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Abstract
We construct a fixed parameter algorithm parameterized by d and k that takes as an input a
graph G′ obtained from a d-degenerate graph G by complementing on at most k arbitrary subsets
of the vertex set of G and outputs a graph H such that G and H agree on all but f(d, k) vertices.

Our work is motivated by the first order model checking in graph classes that are first order
interpretable in classes of sparse graphs. We derive as a corollary that if G is a graph class with
bounded expansion, then the first order model checking is fixed parameter tractable in the class
of all graphs that can obtained from a graph G ∈ G by complementing on at most k arbitrary
subsets of the vertex set of G; this implies an earlier result that the first order model checking
is fixed parameter tractable in graph classes interpretable in classes of graphs with bounded
maximum degree.
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1 Introduction

The work presented in this paper is motivated by the line of research on algorithmic
metatheorems, general algorithmic results that guarantee the existence of efficient algorithms
for wide classes of problems. The most classical example of such a result is the celebrated
theorem of Courcelle [2] asserting that every monadic second order property can be model
checked in linear time in every class of graphs with bounded tree-width; further results of
this kind can be found in the survey [17]. Specifically, our motivation comes from the first
order model checking in sparse graph classes and attempts to extend these results to classes
of dense graphs with structural properties close to sparse graph classes.

The two very classical algorithms for the first order model checking in sparse graph classes
are the linear time algorithm of Seese [24] for graphs with bounded maximum degree and the
linear time algorithm of Frick and Grohe [10] for planar graphs, which can also be adapted
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29:2 Recovering Sparse Graphs

to an almost linear time algorithm for graphs with locally bounded tree-width. These results
were extended to many other classes of sparse graphs, in particular to graphs locally excluding
a minor by Dawar, Grohe and Kreutzer [5] and to the very general graph classes with bounded
expansion, which were introduced in [18–21], by Dawar and Kreutzer [6] (see [14] for further
details) and, independently, by Dvořák, Král’ and Thomas [7, 8]. This line of research
ultimately culminated with the result of Grohe, Kreutzer and Siebertz [15], who proved that
the first order model checking is fixed-parameter tractable in nowhere-dense classes of graphs
by giving an almost linear time algorithm for this problem when parameterized by the class
and the property.

The results that we have just mentioned concern classes of sparse graphs. While they
cannot be extended to all somewhere-dense classes of graphs, see e.g. [8], it is still possible
to hope for proving tractability results for dense graphs that possess structural properties
making first order model checking feasible. For example, a well-known theorem of Courcelle,
Makowsky and Rotics [4] on monadic second order model checking in classes of graphs
with bounded clique-width implies that first order model checking is tractable for classes of
graphs with bounded clique-width; in relation to the results that we present further, it is
interesting to note that graph classes that can be first order interpreted in classes of graphs
with bounded clique-width also have bounded clique-width [3, Corollary 7.38]). Another
approach is studying graphs defined by geometric means [9,13,16]. The approach that we
are interested in here lies in considering graph classes derived from sparse graph classes by
first order interpretations as in [11,12]; the definition of a first order interpretation can be
found in Section 2.

Specifically, we are motivated by the following very general folklore conjecture.

I Conjecture 1. The first order model checking is fixed parameter tractable in I(G) when
parameterized by a graph class G with bounded expansion, a simple first order graph interpre-
tation scheme I and a first order property to be tested.

The first step towards this conjecture was obtained in [11], where it was shown that Conjec-
ture 1 holds for classes of graphs with bounded maximum degree.

I Theorem 2. The first order model checking is fixed parameter tractable in I(G) when
parameterized by a class G of graphs with bounded maximum degree, a simple first order
graph interpretation scheme I and a first order property to be tested.

A combinatorial characterization of classes of graphs interpretable in graph classes of bounded
expansion was given in [12]. However, the characterization does not come with an efficient
algorithm to compute the corresponding decomposition. So, Conjecture 1 remains open. The
approach taken in this paper can be seen as complementary to the one used in [12] since we
attempt to directly reverse the effect of the first order interpretation.

To motivate our approach, we sketch the proof of Theorem 2 from [11]. The core of the
proof lies in considering first order graph interpretation schemes I where the vertex sets of
G and I(G) are the same and constructing an algorithm that recovers a graph H from I(G)
such that the graphs G and H have the same vertex set and they agree on most of the edges.
We now describe the approach from [11] phrased in the terminology used in this paper.

We start with introducing additional notation. A pattern is a graph R that may contain
loops and it does not contain a pair of adjacent twins that both have loops, or a pair of
non-adjacent twins that neither of them has a loop, i.e., a graph that has no non-trivial
induced endomorphism. To make our exposition more transparent, we will further refer to
vertices of patterns as to nodes and generally denote them by u with different subscripts
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and superscripts; vertices of graphs that are not patterns will generally be denoted by v
with different subscripts and superscripts. Let G be a graph, R a pattern and (Vu)u∈V (R) a
partition of the vertices of G into parts indexed by the nodes of R. The graph GR is the
graph with the same vertex set as G such that if v, v′ ∈ V (G), v ∈ Vu and v′ ∈ Vu′ , then vv′
is an edge in GR if and only if either vv′ is an edge of G and uu′ is not an edge of R or vv′
is not an edge of G or uu′ is an edge of R. Alternatively, we may define the graph GR to be
the graph obtained from G by complementing all edges inside sets Vu for each node u with a
loop and between sets Vu and Vu′ for each edge uu′ of R. Note that the graph GR depends
on the chosen partition of the vertex set of G; this partition will always be clear from the
context.

