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Abstract

We study weak solutions of the incompressible Euler equations on T? x R, ; we
use test functions that are divergence free and have zero normal component, thereby

obtaining a definition that does not involve the pressure. We prove energy conservation
under the assumptions that u € L3(0,T; L3(T? x Ry)),

1 T o)
lim — / / / lu(x +y) — u(z)?dzdt =0,
ly|—0 |y| 0 JT2 Jz3>|y|

and an additional continuity condition near the boundary: for some § > 0 we require
u € L3(0,T;C%(T? x [0,6]))). We note that all our conditions are satisfied whenever
u(z,t) € C%, for some o > 1/3, with Hélder constant C(z,t) € L3(T? x Rt x (0,T)).

1 Introduction

Energy conservation for solutions of the incompressible Euler equations

ou+ (u-Vu+Vp=0 V-u=0
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on domains without a boundary (R? or T¢ with d > 2) is now well understood. This
problem has been studied extensively by Constantin, E, & Titi (1994), Duchon & Robert
(2000), Cheskidov et al. (2008), Shvydkoy (2010) (see also Robinson et al., 2018) who have
all proved energy conservation with varying conditions on the solution. These conditions are
all weaker than u € C/3%¢ for some £ > 0 and thus any solution satisfying u € C'*/3*¢ will
conserve energy, that is, ||u(t)||z2z = [|u(0)||zz for every t > 0.

These results prove the ‘positive’ part of the ‘Onsager Conjecture’ (Onsager, 1949): so-
lutions with spatial regularity C'/3¢ will conserve energy. Recently Isett (2018) and Buck-
master et al. (2016) have constructed solutions with regularity C'*/3~¢ that do not conserve
energy (in fact they show the existence of solutions that satisfy any prescribed energy profile).

In the case with boundary, it is easy to see, using standard integration-by parts tech-
niques, that energy is conserved for a C'! solution on a Lipschitz domain Q with the solution
u satisfying v - n = 0 on 92. In Robinson et al. (2018) we obtained sufficient conditions,
similar to those presented here, for energy conservation in T? x R, , using a weak formula-
tion that required a pressure term on the boundary. However, in our subsequent analysis
the pressure played a very minimal role.

Bardos & Titi (2018) have shown energy conservation for C? bounded domains under the
assumption u € L3((0,T); C%*(Q)) for a > 1/3; their definition of a weak solution requires a
pressure function defined throughout the domain, and their result requires a careful analysis
of this pressure.

In this paper we consider a solution u on the spatial domain T? x R, and present an
approach that completely avoids the use of the pressure. It also involves conditions that are
less restrictive that the C'/3*¢ result of Bardos and Titi. More precisely, we will show that
for a solution u to conserve energy it suffices that u € L3(0,T; L3(T? x R,)) and

1 T 00
lim — / / / lu(z +y) — u(z)> de dt = 0, (1)
=0 [yl Jo Jr2 Jaspy

along with a continuity condition near the boundary: v € L3(0,T; C°(T? x [0, d])) for some
d > 0. The bulk condition in (1) is very similar to the best known condition for the spatial
domains R? or T¢, the only difference being that the domain of integration restricts to the
interior of the domain.

The plan of the paper is as follows. Section 2 contains some preliminary material and our
definition of a ‘weak solution’ of the Euler equations. In Section 3 we introduce a reflection
and extension map to the full domain. In Section 4 we show that it is possible to test



the weak formulation of the Euler equation with a mollification of the extended solution
constructed in the previous section. Section 5 contains the main statement and its proof.

2 Weak solutions of the Euler equations on T? x R,

In this section we introduce some basic notation and make precise the notion of weak solution
of the Euler equation that we will be using.

For vector-valued functions f, g and matrix-valued functions F, G we use the notation
(o= [ f@a@de ad (FiGla= [ Fy)Gy()ds @)
Q Q

using Einstein’s summation convention (sum over repeated indices).

We let T? denote the two-torus, write R, for [0, 00), and define D, := T? x R,. We use
the notation S(D4 x [0,77]) to denote functions in C*°(D, x [0,7]) that have Schwartz-like
decay in the unbounded spatial direction, i.e.

sup  |0%¢l[s]” < oo, (3)
(z,t)€D4 x[0,T]

for all integers 5 > 0 and all nonnegative multi-indices « over the variables (z1, x2, z3,t). Sim-
ilarly, when there is no time component, the notation S(D, ) denotes functions in C*°(D,)
that have Schwartz-like decay in the unbounded spatial direction as in (3).

