bootstrapped confidence intervals for the specific indirect effects of the mapping of positive 

numbers on group membership through Computational Estimation task (-0.058, 95%CI=--

0.297 to 0.045) and Numerical Agility task (-0.014, 95%CI=-0.12 to 0.013) overlapped zero, 

when the performance in the Block Design subtest was used as covariate. Therefore, this 

result failed to support the presence of an indirect effect of the mapping of positive numbers 

on group through the scores in advanced numerical tasks when the scores in Block Design 

subtest were added as covariate. The inclusion of Block Design subtest scores as covariate 

compromised the link between the ability to map positive numbers and advanced numerical 

skills. Similar results were observed when we repeated the analysis with negative, instead of 

positive, numbers (Figure 4, panel G-H).  

To further investigate the relation between spatial mapping and visuospatial abilities, 

we ran two mediation models to see if  numerical polarity (positive or negative) was 

associated with a higher chance of being a mathematician when this relation was mediated by 

the performance in the Block Design subtest.  

As for the previous mediation model, we regressed participant group onto the absolute 

deviation of positive numbers variable, which yielded a significant association between the 

variables (b=-.06, SE=.023, p=.007). We then entered the Block Design performance as 
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mediator into the model. The absolute deviation for positive numbers in the NL task was 

significantly associated with Block Design (b=-.13, SE=0.03, p<.001), which in turn was 

associated to the belonging to the mathematicians group (b=.26, SE=0.12, p=.013). Once the 

mediator was entered into the model, the direct association between the mapping of positive 

numbers in the NL task and group became non-significant (b=-.03, SE=.024, p=.10; Figure 5, 

panel I). A bias-corrected bootstrap confidence interval for the specific indirect effect of 

mapping of positive numbers on group membership through Block Design was entirely 

below zero (-.035, 95%CI= -.116 to -.006). This result supports an indirect effect of the 

mapping of positive numbers on group through the scores in the Block Design subtest. 

Interestingly, when substituting the group dichotomous variable with the scores in the 

Numerical Agility task, the pattern of results remained the same with Block Design scores 

mediating the relation between the accuracy in mapping positive numbers and the 

performance in the Numerical Agility task.  

We then run the same mediation analysis entering into the model the mapping of 

negative numbers as independent variable. Regressing group onto the mapping of negative 

integers in the NL task resulted in a non-significant association (b=-.008, SE=.01, p=.26). We 

next entered the Block Design as mediator into the model. The absolute deviation for 

negative numbers in the NL task was significantly associated with Block design (b=-.07, 

SE=0.03, p=.012), which in turn was associated to the belonging to the mathematicians group 

(b=.33, SE=0.11, p=.001). Once the mediator was entered into the model, the direct 

association between the mapping of negative numbers in the NL task and group remained 

non-significant (b=.01, SE=.02, p=.29; Figure 5, panel J). Despite the significant association 

between the mapping of negative numbers and, in turn, the significant association between 

Block Design and group membership in the mediation analysis, a bias-corrected bootstrap 

confidence interval for the specific indirect effect of the mapping of negative numbers on 
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group membership through Block Design overlapped zero (-0.024, 95%CI=-0.075 to 0.001). 

This result fails to support an indirect effect of the mapping of negative numbers on group 

through the scores in the Block Design subtest. However, when substituting the group 

dichotomous variable with the scores in the Numerical Agility task, the pattern of results 

highlights the Block Design scores mediating the relation between the accuracy in mapping 

negative numbers and the scores in the Numerical Agility task. 

 

-------------------------------------- Please insert Figure 5 here --------------------------------------- 

 

Discussion 

In the present study, mathematicians and non-mathematicians completed basic and 

advanced numerical tasks in order to verify how these lower and higher numerical skills are 

related to advanced mathematical expertise. Both groups displayed a similar performance on 

the numerical Stroop task, thereby suggesting that a simple task involving the automatic 

numerical processing might not be linked to superior mathematical competences. However, 

we do not exclude that other numerical tasks exploring the automatic processing of numbers 

may highlight significant differences in individuals with different level of math expertise 

(Cipora et al., 2015). Regarding advanced numerical tasks, in line with previous results, 

mathematicians outperformed non-mathematicians in computational estimation and in the 

flexible use of arithmetical operations (Dowker et al., 1996; Hanson & Hogan, 2000; Levine, 

1982). In addition, mathematicians showed better performance on the numerical agility task. 

