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Highlights 

 Frog leg segments follow paths that can be derived from quaternion spherical linear 

interpolation (SLERP) between the pre-jump posture and takeoff.   

 Our model predicts that frogs jump by straightening their limb in a manner that 

minimises rotation.   

 Limb segment adduction (rather than body pitch) is the key determinant of jump 

steepness. 

 The orientation of the shank segment appears to be the primary steering mechanism in 

frog jumps to modulate pitch and turn angle. 

 Our simple model may provide tools for simulating kinematics in a broad range of 

living and extant taxa. 
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ABSTRACT 

 

Spherical Linear Interpolation (SLERP) has long been used in computer animation to 

interpolate movements between two 3D orientations. We developed a forward kinematics 

(FK) approach using quaternions and SLERP to predict how frogs modulate jump kinematics 

between start posture and takeoff.  Frog limb kinematics have been studied during various 

activities, yet the causal link between differences in joint kinematics and locomotor variation 

remains unknown.  We varied 1) takeoff angle from 8 to 60 degrees; 2) turn angle from 0 to 

18 degrees; and 3) initial body pitch from 0 to 70 degrees.  Simulations were similar to 

experimentally observed frog kinematics.  Findings suggest a fundamental mechanism 

whereby limb elevation is modulated by thigh and shank adduction.  Forward thrust is 

produced by thigh and proximal foot retraction with little contribution from the shank except 

to induce asymmetries for turning.  Kinematic shifts causing turns were subtle, marked only 

by slight counter-rotation of the left versus right shank as well as a 10% timing offset in 

proximal foot adduction.  Additionally, inclining initial body tilt influenced the centre of 

mass trajectory to determine direction of travel at takeoff.  Most importantly, our theory 

suggests firstly that the convergence of leg segment rotation axes toward a common 

orientation is crucial both for limb extension and for coordinating jump direction; and, 

secondly, the challenge of simulating 3D kinematics is simplified using SLERP because frog 

limbs approximately follow linear paths in unit quaternion space.  Our methodology can be 

applied more broadly to study living and fossil frog taxa as well as to inspire new control 

algorithms for robotic limbs. 

 

 

1.0  INTRODUCTION 
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A frog‟s ability to perform varied locomotor behaviours (e.g. jumping, swimming, walking) 

is a hallmark among Anurans.  Their multi-functionality has been explored from the 

perspective of motor recruitment (d‟Avella and Bizzi, 2005; Emerson, 1979; Gillis and 

Biewener, 2000; Kamel et al., 1996) as well as foot-substrate interactions (Nauwelaerts et al., 

2005; Nauwelaerts and Aerts, 2003) as a model for how muscular forces interact with the 

external environment to determine behaviour (Kargo and Rome, 2002; Kargo et al. 2002; 

Aerts and Nauwelaerts, 2009; Clemente and Richards, 2013; Gillis, 2000; Richards, 2011; 

Richards and Clemente, 2013, 2012).   However, no study has provided a 3D kinematics 

analysis to explain how individual limb segments must move differently to achieve diverse 

behaviours.  Consequently, we lack direct mechanical evidence to assess how the most basic 

anatomical features (e.g. absolute limb lengths, limb segment proportions and limb posture) 

might influence locomotor multi-functionality in frogs. 

 

To understand locomotor versatility, one could first use kinematics analysis borrowed from 

robotics (e.g. Murray et al., 1994) to map the relationship between joint extensions and body 

movements.  Secondly, one could record animals performing multiple behaviours, then apply 

the kinematics map to resolve how specific joint rotations individually contribute to motion 

of the body (Richards et al., 2017).  In practice, this approach is restricted by behaviours 

animals choose within their natural ability, the limits of which are challenging to elicit in the 

laboratory (Astley et al., 2013).  Moreover, determining the effect of a single parameter on 

performance is difficult because animals often modulate several parameters simultaneously.  

For example, frogs change their initial posture, their forelimb extension and their leg 

kinematics (Richards et al., 2017; Wang et al., 2014) to increase takeoff angle.  To solve the 

above problems we use a theoretical kinematics approach where we can dictate the range of 

performance and test certain parameters in isolation of others.   
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We developed a quaternion-based theoretical forward kinematics approach based on a 

computer animation technique called “spherical linear interpolation” (SLERP; Shoemake, 

1985; see below for further details).  Briefly, SLERP is a powerful technique whereby in-

between motion between landmark time points (i.e. keyframes) can be smoothly interpolated 

to fill in gaps.  For example, an animated character with an initial posture can be smoothly 

moved to a final posture by SLERPing between initial-final keyframes.  Despite some 

disadvantages such as sharp accelerations with multiple (>2) keyframes (Dam et al., 1998), 

SLERP has a key advantage of mathematical and algorithmic simplicity, making its 

implementation compact and straightforward.  Given the great interest in frogs as a model for 

understanding muscle function and muscle-tendon dynamics (e.g. Roberts & Marsh, 2003; 

Azizi & Roberts, 2010; Astley, 2016) we use SLERP to explore three behaviours 

representing a subset of a frog‟s entire locomotor repertoire: 1) straight jumping to different 

heights; 2) turning jumps at a fixed height; and 3) straight jumping to a fixed height with 

variable initial body angles.  Recent findings suggest that final takeoff angle is predicted by 

the pre-launch initial posture (Wang et al., 2014) as well as by the launch phase kinematics of 

the limbs (Richards et al., 2017).  Our theoretical approach enabled us to independently 

manipulate pre-jump and takeoff posture to isolate the influence of kinematics from the 

effects of start posture.  We tested the following hypotheses: H1) The final limb 

configuration can be extrapolated (in quaternion space) from the start posture with 

knowledge of the target body axis orientation at takeoff.  H2) Increased downward rotation 

(adduction) is necessary and sufficient to increase jump steepness.  In particular, greater 

inclination of the pre-jump body posture (Wang et al., 2014) may contribute to increased 

jump steepness, but only when followed by increased adduction of the limb segments 
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throughout the jump compared to shallower jumps. H3) A turn to one side is caused by 

reduced motion on that side and greater joint extension on the opposite side.  

 

Adding to the current tools available in biomechanics, the current study introduces a 

powerful method to analyse biological motion with only a simple set of mathematical rules.  

Such tools are a crucial complement to experiments because they not only permit exploration 

of behaviours that are not necessarily observed in vivo, but also they allow isolated 

manipulation of certain parameters whilst holding all else consistent.  Our analysis of how 

limb kinematics influences overall body behaviour in frogs is a step towards future 

examination of torque modulation (and ultimately muscle forces and neural control) to 

coordinate behaviour.   For example, our technique can be used to make reasonable 

predictions of limb motion in absence of experimental data (e.g. for extinct, rare or 

endangered species).  Beyond biology, the novel application of SLERP could be applied as a 

high-level motion program for bio-robotic limbs (i.e. to produce limb segment trajectories to 

be enforced by low-level torque-position controllers).   In addition to the applications of our 

method, we also discuss biological findings demonstrating that diverse jumping behaviours 

can be generated from a single “jump kinematics template”. 

 

2.0  THEORETICAL BASIS  

2.1 Quaternion-based forward kinematics approach 

To simulate different locomotor behaviours we defined a “joint coordination solver” to: 1)  

approximate locomotor kinematics; and 2) modulate the kinematics to achieve different 

behaviours.  The solver is based on experimental observations demonstrating that jumping 

frogs re-orient the axes of rotation of their leg joints; the axes move towards a common 

alignment which determines takeoff angle (Richards et al. 2017; Fig. 1B-C, SI Movie 1).  

Given these findings, frog jumping kinematics could be simulated by rotating the joint axes 
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towards a common alignment, thus driving leg extension toward a target direction. We 

established that our solver obey the coordination rules: 1) rotate the body segments towards 

the target by the shortest path; 2) rotate the limb segments towards a common target 

orientation; and 3) alter the target jump direction at takeoff to change the jump behaviour.  If 

our rules approximate realistic jump kinematics (compared to those observed during in vivo 

experiments) then we have gained insight into the actual coordination mechanisms that real 

frogs may employ.  

 

To simulate frog jumping, we avoid standard forward kinematics approaches using Euler 

angles.  Briefly, a sequence of 3 cumulative rotations (Euler angles) about Cartesian X-Y-Z 

axes (in any chosen order) parameterize 3D rotation.  For the present study, Euler rotations 

are cumbersome because there exist multiple combinations of angle values leading to the 

same rotation.  Moreover, they suffer from singularities which can lead to numerical 

instability in simulations (Dam et al., 1998) and potentially unnatural motion. 

 

To avoid the problems of Euler angles, we instead used quaternion SLERP.  A quaternion is a 

vector of 4 numbers encoding the angle of rotation about a 3D rotation axis; it contains the 

same information as a set of XYZ Cartesian axes defining a reference frame.  Analogous to a 

rotation matrix, a quaternion can perform 3D rotation.  There are two important quaternion 

properties not shared by rotation matrices.  Firstly, a quaternion represents pure rotation, as 

opposed to a composition of three Euler rotations.  Secondly quaternions can be normalised 

to 4D unit vectors (unit quaternions).  Thus all quaternions, and therefore all 3D rotations, 

reside on the surface of a 4D sphere; moving between any two rotations is achieved simply 

by traversing the locally shortest arc along the hypersphere surface.  This SLERP technique 

(Shoemake, 1985) revolutionised computer animation due to its simplicity and robustness.  
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SLERP is also useful for kinematics analysis because it analytically solves the locally 

minimum rotation between two orientations (Fig. 2), accomplishing coordination rule 1.  

