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Abstract—Synthetic Aperture Radar (SAR) satellite systems
are very efficient in oil spill monitoring due to their capability
to operate under all weather conditions. This paper presents a
framework using Gaussian process (GP) to fuse SAR images
of different modalities and to segment dark areas (assumed
oil spill) for oil spill detection. A new covariance function;
a product of an intrinsically sparse kernel and a Rational
Quadratic Kernel (RQK) is used to model the prior of the
estimated image allowing information to be transferred. The
accuracy performance evaluation demonstrates that the proposed
framework has 37% less RMSE per pixel and a compelling
enhancement visually when compared with existing methods.

Index Terms: Oil Spill, Synthetic Aperture Radar (SAR), Regis-
tration, Image Fusion, Segmentation, Gaussian Processes

I. INTRODUCTION

Oil spills are caused by accidental discharge or illegal

dumping of oil ballasts by oil vessels and drilling platforms

into the environment, causing enormous damage both socially

and environmentally [1]. Marine oil spill for example, pollutes

sea water, destroy wildlife, coastal beaches and affects the

overall quality of life of marine inhabitants, raising concerns

on oil transportation across the sea and a growing interest in

developing efficient methods for oil spill detection [2].

The Macando blow-out that occurred on the 20th April

2010 is of national significance in the United States. It was

an accidental oil spill caused by the explosion and sinking

of the Deep Water Horizon offshore platform making the sea

floor oil gusher to flow for 87 days and releasing more than

200 million gallons of oil into the Gulf of Mexico, resulting

in loss of lives and damage to the marine ecosystem. The

company responsible, British Petroleum (BP) was made to

pay the largest environmental fine in history, a total of about

18.7 billion dollars [3]. Early detection of oil spill will help

towards efficient disaster management. To detect and monitor

oil spill, remote sensing systems with sensors on-board a

satellite or aircraft are used to acquire images of the earth from

distance. Sensors in different bands of the electromagnetic

spectrum have been applied, e.g. in hyperspectral and multi

spectral bands, or Synthetic Aperture Radar (SAR) for oil spill

detection in marine environment [1], [4]–[7]. However, SAR

images are the most widely used for this purpose as they are

not affected by local weather conditions and cloudiness [8].

SAR is an active microwave sensor that acquires two

dimensional (2D) images [9]. The performance of detecting

oil spill in a SAR image, largely depends on sea conditions

and the ability of oil films to decrease the backscattering of the

sea surface, resulting in dark formations. A general assumption

is that oil spill appears as dark areas on SAR images due to

the dampen effects on capillary waves [10], [11]. However,

not all dark formations are oil spills, necessitating the need

for a robust detection technique and verification. Fig 1. shows

an example of two challenging dark formations for detection:

Fig. 1: Example of challenging dark formations: (a) verified oil spill
acquired 6/09/2005, Ancona Italy, (b) Verified look-alike acquired
25/08/2005, Otranto, Italy. [10]

Recent developments have enabled more spaceborne SAR

systems (e.g. the Sentinels) to be designed and launched,

providing the scientific community with wide range of data in

multi-modal configuration, including multi-frequency (C, L, X

etc.), multi-angle (10 ◦ − 70 ◦), multi-polarisation(dual, quad,

etc) and multi-resolution features. With the availability of

multi-modal SAR data, new methods to detect oil spill can be

explored by combining data originating from different sources,

with the aim of obtaining information of greater quality than

individual sensor data used in previous studies for oil spill

detection [5], [8]–[10], [12]–[15] .

Fusion of SAR images, however, imposes several challenges

due to multi-modalities, differences in sensor characteristics
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and image acquisition modes. The individual images need to

be registered in space and time. A suitable fusion algorithm

needs to be chosen that will efficiently bring together the

complimentary information from the individual modalities [7].

Additionally, it is important to define the level of fusion since

data fusion can be performed at different information levels

including pixel, feature and decision level [16].

Previous studies have reported significant improvement in

oil spill classification, segmentation and discrimination with

fused SAR images compared to using the individual images

alone. In [17], fusion of SAR and hyperspectral images (HSI)

is performed at pixel level, although the fusion method used

is not described in the paper, the approach focused on fusing

images from different sensors (SAR and HSI) and not on

multi-frequency SAR data. The works of [7], [18] explored

fusion of multi-frequency (S&X-bands) and multi-resolution

(C-band) SAR images by adopting the wavelet transform

approach.

