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ABSTRACT:

This paper presents a unified analytical solution for efdastic stress analysis aroumd
cylindrical cavity under biaxial in-situ stresses duringhbloading and unloading. The
two-dimensional solutions obtained by assuming that the connected plastic zone is
statically determinate and using the complex variableryhiecthe elastic analysist is
shown that the biaxial state of initial stresses appigrsfeant influences on the stress
distribution around the inner cavitynder biaxial far-field stresseshe asymptotic
conformal mapping function predicts that the outer boyndtihe statically determinate
plastic zonds in oval-shapen Mohr-Coulomb materials. The major axis of the aédast
plastic interface lies in the direction of the gesatfar-field compression pressure during
loading whereas it is along the perpendicular direatimmng unloading. The loading and
unloading solutions are validated by comparing with numesigallation results and
other analytical solutiongn the assumed states, the new solution provides anaaecur
analytical method to capture the biaxrakitu stress effect in the prediction of the plastic
failure zone and calculations of the static stress fialdl the elastic displacement field

around a cylindrical cavity within an infinite medium.
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INTRODUCTION

Cylindrical cavity solutionfiave been applied in the analysis of a variety of geotechnica
problems, for example, the expansion solutions providee&ulutheoretical tool for
estimating the maximum mud pressure during horizontal diredtidnllings (HDD)
(Rostami et al., 20165taheli et al., 1998), the uplift resistance of strip arslfVesic,
1971 Yu, 2000), and the hydraulic fracturing pressure around a well@uo et al.,
2015 Panah and Yanagisawa, 1989); tbhetraction solutions are commonly used in the
stability analysis of tunnels or boreholes (Detournay ah,J1988 Mo and Yu, 2017
Yu and Rowe, 1999). In the analytical analysis, it is usuafiyraged that the cylindrical
cavity is loaded or unloaded uniformly within a hydrostatitiahstress field. Thus the
stress equilibrium and deformation compatibility condgiamvolved during expansisn
or contractions can be simply analysed as a one-dior@isaxisymmetric problem
(Bishop et al., 1945ru and Houlsby, 19911995) In reality, however, the earth pressure
at rest normally is non-hydrostatic, and a ratio ofttbhazontal to vertical effective soil

stresses (i.e. earth pressure coefficient at Kegt,is often introduced to describe the in-

situ stress state (Guo, 20Hu et al., 2017Lee et al., 2013Vlayne and Kulhawy, 1982).
Under biaxial far-field stregs the stress distribution around a cavitgy significantly

differ from that computed in a simplified one-dimensiomalalysis (Bradford and
Durban, 1998Yarushina et al., 2010). Additional considerations of Kjeeffect may

effectively further improve the accuracy of the cavikpansion/contraction theory in
applicationgo the practical geotechnical problems, especially for hot@ly excavated
or buried structurest relatively shallow soil depths (Carranza-Torres andhiast,
200Q Guo et al., 2015Xia and Moore, 2006Yanagisawa and Panah, 1994). Heng® th
note presents a unified analytical stress solution for Ibattfing and unloading analysis

of a cylindrical cavity considering the biaxial state o§itu soil stresses.

Under non-hydrostatic far-field stresses, rigorous loadinginloading analysis of a
cavity becomes more complicated, and, consequentlyytaah solutions have been
achieved only in a few casssch as in linear elastic materials (Muskhelishvili, 1963
Savin, 1970 Timoshenko and Goodier, 1951) aimdpower-law materials (Gao et al.,
1991 Lee and Gong, 1987Pue to the high tendency to plastic yielding of soil even a
relatively small strain levels, its response is moiterocharacterized by non-linear

constitutive models, for example, the commonly used ielgstrfectly-plastic models.
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Analytical solutions for the two-dimensional cylindricaavity analysis in elastic
perfectly-plastic materials was inspired primarily by ithgeenious method developed by
Galin (1946) in the loading analysis adopting the Tresca yig&tion, for example, the
subsequent solutions considering various boundary conditioherg@anov, 1963
Parasyuk, 1948Yarushina et al., 2010) and/or different materials (Detoyrt8$6
Tokar, 1990).