Because of linearity on the hypersphere, we can extrapolate easily.  We can then simulate 

movement by using a linear extrapolation in unit quaternion space, accomplishing 

coordination rule 2.  Finally, the direction of extrapolation is determined by the common 

orientation to which the segments must converge, accomplishing coordination rule 3.  

Applying the rules of the solver, one can analytically determine all kinematics leading to 

takeoff knowing only the initial posture a priori. More precisely, the mathematical topology 

of quaternions allows us to extrapolate the final posture from the initial posture.  We will 

refer to our approach as limbSLERP.  

 

2.2 Animal model system 

Our model was based on the morphology and jumping kinematics of Kassina maculata 

Duméril 1853 (the African red-legged running frog).  As described in previous publications 

(Richards et al. 2017), skin markers placed on the joints (hip, knee, ankle and tarsometatarsal 

[TMT]) were assumed to represent locations of the joint centres of rotation; as confirmed by 

numerous dissections, the overlying skin is tightly bound to the bones and soft tissues of the 

knee, ankle and TMT joints and movement of the skin marker relative to the joint is 

negligible. 3D limb kinematics during jumping were recorded using high-speed video 

cameras and digitized in MATLAB (Mathworks, Natick, USA) using open source scripts 

(Hedrick, 2008).  Based on μCT scanning, we used the position of the hip joint as a proxy for 

the centre of mass (COM; Porro et al., 2017). 

2.3 Assumptions, definitions and conventions 
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To avoid confusion, we use the following definitions for kinematics.  We treated each body 

segment as a line, excluding the fore limbs.  A single segment, torso, was used to represent 

the main body of the frog (head + thorax + abdomen + pelvis).  Local reference frames were 

defined for each body segment (torso, thigh, shank, proximal foot [tarsus], distal foot), each 

defining a local Z axis (Fig. 1A) aligned with the segment long axis.  Each reference frame 

originates at the proximal endpoint of its segment (origins at the snout, hip, knee, ankle, TMT 

for the segments torso, thigh, shank and proximal foot segments, respectively).  Pose is a 

segment‟s orientation + XYZ position (e.g. the thigh oriented at a given angle originating at 

the distal end of the torso).  Configuration is a list of poses defining the posture of all of the 

body segments at a single point in time.  Importantly for the current study, we distinguish 

between path and trajectory.  Here, a path is a particular continuum of poses (or 

configurations) traced by an individual segment (or the whole limb) between an initial and 

final pose (or configuration), without regard for time.  For an example in 2D, the end point of 

a pair of segments connected by a hinge joint has the path of an arc traced between the flexed 

and extended positions.  For the present study, a trajectory is a path traced through time.  In 

the 2D case above, an example trajectory (among infinite possibilities) could be a constant 

angular velocity increase along the arc path.  An alternative trajectory along the same path 

could involve a sinusoidal change in angle such that the trajectory is an oscillating forwards-

backwards motion along the path of the arc.  Scope is the entire range of motion of the limb, 

i.e., all possible paths of all segments between any chosen start or end configuration.  For the 

present study, scope is constrained only by requiring fixed Euclidean distances between 

adjacent body segments.  For example, frogs of the same species would share a similar scope 

of motion due to their shared segment length proportions, whereas a morphologically distinct 

species would have a different scopes of motion.  For simplicity, all joints are assumed to be 

“ball joints” which rotate freely but do not translate (see Discussion).    
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For the present study we avoid analysis of joint angles in the traditional sense.  We do not 

decompose rotation into flexion-extension, abduction-adduction, internal-external rotation 

corresponding to Euler angles about local Cartesian axes (e.g. Kargo & Rome, 2002).  

Rather, we work with pure 3D rotations in quaternion form and refer to “extension” and 

“flexion” as the opening or closing of a joint, regardless of the orientation of the segments.   

More formally, we define “flexion-extension” as a scalar angle within a plane defined by two 

connected limb segments, regardless of their orientation in space.  For example, vectors 

representing the thigh and shank form an invisible plane that can tilt as the femur rotates 

about its axis.  We say that the knee is “extending” if the shank is moving away from the 

thigh, regardless of the plane‟s orientation.  In practice, extension can be calculated by the 

angle between two 3D vectors (Eq. A1) representing two adjacent body segments 

(disregarding long-axis rotation).  Alternatively, extension can be calculated as a 4D angle 

between two quaternions (by the same equation) representing the local reference frames of 

two adjacent segments.  We later quantify a segment orientation with respect to the global 

vertical and horizontal planes (see Section 3.5) rather than with respect to adjacent segments.   

 

 

2.4 Unit quaternions and SLERP 

Unless otherwise noted, all quaternions in the current work will be unit quaternions and all 

angles will be in radians.  Unit quaternions have the form 

      (
 

 
)    ̂    (

 

 
)    ̂    (

 

 
)    ̂    (

 

 
)   

(1) 

where â is a unit vector for the axis of rotation and i, j, k are its x, y, z components.   is the 

rotation angle about the axis of rotation (in 3D space).  Spherical Linear Interpolation 

(SLERP; Shoemake, 1985) is a method to interpolate intermediate positions between two unit 
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quaternions, q1 and q2.  It was developed for efficiently and smoothly computing paths of 

moving objects for computer animation.  An interpolated quaternion (qI) is calculated as 

follows. 

             
                            

       
 

(2) 

Where  is relative time between 0 and 1, and  is the 4D angle between q1 and q2 

(Appendix A).  At the endpoints =0 or =1, the above equation reduces to qI = q1 or qI = 

q2, respectively.  For intermediate values of , qI is the weighted average of q1 and q2 in 

unit quaternion space. 

 

3.0 FORWARD KINEMATICS ALGORITHM: limbSLERP 

3.1 Workflow outline 

Our workflow is summarized in the following steps:  1) “Quaternionization”:  The initial 

posture of the left leg and body is “quaternionized” to express each i
th

 body segment as a 

quaternion, qi. 2)  Path planning: A target (endpoint) COM location and body orientation is 

chosen and expressed as a quaternion, qtarget. Using the quaternionized limb as a starting 

point, a path of 3D kinematics is solved analytically using SLERP to derive the segment 

paths required to move the body towards the target. 3)  Kinematic extrapolation: Using 

continuously varying time, , the quaternionized limb is “SLERPed” towards the target until 

the target body pose is reached. 

 

3. 2 Quaternionization 

The orientation of each leg segment (thigh, shank, proximal foot and distal foot) was 

expressed as a quaternion relative to the adjacent proximal segment.  For the torso, we used 

the z-axis [0, 0, 1] as a fixed global reference vector vref.  Thus, to describe the local 

orientations for each of the 5 body segments, we gathered all quaternions into a vector, Q, 
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containing the 5 quaternions calculated above.  Using this convention, a “null” rotation of 0º 

(q = [1, 0, 0, 0]) would result in two adjacent segments aligned end-to-end along their long 

axes.  For example, at the null position, (each element of Q = [1, 0, 0, 0]), all segments would 

be aligned end-to-end along the global z-axis (Fig. 1A inset).  As another example, for a 90º  

protraction of the left hip (but no rotation at other joints), the femur orientation would point 

to the left side of the body.  Since the orientation of the shank is defined with respect to the 

thigh, no relative rotation would be required for the shank (qthigh,shank = [1, 0, 0, 0]), and 

similarly for the remaining segments (SI Movie 2).   

 

The starting pose for jumping was quaternionized from the first video frame from an example 

trial collected from a previous data set (Richards et al., 2017).  At each time sample we have 

P, a matrix containing XYZ coordinates for ns number of segments (i.e. ns rows X 3 

columns) ordered from proximal to distal.  The point of ground contact (i.e. distal foot) is the 

Cartesian origin, XYZ = [0, 0, 0].  Moving from proximal to distal, P is converted to V, a 

matrix of local segment vectors (PV): 

  [                ]                       (3) 

which become 

                                               (4) 

then each vector is converted to quaternions using the transformation, 

   
      

   
(5) 

creating local reference frames such that each qi represents the orientation of qi relative to  

qi-1. 

 

Finally, the entire left limb (expressed as a set of vectors, V) is quaternionized to Q, a vector 

of quaternions representing the postural configuration of the limb at a given time (VQ). 
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  [                ]   [                  ] (6) 

The whole procedure of quaternionization (PQ) is detailed in Appendix B. 

 

3.3 Path planning 

Firstly, the start pose of the left leg, Q0, was calculated from the first video frame of an 

example jump experimental trial.  Secondly, a target end pose (e.g. takeoff) Q1 must be given 

to allow SLERP to compute the intermediate kinematics between Q0 and Q1.  If both start 

and takeoff postures are known, the kinematics of a jump can be SLERPed between the two 

poses to approximately reconstruct experimentally collected data.  For the present study we 

wish to produce a hypothetical range of takeoff poses beyond those observed experimentally.  