Wavelet transform improves the spatial resolution of the

fused image while preserving the colour appearance for in-

terpretation [19], this is important since oil spill appears as

dark formation on SAR images. With wavelets, images are

converted from the spatial domain to the frequency domain and

then decomposed into approximation and detail coefficients

while preserving information, allowing image properties to be

transferred using a fusion rule. However, if the decomposition

scale is small, mosaic effects occurs on the fused image. On

the other hand, if the scale is large, the colour contents of the

fused images are lost, making it unsuitable for images with

different spectral channels [20].

This paper proposes to solve oil spill segmentation problems

by fusing multi-resolution SAR images using a Gaussian pro-

cess regression approach. The approach is based on the design

of a non-stationary covariance kernel to handle the change of

support problem that exists in multi resolution images, The

approach extends the work from [21] over different image

modalities. A prior covariance function, the product of an

intrinsically sparse covariance kernel and a rational quadratic

kernel is utilised to model the high resolution pixel coordinates

and their intensity values, forming a base covariance from

which the new modality image is constructed. We consider that

Gaussian process models have been used in object recognition

in situations where the images are in different resolutions with

the training data [22]. Additionally, GP priors are adaptable for

inter-modality data encoding with multiple output behaviour

[21]. The aim is to construct an image with high spatial and

high spectral resolution.

The rest of the paper is organised as follows. In section II,

we present the proposed framework and a brief description

of the registration is provided, with more detailed explanation

of the process already discussed in our previous work [7].

Subsequently, GP is introduced and the proposed kernel design

and fusion process are described. In addition to this, we

describe the performance validation measures of the approach.

The K-means segmentation is described in III and lastly, we

discuss the results in IV and present concluding remarks in V.

II. PROPOSED FRAMEWORK

The proposed framework is shown in Fig 2. It comprises a

pre-processing step which performs image filtering, for reduc-

ing speckles inherent in SAR images, and image enhancement,

for improving visualisation to obtain the best possible image

perception, respectively. The next process is an automatic

image registration that aligns the images so that a common

spatial frame is realised. Lastly, the fusion and performance

evaluation stages complete the system framework.

Fig. 2: GP Fusion Framework

A. Registration

The purpose of image registration is to establish corre-

spondence between the images to be fused and to determine

the geometric transformation that aligns one image with the

other [23]. In this paper, the registration is done using Scale

Invariant Feature Transform (SIFT) algorithm [24]. SIFT is a

feature based registration that allows extraction and matching

of distinct features from images. This is achieved in the

following steps:
1) Scale Space Extrema Detection: Is the product of con-

volution between the variable scale Gaussian kernel G(x, y, σ)
and the image Ĩ(x, y), given as

L(x, y, σ) = G(x, y, σ) ∗ Ĩ(x, y) (1)

Here, * is the convolution operator with respect to pixel

coordinates x and y of the image and

G(x, y, σ) =
1

2πσ2
e−

x2+y2

2σ2 (2)

is the Gaussian filter. To detect features in the image [25]

proposed the use of scale space extrema in the Difference-of-

Gaussian (DoG) convolved with the image, such that

D(x, y, σ) = (G(x, y, kσ)−G(x, y, σ)) ∗ Ĩ(x, y)
= L(x, y, kσ)− L(x, y, σ) (3)
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where k is the multiplicative factor usually set to
√
2 [26].

Local maxima and minima of DoG are found by comparing

each sample point to its eight neighbours in the image and

nine neighbours in the scale and below.

2) Key point Localisation: This step involves fitting found

key points to a nearby data for location, scale and rotation. The

purpose is to remove noise-sensitive points or non-edge points

and enhance stability of the matching process to improve

immunity to noise.

3) Orientation Assignment: In this step, the location infor-

mation is extracted from key points with identified position and

scale, this is achieved by computing the pixel differences using

the magnitude of the gradient m(x, y) and the orientation

θ(x, y).
4) Key point Descriptor: This phase computes the descrip-

tors for the image region making it highly distinctive and

invariant to illumination and angle changes. This is achieved

by placing a Gaussian window over the regions and adding

each sample to form orientation histograms, summarising the

contents over an 8× 8 sub region as shown in Fig.6 and 7 in

[7].

5) Feature Matching: The purpose of this step is to find

correspondence between the detected feature points. This is

achieved by identifying nearest neighbours in the database of

key points created from the extraction step. In the presence

of outliers, Random Sample Consensus (RANSAC) is used.

