

This is a repository copy of *Mini-Stern Trial: A randomised trial comparing mini-sternotomy to full median sternotomy for aortic valve replacement.* 

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/132641/

Version: Accepted Version

#### Article:

Nair, SK, Sudarshan, CD, Thorpe, BS et al. (12 more authors) (2018) Mini-Stern Trial: A randomised trial comparing mini-sternotomy to full median sternotomy for aortic valve replacement. Journal of Thoracic and Cardiovascular Surgery, 156 (6). pp. 2124-2132. ISSN 0022-5223

https://doi.org/10.1016/j.jtcvs.2018.05.057

© 2018 Published by Elsevier Inc. on behalf of The American Association for Thoracic Surgery. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/

#### Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

#### Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.



eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

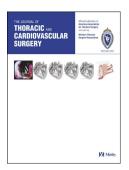
# Accepted Manuscript

Mini-Stern Trial: A randomised trial comparing mini-sternotomy to full median sternotomy for aortic valve replacement

Sukumaran K. Nair, FRCS(CTh), Catherine D. Sudarshan, FRCS(CTh), Benjamin S. Thorpe, PhD, Jeshika Singh, PhD, Thasee Pillay, FRCS(CTh), Pedro Catarino, FRCS(CTh), Kamen Valchanov, MD, Massimiliano Codispoti, FRCS(CTh), John Dunning, FRCS(CTh), Yasir Abu-Omar, FRCS(CTh), Narain Moorjani, FRCS(CTh), Claire Matthews, BSc, Carol J. Freeman, MPhil, Julia A. Fox-Rushby, PhD, Linda D. Sharples, PhD.

PII: S0022-5223(18)31482-X

DOI: 10.1016/j.jtcvs.2018.05.057


Reference: YMTC 13056

To appear in: The Journal of Thoracic and Cardiovascular Surgery

- Received Date: 17 December 2017
- Revised Date: 23 April 2018
- Accepted Date: 15 May 2018

Please cite this article as: Nair SK, Sudarshan CD, Thorpe BS, Singh J, Pillay T, Catarino P, Valchanov K, Codispoti M, Dunning J, Abu-Omar Y, Moorjani N, Matthews C, Freeman CJ, Fox-Rushby JA, Sharples LD, Mini-Stern Trial: A randomised trial comparing mini-sternotomy to full median sternotomy for aortic valve replacement, *The Journal of Thoracic and Cardiovascular Surgery* (2018), doi: 10.1016/ j.jtcvs.2018.05.057.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.



- 1 Mini-Stern Trial: A randomised trial comparing mini-sternotomy to full median
- 2 sternotomy for aortic valve replacement
- 3 Authors:
- 4 Sukumaran K Nair FRCS(CTh),<sup>1,4</sup> Catherine D Sudarshan FRCS(CTh),<sup>1</sup> Benjamin S Thorpe
- 5 PhD,<sup>2</sup> Jeshika Singh PhD,<sup>3</sup> Thasee Pillay FRCS(CTh),<sup>4</sup> Pedro Catarino FRCS(CTh),<sup>1</sup> Kamen
- 6 Valchanov MD,<sup>1</sup> Massimiliano Codispoti FRCS(CTh),<sup>1</sup> John Dunning FRCS(CTh),<sup>1</sup> Yasir
- 7 Abu-Omar FRCS(CTh), <sup>1</sup>Narain Moorjani FRCS(CTh), <sup>1</sup>Claire Matthews BSc, <sup>1</sup>Carol J
- 8 Freeman MPhil,<sup>1</sup> Julia A Fox-Rushby PhD,<sup>3</sup> Linda D Sharples PhD.<sup>5</sup>

#### 9 Institutions:

- 10 1. Papworth Hospital, Cambridge, UK
- 11 2. Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
- 12 3. Health Economics Research Group (HERG), Brunel University London, London, UK
- 13 4. Freeman Hospital, Newcastle upon Tyne, Newcastle upon Tyne, UK
- 14 5. London School of Hygiene and Tropical Medicine, Keppel Street, London, UK

## 15 Conflict of interest statement and source of funding:

- 16 This work was supported by the National Institute for Health Research (NIHR) under its
- 17 Research for Patient Benefit (RfPB) Programme (grant number PB-PG-0408-16296). The
- 18 views expressed are those of the author(s) and not necessarily those of the NHS, NIHR or
- 19 Department of Health.

#### 20 Corresponding author and contact information:

- 21 Mr Sukumaran Nair, Consultant Cardiac Surgeon, Golden Jubilee National Hospital,
- 22 Agamemnon Street, Glasgow, G81 4DY, United Kingdom
- **23** Telephone: 0044 141 951 5280.
- 24 Email: Sukumaran.Nair@gjnh.scot.nhs.uk
- 25 National Research Ethics Service Approval: 09/H0301/58

- 26 Trial Registration: ISRCTN, number 58128724
- 27 Article word count: 3500 (including main text and figure legends)

| 29 | Glossary of A | Abbreviations                                   |
|----|---------------|-------------------------------------------------|
| 30 |               |                                                 |
| 31 | AVR           | aortic valve replacement                        |
| 32 | mAVR          | minimal access aortic valve replacement         |
| 33 | BMI           | body mass index                                 |
| 34 | CI            | 95% confidence interval                         |
| 35 | COPD          | chronic obstructive pulmonary disease           |
| 36 | CPB           | cardiopulmonary bypass                          |
| 37 | $FEV_1$       | forced expiratory volume in one second          |
| 38 | FS            | full median sternotomy                          |
| 39 | HR            | hazard ratio                                    |
| 40 | HRQoL         | health-related quality of life                  |
| 41 | ICER          | incremental cost-effectiveness ratio            |
| 42 | LVEF          | left ventricular ejection fraction              |
| 43 | MS            | mini-sternotomy                                 |
| 44 | NHS           | National Health Service                         |
| 45 | OR            | odds ratio                                      |
| 46 | QALY          | quality-adjusted life year                      |
| 47 | RCT           | randomised control trial                        |
| 48 | SAE           | serious adverse event                           |
| 49 | SD            | standard deviation                              |
| 50 | TLCO          | transfer factor of the lung for carbon monoxide |
| 51 | TOE           | transoesophageal echocardiogram                 |
| 52 | UK            | United Kingdom                                  |
| 53 |               |                                                 |

## 54 Central Message

- 55
- 56 In the UK NHS, compared to conventional median sternotomy approach for surgical AVR,
- 57 mini-sternotomy did not hasten recovery or hospital discharge, and was not cost-effective.

#### 58 **Perspective Statement**

- 59 Minimal access surgery is appealing for its perceived advantages including better patient
- 60 recovery, satisfaction and cost-effectiveness. This RCT conducted within the UK NHS
- 61 setting did not demonstrate quicker patient recovery or cost-effectiveness associated with
- 62 mini-sternotomy compared to full median sternotomy approach. These findings are relevant
- 63 to physicians, patients and health care funders.
- 64

#### 65 Structured Abstract

**Objective:** Aortic valve replacement (AVR) can be performed either through full median 66 sternotomy (FS) or upper mini-sternotomy (MS). The Mini-Stern trial aimed to establish 67 68 whether MS leads to quicker postoperative recovery and shorter hospital stay after first-time isolated AVR. 69 Methods: This pragmatic, open-label, parallel RCT compared MS with FS for first-time 70 71 isolated AVR in two UK NHS hospitals. Primary endpoints were duration of postoperative 72 hospital stay and the time to fitness for discharge from hospital after AVR, analysed in the 73 intent-to-treat population. 74 **Results:** In this RCT, 222 patients were recruited and randomised (118 MS, 104 FS). 75 Compared to FS patients, MS patients had longer hospital stay (mean 9.5 vs. 8.6 days) and 76 took longer to achieve fitness for discharge home (mean 8.5 vs. 7.5 days). Adjusting for valve 77 type, sex and surgeon, hazard ratios (HR) from Cox models did not show a statistically 78 significant effect of MS (relative to FS) on either hospital stay (HR 0.874, 95% CI 0.668-79 1.143, p-value 0.3246) or time to fitness for discharge (HR 0.907, 95% CI 0.688-1.197, pvalue 0.4914). During mean follow up of 760 days (MS:745 and FS:777 days), 12 (10%) MS 80 81 and 7 (7%) FS patients died (HR 1.871, 95% CI 0.723-4.844, p-value 0.1966). Average extra cost for MS was £1,714, during the first 12 months after AVR. 82 83 **Conclusions:** Compared to FS for AVR, MS did not result in shorter hospital stay, faster 84 recovery or improved survival and was not cost-effective. MS approach is not superior to FS for performing AVR. 85

86 Word count for Abstract: 248

#### 87 Introduction

Aortic valve replacement (AVR) is the second commonest cardiac surgery in the UK [1] with
an increasing proportion of older patients [1, 2]. Minimal access AVR (mAVR) might
shorten hospital stay and postoperative recovery period and could be beneficial if offered
safely and cost-effectively.

92

93 Currently, most AVRs are performed safely through full median sternotomy (FS) [2-6].

94 However, mAVR may be associated with less postoperative pain, blood loss, pulmonary and

95 wound complications and shorter hospital stay [2]. The most commonly practised mAVR

96 involves mini-sternotomy (MS), which could potentially hasten postoperative recovery,

97 shorten hospital stay and improve patient satisfaction [2-10].

98

99 Most studies comparing MS and FS for AVR are non-randomised. Although systematic 100 reviews with meta-analyses [11, 12] have been conducted, inadequate statistical power and 101 heterogeneity of studies calls for prospective, randomised control trials (RCTs) to assess benefits and risks of mAVR. Published evidence on cost-effectiveness comparing MS to FS 102 103 is sparse and weak. A recent review comparing cost-effectiveness of FS and MS called for a 104 well-designed RCT to evaluate cost-effectiveness of mAVR up to at least a year after surgery 105 [13]. Recently, a propensity-matched study from the UK national data concluded that mAVR 106 is safe and was associated with shorter postoperative hospital stay [14]. The authors 107 concluded that although general clinical equipoise exists between FS and MS, it is essential to have a well-constructed and adequately powered RCT before widespread adoption of MS. 108 109 This retrospective study did not analyse cost-effectiveness of either surgical approach. 110

111 The Mini-Stern trial assessed whether MS is superior to FS in shortening postoperative 112 recovery time and improving patient outcomes without compromising patient safety. It also assessed cost-effectiveness of MS from the perspective of the UK NHS as a health care 113 114 provider. 115 **Materials and Methods** 116 Mini-Stern was a two-centre, pragmatic, open-label RCT conducted in the UK. Patients were 117 randomised (1:1) to AVR either by MS or FS. 118 119 **Sample Size** 120 121 Considering four published RCTs [5, 6, 9, 10] and two cohort studies [7, 8], a 20% reduction 122 in hospital stay from 11.7 to 9.36 days was considered clinically significant. Based on an internal audit of 252 first-time elective AVRs performed at Papworth Hospital in 2007/08 123 (mean hospital stay 11.7 days, SD 6.2), to detect this change with 80% power and 2-sided 124 125 significance of 5%, 110 patients per group were required. As randomisation was performed on the day of surgery after induction of anaesthesia and introduction of the transoesophageal 126 echocardiogram (TOE) probe, no subjects dropped out between randomisation and surgery 127 thereby making the total trial recruitment target, 220 patients. 128 129

### 130 Recruitment

131 Adult patients undergoing first-time isolated AVR were included. Exclusion criteria included

emergency AVR, LVEF $\leq$  30%, chest wall deformities, severe COPD (FEV<sub>1</sub> or TLCO < 40%)

133 predicted),  $BMI > 35 kg/m^2$ , concomitant cardiac surgery, redo-surgery and inability to

134 perform TOE. Details of patient enrolment are given in the online protocol.

135

#### 136 Randomisation

| 137        | Randomisation (1:1) used random permuted blocks of variable lengths (6 or 8), stratified by                                                                                |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 138        | surgeon and valve prosthesis (bio-prosthetic or mechanical). Random allocations were pre-                                                                                  |
| 139        | generated, held in secure files by Papworth Trials Unit. During early days of the trial, TOE                                                                               |
| 140        | probe could not be passed in four patients due to technical reasons. These patients underwent                                                                              |
| 141        | the allocated procedure and were included in the trial. Later the Trial Steering Committee                                                                                 |
| 142        | decided that under such circumstances, MS would be unsafe and patients should be excluded                                                                                  |
| 143        | from the trial to FS. Since eligibility for MS required TOE, in order to avoid post-                                                                                       |
| 144        | randomisation drop-out, group allocation for the study subjects was retrieved via telephone                                                                                |
| 145        | by theatre staff soon after anaesthesia and introduction of the TOE probe. Due to the nature                                                                               |
| 146        | of interventions, this trial could not be blinded.                                                                                                                         |
| 147        |                                                                                                                                                                            |
| 148        | Outcomes                                                                                                                                                                   |
| 149        | Primary endpoints: Two closely related primary endpoints were measured. Firstly, length                                                                                    |
| 150        | of postoperative hospital stay (days between surgery and actual hospital discharge) which is                                                                               |
| 151        | easily measured, a surrogate for early postoperative events and sensitive to outcomes that                                                                                 |
| 152        | affect health-related quality of life (HRQoL). Secondly, the interval in days between surgery                                                                              |
| 153        | and the patient being medically fit for discharge. To reduce investigator bias, standard                                                                                   |
| 154        | discharge criteria were followed to decide the day of fitness for discharge. This endpoint was                                                                             |
| 155        |                                                                                                                                                                            |
|            | chosen to address exogenous effects (social factors, lack of transport, non-availability of                                                                                |
| 156        | chosen to address exogenous effects (social factors, lack of transport, non-availability of space in nursing homes etc.) that commonly delay hospital discharge in the UK. |
| 156<br>157 |                                                                                                                                                                            |

158 **Clinical secondary endpoints:** duration of surgery, total theatre time, aortic cross-clamp

and cardiopulmonary bypass (CPB) times, blood loss in the first 12 hours after surgery,

160 transfusion of blood and clotting products in the first 48 hours (blood transfusion trigger was

| 161 | haemoglobin level $< 80g/L$ ), frequency of re-intubation, time to initial extubation,             |
|-----|----------------------------------------------------------------------------------------------------|
| 162 | mediastinal drain removal and first independent mobilisation, daily pain scores at rest and on     |
| 163 | deep breath (over the first ten days or until hospital discharge) on a scale of 0 to 10, LVEF      |
| 164 | and severity of para-prosthetic regurgitation at hospital discharge and at 6 months, and time      |
| 165 | to all-cause death. Definitions of adverse events and details of their reporting are in the online |
| 166 | protocol. To exclude bias, clinical outcome data were collected by research team who were          |
| 167 | not involved in routine care of subjects, following standardised protocols.                        |
| 168 |                                                                                                    |
| 169 | Non-clinical secondary endpoints: Health-related Quality of Life and Healthcare resource           |
| 170 | use.                                                                                               |
| 171 | HRQoL: Patients completed EQ-5D-3L [15] and SF-36 [16, 17] questionnaires at baseline,             |
| 172 | 6 weeks, 6 months and 12 months following surgery. EQ-5D-3L was repeated on fourth                 |
| 173 | postoperative day and at discharge.                                                                |
| 174 | Healthcare resource use: Patient-specific resource use collected from hospital records and         |
| 175 | patient interviews during the primary admission included phases of care including operative        |
| 176 | surgery, critical care, post-surgical ward care and medications. Post-discharge resource use       |
| 177 | included attending wound clinics, community nurse visits, physiotherapy sessions,                  |
| 178 | occupational therapy services, medical tests, cost of analgesics and other drugs and further       |
| 179 | hospitalisation within the first year after AVR.                                                   |
| 180 |                                                                                                    |
| 181 | Surgical details                                                                                   |
| 182 | All participating surgeons were consultants experienced in performing AVR by both FS and           |
| 183 | MS. They followed the operative surgical protocol as described below.                              |
| 184 | MS approach: With the patient anaesthetised as per standard protocol, skin was incised from        |
| 185 | half-way between the suprasternal notch and the sternal angle to the level of the fourth           |

186 intercostal space, measuring approximately 8cm. The manubrium was divided in the midline 187 from the suprasternal notch inferiorly and then into the right 4th intercostal space. Thymus was divided and pericardium opened exposing the ascending aorta, aortic root and right atrial 188 189 appendage. A loading dose of unfractionated heparin 300U/kg followed by boluses of 5000U was administered to achieve activated clotting time above 450 seconds. Aorta was 190 191 cannulated using a wired flexible aortic cannula. Right atrial appendage was cannulated using 192 a flat venous cannula and CPB commenced. The ascending aorta was cross-clamped and 193 intermittent, antegrade, cold blood cardioplegia administered. The aorta was then incised 194 open in an oblique or transverse fashion, the diseased valve excised and annulus decalcified. A suitably sized aortic valve prosthesis was inserted using either horizontal mattress, 2-0 195 196 Ethibond sutures or semi-continuous, 2-0 Prolene sutures. Surgeons adopted either of these 197 suture techniques and adhered to the same technique irrespective of the type of valve prosthesis or the surgical approach. Aortotomy was then closed, heart de-aired, right atrial 198 199 and ventricular epicardial pacing wires inserted and patient weaned off CPB. After 200 confirming satisfactory functioning of the aortic valve prosthesis by TOE, heparin was reversed with protamine (1mg/100U of heparin). Chest drains were inserted into the anterior 201 mediastinum, posterior pericardial space and pleural space if necessary. Sternal wires were 202 inserted and incision closed in layers. Conversion to FS was performed to ensure patient 203 safety if access was difficult or if intraoperative complications occurred. 204

205

FS approach: Anaesthesia and positioning of patients was the same as for MS approach.
The skin incision was made between the suprasternal notch and the xiphoid process and
sternum divided in the midline from the suprasternal notch to the xiphoid process. A twostage venous cannula was used for atrial cannulation. Remaining steps were similar to MS
approach.

#### 211 Statistical analysis

212 A

2 Analyses of primary and secondary endpoints used intention-to-treat and included all

213 randomised patients. Unless stated otherwise, statistical models included treatment (MS vs.

FS), valve (mechanical vs. bio-prosthetic) and sex as fixed effects, and surgeons as random

effects. Hypothesis testing was two-sided at the 5% significance level, with no adjustments

for multiple testing. All confidence intervals (CI) were estimated at the 95% confidence level.

217 Distributions of time-to-event endpoints were compared between study groups using Kaplan-218 Meier curves and log-rank tests (stratified by sex, valve and surgeon). Hazard ratios (HR) for 219 MS relative to FS were estimated from a Cox model. The null hypothesis of no treatment 220 effect (HR = 1) was tested. Patients who were lost to follow-up, withdrew or died before the 221 event were censored at the latest time they were known to be event-free. Models were 222 checked by plotting Schoenfeld and deviance residuals. For primary endpoints, Cox models were re-fitted using the per-protocol population and in sensitivity analyses (Appendix A. 223 224 Table A4).

Need for reintubation and other dichotomous endpoints were compared between groups by estimating a MS/FS odds ratio (OR) via logistic regression. EQ-5D, SF-36 and pain scores were modelled using repeated measures linear regression. Where possible, random intercepts and random time coefficients for patients were included. For EQ-5D and SF-36, fixed effects for baseline scores were included. Models were fitted using complete cases, then re-fitted with multiple imputation of missing scores via chained equations.

231 Serious adverse events (SAEs) were analysed in the safety population according to

intervention received. Patients randomised to MS who crossed over to FS prior to surgery

233 were considered to have received FS; those who crossed over after MS had commenced were

considered to have received MS. Rates of SAEs were explored using Poisson regression witha random patient effect.

236 CONSORT guidelines [18] were followed. Analyses were performed in SAS version 9.4

237 (SAS Institute Inc., Cary, NC, USA). No interim analyses were undertaken but reports were

238 presented annually to the Data Monitoring and Ethics Committee.

#### 239 Economic analysis

Unit costs were obtained from nationally published sources in the UK [19, 20, 21, 22] or 240 241 from the Finance department, Papworth Hospital when the former did not provide the 242 required information. Total cost per patient was calculated by summing resource use items multiplied by unit costs across the in-patient stay and the 12-month postoperative follow-up 243 period (Appendix B. Table B7). Health state utilities from the EQ-5D-3L and SF-36, based 244 245 on UK value sets [15, 23] were used to generate quality-adjusted life years (QALYs) using the area under the curve method and assigning a value of zero from date of death. Missing 246 values were imputed using chained predictive mean matching, stratified by treatment and 247 248 conditional on age, sex and baseline EQ-5D-3L.

249

Differences in mean costs and QALYs were estimated using seemingly unrelated regression,
controlling for age, sex, valve, baseline EQ-5D-3L and treatment, to accommodate skewness
[24]. Uncertainty in cost-effectiveness was estimated by drawing 1000 bootstrapped samples
and conducting probabilistic sensitivity analysis. Results are presented as incremental net
monetary benefit at various thresholds of willingness to pay per QALY, cost-effectiveness
planes and cost-effectiveness acceptability curves. Deterministic sensitivity analyses explored
effects of using complete cases only, SF6D-based QALY estimates, the procedure inpatient

admission only, excluding patients who died and excluding additional equipment costs(Appendix B. Table B11).

259

260 **Results** 

Overall 1024 patients were screened between 28 January 2010 and 13 April 2015, of whom
222 were recruited and randomised to MS (118) or FS (104). One-year follow-up was
completed on 23 May 2016.

264 Study groups were similar at baseline except for a non-significant sex imbalance (Table 1). In 265 this trial, MS was not completed in 14 (12%) of 118 patients randomised to MS. Of these patients, 6 (5%) had conversion from MS to FS due to reasons listed in Figure 1. The 266 267 remaining 8 patients underwent FS after randomisation to MS but without initial MS incision as MS was considered unsafe/impractical. The true rate of intraoperative conversion of MS 268 to FS was therefore 5%. Four patients (2%, Table 2) were censored before discharge: one 269 270 withdrawal before surgery (FS) and three deaths (all randomised to and received MS). A 271 further thirteen (6%) were censored before fitness for discharge: six discharged to acute hospital (three MS, three FS), seven to long-term care or rehabilitation (three FS, four MS). 272 273 Mean time to hospital discharge was longer for MS than FS (9.5 vs. 8.6 days), as was mean 274 time to fitness to discharge (8.5 vs. 7.5 days). However, distributions of these endpoints were similar in both groups (Figure 2, Table 2). The difference was not statistically significant in 275 276 either primary analyses using Cox models (Figure 3), log-rank tests (Table 2) or sensitivity analyses (Appendix A. Table A4). The gamma-distributed frailty term in the Cox models was 277 estimated to have variance 0.006675 for time to fitness and 0.000100 for time to discharge, 278

279 suggesting that surgeon heterogeneity was negligible.