Thus, the final limb configuration (Q1) is not known, but rather extrapolated from Q0.  To 

extrapolate, we assume that the final configuration (Q1) lies somewhere between the initial 

(Q0) and a fully straightened leg.  Since extrapolation is essentially a guess based on this 

assumption, Q1 must be modified later as explained below.  Q1 was determined in three steps. 

1) The body heading and orientation at takeoff were specified by an elevation angle, , in the 

vertical plane and a turn angle, , in the horizontal plane. These angles were used to make a 

first guess regarding the composition of Q1.  Specifically, varying takeoff targets were chosen 

with respect to a nominal takeoff configuration (takeoff pitch = 33º; yaw = 0) representing an 

exemplar trial from experimental recordings.  2) The relative duration of the interpolated 

kinematics was adjusted to prevent the leg from over-extending to a fully straight posture 

(see below). 3) The kinematics of the opposite (right) leg were solved by mirroring Q1 to 

yield Q1R. Because turns are asymmetrical, small additional adjustments were made using 

inverse kinematics (Appendix B).  

 

The calculations are as follows.   
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Path planning step 1: A desired takeoff elevation angle, , was expressed as a quaternion 

about the body pitch axis ([1, 0, 0]; see Fig. 3A): 

           (
     

 
)     (

     

 
)        

(7) 

Note that an offset angle of -/2 was added in order to define   with respect to horizontal as 

done previously (i.e.  = 0 is a horizontal jump; Richards et al., 2017).  Importantly, 

determines the orientation of the torso axis at the instant of takeoff, but does not dictate the 

orientation of the centre of mass velocity vector.  Regardless, steeper pitch angles will result 

in steeper jumps (i.e. greater jump height at the moment of takeoff).  For the present study, 

we use “steep”, “high jump”, “high pitch”, “high elevation” synonymously to refer to a large 

value resulting in greater vertical displacement at takeoff. 

 

Similarly, a desired turn angle,  was chosen about the yaw axis ([0, 0, 1]; see Fig. 3B): 

         (
 

 
)         (

 

 
)   (8) 

The two quaternions were then multiplied to give a target rotation composed of a pitch 

followed by a yaw rotation: 

                    (9) 

Where   denotes quaternion multiplication.  As a nominal simulation we chose a 

representative jump reaching 33º elevation at takeoff (Richards et al., 2017) with no turning 

( = 0.576;  = 0).  Q1 was then defined: 

   [                                          ]  [                   ] (10) 

Where q0 is the null rotation resulting in a 0 angle between adjacent segments. Since all 

quaternions describe relative rotations between segments, q0 simply means straight 

orientation with respect to the proximal segment.  Importantly, Q1 is a crude guess which sets 

the direction of motion, but not necessarily the destination configuration.  Our theory 
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proposes that as limb segment orientations move towards the null orientation (i.e. straight), 

the limb will extend via joint angle trajectories that minimize overall motion (via SLERP).  

However, frogs do not fully extend their legs prior to takeoff (Richards et al., 2017).  

Accordingly, we allow simulations to move towards Q1, but are never allowed to reach Q1 

by adjusting (see below).   Otherwise, the posture at takeoff would be a fully extended limb 

(Fig. 1A, inset).   

 

Path planning step 2: SLERP was used to interpolate the COM displacement throughout the 

jump.   

    [                      ] 
 (11) 

As explained above, we never allowed the interpolation to reach  =1. Instead, the 

interpolation was stopped at time ‟ when the angle between the torso and thigh segment 

reached ~130º to mimic the configuration of the limb just prior to takeoff (Fig. 3B from 

Richards et al., 2017).  ‟ was then used for path planning step 3.  We define Q1‟ as the final 

configuration at  = ‟. 

 

To summarize steps 1 & 2, Q0  is first sampled from recorded data - it is the only parameter 

known from experimental observation.  Then, extrapolation (in unit quaternion space) is used 

to guess Q1 which is later refined to Q1‟.  Importantly, neither Q0 nor Q1 alone contain 

information regarding leg kinematics - they only specify configurations at two separate 

moments in time to bracket the jump.  However, as soon as both Q0 and Q1 are defined, the 

full kinematics of the jump are known (i.e. all trajectories for all body segments) simply by 

substituting a time value () into Eq. 11. Along this interpolated path exists a limb 

configuration (Q1‟ at =‟) that brings the torso midline axis close to the target.  Therefore, 

the final target pitch and yaw are specified, but the configuration of the leg segments is 
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unknown a priori. Thus, our procedure requires extrapolation to guess the final configuration 

at a single time point (takeoff), but uses interpolation to derive the motions in between the 

two time points.  If both Q0 and Q1 are known, extrapolation would not be needed - one could 

skip directly to the interpolation in step 2. 

 

Path planning step 3:  

Firstly, each i
th

 point along the left side of the body was mirrored about the midline body axis 

using a reflection matrix  

[

  

  

  

 

]

 

          [

 
 
 
 

]

 

 

(12) 

where Rreflect is a 4x4 matrix (Kovács, 2012; Appendix A) and xr, yr, zr are the reflected XYZ 

coordinates. Secondly, for turning simulations, the left and right leg kinematics are 

necessarily asymmetric.  To solve the asymmetric leg kinematics for turns, the body segment 

orientations of the mirrored limb were adjusted using an iterative inverse kinematics (IK; 

Appendix C) algorithm.  Briefly, IK calculates the minimum changes in joint angles required 

to move the limb endpoint to a target.  In the current study, the target was the left hip and the 

right limb‟s endpoint was the right hip.  At each time point, the right limb (mirrored) was 

incrementally moved towards the left leg until the two halves join at the hip.   Although not 

always necessary (i.e., for symmetric jumps, see Discussion), this IK adjustment was applied 

to all simulations.  

 

3.4 Kinematic interpolation 

The previous steps yield a nominal final pose, Q1’, from which we can vary the takeoff 

direction of the torso/limbs to simulate jumps of varying steepness and degree of turning.  

Using Eqn‟s 7-10 we modify the nominal simulation by choosing takeoff pitch and yaw 
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angles relative to the nominal condition.  Specifically, we alter Q1 by modifying its first row 

which is qtarget. 

 

Because we are using linear interpolation in unit quaternion space, linearly advancing the 

time from =0 to =1 produces linear changes in the orientation of each body segment with 

time.  Thus, a linear increase in  results in constant rotational velocity (Shoemake, 1985) 

which is unrealistic for jumps which require acceleration throughout (Marsh, 1994).  This 

problem is solved simply by using a nonlinear function for .  Without altering the kinematics 

paths derived above, interpolation time can be defined using a function, T, such that the slope 

constantly increases (hence constant increase of velocity).  At least a second order curve (e.g. 

T = 2
) is needed to guarantee acceleration of the COM throughout.  Given that in vivo 

acceleration patterns are not constant (Roberts & Marsh, 2003), we used a higher order 

function based on the computed displacement from our representative nominal jump using 

the location of the hip as a proxy for the COM (Richards, 2017), normalized the data by 

maximum displacement then fit it to a 4
th

 order polynomial to create a function for T.   

                       (13) 

 

where  is the adjusted relative time (0< ≤‟) with fit coefficients a=0.019, b= 0.145, 

c=1.383 and d= -0.549.  To perform kinematic extrapolation, T is substituted for  in Eq. 11.  

 

3.5 Analysis of simulated kinematics 

All analysis for the present study was performed in Mathematica 10 (Wolfram, Hanborough, 

UK).  Quaternion interpolation was implemented using two programming loops.  The “outer 

loop” repeats for nt time samples and selects a relative time value  (0< ≤‟) at an arbitrary 

sampling interval, dt,  (e.g. dt = 0.01 to give nt = 100 time samples).  For each incremental 
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value of , the “inner loop” repeats for ns iterations for each body segment.  Within this inner 

loop, qI for each segment (Eq. 11) is calculated and gathered into a vector QI at the given , 

yielding a ns X 4 matrix of quaternion values.  The lowest matrix dimension is always 4 

representing the 4 numbers in each quaternion.  The completion of both loops yields an nt X 

ns X 4 matrix storing one QI for each time point.  Finally, quaternionization is performed in 

reverse (QP) to yield a set of 3D body segment vectors that are assembled end-to-end to 

construct the schematic body configuration at time  (Appendix B) analogous to an 

experimentally collected 3D kinematics data set. 

 

Following kinematic interpolation, simulated limb segment kinematics were analysed using a 

similar approach as on experimental data (see Richards et al. 2017).  Two metrics were used 

to quantify kinematic differences between varied behaviours: 4D angles and limb segment 

orientations in polar coordinates.  4D angles were used as a scalar measure of “rotational 

distance” between two orientations.  By analogy, the distance travelled along the surface of a 

sphere (in 3D) can be measured as a scalar angle between any two positions on the surface.  

