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ABSTRACT:  8 

This paper presents a unified analytical solution for elastoplastic stress analysis around a 9 

cylindrical cavity under biaxial in-situ stresses during both loading and unloading. The 10 

two-dimensional solution is obtained by assuming that the connected plastic zone is 11 

statically determinate and using the complex variable theory in the elastic analysis. It is 12 

shown that the biaxial state of initial stresses applies significant influences on the stress 13 

distribution around the inner cavity. Under biaxial far-field stresses, the asymptotic 14 

conformal mapping function predicts that the outer boundary of the statically determinate 15 

plastic zone is in oval-shape in Mohr-Coulomb materials. The major axis of the elastic-16 

plastic interface lies in the direction of the greatest far-field compression pressure during 17 

loading whereas it is along the perpendicular direction during unloading. The loading and 18 

unloading solutions are validated by comparing with numerical simulation results and 19 

other analytical solutions. In the assumed states, the new solution provides an accurate 20 

analytical method to capture the biaxial in-situ stress effect in the prediction of the plastic 21 

failure zone and calculations of the static stress field and the elastic displacement field 22 

around a cylindrical cavity within an infinite medium. 23 

 24 
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INTRODUCTION 28 

Cylindrical cavity solutions have been applied in the analysis of a variety of geotechnical 29 

problems, for example, the expansion solutions provide a useful theoretical tool for 30 

estimating the maximum mud pressure during horizontal directional drillings (HDD) 31 

(Rostami et al., 2016, Staheli et al., 1998), the uplift resistance of strip anchors (Vesic, 32 

1971, Yu, 2000), and the hydraulic fracturing pressure around a wellbore (Guo et al., 33 

2015, Panah and Yanagisawa, 1989); the contraction solutions are commonly used in the 34 

stability analysis of tunnels or boreholes (Detournay and John, 1988, Mo and Yu, 2017, 35 

Yu and Rowe, 1999). In the analytical analysis, it is usually assumed that the cylindrical 36 

cavity is loaded or unloaded uniformly within a hydrostatic initial stress field. Thus the 37 

stress equilibrium and deformation compatibility conditions involved during expansions 38 

or contractions can be simply analysed as a one-dimensional axisymmetric problem 39 

(Bishop et al., 1945, Yu and Houlsby, 1991, 1995). In reality, however, the earth pressure 40 

at rest normally is non-hydrostatic, and a ratio of the horizontal to vertical effective soil 41 

stresses (i.e. earth pressure coefficient at rest, 0K ) is often introduced to describe the in-42 

situ stress state (Guo, 2010, Hu et al., 2017, Lee et al., 2013, Mayne and Kulhawy, 1982). 43 

Under biaxial far-field stresses, the stress distribution around a cavity may significantly 44 

differ from that computed in a simplified one-dimensional analysis (Bradford and 45 

Durban, 1998, Yarushina et al., 2010). Additional considerations of the 0K  effect may 46 

effectively further improve the accuracy of the cavity expansion/contraction theory in 47 

applications to the practical geotechnical problems, especially for horizontally excavated 48 

or buried structures at relatively shallow soil depths (Carranza-Torres and Fairhurst, 49 

2000, Guo et al., 2015, Xia and Moore, 2006, Yanagisawa and Panah, 1994). Hence this 50 

note presents a unified analytical stress solution for both loading and unloading analysis 51 

of a cylindrical cavity considering the biaxial state of in-situ soil stresses. 52 

Under non-hydrostatic far-field stresses, rigorous loading or unloading analysis of a 53 

cavity becomes more complicated, and, consequently, analytical solutions have been 54 

achieved only in a few cases such as in linear elastic materials (Muskhelishvili, 1963, 55 

Savin, 1970, Timoshenko and Goodier, 1951) and in power-law materials (Gao et al., 56 

1991, Lee and Gong, 1987). Due to the high tendency to plastic yielding of soil even at 57 

relatively small strain levels, its response is more often characterized by non-linear 58 

constitutive models, for example, the commonly used elastic perfectly-plastic models. 59 
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Analytical solutions for the two-dimensional cylindrical cavity analysis in elastic 60 

perfectly-plastic materials was inspired primarily by the ingenious method developed by 61 