We set
Sno(Dy) ={peS(D;):diveg=0and ¢-n=0o0n0D,}

and define the space H,(D.,) as
H,(D,) := the completion of S, ,(D,) in the L*(D,) norm.
Functions in H,(D, ) are weakly divergence free in that they satisfy
(u,Vé)p, =0 forevery ¢ € H'(D,). (4)

This holds since S, ,(D) is dense in H,(D,), and so for any v € H,(D;) we can find
(un) € S;(Dy) such that u, — v in H'(D,). Now given u € H,(D,) and any ¢ € H'(D,)
we have

<u’ v¢>D+ = nlggo<un7 v¢>D+ = nlggo<v T Unp, ¢>D+ = 0.
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Notice that we have no boundary terms in the integration-by-parts since w,, -n =0 on 9D
(see for example Lemma 2.11 in Robinson et al., 2016, for more details).

In a slight abuse of notation we define Cy, ([0, T|; H, (D)) as the collection of all functions
w:[0,T] = H,(D,) that are weakly continuous into L*(D.) i.e.

t— (u(t),o)p,
is continuous for every ¢ € L?(D,).

We define the space of test functions
Sno(Dyx[0,T)) :={¢ € S(D+x[0,T]): V-(-,t) =0 ¢n=0o0n0D; Vtel[0,T]}. (5)
Analogous definitions of all of the spaces above can be made for the domain D_ := T?xR_
(where R_ = (—o00, 0]).

To obtain a weak formulation on D, assume that we have a smooth solution u with
pressure p that satisfy the incompressible Euler equations

Ou+V-(u®@u)+Vp=0 inD,
V-u=0 inD+
u-n=>0 ondD,,

where n is the outer normal to 0D, , so that for our domain the third equation simply
becomes uz = 0 on 9D, . Taking the inner product of the first equation with a vector-valued
test function ¢ € S, (D4 x [0,7]) and integrating over the time interval (0,¢) we obtain

t
/<8tu—|—V~(u®u)+Vp,gz§>D+dT:O.
0

Here (-,-)p, denotes the L*-inner product in space as defined in (2). We can now integrate
by parts and obtain

(u(t), o(t))p, — (u(0),¢(0))p, — /0 (u,0d)p, dr — /O (u®u): Vo)p, dr

t
—/ u;;(u-qb)dSzdt—/(p,V-¢>D+dT+/ p ¢p3dS, dt = 0.
0D x[0,t] 0 0Dy x[0,t]



We notice that both ug = 0 and ¢3 = 0 on 0D,. Further, we have that V-¢ =0 in D, and
so the three terms involving these expression vanish; we obtain the equation

(u(t), ¢(t))p, — (u(0),¢(0))p, — /0 (u, 0pp)p, dr — /0 (u®@u):Ve)p, dr = 0.

Thus we have obtained the following weak formulation of the equation, which does not
involve any pressure terms.

Definition 1 (Weak Solution on D). A weak solution of the Euler equations on D, x [0, T
is a vector-valued function u in Cy([0,T]; H,(D4)) such that

(ult), ¥(t)p, — (u(0), ¥(0))p, — / (u(r), 0b (7)), dr
= /0t<u(7) ®@u(r) : V(1)) p, d7, (6)

for every t € [0,T] and for all Y € S, (D4 x [0,T]).

We conclude this section making precise the specific mollification that we will use to
regularise the equation. Throughout the paper ¢ will be a radially symmetric scalar function
11

in C((—3,3)?) with [ ¢ = 1; we set ¢ (x) = e ?p(z/e). Then for any function f we define

the mollification of f as J.f := f x ¢. where x denotes convolution. Thus
L@ = frede) = [ ey = [ ey
D B(0,e

Notice that given the way we have defined our mollification we need the functions to be
defined on all of D := T? x R. When applying this mollification to functions only defined on
D, we will implicitly assume an extension by zero to the entirety of D prior to mollifying.

3 The reflection map

The first step in our analysis will generate an extension of a weak solution u defined in D
to a function ug defined on all of D. We remark that we are using the same extension
considered in Robinson et al. (2018). In that work part of the considerations related to this
particular extension were used to handle the pressure, which is not present in our current
approach.