One can similarly measure a scalar distance between any two 4D unit vectors whose tips lie 

on the surface of a 4D sphere.  Since all 3D rotations, when expressed as unit quaternions, 

reside on the surface of a 4D sphere, any two orientations are represented by two points on 

the 4D sphere.  Similar to the 3D analogy, scalar “distance” between two orientations can be 

represented by the 4D angle between them (Eq. A1).  Whereas 4D angles indicate rotational 

displacement, limb segment polar angles describe orientation by treating each segment as the 

radius about an imaginary sphere centred at its joint of origin.  For example, one can imagine 

the hip joint as the centre of a sphere whose radius is the femur.  The polar orientation of the 

femur is then described by two angles: 1) A protraction-retraction angle in the horizontal 

plane and 2) an abduction-adduction angle relative to the vertical (z) axis (Fig. 3): 
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Where x, y and z are Cartesian coordinates of a given segment vector (e.g. Vthigh from Eq. 4 

for calculating thigh retraction-protraction and abduction-adduction).  Note that the /2 

offsets are for convenience such that the retraction angle sweeps rearward from the torso 

midline and adduction sweeps downward from the horizontal plane. 

 

4.0 RESULTS 

4.1 Simulated versus observed jump kinematics 

Compared to data collected experimentally (Richards et al., 2017), jump kinematics predicted 

by limbSLERP produced similar patterns when expressed as 4D angles (Fig. 4).  Using the 

current convention of “quaternionization”, a 4D angle of 0 indicates that a segment is at the 

“zero” position; i.e. the segment‟s long axis is aligned with that of the proximal segment.  

Note this zero position is a theoretical extreme which is not anatomically possible (see 

below).  In both experimental and simulated jumps, 4D angles decreased through time 

indicating that the entire limb extends (i.e. “straightens”) as each segment‟s orientation 

converges towards a common orientation.  For all segments except the proximal foot, 

SLERPed simulations followed trajectories within the variation of trajectories observed in 

vivo.  The proximal foot showed the same downward trend, but at consistently lower values 

than natural frog kinematics indicating that the proximal foot remained slightly “straighter” 

with respect to the femur compared to experimental observations (Fig. 4C).  Discrepancies 

between simulation and real kinematics perhaps result from using external skin markers 
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(Richards et al., 2017). Despite negligible relative motion between skin and underlying joints 

(see above), a pair of external markers per segment is not sufficient to reconstruct as a proxy 

for internal bone motion which our theory simulates.  Additionally, our model does not 

account for small translations possibly occurring at the knee joint (Kargo et al., 2002) which 

might cause the observed angular offset (see Discussion). 

 

4.2 Simulated modulation of jump performance 

From an identical starting configuration based on experimentally collected data (Richards et 

al., 2017), qtarget was varied to modulate both the vertical steepness of jump angle (pitch) and 

the turning angle (yaw).  Three contrasting takeoff targets were chosen: Nominal takeoff 

configuration (takeoff pitch = 33º; yaw = 0), a steep jump (pitch = 60º; yaw = 0) and a left 

turn (pitch = 15º; yaw = -18º).  Note that we used a shallow pitch to allow turns to occur 

mainly in the horizontal plane.  This allowed us to reduce confounding effects of “banking 

turns” (i.e. rolling about the torso axis) to better isolate the kinematic mechanism of turning. 

Animations from simulations show smooth motion of the body segments extending to carry 

the torso towards the target orientation (Fig. 5; SI Movie 3).  For the three example cases, 

kinematics were qualitatively similar; extension of the main driving joints can be seen clearly 

in top view for the hip and knee (Fig 5, second row) and in side view for the ankle (Fig 5, 

third row).  For the nominal simulation, the hip, knee, ankle and TMT joints underwent a net 

extension (max angle – min angle) of 80, 93, 80 and 37º, respectively.   Notably, magnitudes 

of joint extension remained consistent across different jumps; total excursion in terms of 3D 

and 4D angles (see Section 3) varied within only a few degrees difference from the nominal 

extension values (nominal values ± 1 to 5º versus 1 to 14º for varying pitch versus yaw).  The 

consistent amount of extension across simulated behaviours suggests that limb segment 

orientation governs jump trajectory (rather than differential magnitudes of joint extension).  
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Thus, the present analysis focuses on how varying degrees of upward, forward and medio-

lateral motion of limb segments can modulate the jump path.   

 

To observe the relative contribution of upward/downward versus forward/rearward versus 

medial/lateral segment motions for the example cases above, each segment was decomposed 

into polar coordinates to quantify orientations in terms of retraction angle (caudal-directed 

rotation to push the body forward) or adduction angle (downward rotation to push the body 

upward; Fig. 6).  During straight jumps and turns, all leg segments (thigh, shank, proximal 

and distal foot) retracted and adducted throughout jumps (except the shank which adducted, 

but remained at a fixed retraction angle; Fig. 6A&B).   

 

4.3 Theoretical kinematics comparing a nominal jump, a steep jump and a left turn 

For straight jumps, protraction-retraction and abduction-adduction kinematics were nearly 

symmetrical between left and right legs.  However, SLERP introduced slight lateral drift of 

the body midline axis (Fig. 5B&F) which caused a small asymmetry in segment kinematics 

(see Discussion).  Regardless for steep jumps, both left and right legs showed a reduction in 

the extent of retraction, particularly for the thigh and proximal foot which were reduced by 

~50º and ~90º, respectively, with the shank retraction nearly constant.  In contrast, adduction 

for the thigh and shank segments increased by ~14º and ~26º, respectively, but decreased by 

~15º for the proximal foot. 

 

During simulated turns, left and right legs extended with subtle asymmetries (Fig. 6A vs. B; 

Fig. 7).  Unexpectedly, there was no dramatic right leg bias in either retraction or adduction 

angles.  There were three notable subtle asymmetries.  Firstly, the thigh and proximal foot 

segments retracted to a greater extent in the left leg.  Secondly, the left shank protracted 
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slightly (“pulling” the limb towards the inside of the turn) whereas the right shank retracted 

slightly (“pushing” the limb leftwards; Fig. 7A).  Thirdly, the right proximal foot adducted 

earlier and to a greater extent than the left (Fig. 7B).  

 

4.4 Theoretical kinematics of modulating jump height and turn angle 

To better understand how kinematics are modulated, we simulated a hypothetical range of 

takeoff pitch angles (with no turning) and a range of turning angles (at fixed takeoff pitch).  

Over the range of pitch angles, retraction of the thigh and proximal foot segments decreased 

dramatically ~50º and 130º, respectively, from the shallowest to the steepest jumps (Fig. 8A).  

In contrast, adduction excursion for the thigh and shank segments increased ~50º over the 

range of pitch angles revealing a forward kinematic mechanism of exchanging retraction for 

adduction to increase takeoff pitch. 

 

For turning we swept the left leg turn angle from positive (right turn) to negative (left turn) to 

cause a functional shift from the outside leg (“pushing” the leg toward the opposite side) to 

the inside leg (“pulling” the leg into the turn).  Surprisingly, thigh and proximal foot 

retraction increased as turn angle decreased (i.e. “pushed” more on the inside of the turn).  

The shank kinematics, however, shifted ~30º from retraction (left leg turning right) to 

protraction (left leg turning left), with negligible protraction or retraction at 0º turn angle 

(Fig. 8B).   

 

4.5 The influence of jump preparation angle (initial pitch angle) 

To test the influence of the „jump preparation angle‟ (Wang et al., 2014), we chose a fixed 

target takeoff pitch of 60º (yaw = 0) whilst varying the initial pitch angle of the body segment 

(at =0).  Across a range of initial pitch angles of 0 (horizontal) to ~75º (nearly vertical), the 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

paths of the segment rotations changed, causing shifts in the final direction of centre of mass 

(COM) velocity at takeoff (Fig. 9).  At low preparation angles (< 45º), the simulation would 

leave the ground moving upwards and backwards, despite a body axis heading of 60º 

pointing upwards/forwards.  In contrast, preparation angles above 45º caused forward/upward 

motion at takeoff.  Over the range of initial angles, the COM takeoff velocity angle decreased 

sharply, reaching an optimum of 60º at a preparation angle of ~47.5º where the body would 

continue in the target direction.  

 

5.0 DISCUSSION 

 

5.1 limbSLERP predicts jump kinematics 

The goal of the present study was threefold:  Firstly, we aimed to create a 

mathematical/computational method to predict limb motion from simple geometric 

information such as limb segment proportions and their connections.  Our use of SLERP is 

novel because, to our knowledge, it provides one of the simplest sets of mathematical rules 

that predict realistic limb motion in the absence of detailed physical, anatomical and 

physiological constraints.  It is intended as a first step to provide predictions and insights to 

assist the development of more rigorous dynamics analyses (forward dynamics; inverse 

dynamics; musculoskeletal simulation) to follow. Secondly, we intended to establish a 

theoretical framework to simulate frog hind limb kinematics over a range of jumping 

performance.  Our aim was not to faithfully reproduce or fit experimental data.  Rather, we 

created a template model with minimal mathematical constraints capturing the essential traits 

of a frog jump (Fig. 4) to probe for insights into the coordination of movement.  Thirdly, we 

sought to tease apart whether pre-jump posture versus dynamic modulation of leg kinematics 

are most crucial in steering the COM forwards, upwards or laterally.  During jumps, frogs 

naturally vary their takeoff pitch angle (Kargo & Rome, 2002; Wang et al., 2014; Richards et 
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al., 2017; Porro et al., 2017) as well as their turn angle (C.T. Richards & L. B. Porro, 

unpublished observations). Whilst controlling for initial pre-jump posture, we tested whether 

a set of simple coordination rules could reproduce frogs' natural pitching and turning 

behaviours. 