A very simple example of the introduced notion is a pattern R that consists of a single
node u with a loop. For every graph G, there is only one single class partition of V (G), i.e.,
Vu = V (G), and GR is then the complement of G. Similarly, if R has two vertices u and u′
and the edges uu (loop) and uu′, and the vertex set of a graph G is partitioned into sets Vu

and Vu′ , then GR is obtained from G by complementing all edges inside Vu and all edges
between Vu and Vu′ .

We now continue with the exposition of the proof of Theorem 2 from [11]. Simple first
order graph interpretation schemes of graphs with bounded maximum degree are very closely
linked to patterns as given in the next proposition, which directly follows from Gaifman’s
theorem [11]. The proposition essentially says that for every integer d and interpretation
scheme I, there exist a pattern R and an integer D such that the graph I(G) for any graph
G with maximum degree d is equal to HR for a suitable graph H with maximum degree D;
note that R and D depend on I and d only.

I Proposition 3. Let Gd be the class of graphs of maximum degree d and I a simple first
order graph interpretation scheme. There exists an integer D and a pattern R such that
for every graph I(G) obtained from G ∈ Gd there exists a graph H ∈ GD and a partition
(Vu)u∈V (R) of the vertex set of H such that the graphs I(G) and HR are the same.

This characterization of graphs that can be interpreted in a class of graphs with bounded
maximum degree is then combined with the following “recovery” algorithm, which is implicit
in [11], to get a proof of Theorem 2. Note the algorithm A from Theorem 4 has two
parameters, one controls the complexity of the structure of a graph and the other controls
the complexity of its transformation.

I Theorem 4. There exists an algorithm A that is fixed parameter with respect to an integer
parameter D and a pattern R and has the following property: for all D and R, there exist an
integer D′ and a pattern R′ such that the algorithm A takes as an input a graph GR, where
G is a graph with maximum degree at most D, and outputs a graph H such that GR and
HR′ are the same and the maximum degree of H is at most D′.

One of our main results is an extension of Theorem 4 to classes of d-degenerate graphs. Note
that such graph classes include classes with bounded expansion concerned by Conjecture 1.
This may look like an innocent extension of Theorem 4 at the first sight. However, the proof
of Theorem 4 relies on the fact that the degrees of any two vertices of GR that are contained
in the same part Vu, u ∈ V (R), differ by at most 2d, i.e., it is easy to recognize vertices that
belong to the same part. This is far from being true in the setting of d-degenerate graphs,
which leads to a need for a much finer analysis of the structure of an input graph.

MFCS 2018



29:4 Recovering Sparse Graphs

I Theorem 5. There exists an algorithm A that is fixed parameter with respect to integer
parameters d and K and has the following property: for all d and K, there exists an integer
m such that the algorithm A takes as an input a graph GR and integers d and K, where
G is a d-degenerate graph and R is a K-node pattern (both unknown to A), and outputs a
graph H such that G and H agree on all but at most m vertices. In particular, the graph H
is (d+m)-degenerate.

We next present a corollary of Theorem 5, which we believe to be of independent interest.
First observe that complementing edges between two subsets V and V ′ of the vertex set of G
is equivalent to complementing on the following three subsets of vertex set: V ∪ V ′, V and
V ′. Hence, the graph GR is obtained from G by complementing on at most K +

(
K
2
)
subsets

of vertices of G, where K is the number of nodes of R. In the other direction, if a graph H
is obtained from G by complementing on at most k subsets of vertices, there exists a pattern
R with at most 2k nodes such that H = GR. Hence, Theorem 5 implies the following.

I Corollary 6. There exists an FPT algorithm A with the following property: for every
integer d and an integer k, there exists an integer m such that the algorithm A takes as
an input a graph G′ obtained from a d-degenerate graph G by complementing on at most k
subsets of the vertex set of G and outputs a graph H such that G and H agree on all but at
most m vertices.

In relation to the first order model checking, Corollary 6 yields the following theorem,
which we prove in Section 4.

I Theorem 7. Let G be a graph class with bounded expansion and let Gk be the class
containing all graphs that can obtained from a graph G ∈ G by complementing on at most k
subsets of the vertex set of G. For every k, the first order model checking is fixed parameter
tractable on Gk.

Observe that Proposition 3 implies the following: if G is a class of graphs with bounded
maximum degree and I is a simple first order graph interpretation scheme, then I(G) ⊆ Gk

D

for some integers D and k, where GD is the class of all graphs with maximum degree at
most D. Hence, Theorem 7 gives an alternative proof of Theorem 2. On the other hand,
since Proposition 3 does not hold in the setting of graph classes with bounded expansion,
Theorems 5 and 7 do not yield an analogous result in this more general setting, which is
concerned by Conjecture 1; we discuss further details in Section 5.

2 Preliminaries

In this section, we briefly introduce the notation used throughout the paper, and present the
concepts that we need further.

Graphs considered in this paper are simple, i.e., they do not contain loops or parallel
edges unless stated otherwise. If G is a graph, then V (G) denotes the set of its vertices. The
neighborhood of a vertex v in a graph G, denoted by NG(v), is the set of all vertices adjacent
to v. The degree of a vertex v of a graph G is the size of its neighborhood, and the relative
degree of v with respect to a subset X ⊆ V (G) is the number of the neighbors of v in X. If
G is a graph and W a subset of its vertices, then the subgraph of G induced by W , denoted
by G[W ], is the subgraph of G with the vertex set W such that two vertices are adjacent in
G[W ] if and only if they are adjacent in G. Finally, a graph G is d-degenerate, if its vertices
can be ordered in such a way that each vertex has at most d of its neighbors preceding it.