In applications to geotechnical problems, g effect to the stress distribution aroumd

cylindrical cavity during loading and unloading can be analifianvestigated by the
solutions ofGdin (1946) and Yarushina et al. (2010) respectively, characteriseng th
behaviour of undrained clay with the Tresca yield criterlonmore general casex
cohesive-frictional materiglen approximate analytical solution for the unloading stres
analysis has been derived by Detournay and Fairhurst (19&0 twashe Mohr-Coulomb
yield criterion However, analytical solutions considering biaxial far-figticesses for the
loading analysis in Mohr-Coulomb materials have not l@dmeved yetln addition, it

has been pointed out thastress discontinuity across the elastic-plastierfate exists
in the unloading solution of Detournay and Fairhurst (1987). Hemeew analytical
solution for the two-dimensional stress analysis duagling is developed in this note
and the elastic complex potentials for the unloading arsmlgre alsare-derived to

eliminate the unnecessary stress discontinuity phenameno

PROBLEM DEFINITION AND BOUNDARY CONDITIONS

A cylindrical cavity embedded in a homogenous and isotropic iefimass is considered

as shown in Fig.1, subjecting to biaxial stresses at infamtl/a uniform normal pressure

at the inner cavity wall (i.er =R). The stress boundaries are expressdeog(1) and

(2)} It is assumed that the soil around the cavity isatmmcally loaded or unloaded to

-p,, atthe cavity wall with a sufficiently slow speed, deforg under plane straifror

convenience, both Cartesian coordinates (X, y, z) dimtldgal polar coordinates (8, z)

are employed.

O-r|r:R =—PBn (1)

y|y_>oO +GX|>HOC) _ (g *+0n0) (O-y|y_>0O -

o) _ (0w —0) )
” 2 2 T 2 2

For abbreviation, some functions recurring in the deiangirocess are defined here first.
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K, =@+sing)/ (1 sinp
Y =2ccosp /(- sip
6=01-K,)/1+K))

S - [A-K,)P, +Y]
P K,+1

where ¢ and are effective cohesion and friction angle of thenkGoulomb material

respectively.

The surrounding soil is modelled with an elastic-pelyeptastic model The elastic
response is governed by the Hooke’s law, and the plastic behaviour is characterised with

the Mohr-Coulomb yield criterion as in Eq.[3).

Ko, —o,=Y (3)

p

whereo, and o; are the major and minor principal stress respectively.

ELASTIC AND PLASTIC STRESSANALYSIS

Owing to the non-hydrostatic far-field stresses, the sfrelsl developed around the inner

cavity is no longer axisymmetric, and, therefore, a two-dsimal analysis is necessary.

Within the stress range specified by|Eq.(4), the surrogndmil deforms purely

elastically, and the stresscan be readily calculated with the Kirsch solution (Yu, 2000

B K:+1_ Kp2+1(P°" RZELE K:(+ 1_K2:<: P+ 2w @)
While plastic yielding occurs, various distributions o€ tplastic zone may appear,
depending on the soil strength and boundary conditions {@thénd Durban, 1998
Tokar, 1990 Yarushina et al., 2010As an extension of the Galin’s (1946) solution to
the Madhr-Coulomb material, the major concern of this notéhes distribution of the
elastic and plastic stresses around the cavity in #tesssatisfying two prior assumptions
(Detournay, 1986Yarushina et al., 2010): (1) a plastic zone is developed undsupes
and it is statically determinate, and (2) the inner casitflly encircled by the formed
plastic zone.These two assumptions confirm the necessity of plastialysis,

theoretically postule that the plastic stress stasecompletely determined by the inner



116 stress boundary condition (Hill, 1950), and ensure thatutsede elastic field is bounded

117 internally by a closed simple contour (i.e. the elaskastc boundary).

118 Static plastic stressfield

119 According to the above assumptions and the boundary @mdit Eq.| (1) the radial

120 stress equilibrium equatian the statically determined plastic field can be expreased

121 99 %% _ (5)
or r

122 whereo, ando, are the stress components in the radial and circuntigrelirections
123 respectively. Taking tension as positive, the major ppaistress is in the circumferential
124  direction during loading (i.es, > o, ). On the contrary, the major principal stress orients
125 in the radial direction during unloading (i.e, <o, ). It is regarded that the axial stress

126 (out-plane direction) always remains as the intermtedimess, which would be satisfied
127 for most of soils (Yu and Houlsby, 1991).