The success of limbSLERP for simulating realistic kinematics, despite its simple assumptions 

and neglect of dynamics (i.e. forces), stems from two principles we hypothesise to be crucial 

for frog jumping.  Firstly, based on experimentally observed behaviour (Richards et al., 2017; 

SI Movie 1), the joint axes of rotation converge prior to takeoff.  Secondly, the limb 

kinematics between the start and end configurations result from the minimisation of segment 

rotation.  Theoretically, there exist infinite paths along which the limb segments could travel 

between start and end postures.  However, from a kinematics perspective (without knowing 

the dynamics) our theory proposes that the most sensible path is that which minimises 

motion.  Supporting our first hypothesis (H1) the above coordination principles approximate 

natural kinematics (Fig. 4), providing evidence that frogs may coordinate their limb 

movements by converging rotation axes and economising motion. 

 

 5.2 Theoretical evidence for how frogs modulate jump height and turn angle 

Current findings suggest that changes in leg segment adduction had the strongest direct effect 

on takeoff height supporting hypothesis H2.  As expected, greater downward rotation of 

segments, particularly the thigh and shank, “pushed” the body upwards to cause steeper 

jumps for a given functional leg length (Fig. 6C & 8A) similar to experimentally observed 

jumps (Richards et al., 2017).  Although simulations predicted little adduction contribution 

from the proximal foot, this does not imply that the ankle joint is inactive.  Inverse dynamics 

analysis indicates that increased torque from the ankle and hip drive steeper jumps (Porro et 
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al., 2017).  Thus, increased thigh and shank adduction are likely powered by torques at the 

hip and ankle, respectively.  In exchange for greater adduction, retraction decreased (Fig. 6A 

& 8A) to translate the body upwards rather than forwards (SI Movie 3).  Notably, altering the 

pre-jump body pitch did not influence the ability to reach the target jump orientation.  Rather, 

adjustment of initial body inclination enabled the simulation to travel in the direction that the 

body was pointed (i.e. aligning the body orientation with heading; Fig. 9).  We speculate that 

inclining the pre-jump body angle not only is an indicator of fore limb push off (Wang eat al., 

2014), but also is a mechanism to aide neuro-muscular control of takeoff velocity.  This is 

because appropriate inclination of the initial body posture allows the limb to travel in the 

direction of its body simply by straightening the limb.  Using an analogy to reinforce this 

point, we imagine a toy robot which must be programmed with joint angle trajectories.  If the 

hobbyist wishes to program a steeper jump, doing so with a higher initial body pitch will 

simplify the programming of the hindlimb kinematics.  For the most extreme takeoff 

steepnesses, the cumulative rotations of all segments caused the COM to accelerate 

backwards (Fig. 9).  Although such strong backwards motion is unlikely in vivo, real frogs do 

generate short periods of rearwards force as they shift their weight and pitch their body 

rearwards during the steepest jumps (Porro et al., 2017) which could theoretically be 

corrected by inclining the body prior to launch. 

 

The joint kinematics for turns did not behave as expected.  Instead of greater retraction on the 

outside (right) limb segments, thigh and proximal foot retraction increased more on the left 

(Fig.  6A), becoming greater with sharper turns (Fig. 8B).  Although this increased retraction 

is counterintuitive, further inspection reveals that it likely has little impact on overall limb 

kinematics due to shifts in adduction.  The greatest change in retraction occurs at the 

proximal foot; however, this segment also undergoes greater adduction approaching ~90° 
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(vertically downwards) which nearly cancels any impact of retraction. Using a globe analogy, 

adduction/abduction is analogous to moving north/south on a globe whereas protraction-

retraction refers to east/west.  When a segment is adducted to 90° (i.e. at the South Pole by 

our definition) protraction-retraction has no effect on segment orientation in the same sense 

that one cannot move east or west whilst on a pole.  Given that the most visible changes have 

little kinematic effect, what is the key asymmetry that causes turns?  For the same reason that 

the proximal foot becomes ineffective at retraction, the shank has the strongest effect due to 

its horizontal orientation which causes the greatest XY displacement for any given  

protraction/retraction.  Furthermore the shank of our model frog, Kassina maculata, is the 

longest leg segment (Fig. 1A) and hence exerts greater displacement as it rotates.  In support 

of hypothesis H3, the orientation of the shank (in the XY plane) remained nearly stationary 

across all jump conditions (Fig. 6A&B; SI Movie 3) except for turns in which left shank 

retraction switched to protraction causing differential rotation “pulling” the leg backward on 

the left whilst “pushing” forward on the right. For the reasons above, our model predicts that 

such a subtle shift (Fig. 7A) is sufficient to steer the frog.  

 

Our above results, though intuitive to understand, do not reflect the only possible mechanism 

for how frogs kinematically modulate jump direction.  Because of the high number of 

degrees-of-freedom of frog hindlimb (Kargo & Rome, 2002) there hypothetically exist 

multiple possible solutions to how a frog might differentially rotate its segments to increase 

jump steepness and turn.  Our current method based on minimal rotation offers a sensible 

starting prediction and outperforms Euler angle-based inverse kinematics (IK; e.g. Bus 2004).  

When attempting to derive a jump trajectory for the left leg using IK, the simulated 

kinematics diverged towards an alternative, but unnatural extension of the limb.  Specifically, 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

the hip hyperextended while the ankle compensated by migrating medially to arrive on the 

opposite (right) side of the frog (Supplementary information, Fig. S1). 

 

5.3 Theoretical evidence for a "jump kinematics template" 

Despite variation in performance, do all frog jumps share similar underlying biomechanical 

traits, regardless of the jump direction?  Although the final answer can only be found using 

dynamics analysis, the present theoretical kinematics approach gives some insight.  In 

particular, if the underlying limb segment dynamics (torques and accelerations) follow a 

qualitatively similar pattern across jump performance, we expect kinematics should also be 

similar (and vice versa).  We propose that these similarities constitute a theoretical 

"kinematics template" which can be morphed to vary jump performance within Kassina (and 

potentially other morphologically similar frog species) whilst maintaining the fundamental 

characteristics of a jump.   A common pattern can be distilled from all observed jumps both 

simulated (present study) and in vivo (Richards et al. 2017) in three main elements: 1) The 

thigh and proximal foot segments rotate rearwards (retract) with negligible shank retraction.  

This is most clearly seen in top view where the shank orientation appears to remain fixed 

whilst the neighbouring segments retract (SI Movie 3).  2) The thigh, shank and proximal 

foot segments adduct throughout the jumps.  3)  The joint axes of rotation converge 

throughout the jump (SI Movie 1). 

5.4 Limitations of the present kinematics approach 

The foremost limitation of any kinematics analysis, including the present study, is the neglect 

of dynamics.  Simulations do not account for limb masses or moments of inertia nor do they 

consider muscle force and power properties which are known to limit frog jumping ability 

(Galantis and Woledge, 2003; Lutz and Rome, 1994; Peplowski and Marsh, 1997; Roberts 
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and Marsh, 2003).  For example, the present analysis cannot address speed effects which 

could alter kinematics due to higher joint torques and greater ground reaction forces to drive 

farther jumps.  Regardless, as we explain below, our kinematics approach gives important 

insights that could be overlooked with more detailed dynamics modelling.  A second 

limitation is our lack of mathematical constraints other than the requirement that all limb 

segments connect end-to-end and that joints only rotate.  We avoided additional algebraic 

approaches to imposing additional motion constraints (e.g. obstacle avoidance; Murray et al., 

1994) because they are algebraically messy and, more importantly, to avoid a priori biases 

from prior knowledge of frog behaviour.  Due to our lack of constraints, the torso segment 

drifted medially to cross the body midline which does not occur naturally (Fig. 5B&F; SI 

Movie 3).  In practice, one can easily perform minor post hoc corrections using inverse 

kinematics to correct left-right drift of the hip joint.  For the current study, we allowed the left 

leg to drift slightly then used inverse kinematics for the right leg to join the right hip with the 

left (see Appendix C).  This drift correction caused the small left-right asymmetry during 

straight jumps (Fig. 6 A&B).  Despite this small issue, lack of additional constraints 

strengthens confidence in our model which approximates natural behaviour without 

“knowing” rotational limits of joints or that left segments must remain on the left side.   

Finally, the current implementation of quaternion interpolation assumes that frog joints are 

“ball joints” (i.e. no translation) which is not representative for all joints (e.g. the knee in 

ranid frogs; Kargo et al., 2002).  This oversimplification is possibly the cause for the slight 

downward offset of the proximal foot segment compared to experimental results (Fig. 4C).  