Crucially, mathematicians displayed a more accurate spatial mapping of positive numbers, 

whereas no difference emerged for negative numbers. Therefore, the attainment of advanced 

mathematical expertise in this study appears to be primarily and specifically related to a basic 

numerical skill, such as the spatial mapping of positive integers. Nevertheless, the relation 
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between basic and advanced numerical skills became non-significant when visuospatial 

abilities were taken into account. As corroborated by a mediation model, the relation between 

the spatial mapping of numbers and superior mathematical competences was mediated by 

visuospatial abilities. This result strongly suggests that while basic numerical domain-specific 

processes are likely to be linked more advanced mathematical skills, this relation is fully 

mediated by a different domain process such as visuospatial processing.  

A detailed analysis of the NL provided an accurate description of the mapping 

performance for mathematicians and non-mathematicians. Mathematicians displayed a more 

linear pattern in the positioning of positive numbers, which perfectly coupled with their more 

accurate mapping. Interestingly, mathematicians were also more coherent as group when 

placing both positive and negative numbers irrespectively from the accuracy of the 

positioning.  This result might suggest that mathematicians were more likely to use similar 

(and possibly more efficient) mapping strategies, whereas among non-mathematicians there 

was less agreement on the strategy to be adopted. Given that the number line entailed the 

interval from -1000 to 1000, some participants probably estimated the position of the number 

zero on the line as a reference anchoring point for calibrating other estimations. We adopted a 

robust resampling technique to infer the position of the number zero on the line as indexed by 

the intercept of the regression line interpolating all the estimates as a function of the target 

numbers. Crucially, the two groups displayed a similar estimation of the number zero on the 

line, which varied only between the two polarity conditions. Therefore, the observed 

differences in spatial mapping performance are unlikely related to the estimation of the 

number zero on the line.  

Mathematicians outperformed non-mathematicians only in the mapping of positive 

numbers, which are considered as “primitives” of numerical representation. Moreover, it is 

worth noting that mathematicians actually showed a better performance in mapping positive 
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numbers compared to negative numbers, whereas non-mathematicians displayed a similar 

performance in both polarity conditions. On the one hand, it might be possible that 

mathematicians displayed a better spatial mapping of numerical “primitives” (i.e., positive 

numbers) because, with advanced expertise, the spatial representation of these numbers 

becomes more accurate and automatized compared to more artefactual numbers (i.e., 

negative). On the other hand, it might be possible that positive numbers were more likely to 

elicit in expert individuals the application of advanced mapping strategies (e.g., segmentation 

of the line to find reference points, anchoring) compared to negative numbers. It is worth 

noting that non-mathematicians displayed less accurate estimates as a function of target size 

moving from left (negative numbers) to right (positive numbers). In particular, the estimation 

of large positive numbers (e.g., 521, 612, 689, 770, 809, and 872) appeared to be particularly 

difficult for Non-mathematicians, whereas mathematicians displayed an accurate 

performance also for those numbers. Mathematicians could possibly use advance anchoring 

points (i.e., 750) to adjust their estimates whereas Non-mathematicians may have used a 

more inconsistent strategy. 

The ability to map positive numbers appears to be connected to visuospatial skills 

(measured by block design in our study) which in turn predicted the likelihood to belong to 

the group of mathematician as well as the performance in the Numerical Agility task. More 

importantly, this link can fully explain the relation between basic numerical skills and 

advanced mathematical achievement. Previous studies have highlighted the relation between 

Block Design performance and mathematical achievement. In particular, Block Design scores 

and, more broadly, visuospatial skills, have been correlated with math problem solving skills 

(Garderen, 2006; Hale, Fiorello, Bertin, & Sherman, 2003) as well as with spatial 

components of calculation such as borrowing and carrying (Rourke, 1993; Venneri, Cornoldi, 