280 Time to drain removal (including drains inserted/retained to treat complications) was longer 281 for MS, but times to extubation and independent mobilisation did not differ significantly 282 between groups (Table 2, Figure 3), nor did numbers of patients re-intubated (six MS vs. five 283 FS, OR 1.039, CI 0.306-3.531, p=0.9512). Statistically significant HRs indicated longer surgery, CPB, cross-clamp and theatre times for MS (Figure 3). No significant differences 284 285 were seen in blood loss (Appendix A. Table A3), or in numbers of patients requiring 286 transfusion of blood (50 MS vs. 51 FS, OR 0.797, CI 0.453-1.402, p=0.4310) or clotting 287 products (11 MS vs 4 FS, OR 2.616, CI 0.801-8.541, p=0.1112). Regression models for pain at rest, EQ-5D utilities and SF-36 domain scores (Appendix A. 288

Tables A6, A7, A8) estimated greater rate of improvement over time in MS patients for three SF-36 domains (social functioning, vitality and role physical). After multiple imputation, the difference was only significant for the role physical domain (Appendix A. Table A9). Pain on deep breath was not analysed as only less than half the data were collected due to poor patient compliance.

Nine (4%) patients died within a year of surgery: seven (6%) MS, two (2%) FS. Five deaths
were possibly related to treatment (four MS, one FS), none were probably or definitely
related (Appendix A. Table A15). Overall, twelve (10%) MS and seven (7%) FS patients died
during follow-up (mean follow-up 760 days: 745 MS, 777 FS). Time to all-cause death,
adjusted for age, showed a moderately large but statistically non-significant HR (MS/FS) of
1.871 (CI 0.723-4.844, p=0.1966).

300 Safety analyses excluded one patient who was withdrawn before surgery. There were

301 significantly more SAEs in MS recipients (rate ratio 1.615, CI 1.070-2.437, p=0.0225)

302 (Appendix A. Table A11). The numbers of patients experiencing SAEs were not

303 significantly different (OR 1.559, CI 0.895-2.715, p=0.1161). Incidence of para-prosthetic

regurgitation did not differ significantly between groups (Appendix A. Table A13). Seven
patients developed pericardial collection (three MS vs four FS, OR 0.680, CI 0.146-3.178,
p=0.6229). Wound infections (including superficial and deep infections) were more common
in FS recipients (thirteen FS vs four MS, OR 0.312, CI 0.097-1.005, p=0.0511). Deep sternal
wound infection developed in one MS and one FS recipient, neither of whom required plastic
surgical repair.

310 Economic analyses are summarised in Table 4. There was additional cost for MS relative to

311 FS (£1,714 per patient, p=0.0765) in the first year following surgery. MS patients had (non-

significant) better EQ-5D-based QALYs (0.03 per patient, p=0.1509). The incremental cost

313 per QALY gained was £61,379, but after adjusting for baseline characteristics, MS had

314 higher costs and lower QALYs (i.e. was dominated). In deterministic and probabilistic

sensitivity analyses, MS was either dominated or had a very large cost per QALY, except for

the complete case analysis (Appendix B. Tables B11, B12).

#### 317 Discussion

The UK NHS is a free for patient at point-of-delivery healthcare system. Apart from good recovery, hospital discharge of a significant proportion of elderly patients depends on the timely availability of social care services in the community. The Mini-Stern trial is the first RCT comparing FS and MS for isolated AVR when performed for UK NHS patients.

In this prospective, pragmatic, open-label RCT, MS did not reduce the total duration of
hospital stay after AVR. As hospital discharge is sometimes delayed due to social factors, we
included time until fit for discharge as a second primary endpoint. This was also not reduced
by MS. These endpoints were recorded by physiotherapists based on a common discharge

327 protocol with specific clinical milestones to achieve, thereby excluding physician-induced328 bias.

329

In this study operation, total theatre, aortic cross-clamp and CPB times were significantly prolonged with MS. This was expected as in general, minimal access valve operations take longer [5, 9]. This is justifiable if MS resulted in either faster recovery, shorter postoperative stay, reduced cost of treatment or more importantly a significant reduction in adverse events and therefore superior patient safety. In this RCT, MS did not achieve these benefits and hence we feel that the prolonged operation time, total theatre, cross-clamp and CPB times are not justifiable for performing AVR through MS.

337

338 Previously, two meta-analyses [11, 12] concluded that mAVR approaches are superior in certain aspects of postoperative recovery. However, both included studies on mini-339 340 thoracotomy approach for AVR, and therefore inferences drawn cannot be extrapolated to 341 MS. A retrospective propensity-matched analysis of data from a UK national database concluded that MS is safe and comparable to conventional AVR [14]. The authors found that 342 MS resulted in a shorter postoperative hospital stay, which disagrees with our findings. 343 However, a propensity-matched study can suffer from selection bias if its matching algorithm 344 produces treatment groups that are unbalanced in some unobserved characteristics. Recently, 345 346 a retrospective study demonstrated safety of right thoracotomy minimally invasive isolated and concomitant AVR in patients of all age groups [25]. As randomisation balances study 347 groups in known and unknown characteristics, results of the Mini-Stern trial should be more 348 349 reliable than non-randomised studies.

350

351 Previous studies investigating cost-effectiveness provided unclear answers. A report 352 analysing registry data from patients who underwent isolated primary AVR [26] reported 353 lower hospital cost when AVR was performed through right anterior thoracotomy compared 354 to sternotomy-based approaches with no significant differences in outcome. The main reasons attributed to lower costs were earlier hospital discharge and reduced use of blood products. 355 356 Ghanta et al [27] noted that exclusion of rehabilitation costs could alter this finding. A review by Glauber et al [13], based on uncontrolled studies, noted that higher cost of instruments and 357 358 devices in mAVR could be offset by economic advantage gained by shorter hospital stay and lower complication rates. The Mini-Stern trial assessed cost-effectiveness using a range of 359 sensitivity analyses, but only the complete case analysis showed MS to be cost-effective, 360 361 suggesting lower costs but slightly worse outcomes with MS. However, this analysis used a 362 potentially unrepresentative sample of just 90 patients. Our analysis was restricted to the 363 first year following operation without long-term analysis beyond 1 year.

364

365 This RCT is robust with many merits including on-table randomisation, comprehensive and independent outcome assessment without physician-bias, longer-term clinical assessment, 366 HRQoL analysis and economic analysis. However there were some limitations. Although we 367 report on secondary endpoints, this trial was powered only to address the primary endpoint. 368 A total of 14 patients (12%) allocated to MS received FS, which could be another limitation. 369 370 However, only 6 patients (5%) had true conversion after an attempted MS, while 8 patients (6.7%) went on to FS for safety reasons. Although this RCT took place in only two centres, 371 thereby limiting generalisability, recruitment by eight surgeons improves generalisability. A 372 total of 1024 patients were screened to recruit 222 (21.7%) patients. Although this 373 374 potentially suggests selection bias, only 125 eligible patients (12.2%) failed recruitment while the remaining 667 patients (65.1%) did not meet inclusion criteria. Blinding was not 375

| 376 | practical as sternotomy dressings were usually changed 48 hours after surgery and patients    |
|-----|-----------------------------------------------------------------------------------------------|
| 377 | became aware of the approach. This could have caused bias in self-reported outcomes.          |
| 378 | Missing 'pain at rest' data were unlikely to be missing at random, and therefore imputation   |
| 379 | might not have addressed all potential biases. Despite having two primary outcomes, we did    |
| 380 | not adjust for multiple testing. However, as neither showed a significant difference between  |
| 381 | groups, this would not have affected our conclusions.                                         |
| 382 |                                                                                               |
| 383 | In conclusion, MS for AVR did not result in quicker recovery or earlier hospital discharge.   |
| 384 | MS resulted in longer operations, increased costs, and resulted in more SAEs than FS.         |
| 385 | Overall, this pragmatic RCT did not provide evidence that MS results in better clinical or    |
| 386 | quality of life outcomes, or that MS is cost-effective compared to FS in the first year after |
| 387 | AVR.                                                                                          |
| 388 |                                                                                               |
| 389 | Acknowledgement:                                                                              |
| 390 | Prof Linda Sharples was part-funded by the MRC, UK. We thank Dr Matt Glover, Ms               |
| 391 | Jacinta Nalpon and Mr Chelliah Paramasivam for their contributions.                           |
| 392 |                                                                                               |
| 393 |                                                                                               |
| 394 |                                                                                               |
| 395 |                                                                                               |
| 396 |                                                                                               |
| 397 |                                                                                               |
| 398 |                                                                                               |
| 399 |                                                                                               |
| 400 |                                                                                               |

#### 401 Legends

- 402 Central Picture Legend: Duration of hospital stay after AVR: FS versus MS.
- 403 Video Legend: MS approach for AVR.
- 404 **Figure 1.** Trial flow diagram.
- 405 Figure 2. Kaplan-Meier curves for primary endpoints. Points indicate censoring and dashed
- 406 lines represent 95% confidence intervals.
- **Figure 3**. Forest plot of HRs and 95% confidence intervals from Cox models.
- 408 Figure 4. Cost-effectiveness planes. Proportion of points below each threshold gives the
- 409 probability that MS is more cost-effective than FS. This probability is 3.7% for willingness to
- 410 pay  $\pounds 20,000/QALY$  and 5.1% for willingness to pay  $\pounds 30,000/QALY$ .

## **Table 1. Baseline characteristics**

|                                      | <b>MS</b> ( <b>n</b> = <b>118</b> ) | <b>FS</b> ( <b>n</b> = 104) |
|--------------------------------------|-------------------------------------|-----------------------------|
| Age (years) - Mean (SD)              | 71.3 (12.3)                         | 72.1 (10.9)                 |
| BMI (kg/m <sup>2</sup> ) – Mean (SD) | 26.6 (3.2)                          | 27.7 (3.7)                  |
| Sex - frequency (%)                  |                                     |                             |
| Female                               | 53 (45%)                            | 57 (55%)                    |
| Male                                 | 65 (55%)                            | 47 (45%)                    |
| Valve type - frequency (%)           |                                     |                             |
| Mechanical                           | 15 (13%)                            | 14 (13%)                    |
| Tissue                               | 103 (87%)                           | 90 (87%)                    |
| EuroSCORE (%) - Mean (SD)            | 5.9 (2.1) *                         | 6.1 (2.1)                   |

413 \* EuroSCORE was missing for one MS patient.

|                                           | MS (n = 118)      | FS (n = 104)      | p-value* |
|-------------------------------------------|-------------------|-------------------|----------|
| Time to discharge (days)                  | 7 (6, 10)         | 7 (6, 10)         | 0.6924   |
| Censored                                  | 3                 | 1                 |          |
| Time until fit for discharge (days)       | 6 (5, 10)         | 6 (5, 9)          | 0.5597   |
| Censored                                  | 10                | 7                 |          |
| Time to independent mobilisation (days)   | 4 (3, 7)          | 4 (3, 6)          | 0.5819   |
| Censored                                  | 8                 | 7                 |          |
| Time to mediastinal drain removal (hours) | 26.1 (20.6, 53.3) | 22.5 (19.4, 37.8) | 0.0157   |
| Censored                                  | 2                 | 2                 |          |
| Time to extubation (hours)                | 9.2 (7.8, 12.1)   | 8.3 (6.8, 11.7)   | 0.5488   |
| Censored                                  | 1                 | 1                 |          |
| Theatre time (minutes)                    | 191 (172, 225)    | 176 (152, 203)    | < 0.0001 |
| Censored                                  | 0                 | 0                 |          |
| CPB time (minutes)                        | 80 (70, 95)       | 66 (52, 85)       | < 0.0001 |
| Censored                                  | 0                 | 0                 |          |
| Cross-clamp time (minutes)                | 65 (53, 76)       | 49 (39, 64)       | < 0.0001 |
| Censored                                  | 0                 | 0                 |          |
| Surgery duration (minutes)                | 163 (139, 190)    | 149 (114, 167)    | < 0.0001 |
| Censored                                  | 3                 | 4                 |          |

## 417 Table 2. Kaplan-Meier medians (quartiles) for time-to-event endpoints

418

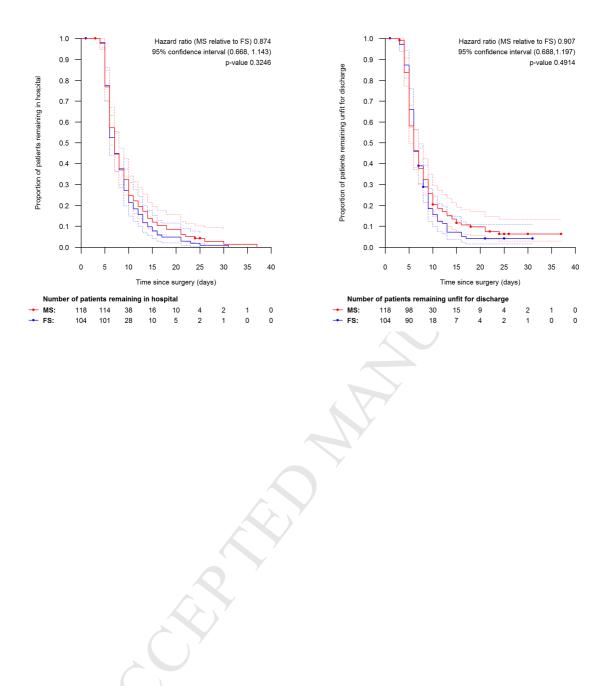
\*Log-rank test. Seven surgery durations were not recorded and censored at 1 minute.

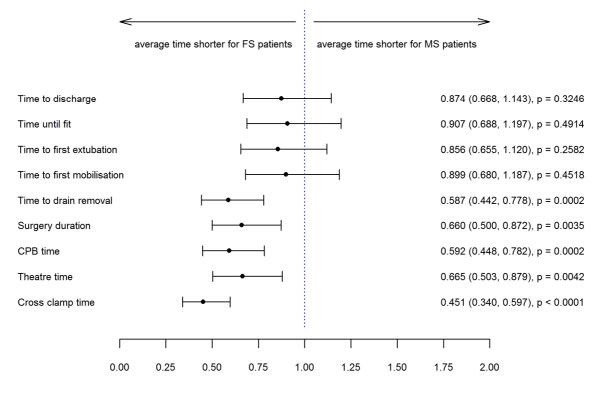
# 420 Table 3. Costs, QALYs and Cost-effectiveness

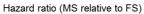
| Cost and QALYs                                         | FS (I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>FS</b> ( <b>n</b> = <b>118</b> )                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MS (n = 104)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| (with imputation)                                      | Mean Cost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SD                                                                                                                                                                                                                                                                                                                                                                                              | Mean Cost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                        | per patient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                 | per patient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Theatre use                                            | £3,824                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | £1,243                                                                                                                                                                                                                                                                                                                                                                                          | £4,422                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | £2,053                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Additional surgical items                              | £16.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | £0.0                                                                                                                                                                                                                                                                                                                                                                                            | £52.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | £0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Critical care (ITU)                                    | £1,834                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | £3,023                                                                                                                                                                                                                                                                                                                                                                                          | £2,934                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | £5,030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Cardiac ward                                           | £2,744                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | £1,664                                                                                                                                                                                                                                                                                                                                                                                          | £2,676                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | £1,500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Physio- and Occupational Therapy                       | £77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | £55                                                                                                                                                                                                                                                                                                                                                                                             | £78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | £68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Rehabilitation                                         | £384                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | £1,878                                                                                                                                                                                                                                                                                                                                                                                          | £263                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | £1,621                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Acute hospital                                         | £347                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | £1,919                                                                                                                                                                                                                                                                                                                                                                                          | £298                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | £1,971                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Sub-total cost                                         | £9,226                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | £6,511                                                                                                                                                                                                                                                                                                                                                                                          | £10,724                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | £8,850                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Hospital Re-admission                                  | £418                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | £1,475                                                                                                                                                                                                                                                                                                                                                                                          | £575                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | £1,863                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Follow up tests                                        | £224                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | £258                                                                                                                                                                                                                                                                                                                                                                                            | £282                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | £279                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Follow up healthcare visits                            | £373                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | £359                                                                                                                                                                                                                                                                                                                                                                                            | £311                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | £263                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Sub-total cost                                         | £1,015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | £1,778                                                                                                                                                                                                                                                                                                                                                                                          | £1,168                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | £2,079                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Drugs                                                  | £379                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | £548                                                                                                                                                                                                                                                                                                                                                                                            | £441                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | £977                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Total cost over 12 months                              | £10,620                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | £7,624                                                                                                                                                                                                                                                                                                                                                                                          | £12,333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | £9,864                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Incrementa                                             | ll cost at 12 mont                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | hs (MS-FS)                                                                                                                                                                                                                                                                                                                                                                                      | £2,154.0 (S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SE £36)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Incremental EQ-5D-3L QALYs (MS-FS) -0.0122 (SE 0.0008) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0008)                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| ICER MS dominated by FS                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| NMB (at WTP £20,000/QALY) -£2,397                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 97                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| NM                                                     | NMB (at WTP £30,000/QALY) -£2,519                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                        | (with imputation)  Theatre use Additional surgical items Critical care (ITU) Cardiac ward Physio- and Occupational Therapy Rehabilitation Acute hospital Acute hospital Cub-total cost Hospital Re-admission Follow up tests Follow up healthcare visits Follow up healthcare visits Drugs Total cost over 12 months Incremental Increment | (with imputation)Mean Cost<br>per patientTheatre use£3,824Additional surgical items£16.52Critical care (ITU)£1,834Cardiac ward£2,744Physio- and Occupational Therapy£77Rehabilitation£384Acute hospital£347Follow up tests£2,264Follow up tests£224Follow up healthcare visits£373Drugs£379Total cost over 12 months£10,620Incremental EQ-5D-3L QALYIncremental EQ-5D-3L QALYNMB (at WTP £20,0) | (with imputation)       Mean       Cost       SD         Image: Partient       Per patient       F1,243         Additional surgical items       £16.52       £0.0         Critical care (ITU)       £1,834       £3,023         Cardiac ward       £2,744       £1,664         Physio- and Occupational Therapy       £17       £55         Rehabilitation       £384       £1,878         Acute hospital       £347       £1,919         Sub-total cost       £9,226       £6,511         Hospital Re-admission       £418       £1,475         Follow up tests       £373       £258         Follow up tests       £373       £359         Drugs       £379       £548         Total cost over 12 months       £10,620       £7,624         Incremental EQ-5D-3L QALYS (MS-FS)       Incremental EQ-5D-3L QALYS (MS-FS)         MMB (at WTP £20,000/QALY)       MS d | Image         Main         Cost         SD         Mean         Cost           per patient         per patient         per patient         per patient         per patient           Theatre use         £3,824         £1,243         £4,422         Additional surgical items         £16.52         £0.0         £52.0           Critical care (ITU)         £1,834         £3,023         £2,934         Cardiac ward         £2,744         £1,664         £2,676           Physio- and Occupational Therapy         £77         £55         £78         F8           Rehabilitation         £384         £1,878         £263         F0.0         F208           Acute hospital         £19,226         £6,511         £10,724         F1097         F55         F575           Follow up tests         £224         £258         £282         F010w up tests         £1,015         £1,778         £1,168           Drugs         £379         £548         £441         F1,233         F1,168         F1,233         F1,243         F1,243         F1,243         F1,2433         F1,243         F1,243         < |  |

| adjustment)   | )                                                                                                      |
|---------------|--------------------------------------------------------------------------------------------------------|
| SD: standar   | d deviation, SE: standard error, WTP: willingness to pay, NMB: net monetary benefit, ICER: incremental |
| cost-effectiv | veness ratio. * Incremental costs and effects estimated using SUR, adjusting for baseline differences. |
| 421           |                                                                                                        |
| 422           |                                                                                                        |
| 423           |                                                                                                        |
| 424<br>425    |                                                                                                        |
| 425           |                                                                                                        |
| 420           |                                                                                                        |
| 428           |                                                                                                        |
| 429           |                                                                                                        |
| 430           |                                                                                                        |
| 431           |                                                                                                        |
| 432           |                                                                                                        |
| 433           |                                                                                                        |
| 434           |                                                                                                        |
| 435           |                                                                                                        |
| 436           |                                                                                                        |
| 437           |                                                                                                        |
| 438           |                                                                                                        |
| 439           |                                                                                                        |
| 440           |                                                                                                        |
| 441           |                                                                                                        |
| 442           |                                                                                                        |
| 443           |                                                                                                        |
| 444           |                                                                                                        |
| 445           |                                                                                                        |
| 446<br>447    |                                                                                                        |
| 447           |                                                                                                        |
| 448           |                                                                                                        |
| 450           |                                                                                                        |
| 451           |                                                                                                        |
| 452           |                                                                                                        |
| 453           |                                                                                                        |
| 454           |                                                                                                        |
| 455           |                                                                                                        |
| 456           |                                                                                                        |
| 457           |                                                                                                        |
| 458           |                                                                                                        |
| 459           |                                                                                                        |
| 460           |                                                                                                        |
| 461           |                                                                                                        |
| 462           |                                                                                                        |
| 463           | References                                                                                             |
| 464           |                                                                                                        |
|               |                                                                                                        |

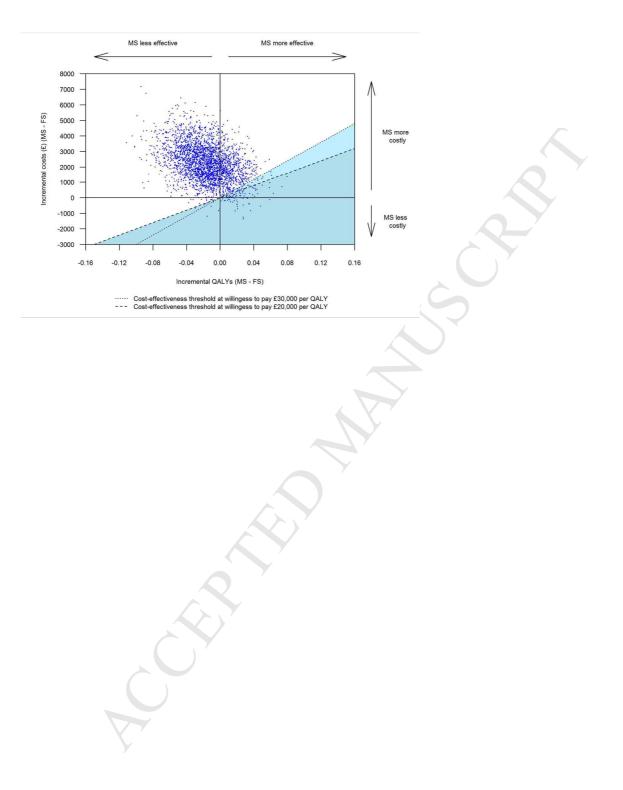
- 465 [1] The Society for Cardiothoracic Surgery in Great Britain & Ireland.
- 466 http://bluebook.scts.org/#ActivityRates
- 467 [2] Rosengart TK, Feldman T, Borger MA, Vassiliades TA Jr, Gillinov AM, Hoercher KJ, et
- 468 al. Percutaneous and minimally invasive valve procedures: a scientific statement from the
- 469 American Heart Association Council on Cardiovascular Surgery and Anesthesia, Council on
- 470 Clinical Cardiology, Functional Genomics and Translational Biology Interdisciplinary
- 471 Working Group, and Quality of Care and Outcomes Research Interdisciplinary Working
- 472 Group. Circulation. 2008;117:1750-67.
- [3] Merk DR, Lehmann S, Holzhey DM, Dohmen P, Candolfi P, Misfeld M, et al. Minimal
- 474 invasive aortic valve replacement surgery is associated with improved survival: a propensity-
- 475 matched comparison. Eur J Cardiothorac Surg. 2015;47:11-7.
- 476 [4] Furukawa N, Kuss O, Aboud A, Schönbrodt M, Renner A, Hakim MK, et al.
- 477 Ministernotomy versus conventional sternotomy for aortic valve replacement: matched
- 478 propensity score analysis of 808 patients. Eur J Cardiothorac Surg. 2014;46:221-6.
- 479 [5] Bonacchi M, Prifti E, Giunti G, Frati G, Sani G. Does ministernotomy improve
- 480 postoperative outcome in aortic valve operation? A prospective randomized study. Ann
- 481 Thorac Surg. 2002;73:460-5.
- 482 [6] Moustafa MA, Abdelsamad AA, Zakaria G, Omarah MM. Minimal vs median sternotomy
- 483 for aortic valve replacement. Asian Cardiovasc Thorac Ann. 2007;15:472-5.
- 484 [7] Sharony R, Grossi EA, Saunders PC, Schwartz CF, Ribakove GH, Culliford AT, et al.
- 485 Minimally invasive aortic valve surgery in the elderly: a case-control study. Circulation.
- 486 2003;108 Suppl 1:II43-7.
- 487 [8] Bakir I, Casselman FP, Wellens F, Jeanmart H, De Geest R, Degrieck I, et al. Minimally
- 488 invasive versus standard approach aortic valve replacement: a study in 506 patients. Ann
- 489 Thorac Surg. 2006;81:1599-604.