However, given that the above discrepancy was small and that the remaining leg segment 

patterns matched those predicted, limbSLERP is a simple and powerful starting point for 

exploring 3D limb kinematics which could be further developed in the future by adding 

translations using dual quaternions (Kavan et al., 2008). 
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5.5 Summary, interpretation and broader context 

The present study had three main findings.  Firstly, frogs straighten their legs by moving their 

leg segments along paths of minimal rotation (i.e. paths on the unit quaternion sphere) 

between the pre-jump posture and a fully straightened limb.  Moreover, the target orientation 

of the fully straightened limb determines final jump direction.  Secondly, limb segment 

adduction is the key determinant of jump steepness, particularly the thigh and shank.  In light 

of prior work showing the importance of forelimb push-off (Wang et al. 2014) versus 

hindlimb adduction (Richards et al., 2017), we sought evidence to determine which 

alternative mechanism is the most important.  Although forelimb push-off does indeed 

contribute vertical force (Wang et al., 2014), our findings suggest additionally that hindlimb 

adduction is necessary and sufficient to produce steeper jumps.  Instead of playing a direct 

mechanical role, pre-jump “preparation angle” is perhaps important for control by 

influencing whether the body travels in the direction that it is initially oriented. Thirdly, 

turning is caused by a subtle switch from shank retraction to protraction on the inside leg of 

the turn.  Overall, our theoretical model predicts that jumps of different direction share the 

same fundamental kinematic mechanism whereby the thigh and shank adduct to drive limb 

elevation whereas the thigh and proximal foot retract to thrust the body forward.  Among all 

of the kinematic shifts observed in simulations, the orientation of the shank segment acted as 

the principle steering mechanism (due to its length and straight orientation) to modulate jump 

height as well as turn angle. 

     

Beyond qualitative description, we aim that our kinematics theory provides precise 

hypotheses for further testing.  Until future dynamics analyses are performed, we cannot fully 

claim that our theory has direct bearing on biomechanics beyond those explained by simple 
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geometry.  However, we argue our approach is a critical first step in understanding the 

various limits of the locomotor system.  We propose a multi-step approach focusing first on 

kinematics, then rigid body dynamics followed by musculoskeletal dynamics.  Kinematics 

analysis explores the outermost limit to behaviour which is bounded by geometry (i.e. 

segment lengths and their anatomical relationships).  Within the scope of geometrically 

permissible motions, there is a subset which is physically possible, as determined by rigid 

body dynamics analysis.  For example, how far could a frog jump given knowledge of its 

limb inertial properties, ground contact properties and above kinematic limitations?  

Furthermore, within the scope of physically possible, there are the physiological limits of 

muscle force, velocity and power (Josephson, 1999) as well as limits to bone stress 

(Biewener, 1989) and soft tissue structure of joints to influence passive foreces and range of 

motion (Kargo et al., 2002).  Finally, there is the smallest subset encompassing what animals 

are willing to do behaviourally (particularly within experimental setups; Astley et al., 2013).  

Because researchers cannot dictate behaviour, we reiterate the value of a modelling approach 

where key aspects (such as initial posture) can be held constant to better highlight causal 

relationships and underlying mechanisms not detected with traditional experimentation.  We 

argue that one cannot fully understand experimentally observed behaviour until we are able 

to explain the “lower level” limitations of the system components.  Moreover, we propose 

that experimental approaches containing individual variation and measurement noise may not 

be sufficiently sensitive to discern subtle behavioural shifts such as those presently observed 

during turns.  

5.6 Applications and future work 

In addition to the biomechanical implications of our approach, we hypothesise that our 

theoretical kinematics template is a basic coordination strategy for frog jumping.  Despite the 

mathematical abstraction of quaternions and 4D hyperspheres, the theory has a physical basis 
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which we propose can be exploited physiologically.  A nervous system need not perform 

calculations on quaternions; perhaps all that is needed is to generate torques which straighten 

the limb whilst minimising segment rotation (perhaps by minimising muscle shortening).  

Future forward dynamics modelling could be used to test whether limbSLERP could be used 

as a high level controller to generate physiologically realistic torques and ground reaction 

forces either for robotics approaches or further studies in musculoskeletal dynamics.  

Furthermore limbSLERP is a simple analytical approach that can compute entire trajectories 

for all limb segments extremely fast, making it potentially useful for control of 3D robotic 

limbs.  

An additional application is to supplement data collected from X-ray Reconstruction of 

Moving Morphology (XROMM) experiments (Brainerd et al., 2010).  In particular, the 

rotation of bones about their long axis (long axis rotation; LAR) can be an important feature 

of kinematics (Kambic et al., 2014; Rubenson et al., 2007), yet its measurement can be 

difficult because it requires at least three non co-linear implanted markers to be visible on a 

single structure.  Impressively, LAR measurements have been performed on small animals 

such as frogs (Astley &, Roberts, 2014).  However because the markers in frog bones are tiny 

and move at high speeds, some trials may be lost due to failure of image processing software 

to track certain markers.   In such cases like frog jumping where marker visibility may be  

intermittent, limbSLERP could be used to supplement frog XROMM data either to fill in the 

gaps or, perhaps even to predict LAR in the absence of a third marker (given that there is 

some information about a bone‟s initial long axis orientation). 

Finally, the most important application to our theoretical approach is to provide a simple tool 

for evolutionary morphologists.  Our present study did not apply our theoretical kinematics 

template to other species with different limb segment length proportions.  For example, if the 

shank were relatively shorter (as in some burrowing frog taxa; Emerson, 1976), would frogs 
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rely on other segments to be the main drivers for increased jump height and turning?  In 

contrast, would longer relative shank lengths (as exhibited by tree frogs and terrestrial 

jumping taxa; Emerson, 1982) increase potential range of jumping performance? The current 

technique could be used to fully map the space of feasible/optimal initial postures and 

segment kinematics given the diversity of limb proportions among frog species. Additionally, 

limbSLERP, with its simple coordination rules, provides an objective and replicable way to 

simulate locomotion in extinct anuran species without relying on taxon-specific experimental 

kinematics data (derived from species specialized in a particular locomotor mode).  More 

broadly, our kinematics approach combined with subsequent dynamics analyses can be used 

to generate and test precise hypotheses relating evolutionary changes in skeletal structure 

(e.g. Emerson 1982; Reilly & Jorgensen 2011) to changes in limb function.   
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FIGURE LEGENDS 

FIG1. 

Schematic view of a frog jump. (A) Inset showing top view (XY plane) with body segments 

and joints in a natural configuration.  Dashed lines extending back from the centre of mass 

(red circle) show leg segments in the "zero" position using null quaternions. (B) An exemplar 

jump in top view and (C) rear view showing the first (gray) and final (black) frames of the 

left leg.  Dashed lines show axes of rotation for the hip (black), knee (red) and ankle (blue) 

highlighting how their orientations change in the direction of the arrows to align throughout 

the jump (see also SI Movie 1) (D) Initial limb (gray) and end-jump configurations (black) on 

a floor (grey square) representing the global XY plane. Local reference frames are shown 

with the local X (red) and Z (cyan dashed) in all frames (global frame, snout frame, torso 

frame, hip frame) to illustrate reference frame transformation using "quaternionization". 

Local Z-axes, by definition, align along each body segment. Y-axes as well as ankle and 

TMT reference frames have been omitted for clarity. (E) End-jump, rear view, (F) side view 

and (G) top view. 
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FIG2. 

Calculating a smooth path of minimal rotation between two orientations is challenging in 3D, 

but trivial in 4D. (A) A Cartesian reference frame (Black) is rotated to a new orientation 

(Red) along a path determined by Spherical Linear Interpolation (SLERP) to calculate the 

minimum rotation required.  Paths of the X axis (open circles) and the Z axis (closed circles) 

illustrate the smooth curved motion between the two orientations. (B) The rotation shown in 

(A) is parameterized in 3D space (Euler angles) versus 4D space (quaternions, dashed). Euler 

angles about X (Red) followed by Y (Blue) then Z (Green) axes are unpredictable and 

nonlinear and thus are difficult to extrapolate meaningfully. However, quaternion 

displacement via SLERP is linear (i.e. a great arc on the hypersphere surface), making 

extrapolation trivial. 
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FIG3. 

Segment angle definitions. Schematic of left leg in (A) side view showing the target pitch 

angle with respect to horizontal (B) top view showing the target yaw angle and the retraction 

angle of the thigh with respect to the global y axis and (C) rear view showing the adduction 

angle with respect to horizontal. The black circle marks the hip. Note that segment angles 

(pitch, yaw, retraction, adduction) are all calculated in the global reference frame (as opposed 

to segment quaternions which are in local reference frames; see text). 
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FIG4. 

Experimental versus simulated frog jump kinematics. Scalar angles (in 4D) were calculated 

from quaternion unit vectors for body segments of (A) the thigh, (B) shank, (C)  proximal 

foot and (D) distal foot compared to the unrotated "ground" reference frame.  Grey dots are 

experimentally collected data points from 24 intermediate-height jumps (Richards et al., 

2017).  Red lines indicate kinematics simulated using SLERP.  In the present convention, 4D 

angles of 0 would indicate that segments are at the "zero" (null) position (i.e. leg segments 

straightened caudally from the hip; Fig. 1 inset).  Large angle values indicate a large 

deviation from the null configuration of the limb. In a frog jump, the limb joints extend to 

straighten the limb.  Thus, the angle values decrease rather than increase through time as the 

entire limb extends. 
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FIG5. 