Galin (1946) in the loading analysis adopting the Tresca yield criterion, for example, the 62 

subsequent solutions considering various boundary conditions (Cherepanov, 1963, 63 

Parasyuk, 1948, Yarushina et al., 2010) and/or different materials (Detournay, 1986, 64 

Tokar, 1990). 65 

In applications to geotechnical problems, the 0K  effect to the stress distribution around a 66 

cylindrical cavity during loading and unloading can be analytically investigated by the 67 

solutions of Galin (1946) and Yarushina et al. (2010) respectively, characterising the 68 

behaviour of undrained clay with the Tresca yield criterion. In more general cases of 69 

cohesive-frictional materials, an approximate analytical solution for the unloading stress 70 

analysis has been derived by Detournay and Fairhurst (1987) based on the Mohr-Coulomb 71 

yield criterion. However, analytical solutions considering biaxial far-field stresses for the 72 

loading analysis in Mohr-Coulomb materials have not been achieved yet. In addition, it 73 

has been pointed out that a stress discontinuity across the elastic-plastic interface exists 74 

in the unloading solution of Detournay and Fairhurst (1987). Hence, a new analytical 75 

solution for the two-dimensional stress analysis during loading is developed in this note, 76 

and the elastic complex potentials for the unloading analysis are also re-derived to 77 

eliminate the unnecessary stress discontinuity phenomenon. 78 

PROBLEM DEFINITION AND BOUNDARY CONDITIONS 79 

A cylindrical cavity embedded in a homogenous and isotropic infinite mass is considered 80 

as shown in Fig.1, subjecting to biaxial stresses at infinity and a uniform normal pressure 81 

at the inner cavity wall (i.e. r R ). The stress boundaries are expressed in Eqs.(1) and 82 

(2). It is assumed that the soil around the cavity is monotonically loaded or unloaded to 83 

inp  at the cavity wall with a sufficiently slow speed, deforming under plane strain. For 84 

convenience, both Cartesian coordinates (x, y, z) and cylindrical polar coordinates (r, z) 85 

are employed. 86 

=r inr R
p     (1) 87 

0 0
( ) ( )

2 2

y x xy v hP
   



 
    , 0 0

( ) ( )

2 2

y x xy h v
   

 


 
   (2) 88 

For abbreviation, some functions recurring in the derivation process are defined here first. 89 
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(1 sin ) / (1 sin )pK      90 

2 cos / (1 sin )Y c     91 

(1 ) / (1 )p pK K     92 

[(1 ) ]

1
p

p
p

K P Y
S

K
 




 93 

where c and ĳ are effective cohesion and friction angle of the Mohr-Coulomb material 94 

respectively. 95 

The surrounding soil is modelled with an elastic-perfectly plastic model. The elastic 96 

response is governed by the Hooke’s law, and the plastic behaviour is characterised with 97 

the Mohr-Coulomb yield criterion as in Eq.(3). 98 

1 3pK Y     (3) 99 

where 1  and 3  are the major and minor principal stress respectively. 100 

ELASTIC AND PLASTIC STRESS ANALYSIS 101 

Owing to the non-hydrostatic far-field stresses, the stress field developed around the inner 102 

cavity is no longer axisymmetric, and, therefore, a two-dimensional analysis is necessary. 103 

Within the stress range specified by Eq.(4), the surrounding soil deforms purely 104 

elastically, and the stresses can be readily calculated with the Kirsch solution (Yu, 2000). 105 

22
( 2 ) ( 2 )

1 1 1 1
p

in
p p p p

KY Y
P p P

K K K K
          

   
 (4) 106 

While plastic yielding occurs, various distributions of the plastic zone may appear, 107 

depending on the soil strength and boundary conditions (Bradford and Durban, 1998, 108 

Tokar, 1990, Yarushina et al., 2010). As an extension of the Galin’s (1946) solution to 109 

the Mohr-Coulomb material, the major concern of this note is the distribution of the 110 

elastic and plastic stresses around the cavity in the states satisfying two prior assumptions 111 