J. Gajarský and D. Král’ 29:5

Let G be a graph. Two vertices v and v′ of G are twins if every vertex w different from v

and v′ is adjacent to either both v and v′ or none of them. The binary relation of “being a
twin” on V (G) is an equivalence relation; we will call the equivalence classes of this relation
twin-classes. Note that each twin-class induces either a complete subgraph or an empty
subgraph of G.

A graph G′ is an r-shallow minor of a graph G if it can be obtained from a subgraph of
G by contracting vertex-disjoint subgraphs of radii at most r (and removing arising loops
and parallel edges). We say that a graph class G has bounded expansion if G is monotone, i.e.,
closed under taking subgraphs, and there exists a function f : N→ N such that the average
degree of every r-shallow minor of any graph from G is at most f(r). As we have already
mentioned, examples of classes of graphs with bounded expansion are classes of graphs with
bounded maximum degree and minor-closed classes of graphs. The latter include classes of
graphs with bounded tree-width or graphs embeddable in a fixed surface.

If G is a graph, then a K-apex of G is a graph obtained by at adding at most K vertices
to G and joining them to the remaining vertices and between themselves arbitrarily. The
next proposition easily follows from the basic results on classes of graphs with bounded
expansion; see e.g. [22, Chapter 5] for further details.

I Proposition 8. Let G be a class of graph with bounded expansion, and let K be a positive
integer. The class of graphs formed by K-apices of graphs from G has bounded expansion.

Finally, a simple first order interpretation scheme I consists of a pair of formulas ψV (x)
and ψE(x, y). If G is a graph, then the graph I(G) has vertex set equal to the set {v ∈
V (G) | G |= ψV (x)}, i.e., it is the subset of vertices x of G such that ψV (x) holds, and two
vertices u and v of I(G) are adjacent iff G |= ψE(u, v) ∨ ψE(v, u).

3 Recovering degenerate graphs

This section is devoted to the proof of Theorem 5, one of our two main results. We need to
start with introducing additional notation that will be used in our analysis of complemented
graphs. Let G be a graph. Two subsets X and Y of the vertex set V (G) are k-similar if
their symmetric difference is at most k, i.e., |X4Y | ≤ k. We say that two vertices of G are
k-similar if their neighborhoods are k-similar, and we define the k-similarity graph of G to
be the graph with the vertex set V (G) where two vertices are adjacent if they are k-similar.

Further fix a pattern R and a partition (Vu)u∈V (R) of V (G). If u is a node of R, then the
u-perfect set is the union of the sets Vu′ where the union is taken over all neighbors u′ of u in
R. Note that the u-perfect set includes Vu iff u has a loop. A subset X of the vertex set of
G is (u, k)-perfect if it is k-similar to the u-perfect set, and a vertex of G is (u, k)-perfect if
its neighbors in GR form a (u, k)-perfect set. In particular, when saying that a vertex of G is
(u, k)-perfect, this always concerns its neighborhood in GR or in the induced subgraph of GR.

Our goal is to approximately recover graph G from GR given the size K of R and assuming
that G is d-degenerate. We achieve this by finding a partition of V (GR) that approximates
the partition of (Vu)u∈V (R) of V (G). To find the approximate partition, we use (u, k)-perfect
vertices introduced above: if we identify a (u, k)-perfect vertex for each class Vu of (Vu)u∈V (R),
then the structure of the neighborhoods of these vertices leads to a good approximation of
the partition (Vu)u∈V (R). The structural lemmas presented in the next subsection lead to
a simple condition (Lemma 11) that allows us to find a (u,C)-perfect vertex in the input
graph, where the constant C depends on d and K only. The presented structural results are
then be used to design Algorithm 1, which outputs an approximation of the graph G.

MFCS 2018



29:6 Recovering Sparse Graphs

3.1 Structural results
In this subsection, we present structural results on complemented graphs. These results will
be used in the next subsection to analyze our algorithm. We start with observing that most
vertices of each substantially large part are almost perfect.

I Lemma 9. Let R be a K-node pattern, G a d-degenerate graph with a vertex partition
(Vu)u∈V (R), and M the maximum size of a part Vu, u ∈ V (R). If a part Vu, u ∈ V (R), con-
tains at least M

4K vertices, then it contains at least
(
1− 1

10K

)
|Vu| vertices that are (u, 80dK3)-

perfect.

Proof. Fix a node u such that the size of the part Vu is at least M
4K , and observe that a

vertex v of Vu is (u, 80dK3)-perfect if and only if its degree in G is at most 80dK3. Hence,
we need to show that at least

(
1− 1

10K

)
|Vu| vertices of Vu have degree at most 80dK3.

Suppose that more than 1
10K |Vu| vertices of Vu have degree strictly larger than 80dK3.

This implies that the sum of the degrees of the vertices of Vu is strictly larger than

8dK2|Vu| ≥ 2dKM .

This is impossible since G contains at most dn ≤ dKM edges in total and thus the sum of the
degrees of all vertices of G is at most 2dKM . The statement of the lemma now follows. J

The next lemma shows that almost all vertices with similar neighborhoods must belong
to the same part.

I Lemma 10. Let R be a K-node pattern and G a d-degenerate graph with a vertex partition
(Vu)u∈V (R) such that each Vu contains at least 330dK3 vertices. For every W ⊆ V (G), there
exists a node u ∈ V (R) such that all but at most 330dK4 vertices with their neighborhoods
(160dK3)-similar to W in GR belong to Vu.