The extension will be built out of an odd reflection u from D, to D_. However, for later
convenience we consider a reflection map for functions defined in the full domain D; we will
apply this later to an extension by zero of functions defined on the half space D,.

Definition 2 (Reflection and extension). Given a vector-valued function f: D — R? we
define fr: D — R? by

fl(l’,y, —2)
fr(z,y,2) = folz,y,—2) | . (8)
—fg(l’,y, _Z)

For a function g: Dy — R®, defined only on D, to start with, we first consider a trivial
extension by zero, which by an abuse of notation we still denote by g, and define gg via (8).
We now define our extension gg by

T 2) — 9(%,y, 2) + gr(r,y, 2) 240
i) {%(g(m,y,z) +g9r(z,y,2)) = (91(2,¥,0), g2(2,9,0),0) z=0. )

In (9) we require a separate definition for z = 0 to preserve the value of g at the boundary
of D, but we still have gg equal to g + gr almost everywhere.

Note that if g € S, ,(D4) then gr € S, »(D-); similarly if v € H,(D,) then we have
VR € HJ(D_).

We have defined this particular extension to preserve the function’s incompressibility,
regularity and boundary conditions. Additionally, we chosen the mollifying kernel in (7) so
that the mollification of v satisfies all the properties of a test function for the equation. This
will allow us to use it to regularise the equation and manipulate the terms. We summarise
some of the results we will require.

Lemma 3. If v € H,(Dy) (respectively S, ,(D+)) then vp € Hy(D) (respectively S,(D))

and

L vglleemy < Cllvllemn,);
2. J-(vg) and J.(J-(vg)) are incompressible in D, ; and

3. Je(vg) -n=0 and J.(J:(vg)) - n=0 on 0D,.

Proof. We consider only the case v € H,(D,). Given the initial extension of g by zero,
and that as remarked before vg € H,(D_), we only need to show that vg remains weakly
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incompressible. Since v € H,(D,) there exists v, € S, (D) such that v, — v in L*(D.).
Clearly v, g € S,o(D-) and v, g — vg in L*(D_). Therefore vg € H,(D_). Further,
Uy, + vy, g trivially belongs to S, (D) and is divergence free. Since v, + v, g converges to vg
in L?(D) we obtain the desired result

Estimate 1 follows easily
lvellLr oy = |v + vrllzep) < 0llepy) + vrllLro-) < 2[|0]|r Dy (10)

as ||’UR||LP(D_) = HU||LP(D+)~

In order to prove 2, since the extension is weakly incompressible we have that J.(ug) is
strongly incompressible. To show this note that vy € H,(D) and so (vg, Vé)p = 0 for all
¢ € S(D). We can let ¢ = J.n or J.J.n and thus

0= <UE7 Vt]an>D = <J5UE'>V77>D = <V : JE“EaU)D-

As this holds for all n € S(D) we have that J.vg is strongly incompressible in D,. We argue
similarly for J.J.vg.

To show & we will first show that J.(vg); = 0 on dD,. Note that this is the same as
J-((vg)3) = 0. As our extension is an odd function in the third component and ¢. is an even
function in the third component we have that the integral over the ball centered around the
boundary is zero. We argue similarly for J.J.vg. [

We now define
D.s:={x € D:x3> s}.

Notice that estimate I in the previous Lemma holds for these domains as well. In fact, for
any 0 > 0 we have

luellieps_s) < lluellrp) < Cllullieo,)-

Lemma 4. Given u € LP(Dy) with 1 < p < oo we have ||J.(ug) — ul|r(p,y — 0 and
| JeJe(up) — ullLe(py) — 0.

Proof. The result follows easily by noticing that in D, we have ugp = u and therefore

|Je(ug) = ullr(pyy = [[Je(up) — upllreny) < | Je(ur) — up||Lr (D).

The result now follows by standard properties of mollifiers. Similarly for J.J.ug. n



We conclude this section with a lemma collecting various results for the reflection map
that will be used later.