(Detournay, 1986, Yarushina et al., 2010): (1) a plastic zone is developed under pressure, 112 

and it is statically determinate, and (2) the inner cavity is fully encircled by the formed 113 

plastic zone. These two assumptions confirm the necessity of plastic analysis, 114 

theoretically postulate that the plastic stress state is completely determined by the inner 115 
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stress boundary condition (Hill, 1950), and ensure that the outside elastic field is bounded 116 

internally by a closed simple contour (i.e. the elastic-plastic boundary). 117 

Static plastic stress field 118 

According to the above assumptions and the boundary condition of Eq. (1), the radial 119 

stress equilibrium equation in the statically determined plastic field can be expressed as 120 

0rr

r r
  

 


  (5) 121 

where r  and   are the stress components in the radial and circumferential directions 122 

respectively. Taking tension as positive, the major principal stress is in the circumferential 123 

direction during loading (i.e. r  ). On the contrary, the major principal stress orients 124 

in the radial direction during unloading (i.e. r  ). It is regarded that the axial stress 125 

(out-plane direction) always remains as the intermediate stress, which would be satisfied 126 

for most of soils (Yu and Houlsby, 1991). 127 

By solving the yield criterion (i.e. Eq.(3)) and equilibrium equation (i.e. Eq.(5)) with the 128 

inner stress boundary of Eq.(1), the plastic stresses during both loading and unloading 129 

(Yu, 2000) are equal to 130 

(1/ 1)( )( )
1 1

p K
r in

p p

Y Y r
p

K K R
   

 
  (6) 131 

(1/ 1)1
( )( )

1 1
p K

in
p p

Y Y r
p

K K K R
  

 
  (7) 132 

where pK K  during loading and 1/ pK K  during unloading. 133 

Conformal mapping function 134 

The elastic-plastic boundary gives the outer boundary of the plastic zone and 135 

simultaneously provides the inner boundary for computing the elastic stress field. In 136 

general, it is determined by analysing the stress continuity conditions across the interface. 137 

The elastic field is not known prior to determining its inner stress and geometry boundary 138 

conditions. Alternatively, the elastic stresses are represented by general expressions of 139 

the Kolosov-Muskhelishvili complex potentials, ( )  and ( ) (Muskhelishvili, 1963); 140 

spatial positions of points in the elastic field are described by a general form of conformal 141 

mapping function (Cherepanov, 1963, Detournay, 1986, Galin, 1946). Accordingly, in 142 
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conjunction with the plastic stress solutions, the continuity conditions of the mean stress 143 

and the deviatoric stress along the elastoplastic interface can be expressed as 144 

(1/ 1)( 1)
( ) ,at  (a)( )

1 ( 1)( ) ( )
2

, (b)

p K
pr

p p

KY r
S

K K R

P


   








       

 

  (8) 145 

(1/ 1)
2

( )
( ) ,at (a)( 2 )( )

'( ) ( ) ( )
'( ) 2

, (b)

K
pir r

r
Si

e R 

          
 

 







      
 

 (9) 146 

where ii e      , describing the position vectors in the phase plane. 1i   .   is 147 

the complex variable on the unit circle, and 1/  . ( )   is a function to conformally 148 

map the exterior of the elastic-plastic boundary in the physical plane onto the exterior 149 

region of the unit circle in the phase plane (represented by  ); ( )   is its conjugate. The 150 

upper signs and lower signs of   and  (and hereafter) refer to the loading case and the 151 

unloading case respectively. 152 

Relying on the Schwarz’s reflection principle and Laurent’s decomposition theorem, the 153 

stress continuity conditions of Eqs.(8) and (9) have been studied by Detournay (1986), 154 

and an approximate mapping function in a truncated series form was derived. Numerical 155 

computations are required to determine the coefficients of the series by seeking roots of 156 

a non-linear system of equations. Alternatively, Detournay (1985) proposed an unified 157 

asymptotic mapping function for both loading and unloading analysis as given in Eq.(10). 158 

(1 )
2

( ) (1 )   