Proof. Suppose that the statement is false and fix a set W that violates the statement. This
implies that there are two different nodes u and u′ such that each of the sets Vu and Vu′

contains at least 330dK3 vertices with (160dK3)-similar to W in GR. Indeed, take a node
u ∈ V (R) such that Vu contains the largest number of vertices with their neighborhoods
(160dK3)-similar to W in GR; note that Vu contains at least 330dK3 such vertices (otherwise,
any node u would satisfy the statement of the lemma since there would be at most 330dK4

such vertices in total). Since the set W violates the statement, there are at least 330dK4

vertices with their neighborhoods (160dK3)-similar to W in GR that do not belong to Vu.
This implies that there exists a node u′ ∈ V (R) such that Vu′ also contains at least 330dK3

such vertices.
To simplify our notation, fix n to be 330dK3. Choose an n-vertex subset A of Vu such

that their neighborhoods are (160dK3)-similar to W and an n-vertex subset A′ of Vu′ such
that their neighborhoods are (160dK3)-similar to W . Observe that any two vertices in A∪A′
are (320dK3)-similar.

We next distinguish three cases based on whether the nodes u and u′ have loops in R
and whether they are adjacent in R.

At least one of the two nodes, say u, has a loop, and R does not contain the
edge uu′.
The subgraph G[A ∪ A′] contains at most 2dn edges, which yields that the sum of the
degrees of the vertices of G[A ∪ A′] is at most 4dn. We next compare relative degrees
of the vertices of A ∪A′ with respect to A in GR. Since the neighbors of the vertices of
A′ in A are the same in G[A ∪A′] and in GR[A ∪A′], the sum of the relative degrees of
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the vertices of A′ with respect to A is at most 4dn. On the other hand, the sum of the
relative degrees of the vertices of A in GR[A ∪A′] is at least n(n− 1)− 4dn. Since any
two vertices in A ∪A′ are (320dK3)-similar in GR and thus in GR[A ∪A′], their relative
degrees in GR with respect to A differ by at most 320dK3. Consequently, the sums of the
relative degrees of the vertices of A and those of A′ with respect to A in GR can differ by
at most 320dK3n. However, the difference of these two sums is at least

n(n− 1)− 8dn = n(n− 1− 8d) ≥ n(330dK3 − 1− 8d) ≥ 321dK3n > 320dK3n .

At least one of the two nodes, say u, does not have a loop, and R contains
the edge uu′.
An analogous argument to that used in the first case yields that the sum of the relative
degrees of the vertices of A with respect to A in GR is at most 4dn and the sum of
the relative degrees of the vertices of A′ with respect to A in GR is at least n2 − 4dn.
Consequently, the difference of these two sums is at least n2 − 8dn > 320dK3n while it
cannot exceed 320dK3n.
The nodes u and u′ either both have loops and are adjacent or both do not
have a loop and are non-adjacent in R.
Since R is a pattern, there must exist a node u′′, which is different from u and u′, such
that either uu′′ is not an edge and u′u′′ is an edge, or vice versa. By symmetry, we can
assume the former to be the case. Let A′′ be a set of n vertices contained in Vu′′ . The
number of edges between A and A′′ in G is at most 2dn. Hence, the sum of the relative
degrees of the vertices of A with respect to A′′ is at most 2dn both in G and in GR. On
the other hand, the sum of the relative degrees of the vertices of A′ with respect to A′′ is
at most 2dn in G, and thus at least n2 − 2dn in GR. Since any two vertices of A ∪ A′
are (320dK3)-similar, their relative degrees with respect to A′′ in GR can differ by at
most 320dK3. Consequently, the sums of the relative degrees of the vertices of A and
A′ can differ by at most 320dK3n. However, the difference of the two sums is at least
n2 − 4dn > 320dK3n.

In each of the three cases, we have obtained a contradiction, which concludes the proof of
the lemma. J

To prove the next lemma, we need to introduce some additional notation. Let G be a
graph, R a pattern, (Vu)u∈V (R) a partition of V (G), and U a subset of the nodes of R. The
graph R \U need not be a pattern but there is a unique pattern to that R \U has an induced
homomorphism. This pattern can be obtained as follows. Let R′ be R \ U . As long as R′
contains either two adjacent twins u and u′ that both have loops or two non-adjacent twins
u and u′ that none of them has a loop, identify the nodes u and u′ and merge the parts
Vu and Vu′ . The resulting pattern R0 is called the reduction of R \ U ; the reduction R0 is
uniquely determined by the pattern R and the set U . If W is the union of Vu with u 6∈ U ,
then the new parts Vu indexed by u ∈ V (R0) form a partition of the vertex set G[W ]. This
partition is called the reduced partition and it is easy to observe that the graphs GR[W ] and
G[W ]R0 are the same.

I Lemma 11. Let R be a K-node pattern and G a d-degenerate graph with a vertex partition
(Vu)u∈V (R). If G has at least 1100dK5 vertices, then the vertex of the maximum degree in
the (160dK3)-similarity graph of GR is (u, 570dK4)-perfect for some u ∈ V (R).