RANSAC is a robust technique that handles transformation

estimation [25]. It is given by
[

x2

y2

]

= s

[

cosθ −sinθ
sinθ cosθ

] [

x1

y1

]

+

[

tx
ty

]

(4)

where (x1, y1) and (x2, y2) are the control points coordinates

in the images to be registered. The variables tx and ty are

translational values in x and y direction, s is the scaling factor

and θ is the angle of rotation.

B. Gaussian Processes

Gaussian Processes (GP) are determined by a mean function

and a covariance function also known as the covariance kernel.

The mean m(x) and the covariance k(x,x′) of a space

function f(x) are given as

m(x) = E[f(x)] (5)

k(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′))] (6)

and the GP can be described as:

f(x) ∼ GP (m(x), k(x,x′)) (7)

GP is a stochastic process, defined as a collection of random

variables [27]. For convenience, the mean function is often

assumed a zero value since GP can be adjusted to model the

mean swiftly [28], while the covariance kernel is determined

by some hyperparameters. A detailed explanation on kernels

and hyperparameter adaptation is discussed in [27]. To achieve

the mapping of inputs to an output space, GP imposes a

Gaussian prior distribution over the space functions f(x), to

map inputs xi ∈ R
D to the output space yi ∈ R, where the

output y is a noisy observation represented as

y = f(x) + ǫ (8)

where

ǫ ∼ N (0, σ2) (9)

is a Gaussian distribution with a zero mean and standard

deviation σ.

To make predictions, GP learns the hyperparameters from

the given training dataset here represented as Q. The train-

ing is done on N input-output pairs such that: Q =
{(y1,x1), . . . (yN,xN)}, where the function values are nor-

mally distributed with the modelled mean and covariance

defined as

[f(x1)
T f(x2)

T . . . f(xN)T ]T = N (m(x), k(x,x′)) (10)

here, m(x) and k(x,x′) are as defined in (5) and (6), respec-

tively.

Representing the number of observations N as {X,y}, where

X = {xi ∈ R
D}Ni=1 and y = {yi ∈ R}Ni=1 and test points

M given as {X∗} = {x∗

i ∈ R
D}Mi=1, the joint density of the

observations N and the test points M is given as

[

y

y∗

]

N
(

µ

(

X

X∗

)

,

[

K(X,X) + σ2
nI K(X,X∗)

K(X∗,X) K(X∗,X∗)

]

)

(11)

Here, µ(x) is the mean function and k(x,x′) is a positive

semi-definite covariance function. From (11) above, the pre-

dictive distribution of the mean and covariance functions can

be defined as

p(y∗|X,y,X∗) ∼ N (µ⋆,Σ⋆) (12)

where

µ⋆ = k(X∗,X)K−1
X y (13)

Σ⋆ = k(X∗,X∗)− k(X∗,X)K−1
X k(X,X∗) (14)

Here, KX is defined as:

KX = k(X,X) + σ2
nI (15)

and σ2
nI is the sensor measurement noise, I is an N-

dimensional identity matrix. Subsequently, we will revert to

our earlier notations of the mean (µ⋆) as m(x) and the

covariance (Σ⋆) as k(x,x′). Considering that the m(x) of

the process is not always confined to a zero value, the mean

function can be modelled to conveniently express the prior

information allowing the predictive mean to be written as

y∗ = m(X∗) +K(X∗,X)KX
−1(y −m(X)), (16)

where KX = K + σ2I and K = k(X,X).
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1) Covariance Function: The covariance function or kernel

plays the central role in a GP. It encodes the inference of

the underlying process by defining the correlation between

function values [29]. In this paper, we aim to construct an

image with a new modality, by combining SAR images with

different image resolutions. To achieve this, firstly we require

the covariance function to handle the change of support prob-

lem that exists in multi-modal images by conducting inference

over image pixels with different resolutions. This is achieved

by extending the observation point kernel to adapt to a multiple

task kernel function over spaces, and utilising an integral

kernel derivation described in [30]. The assumption here is

there exist a 2D GP function f within the spectral channels of

the low resolution image, such that the designed model of a

pixel is the result of observing the output function f∗ over areas

of the high resolution image k(HA,H′

A
) rather than points

k(x,x′) which is the norm in a standard GP. A simple average

relationship is then established between observed pixels and

f∗. A detailed derivation of defining covariance over areas is

described in [21].