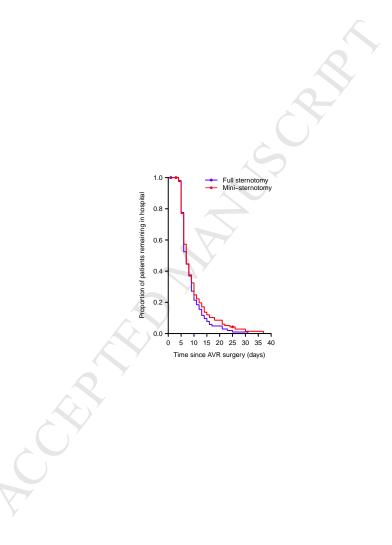

- 490 [9] Aris A, Camara ML, Montiel J, Delgado LJ, Galan J, Litvan H. Ministernotomy versus
- 491 median sternotomy for aortic valve replacement: a prospective, randomized study. Ann
- 492 Thorac Surg. 1999;67:1583-7.
- 493 [10] Dogan S, Dzemali O, Wimmer-Greinecker G, Derra P, Doss M, Khan MF, et al.
- 494 Minimally invasive versus conventional aortic valve replacement: a prospective randomized
- 495 trial. J Heart Valve Dis. 2003;12:76-80.
- 496 [11] Lim JY, Deo SV, Altarabsheh SE, Jung SH, Erwin PJ, Markowitz AH, et al.
- 497 Conventional versus minimally invasive aortic valve replacement: pooled analysis of
- 498 propensity-matched data. J Card Surg. 2015;30:125-34.
- 499 [12] Phan K, Xie A, Di EM, Yan TD. A meta-analysis of minimally invasive versus
- 500 conventional sternotomy for aortic valve replacement. Ann Thorac Surg. 2014;98:1499-511.
- 501 [13] Glauber M, Ferrarini M, Miceli A. Minimally invasive aortic valve surgery: state of the
- art and future directions. Ann Cardiothorac Surg. 2015;4:26-32.
- 503 [14] Attia RQ, Hickey GL, Grant SW, Bridgewater B, Roxburgh JC, Kumar P, et al.
- 504 Minimally invasive versus conventional aortic valve replacement. A propensity-matched
- study from the UK National Data. Innovations. 2016:11:15-23.
- 506 [15] Dolan P, Gudex C, Kind P. A social tariff for EuroQoL: results from a UK general
- 507 population survey (1995). Discussion Paper, no 138, University of York Centre for Health
- 508 Economics. https://www.york.ac.uk/che/pdf/DP138.pdf
- 509 [16] Brazier JE, Harper R, Jones NM, O'Cathain A, Thomas KJ, Usherwood T, et al.
- 510 Validating The SF-36 Health Survey Questionnaire: New Outcome Measure For Primary
- 511 Care. BMJ. 1992;305:160-4.
- 512 [17] Ware JE, Kosinski M, Gandek B. SF-36 Health Survey: Manual and Interpretation
- 513 Guide. Lincoln RI: Quality Metric Incorporated; 1993.


- 514 [18] Schulz KF, Altman DG, Moher D. CONSORT 2010 Statement: updated guidelines for
- reporting parallel group randomised trials. BMJ. 2010;340:c332
- 516 [19] Joint Formulary Committee. British National Formulary (BNF).
- 517 https://www.evidence.nhs.uk/formulary/bnf/current (July 2016)
- 518 [20] Department of Health. NHS reference costs 2014 to 2015.
- 519 https://www.gov.uk/government/publications/nhs-reference-costs-2014-to-2015 (July 2016)
- 520 [21] NHS Prescription Services Electronic Drug Tariff. http://www.drugtariff.nhsbsa.nhs.uk/
- 521 (July 2016)
- 522 [22] Curtis L, Burns A. Unit Costs of Health and Social Care 2015. Canterbury: Personal
- 523 Social Services Research Unit, University of Kent. http://www.pssru.ac.uk (July 2016)
- 524 [23] Brazier J, Roberts J, Deverill M. The estimation of a preference-based measure of health
- 525 from the SF-36. J Health Econ. 2002; 21:271-92.
- 526 [24] Faria, R, Gomes, M., Epstein, D, White, IR. A guide to handling missing data in cost-
- 527 effectiveness analysis conducted within randomised controlled trials. Pharmacoeconomics.
- **528** 2014;32:1157–1170.
- 529 [25] Lamelas J, Mawad M, Williams R, Weiss UK, Zhang Q, LaPietra A. Isolated and
- 530 concomitant minimally invasive minithoracotomy aortic valve surgery. J Thorac Cardiovasc
- 531 Surg. 2018;155:926-36.
- 532 [26] Rodriguez E, Malaisrie SC, Mehall JR, Moore M, Salemi A, Ailawadi G, et al.
- 533 Economic Workgroup on Valvular Surgery, Right anterior thoracotomy aortic valve
- replacement is associated with less cost than sternotomy-based approaches: a multi-institution
- analysis of 'real world' data. J Med Econ. 2014;17:846-52.
- 536 [27] Ghanta RK, Lapar DJ, Kern JA, Kron IL, Speir AM, Fonner E, et al. Minimally invasive
- 537 aortic valve replacement provides equivalent outcomes at reduced cost compared with


- 538 conventional aortic valve replacement: A real-world multi-institutional analysis. J Thorac
- 539 Cardiovasc Surg. 2015;149:1060-5.

|                                                 | National and a state of the sta |
|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Association and addition on a wide              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ended address patients in ~ 7.5                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Participant Income to 199                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                 | Deced obcit-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| And and advanced married in - 1                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                 | Webbare property and in 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Report to the should be made to 1 %             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| - InterMan                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A and A framework a 1970                        | Contribution in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1000 · 4                                        | 0010-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| · · · · · · · · · · · · · · · · · · ·           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Bala - 6                                        | Pala-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Count I dow up to - Nt                          | Constitute a local                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Webdown bester billew upon - 10<br>Minutes a la | Withdown Decise Adherr spring = 40<br>Mercel as = 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

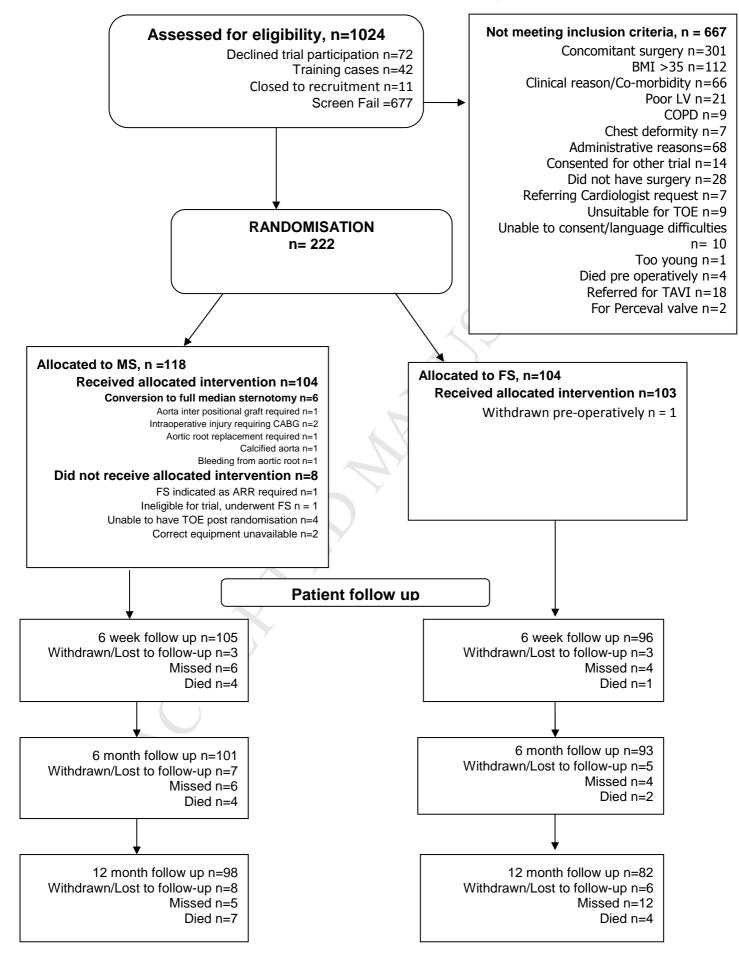

other the second










CER IN







### MiniStern Trial. CONSORT Flow Diagram



## Appendices

### Tables and figures:

| endix A: Statistical Analysis                                                                                                                                                                                                    |    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Table A1. All patients who underwent a redo sternotomy, or crossed over from mini- to full sternotomy, or were rand found to be ineligible                                                                                       |    |
| Table A2. Additional summaries of in-hospital endpoints                                                                                                                                                                          | 3  |
| Table A3. Additional summaries of operative endpoints                                                                                                                                                                            | 2  |
| Table A4. Results from Cox models and log-rank tests for primary and secondary endpoints                                                                                                                                         |    |
| Table A5. Summaries of pain at rest scores in the first ten days following surgery                                                                                                                                               |    |
| Table A6. Summaries of EQ-5D utility scores up to the 12 month follow-up                                                                                                                                                         |    |
| Table A7. Summaries of SF-36 domain scores up to the 12 month follow up                                                                                                                                                          | 8  |
| Table A8. Estimated treatment effects (MS - FS) and treatment-time interactions for SF-36 domain scores up to 12 m utility scores up to 12 months and pain scores up to discharge                                                |    |
| Table A9. Estimated treatment effects (MS-FS) and treatment-time interactions for SF-36 domain scores up to 12 mo<br>utility scores up to 12 months and pain scores up to discharge, after multiple imputation of missing scores |    |
| Figure A1. Forest plots of mean pain scores for the first 10 days following surgery, with 95% confidence intervals                                                                                                               |    |
| Figure A2. Forest plot of mean EQ-5D scores at each follow-up time, with 95% confidence interval                                                                                                                                 |    |
| Figure A3. Forest plot of mean SF36 domain scores at each follow-up time, with 95% confidence intervals                                                                                                                          | 14 |
| Table A10. Summaries heart function (LVEF) and respiratory function (FEV1)                                                                                                                                                       | 1: |
| Table A11. Frequency of non-fatal SAEs (number of patients) within one year of surgery, by treatment received                                                                                                                    |    |
| Table A12. Frequencies of non-death SAEs (and numbers of patients experiencing them), within a year of surgery, as severity, expectedness and relatedness, by treatment received                                                 |    |
| Table A13. Frequency of paraprosthetic regurgitation, by treatment received                                                                                                                                                      |    |
| Table A14. All wound infections within the first year after surgery, by treatment received                                                                                                                                       |    |
| Table A15. All deaths                                                                                                                                                                                                            |    |
| Figure A4. Kaplan-Meier curves for time to death by any cause                                                                                                                                                                    |    |
| endix B: Economic Evaluation                                                                                                                                                                                                     |    |
| Table B1. Unit costs                                                                                                                                                                                                             |    |
| Table B2. Summary of resource use (without imputation)                                                                                                                                                                           |    |
| Table B3. Missing follow-up resource use                                                                                                                                                                                         |    |
| Table B4. Incomplete data and imputation                                                                                                                                                                                         |    |
| Table B5. Summary of resource use                                                                                                                                                                                                |    |
| Table B6. Summary of deterministic sensitivity and scenario analyses undertaken                                                                                                                                                  |    |
| Table B7: Comparison of mean costs (SD) per patient up to 12 months post-randomisation (with imputation)                                                                                                                         |    |
| Table B8. Summary of utility values and QALYs                                                                                                                                                                                    |    |
| Figure B1. Distribution of total cost                                                                                                                                                                                            |    |
| Figure B2. Distribution of QALYs                                                                                                                                                                                                 |    |
| Table B9. Comparison of costs and QALYS (raw data, with imputation)                                                                                                                                                              |    |
| Table B10. Regression estimates of costs and QALYs                                                                                                                                                                               |    |
| Table B11. Deterministic sensitivity analysis (using difference MS - FS, adjusted for baseline)                                                                                                                                  |    |
| Table B12. Probabilistic sensitivity analysis (using difference MS - FS, adjusted for baseline)                                                                                                                                  |    |
| Figure B3. Cost effectiveness plane (using difference MS-FS, adjusted for baseline)                                                                                                                                              |    |
| Figure B4. Cost-effectiveness acceptability curve (EQ-5D)                                                                                                                                                                        |    |
| Figure B5. Net monetary benefit (controlling for baseline characteristics and missing data)                                                                                                                                      |    |
| Figure B6. Sensitivity analyses using difference (MS - FS), adjusted for baseline                                                                                                                                                |    |

### Appendix A: Statistical Analysis

|            | Allocated<br>treatment | Description                                                                                                               | Per-protocol<br>population | Safety population |
|------------|------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------|
|            |                        |                                                                                                                           |                            |                   |
| Redos      | FS                     | Return to theatre for ventricular septal defect closure and redo-AVR.                                                     | As FS                      | As FS             |
|            | FS                     | Return to theatre for tamponade and cardiac arrest. Redo sternotomy for tamponade.                                        | As FS                      | As FS             |
|            | MS                     | Return to theatre for tamponade MA bleed. Conversion to FS.                                                               | As MS                      | As MS             |
|            | MS                     | Return to theatre for bleeding. Redo FS.                                                                                  | As MS                      | As MS             |
|            | MS                     | Return to theatre for tamponade. Evacuation of clot/pericardial effusion.<br>Conversion to FS.                            | As MS                      | As MS             |
|            | MS                     | Return to theatre for cardiac arrest and tamponade. Emergency re-<br>sternotomy (FS), tamponade and aortotomy repair.     | As MS                      | As MS             |
|            | MS                     | Return to theatre for pericardial collection and early tamponade. PEA arrest.<br>Re-exploration on bypass. Completion FS. | As MS                      | As MS             |
|            | MS                     | Second return to theatre. Attempted weaning of ECMO and placement of RVAD. Removal of blood clot. Redo sternotomy.        | As MS                      | As MS             |
| Crossovers | MS                     | Aortic root replacement required, FS indicated.                                                                           | Excluded                   | As FS             |
|            | MS                     | FS indicated as unable to perform TOE.                                                                                    | Excluded                   | As FS             |
|            | MS                     | Aorta interposition graft required.                                                                                       | Excluded                   | As MS             |
|            | MS                     | FS indicated as unable to have TOE.                                                                                       | Excluded                   | As FS             |
|            | MS                     | Needed CABG due to intraoperative injury.                                                                                 | Excluded                   | As MS             |
|            | MS                     | Needed CABG due to intraoperative injury.                                                                                 | Excluded                   | As MS             |
|            | MS                     | FS indicated as unable to perform TOE.                                                                                    | Excluded                   | As FS             |
|            | MS                     | Required aortic root replacement, conversion to FS.                                                                       | Excluded                   | As MS             |
|            | MS                     | Patient randomised too early - unable to insert TOE probe.                                                                | Excluded                   | As FS             |
|            | MS                     | Did not have correct equipment in theatre.                                                                                | Excluded                   | As FS             |
|            | MS                     | Mini-sternotomy equipment not available.                                                                                  | Excluded                   | As FS             |
|            | MS                     | Bleeding.                                                                                                                 | Excluded                   | As MS             |
|            | MS                     | Patient had calcified aorta. Nowhere to cannulate safely.                                                                 | Excluded                   | As MS             |
| Ineligible | FS                     | Withdrawn from trial by surgeon pre-operatively (but post-randomisation) as required AVR and myectomy.                    | Excluded                   | Excluded          |
|            | FS                     | Poor quality baseline echocardiogram, with no assessment of LV function.                                                  | Excluded                   | As FS             |
|            | MS                     | Surgeon had not checked echo report until after randomisation. Underwent FS.                                              | Excluded                   | As FS             |

# Table A1. All patients who underwent a redo sternotomy, or crossed over from mini- to full sternotomy, or were randomised but found to be ineligible

### Table A2. Additional summaries of in-hospital endpoints

| Mini-sternotomy   | Full sternotomy                                                                                                |
|-------------------|----------------------------------------------------------------------------------------------------------------|
| (n = 118)         | (n = 104)                                                                                                      |
|                   |                                                                                                                |
| 9.5 (0.6)         | 8.6 (0.5)                                                                                                      |
| 7 (6, 8)          | 7 (6, 8)                                                                                                       |
|                   |                                                                                                                |
| 8.5 (0.5)*        | 7.5 (0.3)*                                                                                                     |
| 6 (5, 7)          | 6 (6, 7)                                                                                                       |
|                   |                                                                                                                |
| 5.7 (0.5)*        | 4.9 (0.3)*                                                                                                     |
| 4 (3, 4)          | 4 (-, -)                                                                                                       |
|                   |                                                                                                                |
| 48.1 (4.8)*       | 30.0 (1.7)                                                                                                     |
| 26.1 (22.8, 42.6) | 22.5 (22.0, 22.9)                                                                                              |
|                   |                                                                                                                |
| 13.1 (1.7)*       | 10.5 (0.7)                                                                                                     |
| 9.2 (8.7, 9.9)    | 8.3 (8.0, 9.2)                                                                                                 |
|                   | (n = 118) 9.5 (0.6) 7 (6, 8) 8.5 (0.5)* 6 (5, 7) 5.7 (0.5)* 4 (3, 4) 48.1 (4.8)* 26.1 (22.8, 42.6) 13.1 (1.7)* |

Table A2 shows Kaplan-Meier estimates of in-hospital endpoints. Censoring of longest time to event for some endpoints led to underestimation of means and standard errors (highlighted with asterisks). A confidence interval for median time to mobilisation could not be estimated.