Proof. Let uM be the node of R such that VuM
is the largest part of the partition (Vu)u∈V (R)

and let M be its size, i.e., M = |VuM
|. Observe that M ≥ 1100dK4. By Lemma 9, VuM

contains at least
(
1− 1

10K

)
M ≥ 9M

10 vertices that are (uM , 80dK3)-perfect. All these vertices

MFCS 2018
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are mutually adjacent in the (160dK3)-similarity graph of GR, which implies that the
maximum degree of the (160dK3)-similarity graph of GR is at least 9M/10− 1. Let w be the
vertex of the maximum degree in the (160dK3)-similarity graph of GR, W the neighborhood
of w in GR, and Ws the neighborhood of w in the (160dK3)-similarity graph. Note that
|Ws| ≥ 9M/10− 1 and each vertex of Ws is (160dK3)-similar to w in GR.

Let U ′ be the set of the nodes u ∈ V (R) such that |Vu| ≤ 330dK3, and let V ′ be the
union of the parts Vu with u ∈ U ′. Observe that |V ′| ≤ 330dK4. Let R0 be the reduction of
R \U ′, and let G0 be the graph G \ V ′ with the reduced partition V0,u, u ∈ V (R0). Observe
that GR0

0 = GR \ V ′ and each part V0,u, u ∈ V (R0), has at least 330dK3 vertices. Further,
let W0 = W \ V ′, and note that W0 is the neighborhood of w in GR0

0 and that each vertex of
Ws \ V ′ is (160dK3)-similar to w in GR0

0 .
We now apply Lemma 10 to the graph G0 with the pattern R0 and the setW0. The lemma

implies that there exists a node u0 of R0 such that there are at most 330dK4 vertices outside
V0,u0 with their neighborhood (160dK3)-similar to W0 in GR0

0 . Hence, the set Ws ⊆ V (G)
contains at most 660dK4 vertices that are not contained in V0,u0 : all such vertices are
contained in V ′ or are (160dK3)-similar to w in GR0

0 . It follows that the part V0,u0 contains
at least 9M/10− 1− 660dK4 ≥ 9M/10− 661dK4 ≥M/4 vertices of Ws. In particular, the
part V0,u0 contains at least M/4 vertices in total.

By Lemma 9, the part V0,u0 contains at least
(
1− 1

10K

)
|V0,u0 | vertices that are (u0,

80dK3)-perfect with respect to the graph G0 and the pattern R0, i.e., there are at most
|V0,u0 |

10K ≤M/10 vertices of V0,u0 that are not (u0, 80dK3)-perfect. Hence, there is a vertex v
that is contained in Ws ∩ V0,u0 and that is (u0, 80dK3)-perfect with respect to the graph G0
and the pattern R0.

Since the vertex v is (u0, 80dK3)-perfect with respect to the graph G0 and the pattern
R0, there exists a node u ∈ V (R) such that the vertex v is (u, 80dK3 + |V ′|)-perfect with
respect to the graph G and the pattern R, i.e., v is (u, 80dK3 + 330dK4)-perfect. Since the
vertex v is contained in Ws, i.e., it is a neighbor of w in the (160dK3)-similarity graph, we
get that the vertex w is (u, 240dK3 + 330dK4)-perfect. Since 240dK3 + 330dK4 ≤ 570dK4,
the lemma now follows. J

3.2 Algorithm
We are now ready to present an algorithm that can be used to recover the original d-degenerate
graph G from the graph GR where R is an a priori unknown K-pattern. The algorithm is
given as Algorithm 1. The algorithm takes the graph GR as an input and outputs a graph F
that differs from the perfect blow-up ER of the pattern R only on constantly many vertices,
where E is the graph with the vertex set V (G) and no edges. Algorithm 1 is analyzed in the
next lemma.

I Lemma 12. Let R be a K-node pattern and G a d-degenerate graph with a vertex partition
(Vu)u∈V (R). Suppose that Algorithm 1 is applied for H = GR, d and K, and the algorithm
outputs a graph F . There exists a subset U of at most 4000dK6 vertices of H such that the
graph F \U and ER \U are the same, where E is the empty graph with the vertex set V (H).

Proof. Let Wi be the set W at the point when the set Si is fixed by Algorithm 1, and let k
be the final value of this variables at the end of the algorithm. Further let W0 be the setW at
the end of the algorithm. By Lemma 11, the set Si is (ui, 570dK4)-perfect in H[Wi] for some
ui ∈ V (R). Note that the set Si is (ui, 570dK4)-perfect in H[Wj ] for every j = i+ 1, . . . , k,
since this property cannot be affected by deleting vertices. At the point when the set Si
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Algorithm 1: Algorithm producing an approximation of the perfect blow-up of an
unknown K-node pattern.

Input: a graph H, integers d and K
Output: a graph F on the vertex set V (H)
W := V (H);
F :=empty graph on the vertex set V (H);
k := 0;
S := ∅;
while |W | ≥ 1100dK5 do

if ∃ v ∈W s.t. NH[W ](v) is (1140dK4)-similar to a set Si ∩W , Si ∈ S then
W := W \ {v};
join v in F to all the vertices of Si ∩W ;

else
v :=max. degree vertex in the (160dK3)-similarity graph of H[W ];
k := k + 1;
Sk :=the neighbors of v in H[W ];
add Sk to S;

output F .

was fixed, the set Si was not (1140dK4)-similar to any of the sets S1 ∩Wi, . . . , Si−1 ∩Wi. It
follows that the nodes u1, . . . , uk are mutually distinct, which implies k ≤ K.