Secondly, a prior of the new modality image structure is

defined. The covariance function prior design is based on the

spatial characteristic of the high resolution image, forming the

base for the new modality image construction. For the fusion

problem, Let HA denote the locations of the high-resolution

image pixels and LA the locations of the low-resolution image

pixels, the covariance between two high-resolutions image

pixels is defined as

k(HA,H′

A
) =

1

|HA||H′

A
|

∫∫

x∈HA

∫∫

x′∈H′

A

k(x,x′)dxdx′

(17)

where k(HA,H′

A
) defines the covariance between two high

resolution image areas and |HA| is the surface area of HA

To design the prior, we consider that image data are

normally non-smooth, and exhibit discontinuities with spatial

non-stationarity. For this reason, the spatial information of

the high-resolution image is used as the input space of the

covariance function, added with the observed pixels of the

high-resolution image to achieve contextual non-stationarity

and to address image discontinuity problem. In the first step of

the prior design, we exploit an intrinsically sparse covariance

function proposed by [31] to obtain a sparse covariance. The

sparse kernel is smooth but not infinitely differentiable making

it suitable for application exhibiting discontinuities. A detailed

description and derivation of this kernel is given in [31]. Let

VS be an intrinsically sparse kernel defined as

VS(HA,H′

A
;σ0, l) =

{

σ0

[

2+cos(2π d
l
)

3 (1− d
l
) + 1

2π sin(2π d
l
)
]

if d < l

0 if d ≥ l

(18)

where d is the distance between the midpoint coordinates of

the high-resolution pixel areas here defined as

d = |mid(HA)−mid(H′

A
)| (19)

The variables σ0 and l are the parameters of the kernel. where

σ0 determines the average distance of the function from the

mean, l is the characteristic length scale that determines the

length of change of the function.

In the second step, we link the observed high-resolution image

pixels using a Rational Quadratic Kernel (RQK). The RQK

is equivalent to adding together several Squared Exponential

(SE) with different length-scales, enabling smoothness transfer

and efficiency in handling the change of support problem. Let

VP be the RQK defined as

VP (IH(HA), IH(H′

A
);α, θp)

= σ2

(

1 +
(IH(HA)−IH(H′

A
))

2αθ2
P

)−α

(20)

Here IH(HA) and IH(H′

A
) represent the pixel intensity

values in HA and H′

A
, respectively. The variables α and

θp are the parameters of the function. The function VS

provides a smooth, sparse and neighbouring covariance kernel,

while VP link image pixels within the covariance based on

related information contained in the high-resolution image.

Additionally, the RQK function VP enables image smoothness

transfer and handles the change of support problem. Hence, the

image prior covariance function is then defined as a product of

two independent processes (a) A positive semi-definite spatial

covariance VS and (b) A positive semi-definite pixel intensity

covariance function VP

k(HA,H′

A
) = σ2VS((HA,H′

A
;θ)VP (IH(HA), IH(H′

A
);θ)
(21)

Using the high-resolution areas (HA,H′

A
) and the augmented

intensity values (IH(HA), IH(H′

A
))) of the high-resolution

image pixels, the GP model is then trained to learn the hyper-

parameters represented as θ of the image prior k(HA,H′

A
)

as described in the next section.

2) Hyperparameter Adaptation: Hyperparameters refer to

the parameters of the prior k(HA,H′

A
) that includes param-

eters of the mean, covariance and noise term σ2
nI. Here the

parameters of the model are defined as θ = {θs, θp, σf , α, l},

where σf is an amplitude hyperparameter while θp controls

sensitivity, α determines the relative weighing for large-scale

and smaller-scale variations. When α → ∞ the behaviour of

the kernel is identical to the SE kernel. The parameters of the

prior need to be selected appropriately as they determine the

quality of the output image. To optimize the hyperparameters,

the Bayes approach is considered because it allows the use of

continuous optimization methods enabling faster computation

[28]. To achieve this, the marginal likelihood is maximised

such that

p(y|X) =

∫

p(y|f , X)p(f |X)df (22)
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From (12), the likelihood y|f ∼ N (f , σ2
nI), with the GP

prior over the latent function f from (11), gives the log of

the marginal likelihood

log(p(y|X,θ)) = −1

2
yTK−

X1y− 1

2
log|KX |−n

2
log2π. (23)

In (23), the first term of the log of marginal likelihood finds

data fit, the second is a model complexity term while the

third is a constant, making it robust to over-fitting.

The optimized parameters of the covariance function from (23)

are used to calculate k(HA,H′

A
) which forms the base of

the new modality image we aim to construct. Using the prior

covariance, we find the covariance k(HA,L′

A
) that couple the

high-resolution pixels with the observed low-resolution pixels.