Lemma 5. For any functions u and v on D

(U, VR)T2x (=6,8) = (UR, V)T2x(—0.)

for any 6 > 0. In addition
Je(fr)(x) = (J-f)r(2)

and thus
(Jeu, JouR) T2 (—56) = (JoUr, JoU) 125 (—5,6)-

Proof. The first part follows by a simple change of variables of x5 to —x3, using the symmetry
of the domain of integration and the definition of the reflection map. More precisely, using
the notation = = (Z,x3) we can use the change of variables x3 = —3 so that

5 5
(U, VR)T2 x (—0.9) Z/ / Ui(fa%)vm(ix:&)dwsdj:/ / ui (T, —&3)VRi (T, —§3) d&3 dT
™ J_5 ™ J_5

s
- /T? /5uRi(j7§3)Ui(ij’§3) dgs dz = (ur, U)Wx(*é,&).

The result J.(fr) = (J-f)gr follows by a direct calculation (given the properties of our
mollifying kernel), and for the final equality we apply the first part to J.u and J.v. O

4 Using J.J.up as a test function

We will show that if u is a weak solution then in fact (6) holds for a larger class of test func-
tions with less time regularity. We denote by C%([0,T]; H,) the space of Lipschitz functions
from [0, 7] into H,. Here we extend the results in Robinson et al. (2018), highlighting only
the changes and generalisations needed because of the boundary.

Lemma 6. If u is a weak solution of the Euler equations on D, then (6) holds for every
v € L, , where

Lo =1y e L0, T; H*) N C® ([0, T); H,) :¢-n=00ondD,}.



Proof. For a fixed u we can write (6) as E(¢) = 0 for every ¢ € S, ,, where
E) = (u(t), v(t))p, — (u(0),9(0))p, —/0 (u(7),000(7))p, dT

- /0 (u(T) @u(r) : V(1)) p, dr.

Since E is linear in ¢, and S, is dense in £,, , with respect to the norm

121 0,7523) + 19| o o,13:22)

to complete the proof it suffices to show that ¢ — E(v)) is bounded in this norm. We proceed
term-by-term:

[(u(t), () p, — (u(0), ¥ (0))p. | < 2llull o orize) ¥l L= 0.1:L2),

/0 (), B0(r))p, dr

< ||u||L°°(07T§L2)”%ZJHCOJ([O,T];L?),

< N[l o) IVl L1 07:2%)-

/0 (u(r) ® u(r) : V(r))p, dr

(For details of the second of these estimates see Skipper, 2018 or Robinson et al., 2018.) It
follows that

|E@)] < Cllull Lo o2 9]l cor o122y + CllullZos o 122y 19| 21 0759

and so we obtain the desired result. Note that ¢ -n = 0 is preserved as H3> C C° in three
dimensions. O

We now study the time regularity of © when paired with a sufficiently smooth function
that is not necessarily divergence free.

Lemma 7. If u is a weak solution on D, then
[(u(t) —u(s), ¥)p, | < Clt —s| forall ¢ eS(D.), (11)
where C' depends only on |[ul| e r,12) and ||1)| gs. Further, we have

[(u(t) —u(s), ¥)p| < Clt —s|  forall ¢ e S(D). (12)

We remark that inequality (11) holds for v € H3(D. ), while (12) holds for v € H3(D)
as those are the norms of ¢ that appear in C'. Therefore we can use density to extend the
lemma to these larger spaces of functions.



Proof. First observe that any ¢ € S(D, ) can be decomposed as
Y =n+ Vo,

where 1,0 € S(Dy) and 7 is divergence free with -n = 0 on 0D, (see Theorem 2.16 in
Chapter 2 of Robinson, Rodrigo, & Sadowksi (2016), for example). Furthermore we have
the bound

IVl < [Vl < nllas < Cllil s

Here we have used the fact that the Leray projector (the map ¢ — 7) is bounded in H* for any
s > 0 (see, for example, Chapter 2 and 3 of Lions (1997) or Chapter 2 of Robinson, Rodrigo,
& Sadowksi (2016)) and that H*(D,) C L*>(D,). Since u(t) is weakly incompressible for
every t € [0,7], we have

(ut) =u(s),¥)p, = (u(t) —uls),n+Vo)p, = (u(t) —u(s),n)p. .

Since n € S,,,(D4+) and 9y = 0 it follows from the definition of a weak solution at times ¢
and s that

t
(u(t) —u(s),¥)p, = / (u(T) ®@u(r) : Vn)p, dr
and hence
[(u(t) = u(s), ¥)p, | < Nullie oz Vil et — 1, (13)
which gives (11). Note that as the support of u is D, we have
[(u(t) —u(s), ¥)p| < Clt —s| forall ¢ € S(D), (14)
concluding the proof. O]
A striking corollary of this weak continuity in time is that a mollification of the velocity

field in space alone yields a function that is Lipschitz continuous in time.