& Garuti, 2003). Therefore, it is not surprising that mathematicians displayed a better 
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performance in the Block Design subtest compared to Non-mathematicians. However, what 

is the relation between Block Design performance and NL task? A possible explanation is 

that an accurate placing of numbers may require participants to maintain and actively 

transform different spatial locations in their memory (e.g., landmarks) while moving the 

mouse cursor to select the desired position on the line. The ability to maintain and transform 

spatial information online is similarly required by the Block Design subtest in which red and 

white cubes have to be spatially manipulated in order to realise the given target image. The 

spatial manipulation component of the two tasks could also explain the previously observed 

relation between mental rotation skills and number line estimation in adults (Thompson, 

Nuerk, Moeller, & Cohen Kadosh, 2013). Nevertheless, we reiterate that alternative 

explanations can be formulated and then constitute empirical hypotheses for future studies. 

The results of the present study pose important theoretical questions for future 

research. First, we observed that both mathematicians and non-mathematicians displayed an 

evident linear mapping for both positive and negative numbers; nevertheless, the 

mathematicians outperformed the non-mathematicians only in placing positive numbers, and 

this performance was fully mediated by visuospatial skills. How and at what developmental 

stage does the relationship between positive numbers and visuospatial skills emerge, and 

what is the contribution of formal education? Which cognitive function is the driving force in 

this link, and whether the theoretical framework of numerical primitives and cultural artefacts 

for positive and negative numbers, respectively, can shed light on the potential cognitive 

mechanisms? 

Another crucial question for future research is to clarify what is actually specific in 

domain-specific processes. In our study, the adoption of the mediation analysis allowed us to 

demonstrate that the prediction of group membership by the NL task is fully mediated by the 

Block Design subtest scores, thereby suggesting that the link between the NL task and group 
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membership is crucially influence by different (non-numerical) domain processes. 

Accordingly, another study has pointed out the association between the NL performance and 

mental rotation skills, thus reinforcing the role of visuospatial abilities in the accomplishment 

of the number mapping task (Thompson et al., 2013). Crucially, in the present study, the 

visuospatial abilities mediated the relation between NL task performance and math expertise.  

In sum, we highlighted that mathematicians were more accurate compared to non-

mathematicians when it comes to mapping numbers. However, this ability was specific to 

positive, but not negative numbers, as indicated by different types of analyses that yielded the 

same conclusion. Moreover, the ability to map positive, but not negative, numbers on the line 

appeared to be related to advanced mathematical expertise. While such a result could have 

led to a strong theoretical support for the domain-specific advocates, a mediation analysis 

revealed that the relation between the performance in the NL task and the mathematical 

expertise was fully mediated by visuospatial skills. Therefore, the relationship between basic 

numerical domain-specific processes and more advanced mathematical skills can be 

attributed to a different domain process such as visuospatial skills.  
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Captions 

Table 1. Group comparison for age and IQ scores. 

Table 2. Descriptive statistics for the administered numerical tasks.  

Table 3. Pearson’s correlation matrix for the administered numerical tasks for the entire 

sample as well as separately for Mathematicians and Non-mathematician.  

Figure 1. An interaction between numerical polarity and group, indicating selectively 

improved performance in mapping positive numbers among mathematicians compared to 

non-mathematicians. The values on the y-axis indicate the absolute deviation from the target 

numbers in integers (Error bars represent 95% CI). ** p<.01 

Figure 2. Mean absolute deviation for each target numbers separately for Mathematician and 

Non-mathematicians (bars represent SEM).  

Figure 3. Mean R2 of the linear fit of estimates as a function of negative and positive target 

numbers in mathematicians and non-mathematicians (Error bars represent 95% CI). * p<.05 

Figure 4. SD of estimates in the NL task for negative and positive numbers in 

mathematicians and non-mathematicians (Error bars represent 95% CI). * p<.05, ** p<.01. 