128 By solving the yield criterion (i.e. Eq.(3&nd equilibrium equation (i.e. Eq.{5yith the
129 inner stress boundanf Eq.(1], the plastic stressduring both loading and unloading

130 (Yu, 2000) are equal to

Y Y r
131 P _ _ T ywk-1 6
i (I0.n+—Kp_1)(R) (6)
Y 1 Y r
132 [ _ = I ywk-y ~
7 k1 kP PR ©)

133 whereK =K, during loading anK =1/K, during unloading.

134 Conformal mapping function

135 The elastic-plastic boundary gives the outer boundafrythe plastic zone and
136 simultaneously provides the inner boundary for computing kgtie stress field. In
137 generaljt is determined by analysing the stress continuity canditacross the interface.
138 The elastic fields not known prior to determining its inner stress and georbetipday
139 conditions Alternatively, the elastic stresses are represented byrajeexpressions of
140 the Kolosov-Muskhelishvili complex potential®() and ¥(<¢) (Muskhelishvili, 1963);

141 spatial positions of points in the elastic field arealded by a general form of conformal

142  mapping function (Cherepanov, 19@3etournay, 1986Gdin, 1946) Accordingly, in
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conjunction with the plastic stress soluspthe continuity conditions of the mean stress
and the deviatoric stress along the elastoplastic aterdan be expressad

(0, +0,) Y s +1)( YWD aty  (a)
(L) +D(L) = % K,-1 P (K,-) R ’ (8)
P, & > (b)
o 1/K -1 @
w(é’) (D (é/)_’_\P(é') — ( O-r +2|Tr6)e72i9 — is (,}f )( )C()(O') 1at 7 (a) (9)
@'($) 2
z, ,§ —>o (b)

where ¢ =& +in = pe?, describing the position vectors in the phase pliaﬁe[—_l. o is
the complex variable on the unit circle, agd-1/c. (<) is a function to conformally
map the exterior of the elastic-plastic boundary in thespial plane onto the exterior
region of the unit circle in the phase plane (represkbyy); o(0) is its conjugateThe
upper signs and lower sigof + and = (and hereaftgmrefer to the loading case and the

unloading case respectively.

Relying on the Schwatg reflection principle and Laureéstdecomposition theorertine

stress continuity conditionsf Egs.(8) and (9) have been studied by Detournay (1986)

and an approximate mapping functioraitruncated series form was derived. Numerical
computations are required to determine the coefficientiseoeries by seeking roots of

a non-linear system of equatiomdternatively, Detournay (1985) proposed an unified

asymptotic mapping function for both loading and unloading aisadgsgiven in Eq.(10).

o(0)=al 1+ g)w‘) (10)

where a =1xR, and f=z,/S,. In the form of Gaussian hypergeometric function

27 = F[(F6,F6)Lp%1=1+ 5B+ 0(8 7).

K/(K-1)
_ {(1+1/K)[Y+(Kp —1)pm]} (1)

2 [Y-(K,-1P,]

With zero friction angle (i.ep=0), Eq.| (10) is the same as the rigorous mapping

functions for Tresca materials (Galin, 1946rarushina et al., 2010) as

a|(p:0 = Rex{%ﬁ} (s, represents the undrained shear strength of soll).
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It can be found thay equals the ratior{, / R) of the radius of the circular elastic-plastic

boundary to the cavity radius fax cavity expanding (Yu and Houlsby, 1991) or
contracting (Yu and Rowe, 1999) within a corresponding unifaritral stress field of
P, . The internal pressurg, enters into the mapping function through the ‘scaling
factor y. Therefore,p, only influences the size of the elastic-plastic boupdaga self-

similar manner (Detournay and Fairhurst, 1987). Due to thedbifaxifield stresseshe
elastic-plastic boundary is flattenedo an oval shape of which the semi-major axis and

semi-minor axis equdl(l+|A)“Irs and[A(1-|B)"*"]r., in length respectively. The

long axis of the elastic-plastic boundary is along dhection of the greatest far-field

compression stress during loading but along the opposgetion during unloading.
Two-dimensional elastic stressfield

The elastic-plastic boundary is given byo) , and stresses along it are known from the

plastic stress solutiohe elastic stress analysis now becomes a typiegssboundary
value problem of determining the Kolosov-Muskhelishvili etasbmplex potentials.