#### Table A3. Additional summaries of operative endpoints

|                                                                           | Mini-sternotomy<br>(n = 118) | Full sternotomy<br>(n = 104) |
|---------------------------------------------------------------------------|------------------------------|------------------------------|
|                                                                           |                              |                              |
| Theatre time (minutes)                                                    | 201.2 (2.0)                  | 101.0 (4.6)                  |
| Mean (standard error)                                                     | 201.2 (3.9)                  | 181.0 (4.6)                  |
| Median (95% confidence interval)                                          | 191 (187, 205)               | 176 (170, 180)               |
| CPB time (minutes)                                                        |                              |                              |
| Mean (standard error)                                                     | 82.0 (1.9)                   | 69.5 (2.3)                   |
| Median (95% confidence interval)                                          | 80 (77, 86)                  | 66 (59, 74)                  |
| Cross clamp time (minutes)                                                |                              |                              |
| Mean (standard error)                                                     | 65.5 (1.5)                   | 52.4 (1.6)                   |
| Median (95% confidence interval)                                          | 65 (61, 69)                  | 49 (45, 53)                  |
| Surgery duration (minutes)                                                |                              |                              |
| Mean (standard error)                                                     | 165.5 (3.4)                  | 145.7 (4.3)                  |
| Median (95% confidence interval)                                          | 163(155, 172)                | 148.5 (134, 153)             |
| Total theatre time, including repeats/readmissions (minutes)              |                              |                              |
| Mean (standard error)                                                     | 221.1 (9.5)                  | 191.2 (6.1)                  |
| Median (95% confidence interval)                                          | 196 (189, 210)               | 178.5 (171, 188)             |
| Total CPB time, including repeats/readmissions (minutes)                  |                              |                              |
| Mean (standard error)                                                     | 85.1 (2.6)                   | 71.1 (2.8)                   |
| Median (95% confidence interval)                                          | 82 (77, 87)                  | 66 (59, 74)                  |
| Total cross clamp time, including repeats/readmissions (minutes)          |                              |                              |
| Mean (standard error)                                                     | 66.1 (1.6)                   | 53.5 (2.0)                   |
| Median (95% confidence interval)                                          | 66 (61, 70)                  | 49 (45, 53)                  |
| Volume of blood lost in the first 12 postoperative hours (ml)             |                              |                              |
| Mean (SD)                                                                 | 310.4 (342.5)                | 323.2 (267.8)                |
| Median (quartiles)                                                        | 225 (150, 325)               | 250 (175, 375)               |
| Transfusion of packed red cells in the first 48 postoperative hours (ml)  |                              |                              |
| Number of transfused patients (%)                                         | 50 (42%)                     | 51 (49%)                     |
| Mean (SD) in transfused patients                                          | 625.3 (513.2)                | 442.4 (265.3)                |
| Median (quartiles) in transfused patients                                 | 500 (300, 644)               | 303 (284, 569)               |
|                                                                           |                              |                              |
| Transfusion of clotting products in the first 48 postoperative hours (ml) | 11 (004)                     | 4 ( 40 / )                   |
| Number of transfused patients (%)                                         | 11 (9%)                      | 4 (4%)                       |
| Mean (SD) in transfused patients                                          | 920.5 (1438.4)               | 753.0 (672.5)                |
| Median (quartiles) in transfused patients                                 | 332 (183, 1050)              | 625 (209, 1297)              |

All estimates for time-to-event endpoints in Table A3 are Kaplan-Meier estimates. Time data were complete, except for seven surgery durations (3 MS, 4 FS) that were not recorded and were therefore censored at 1 minute. Blood data were only missing for one patient (FS group, withdrawn before surgery). Blood transfusion and clotting products data for seven patients at the Freeman hospital were recorded in units and converted to ml (1 unit PRC = 300ml, 1 unit platelets = 245ml, 1 unit FFP = 280ml). Transfusion data were explored using logistic regression models, including fixed effects for treatment, valve and sex, and a random surgeon effect. These analyses did not show a statistically significant difference between MS and FS patients in either need for blood transfusion (MS/FS odds ratio 0.797, confidence interval 0.453 to 1.402, p-value 0.4310) or the need for transfusion of clotting products (MS/FS odds ratio 2.616, confidence interval 0.801 to 8.541, p-value 0.1112).

|                                                       | MS/FS hazard ratio<br>(95% confidence interval) | p-value for null<br>hypothesis HR = 1 | Log-rank<br>test statistic | p-value from<br>log-rank test |
|-------------------------------------------------------|-------------------------------------------------|---------------------------------------|----------------------------|-------------------------------|
|                                                       | (                                               |                                       |                            |                               |
| Primary analyses                                      |                                                 |                                       |                            |                               |
| Time to discharge                                     | 0.874 (0.668,1.143)                             | 0.3246                                | 0.157                      | 0.6924                        |
| Time until fit                                        | 0.907 (0.688,1.197)                             | 0.4914                                | 0.340                      | 0.5597                        |
| Per protocol analyses of primary endpoints            |                                                 |                                       |                            |                               |
| Time to discharge                                     | 0.868 (0.656,1.147)                             | 0.3194                                | 0.200                      | 0.6544                        |
| Time until fit                                        | 0.915 (0.688,1.218)                             | 0.5443                                | 0.217                      | 0.6415                        |
| Sensitivity analyses:                                 |                                                 |                                       |                            |                               |
| age included as an effect in the Cox models           |                                                 |                                       |                            |                               |
| Time to discharge                                     | 0.866 (0.661,1.135)                             | 0.2985                                | 0.157                      | 0.6924                        |
| Time until fit                                        | 0.902 (0.683,1.192)                             | 0.4685                                | 0.340                      | 0.5597                        |
| Sensitivity analyses:                                 |                                                 |                                       |                            |                               |
| EuroSCORE included as an effect in the Cox models     | 0.005 (0.070.1.150)                             | 0.2752                                | 0.157                      | 0.000                         |
| Time to discharge                                     | 0.885 (0.676,1.159)                             | 0.3753                                | 0.157                      | 0.6924                        |
| Time until fit                                        | 0.936 (0.709,1.236)                             | 0.6400                                | 0.340                      | 0.5597                        |
| Sensitivity analyses:                                 |                                                 |                                       |                            |                               |
| censoring times taken as event times:                 |                                                 |                                       |                            |                               |
| Time to discharge                                     | 0.884 (0.677,1.153)                             | 0.3625                                | 0.189                      | 0.6639                        |
| Time until fit                                        | 0.888 (0.680,1.160)                             | 0.3844                                | 0.765                      | 0.3819                        |
| Sensitivity analysis:                                 |                                                 |                                       |                            |                               |
| patients assumed to be fit at discharge               |                                                 |                                       |                            |                               |
| Time until fit                                        | 0.879 (0.671, 1.151)                            | 0.3480                                | 0.703                      | 0.4018                        |
| Secondary endpoint analyses                           |                                                 |                                       |                            |                               |
| Time until first mobilisation                         | 0.899 (0.680,1.187)                             | 0.4518                                | 0.303                      | 0.5819                        |
| Time until drain removal                              | 0.587 (0.442,0.778)                             | 0.0002                                | 5.838                      | 0.0157                        |
| Time until first extubation                           | 0.856 (0.655,1.120)                             | 0.2582                                | 0.359                      | 0.5488                        |
| Exploratory analyses                                  |                                                 |                                       |                            |                               |
| Surgery duration                                      | 0.660 (0.500,0.872)                             | 0.0035                                | 17.892                     | < 0.0001                      |
| CPB time                                              | 0.592 (0.448,0.782)                             | 0.0002                                | 24.871                     | < 0.0001                      |
| Cross clamp time                                      | 0.451 (0.340,0.597)                             | < 0.0001                              | 42.539                     | < 0.0001                      |
| Theatre time                                          | 0.665 (0.503,0.879)                             | 0.0042                                | 16.806                     | < 0.0001                      |
| Total CPB time including repeats/readmissions         | 0.547 (0.414,0.723)                             | < 0.0001                              | 20.176                     | < 0.000                       |
| Total cross clamp time including repeats/readmissions | 0.458 (0.346,0.608)                             | < 0.0001                              | 34.352                     | < 0.000                       |
| Total theatre time including repeats/readmissions     | 0.698 (0.531,0.918)                             | 0.0102                                | 5.657                      | 0.0174                        |
| Time to death by any cause                            | 1.871 (0.723, 4.844)                            | 0.1966                                | 0.7309                     | 0.3926                        |
|                                                       |                                                 |                                       |                            | 0.0                           |

Table A4 shows the results of all analyses performed for the primary and secondary time-to-event endpoints, including unplanned, exploratory analyses of secondary endpoints. All secondary endpoint analyses, sensitivity analyses and exploratory analyses were performed using the intent to treat population. All log-rank tests were stratified by valve, sex and surgeon. All Cox models included valve, sex and treatment as fixed effects, and surgeon as a random effect. Exploratory analysis of time to all-cause death included age as a fixed effect in the Cox model. Mean imputation was used for missing EuroSCORE data at baseline (1 MS).

|        |           | Mini-sternotomy (n = 118)  | Full sternotomy (n = 104) |
|--------|-----------|----------------------------|---------------------------|
|        |           |                            |                           |
| Day 1  | Mean (SD) | 3.5 (2.5)                  | 3.7 (2.4)                 |
|        | n         | 100 (85%)                  | 82 (80%)                  |
|        |           |                            |                           |
| Day 2  | Mean (SD) | 3 (2.3)                    | 3.1 (2.5)                 |
|        | n         | 89 (75%)                   | 81 (79%)                  |
| Day 3  | Mean (SD) | 2.7 (2.3)                  | 2.4 (2.3)                 |
| Days   | n         | 91 (77%)                   | 83 (81%)                  |
|        | 11        | <i>У</i> 1 ( <i>777</i> 0) | 05 (0170)                 |
| Day 4  | Mean (SD) | 2.4 (2.1)                  | 2.4 (2.4)                 |
|        | n         | 94 (80%)                   | 84 (82%)                  |
|        |           |                            |                           |
| Day 5  | Mean (SD) | 2 (1.9)                    | 2.1 (2)                   |
|        | n         | 90 (79%)                   | 80 (79%)                  |
| Day 6  | Mean (SD) | 1.8 (1.7)                  | 2.1 (2)                   |
|        | n         | 69 (77%)                   | 61 (76%)                  |
| D7     | Maar (SD) | 15(19)                     | 1.8 (2)                   |
| Day 7  | Mean (SD) | 1.5 (1.8)                  | 1.8 (2)                   |
|        | n         | 46 (69%)                   | 42 (78%)                  |
| Day 8  | Mean (SD) | 1.2 (1.4)                  | 1.7 (1.6)                 |
|        | n         | 40 (77%)                   | 35 (76%)                  |
|        |           |                            |                           |
| Day 9  | Mean (SD) | 1 (1.8)                    | 0.8 (1.5)                 |
|        | n         | 25 (57%)                   | 18 (47%)                  |
| Day 10 | Mean (SD) | 0.7 (1)                    | 1.3 (2)                   |
| •      | n         | 18 (47%)                   | 12 (43%)                  |

Table A5. Summaries of pain at rest scores in the first ten days following surgery

Table A5 shows the number of pain scores taken for each of the 10 days following surgery. The denominator used for each percentage is the number of patients known to be alive and in hospital on the given day.

|               |           | Mini-sternotomy (n = 118) | Full sternotomy (n = 104) |
|---------------|-----------|---------------------------|---------------------------|
|               |           |                           |                           |
| Baseline      | Mean (SD) | 0.77 (0.19)               | 0.70 (0.24)               |
|               | n         | 105 (89%)                 | 95 (91%)                  |
| Day 4         | Mean (SD) | 0.47 (0.29)               | 0.39 (0.28)               |
|               | n         | 92 (78%)                  | 89 (86%)                  |
| Discharge     | Mean (SD) | 0.60 (0.24)               | 0.58 (0.24)               |
| 8             | n         | 103 (87%)                 | 88 (85%)                  |
| Six weeks     | Mean (SD) | 0.74 (0.23)               | 0.71 (0.21)               |
|               | n         | 106 (90%)                 | 88 (85%)                  |
| Six months    | Mean (SD) | 0.83 (0.25)               | 0.83 (0.23)               |
|               | n         | 105 (89%)                 | 95 (91%)                  |
| Twelve months | Mean (SD) | 0.83 (0.29)               | 0.78 (0.28)               |
|               | n         | 103 (87%)                 | 84 (81%)                  |
|               |           |                           |                           |

### Table A6. Summaries of EQ-5D utility scores up to the 12 month follow-up

For patients who died, EQ-5D scores were taken to be zero following death. Percentages presented in Table A6 were calculated as the number of scores recorded (including the zeros) divided by the number of patients randomised to the group. The difference in mean baseline score was potentially due to the imbalance in gender (the FS group has a greater proportion of females, who reported lower quality of life on average).

|                      |               |           | Mini-sternotomy (n = 118) | Full sternotomy (n = 104) |
|----------------------|---------------|-----------|---------------------------|---------------------------|
|                      | D 1           |           |                           |                           |
| Bodily pain          | Baseline      | Mean (SD) | 70 (25)                   | 64 (28)                   |
|                      |               | n         | 104 (88%)                 | 96 (92%)                  |
|                      | Six weeks     | Mean (SD) | 61 (24)                   | 60 (23)                   |
|                      |               | n         | 105 (89%)                 | 90 (87%)                  |
|                      | Six months    | Mean (SD) | 79 (27)                   | 74 (28)                   |
|                      |               | n         | 104 (88%)                 | 94 (90%)                  |
|                      | Twelve months | Mean (SD) | 76 (31)                   | 72 (32)                   |
|                      |               | n         | 99 (84%)                  | 86 (83%)                  |
| General health       | Baseline      | Mean (SD) | 62 (20)                   | 58 (22)                   |
|                      |               | n         | 104 (88%)                 | 94 (90%)                  |
|                      | Six weeks     | Mean (SD) | 70 (20)                   | 66 (20)                   |
|                      |               | n         | 104 (88%)                 | 91 (88%)                  |
|                      | Six months    | Mean (SD) | 71 (24)                   | 66 (24)                   |
|                      |               | n         | 103 (87%)                 | 94 (90%)                  |
|                      | Twelve months | Mean (SD) | 68 (26)                   | 62 (26)                   |
|                      |               | n         | 100 (85%)                 | 86 (83%)                  |
| Mental health        | Baseline      | Mean (SD) | 74 (18)                   | 67 (21)                   |
|                      |               | n         | 104 (88%)                 | 95 (91%)                  |
|                      | Six weeks     | Mean (SD) | 72 (22)                   | 73 (19)                   |
|                      |               | n         | 104 (88%)                 | 91 (88%)                  |
|                      | Six months    | Mean (SD) | 80 (21)                   | 74 (22)                   |
|                      |               | n         | 103 (87%)                 | 94 (90%)                  |
|                      | Twelve months | Mean (SD) | 76 (26)                   | 73 (23)                   |
|                      |               | n         | 100 (85%)                 | 86 (83%)                  |
|                      |               |           |                           |                           |
| Physical functioning | Baseline      | Mean (SD) | 54 (26)                   | 47 (28)                   |
|                      |               | n         | 105 (89%)                 | 96 (92%)                  |
|                      | Six weeks     | Mean (SD) | 63 (22)                   | 56 (23)                   |
|                      |               | n         | 105 (89%)                 | 91 (88%)                  |
|                      | Six months    | Mean (SD) | 78 (27)                   | 70 (28)                   |
|                      |               | n         | 104 (88%)                 | 94 (90%)                  |
|                      | Twelve months | Mean (SD) | 74 (30)                   | 67 (31)                   |
|                      |               | n         | 100 (85%)                 | 86 (83%)                  |
| Role emotional       | Baseline      | Mean (SD) | 67 (40)                   | 55 (46)                   |
|                      |               | n         | 104 (88%)                 | 94 (90%)                  |
|                      | Six weeks     | Mean (SD) | 60 (44)                   | 63 (43)                   |
|                      |               | n         | 104 (88%)                 | 90 (87%)                  |
|                      | Six months    | Mean (SD) | 81 (35)                   | 72 (42)                   |
|                      |               | n         | 104 (88%)                 | 94 (90%)                  |
|                      | Twelve months | Mean (SD) | 76 (39)                   | 71 (42)                   |
|                      |               | n         | 98 (83%)                  | 85 (82%)                  |
|                      |               |           |                           |                           |
| Role physical        | Baseline      | Mean (SD) | 33 (41)                   | 23 (38)                   |
| l                    | I             | n         | 103 (87%)                 | 96 (92%)                  |

Table A7. Summaries of SF-36 domain scores up to the 12 month follow up

| 1                  | l             |           | 1         | I I I    |
|--------------------|---------------|-----------|-----------|----------|
|                    | Six weeks     | Mean (SD) | 19 (32)   | 20 (33)  |
|                    |               | n         | 103 (87%) | 90 (87%) |
|                    | Six months    | Mean (SD) | 65 (42)   | 59 (44)  |
|                    |               | n         | 103 (87%) | 94 (90%) |
|                    | Twelve months | Mean (SD) | 64 (44)   | 52 (46)  |
|                    |               | n         | 98 (83%)  | 85 (82%) |
| Social functioning | Baseline      | Mean (SD) | 66 (30)   | 61 (29)  |
|                    |               | n         | 104 (88%) | 94 (90%) |
|                    | Six weeks     | Mean (SD) | 66 (29)   | 68 (27)  |
|                    |               | n         | 104 (88%) | 91 (88%) |
|                    | Six months    | Mean (SD) | 85 (26)   | 78 (28)  |
|                    |               | n         | 102 (86%) | 93 (89%) |
|                    | Twelve months | Mean (SD) | 81 (30)   | 78 (30)  |
|                    |               | n         | 98 (83%)  | 85 (82%) |
| Vitality           | Baseline      | Mean (SD) | 46 (25)   | 40 (23)  |
|                    |               | n         | 104 (88%) | 95 (91%) |
|                    | Six weeks     | Mean (SD) | 50 (22)   | 48 (22)  |
|                    |               | n         | 104 (88%) | 90 (87%) |
|                    | Six months    | Mean (SD) | 64 (23)   | 57 (23)  |
|                    |               | n         | 103 (87%) | 94 (90%) |
|                    | Twelve months | Mean (SD) | 60 (26)   | 54 (26)  |
|                    |               | n         | 100 (85%) | 86 (83%) |
|                    |               |           |           |          |

An in-house implementation of the standard scoring algorithm for the developmental version of SF-36 was used. For patients who died, SF-36 scores were taken to be zero following death. Percentages presented in Table A7 were calculated as the number of scores recorded (including the zeros) divided by the number of patients randomised to the group. The differences in mean baseline scores were potentially due to the imbalance in gender (the FS group has a greater proportion of females, who reported lower quality of life on average).

Table A8. Estimated treatment effects (MS - FS) and treatment-time interactions for SF-36 domain scores up to 12 months, EQ-5D utility scores up to 12 months and pain scores up to discharge

|                                      | Effect (MS – FS) | 95% confidence interval | p-value |
|--------------------------------------|------------------|-------------------------|---------|
| Pain at rest (n = 219)               |                  |                         |         |
| Treatment effect                     | 0.0              | (-0.7, 0.6)             | 0.9766  |
| Treatment-time (days) interaction    | 0.0              | (-0.1, 0.1)             | 0.8190  |
|                                      | 0.0              | ( 0.1, 0.1)             | 0.0190  |
| EQ-5D utility scores (n = 197)       |                  |                         |         |
| Treatment effect                     | 0.02             | (-0.03, 0.07)           | 0.5148  |
| Treatment-time (months) interaction  | 0.00             | (-0.01, 0.01)           | 0.9731  |
| SF-36 physical functioning (n = 192) |                  |                         |         |
| Treatment effect                     | 1.2              | (-6.2, 8.7)             | 0.7414  |
| Treatment-time (months) interaction  | 0.3              | (-0.2, 0.9)             | 0.2387  |
| SF-36 role physical (n = 190)        |                  |                         |         |
| Treatment effect                     | -8.3             | (-21.1, 4.5)            | 0.2025  |
| Treatment-time (months) interaction  | 1.7              | (0.3, 3.1)              | 0.0169  |
| SF-36 bodily pain (n = 191)          |                  |                         |         |
| Treatment effect                     | -0.7             | (-9.1, 7.8)             | 0.8792  |
| Treatment-time (months) interaction  | 0.3              | (-0.5, 1.1)             | 0.4331  |
| SF-36 general health (n = 189)       |                  |                         |         |
| Treatment effect                     | -1.0             | (-7.5, 5.5)             | 0.7710  |
| Treatment-time (months) interaction  | 0.3              | (-0.2, 0.8)             | 0.2224  |
| SF-36 vitality (n = 190)             |                  |                         |         |
| Treatment effect                     | -2.1             | (-8.8, 4.5)             | 0.5273  |
| Treatment-time (months) interaction  | 0.6              | (0.1, 1.2)              | 0.0293  |
| SF-36 social functioning (n = 189)   |                  |                         |         |
| Treatment effect                     | -5.5             | (-14.1, 3.1)            | 0.2093  |
| Treatment-time (months) interaction  | 1.0              | (0.2, 1.7)              | 0.0183  |
| SF-36 role emotional (n = 189)       |                  |                         |         |
| Treatment effect                     | -6.2             | (-18.6, 6.2)            | 0.3255  |
| Treatment-time (months) interaction  | 1.1              | (-0.1, 2.3)             | 0.0699  |
| SF-36 mental health (n = 190)        |                  |                         |         |
| Treatment effect                     | -3.2             | (-9.7, 3.4)             | 0.3431  |
| Treatment-time (months) interaction  | 0.5              | (-0.0, 1.0)             | 0.0702  |

Table A8 shows results of complete case analyses of questionnaire data, under a missing completely at random assumption, including only patients with at least one analysable follow-up questionnaire. For each analysis, the n in parentheses is number of patients used to fit the model. For pain and SF-36 scores, some random effects were estimated to have a variance of 0 and were excluded from the models (surgeon effect for pain, and both the surgeon effect and random slope for SF-36). The slope (time coefficient) was estimated to be negative for pain and positive for all EQ-5D and SF-36 scores. This suggests improvement over time in each score. Evidence of greater rate of improvement over time for MS patients (statistically significant, positive interaction term) was seen for three SF-36 domains (role physical, vitality, and social functioning), but no others.