Figure 5. Bivariate regression analyses between the mapping of positive (panel A) and 

negative (panel C) numbers in the NL task and group. The full mediation models for positive 

(panel B) and negative numbers (panel D) in the NL task. Bivariate regression analyses 

between the mapping of positive (panel E) and negative (panel G) numbers in the NL task 

and group with Block Design as covariate. The full mediation models for positive (panel F) 

and negative numbers (panel H) in the NL task with Block Design as covariate. Mediation 

models in which the relation between the mapping of positive (panel I) and negative (panel J) 

numbers in the NL task and the group is mediated by Block Design. Unstandardized 
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regression coefficients are reported. All p values are one-tailed. * p <.05, ** p <.01, *** p 

<.001. 
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Table 1.  

 Non-

mathematicians 

Mathematicians    

Measures Mean(SD) Mean(SD) t(36) p d 

Age (in years)  26.28(2.46) 25.66(1.57) 0.93 .36 0.3 

Full scale IQ 125(6) 128(10) 1.27 .214 0.41 

Verbal IQ  130(5) 124(13) 1.85 .073 0.6 

Performance IQ 115(8) 126(6) 4.71 <.001 1.53 

- Block Design (T 

score) 
61(5) 67(3) 4.02 

<.001 
1.30 

- Matrix Reasoning (T 

score)  
57(5) 61(9) 1.84 

.075 
0.6 
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Table 2.  

 Non-

mathematicians 

Mathematicians    

Measures Mean(SD) Mean(SD) t p d 

NL task (absolute deviation) 
   

 
 

- Positive numbers 62(26) 41(14) 3.16 .003 1.02 

- Negative numbers 60(30) 54(24) .64 .52 0.21 

Computational Estimation 

task 
0.21(0.21) 0.04(0.03) 3.5 

.001 
1.14 

Numerical Agility task  1.84(2.32) 5.74(1.33) 6.36 <.001 2.07 

Numerical Stroop* 0.1(0.08) 0.1(0.04) 0.04 .96 0.01 

 
*One non-mathematician did not complete the task. 
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Table 3.  

 

Group Measures 1 2 3 4 5 

All sample 1 NL task – Positive numbers - .701** .475** -.503*** .094 

 2 NL task – Negative numbers  - .325* -.218 -.011 

 3 Computational Estimation   - -.486** -.077 

 4 Numerical Agility    - -.202 

 5 Numerical Stroop     - 

Mathematicians 1 NL task – Positive numbers - .654** -.107 .188 -.015 

 2 NL task – Negative numbers  - -.039 .061 .087 

 3 Computational Estimation   - -.419 .178 

 4 Numerical Agility    - -.001 

 5 Numerical Stroop     - 

Non-mathematicians 1 NL task – Positive numbers - .794** .371 -.417 .147 

 2 NL task – Negative numbers  - .413 -.332 -.051 

 3 Computational Estimation   - -.199 -.109 

 4 Numerical Agility    - -.389 

 5 Numerical Stroop     - 

* p < .05, **  p < .01, ***  p < .001 
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Figure 1. 
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Figure 2. 
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Figure 3 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



47 

 

 
Figure 4. 
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Figure 5. 
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Appendix 1 

 
The instructions for the numerical agility task were: “Create the number 24 using the numbers 

provided. You may add, subtract, multiply, and divide. You may use parentheses and fractions. You 

must use each digit exactly once. You may not glue digits together (e.g. 14). Powers and decimals are 

not allowed.” 

Example: Create the number 24 using 1, 5, 5, 5.  

 

Item 1: 

Create the number 24 using 7, 5, 5, 4 

Keep in mind that 24 = 6 x 4 and that the answer will be of the form displayed below:  

 

 

Item 2: 

Create the number 24 using 3, 3, 8, 8 

Keep in mind that  

 

The answer will be of the form shown below: 

 

 

Item 3: 

Create the number 24 using 1, 3, 4, 6 
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Keep in mind that 24 = 6 x 4 and that the answer will be of the form shown below:  

 

 

Item 4: 

Create the number 24 using 3, 3, 7, 7 

Keep in mind that 24 = 21 + 3 

(note that no clue was provided for this problem) 

 

Item 5: 

Create the number 24 using 2, 3, 10, 10 

(note that no clue was provided for this problem) 

 

 