    (10) 159 

where R  , and / pS  . In the form of Gaussian hypergeometric function, 160 

1 1/ 2 2 2 4
2 1[( , );1, ] 1 0( )K F           . 161 

/( 1)
[ ( 1) ](1 1/ )

2 [ ( 1) ]

K K

p in

p

Y K pK

Y K P






     
   

  (11) 162 

With zero friction angle (i.e. 0  ), Eq. (10) is the same as the rigorous mapping 163 

functions for Tresca materials (Galin, 1946, Yarushina et al., 2010) as 164 

0
exp

2
in u

u

P p s
R

s
 



 
   

 ( us  represents the undrained shear strength of soil). 165 
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It can be found that   equals the ratio ( /h
epr R) of the radius of the circular elastic-plastic 166 

boundary to the cavity radius for a cavity expanding (Yu and Houlsby, 1991) or 167 

contracting (Yu and Rowe, 1999) within a corresponding uniform initial stress field of 168 

P . The internal pressure inp  enters into the mapping function through the ‘scaling’ 169 

factor  . Therefore, inp  only influences the size of the elastic-plastic boundary in a self-170 

similar manner (Detournay and Fairhurst, 1987). Due to the biaxial far-field stresses, the 171 

elastic-plastic boundary is flattened into an oval shape of which the semi-major axis and 172 

semi-minor axis equal (1 )[ (1 ) ] h
epr   and (1 )[ (1 ) ] h

epr   in length respectively. The 173 

long axis of the elastic-plastic boundary is along the direction of the greatest far-field 174 

compression stress during loading but along the opposite direction during unloading. 175 

Two-dimensional elastic stress field 176 

The elastic-plastic boundary is given by ( )  , and stresses along it are known from the 177 

plastic stress solution. The elastic stress analysis now becomes a typical stress boundary 178 

value problem of determining the Kolosov-Muskhelishvili elastic complex potentials. 179 

The infinity values of the complex potentials are specified by the far-field stresses as 180 

2( ) ( )
2

P
O        ,  2( ) ( )O  

      (12) 181 

Based on their behaviour at infinity, the Kolosov-Muskhelishvili complex potentials can 182 

be expressed in Eqs.(13) and (14) (Muskhelishvili, 1963), in which 0( )  and 0( )  are 183 

purely holomorphic functions (i.e. 0( ) 0   ; 0( ) 0   ). 184 

0( ) ( )
2

P       (13) 185 

0( ) ( )       (14) 186 

According to Eqs. (8), (13) and (14), the mean stress continuity condition along the 187 

elastic-plastic boundary can be rewritten as 188 

(1/ 1)
0 0

( 1)
( ) ( ) [1 ( ) ]

( 1)
p K

p
p

K r
S

K R
 




   


  (15) 189 

where 

(1/ 1)
1 2

(1/ 1) (1/ 1) 2 2
2

( ) ( )
( ) [(1 ) (1 ) ]

( )

K

K Kr

R R
       

 




     
    
 

. By using the 190 

binomial expansion formula, terms in this equation can be expressed as 191 
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2 2

0

(1 ) ( )k k

k k
 

  


  



 
   

 
   ,  2 2

0

(1 ) ( )k k

k k
 

  






 
   

 
   (16) 192 

Accordingly, the right part of Eq.(15) is easy to be split into two functions which are 193 

mutual conjugates and analytic in   ( 1  ) and   ( 1  ) respectively. The 194 

parameter   is determined by the requirement that its zero-order term equals zero. 195 

Equation (15) gives the inner boundary value of 0( ) , it therefore can be directly 196 

obtained by using the Cauchy integral method as 197 

2
0 2

1

( 1)
( )

( 1)
j

p j
j

dK
S

K









  

    (17) 198 

where (1/ 1) 2
2 2 1( ) [( , ); 1, ]K j

jd F j j
j


      

    
 

. 199 

The complex potential ( )  is sought by analysing the continuity condition of the 200 

deviatoric stress (i.e. Eq.(9)). By multiplying 
1

2

d

i


  

 on both sides of Eq.(9) a) and 201 

then integrating it along the unit circle in the phase plane from the side of  , ( )  202 

equals 203 

 
12 2

(1/ 1)
2 2

1 (1 )
( ) ( ) ( ) '( ) [1 ]K

pS r M


      
  