Corollary 8. If u is a weak solution on D, then for any ¢ > 0 the functions J.(ug)(x,-)
and J.J-(ug)(x,-) are Lipschitz continuous in t as a function into L*(D,):

[ J-(up)(-,t) = Je(ur) (-, 8)|l2py) < Celt — 5], (15)

and

| Jede(up) (s 1) — Jede(up) (-, )l 2p,) < Celt — s|. (16)
Furthermore, J.(ug), J.J-(ug) € Lyo.

10



Proof. Set v = ug(t) — ug(s); we have the following bounds for the the left-hand sides of
(15) and (16)

||Jav||L2(D+) SHJaUHL?(D)a
| Jeev||2py ) S| JeJev|lr2(py < || Jev||2(y-

To estimate the right-hand side

120l 2oy = [1J=([u(t) = u(s)] + [ur(t) = ur(s))r2p) < 20| J=([u(t) = u(s)])llz2w)-

We use the generalisation of Lemma 7 for v € H3. Let ¢ = J.f for f € L*(D) with
| fll2(py = 1. To find a bound for || J-([u(t) — u(s)])||L2(p) We notice, following (13), that

[(Je(ut) — uls)), f)pl = [{u(t) = u(s), Jf)p| < l[ullfeorirapon [V Ief oot — 5]
< O”U”%w(omm(m))||S06||W3!1|t = sl fllze-

We can then take the supremum over || f||z2 = 1 over both sides to finish off the Lipschitz
in time bound and obtain (15) and (16).

We now need to prove that the other properties of the space £, , are satisfied by both
J.up and J.J.ug. Since mollification commutes with differentiation we see that both J.ug
and J.J.ug are divergence free. Finally, since u € L>(0,T; L?), we observe that both J.ug
and J.J.ug € L>=(0,T; H?) and

| JeJeup|| Loy < T||JeJeupl| Lo o, 13
as (0,7 is bounded (similary for J.ug).

We see from Lemma 3 that J.J.ug -n and J.ug -n = 0 on 0D, , and hence both J.ug
and J.J.ug are in L, ,, as required. O

This section (in particular Corollary 8) now allows us to use J.J.(ug) as test function in
the weak formulation of the Euler equations (6) and have shown the sufficient regularity of
J-(ug) needed to manipulate terms in the future.

11



5 Energy Conservation: J.J.up as a test function

Notice that since J.J.(ug) € L, the following identity is a consequence of Lemma 6

(u(t), JeJ(up)(t))p. — (w(0), JeJe(ur)(0))p, — /0t<U(T),3thJs(uE)(T)>D+ dr

t
= / (u(t) @ u(r) : V. J.(ug) (1)) p, dr.
0
Using that the support of v and u ® u is D, we have for v = u or u ® u that

(v, JeJe(up) () p, = (Jev, Je(up)(t))p. . = {Jev, J(up)(t)) -

Therefore

(Jo(u)(t), Jo(up) () p — (J()(0), J-(up)(0))p — / (Je(u)(7), O Je(up)(7)) p dr
:/0 (Je(u(r) @ u(T)) : VJe(ug))(T))pdr. (17)

We will now investigate the convergence of (17) as € tends to zero, and from there deduce
energy conservation.

5.1 Convergence of the L.H.S. of (17)

In this subsection we want to take limits as ¢ — 0 in (17) and show that the left-hand side

becomes i

5 (IO 2,y = 1uO) 200, ) -

Thus if we show the R.H.S. converges to zero we will have energy conservation. Here we
will use the Lipchitz in time regularity of J.up shown in Corollary 8 to manipulate the term
with time derivative in the L.H.S. of (17).