First, the observed LA pixels are approximated by the HA

pixels, an integration over LA with respect to point x, the

sum of the piecewise integration over the pixels of HA [21],

defined as

k(HA,L′

A
) =

1

TH

∑

H′

A
∈L′

A

k(HA,H′

A
) (24)

where TH is the number of high-resolution HA areas that

are contained in LA area. Accordingly, the corresponding

covariance between the low-resolution pixels is defined as

k(LA,L′

A
) =

1

THT ′

H

∑

HA∈LA

∑

H′

A
∈L′

A

k(HA,H′

A
) (25)

3) Image Fusion: To fuse the two image modalities, the

training data of the model comes from the low-resolution

image comprising the LA spatial areas and the pixel intensity

values IL(LA) that were observed. The GP model is then

queried over the high resolution HA spatial areas where the

IH(HA) intensity values have earlier been defined in (20).

The fused image is constructed by querying the predictive

mean of the GP model whilst performing a normalisation as

described below. Additionally, a constant mean value µ = 0.5,

is assumed over the image, this is justified because image

pixels are observed to be continuous within the range of 0-1.

Hence, the predictive mean in (16) becomes

Ai = µ+ k(HA,LA)
[

k(LA,L′

A
) + σ2

nI
]−1

(IL(Li)− µ)
(26)

where i represent the ith spectral band of the low-resolution

image, and I is an identity matrix equivalent to the number

of pixels in the low-resolution image. This implies that we

query the GP model by the number of spectral channels

present in the low-resolution image. Finally, the new modality

image A∗ is the concatenated sum of all Ai’s.

C. Fusion Quality Metrics

It is important to evaluate the quality of the output fused

image from the model using well-established image quality

assessment measures. Methods such as Image Correlation

Coefficient (CC) and Mean Squared Error (MSE) are widely

used to determine the quality of images and measure the sim-

ilarity between fused image and a reference image. However,

image quality measures can be classified into three categories

depending on the aim of the fusion. This can be to measure

spatial, spectral or global quality of the image. In [32] for

example, a Wald’s Protocol is used to test the quality of pan

sharpened images focusing on consistency and synthesis. In

this paper, the following global quality performance measures

are used to test the quality of the fused image

1. Root Mean Squared Error (RMSE): RMSE evaluates the

difference between the fusion model output and the reference

image [33], providing a complete image quality pointer with

results closer to zero indicating a high performance of the

algorithm. RMSE is given as

RMSE(R̃∗,A∗) =

(

∑M

i=1

∑N

j=1[R̃∗(i, j)−A∗(i, j)]
2)

M ×N

)

(27)

where R∗(i, j) and A∗(i, j) are the pixel values of the fused

and reference image, respectively and M × N are the rows

and columns of the image that define the image size.

2. Image Correlation Coefficient (CC): CC is a fusion

quality measure that characterises the geometric distortion

between the reference image and the estimated (fused) image.

The higher the correlation between the images the better the

estimation of the spectral values. CC is defined as

CC(R∗,A∗) =

∑

mn(R∗mn− R̄∗)(A∗mn− Ā∗)

(
∑

mn(R∗ − R̄∗))2(
∑

mn(R∗ − R̄∗))2

(28)

where R∗ is a pixel of the reference image with size (m×n),
R̄∗ is the mean of the reference image. Similarly, A∗ with

size (m× n) represent a pixel of the fused image and Ā∗ is

its mean.

4. Erreur Relative Globale Adimensionnelle de Synthese

(ERGAS): This measure offers a global indication of quality

of the estimated image [2], based on normalised average error

of each band of the image [34]. The ideal value of ERGAS is 0

[16]. Increase in the value of ERGAS could mean a distortion

in the estimated image, on the hand increase in the value of

ERGAS indicates that the estimated image A∗(x, y) is similar

to the reference image R̃(x, y). ERGAS is defined as

ERGAS(R̃,A∗) = 100r

√

√

√

√

1

N

N
∑

j=1

(

RMSEj

µj

)2

(29)

where r is the ratio between the resolution of the images fused,

µj is the sample mean of the ith band of A∗.
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III. SEGMENTATION

Segmentation is the subdivision of the image into separated

regions [14], grouping similar pixels to homogeneous image

segments so that increase in heterogeneity over the image is

very much reduced allowing image pixels to be classified cor-

rectly in a decision oriented application. In oil spill detection,

segmentation is a pre-requisite for classifying oil spill and

look-alike. In this stage, dark areas that are assumed oil spill

based on appearance are segmented out from the image and

features are extracted that form the base for classification. In

this paper, the segmentation phase is done using the K-means

clustering algorithm.