The infinity values of the complex potentials are spediby the far-field stressas
@)= 10 | W)=r,+0(7) (12)

Based on thie behaviour at infinity, the Kolosov-Muskhelishvili complex gotials can

be expressed in Egs.(13) and (IMuckhelishvili, 1963), in whichP,({) and¥,(¢) are

purely holomorphic functions (i.&Py() =0; ¥(x) =0).

o) =®0(4)+P—; (13)

Y(O)=Yo(0)+7., (14)

According to Eqgg. (8)(13) and (14) the mean stress continuity condition along the

elastic-plastic boundary can be rewritten as

(Kp +1) o Tk
G (15)

Do (0) +Do(0) =S

(1/K-1)

where (LR)G’K-”{”"(?LR()‘ZT_I)} i = AWKD[A+ Bo?)* 1+ fo?)*’] . By using the
X X

binomial expansion formula, termsthis equation can be expressed as




192

193
194
195
196
197

198

199

200

201

202
203

204

205

206
207

208
209

210

211

212

213

@ poy =3[ Jepro™ | gty =3[ Jesror (16)

k=0 k=0

Accordingly, the right part of Eg.(1%) is easy to be split into twadtions which are

mutual conjugates and analytic " (||<1) and Q@ (|¢|>1) respectively. The

parameteri is determined by the requirement that its zero-orden tequals zero.

Equation (15) gives the inner boundary value®gf(), it therefore can be directly

obtained by using the Cauchy integral methsd

0y =5, K5 s

P (K-1)= é/ZJ (17)

=)
where d,; = 19" (£) ( | jzﬁt(w, T+ ) j+LAR.

The complex potentia¥(¢) is sought by analysing the continuity condition of the

deviatoric stress (i.e. [£q.(9)). By multiplyingl—id—ag on both sides of Bq.(®) and
Tl O —

then integrating it along the unit circle in the phaselfrom the side a2, ¥ ()

equals

Y

1 p } - M()P(¢) +[1- 2 Ve, (18)

¥() =isp[f(§)]§—l{

1( é/ziﬂ )[é’z(liﬂé,z)](nb‘).

where — JwK-npp 24 24 g E M _
() L+ et T MO =S 2o 1 2

The termof [1-AY“"]r. in ¥(¢) is due to the approximation involved by the

asymptotic mapping function, and it vanishes when the fi@imgle gets zero.

Thus far, unified elastic complex potentials for the -thimensional stress and

displacement analysis are derived. The elastic stoaaponents can be computed with

o, +o,=4Re[® ()] (29)

as—of+2irx‘;:2[%®'(§)+‘{’(§)] (20)
1)

DISCUSSION AND SOLUTION VALIDATION

Permissible stress range of rigorous analysis
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Two restrictive assumptions were adopted in deriving the acaly$olution. They
determined that th solution better serves for the cavity analysis in aglaithin specific
stress states (Detournay, 198@rushina et al., 2010).

The first assumption that the plastic zone is safljicdeterminate requires that points on
the cavity rim are connected with the elagtlastic boundary by two families of
characteristic lines, and each characteristic line batelastic-plastic boundary only once
(Cherepanov, 196®etournay, 198aHill, 1950). In this problem, the characteristic bne

consist of logarithmic spirals inclined to the radial di@tty an angle oft/4—-¢/2
during loading andt/4+¢/2 during unloading. The limit condition will be reached

while one, and only one, characteristielistangent to the elastic-plastic interface within

one quadrant. Therefore, this requirement can be exgress

|l—6’|sgi% (21)
-0 _ 2@ (0) 0(0) _(0° Ff+2p5)0 " £ ) (22)

w'(c) w(o) (02 F B+265) 0+ p)

where 4 represents the angle between the outward normal telabgc-plastic interface

and the x-axis.

To meet this requirement at any point of the whole plastie, the limit condition is only

reached at which{-¢) is extremum (Detournay, 1986)yBolving Egs) (21) anfl (22)

at extremum points, the upper limits |f can be obtained as shown in Fig.2. With an

increasing value of the friction angle, the upper limitrélase in the loading analysis but

increase in the unloading analysis. With zero frictiogle, the limit value off|

becomes the same during both loading and unloading, Whicisecﬁlal, and the same

value was also suggested by Detournay (1986) and Yarushina et al. (2010).