Now, using Lemma 4 we can deal with the first two terms, obtaining

lim ((J-(u)(8), J=(up)(t))p — (Je(u)(0), J-(up)(0))p) = [lu®)l72p,) — [w(O)IZ2p, -

e—0

12



The last term on the left-hand side of (17) can be rewritten using linearity as

/0 (T2 (u)(r), By () (7)) p dr = / (Je(u)(r), BT (1) () p / (T (0)(r), BT () (7)) p

(18)
Since J.(u) € C*([0, T); H,) we obtain

2/0 (Je(u)(7), 0 Je(u) (7)) p AT :/0 0(Je(u)(7), Je(u)(7)) p AT = || Jeu(t)l[72(p) — | Jeu(0) [ 22 (),

and taking limits yields
t

lim [ (Je(u)(7), O Je(u) (7)) p dT = %(IIU(t)lliz(m) = [u(O)llZ2(p,))-

e—0 0

The only term remaining on the right-hand side of (18) that needs to be controlled

vanishes: .

lim | (Jo(u)(7),0Je(ur)(T))pdr = 0.

e—0 0

From Lemma 5 we see that
t t t
2/ (Jou, Oy Jour)p dT = / (OpJou, Jeur) p + (Jeu, Oy Jeug)p dr = / Oy (Jeud-ug)p dr,
0 0 0

Therefore it suffices to show that

t

lim [ 0y(J.u, Jougr)p dr = 0. (19)

e—0 0

Since both J.u and J.up are elements of C*!([0,T]; H,) this integral is equal to

(Jeu(t), Jour(t)) — (J-u(0), Jour(0)),
and since the supports of u(t) and ug(t) are disjoint (19) follows.

We have now shown that the left-hand side of (17) converges to

1
5 (IO 2,y = 1uO) 200,

13



5.2 Convergence of R.H.S. of (17)

Recall that the right-hand side of (17) is

e—0

lim (/0 (Jo(u®@u)(T): Vdo(ug)(T))p dT) =: li_r)r(l)f,
which we rewrite as
I = /0 (Jo(up @u)(7) : VJo(ug)(T))pdr —I—/O (J-((u —up) @u)(7) : Vde(ug)(7))p dr.

For the second term we notice that since u —ug equals ur almost everywhere the support of
u and u — ug only intersect in a set measure zero set and so (u —ug) ® u = 0 a.e.; therefore
the second term vanishes. For the first term we commute the mollification with the product,
using an identity that is similar to one used in previous works (Eyink, 1994; Constantin, E,
& Titi, 1994; Cheskidov et al., 2008; Shvydkoy, 2009, 2010), but which involves two different
functions in the product rather than the same function twice. We will use the identity
Jo(up @u) =r.(ug,u) — (up — Jo(ug)) @ (u — Jo(u)) + Joup ® Jou,
with
re(up, u) = / we(y)(up(r —y) —up(r)) @ (u(z —y) — u(z)) dy.
D

Therefore we obtain

= /0 e, 1) — (up — (1)) ® (1 — Jo(u) + Jog ® Jou] : VJo(ug) () p dr.

First we consider the term
t
/ (Jeup @ Jou : VI (ug)(T))pdr.
0
If we integrate by parts we obtain
1 t
——/ /(v - Jou)|Jo(ug) P dedr =0
2Jo Jp
by incompressibility.
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We are now left with the remainder terms

/0 ([ra(ug, u) : V. (ug)(r)p dr — / (g — Jo(ug)) ® (u—J(w)] : V() (7)) p dr. (20)

As (V). is an odd function, its integral is zero so we can rewrite V.J.(ug) as

Vie(ug) = / (Vee)(y) © (up(z —y) — up(r)) dy. (21)

D

For the first term in (20), since 7.(u,ug) is supported in D~ _. we have

[ -t V)
= /Ot < /D ee(y)(up(z —y) —up(r) @ (u(r —y) —u(z))dy :
[ (@) (una =) — upla) dz>D>€ ar.

Using the changes of variables z = ¢£, y = en and taking the modulus we obtain
t

[ et ) Ve (7)o
0

< /Ot /D>E {/Bl(o) lo()||ug(z — en) — up(@)||u(z — en) — u(z)|dn
/Bl(o) %W@(QHUE(% —€€) — up(7)] dﬁ} dz dr.