A. K-means Segmentation

K-means clustering allows partitioning of data into a k

number group of the data [35], classifying the given data

(image) into k number of disjoint clusters. To achieve this,

the algorithm is divided into two steps. In the first step,

it calculates the k centroid in the image using Euclidean

distance, and in the second step it groups each image pixel

to a cluster nearest to a ki centroid from the respective pixel.

Summarily, K-means is an iterative method that minimizes all

distances from each pixel to its cluster ki centroid over all

clusters k. Using the output image ( A∗) from (26), with size

m×n×λ, where λ is the number of bands in A∗. The aim is

to segment the image into k number of clusters, let a(mi, nj)
be an input pixel of A∗ to be assigned to a cluster, and ck be

the centroid of the clusters; first the number of clusters k is

initiated, secondly, for each pixel of the image, the Euclidean

distance d is calculated, between the centre ck of the centroid

and the pixel using

d =‖ a∗(mi, nj)− ck ‖ (30)

Next, all pixels are assigned to the nearest ki using d. A

new position of ki is recalculated using

ck =
1

k

∑

n∈ck

∑

m∈ck

a∗(mi, nj) (31)

Finally, the cluster of pixels are reshaped into the segmented

image.

IV. EXPERIMENTAL RESULTS

A. Dataset

The dataset used in this paper are as presented in Table

1. Firstly, multi-modal and multi temporal SAR images of

the Gulf of Mexico oil spill as acquired by the Canadian

RADARSAT-2 ScanSAR instrument are utilised. This instru-

ment is fully polarimetric (HV,VV,VH) in wide beam mode

with a nominal swath of 500km. Secondly, the European Space

Agency (ESA)’s Envisat system with a single band (VV)

polarisation also in ScanSAR and wide swath mode is also

utilised.

TABLE I: Characteristics of the Dataset:

Satellite Instrument Resolution Band Dimension Date Acquired

Radarsat-2 SAR 100m C 865× 905 29/04/10
Envisat ASAR 150m C 930× 1271 26/04/10

B. Results and Discussion

The first task is to pre-process the SAR images to be

fused, to reduce speckle noise and enhance the image using a

Gaussian filter as discussed in Section II. The registration stage

is next, following the steps described in Section II to align the

images and to find correspondence between them. A mosaic

of the two images is presented in [7] to show the progression

of dark area (supposed spill location) over the multi-temporal

period. An average fusion result is shown in Fig 4(a); a product

of adding the two images together and taking the average.

The GP fusion algorithm described in Section III is applied to

fuse the multi resolution images. Subsequently, we compare

the results of the proposed algorithm with [21] using global

image quality measures described in Section III.D to test

the quality of the output image and the performance of the

proposed method. The results of validating the performance

of the proposed algorithm is compared with other methods

and presented in Table II. In Figs. 4b and 4c we present

the results of the fusion process of the proposed method and

the method of [21]. It is noticed that the proposed approach

achieves compelling enhancement visually; this is attributed

to the intrinsically sparse covariance function that provides a

much smoother prediction of the function. In Fig. 5, the RMSE

per image pixel of the output image A∗ and the output image

from the method of [21] is also compared. Again, the proposed

method achieves a better performance in this measure. The

evaluation time to ouput the fused image from evaluating

the covariance kernel function with optimised hyperparameter

values is also compared. The proposed method achieved this

in 0.2sec compared to [21] which took 0.63sec. Lastly, K-

means technique described in Section III is applied to segment

the dark formations (assumed oil spill) in A∗ by converting

the image into Lab colour spaces which gives the initial

value of K, as described in (30) and (31), respectively. The

segmentation result is shown in Figs. 4d and 4e, objects in the

image are clustered to different regions in Fig. 4f.

(a) (b)

Fig. 3: RADARSAT-2 ScanSAR and Envisat ASAR images of
Gulf of Mexico Oil Spill acquired 29/04/2010 and 26/04/2010,
respectively.
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(a) Simple Average Method (b) Reid et al (c) Proposed

(d) Cluster 1 (e) Cluster 2 (f) Index

Fig. 4: (Top) Fusion Results: (a) Simple Average (b) Reid et.al(c) Proposed (bottom) Segmentation Result: (d) Cluster 1 (e)

Cluster 2 (f) Index
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Fig. 5: Comparison of RMSE per pixel of Methods

TABLE II: Quality Measures of the Fusion Result

Fusion Method CC RMSE ERGAS

DWT Fusion 0.6414 0.4937 23.3466

Reid et al 0.9997 0.7571 5.5657

Proposed 0.9978 0.4059 5.8099

V. CONCLUSIONS

This paper proposes a GP approach to fuse SAR images

of different modalities, and to segment dark areas for oil

spill detection. An automatic feature based image registra-

tion (SIFT) is utilised to find matching features and create

correspondence between the multi-modal and multi-temporal

images fused. The mosaic created using RANSAC algorithm

has shown progression of the dark area signifying spread of oil

spill when compared with the individual SAR images before

fusion. This is useful in monitoring, and for further image

based analysis, including for classification.