Simulated kinematics animations. Jump animations are shown for (A-D) nominal takeoff 

kinematics, (E-H) a steep jump, (I-L) a left turn shown in angled view (row 1), top view (row 

2), side view (row 3) and rear view (row 4).  A fixed subset of evenly-spaced animation 

frames are shown in each view.  For the non-turning jumps (A-H) only the left leg is shown 

(Black), whereas both left and right (Red) legs are shown for the turning simulation (I-L). 

Note that initial configurations (Bold lines) are identical for each condition. The x and y axes 

of the global coordinate frame are shown in black and the z-axis is red. 
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FIG6. 

Simulated limb segment protraction-retraction and abduction-adduction angles for varying 

jump steepness and turning. Traces are for thigh (black), shank (red) and proximal foot (blue) 

for (A,B) retraction in the cranio-caudal direction and (C,D) adduction in the dorso-ventral 

direction shown for both left and right legs during a nominal jump (solid), a steep jump 

(dashed) and a turn (dotted-dashed) as in Fig. 5.  The dashed line (A,B) represents a line 

drawn posterior from the hip joint from which protraction-retraction angles were referenced.  

Trending towards the line denotes segment caudal rotation (retraction) to push the body 

forward.  The x-axis (C,D) represents the horizontal axis.  Downward slopes indicate 

downward rotation (adduction) to push the body upwards. Kinematics of the distal foot are 

similar to the pattern for the proximal foot and therefore have been omitted for clarity. 
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FIG7. 

Left versus right limb kinematics for a left turn. Data traces are from Fig. 6, but rearranged to 

highlight left-right asymmetries. Traces are for left leg (solid) and right leg (dashed) using the 

same colours as in Fig. 6.  (A) Retraction in the cranio-caudal direction and (B) adduction in 

the dorso-ventral direction. Note in (A) how the right shank trends downward towards the 

dashed line indicating retraction to push the limb forward versus the left shank which trends 

upwards (protracts) to push the limb backwards on the inside of the turn. Kinematics of the 

distal foot are similar to the pattern for the proximal foot and therefore have been omitted for 

clarity. 
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FIG8. 

Left leg angular excursion for varying jump steepness and turning.  (A) Varying pitch angle 

relative to horizontal (yaw = 0).  Total retraction excursion (max retraction angle - min 

retraction angle [closed circles]) and adduction excursion (max adduction angle - min 

adduction angle [open circles]) of the thigh (black), shank (red) and proximal foot (blue). 

Each data point represents a single simulation beginning from the nominal initial limb 

configuration and ending at the specified target angle.  Note that increasing jump steepness 

requires increased thigh and shank adduction while retraction decreases. (B) Varying turn 

angle (constant takeoff pitch = ~8 deg). Turns range from left (negative values) to right 

(positive). Negative excursion values indicate protraction. Note that unlike varying pitch, 

changes in the magnitude of retraction modulate turn angle. 
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FIG9. 

The effect of initial angle on jump trajectory and centre of mass (COM) takeoff velocity. 

Each point represents a single simulation whose entire kinematic path is influenced by initial 

angle.  The initial pitch angle of the torso segment was varied from 0 (horizontal) to nearly 

vertical, leaving the leg segments unchanged.  The final pitch of the body axis was held at 60 

degrees for all simulations.  The dashed black lines represent the optimal initial pitch angle 

which allows the COM takeoff velocity to align with the takeoff body orientation (i.e. the 

frog COM will travel in the appropriate direction).  Stick figure animations for minimum, 

maximum and optimum initial angles show the initial posture (bold) and subsequent 

animation frames (gray).  Red arrows indicate the direction of the takeoff velocity vector.  

Note that as the initial pitch angle increases, takeoff velocity direction shifts from >90 

(jumping upwards and backwards) to <90 (upwards and forwards). 
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SI Movie 1. Animation of experimentally observed kinematics example trial (used as the 

basis for the nominal simulation).  The left leg rear view is shown on the left and top view on 

the right.  On the rear view, the instantaneous joint axes of rotation (dashed) have been 

estimated to be the normal vector to the adjoining segments.  Axes are shown for the hip 

(black), knee (red) and ankle (blue).  The centre of mass (hip) is shown in red.  The global 

reference frame is shown in black with the Z axis bold and the X axis dashed.  Note that the 

distal foot segment has been mathematically fixed to the ground. 

SI Movie 2. Screen recording of interactive forward kinematics computations.  The values 

making the matrix Q0 are shown with each row a quaternion representing a body segment.  

This illustrates how changes in proximal segment orientations cause all distal limbs to follow.  

For example, changing the torso pitch angle (while leaving the remaining quaternions as null 

values) transforms Q0-torso, moving the torso along with the remaining segments.  The centre 

of mass (hip) is the large circle. For this demo, the joint angles are protraction-retraction 

only. 

SI Movie 3. A demo animation of the three exemplar simulations (nominal followed by a 

steep jump then a turn).  Limb kinematics traces are shown for the hip (black), knee (red) and 

ankle (blue).  Note how the kinematics traces instantly update for any changes in target 

orientation. This is because the trajectories are known for all values of t as long as Q0 and Q1 

are known. 
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 List of Abbreviations Used (bold values are vectors or matrices) 

 

 

turn Takeoff turn angle: angle of the body midline axis with respect to the y-axis at 

takeoff. 

â 3D axis of rotation (unit vector) 

A Matrix of rotation axes (ns rows x 3 columns) 

COM Centre of mass 

d Gain multiplier for inverse kinematics (value between 0-1) 

dt Time sample interval 

error The 3D vector between the inverse kinematics target and current position 

e The error value: Norm of the error vector (= Euclidean distance between 

inverse kinematics target and the current position). 

emin Minimum error value 

i Loop iterator for body segments 

[i] Index from a vector or matrix. E.g. P[2] would be the 2
nd

 row in the matrix P 

(i.e. XYZ for the 2
nd

 body point). 

[i,j] Row and column indices from a matrix. E.g. P[2,3] would be 3
rd

 column from 

the 2
nd

 row in the matrix P (i.e. the Z coordinate for the 2
nd

 body point). 

J The Jacobian matrix (6 rows x ns columns) 

JT The translational component of the Jacobian (3 rows x ns columns) 

JR The rotational component of the Jacobian (3 rows x ns columns) 

nt Number of time samples for simulated kinematics 

 ̂ Normal unit vector 

ns Number of body segments 

 Angle of rotation 

p X, Y, Z coordinates of a digitized point 

p’ X, Y, Z coordinates of an interpolated point 

P Matrix of XYZ coordinates for segment endpoints along the body. Its 

dimensions are ns X 3 

P0 Initial configuration: matrix of XYZ coordinates at the beginning of jump. 

P1 Final  configuration: matrix of XYZ coordinates at takeoff.  

q A unit quaternion 

q* The conjugate of a quaternion 

q0 The null rotation [1, 0, 0, 0] resulting in no rotation 

qi The quaternion for the i
th

 segment (= Q[i]) 

qI(q1,q2, ) A unit quaternion interpolated between q1 and q2  

Q Quaternionized limb: vector of body segments expressed as quaternions 

Q0 Quaternionized limb at the initial configuration (pre-jump) 

Q1 Quaternionized limb at the final configuration (takeoff), initial guess 

Q1R Mirror image of Q1 representing the final configuration of the opposite (right) 

leg 

Q1‟ Quaternionized limb at the final configuration (takeoff) used for simulation 

  = [1,  2, …,   ns]
T
) 

 ns x 1 vector of small changes in rotation angles for inverse kinematics 

 Relative time (from 0 to 1) 

’ Adjusted relative time (0 ≤ ‟ < 1) to prevent overshoot of COM position at 
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APPENDIX A: Miscellaneous calculations 

Calculating angles between vectors  

Any two 3D vectors can form a plane. The angle between the vectors in this invisible plane is 

calculated by the following:  

            
     

‖  ‖‖  ‖
 

(A1) 

 

Where • is the dot product and v1 and v2 are vectors of any dimension.  For example, v1 and 

v2 can be 3D vectors for a 3D angle or the can be quaternions to compute the 4D angle 

between them.  

Mirroring the leg kinematics between left and right sides  

To mirror the left leg we defined a plane of symmetry by calculating a normal vector to the 

plane: 

 ̂  
        

‖        ‖
 

(A2) 

 

where a is an axis within the plane (the body midline axis was used in the current study) and 

vref is a reference vector in the plane (vref = [0, 0, 1] for the present study).   A reflection 

matrix to reflect an XYZ point about an arbitrary plane is given by (Kovács, 2012): 

takeoff 

 A non-linear time function used to simulate acceleratory motion 

v A 3D vector 

vq A 3D vector expressed as a (non-unit) quaternion 

vref An arbitrary reference vector to represent the “zero” orientation, usually chosen 

to be the z-axis, [0, 0, 1] 

 The takeoff pitch angle: angle of the body midline axis with respect to 

horizontal at takeoff  
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    ]
 
 
 

 

(A3) 

 

where n1, n2 and n3 are the x, y and z components of  ̂ and o1, o2 and o3 are the x, y and z 

components of the local origin (the proximal end of the thigh was used for the present study). 