Table A9. Estimated treatment effects (MS-FS) and treatment-time interactions for SF-36 domain scores up to 12 months, EQ-5D utility scores up to 12 months and pain scores up to discharge, after multiple imputation of missing scores

| 0.0<br>0.01<br>0.00<br>2.0<br>0.2<br>-6.6<br>1.5<br>-0.1<br>0.3<br>1.1<br>0.2 | (-0.7, 0.6)<br>(-0.1, 0.1)<br>(-0.04, 0.06)<br>(-0.01, 0.01)<br>(-4.9, 8.9)<br>(-0.3, 0.8)<br>(-18.7, 5.4)<br>(0.1, 2.8)<br>(-9.0, 7. 7)<br>(-0.4, 1.1)<br>(-5.0, 7.3) | 0.9059<br>0.9685<br>0.8203<br>0.9094<br>0.5744<br>0.3996<br>0.2808<br>0.0310<br>0.9748<br>0.4091<br>0.7175                          |
|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| 0.0<br>0.01<br>0.00<br>2.0<br>0.2<br>-6.6<br>1.5<br>-0.1<br>0.3<br>1.1        | (-0.1, 0.1)<br>(-0.04, 0.06)<br>(-0.01, 0.01)<br>(-4.9, 8.9)<br>(-0.3, 0.8)<br>(-18.7, 5.4)<br>(0.1, 2.8)<br>(-9.0, 7. 7)<br>(-0.4, 1.1)<br>(-5.0, 7.3)                | 0.9685<br>0.8203<br>0.9094<br>0.5744<br>0.3996<br>0.2808<br>0.0310<br>0.9748<br>0.4091<br>0.7175                                    |
| 0.0<br>0.01<br>0.00<br>2.0<br>0.2<br>-6.6<br>1.5<br>-0.1<br>0.3<br>1.1        | (-0.1, 0.1)<br>(-0.04, 0.06)<br>(-0.01, 0.01)<br>(-4.9, 8.9)<br>(-0.3, 0.8)<br>(-18.7, 5.4)<br>(0.1, 2.8)<br>(-9.0, 7. 7)<br>(-0.4, 1.1)<br>(-5.0, 7.3)                | 0.9685<br>0.8203<br>0.9094<br>0.5744<br>0.3996<br>0.2808<br>0.0310<br>0.9748<br>0.4091<br>0.7175                                    |
| 0.01<br>0.00<br>2.0<br>0.2<br>-6.6<br>1.5<br>-0.1<br>0.3<br>1.1               | (-0.04, 0.06)<br>(-0.01, 0.01)<br>(-4.9, 8.9)<br>(-0.3, 0.8)<br>(-18.7, 5.4)<br>(0.1, 2.8)<br>(-9.0, 7. 7)<br>(-0.4, 1.1)<br>(-5.0, 7.3)                               | 0.8203<br>0.9094<br>0.5744<br>0.3996<br>0.2808<br>0.0310<br>0.9748<br>0.4091<br>0.7175                                              |
| 0.00<br>2.0<br>0.2<br>-6.6<br>1.5<br>-0.1<br>0.3<br>1.1                       | (-0.01, 0.01)<br>(-4.9, 8.9)<br>(-0.3, 0.8)<br>(-18.7, 5.4)<br>(0.1, 2.8)<br>(-9.0, 7. 7)<br>(-0.4, 1.1)<br>(-5.0, 7.3)                                                | 0.9094<br>0.5744<br>0.3996<br>0.2808<br>0.0310<br>0.9748<br>0.4091<br>0.7175                                                        |
| 0.00<br>2.0<br>0.2<br>-6.6<br>1.5<br>-0.1<br>0.3<br>1.1                       | (-0.01, 0.01)<br>(-4.9, 8.9)<br>(-0.3, 0.8)<br>(-18.7, 5.4)<br>(0.1, 2.8)<br>(-9.0, 7. 7)<br>(-0.4, 1.1)<br>(-5.0, 7.3)                                                | 0.9094<br>0.5744<br>0.3996<br>0.2808<br>0.0310<br>0.9748<br>0.4091<br>0.7175                                                        |
| 2.0<br>0.2<br>-6.6<br>1.5<br>-0.1<br>0.3<br>1.1                               | (-4.9, 8.9)<br>(-0.3, 0.8)<br>(-18.7, 5.4)<br>(0.1, 2.8)<br>(-9.0, 7. 7)<br>(-0.4, 1.1)<br>(-5.0, 7.3)                                                                 | 0.5744<br>0.3996<br>0.2808<br>0.0310<br>0.9748<br>0.4091<br>0.7175                                                                  |
| -6.6<br>1.5<br>-0.1<br>0.3<br>1.1                                             | (-0.3, 0.8)<br>(-18.7, 5.4)<br>(0.1, 2.8)<br>(-9.0, 7. 7)<br>(-0.4, 1.1)<br>(-5.0, 7.3)                                                                                | 0.3996<br>0.2808<br>0.0310<br>0.9748<br>0.4091<br>0.7175                                                                            |
| -6.6<br>1.5<br>-0.1<br>0.3<br>1.1                                             | (-0.3, 0.8)<br>(-18.7, 5.4)<br>(0.1, 2.8)<br>(-9.0, 7. 7)<br>(-0.4, 1.1)<br>(-5.0, 7.3)                                                                                | 0.3996<br>0.2808<br>0.0310<br>0.9748<br>0.4091<br>0.7175                                                                            |
| -6.6<br>1.5<br>-0.1<br>0.3<br>1.1                                             | (-0.3, 0.8)<br>(-18.7, 5.4)<br>(0.1, 2.8)<br>(-9.0, 7. 7)<br>(-0.4, 1.1)<br>(-5.0, 7.3)                                                                                | 0.2808<br>0.0310<br>0.9748<br>0.4091<br>0.7175                                                                                      |
| 1.5<br>-0.1<br>0.3                                                            | (0.1, 2.8)<br>(-9.0, 7. 7)<br>(-0.4, 1.1)<br>(-5.0, 7.3)                                                                                                               | 0.0310<br>0.9748<br>0.4091<br>0.7175                                                                                                |
| 1.5<br>-0.1<br>0.3                                                            | (0.1, 2.8)<br>(-9.0, 7. 7)<br>(-0.4, 1.1)<br>(-5.0, 7.3)                                                                                                               | 0.0310<br>0.9748<br>0.4091<br>0.7175                                                                                                |
| 1.5<br>-0.1<br>0.3                                                            | (0.1, 2.8)<br>(-9.0, 7. 7)<br>(-0.4, 1.1)<br>(-5.0, 7.3)                                                                                                               | 0.0310<br>0.9748<br>0.4091<br>0.7175                                                                                                |
| 0.3                                                                           | (-0.4, 1.1)<br>(-5.0, 7.3)                                                                                                                                             | 0.4091                                                                                                                              |
| 0.3                                                                           | (-0.4, 1.1)<br>(-5.0, 7.3)                                                                                                                                             | 0.4091                                                                                                                              |
| 0.3                                                                           | (-0.4, 1.1)<br>(-5.0, 7.3)                                                                                                                                             | 0.4091                                                                                                                              |
| 1.1                                                                           | (-5.0, 7.3)                                                                                                                                                            | 0.7175                                                                                                                              |
| -                                                                             |                                                                                                                                                                        |                                                                                                                                     |
| -                                                                             |                                                                                                                                                                        |                                                                                                                                     |
| 0.2                                                                           |                                                                                                                                                                        |                                                                                                                                     |
|                                                                               | (-0.3, 0.7)                                                                                                                                                            | 0.3373                                                                                                                              |
|                                                                               |                                                                                                                                                                        |                                                                                                                                     |
| -0.5                                                                          | (-6.9, 5.9)                                                                                                                                                            | 0.8798                                                                                                                              |
| 0.4                                                                           | (-0.2, 1.0)                                                                                                                                                            | 0.1733                                                                                                                              |
|                                                                               |                                                                                                                                                                        |                                                                                                                                     |
| -4.4                                                                          | (-12.4, 3.5)                                                                                                                                                           | 0.2756                                                                                                                              |
| 0.7                                                                           | (0.0, 1.5)                                                                                                                                                             | 0.0589                                                                                                                              |
|                                                                               |                                                                                                                                                                        |                                                                                                                                     |
| 16                                                                            | (164.72)                                                                                                                                                               | 0.4415                                                                                                                              |
|                                                                               |                                                                                                                                                                        | 0.4415                                                                                                                              |
| 0.8                                                                           | (-0.4, 2.0)                                                                                                                                                            | 0.1790                                                                                                                              |
|                                                                               |                                                                                                                                                                        |                                                                                                                                     |
| -2.5                                                                          |                                                                                                                                                                        | 0.4113                                                                                                                              |
| 0.4                                                                           | (-0.1, 0.9)                                                                                                                                                            | 0.1195                                                                                                                              |
|                                                                               | -4.6<br>0.8<br>-2.5                                                                                                                                                    | $\begin{array}{c} 0.7 \\ -4.6 \\ 0.8 \\ -2.5 \end{array} \begin{pmatrix} (-16.4, 7.2) \\ (-0.4, 2.0) \\ (-8.6, 3.5) \\ \end{array}$ |

Table A9 shows the results from analysing the questionnaire data using multiple imputation to handle missing observations, under a missing at random assumption. For each analysis, missing data were imputed from models that included all other variables used in the analysis, along with CCS grading and NYHA grading as auxiliary variables. The method used was multiple imputation by chained equations with predictive mean matching. Estimates from 100 imputed data sets were combined using Rubin's rules. Pain was only imputed for patients known to be alive and in hospital, not for patients who had died or had already been discharged. Evidence of greater rate of improvement over time for MS patients (statistically significant, positive interaction term) was seen only for one SF-36 domain.

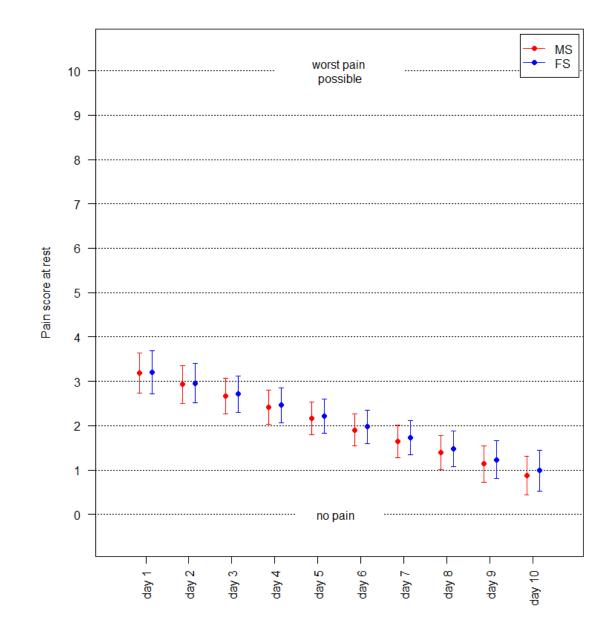



Figure A1. Forest plots of mean pain scores for the first 10 days following surgery, with 95% confidence intervals

In Figure A1, means on each day were adjusted for sex and valve type, and were estimated from the complete case analysis.

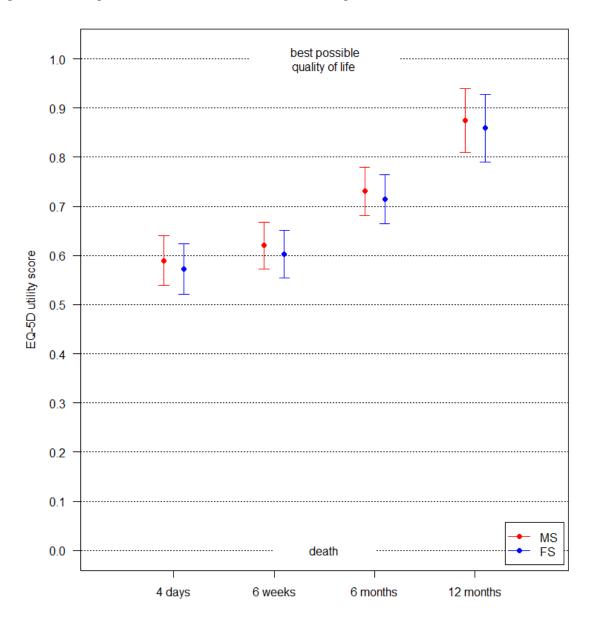



Figure A2. Forest plot of mean EQ-5D scores at each follow-up time, with 95% confidence intervals

In Figure A2, means at each follow-up time were adjusted for baseline EQ-5D, sex and valve type, and were estimated from the complete case analysis.

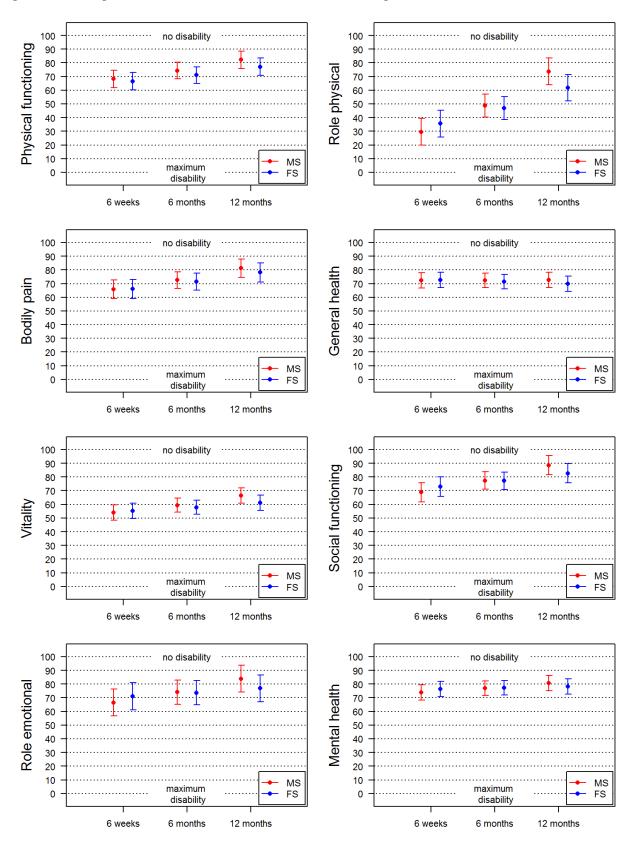



Figure A3. Forest plot of mean SF36 domain scores at each follow-up time, with 95% confidence intervals

In Figure A3, means at each follow-up time were adjusted for baseline domain score, sex and valve type, and were estimated from the complete case analysis. A score of 100 represents no disability, and a score of 0 represents maximum disability.

|                            | Mini-sternotomy (n = 118) | Full sternotomy (n = 104) |
|----------------------------|---------------------------|---------------------------|
|                            |                           |                           |
| FEV <sub>1</sub> (litres): |                           |                           |
| Baseline visit             |                           |                           |
| Mean (SD)                  | 2.3 (0.7)                 | 2.3 (0.8)                 |
| Median (quartiles)         | 2.2 (1.8, 2.7)            | 2.2 (1.7, 2.6)            |
| n                          | 115                       | 101                       |
| Discharge                  |                           |                           |
| Mean (SD)                  | 1.6 (0.6)                 | 1.6 (0.6)                 |
| Median (quartiles)         | 1.5 (1.2, 1.8)            | 1.5 (1.2, 1.9)            |
| n                          | 82                        | 69                        |
| 6 week visit               |                           |                           |
| Mean (SD)                  | 2.1 (0.8)                 | 2.1 (0.7)                 |
| Median (quartiles)         | 2 (1.5, 2.5)              | 1.9 (1.6, 2.5)            |
| n                          | 92                        | 84                        |
| 6 month visit              |                           |                           |
| Mean (SD)                  | 2.2 (0.7)                 | 2.1 (0.7)                 |
| Median (quartiles)         | 2.1 (1.7, 2.6)            | 1.9 (1.4, 2.4)            |
| n                          | 91                        | 82                        |
| LVEF (%):                  |                           |                           |
| Baseline visit             |                           |                           |
| Mean (SD)                  | 61.9 (9.1)                | 62.4 (8.6)                |
| Median (quartiles)         | 62.5 (57.5, 67.5)         | 63 (57.5, 67.0)           |
| n                          | 117                       | 101                       |
| Discharge                  |                           |                           |
| Mean (SD)                  | 59.9 (9.7)                | 59 (10.2)                 |
| Median (quartiles)         | 62 (55.0, 65.0)           | 58 (55.0, 64.5)           |
| n                          | 106                       | 96                        |
| 6 month visit              |                           |                           |
| Mean (SD)                  | 61.2 (8.1)                | 61.8 (9.7)                |
| Median (quartiles)         | 61 (56.0, 67.5)           | 62.5 (56.3, 68.0)         |
| n                          | 97                        | 88                        |

Table A10. Summaries heart function (LVEF) and respiratory function (FEV1)

 $FEV_1$  is forced expiratory volume in one second, measured by hand-held spirometry. LVEF is left ventricular ejection fraction, measured by echocardiography. No analyses were planned for these endpoints.

|                                                                                                  | Mini-sternotomy (n = 110) | Full sternotomy (n = 111) | Total (n = 221) |
|--------------------------------------------------------------------------------------------------|---------------------------|---------------------------|-----------------|
| Cardiac (including atrial fibrillation, conduction problems, need for permanent pacemaker)       | 43 (29)                   | 27 (21)                   | 70 (50)         |
| Respiratory                                                                                      | 20 (14)                   | 9 (8)                     | 29 (22)         |
| Injury/procedural                                                                                | 19 (11)                   | 7 (6)                     | 26 (17)         |
| Non-cardiorespiratory infection (including wound)                                                | 7 (7)                     | 12 (9)                    | 19 (16)         |
| Urinary                                                                                          | 11 (10)                   | 8 (6)                     | 19 (16)         |
| Surgical and medical procedures                                                                  | 9 (6)                     | 7 (7)                     | 16 (13)         |
| Nervous system                                                                                   | 8 (8)                     | 7 (7)                     | 15 (15)         |
| Cardiorespiratory infection (including endocarditis, device-related infections, chest infection) | 9 (9)                     | 6 (5)                     | 15 (14)         |
| Vascular                                                                                         | 9 (9)                     | 1 (1)                     | 10 (10)         |
| Psychiatric                                                                                      | 5 (5)                     | 5 (5)                     | 10 (10)         |
| Gastro-intestinal – diarrhoea                                                                    | 7 (6)                     | 3 (3)                     | 10 (9)          |
| Gastro-intestinal – other                                                                        | 7 (7)                     | 1 (1)                     | 8 (8)           |
| General disorders                                                                                | 4 (4)                     | 3 (2)                     | 7 (6)           |
| Metabolic                                                                                        | 2 (2)                     | 3 (2)                     | 5 (4)           |
| Blood/lymph                                                                                      | 4 (3)                     | 1 (1)                     | 5 (4)           |
| Neoplasms                                                                                        | 1 (1)                     | 1 (1)                     | 2 (2)           |
| Hepatitis/cholecystitis                                                                          | 1 (1)                     | 1 (1)                     | 2 (2)           |
| Musculoskeletal                                                                                  | 2 (2)                     | 0 (0)                     | 2 (2)           |
| Skin/tissue                                                                                      | 0 (0)                     | 1(1)                      | 1(1)            |
| Eye                                                                                              | 0 (0)                     | 1 (1)                     | 1(1)            |
| Immune                                                                                           | 0 (0)                     | 1 (1)                     | 1 (1)           |
| Total                                                                                            | 168 (56)                  | 105 (46)                  | 273 (102)       |

Table A11. Frequency of non-fatal SAEs (number of patients) within one year of surgery, by treatment received

Among the nervous system SAEs recorded in Table A11, strokes were suffered by 3 FS recipients and 2 MS recipients. No patient suffered more than one stroke.

|                        | Mini-sternotomy (n = 110) | Full sternotomy (n = 111) | Total (n = 221) |
|------------------------|---------------------------|---------------------------|-----------------|
| Cardiorespiratory:     |                           |                           |                 |
| Severity               |                           |                           |                 |
| Severe                 | 26 (14)                   | 14 (11)                   | 40 (25)         |
| Moderate               | 34 (24)                   | 24 (18)                   | 58 (42)         |
| Mild                   | 12 (11)                   | 4 (4)                     | 16 (15)         |
| Expectedness           |                           |                           |                 |
| Expected               | 69 (38)                   | 42 (30)                   | 111 (68)        |
| Unexpected             | 3 (2)                     | 0 (0)                     | 3 (2)           |
| Relatedness            |                           |                           |                 |
| Probably related       | 4 (4)                     | 2 (2)                     | 6 (6)           |
| Possibly related       | 50 (30)                   | 32 (25)                   | 82 (55)         |
| Unrelated              | 18 (13)                   | 8 (6)                     | 26 (19)         |
| Total                  | 72 (38)                   | 42 (30)                   | 114 (68)        |
| Non-cardiorespiratory: |                           |                           |                 |
| Severity               |                           |                           |                 |
| Severe                 | 40 (21)                   | 24 (15)                   | 64 (36)         |
| Moderate               | 43 (29)                   | 31 (21)                   | 74 (50)         |
| Mild                   | 13 (11)                   | 8 (5)                     | 21 (16)         |
| Expectedness           |                           |                           |                 |
| Expected               | 68 (34)                   | 45 (27)                   | 113 (61)        |
| Unexpected             | 28 (15)                   | 18 (15)                   | 46 (30)         |
| Relatedness            |                           |                           |                 |
| Probably related       | 9 (5)                     | 5 (5)                     | 14 (10)         |
| Possibly related       | 37 (22)                   | 30 (20)                   | 67 (42)         |
| Unrelated              | 50 (27)                   | 28 (20)                   | 78 (47)         |
| Total                  | 96 (41)                   | 63 (34)                   | 159 (75)        |

Table A12. Frequencies of non-death SAEs (and number of patients experiencing them), within a year of surgery, at each level of severity, expectedness and relatedness, by treatment received

The only unexpected events in the MS group were a bilateral pleural effusion in one patient, and bronchial aspiration and peri-arrest event in another. Both patients completely recovered. Exploratory analysis in the safety population, using logistic regression (with fixed treatment, valve and sex effects, and a random surgeon effect), did not show a statistically significant difference between MS and FS recipients in the odds of suffering a non-death SAE within the first year (MS/FS odds ratio 1.559, confidence interval 0.895 to 2.715 and p-value 0.1161). An exploratory Poisson regression (with a fixed effect for treatment and a random patient effect) did show a greater rate of such SAEs for MS recipients (MS/FS rate ratio 1.615, confidence interval 1.070 to 2.437, p-value 0.0225). There were 7 pericardial tamponades in total (4 for FS recipients, 3 for MS recipients, only one per patient), but logistic regression (without the random surgeon effect) did not produce a statistically significant result (MS/FS odds ratio 0.680, confidence interval 0.146 to 3.178, p-value 0.6229).

|                        | Mini-sternotomy (n = 110) | Full sternotomy (n = 111) | Total (n = 221) |
|------------------------|---------------------------|---------------------------|-----------------|
| Discharge              |                           |                           |                 |
| No regurgitation       | 84                        | 85                        | 169             |
| Mild regurgitation     | 19                        | 16                        | 35              |
| Moderate regurgitation | 0                         | 0                         | 0               |
| Severe regurgitation   | 0                         | 0                         | 0               |
| n                      | 101                       | 103                       | 204             |
| 6 month visit          |                           |                           |                 |
| No regurgitation       | 77                        | 82                        | 159             |
| Mild regurgitation     | 18                        | 10                        | 28              |
| Moderate regurgitation | 0                         | 0                         | 0               |
| Severe regurgitation   | 0                         | 0                         | 0               |
| n                      | 95                        | 92                        | 187             |
|                        |                           |                           |                 |

### Table A13. Frequency of paraprosthetic regurgitation, by treatment received

Paraposthetic regurgitation was explored using logistic regressions at each time point. These were performed as complete case analyses, in the safety population. Logistic regression models included fixed treatment, valve and sex effects, and a random surgeon effect. They did not show a statistically significant difference between MS recipients and FS recipients in the odds of regurgitation, either at discharge (MS/FS odds ratio 1.163, confidence interval 0.553 to 2.445, p-value 0.6883) or at 6 months (MS/FS odds ratio 1.880, confidence interval 0.798 to 4.430, p-value 0.1480).

| Treatment<br>received | Relationship     | Description                                                                                                                                                         |
|-----------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Teceiveu              | Relationship     | Description                                                                                                                                                         |
| FS                    | Possibly related | Superficial sternal wound infection.                                                                                                                                |
| FS                    | Possibly related | Sternal wound infection. Returned to theatre for debridement and 2x wires removed.                                                                                  |
| FS                    | Possibly related | Sternal wound infection.                                                                                                                                            |
| FS                    | Possibly related | Sternal wound breakdown. Debridement and excision of sinuses. PICC line inserted for 6 weeks IV antibiotics.                                                        |
| FS                    | Possibly related | Drain site wound infection.                                                                                                                                         |
| FS                    | Possibly related | Wound infection - small area at lower end of sternum.                                                                                                               |
| FS                    | Possibly related | Small sternal wound infection.                                                                                                                                      |
| FS                    | Probably related | Sternal wound infection.                                                                                                                                            |
| FS                    | Probably related | Sternal wound infection.                                                                                                                                            |
| FS                    | Possibly related | Sternal wound infection.                                                                                                                                            |
| FS                    | Probably related | Sternal wound infection.                                                                                                                                            |
| FS                    | Possibly related | Sternal wound infection. Antibiotics commenced.                                                                                                                     |
| FS                    | Possibly related | Sternal wound infection - requiring hospital admission. Treated with antibiotics.                                                                                   |
| FS                    | Possibly related | Wound Infection. Commenced on antibiotics and daily dressings.                                                                                                      |
|                       |                  |                                                                                                                                                                     |
| MS                    | Possibly related | Readmission, wound infection, iv/oral flucloxacillin.                                                                                                               |
| MS                    | Possibly related | MRSA sternal wound infection.                                                                                                                                       |
| MS                    | Probably related | Sternal wound infection. Admitted to NGTH with fever, chest pain, SOB and discharging sternal wound. Commenced IV flucloxacillin. Swab taken, VAC dressing applied. |
| MS                    | Possibly related | Wound infection at base of sternotomy. Wound swab taken, grown K.pneumoniae. Commenced antibiotics - amoxycillin.                                                   |

### Table A14. All wound infections within the first year after surgery, by treatment received

In total, 4 MS recipients and 13 FS recipients suffered wound infections within a year of surgery (one FS recipient suffered two infections). No patients who received a mechanical valve suffered a wound infection. Odds of wound infection were explored via logistic regression (complete case analysis in the safety population, with fixed treatment and sex effects, and with a random surgeon effect). The odds of suffering at least one wound infection were estimated to be lower for MS recipients than for FS recipients (MS/FS odds ratio 0.312, confidence interval 0.097 to 1.005, p-value 0.0511). Only two infections were categorised as deep (1 MS, 1FS).