ACKNOWLEDGMENT

The authors would like to acknowledge Petroleum Trust De-

velopment Fund (PTDF) Nigeria, for funding this work.

REFERENCES

[1] I. Leifer, W. J. Lehr, D. Simecek-Beatty, E. Bradley, R. Clark, P. Den-
nison, Y. Hu, S. Matheson, C. E. Jones, B. Holt et al., “State of the art
satellite and airborne marine oil spill remote sensing: Application to the
bp deepwater horizon oil spill,” Remote Sensing of Environment, vol.
124, pp. 185–209, 2012.

[2] L. Loncan, S. Fabre, L. B. Almeida, J. M. Bioucas-Dias, W. Liao,
X. Briottet, G. A. Licciardi, J. Chanussot, M. Simoes, N. Dobigeon
et al., “Hyperspectral pansharpening: a review,” IEEE Geoscience and

Remote Sensing Magazine, vol. 3, no. 3, pp. 27–46, 2015.

[3] J. W. Griggs, “Bp gulf of mexico oil spill,” Energy LJ, vol. 32, p. 57,
2011.

7



[4] M. Fingas and C. Brown, “Review of oil spill remote sensing,” Marine

Pollution Bulletin, vol. 83, no. 1, pp. 9–23, 2014.

[5] C. Brekke and A. H. Solberg, “Oil spill detection by satellite remote
sensing,” Remote sensing of environment, vol. 95, no. 1, pp. 1–13, 2005.

[6] D. H. S. Group, “Final report on the investigation of the Macondo
well blowout,” Center for Catastrophic Risk Management, University

of California at Berkeley, 2011.

[7] F. S. Longman, L. Mihaylova, and D. Coca, “Oil spill segmentation in
fused synthetic aperture radar images,” in Proceedings of the 4th Inter-

national Conference on Control Engineering & Information Technology

(CEIT). IEEE, 2016, pp. 1–6.

[8] M. Cococcioni, L. Corucci, and B. Lazzerini, “Issues and preliminary
results in oil spill detection using optical remotely sensed images,” in
Proceedings of OCEANS 2009-EUROPE, 2009.

[9] K. Topouzelis, V. Karathanassi, P. Pavlakis, and D. Rokos, “Detection
and discrimination between oil spills and look-alike phenomena through
neural networks,” ISPRS Journal of Photogrammetry and Remote Sens-

ing, vol. 62, no. 4, pp. 264–270, 2007.

[10] K. N. Topouzelis, “Oil spill detection by sar images: dark formation
detection, feature extraction and classification algorithms,” Sensors,
vol. 8, no. 10, pp. 6642–6659, 2008.

[11] A. D. Lawal, G. Radice, M. Ceriotti, and A. U. Makarfi, “Investigating
SAR algorithm for spaceborne interferometric oil spill detection,” Inter-

national Journal of Engineering and Technical Research, vol. 4, no. 3,
pp. 123–127, 2016.

[12] M. Marghany, “Automatic detection of oil spills in the Gulf of Mexico
from RADARSAT-2 SAR satellite data,” Environmental Earth Sciences,
vol. 74, no. 7, pp. 5935–5947, 2015.

[13] S. Singha, T. J. Bellerby, and O. Trieschmann, “Detection and clas-
sification of oil spill and look-alike spots from sar imagery using an
artificial neural network,” in Proceedings of 2012 IEEE International

conference on Geoscience and Remote Sensing Symposium (IGARSS),.
IEEE, 2012, pp. 5630–5633.

[14] K. Topouzelis, V. Karathanassi, P. Pavlakis, and D. Rokos, “Oil spill
detection: SAR multi-scale segmentation & object features evaluation,”
in In Proceedings of the 9th International symposium on remote sensing

(SPIE), 2002, pp. 77–87.