Then we can use Fuibini’s theorem and Holder’s inequality to obtain

/0 (re(ug,u) : VJ(ug)(7))p. . dr

< / o [o(llus(- —en) = up()lsours . _oplllu = en) = ul)ll s o))
B1(0

<2 [ TN el ~ ) = ueOllsossscos-y 6. (22
B1(0)
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For the remaining term in (20), since J.(u) is supported in D~ _. we have

t<(UE — Joug) @ (u— Jou) : VI (ug)(T))p._. A7
/
/ /D> 6{/ 2)(up(r — 2) —up(zr))dz ®

A;%@wa—y)—u@»d?}1A}VwJWO®(mﬂx—u0—uE@dedmmg

where we have used (21) for the V.J.(ug) term. As before, with the changes of variables

z=n&, y=c¢e(, w=cecf we have

LA(@@——LUE)®(U——LU):VJJUEXT»D>{dT

< /B o ‘90(77)’”uE(-—Sn)_UE(-)HL3(0,t;L3(D>_E)) dn/ ‘SO(C)’Hu('_go_u(')HL3(0,t;L3(D>_E)) ¢

B1(0)

1
X gl/m (Vo) lup(- — &) —up()l2osL s ) dE. (23)
B1(0)

Before stating our main result, therefore providing sufficient conditions to guarantee that
(22) and (23) vanish in the limit, we remark that if u(t) € C°(T? x [0,d]), for some § > 0,

[0, 8]) is compact it follows that u(t) is uniformly continuous on T? x [0, ¢].

then since T? x
— [0, 00) with w;(0) = 0 that

In particular, there exists a non-decreasing function w;: [0, 00)
is continuous at zero, such that

u(z +y,1) —u(z, )] <wlyl)-

We are now ready to state our main result.

Theorem 9 (Energy Conservation). Let u be a weak solution of the Euler equations in the
sense of Definition 1. Assume that u satisfies

e the bulk condition,

lim —/ /D u(z +y) — u(z)Pdedt = 0, (24)

lyl=0 [y -

and
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e continuity near the boundary, u € L3(0,T; C(T? x [0,4]) for some § > 0.

Then u conserves energy on [0,T], i.e. ||u(t)|| = ||u(0)| for all t € [0,T].

Proof. 1t suffices to show that both (22) and (23) vanish in the limit as ¢ — 0. First we
would like to bring the limit inside the integrals over B;(0) in both (22) and (23). We use the
Dominated Convergence Theorem. Since ¢ € C2° we can find trivial bounds for ¢ and V.
Notice that we need to deal with the factor of 1/e, and factors which are L3(0,¢; L3(Ds_.))
norms of differences of functions involving u or ug.

We first decompose the L3(0,¢; L3(D~_.)) norm by splitting the spatial domain into the
bulk area and a strip around the boundary. That is we consider the L*(0,¢; L*(D-.)) and
L3(0,t; L3(T? x (—¢,€))) norms.

For the bulk part, notice that when = € D~ and 7,{,{ € B;(0) then
up(r —-€) —ug(z) = u(x — ¢) —u(x)

and we can therefore define the non-negative function

1 t
ﬂw=jallé Lsmenyyu(e +y) — u(z) dedt
>e

to control the corresponding terms in both (22) and (23). Notice that from the bulk condition
(24) it follows that limy, o f(y) = 0 and therefore for any ¢ > 0 that sup,cp, ) f(y) < K
for some K = K (e).

We assumed that u € L3(0,7; L>°(T? x [0,¢)) for e sufficiently small, and so using
continuity at the boundary and that w - n = 0 on the boundary we know that ugp €
L3(0,T; L>=(T? x (—¢,¢))). Thus in the region T? x (—¢,¢) we can define the non-negative
function

z€T2 x (—2¢,2¢)

1 t O t
mwzi// |wu+@—wumwms—m%/ sup  Jus(@) dt
€ Jo JT2x(—ce) € 0

and see that since ug € L3(0,T; L>*(T? x (—¢,¢))), the function g is also bounded and
integrable. Notice that a similar function g can be defined for the terms involving v instead
of ug as the only property we have used is that u € L3(0,T; L>=(T? x [0, ¢)) for ¢ sufficiently
small.
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Using the functions above and the Dominated Convergence Theorem we can move the
limit inside the integral, reducing the problem to showing that

_ 1
lim sup —||u(- —en) — u(')|li3(0,t;L3(D>—a)) =C
e—=0 €

and
1

: 3 _
ll—{% gHuE( —en) — uE(')HL3(O,t;L3(D>75)) =0.

We proceed as before, by decomposing D~ _. into D, and T? x (—¢,¢). We first prove
the result for the bulk when = € D~.. As n € B1(0) both reduce to showing that

.1 3
ll_r}r(l) g”“( —en) = u()lzs0n23(psry) = 0-

With the change of variables y = en for n € B;(0) we have

1
Im —|lu(- —y) — w()|[2s0 4. =0,
w50 [y] Ju(- —y) ( )||L3(O,t,L3(D>s))

where we have used the bulk condition (24).