 

Quaternion arithmetic 

Quaternion arithmetic is required for performing rotations.  A 3D vector can be expressed as 

a quaternion: 

                      (A4) 

 

Where vq is used to denote a vector expressed as a quaternion (it is not necessarily a unit 

quaternion, thus we avoid calling it “q”) and v[1], v[2], v[3] are the XYZ components of the 

3D vector v. 

The conjugate of a quaternion, q*: 

                            (A5) 

 

Where q[1], q[2], q[3], q[4] are the 4 scalar values of the quaternion.  A rotation operation is 

as follows: 

             (A6) 

 

Where   denotes quaternion multiplication. The first element of the rotated vector v‟ should 

be discarded to yield a 3D vector.  In practice, Eq. A4-A6 can be combined to a single 

function,  
 
   . 

 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

APPENDIX B: Converting between quaternion rotations and XYZ coordinates  

 

Quaternionization (PQ) 

The process of “quaternionization” converts a list of segment vectors (XYZ coordinates) to 

quaternions.  It is computed in the following steps in a loop from i=1 to i=ns (number of body 

segments): 

Step 1. Establish a reference vector, vref (= [0, 0, 1] for the present study to represent the 

global reference segment). 

Step 2. Establish an empty matrix of limb segment coordinates, Q which has dimensions (ns 

X 3  (= 5 x 3 for the present study). 

Step 3. Begin the loop: For segment i … 

Step 4. Calculate the quaternion between adjacent segment vectors vref and V[i] (i.e. the i
th

 

row of V).  This is done by first calculating the axis: 

   
         

‖         ‖
 

(A7) 

 

then calculating the angle between vref and V[i] using Eq. A1.  Finally, qi is obtained by 

substitution into Eq. 1. 

Step 5. Overwrite vref:  vref = V[i] . 

Step 6. Insert qi into matrix Q at the i
th

 row: Q[i]  = qi . 

Step 7. Increment i: i=i+1; then return to step 4 until i=ns. 

 

Forward kinematics computation (QP) 

 

Forward kinematics are performed in the following steps in a loop from i=1 to i=ns (number 

of body segments):  
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Step 1. Establish a reference vector, vprox (= [0, 0, 1] for the present study to represent the 

proximal segment) and a proximal joint to anchor each segment, vjoint = [0, 0, 0]. 

Step 2. Establish an empty matrix of limb segment coordinates, P which has dimensions (ns 

+1) X 3  (= 6 x 3 for the present study).  Set the first row of P to be the limb anchor (P[1] = 

[0, 0, 0]).  Each row of P will become a point on the body (i.e. P = [P[1], P[2], P[3], P[4], 

P[5], P[6])
T 

= [snout, hip, knee, ankle, TMT, foot]
T 

). 

Step 3. Begin the loop: For segment i … 

Step 4. Calculate the distal vector, vdist, using quaternion rotation via the i
th

  quaternion (i.e. 

the i
th

 row of Q):       

  
       ; then normalize the new vector:       

     

‖     ‖
 

Step 5. Overwrite vprox:  vprox = vdist . 

Step 6. Update the joint anchor position: vjoint = vjoint + li(vprox) where li is the length of the i
th

 

segment. 

Step 7. Insert vjoint into matrix P at position i + 1: P[i+1] = vjoint . 

Step 8. Increment i: i=i+1; then return to step 4 until i=ns. 

Step 9. Anchor the frog at XYZ = [0, 0, 0] so that the frog leg extends upward. This is done 

by subtracting the final point from each i
th

  XYZ point (P[i] = P[ns+1] – P[i]). 

Finally, if needed, P can be converted to local vectors, V, using Eq. 3. 

 

APPENDIX C 

Inverse kinematics: deriving the Jacobian matrix 

For each simulated time value (), the left leg was mirrored to create the right leg (Appendix 

A) which does not guarantee that the left and right hips join. Inverse kinematics (IK) was 

used on the right leg to apply slight a correction to allow the hips to meet.  This process was 

repeated for each value of .  
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IK was briefly described previously (Richards et al., 2017), although a more complete 

treatment will be necessary here.  A common problem for models with multiple linked 

segments (e.g. animal limbs or robotic manipulators) is that joint angles must be controlled to 

guide the “end effector” of the limb (e.g. hand) to a specific target in 3D space.  In the 

present study, the limb is the right leg, the end effector is the right hip and the target is the 

left hip. Problematically, there are often multiple solutions; i.e. there can be multiple different 

limb configurations that allow the end effector to reach the target.  A standard approach is to 

1) calculate the error (Euclidean distance) from the target 2) move incrementally in the 

direction of the target 3) return to step 1 and repeat until the error, e, falls below a given 

tolerance, emin.  The error is simply pcurrent – ptarget which itself is a velocity correction vector, 

vcorr; i.e. moving in the direction of the vector will bring the end effector closer to the target. 

This is achieved using a Jacobian matrix, J, which converts small changes in joint angles into 

end effector velocity.  Specifically,  

            (C1) 

Where JT is the 3 X ns translational portion of the Jacobian matrix (see below),  is the ns 

X 1 vector of joint angle changes for ns number of segments (ns = 5 in the present study 

representing torso, thigh, shank, proximal foot, distal foot).  In other words,  is a list of 

unknown small changes (corrections) in each joint angle to produce incremental motion 

towards the target. Importantly, joint angles here are not Euler angles.  Rather, they are 

angles about instantaneous rotation axes embedded in the quaternions (see below).  The 

pseudoinverse of JT, JT
’
, allows us to solve for the unknown . 

             (C2) 
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We took an unconventional approach of defining J using axis-angle coordinates to avoid 

pitfalls of Euler angles and to allow direct conversion to/from quaternions, (i.e. mapping 

QJ via axis angle parameters).  Recalling that a unit quaternion can be composed of a 3D 

rotation axis and an angle about that axis (Eq. 1), quaternions can likewise be decomposed to 

axis-angle parameters.  For each segment, an ns X 1 vector of angles, , were calculated: 

                   (C3) 

Where Q[i,1] (a scalar value) is the first quaternion element taken from i
th

 quaternion of Q 

(specifically, QIR[i,1).  Given the angles, the axes can then be computed.  Each row of A is 

computed in a loop iteration in proximal to distal order: 

     
   

        
 ‖

   

        
‖ 

(C4) 

Where qiv is the vector component of the i
th

 quaternion (i.e. the 2
nd

, 3
rd

 and 4
th

 elements of 

qi).  

Finally, we can assemble J, a matrix with 6 rows and ns columns.  Each column is computed 

in single a loop iteration from i = 1 to i = ns in proximal to distal order from snout to toe 

(snout, hip, knee, ankle, TMT). 

                          

           

     [
     
     

] 

(C5) 

Where JT[i] is the i
th

 column of JT (similarly for JR[i]), p[i] is the XYZ point of the proximal 

end point of the i
th

 segment and p[ns+1] is the most distal endpoint of the most distal 
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segment (i.e. the foot point of ground contact).  A[i] is the i
th

 row of the rotation axes matrix 

(see below) which is the instantaneous axis of planar rotation between segments i and i+1.  

To assemble the full Jacobian, JT[i]and JR[i] are stacked to make Ji, a column of 6 rows.  JR 

is provided here for completeness, however it was not used in the present analysis. 

In practice, IK is done over several iterations moving a small fraction (d) of the calculated 

  . 

       
         (C6) 

Where d is a small value (0<d ≤we used d=0.1).  Larger values move the limb faster 

towards the target, but excessively large values risk overshooting the target. 

            (C7) 

Then the corrected Q is then computed by substituting into Eq. 1:  

       (
         

 
)           (

         

 
)  

         (
         

 
)           (

         

 
)   

(C8) 

Where qi is the quaternion for the i
th

 segment within QIR and corr[i] is a scalar angle 

correction value for the i
th

 segment 

Inverse kinematics: numerical algorithm 

Numerical integration was used to implement the IK correction using the following algorithm 

for each time sample (i.e. each division of 0< ≤‟ up until nt samples). 

At time  = t … 
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Step 1. Mirror the left leg segments (Eq. 11) and quaternionize (Eq. 6), giving QIRat time t. 

Step 2. Calculate the error vector: error = phip,left – phip,right and its magnitude (e = 

Norm[error]). 

Step 3. Loop the following steps while e > emin (the present study used emin = 0.001).  If e ≤ 

emin then skip to step 9. 

Step 4. Calculate the Jacobian (Eq. B3-B5) for QIRat time t and its pseudoinverse. 

Step 5. Calculate the correction angles then update QIR using Eq. B6-B8. 

Step 6. Perform forward kinematics to convert the quaternions QIR to limb XYZ coordinates 

(QP; Appendix B steps 1-9). 

Step 7. Re-calculate the error: error = phip,left – phip,right and its magnitude (e = Norm[error]). 

Step 8. Return to step 3. 

Step 9. Advance to the next time step, t = t + dt, then return to step 1 until t = ‟. (i.e. for all  

allotted timesteps. 

 