### Table A15. All deaths

|                       | Treatment<br>received | Treatment<br>allocated | Cause                                                                                                                                | Relationship to<br>treatment | Days from<br>surgery to death |
|-----------------------|-----------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------|
|                       |                       |                        |                                                                                                                                      |                              |                               |
| Cardiorespiratory     | FS                    | FS                     | Endocarditis and sepsis.                                                                                                             | Possibly related             | 124                           |
|                       | FS                    | FS                     | Lung infection.                                                                                                                      | Unrelated                    | 1050                          |
|                       | FS                    | FS                     | Respiratory failure, pneumonia, chronic lymphocytic leukaemia.                                                                       | Unrelated                    | 1057                          |
|                       | MS                    | MS                     | Cardiac arrest and pericardial tamponade 2 days after surgery.<br>Heart failure and left anterior pneumothorax 3 days after surgery. | Possibly related             | 3                             |
|                       | MS                    | MS                     | Type 2 respiratory failure and shock, multi-organ failure.                                                                           | Possibly related             | 24                            |
|                       | MS                    | MS                     | Post-op arrest on HDU on day of surgery. Heart failure 26 days after surgery.                                                        | Possibly related             | 26                            |
|                       | MS                    | MS                     | Lower respiratory tract infection. Type 2 respiratory failure.<br>NSTEMI during hospital admission.                                  | Unrelated                    | 75                            |
|                       | MS                    | MS                     | Endocarditis, infected valve. Refused all treatment including antibiotics. Palliation only.                                          | Possibly related             | 241                           |
|                       | MS                    | MS                     | Exacerbation of COPD.                                                                                                                | Unrelated                    | 307                           |
|                       | MS                    | MS                     | Ischaemic heart disease.                                                                                                             | Unrelated                    | 502                           |
|                       | MS                    | MS                     | Myocardial infarction.                                                                                                               | Unrelated                    | 933                           |
| Non-cardiorespiratory | FS                    | FS                     | Sepsis.                                                                                                                              | Unrelated                    | 66                            |
|                       | FS                    | FS                     | Metastatic prostate cancer.                                                                                                          | Unrelated                    | 256                           |
|                       | FS                    | FS                     | B cell lymphoma.                                                                                                                     | Unrelated                    | 308                           |
|                       | FS                    | FS                     | Embolus of left common femoral artery, advanced colorectal cancer, AS, CHF.                                                          | Unrelated                    | 958                           |
|                       | MS                    | MS                     | Metastatic bladder cancer.                                                                                                           | Unrelated                    | 257                           |
|                       | MS                    | MS                     | Death due to malignant tumour of oesophagus                                                                                          | Unrelated                    | 445                           |
|                       | MS                    | MS                     | Diffuse large B cell lymphoma.                                                                                                       | Unrelated                    | 527                           |
|                       | MS                    | MS                     | Spontaneous subdural haemorrhage.                                                                                                    | Unrelated                    | 873                           |
|                       |                       |                        |                                                                                                                                      |                              |                               |

Table A15 shows that none of the patients who died were considered to be crossovers from MS to FS. However, there were three deaths among patients who were allocated and received MS but who were returned to theatre for redo FS. These were the deaths, all categorised as cardiorespiratory in Table A15, which occurred at 3, 26 and 933 days after surgery.

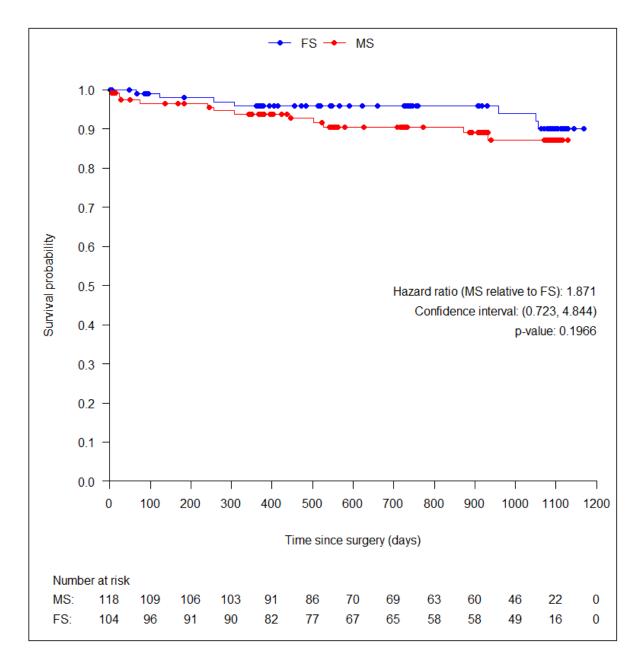



Figure A4. Kaplan-Meier curves for time to death by any cause

Patients are grouped by the treatment allocated to them. Patients who had no fatal events recorded were censored at the last time they were known to be alive. Times of censoring are indicated by points on the curves.

### **Appendix B: Economic Evaluation**

### Introduction

This trial collected data on resource and health service use for each patient during their in-patient stay through to the end of follow-up at 1 year. The economic analysis compared the costs and quality of life impacts of full and mini-sternotomy and assessed the cost-effectiveness of mini-sternotomy as an alternative to full median sternotomy.

The methods section first presents the unit costs, resource use data and the methods used to aggregate resource use and utility data at a patient level. The methods used to document and impute missing data follow. The last part describes the construction of incremental cost-effectiveness ratios and representation of uncertainty.

Results are presented first for raw data (with and without imputation) for costs and QALYs separately, followed by estimations of costs and QALYs that account for baseline differences. The final section provides results of probabilistic and deterministic sensitivity analyses.

#### Methods

#### Unit costs

All resource use data collected formed part of the patient-specific case-report form. Trained research nurses extracted data for inpatient stays from individual patient records. Face-to-face interviews with patients, by research nurses, provided data for quality of life as well as health service use during follow-up.

Multiplying the unit costs by each unit of resource use and summing these resource costs across each patient's 12 month follow-up from date of operation enabled aggregation of total cost per patient. Table B1 provides the unit costs used, with source of data. Where possible, national estimates of unit prices were used (e.g. PSSRU 2015 [1], NHS Ref 2014-15 [2]) to increase generalisability.

All resources were used once by patients (e.g. a GP visit or specific test), with the exception of two capital items used during surgery; the horizontal saw and defibrillator handles, both acquired for mini-sternotomy. These costs were apportioned, using clinical opinion, to each patient assuming a lifespan of 20 years and that surgeons undertake a total of 255 mini-sternotomies over five years.

| Item                                        | Source            | Consultation time/Codes                                             | Mean<br>2014/15 | SD     |
|---------------------------------------------|-------------------|---------------------------------------------------------------------|-----------------|--------|
| GP Visits                                   | PSSRU 2015. 10.8b | Per patient contact lasting 17.2 minutes                            | £65.00          | £13.00 |
| GP Home Visits                              | PSSRU 2015. 10.8b | Per patient contact lasting 11.7 minutes                            | £45.00          | £9.00  |
| Nurse (GP Practice) Visits                  | PSSRU 2015. 10.6  | Per patient contact 15.5 minutes                                    | £14.47          | £2.89  |
| Nurse (Specialist Community)<br>Home Visits | PSSRU 2015. 10.4  | Per patient contact 15.5 minutes                                    | £19.38          | £3.88  |
| Physiotherapy (outpatient)                  | NHS Ref 2014-15   | Code: WF01A                                                         | £16.13          | £3.23  |
| Occupational Therapy (outpatient)           | NHS Ref 2014-15   | Code: WF01A                                                         | £16.67          | £3.33  |
| Physiotherapy (inpatient)                   | PSSRU 2015. 13.1  | Per patient contact lasting 20 minutes                              | £12.67          | £2.53  |
| Occupational Therapy (inpatient)            | PSSRU 2015. 13.2  | Per patient contact lasting 20<br>minutes                           | £12.67          | £2.53  |
| Physiotherapy (home)                        | PSSRU 2015. 8.4.1 | Per patient contact lasting 20<br>minutes                           | £27.00          | £5.40  |
| Theatre use                                 | Papworth estimate |                                                                     | £20.00          | £4.00  |
| Horizontal surgical saw                     | Papworth estimate | 20 year life span and are used in<br>255 surgeries in every 5 years | £3,138.22       | £3.1   |
| Paediatric internal cardioversion paddles   |                   | 255 surgeries in every 5 years                                      | £161.71         | £0.2   |

### Table B1. Unit costs

| Internal paddle handle                                          |                              |                              | £670.00   | £0.7    |
|-----------------------------------------------------------------|------------------------------|------------------------------|-----------|---------|
| Reprocessing cost of defibrillator<br>paddles for each surgery* |                              | Per patient                  | £2.40     | £2.40   |
| Single use saw blade for mini-<br>sternotomy                    |                              | Per patient                  | £15.80    | £15.80  |
| Single use saw blade for full sternotomy                        |                              | Per patient                  | £48.00    | £48.00  |
| Adult Critical Care                                             | NHS Ref 2014-15              | Total/weighted average       | £1,274.92 | £583.33 |
| Specialised Ward                                                | NHS Ref 2014-15              | Code: SD01A                  | £387.96   | £77.59  |
| General Ward                                                    | NHS Ref 2014-15              | Code: SD03A                  | £103.01   | £20.60  |
| Rehabilitation                                                  | PSSRU (1.3) 2015             |                              | £158.57   | £31.71  |
| 24 hour Blood Pressure<br>Monitoring                            | Lovibond et al. 2011,<br>[3] |                              | £61.47    | £12.29  |
| Radiography (chest)                                             | Auguste et al. 2011, [4]     |                              | £3.46     | £0.69   |
| Echo TTE                                                        | NHS Ref 2014-15              | Simple Echocardiogram        | £83.94    | £16.79  |
| Echo TOE                                                        | NHS Ref 2014-15              | Complex Echocardiogram       | £128.49   | £25.70  |
| Echo Stress                                                     | NHS Ref 2014-15              | Complex Echocardiogram       | £128.49   | £25.70  |
| 24 hour ECG                                                     | NHS Ref 2014-15              | Electrocardiogram Monitoring | £140.69   | £28.14  |
| 12 hour ECG                                                     | NHS Ref 2014-15              | Electrocardiogram Monitoring | £140.69   | £28.14  |
| Exercise Tolerance Test                                         | NHS Ref 2014-15              | Electrocardiogram Monitoring | £140.69   | £28.14  |
| MRI scan                                                        | NHS Ref 2014-15              | Total/weighted average       | £146.15   | £56.64  |
| Full Pulmonary Function Testing                                 | NHS Ref 2014-15              | Code: DZ52Z                  | £55.32    | £11.06  |
| Cardiac Rehabilitation                                          | NHS Ref 2014-15              | Code: VC38Z                  | £97.84    | £19.57  |
| Cardio Clinic                                                   | NHS Ref 2014-15              | Code: WF01A                  | £123.02   | £24.60  |
| Pacemaker                                                       | NHS Ref 2014-15              | Code: EY08E                  | £76.32    | £15.26  |
| Blood tests                                                     | NHS Ref 2014-15              | Code: DAPS08                 | £3.46     | £0.69   |
| Arrhythmia clinic                                               | NHS Ref 2014-15              | Total/weighted average       | £131.14   | £26.23  |
| Wound clinic                                                    | NHS Ref 2014-15              | Code: N25AF/AN               | £54.93    | £10.99  |
| A&E visit                                                       | NHS Ref 2014-15              | Total/weighted average       | £140.59   | £141.05 |
| Computerised Tomography Scan                                    | NHS Ref 2014-15              | Total/weighted average       | £122.31   | £48.86  |

\* The lead clinician confirmed that: defibrillator is not routinely used and that the cost of paddles should apply to 30% of patients; and the cost of external defibrillator plates should be excluded for mini-sternotomy as the plate is only used when it is not possible to insert the paddles.

#### Patient-level aggregation of cost

This section describes the aggregation of costs, by patient, for the inpatient stay, post-discharge follow-up to 12 months and drug use.

*Hospital stay:* The time in the hospital from randomisation to discharge was disaggregated into theatre time, critical care unit (CCU) stay and cardiac ward stay as shown in Table B2. The total length of stay comprised time spent in surgery (measured in minutes), CCU (measured in hours) and cardiac ward (measured in days). Theatre time included duration of re-operations where applicable (a few patients had up to two returns to theatre) and corresponding CCU stays were added to the CCU hours. The total stay in the hospital, calculated using theatre time, critical care and ward stay, was compared with direct calculation of duration using date of operation and date of discharge to validate the breakdown of patient stay. After discharge from hospital, the majority of patients were discharged home but some were referred on to acute hospitals or rehabilitation centres (short or long term) for more care, and the costs of this additional stay were included.

*Post-discharge:* Resource use after discharge and up to twelve months post randomisation was collected at 6 week, 6 month and 12 month follow-up visits, with resource use divided into three categories: hospital admissions, tests and healthcare visits. A total of 28 different healthcare resources were used and aggregated over the follow-up period. For example, if a patient reported 1 blood test in discharge to 6 week follow-up period, 2 blood tests between 6 week to 6 month period and none after that, resource use was costed as £10.38 (3\*£3.46) post discharge .

|                                   |                        | <u> </u> | Full Sternotomy                 |       | Mini-sternotomy |                              |        |  |
|-----------------------------------|------------------------|----------|---------------------------------|-------|-----------------|------------------------------|--------|--|
| Primary Admission Costs           | Unit of<br>measurement | Obs      | Mean<br>resource<br>use/patient | SD    | Obs             | Mean resource<br>use/patient | SD     |  |
| Theatre                           | Minutes                | 104      | 191.19                          | 62.15 | 118             | 221.11                       | 102.65 |  |
| Critical care (ITU)               | Hours                  | 103      | 34.67                           | 57.17 | 118             | 55.24                        | 94.6   |  |
| Cardiac ward                      | Days                   | 103      | 7.09                            | 4.31  | 118             | 6.90                         | 3.8    |  |
| Rehabilitation*                   | Days                   | 103      | 2.45                            | 11.90 | 117             | 1.68                         | 10.2   |  |
| Acute hospital*                   | Days                   | 103      | 0.90                            | 4.97  | 117             | 0.74                         | 5.0    |  |
| Physiotherapy (inpatient)         | Days                   | 103      | 5.90                            | 4.21  | 117             | 5.90                         | 5.1    |  |
| Occupational therapy (inpatient)  | Days                   | 103      | 0.17                            | 0.58  | 118             | 0.24                         | 0.6    |  |
| Follow-up (post discharge)        |                        |          |                                 |       |                 |                              |        |  |
| ITU                               | Days                   | 81       | 0.00                            | 0.00  | 94              | 0.03                         | 0.3    |  |
| General ward                      | Days                   | 92       | 2.87                            | 14.37 | 101             | 0.86                         | 3.4    |  |
| Cardiac ward                      | Days                   | 92       | 0.40                            | 1.49  | 100             | 1.15                         | 4.3    |  |
| 24 hour BP Monitoring             | No. of tests           | 80       | 0.16                            | 0.56  | 94              | 0.19                         | 1.2    |  |
| Radiography (chest)               | No. of tests           | 80       | 0.49                            | 0.89  | 94              | 0.64                         | 0.9    |  |
| Computerised Tomography Scan      | No. of tests           | 80       | 0.14                            | 0.52  | 94              | 0.15                         | 0.5    |  |
| Echo TTE                          | No. of tests           | 80       | 0.41                            | 0.69  | 94              | 0.55                         | 0.8    |  |
| Echo TOE                          | No. of tests           | 80       | 0.03                            | 0.22  | 92              | 0.03                         | 0.1    |  |
| Echo Stress                       | No. of tests           | 80       | 0.01                            | 0.11  | 93              | 0.01                         | 0.1    |  |
| 24 hour ECG                       | No. of tests           | 80       | 0.11                            | 0.39  | 94              | 0.15                         | 0.4    |  |
| 12 hour ECG                       | No. of tests           | 80       | 0.69                            | 0.91  | 94              | 0.90                         | 1.1    |  |
| Exercise Tolerance Test           | No. of tests           | 80       | 0.08                            | 0.27  | 93              | 0.06                         | 0.2    |  |
| MRI scan                          | No. of tests           | 79       | 0.03                            | 0.16  | 94              | 0.05                         | 0.2    |  |
| Full Pulmonary Function Testing   | No. of tests           | 80       | 0.05                            | 0.22  | 94              | 0.03                         | 0.1    |  |
| Blood test                        | No. of tests           | 81       | 0.05                            | 0.22  | 94              | 0.06                         | 0.3    |  |
| A&E visit                         | No. of visits          | 80       | 0.09                            | 0.28  | 94              | 0.22                         | 0.5    |  |
| Arrhythmia clinic                 | No. of visits          | 80       | 0.03                            | 0.16  | 94              | 0.00                         | 0.0    |  |
| Cardiac Rehabilitation            | No. of visits          | 79       | 0.84                            | 2.76  | 93              | 0.32                         | 1.4    |  |
| Cardio Clinic                     | No. of visits          | 79       | 0.48                            | 0.68  | 94              | 0.49                         | 0.7    |  |
| GP Home Visits                    | No. of visits          | 79       | 0.23                            | 0.64  | 94              | 0.30                         | 0.7    |  |
| GP Visits                         | No. of visits          | 80       | 2.00                            | 2.34  | 94              | 2.20                         | 2.3    |  |
| Nurse (Specialist Community) Home | No. of visits          | 80       | 0.31                            | 1.12  | 94              | 0.39                         | 1.1    |  |
| Visits Nurse (GP Practice) Visits | No. of visits          | 80       | 2.10                            | 10.02 | 92              | 0.75                         | 1.4    |  |
| Occupational therapy (outpatient) | No. of visits          | 80       | 0.11                            | 0.71  | 94              | 0.06                         | 0.6    |  |
| Pacemaker                         | No. of visits          | 79       | 0.08                            | 0.68  | 93              | 0.06                         | 0.3    |  |
| Physiotherapy (home)              | No. of visits          | 80       | 0.05                            | 0.35  | 94              | 0.00                         | 0.0    |  |
| Physiotherapy (outpatient)        | No. of visits          | 80       | 0.04                            | 0.19  | 94              | 0.01                         | 0.1    |  |
| Wound clinic                      | No. of visits          | 80       | 0.06                            | 0.29  | 94              | 0.02                         | 0.1    |  |

### Table B2. Summary of resource use (without imputation)

*Drugs:* Drug use was matched to a corresponding unit cost using the NHS Electronic Drug tariff [5] and BNF [6] to sum costs across drug type for each patient.

Information on drugs administered during the primary admission was complete, with total amount of each drug per patient checked against patient prescriptions. However drug use post-discharge was self-reported and it was not possible to verify or retrieve any further data on this over the follow-up period.

*Health State Utilities:* This data was collected using EQ-5D-3L and SF-36 questionnaires. EQ-5D-3L responses were converted to utility values using Dolan et al (1995) [7] and to quality-adjusted life years (QALYs) for the trial period using the area under the curve method. SF-36 data was mapped to SF-6D utility values based on the ScHARR (School of Health and Related Research, University of Sheffield) algorithm and were converted to QALY scores (Brazier et al 2002 [8]). A value of 0 was assigned from date of death.

### **Missing data**

The patterns of missing data for resource use and utilities were tested using Pearson Chi square goodness of fit and Wilcoxon rank sum tests for being missing at random and completely at random using the following variables: age, sex, treatment and health status at baseline (EQ-5D). The baseline characteristics assessed were not statistically significantly different between the two groups and multiple imputations were used for economic analysis. Patients were assigned zero cost and zero utility value from point of death.