[15] R. Chandrakanth, J. Saibaba, G. Varadan, P. A.-D. Raj et al., “Fusion
of high resolution satellite SAR and optical images,” in Proceedings of

2011 International Workshop on Multi-Platform/Multi-Sensor Remote

Sensing and Mapping (M2RSM). IEEE, 2011, pp. 1–6.

[16] V. R. Pandit and R. Bhiwani, “Image fusion in remote sensing applica-
tions: A review,” International Journal of Computer Applications, vol.
120, no. 10, 2015.

[17] L. Dabbiru, S. Samiappan, R. A. A. Nobrega, J. A. Aanstoos, N. H.
Younan, and R. J. Moorhead, “Fusion of synthetic aperture radar and
hyperspectral imagery to detect impacts of oil spill in Gulf of Mexico,”
in 2015 IEEE International Geoscience and Remote Sensing Symposium

(IGARSS), July 2015, pp. 1901–1904.

[18] R. Guida, S. W. Ng, and P. Iervolino, “S- and x-band sar data fusion,”
in 2015 IEEE 5th Asia-Pacific Conference on Synthetic Aperture Radar

(APSAR), Sept 2015, pp. 578–581.

[19] M. Berbar, S. Gaber, and N. Ismail, “Image fusion using multi-
decomposition levels of discrete wavelet transform,” in Proceedings of

International Conference on Visual Information Engineering, 2003. VIE

2003. IET, 2003, pp. 294–297.

[20] X. Yang, J.-H. Pei, and W. Yang, “Disadvantage of the methods based
on wavelet transform in high-resolution and multispectral fusion image,”
Journal of Infrared and Millimeter Waves, vol. 21, no. 1, pp. 77–80,
2002.

[21] A. Reid, F. Ramos, and S. Sukkarieh, “Bayesian fusion for multi-modal
aerial images.” in Robotics: Science and Systems, 2013.

[22] C. M. Christoudias, R. Urtasun, M. Salzmann, and T. Darrell, “Learning
to recognize objects from unseen modalities,” in European Conference

on Computer Vision. Springer, 2010, pp. 677–691.

[23] M. Subramanyam and Mahesh, “Automatic feature based image registra-
tion using SIFT algorithm,” in Proceedings of 2012 Third International

Conference on Computing Communication & Networking Technologies

(ICCCNT). IEEE, 2012, pp. 1–5.

[24] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
International Journal of Computer Vision, vol. 60, no. 2, pp. 91–110,
2004.

[25] M. Subramanyam and Mahesh, “Automatic feature based image registra-
tion using SIFT algorithm,” in Proceedings of 2012 Third International

Conference on Computing Communication & Networking Technologies

(ICCCNT). IEEE, 2012, pp. 1–5.
[26] R. Chen, M. Hawes, L. Mihaylova, J. Xiao, and W. Liu, “Vehicle

logo recognition by Spatial-SIFT combined with logistic regression,”
In Proceedings of the International Conference on Information Fusion

2016, 2016.
[27] C. E. Rasmussen and C. K. Williams, Gaussian processes for machine

learning. MIT press Cambridge, 2006, vol. 1.
[28] K. P. Murphy, Machine learning: a probabilistic perspective. MIT

press, 2012.
[29] H. He and W.-C. Siu, “Single image super-resolution using gaussian pro-

cess regression,” in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR),. IEEE, 2011, pp. 449–456.
[30] A. Melkumyan and F. Ramos, “Multi-kernel gaussian processes,” in

IJCAI Proceedings-International Joint Conference on Artificial Intelli-

gence, vol. 22, no. 1, 2011, p. 1408.
[31] ——, “A sparse covariance function for exact Gaussian process inference

in large datasets.” in IJCAI, vol. 9, 2009, pp. 1936–1942.
[32] M. F. Yakhdani and A. Azizi, “Quality assessment of image fusion

techniques for multisensor high resolution satellite images (case study:
IRS-P5 and IRS-P6 satellite images),” In Proceedings of the ISPRS TC

VII Symposium-100 years ISPRS, 2010.
[33] V. R. Pandit and R. Bhiwani, “Image fusion in remote sensing applica-

tions: A review,” International Journal of Computer Applications, vol.
120, no. 10, 2015.

[34] P. Jagalingam and A. V. Hegde, “A review of quality metrics for fused
image,” Aquatic Procedia, vol. 4, pp. 133–142, 2015.

[35] N. Dhanachandra, K. Manglem, and Y. J. Chanu, “Image segmentation
using k-means clustering algorithm and subtractive clustering algo-
rithm,” Procedia Computer Science, vol. 54, pp. 764–771, 2015.

8