 
        

  (18) 204 

where (1/ 1) 2 2 2( ) [1 ]Kr           . 
2 2 2

(1 )
2 2

1 (1 )
( ) ( )[ ]

2
M    

     
 


 

. 205 

The term of (1/ 1)[1 ]K 
  in ( )  is due to the approximation involved by the 206 

asymptotic mapping function, and it vanishes when the friction angle gets zero. 207 

Thus far, unified elastic complex potentials for the two-dimensional stress and 208 

displacement analysis are derived. The elastic stress components can be computed with 209 

4Re[ ( )]e e
x y       (19) 210 

( )
2 2[ '( ) ( )]

'( )
e e e
y x xyi

     
 

       (20) 211 

DISCUSSION AND SOLUTION VALIDATION 212 

Permissible stress range of rigorous analysis 213 
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Two restrictive assumptions were adopted in deriving the analytical solution. They 214 

determined that this solution better serves for the cavity analysis in a plane within specific 215 

stress states (Detournay, 1986, Yarushina et al., 2010). 216 

The first assumption that the plastic zone is statically determinate requires that points on 217 

the cavity rim are connected with the elastic-plastic boundary by two families of 218 

characteristic lines, and each characteristic line cuts the elastic-plastic boundary only once 219 

(Cherepanov, 1963, Detournay, 1986, Hill, 1950). In this problem, the characteristic lines 220 

consist of logarithmic spirals inclined to the radial direction by an angle of ʌ / 4 / 2  221 

during loading and ʌ / 4 / 2  during unloading. The limit condition will be reached 222 

while one, and only one, characteristic line is tangent to the elastic-plastic interface within 223 

one quadrant. Therefore, this requirement can be expressed as 224 

ʌ
4 2

      (21) 225 

2 2
2 ( ) 2

2 2

( ) ( ) ( 2 )( )

( ) ( 2 )( )( )
ie           

       






  
 

  
  (22) 226 

where   represents the angle between the outward normal to the elastic-plastic interface 227 

and the x-axis. 228 

To meet this requirement at any point of the whole plastic zone, the limit condition is only 229 

reached at which (  ) is extremum (Detournay, 1986). By solving Eqs. (21) and (22) 230 

at extremum points, the upper limits of   can be obtained as shown in Fig.2. With an 231 

increasing value of the friction angle, the upper limits decrease in the loading analysis but 232 

increase in the unloading analysis. With zero friction angle, the limit value of   233 

becomes the same during both loading and unloading, which equals 2 1 , and the same 234 

value was also suggested by Detournay (1986) and Yarushina et al. (2010). 235 

The second assumption requires that the cavity is fully enclosed by a connected plastic 236 

region. The limit conditions of this restriction will be reached once the elastic-plastic 237 

boundary touches the cavity rim at its vertices on the minor axis direction. That is 238 

(1 )(1 ) R    (23) 239 

Comparison with other methods 240 
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The accuracy of the analytical loading and unloading solutions are validated by 241 

comparing with the numerical simulation results computed by the finite element method 242 

(FEM) and the solution of Detournay and Fairhurst (1987) respectively. And they are also 243 

compared with the Galin’s (1946) solution and Yarushina et al.’s (2010) solution in the 244 

special cases of infinitesimal friction angle. All the following calculations are conducted 245 

within the given admissible application range. 246 

(1) Loading analysis 247 

The numerical simulations are implemented in Abaqus/Standard 6.12 using a quarter 248 

model. An 8-node biquadratic plane strain quadrilateral mesh is utilised for meshing. To 249 

simulate the far-field stress boundary conditions, the sides of the square model are set as 250 

50 times that of the inner cavity radius. The void ratio of soil is set as 0.4. 251 

In Fig.3, stresses calculated by the present solution closely agree with those by the 252 

numerical simulations and Galin’s solution (taking   close to zero). When subjected to 253 

non-equal biaxial in-situ stresses, the extent of the plastic region around the inner cavity 254 

varies in directions. Plastic tensile failure may first occur in the plane along the maximum 255 

far-field compression stress, which is of great interest in estimating the potential failure 256 

zone or the initiation pressure of hydrofracturing around an internally pressurised cavity 257 