*Hospital stay:* For primary admission, there were a few item non-responses for resource use data but no censored data. Complete information was available on all respondents barring one participant who withdrew from the trial after operation.

*Post-discharge:* The frequency of missing data for resource use after discharge is provided in Table B3 for the two groups. Imputation models did not converge at month twelve and resource use was aggregated over time, i.e. imputation was carried out for the aggregate value for each item rather than at each time period. The proportion of missing values in the aggregated utility data ranged from 11% to 25% in resource use post discharge (Table B3).

| Follow up Resource Use | Full Sternotomy | Mini-sternotomy | Total |
|------------------------|-----------------|-----------------|-------|
| 6 weeks                |                 |                 |       |
| Missing                | 3               | 4               | 7     |
| Lost to follow up      | 4               | 6               | 10    |
| Dead                   | 1               | 4               | 5     |
| Observations           | 96              | 104             | 200   |
| 6 months               |                 |                 |       |
| Missing                | 2               | 5               | 7     |
| Lost to follow up      | 8               | 9               | 17    |
| Dead                   | 2               | 6               | 8     |
| Observations           | 92              | 98              | 190   |
| 12 months              |                 |                 |       |
| Missing                | 9               | 4               | 13    |
| Lost to follow up      | 11              | 13              | 24    |
| Dead                   | 4               | 7               | 11    |
| Observations           | 80              | 94              | 174   |
| Total                  | 104             | 118             | 222   |

#### Table B3. Missing follow-up resource use

*Drugs:* Only drugs taken from randomisation to 12 month follow up period were accounted for (covering 3,078 drug uses of 118 different drugs). A number of assumptions (about quantity/dose and length of administration) were used to minimise the degree of missing information on drugs used. For example, when dosage or

frequency of dose per day was missing, the mode usage among trial participants was used or, if not available, the BNF dosage was used. Duration of medicinal use was calculated using start and stop dates for drugs used in primary admission and follow-up. However, when start/stop dates were missing, replies to a "yes/no" question on use of drugs at follow-up time points informed duration. For example if a drug was taken during inpatient stay, 6 week, 6 month and 12 month follow up, the drug was said to be used for entire 12 month trial period. However further assumptions about duration of medication were used when data was less forthcoming; for example drugs which were being taken only at 12 month follow up, without start date or stop date specified, were assumed to have been taken according to prescription every day for an average of three months (based on expert consultation). 58 records had insufficient information on usage for such personalised manual imputation, requiring predictive mean matching (conditioned on patient ID and name of drug).

*Health State Utilities:* EQ-5D-3L and SF-6D utility data were imputed at each follow-up as presented in Table B4, and percent of missing value ranged from 9% to 23%. Further breakdown of missing data for resource use and HRQoL questionnaires, and imputation required for each variable is provided in Table B4.

|                                  |              | Full St        | ernotomy | 1     | Mini-sternotomy |                |         |       |
|----------------------------------|--------------|----------------|----------|-------|-----------------|----------------|---------|-------|
| Resource Use                     | Comple<br>te | Incompl<br>ete | Imputed  | Total | Comple<br>te    | Incompl<br>ete | Imputed | Total |
| Primary admission                |              |                |          |       |                 |                |         |       |
| Theatre time (minutes)           | 104          | 0              | 0        | 104   | 118             | 0              | 0       | 118   |
| Critical care stay (hours)       | 103          | 1              | 1        | 104   | 118             | 0              | 0       | 118   |
| Cardiac ward stay (days)         | 103          | 1              | 1        | 104   | 118             | 0              | 0       | 118   |
| Rehabilitation days*             | 103          | 1              | 1        | 104   | 117             | 1              | 1       | 118   |
| Acute hospital days*             | 103          | 1              | 1        | 104   | 117             | 1              | 1       | 118   |
| Physiotherapy visits             | 103          | 1              | 1        | 104   | 117             | 1              | 1       | 118   |
| Occupational therapy visits      | 103          | 1              | 1        | 104   | 118             | 0              | 0       | 118   |
| Follow-up (post discharge)       |              |                |          |       |                 |                |         |       |
| Post discharge ITU days          | 81           | 23             | 23       | 104   | 94              | 24             | 24      | 118   |
| Post discharge general ward stay | 92           | 12             | 12       | 104   | 101             | 17             | 17      | 118   |
| Post discharge cardiac ward stay | 92           | 12             | 12       | 104   | 100             | 18             | 18      | 118   |
| 24 hour BP Monitoring            | 80           | 24             | 24       | 104   | 94              | 24             | 24      | 118   |
| Radiography (chest)              | 80           | 24             | 24       | 104   | 94              | 24             | 24      | 118   |
| Computerised Tomography Scan     | 80           | 24             | 24       | 104   | 94              | 24             | 24      | 118   |
| Echo TTE                         | 80           | 24             | 24       | 104   | 94              | 24             | 24      | 118   |
| Echo TOE                         | 80           | 24             | 24       | 104   | 92              | 26             | 26      | 118   |
| Echo Stress                      | 80           | 24             | 24       | 104   | 93              | 25             | 25      | 118   |
| 24 hour ECG                      | 80           | 24             | 24       | 104   | 94              | 24             | 24      | 118   |
| 12 hour ECG                      | 80           | 24             | 24       | 104   | 94              | 24             | 24      | 118   |
| Exercise Tolerance Test          | 80           | 24             | 24       | 104   | 93              | 25             | 25      | 118   |
| MRI scan                         | 79           | 25             | 25       | 104   | 94              | 24             | 24      | 118   |
| Pulmonary Function Testing       | 80           | 24             | 24       | 104   | 94              | 24             | 24      | 118   |
| Blood test                       | 81           | 23             | 23       | 104   | 94              | 24             | 24      | 118   |
| A&E visit                        | 80           | 24             | 24       | 104   | 94              | 24             | 24      | 118   |
| Arrhythmia clinic                | 80           | 24             | 24       | 104   | 94              | 24             | 24      | 118   |
| Cardiac Rehabilitation           | 79           | 25             | 25       | 104   | 93              | 25             | 25      | 118   |
| Cardio Clinic                    | 79           | 25             | 25       | 104   | 94              | 24             | 24      | 118   |
| GP Home Visits                   | 79           | 25             | 25       | 104   | 94              | 24             | 24      | 118   |

### Table B4. Incomplete data and imputation

| GP Visits                                   | 80 | 24 | 24 | 104 | 94  | 24 | 24 | 118 |
|---------------------------------------------|----|----|----|-----|-----|----|----|-----|
| Nurse (Specialist Community)<br>Home Visits | 80 | 24 | 24 | 104 | 94  | 24 | 24 | 118 |
| Nurse (GP Practice) Visits                  | 80 | 24 | 24 | 104 | 92  | 26 | 26 | 118 |
| Occupational therapy                        | 80 | 24 | 24 | 104 | 94  | 24 | 24 | 118 |
| Pacemaker                                   | 79 | 25 | 25 | 104 | 93  | 25 | 25 | 118 |
| Physiotherapy (home)                        | 80 | 24 | 24 | 104 | 94  | 24 | 24 | 118 |
| Physiotherapy                               | 80 | 24 | 24 | 104 | 94  | 24 | 24 | 118 |
| Wound clinic                                | 80 | 24 | 24 | 104 | 94  | 24 | 24 | 118 |
| EQ-5D Score                                 |    |    |    |     |     |    |    |     |
| Baseline                                    | 95 | 9  | 9  | 104 | 105 | 13 | 13 | 118 |
| 4 Days Post Operation                       | 89 | 15 | 15 | 104 | 92  | 26 | 26 | 118 |
| Discharge                                   | 88 | 16 | 16 | 104 | 103 | 15 | 15 | 118 |
| 6 weeks follow-up                           | 88 | 16 | 16 | 104 | 106 | 12 | 12 | 118 |
| 6 months follow-up                          | 95 | 9  | 9  | 104 | 105 | 13 | 13 | 118 |
| 12 months follow-up                         | 84 | 20 | 20 | 104 | 103 | 15 | 15 | 118 |
| SF-6D Score                                 |    |    |    |     |     |    |    |     |
| Baseline                                    | 89 | 15 | 15 | 104 | 101 | 17 | 17 | 118 |
| 6 weeks follow-up                           | 88 | 16 | 16 | 104 | 102 | 16 | 16 | 118 |
| 6 months follow-up                          | 90 | 14 | 14 | 104 | 102 | 16 | 16 | 118 |
| 12 months follow-up                         | 82 | 22 | 22 | 104 | 91  | 27 | 27 | 118 |

### Imputation

Missing values were imputed conditional on sex, age, type of replacement valve used, risk classification measured using New York Heart Association (NYHA) Functional Classification and Canadian Cardiovascular Society (CCS) grading of angina. To avoid loss in efficiency, missing values for resource use and utility values at different time points were replaced using multiple imputations by chained equations.

Chained predictive mean matching was used to replace missing data for resource use and quality of life variables, and a total of 20 imputed datasets were created, stratified by treatment group. The imputed resource use is summarised in Table B5. However while conducting probabilistic analysis using bootstrap method; multiple imputation was carried out only once for each iteration with a total of 1000 iterations to adequately retain between imputation variance. The distribution of imputed values was visually checked for comparability with the observed data.

Table B5. Summary of resource use

|                                  |                        |     | Full Sternotomy                  |       | Mini-sternotomy |                                  |        |  |
|----------------------------------|------------------------|-----|----------------------------------|-------|-----------------|----------------------------------|--------|--|
| Primary Admission Costs          | Unit of<br>measurement | Obs | Mean<br>resource use/<br>patient | SD    | Obs             | Mean resource<br>use/<br>patient | SD     |  |
| Theatre                          | Minutes                | 104 | 191.19                           | 62.15 | 118             | 221.11                           | 102.65 |  |
| Critical care (ITU)              | Hours                  | 104 | 34.52                            | 56.91 | 118             | 55.24                            | 94.69  |  |
| Cardiac ward                     | Days                   | 104 | 7.07                             | 4.29  | 118             | 6.90                             | 3.87   |  |
| Rehabilitation*                  | Days                   | 104 | 2.42                             | 11.84 | 118             | 1.66                             | 10.22  |  |
| Acute hospital*                  | Days                   | 104 | 0.89                             | 4.95  | 118             | 0.77                             | 5.08   |  |
| Physiotherapy (inpatient)        | Days                   | 104 | 5.88                             | 4.20  | 118             | 5.94                             | 5.15   |  |
| Occupational therapy (inpatient) | Days                   | 104 | 0.17                             | 0.58  | 118             | 0.24                             | 0.69   |  |

| Follow-up (post discharge)                  |            |     |      |       |     |      |      |
|---------------------------------------------|------------|-----|------|-------|-----|------|------|
| ITU                                         | Days       | 104 | 0.00 | 0.00  | 118 | 0.03 | 0.28 |
| General ward                                | Days       | 104 | 2.61 | 13.55 | 118 | 0.77 | 3.20 |
| Cardiac ward                                | Days       | 104 | 0.38 | 1.43  | 118 | 1.19 | 4.14 |
| 24 hour BP Monitoring                       | No. tests  | 104 | 0.18 | 0.52  | 118 | 0.17 | 1.13 |
| Radiography (chest)                         | No. tests  | 104 | 0.55 | 0.87  | 118 | 0.61 | 0.83 |
| CT Scan                                     | No. tests  | 104 | 0.16 | 0.48  | 118 | 0.16 | 0.49 |
| Echo TTE                                    | No. tests  | 104 | 0.42 | 0.66  | 118 | 0.56 | 0.79 |
| Echo TOE                                    | No. tests  | 104 | 0.02 | 0.20  | 118 | 0.05 | 0.19 |
| Echo Stress                                 | No. tests  | 104 | 0.01 | 0.10  | 118 | 0.01 | 0.09 |
| 24 hour ECG                                 | No. tests  | 104 | 0.01 | 0.41  | 118 | 0.16 | 0.44 |
| 12 hour ECG                                 | No. tests  | 104 | 0.72 | 0.85  | 118 | 0.94 | 1.17 |
| Exercise Tolerance Test                     | No. tests  | 104 | 0.07 | 0.24  | 118 | 0.06 | 0.23 |
| MRI scan                                    | No. tests  | 104 | 0.02 | 0.15  | 118 | 0.06 | 0.22 |
| Full Pulmonary Function Testing             | No. tests  | 104 | 0.02 | 0.22  | 118 | 0.03 | 0.16 |
| Blood test                                  | No. tests  | 104 | 0.06 | 0.21  | 118 | 0.07 | 0.33 |
| A&E visit                                   | No. visits | 104 | 0.13 | 0.31  | 118 | 0.24 | 0.50 |
| Arrhythmia clinic                           | No. visits | 104 | 0.02 | 0.14  | 118 | 0.00 | 0.00 |
| Cardiac Rehabilitation                      | No. visits | 104 | 1.07 | 2.78  | 118 | 0.34 | 1.36 |
| Cardio Clinic                               | No. visits | 104 | 0.47 | 0.62  | 118 | 0.52 | 0.72 |
| GP Home Visits                              | No. visits | 104 | 0.27 | 0.64  | 118 | 0.25 | 0.68 |
| GP Visits                                   | No. visits | 104 | 2.00 | 2.16  | 118 | 2.17 | 2.18 |
| Nurse (Specialist Community)<br>Home Visits | No. visits | 104 | 0.38 | 1.06  | 118 | 0.47 | 1.22 |
| Nurse (GP Practice) Visits                  | No. visits | 104 | 1.93 | 8.83  | 118 | 0.71 | 1.32 |
| Occupational therapy                        | No. visits | 104 | 0.15 | 0.70  | 118 | 0.05 | 0.55 |
| Pacemaker                                   | No. visits | 104 | 0.06 | 0.59  | 118 | 0.08 | 0.39 |
| Physiotherapy (home)                        | No. visits | 104 | 0.05 | 0.32  | 118 | 0.00 | 0.00 |
| Physiotherapy                               | No. visits | 104 | 0.05 | 0.20  | 118 | 0.02 | 0.11 |
| Wound clinic                                | No. visits | 104 | 0.06 | 0.28  | 118 | 0.03 | 0.15 |

### Adjustment method

To account for differences in baseline utility values, as well as skewness, censoring and confounding in cost data, linear regression models were used to provide adjusted estimates of mean values. Control variables used were age, sex, valve, EQ-5D-3L baseline value and treatment arm. The type of valve used for replacement was also controlled for, because it was used as a stratification factor in the randomisation.

### Incremental cost effectiveness analysis and sensitivity analyses

Differences in estimated costs and EQ-5D QALYs between trial arms, using raw data with imputation, were tested using two-sample t-test with equal variances.

Incremental cost-effectiveness ratios were also constructed using adjusted mean estimates of costs and QALYs using 'seemingly unrelated regression', to account for correlation between costs and effects at the patient-level. This regression technique relies on the multivariate normality of the group-specific mean costs and QALYs, and is valid where the individual costs and QALYs are skewed (Faria et al 2014, [9]).

Probabilistic Sensitivity Analysis (PSA) was used to characterise the uncertainty of input parameters and a bootstrap approach (with 1000 bootstrapped samples) was applied to estimate the precision of results. The probability that mini-sternotomy is cost-effective when compared to full sternotomy is presented, at varying willingness to pay (WTP) threshold values, using a Cost Effectiveness Acceptability Curve (CEAC) and incremental net monetary benefit.

Deterministic sensitivity analyses and scenario analysis were used to explore the robustness of costeffectiveness results that adopted different methodological approaches or assumptions (see Table B6). Baseline characteristics were assessed using Chi square and rank sum test, to assess whether patients included in the complete case analysis were different from those outside the complete case analysis.

| Sar | nsitivity analyses                                   | Rationale                                                                                                                                                                                                                              |
|-----|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sei | isitivity analyses                                   | Rationale                                                                                                                                                                                                                              |
| 1.  | Complete case analysis                               | Only including respondents with no missing values across all variables and across follow-up; to check results in sample requiring no missing value imputation                                                                          |
| 2.  | Excluding patients who died during primary admission | Patients who died during primary admission were the main cost driver and required substantial surgical time and cardiac care; to assess whether excluding these patients would change recommendations.                                 |
| 3.  | Excluding additional equipment cost required         | Assuming the additional equipment required for the surgeries already exists in the trusts;                                                                                                                                             |
| 4.  | Excluding follow-up resource use                     | To test the assumption that the cost difference between the two arms were<br>accrued during primary admission, to allow comparison with literature that<br>missed these costs, but still retain benefits as captured in other studies. |
| 5.  | Excluding follow-up resource use and utility data    | Data up to discharge had few missing values; also to assess impact of having a shorter cut-off time point for trial (as wider literature had) but provide a less biased analysis that measures benefits but not costs.                 |
| 6.  | Use SF-6D utility values                             | SF-6D values used as an alternative construction for QALYs                                                                                                                                                                             |

|                   | <b>6 1</b> <i>i</i> <b>1</b> <i>i</i> <b>i</b> <i>i</i> <b>i</b> <i>i i i i</i> |                                    |
|-------------------|---------------------------------------------------------------------------------|------------------------------------|
| Table B6. Summary | of deterministic sensitivity                                                    | y and scenario analyses undertaken |

### Results

The comparison of mean costs per patient up to one year (see Table B7), using raw data with imputation, shows that mini-sternotomy was £1,714 more than median sternotomy although this was not statistically significant. The higher costs resulted from longer surgery time, additional equipment and longer time in critical care. EQ-5D QALYs were very slightly higher in the mini-sternotomy arm compared with full sternotomy (difference 0.0279), but this was not statistically significantly so (see Table B8), and there was no statistically significant difference in SF6D QALYs either. Figures B1 and B2 illustrate the distribution of total costs and QALYs across the patients in the trial.

Table B9 summarises the comparison of costs and QALYs. The additional cost of gaining an additional QALY using mini-sternotomy rather than median sternotomy when imputed using PMM method is  $\pounds 61,379$  and the net monetary loss at a willingness to pay (WTP) of  $\pounds 20,000$  is  $\pounds 1,155$ .

Seemingly unrelated regression analysis of costs and QALYs, adjusted for baseline characteristics showed that, in terms of QALYS, mini-sternotomy was not statistically significantly different from full sternotomy. Table B10 also shows that the coefficient for cost was positive, indicating mini-sternotomy was more costly than full sternotomy and that this difference was statistically significant. Mini-sternotomy is therefore dominated by median sternotomy. The cost effectiveness plane for the analysis is illustrated in Figure B3.

The probabilistic sensitivity analysis shows (see Figure B4) that, at a WTP per QALY of £20,000, there is a 3.7% likelihood that mini-sternotomy is cost-effective compared with median sternotomy and that this likelihood rises to 5.1% at a WTP of £30,000/QALY. The net monetary benefit of mini-sternotomy is negative across all WTP threshold values (Figure B5).

Deterministic sensitivity analyses (see Table B11) showed that mini-sternotomy was either dominated or had a huge ICER. The one exception to this was the complete case analysis (CCA-cost-effectiveness), which found mini-sternotomy to be cost-effective. The intervention cost less but also had slightly worse outcomes in this sample size, which was limited to only 90 cases. The result indicates a saving of £10,000 for a loss of one QALY. The sample is not representative of those with missing data and consisted a larger proportion of females than the sample outside the CCA-cost-effectiveness sample. The sensitivity analyses conducted using PSA (Table B12) consistently found full sternotomy to be a superior intervention to mini-sternotomy. The cost effectiveness planes for the sensitivity analyses are illustrated in Figure B6.