Let Ti be the set of at most 570dK4 vertices of H[Wi] such that Si is ui-perfect in
H[Wi \ Ti], and let T = T1 ∪ · · · ∪ Tk. Further, for each node u ∈ V (R), let V ′u be the last
1143dK4 vertices of Vu \ T removed by Algorithm 1 from the set W if such vertices exist;
otherwise, let V ′u = Vu \ (T ∪W0). Note that |V ′u| ≤ 1143dK4 in either of the cases.

Consider the point when the algorithm removes a vertex v ∈ Vu from the set W because
the neighborhood of v is (1140dK4)-similar to the set Si ∩W , where W is the value of
the variable at the time of the removal of v. We say that the vertex v is u′-erroneous for
u′ ∈ V (R) if at least one of the vertices of Vu′ \ (V ′u′ ∪ T ∪W0) has not yet been removed
from W and

either uu′ is an edge of R but V ′u′ and Si are disjoint, or
uu′ is not an edge of R but V ′u′ is a subset of Si.

Note that it can be the case that the nodes u and u′ in the above definition coincide, and
a vertex v can be u′-erroneous for several choices of u′. Also note that if v is u′-erroneous,
then Vu′ \ (V ′u′ ∪ T ∪W0) 6= ∅, which implies that |V ′u′ | = 1143dK4. Let Vu,u′ be the set of
vertices of Vu \ (V ′u ∪ T ) that are u′-erroneous.

The set U will contain the following vertices:
at most 1100dK5 vertices contained in W0,
at most k · 570dK4 ≤ 570dK5 vertices contained in T ,
at most K · 1143dK4 ≤ 1143dK5 vertices contained in the set V ′u, u ∈ V (R), and
the vertices of all sets Vu,u′ , u, u′ ∈ V (R).

We next show that each of the sets Vu,u′ contains at most 1143dK4 vertices, which would
imply that the size of U does not exceed 4000dK6.

Set n = 1143dK4 to simplify the notation, and suppose that there exists a set Vu,u′

containing more than n vertices for some u, u′ ∈ V (R) (possibly u = u′). Let X be a subset
of Vu,u′ containing exactly n vertices. Note that that if u = u′, the sets X and V ′u′ are disjoint
because all vertices of V ′u′ are removed from W after those of X. We first consider the case
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that uu′ is not an edge of R, which includes the case that u = u′ and u does not have a loop.
Since the vertices of X are u′-erroneous, the set V ′u′ contains n vertices and all vertices of
V ′u′ are removed from W later than the vertices of X, the d-degeneracy of G implies that the
number of edges between X and V ′u′ in G is at most 2dn. When a vertex v ∈ X is removed
from W by Algorithm 1, it is adjacent to at least |V ′u′ | − 1140dK4 ≥ 3dK4 vertices of V ′u′ in
H = GR since the neighborhood of v is (1140dK4)-similar to Si and V ′u′ ⊆ Si. Hence, the
number of edges between X and V ′u′ in H = GR is at least 3dK4n ≥ 3dn. However, the edges
between the vertices of X and those of V ′u′ are the same in G and GR, which is impossible.

The other case that we need to consider is that when uu′ is an edge of R; this case also
includes the case that u = u′ and u has a loop. The arguments are analogous to the first case
but we include them for completeness. We again observe that the number of edges between
X and V ′u′ in G is at most 2dn. When a vertex v ∈ X is removed from W , it is adjacent to
at most 1140dK4 vertices of V ′u′ in H = GR since its neighborhood is (1140dK4)-similar to
Si and the sets Si and V ′u′ are disjoint. It follows that each vertex v ∈ X is adjacent to at
least |V ′u′ | − 1140dK4 ≥ 3dK4 vertices of V ′u′ in G. This implies that the number of edges
between X and V ′u′ in G is at least 3dK4n ≥ 3dn, which is again impossible.

To complete the proof of the lemma, we need to show that the graphs F \ U and ER \ U
are the same. Let v and v′ be two vertices of V (H) \ U such that v ∈ Vu and v′ ∈ Vu′ .
By symmetry, we can assume that v is removed before v′. Suppose that the vertex v was
removed by Algorithm 1 because the neighborhood of v in H[W ] was (1140dK4)-similar
to a set Si where W is the value of the set at the time of the removal of v from W . Since
the vertex v′ does not belong to U , it is not contained in V ′u′ ∪W0 ∪ T , which implies that
V ′u′ ⊆ (Vu′ ∩W ) \ T . Further, since the set Si is ui-perfect in H[W \ T ], the set Si either
contains (Vu′ ∩W ) \ T or is disjoint from (Vu′ ∩W ) \ T . Since v is not u′-erroneous, the
former happens if and only if uu′ is an edge in R, and the latter happens otherwise. Hence,
the vertices v and v′ are joined by an edge in F if and only if uu′ is an edge of R. J

Lemma 12 yields the proof of Theorem 5 as follows.

Proof of Theorem 5. Fix d and K, and set m = 4000dK6. Let G0 be the input graph, and
suppose that G is the d-degenerate graph and R is the K-node pattern such that G0 = GR.
Note that both G and R are not given to the algorithm A.

The algorithm A applies Algorithm 1 to the graph G0 and integers d and K, and
Algorithm 1 outputs a graph F . By Lemma 12, the graphs ER and F agree on all but at
most m vertices, where E is the empty graph on the same vertex set as G0. The algorithm
A then outputs the graph G04F , i.e., the graph with the same vertex set as G0 and with
the edge set that is the symmetric difference of the edge sets of G0 and F . Observe that the
graph G = GR4ER and the output graph G04F = GR4F differ exactly where the graphs
ER and F differ. It follows that the output graph G04F and the graph G agree on all but
at most m vertices, which implies that the output graph G04F is (d+m)-degenerate. J

4 FO model checking

In this section, we prove Theorem 7, which is our second main result, and also discuss first
order model checking in graphs obtained by complementing parts of degenerate graphs. We
start with proving Theorem 7.