(Guo et al., 2015). 258 

(2) Unloading analysis 259 

As previously introduced, a slight stress discontinuity across the elastic-plastic interface 260 

exits in the Detournay and Fairhurst’s (1987) unloading solution. Detournay and Fairhurst 261 

(1987) pointed out that the level of this discontinuity depends on the far-field stress 262 

obliquity (  ) and friction angle ( ) and varies in directions. By directly integrating the 263 

deviatoric stress continuity condition with the Cauchy integral method, a new expression 264 

of the complex potential ( )  for the unloading analysis was given in Eq.(18). These 265 

two methods are compared in Fig.4. It is shown that the stress discontinuity phenomenon 266 

in the Detournay and Fairhurst’s solution is not significant even when   gets close to its 267 

upper limit, and it can be eliminated by the new solution. In the special case of zero 268 

friction angle, excellent agreement between the present solution and Yarushina et al.'s 269 

(2010) solution is also shown in Fig.5. 270 

(3) Distributions of the plastic zone 271 
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It is demonstrated in Figs. 3-6 that accurate predictions of the elastic-plastic boundary can 272 

be achieved by the asymptotic-form mapping function of Eq.(10) under both loading and 273 

unloading conditions. The distribution of the plastic zone varies with the friction angle, 274 

stress boundary conditions, and loading types, and example results are shown in Fig.6. 275 

Figure 6 corroborates that the major axis of the elastic-plastic boundary during loading 276 

coincides with the direction of the greatest far-field compression stress whereas it is along 277 

the perpendicular direction during unloading. It is shown that the oval-shaped elastic-278 

plastic boundary shrinks with an increasing friction angle in both loading and unloading 279 

conditions. While the friction angle is relatively small (e.g.  İ15o in Fig.6), the 280 

frictional strength has a relatively larger influence on the size of the plastic zone. The 281 

mapping function of Eq.(10) provides a quick method for predicting the plastically failed 282 

zone around an expanding or contracting cavity under biaxial in-situ soil stresses. 283 

Example applications of the unloading analysis to predict the size and shape of failed rock 284 

regions around a deep tunnel during excavation has been introduced by Detournay and 285 

John (1988). Considering the K0 effect, the loading solution has been successfully applied 286 

to predict the peak uplift resistance of shallow strip anchors in sand (Zhuang and Yu, 287 

2018). 288 

CONCLUSIONS 289 

A unified analytical solution was presented for elastic-plastic loading and unloading 290 

stress analysis of a cylindrical cavity under biaxial in-situ stresses. The plastic zone was 291 

assumed statically determinate and bounded by a continuous elastic-plastic boundary. As 292 

a result, the adopted assumptions specified an admissible application range of this 293 

solution, which was found mainly determined by the far-field stress obliquity, soil 294 

strength and loading type. In the admissible application range, the elastic-plastic 295 

boundary was described by an asymptotic conformal mapping function, which is in oval-296 

shape in Mohr-Coulomb materials under biaxial far-field stresses. It was found that the 297 

major axis of the elastic-plastic boundary coincides with the direction of the greatest far-298 

field compression stress during loading whereas it is along the perpendicular direction 299 

during unloading. By comparing with FEM simulations and other analytical solutions, it 300 

was demonstrated that accurate results can be obtained by the new analytical solution. 301 
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Fig.1 Coordinate systems and stress boundary conditions  406 
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Fig.2 Upper limits of the far-field stress obliquity varying with friction angle 411 
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Fig.3 Comparison of stress distribution along different directions (loading case): (a) 424 
with FEM results; (b) with Galin’s (1946) solution 425 
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 432 

Fig.4 Comparison with Detournay and Fairhurst’s solution (1987) (unloading) 433 
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Fig.5 Comparison of unloading stress solutions in a frictionless material 438 
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 450 

Fig.6 Elastic-plastic boundary varying with friction angles: (a) loading analysis; (b) 451 
unloading analysis 452 
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