It remains to show that

. 1
lim sup =[Ju(- — en) — u()| 3501302 x (e = C (25)
e—0 9
and ]
lim —lug(- —en) — up()|2s 04z r2x (—eyy) = 0- (26)

We now use the continuity of u near the boundary. Now, to deal with (26) note that
since the boundary values are the same for v and ur we have ug(-,t) € C°(T? x [-4,4]). Tt
follows, since 9D = T?x {0} is compact, that for each ¢ € [0, T] there exists a non-decreasing
function wy: [0, 00) — [0, 00) with w;(0) = 0 and continuous at 0, such that

lu(z + z,t) — u(z, t)| < w(|z]) (27)
whenever z € 9D and |z| < 6.
For fixed t and 2’ € {z = 0} we can now write

lup(t,2' +z+y) —ug(t,z’ + 2)| < |Jup(t, 2’ + z +y) —up(t,2’) + up(t,2') — ug(t,z’ + z)|
< w(t, |y + 2]) + w(t, [2])
< 2w(t, 2[yl)
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and thus

|yl ly]
/ / lug(t,z +vy) — up(t, m)| dxs dzy dr; < C / / w(t, 2|y|)|3dx3 dzs dzy
|?/| T2 |y| T2

1] |y]

< le’ﬂﬁllyllw(t, 2ly)I> — 0

as |y| — 0 for almost every t.
For the first term in (25) we can use the fact that u € L3(0,T; L>°(T? x (=4, 6))) and so

1 1
EHU(‘ —en) — u(')||%3(0,t;L3('11‘2><(75,5))) = m”“(' —y) — u(')||?I)J3(0,t;L3('JI‘2><(75,5)))

C
< =T |ylllu(-+y) —w() | 2400 r2x (—ee)y) = ClTu(-+y)—u(-)| 1304250 (125 (—e ey < C,

Y|

completing the proof. O

Note that the full strength of the assumption that u € L3(0,T; C°(T? x [0, 6]) is not used
in the proof. Rather we require that

() u € LY0.T: L=(T2 x (0,5)))
(ii) w is defined pointwise within T? x [0, §], and

(iii) w(-,¢) is continuous at every x € 9DT;

properties (ii) and (iii) together yield (27).

6 Conclusion

Assuming the simple bulk condition

.1 T
lim —‘ | / / Lotyer2xryu(z +y) — u(z)’ dedt = 0,
Y T2xR,

ly|—0

which is similar to the weakest conditions known on R? or T¢, and continuity near the
boundary we have proved energy conservation of the incompressible Euler equations with a
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flat boundary of finite area. As remarked before this method does not require any treatment
of the pressure; it is an interesting open problem whether energy conservation in a general
bounded domain can be proved without involving the pressure.

In Robinson et al. (2018) we show that one can define a notion of ‘weak solution’ for
the Euler equations on a bounded domain that generalises the one we use here, in such a
way that the pressure does not appear. Any sufficiently smooth weak solution (understood
in this sense) has a corresponding pressure so that the pair (u,p) is a solution in the sense
required by Bardos & Titi (2018). This means that their argument, while relying on the
pressure, is applicable to the (perhaps more natural) definition of weak solution in which the
pressure plays no role.

We conclude by pointing out that while we have considered an extension to the full
domain, it would have been possible to consider an extension to a smaller strip. The key
observation relies on noticing that the main results we have used work when applied to a
truncation of the reflection, even for sharp truncations. We state the corresponding local
version of Lemma 5 to illustrate this point; this version of the analysis is carried out in full
in Skipper (2018).

Lemma 10. For any functions u and v on D, define v, =1Ip__ vg for some v > 0. Then

(U, Ur)ﬂf?x(%,&) = <Um U>T2><(76,6)

for any 0 < § < ~. Further,
Je(fr)(@) = J(f)r(2)
and thus
(Jeu, Jovp) 2 (—5.6) = (Jetir, JeV) T2 (~5.6)5

provided 0 < § <y —e.

The fact that one can consider local versions of the results we have used suggests that
these ideas could be transferred to more complicated geometries, where extension to the full
domain might be otherwise problematic.
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