Proof of Theorem 7. Fix a graph class G with bounded expansion and an integer k, and
set K = 2k. Since the graph class G has bounded expansion, there exists an integer d such
that every graph in G is d-degenerate. Set m = 4000dK6 and let H be the graph class that
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contain all m-apices of subgraphs of graphs contained in G. By Proposition 8, the graph
class H has bounded expansion.

Let G′ be a graph obtained from a graph G ∈ G by complementing on at most k subsets
of the vertex set of G, and let V be the common vertex set of G and G′. Note that there
exists a K-node pattern R (which can be chosen independently of G and G′ but this fact is
not needed in our proof) and a partition (Vu)u∈V (R) of the vertex set V such that G′ = GR.
Apply Algorithm 1 to G′, d and K, and let F be the output graph. Since the graphs F and
ER, where E is the empty graph on the vertex set V , coincide on all but at most m vertices
by Lemma 12, there exists a (K +m)-node pattern RF such that F = ERF for a suitable
partition (V ′u)u∈V (RF ) of the vertex set V . Moreover, the pattern RF and the partition
(V ′u)u∈V (RF ) can be efficiently constructed: the at most K +m twin-classes of the graph F
form the partition (V ′u)u∈V (RF ) and the partition into twin-classes uniquely determine the
pattern.

Let H be the graph with the vertex set V and the edge set being the symmetric difference
of the edge sets of G′ and F . Observe that HRF = G′. By Lemma 12, the graphs G and H
agree on all but at most m vertices, which implies that the graph H belongs to the class
H. The application of the pattern RF to H can be simulated by viewing the partition
(V ′u)u∈V (RF ) as a vertex (K +m)-coloring and encoding the application of the pattern RF

by a first order formula. In particular, there exists a simple first order graph interpretation
scheme I of (K+m)-vertex colored graphs such that I(H) = G′. Since there are only finitely
many choices of RF (because the number of nodes of RF is bounded) and it is possible
to use disjoint sets of colors to encode applications of different patterns RF , there exists
such an interpretation scheme I that is universal for all patterns RF . The fixed parameter
tractability of the first order model checking in Gk is now implied by the fixed parameter
tractability of the first order model checking in graph classes with bounded expansion that
contain graphs vertex-colored by a bounded number of colors, which directly follows from
the results of [6–8]. J

The first order model checking in d-degenerate graphs is hard from the point of fixed
parameter tractability, however, many parameterized problems that are hard for general
graphs become fixed parameter tractable when restricted to d-degenerate graphs. Two
prominent examples of such problems are the k-clique problem, which asks whether the input
graph contains a complete subgraph with k vertices, and the k-independent set problem,
which asks whether the input graph contains k independent vertices. Both these problems
are fixed parameter tractable when parameterized by d and k.

To explore hopes of extending the fixed parameter tractability results for d-degenerate
graphs to classes of graphs obtained by complementing d-degenerate graphs, we provide a
brief analysis of the fixed parameter tractability of the k-clique problem in graphs obtained
from d-degenerate graphs by applying patterns In the rest of this section, Gd denotes the
class of d-degenerate graphs and GR

d for a pattern R will be the class of all graphs that can
be obtained from a graph G ∈ Gd by applying the pattern R, i.e., the class of all graphs GR

for G ∈ Gd. We start with considering the parameterization by both R and k, where the
problem turns out to be tractable for d = 1 and hard for d ≥ 2 as given in the following two
propositions.

I Proposition 13. The k-clique problem in the class GR
1 is fixed parameter tractable when

parameterized by a pattern R and an integer k.

Proof. The class G1 of 1-degenerate graphs is the class of all forests. Recall that a rank-width
of a graph G is defined as the minimum r such that there exists a tree T with leaves one-to-one
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corresponding to the vertices of G such that each edge e of T determines a vertex cut (A,B)
of G (A and B are the vertices assigned to the leaves of the two components of T \ e) such
that the adjacency matrix of the cut (A,B) has rank at most r. It is not hard to see that
each forest has rank-width at most one. Next observe that if the adjacency matrix of a vertex
cut (A,B) in a graph G has rank r, then the adjacency matrix of the cut (A,B) in GR has
rank at most r + K. Consequently, if G is a graph with rank-width r and R is a K-node
pattern, then the rank-width of GR is at most r+K. We conclude that all graphs contained
in the class GR

1 have bounded rank-width, which implies that all graphs contained in the
class GR

1 have bounded clique-width [23]. Since monadic second order model checking is fixed
parameter tractable in classes of graphs with bounded clique-width [4], the statement of the
proposition follows. J

I Proposition 14. The k-clique problem in the class GR
2 is W [1]-hard when parameterized

by a pattern R and an integer k.