The second assumption requires that the cavity is é&nblosed by a connected plastic
region. The limit conditions of this restriction will beached once the elastic-plastic

boundary touches the cavity rim at its vertices omthr axis direction. That is
a(l-|g)* = R (23)

Comparison with other methods
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The accuracy of the analytical loading and unloading swistiare validated by
comparing with the numerical simulation results compuiethe finite element method
(FEM) and the solution of Detournay and Fairhurst (1987) otisedy. And they are also
compaed with the Galin’s (1946) solution anarushina et al.’s (2010) solutim in the
special cases of infinitesimal friction angle. All tlmtldwing calculations are conducted
within the given admissible application range.

(1) Loading analysis

The numerical simulations are implemented in Abaqusttal 6.12 using a quarter
model. An 8-node biquadratic plane strain quadrilateral nseghlised for meshingro
simulate the far-field stress boundary conditions sitles of the square model are set as
50 times that of the inner cavity radius. The void rafisoil is set as .@.

In Fig.3, stresses calculated tye present solution closely agree with those by the
numerical simulationsnd Galin’s solution (taking ¢ close to zero). When subjectto
non-equal biaxiain-situ stresses, the extent of the plastic regionrzd the inner cavity
varies in directions. Plastic tensile failure maytfascur in the plane along the maximum
far-field compression stress, which is of great inteiresistimating the potential failure
zone or the initiation pressure of hydrofracturing arounghimnally pressurised cavity
(Guo et al., 2015).

(2) Unloading analysis

As previously introduced slight stress discontinuity across the elastic-plasterface
exits in the Detournay and Fairhusgtl987) unloading solution. Detournay and Fairhurst
(1987) pointed out that the level of this discontinuity etegs on the far-field stress

obliquity (|4]) and friction angle ¢) and varies in direction®y directly integrating the

deviatoric stress continuity condition with the Caugaitggral method, a new expression

of the complex potentia¥ () for the unloading analysis was given in|EQ.{(18). These

two methods are comparedFig.4. It is shown that the stress discontinuity mime@non

in theDetournay and Fairhurst’s solution is not significant even whés| gets close to its

upper limit, and it can be eliminated byethew solution. In the special caeé zero
friction angle, excellent agreement betweea fgresent solution and Yarushina et al.'s

(2010) solutioris also showrnn Fig.5.

(3) Distributions of the plastic zone

10
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It is demonstrated in Figs. 3-6 that accurate predhistaf the elastic-plastic boundary can

be achieved by the asymptotic-form mapping functibid.(10) under both loading and

unloading conditions. The distribution of the plastioewaries with the friction angle,

stress boundary conditions, and loading types, and exaegul#s are shown in Fig.6.

Figure 6 corroborates that the major axis of the elgdtistic boundary during loading
coincides with the direction of the greatest far-fiaddnpression stress whereas it is along
the perpendicular direction during unloading. It is shown ti@toval-shaped elastic-
plastic boundary shrinks with an increasing frictionlamg both loading and unloading

conditions. While the friction angle is relatively small (e.g.< 15° in Fig.6), the

frictional strength has a relatively larger influence on the gizéhe plastic zone. The

mapping functiorof Eq.(10) provides a quick method for predicting the plastidallgd

zone around an expanding or contracting cavity under abiamisitu soil stresses
Example applications of the unloading analysipredict the size and shape of failed rock
regions around a deep tunnel during excavation has been intdoboly&etournay and
John (1988). Considering the Kffect, the loading solution has been successfully applie
to predict the peak uplift resistance of shallow strip anchoeand (Zhuang and Yu,
2018).

CONCLUSIONS

A unified analytical solution was presented for elastict@al®ading and unloading
stress analysis of a cylindrical cavity under biaxial io-streses The plastic zone was
assumed statically determinate and bounded by a continuatis-plastic boundaryAs

a result, the adopted assumptions specified an admissiplkcation range of this
solution, which was found mainly determined by the far-fieleesst obliquity, soil
strength and loading typdn the admissible application range, the elastic-glast
boundarywas described by an asymptotic conformal mapping function, wichoval-
shape in Mohr-Coulomb materials under biaxial far-fielésses. It was found that the
major axis of the elastic-plastic boundary coincides wie direction of the greatest far-
field compression stress during loading wlasrié is along the perpendicular direction
during unloadingBy comparing with FEM simulations and other analyticdlisons, it

was demonstrated that accurate results can be obtainkd bgw analytical solution.
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