| imputation) (UK pounds, 2015) |           |     |              |     |                 |         |    |
|-------------------------------|-----------|-----|--------------|-----|-----------------|---------|----|
|                               |           |     | Full Sternot | omy | Mini-sternotomy |         |    |
|                               |           |     | Mean         |     |                 | Mean    |    |
|                               | Mean      |     | cost/        |     |                 | cost/   |    |
|                               | Unit cost | Obs | patient      | SD  | Obs             | patient | SD |

| Table B7: Comparison of mean costs (SD) per patient up to 12 months post-randomisation (with |
|----------------------------------------------------------------------------------------------|
| imputation) (UK pounds, 2015)                                                                |

|                                                             | Unit cost | Obs  | cost/<br>patient | SD       | Obs  | cost/<br>patient | SD       |
|-------------------------------------------------------------|-----------|------|------------------|----------|------|------------------|----------|
| Primary Admission Costs                                     |           | 0.00 | Fundation        |          | 0.00 |                  |          |
| Additional surgical items                                   |           |      |                  |          |      |                  |          |
| Horizontal surgical saw                                     | £3,138.2  | 104  | £0.0             | £0.0     | 118  | £3.1             | £0.0     |
| Single use saw blade for mini-sternotomy                    | £48.0     | 104  | £0.0             | £0.0     | 118  | £48.0            | £0.0     |
| Single use saw blade for full sternotomy                    | £15.8     | 104  | £15.8            | £0.0     | 118  | £0.0             | £0.0     |
| Paediatric internal cardioversion paddles                   | £161.7    | 104  | £0.0             | £0.0     | 118  | £0.2             | £0.0     |
| Reprocessing cost of defibrillator paddles for each surgery | £2.4      | 104  | £2.4             | £0.0     | 118  | £2.4             | £0.0     |
| Internal paddle handle                                      | £670.0    | 104  | £0.0             | £0.0     | 118  | £0.7             | £0.0     |
| Cost of additional surgical items**                         |           | 104  | £16.52           | £0.0     | 118  | £52.0            | £0.0     |
| Theatre                                                     | £20.0     | 104  | £3,823.8         | £1,243.0 | 118  | £4,422.2         | £2,053.0 |
| Critical care (ITU)                                         | £1,274.9  | 104  | £1,833.8         | £3,023.2 | 118  | £2,934.2         | £5,029.9 |
| Cardiac ward                                                | £388.0    | 104  | £2,743.7         | £1,664.0 | 118  | £2,676.3         | £1,499.9 |
| Rehabilitation*                                             | £158.6    | 104  | £384.2           | £1,877.6 | 118  | £263.4           | £1,621.3 |
| Acute hospital*                                             | £388.0    | 104  | £346.9           | £1,918.9 | 118  | £297.5           | £1,971.3 |
| Physiotherapy (inpatient)                                   | £12.7     | 104  | £74.5            | £53.2    | 118  | £75.2            | £65.3    |
| Occupational therapy (inpatient)                            | £12.7     | 104  | £2.1             | £7.3     | 118  | £3.0             | £8.7     |
| Subtotal (primary admission)                                | -         | 104  | £9225.7          | £6510.8  | 118  | £10723.9         | £8850.2  |
| Post Primary Admission Costs                                |           |      |                  |          | 1    |                  |          |
| Hospital Admission                                          |           |      |                  |          |      |                  |          |
| ITU                                                         | £1,274.9  | 104  | £0.0             | £0.0     | 118  | £32.4            | £352.1   |
| General ward                                                | £103.0    | 104  | £268.4           | £1,395.4 | 118  | £79.4            | £329.5   |
| Cardiac ward                                                | £388.0    | 104  | £149.2           | £554.8   | 118  | £463.6           | £1,606.4 |
| Tests                                                       |           |      |                  |          |      |                  |          |
| 24 hour Blood Pressure Monitoring                           | £61.5     | 104  | £10.9            | £32.0    | 118  | £10.2            | £69.5    |
| Radiography (chest)                                         | £3.5      | 104  | £19.4            | £30.9    | 118  | £21.6            | £29.5    |
| Computerised Tomography Scan                                | £122.3    | 104  | £19.4            | £58.6    | 118  | £19.7            | £59.8    |
| Echo TTE                                                    | £83.9     | 104  | £35.1            | £55.2    | 118  | £46.9            | £66.6    |
| Echo TOE                                                    | £128.5    | 104  | £2.5             | £25.2    | 118  | £6.5             | £24.3    |
| Echo Stress                                                 | £128.5    | 104  | £1.2             | £12.6    | 118  | £1.1             | £11.8    |
| 24 hour ECG                                                 | £140.7    | 104  | £18.3            | £57.2    | 118  | £22.7            | £62.3    |
| 12 hour ECG                                                 | £140.7    | 104  | £101.5           | £119.6   | 118  | £132.9           | £165.0   |
| Exercise Tolerance Test                                     | £140.7    | 104  | £9.5             | £34.0    | 118  | £8.9             | £32.6    |

| MRI scan                                 | £146.2 | 104 | £3.5      | £21.3    | 118 | £9.3      | £32.5    |
|------------------------------------------|--------|-----|-----------|----------|-----|-----------|----------|
| Full Pulmonary Function Testing          | £55.3  | 104 | £3.2      | £12.4    | 118 | £1.6      | £9.1     |
| Blood test                               | £3.5   | 104 | £0.0      | £0.1     | 118 | £0.0      | £0.1     |
| Healthcare visits                        |        |     |           |          |     |           |          |
| A&E visit                                | £140.6 | 104 | £18.9     | £43.0    | 118 | £33.4     | £70.4    |
| Arrhythmia clinic                        | £131.1 | 104 | £2.5      | £18.1    | 118 | £0.0      | £0.0     |
| Cardiac Rehabilitation                   | £97.8  | 104 | £104.4    | £271.9   | 118 | £33.6     | £133.4   |
| Cardio Clinic                            | £123.0 | 104 | £57.4     | £76.3    | 118 | £63.6     | £88.1    |
| GP Home Visits                           | £45.0  | 104 | £12.1     | £28.9    | 118 | £11.3     | £30.4    |
| GP Visits                                | £65.0  | 104 | £129.7    | £140.6   | 118 | £141.3    | £141.8   |
| Nurse (Specialist Community) Home Visits | £19.4  | 104 | £7.3      | £20.6    | 118 | £9.0      | £23.6    |
| Nurse (GP Practice) Visits               | £14.5  | 104 | £28.0     | £127.7   | 118 | £10.3     | £19.2    |
| Occupational therapy (outpatient)        | £16.7  | 104 | £2.5      | £11.7    | 118 | £0.8      | £9.2     |
| Pacemaker                                | £76.3  | 104 | £4.4      | £44.9    | 118 | £6.1      | £29.5    |
| Physiotherapy (home)                     | £27.0  | 104 | £1.4      | £8.6     | 118 | £0.0      | £0.0     |
| Physiotherapy (outpatient)               | £16.1  | 104 | £0.8      | £3.4     | 118 | £0.3      | £1.9     |
| Wound clinic                             | £54.9  | 104 | £3.4      | £15.2    | 118 | £1.6      | £8.3     |
| Subtotal (post-primary admission)        | -      | 104 | £1014.9   | £1777.5  | 118 | £1168.2   | £2077.9  |
| Drugs (total)                            | -      | 104 | £379.4    | £548.2   | 118 | £441.4    | £976.7   |
| Total cost                               |        | 104 | £10,620.0 | £7,623.8 | 118 | £12,333.5 | £9,864.2 |

\*discharged to convalescence/long term care/acute hospital instead of home

\*\*mean cost per patient estimated by assuming that the saw, paddle and handle have a twenty year life span and are used in 255 surgeries in every 5 years; NB: defib (paddle, handle and sterilisation cost) applicable in only 30% of cases

### Table B8. Summary of utility values and QALYs

|                       | Full Ster | Full Sternotomy |      |          | Mini-sternotomy |      |  |  |
|-----------------------|-----------|-----------------|------|----------|-----------------|------|--|--|
| EQ-5D                 | Obs       | Mean Utility    | SD   | Obs      | Mean Utility    | SD   |  |  |
| Baseline              | 104       | 0.6988          | 0.24 | 118      | 0.7793          | 0.18 |  |  |
| 4 Days Post Operation | 104       | 0.3721          | 0.29 | 118      | 0.4430          | 0.28 |  |  |
| Discharge             | 104       | 0.5815          | 0.23 | 118      | 0.5940          | 0.25 |  |  |
| 6 weeks follow-up     | 104       | 0.6930          | 0.21 | 118      | 0.7195          | 0.24 |  |  |
| 6 months follow-up    | 104       | 0.8272          | 0.22 | 118      | 0.8322          | 0.24 |  |  |
| 12 months follow-up   | 104       | 0.7584          | 0.29 | 118      | 0.8253          | 0.29 |  |  |
| EQ-5D QALYs           | 104       | 0.7699          | 0.19 | 118      | 0.7978          | 0.21 |  |  |
|                       |           |                 | -    | ·        |                 |      |  |  |
|                       | Full Ster | rnotomy         |      | Mini-ste | Mini-sternotomy |      |  |  |
| SF-6D                 | Obs       | Mean Utility    | SD   | Obs      | Mean Utility    | SD   |  |  |
| Baseline              | 104       | 0.6418          | 0.11 | 118      | 0.6802          | 0.12 |  |  |
| 6 weeks follow-up     | 104       | 0.6327          | 0.10 | 118      | 0.6356          | 0.14 |  |  |
| 6 months follow-up    | 104       | 0.7184          | 0.16 | 118      | 0.7332          | 0.19 |  |  |
| 12 months follow-up   | 104       | 0.6868          | 0.19 | 118      | 0.7058          | 0.23 |  |  |
| SF-6D QALYs           | 104       | 0.6847          | 0.12 | 118      | 0.6989          | 0.16 |  |  |

Figure B1. Distribution of total cost

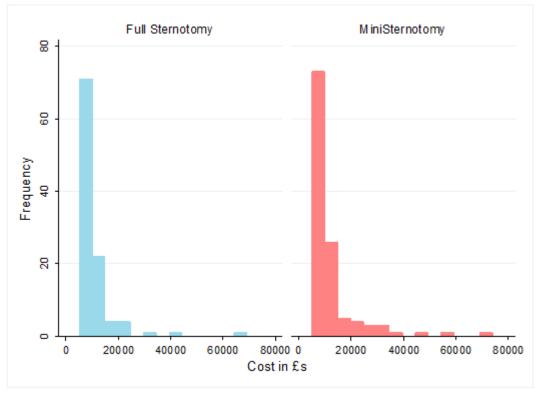
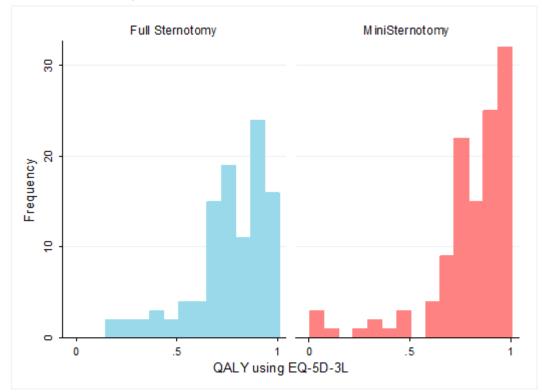




Figure B2. Distribution of QALYs



### Table B9. Comparison of costs and QALYS (raw data, with imputation)

|                                       | Full Sternoto | omy (n=104) | Mini-sternotomy (n=114) |         |  |  |
|---------------------------------------|---------------|-------------|-------------------------|---------|--|--|
|                                       | Mean          | SD          | Mean                    | SD      |  |  |
| Total costs over 12 months            | £10,620       | £7,624      | £12,334                 | £9,864  |  |  |
| Incremental cost at 12 months (MS-FS) |               | -           | £1,714                  |         |  |  |
| Total EQ5D3L QALYs                    | 0.7699        | 0.19        | 0.7978                  | 0.21    |  |  |
| Incremental EQ5D3L QALYs (MS-FS)      |               | -           | 0.0279                  |         |  |  |
| ICER                                  |               | -           |                         | £61,379 |  |  |
| INMB at WTP of £20,000/QALY           |               | -           |                         | -£1,155 |  |  |
| INMB at WTP of £30,000/QALY           |               | -           |                         | -£876   |  |  |

### Table B10. Regression estimates of costs and QALYs

| Dependant variable: EQ5D QALYs |             |                  |                |          |               |  |  |  |  |  |
|--------------------------------|-------------|------------------|----------------|----------|---------------|--|--|--|--|--|
|                                | Coefficient | Std. Err.        | P value        | [95% Co  | nf. Interval] |  |  |  |  |  |
| Mini-sternotomy                | -0.0040     | 0.0245           | 0.87           | -0.0520  | 0.0440        |  |  |  |  |  |
| Male                           | 0.0250      | 0.0246           | 0.31           | -0.0231  | 0.0732        |  |  |  |  |  |
| Age                            | -0.0051     | 0.0014           | 0.00           | -0.0078  | -0.0024       |  |  |  |  |  |
| Baseline EQ-5D score           | 0.3037      | 0.0590           | 0.00           | 0.1880   | 0.4194        |  |  |  |  |  |
| Tissue valve                   | 0.0794      | 0.0459           | 0.08           | -0.0107  | 0.1694        |  |  |  |  |  |
| Constant                       | 0.7391      | 0.1093           | 0.00           | 0.5249   | 0.9533        |  |  |  |  |  |
|                                | Dep         | endant variable: | Total Cost (£) |          |               |  |  |  |  |  |
|                                | Coefficient | Std. Err.        | P value        | [95% Co  | nf. Interval] |  |  |  |  |  |
| Mini-sternotomy                | 2010.22     | 1201.57          | 0.09           | -344.82  | 4365.25       |  |  |  |  |  |
| Male                           | -1275.52    | 1205.23          | 0.29           | -3637.73 | 1086.70       |  |  |  |  |  |
| Age                            | 98.32       | 67.58            | 0.15           | -34.13   | 230.77        |  |  |  |  |  |
| Baseline EQ-5D score           | -983.50     | 2896.40          | 0.73           | -6660.34 | 4693.33       |  |  |  |  |  |
| Tissue valve                   | -853.43     | 2254.14          | 0.71           | -5271.45 | 3564.60       |  |  |  |  |  |
| Constant                       | 5704.71     | 5362.01          | 0.29           | -4804.64 | 16214.06      |  |  |  |  |  |

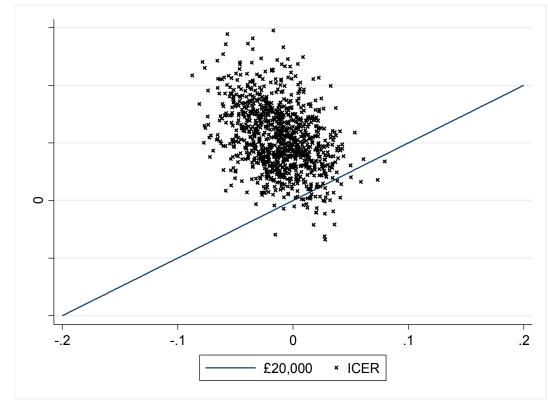
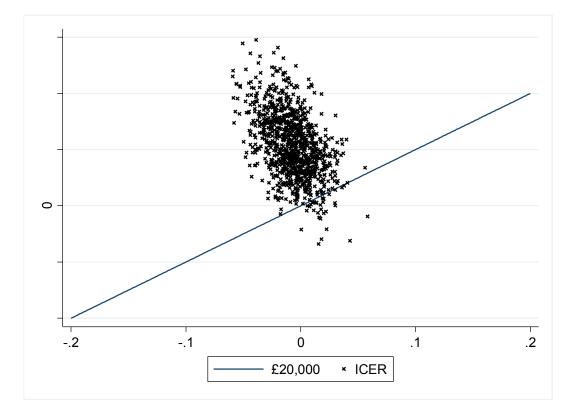

|                                                                                    | Obs | over 12 | ental cost<br>2 months<br>S-FS) | over 12 | tal QALYs<br>months<br>S-FS) | ICER          | INMB at<br>£20,000 | INMB at<br>£30,000 per |
|------------------------------------------------------------------------------------|-----|---------|---------------------------------|---------|------------------------------|---------------|--------------------|------------------------|
|                                                                                    | 000 | Mean    | Std<br>Error                    | Mean    | Std<br>Error                 | TOLIK         | per QALY           | QALY                   |
| Missing values imputed by PMM                                                      | 222 | £2,010  | £1,202                          | -0.0040 | 0.0245                       | Dominated     | -£2,089.26         | -£2,128.78             |
| Using SF6D QALYs                                                                   | 222 | £2,010  | £1,202                          | -0.0017 | 0.0178                       | Dominated     | -£2,044.44         | -£2,061.55             |
| Assuming there is no<br>additional equipment<br>required for the two<br>procedures | 222 | £1,975  | £1,202                          | -0.0040 | 0.0245                       | Dominated     | -£2,053.73         | -£2,093.26             |
| Excluding follow-up resource use                                                   | 222 | £1,664  | £1,060                          | -0.0040 | 0.0245                       | Dominated     | -£1,742.98         | -£1,782.50             |
| Complete case analysis                                                             | 90  | -£150   | £661                            | -0.0145 | 0.0334                       | £10,333.62    | -£139.89           | -£284.60               |
| Excluding patients who died during primary admission                               | 219 | £1,408  | £1,128                          | 0.0172  | 0.0216                       | £81,905.62    | -£1,064.40         | -£892.46               |
| Including costs and QALY data only up to discharge                                 | 222 | £1,664  | £1,060                          | 0.0013  | 0.0009                       | £1,316,409.02 | -£1,638.66         | -£1,626.02             |

 Table B11. Deterministic sensitivity analysis (using difference MS - FS, adjusted for baseline)

### Table B12. Probabilistic sensitivity analysis (using difference MS - FS, adjusted for baseline)


|                                                                                 | Obs  | Incremental cost<br>over 12 months<br>(MS-FS) |              | Incremental<br>QALYs over 12<br>months<br>(MS-FS) |              | ICER          | INMB at<br>£20000 | INMB at<br>£30000 |
|---------------------------------------------------------------------------------|------|-----------------------------------------------|--------------|---------------------------------------------------|--------------|---------------|-------------------|-------------------|
|                                                                                 |      | Mean                                          | Std<br>Error | Mean                                              | Std<br>Error |               | 220000            | 230000            |
| Missing values imputed by PMM and adjusted                                      | 1000 | £2,154                                        | £36          | -0.0122                                           | 0.0008       | Dominated     | -£2,396.99        | -£2,518.59        |
| Using SF6D QALYs                                                                | 1000 | £2,154                                        | £36          | -0.0075                                           | 0.0006       | Dominated     | -£2,303.03        | -£2,377.66        |
| Assuming there is no additional<br>equipment required for the two<br>procedures | 1000 | £2,245                                        | £40          | -0.0096                                           | 0.0008       | Dominated     | -£2,437.25        | -£2,533.50        |
| Excluding follow-up resource use                                                | 1000 | £1,835                                        | £35          | -0.0131                                           | 0.0008       | Dominated     | -£2,096.58        | -£2,227.15        |
| Complete case analysis                                                          | 1000 | -£111                                         | £22          | -0.0121                                           | 0.0011       | £9,170.78     | -£130.56          | -£251.12          |
| Excluding patients who died during primary admission                            | 1000 | £1,433                                        | £32          | 0.0147                                            | 0.0007       | £97,425.25    | -£1,138.55        | -£991.50          |
| Including costs and QALY data only up to discharge                              | 1000 | £1,835                                        | £35          | 0.0008                                            | 0.0000       | £2,415,384.92 | -£1,820.25        | -£1,812.65        |

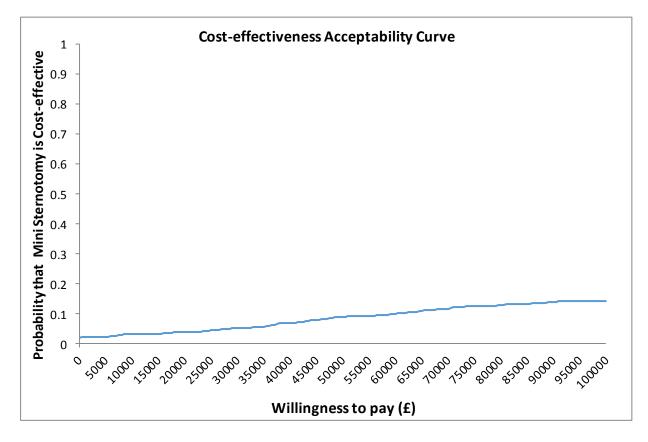
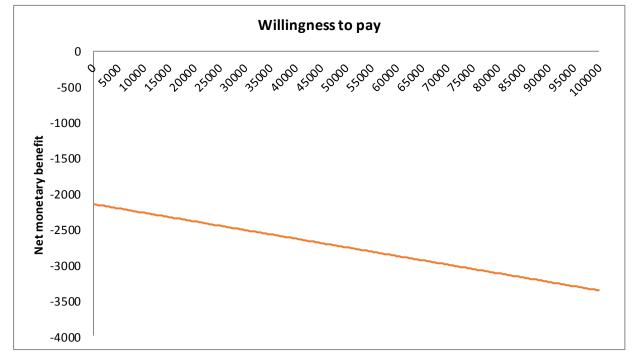
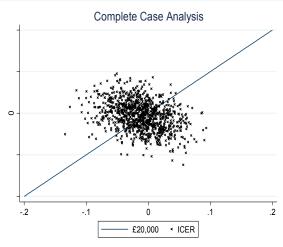
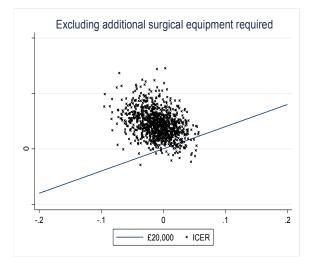
### Figure B3. Cost effectiveness plane (using difference MS-FS, adjusted for baseline)

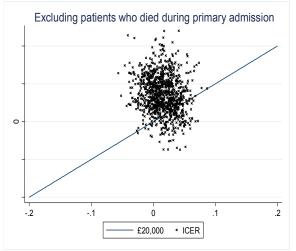


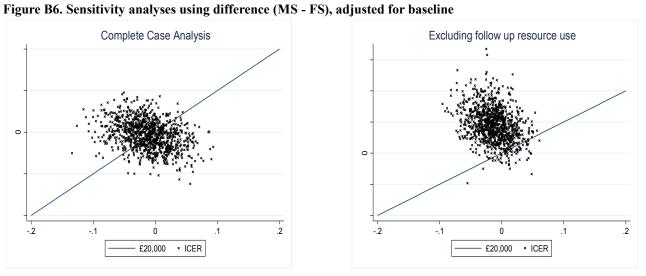
B3.1 Using EQ-5D to estimate QALY

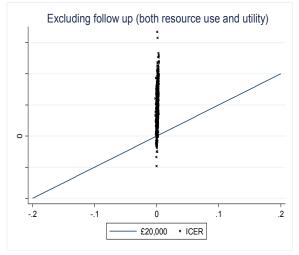
B3.2 Using SF-36 to estimate QALY





Figure B4. Cost-effectiveness acceptability curve (EQ-5D)


Figure B5. Net monetary benefit (controlling for baseline characteristics and missing data)














### References

[1] Personal Social Services Research Unit (PSSRU). Unit costs of Health and Social Care (2015): Accessed July 2016. <u>http://www.pssru.ac.uk</u>

[2] Department of Health. NHS Reference costs (2014/15): Published November 2015: Accessed July 2016. https://www.gov.uk/government/publications/nhs-reference-costs-2014-to-2015

[3] Lovibond K, Jowett S, Barton P, Caulfield M, Heneghan C, Hobbs FD, Hodgkinson J, Mant J, Martin U, Williams B, Wonderling D, McManus RJ. Cost-effectiveness of options for the diagnosis of high blood pressure in primary care: a modelling study. Lancet. 2011; 378:1219–1230

[4] Auguste P, Barton P, Hyde C, et al. An economic evaluation of positron emission tomography (PET) and positron emission tomography/computed tomography (PET/CT) for the diagnosis of breast cancer recurrence. Health Technol Assess 15: iii-iv, 1-54, 2011

[5] NHS Electronic Drug Tariff (2016): Accessed July 2016. http://www.nhsbsa.nhs.uk/PrescriptionServices/4940.aspx

[6] BNF. British National Formulary (2016): Accessed July 2016. <u>https://www.nice.org.uk/about/what-we-do/evidence-services/british-national-formulary</u>

[7] Dolan P, Gudex C, Kind P, Williams A. A social tariff for EuroQol: results from a UK general population survey University of York Center for Health Economics 1995:1-24

[8] Brazier J, Roberts J, Deverill M. The estimation of a preference-based measure of health from the SF-36. *J Health Econ* 2002;21:271-92

[9] Faria, R., Gomes, M., Epstein, D., & White, I. R. A guide to handling missing data in cost-effectiveness analysis conducted within randomised controlled trials. Pharmacoeconomics. 2014 Dec; 32(12):1157-70.