Proof. We present a reduction from the multicolored k-clique problem, which is a well-known
W [1]-hard problem. The multicolored k-clique problem asks whether a given k-partite graph
contains a clique of order k. Let G be an arbitrary k-partite graph, let V1, . . . , Vk be its vertex
parts, and let H be the graph obtained from G by subdividing each edge. Note that H can
be viewed as a

(
k +

(
k
2
))

-partite graph with parts V1, . . . , Vk and parts Vij , 1 ≤ i < j ≤ k,
formed by vertices of degree two associated with edges between the parts Vi and Vj in the
graph G. Let R be a pattern with k +

(
k
2
)
nodes ui, 1 ≤ i ≤ k, and uij , 1 ≤ i < j ≤ k,

such that R has no loops but all pairs of nodes of R are joined edges except for pairs ui

and uij and pairs uj and uij , 1 ≤ i < j ≤ k. Set Vui
= Vi, 1 ≤ i ≤ k, and Vuij

= Vij ,
1 ≤ i < j ≤ k; this yields a vertex partition (Vu)u∈V (R) of the graph H. The graph HR is a(
k +

(
k
2
))

-partite graph. Note that if k ≥ 4, then HR contains a clique with k +
(

k
2
)
vertices

if and only if H contains a subdivision of a clique with k vertices. Consequently, if k ≥ 4,
then G contains a clique with k vertices if and only if HR contains a clique with k +

(
k
2
)

vertices. Since H is a 2-degenerate graph, the proposition now follows. J

Proposition 14 leaves it open whether the k-clique problem is fixed parameter tractable
when d and R are fixed and k is the parameter. We address this affirmatively in the next
proposition.

I Proposition 15. For every integer d and every pattern R, the k-clique problem in the class
GR

d is fixed parameter tractable when parameterized by k.

Proof. We present an algorithm that decides whether a graph H ∈ GR
d contains a complete

subgraph with k vertices. In view of Theorem 5 and Lemma 12, we may assume (at the
expense of considering a larger integer d and a larger pattern R) that the algorithm is given
a graph G ∈ Gd, a pattern R and a vertex partition (Vu)u∈V (R) such that H = GR. If R
contains a node u with a loop such that |Vu| > dk, then H contains a complete subgraph
with k vertices: indeed, since the subgraph G[Vu] is (d + 1)-colorable, G[Vu] contains an
independent set of at least k vertices; this set forms a complete subgraph in H = GR. Hence,
we may assume that the following holds for every node u of R: u has no loop or |Vu| ≤ dk.

We next observe that H[Vu] contains at most max{2dk, 2d|Vu|} (not necessarily inclusion-
wise maximal) complete subgraphs. Indeed, if |Vu| ≤ dk, then there are at most 2dk subsets
of Vu and the claim follows. Otherwise, u has no loop and G[Vu] = H[Vu] and the claim
follows since H[Vu] is d-degenerate. Let Cu be the set of all complete subgraphs of H[Vu]
(including the one with no vertices, i.e., the one induced by the empty set). The algorithm
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now tests all possible combinations of subgraphs from Cu, u ∈ V (R), whether they form a
complete subgraph in H. This identifies all complete subgraphs of H. The running time
of the algorithm is bounded by the product of the sizes of the set Cu, u ∈ V (R), i.e., the
algorithm runs in time O

(
2dkKnK+O(1)), where n is the number of vertices of the input

graph H and K is the number of nodes of the pattern R. J

5 Conclusion

Our results have been motivated by the characterization of graphs that are first interpretable
in graphs with bounded maximum degree as given in Proposition 3. While we were able
to translate Theorem 4 to the setting of Conjecture 1 and even the more general setting of
degenerate graphs, Proposition 3 fails to extend to the setting of Conjecture 1, which we now
outline. Consider a class G of all star forests, one of the simplest classes of sparse graphs with
unbounded maximum degree, and also consider the simple first order graph interpretation
scheme I such that two vertices in I(G) are joined by an edge iff their distance in a graph G
is at most two. The graph class I(G) contains all graphs G such that each component of G is
a complete graph. Let H be a graph class and R a pattern such that I(G) ⊆ HR, where HR

is the class of graphs HR, H ∈ H. Let K be the number of nodes of R and consider a graph
G ∈ G formed by k ·K stars each with k ·K − 1 leaves for an integer k ≥ K + 1. The graph
I(G) consists of k ·K cliques each having k ·K vertices; let C1, . . . , Ck·K be the vertex sets
of the k cliques forming the graph I(G). Suppose that I(G) = HR for a graph H ∈ H and a
vertex partition (Vu)u∈V (R) of H. There exist a node u such that |Vu ∩ Ci| ≥ k for at least
two different indices i; by symmetry we can assume that |Vu ∩ C1| ≥ k and |Vu ∩ C2| ≥ k.
If the node u has a loop in R, then the graph H contains all edges between Vu ∩ C1 and
Vu ∩ C2, i.e., H contains a complete bipartite subgraph with parts of sizes k. If the node
u does not have a loop in R, then H[Vu ∩ C1] is a complete subgraph with k vertices, i.e.,
H contains a complete bipartite subgraph with parts of sizes bk/2c. We conclude that the
graph class H contains graphs with arbitrary large complete bipartite subgraphs; this implies
that the graph class H does not have bounded expansion.

In view of the results presented in Section 4, it is natural to wonder about the fixed
parameter tractability of other important graph problems. One of such problems is the
k-dominating set problem, which asks whether the input graph contains k vertices such
that each vertex of the graph is one of these k vertices or adjacent to at least one of them.
The k-dominating set problem is known to be fixed parameter tractable for d-degenerate
graphs [1] when parameterized by d and k. However, we were not able to resolve the fixed
parameter complexity of the k-dominating set problem in graphs obtained by complementing
vertex subsets of d-degenerate graphs and even the following particular case seems to be
challenging.

I Problem 16. Is the k-dominating set problem in the complements of d-degenerate graphs
fixed parameter tractable when parameterized by d and k?
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