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Abstract: Sets in the parameter space corresponding to complex exceptional points have high1

codimension and by this reason they are difficult objects for numerical location. However, complex2

EPs play an important role in the problems of stability of dissipative systems where they are frequently3

considered as precursors to instability. We propose to locate the set of complex EPs using the fact4

that the global minimum of the spectral abscissa of a polynomial is attained at the EP of the highest5

possible order. Applying this approach to the problem of self-stabilization of a bicycle we find6

explicitly the EP sets that suggest scaling laws for the design of robust bikes that agree with the7

design of the known experimental machines.8

Keywords: Exceptional points in classical systems, coupled systems, non-holonomic constraints,9

nonconservative forces, stability optimization, spectral abscissa, swallowtail, bicycle self-stability10

1. Introduction11

Exceptional points in classical systems have recently attracted attention of researchers in the12

context of the parity-time (PT) symmetry found in mechanics [1,2] and electronics [3]. In the context13

of stability of classical systems the PT-symmetry plays a part in systems of coupled mechanical14

oscillators with the indefinite matrix of damping forces [4–8]. Stable PT-symmetric indefinitely15

damped mechanical systems have imaginary eigenvalues and thus form singularities on the boundary16

of the domain of asymptotic stability of general dissipative systems [9,10]. Among these singularities17

are exceptional points corresponding to double imaginary eigenvalues with the Jordan block. They18

belong to sets of complex exceptional points with nonzero real parts that live both in the domain of19

instability and in the domain of asymptotic stability of a dissipative system and pass through the20

imaginary exceptional points on the stability boundary that bound the region of PT-symmetry [11,12].21

These are sets of high codimension which are hard to find by numerical approaches. Nevertheless,22

in many applications it was realized that complex exceptional points hidden inside the domain of23

asymptotic stability significantly influence the transition to instability [13,14]. How to locate the set of24

complex exceptional points? The general approach involving commutators of matrices of the system25

[15,16] does not look easily interpretable. In this paper we will use a recent observation [17] that26

the set of complex exceptional points connects the imaginary exceptional points on the boundary of27

asymptotic stability and the real exceptional points inside the domain of asymptotic stability that lie28

on the boundary of the domain of heavy damping. We will show how location of the exceptional29

points with this approach helps to find explicit scaling laws in the classical problem of self-stability of30

bicycles.31

2. Complex exceptional points and the self-stability of bicycles32

Bicycle is easy to ride but surprisingly difficult to model [18]. Refinement of the mathematical33

model of a bicycle continues over the last 150 years with contributions from Rankine, Boussinesq,34
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Figure 1. The two-mass-skate (TMS) bicycle model [27].

Whipple, Klein, Sommerfeld, Appel, Synge and many others [19–21]. A canonical, commonly accepted35

nowadays model goes back to the 1899 work by Whipple. The Whipple bike is a system consisting of36

four rigid bodies with knife-edge wheels making it non-holonomic, i.e. requiring for its description37

more configuration coordinates than the number of its admissible velocities [22,23]. Due to the38

non-holonomic constraints even the bicycle tire tracks have a nontrivial and beautiful geometry that39

has deep and unexpected links to integrable systems, particle traps, and the Berry phase [24–26].40

A fundamental empirical property of real bicycles is their self-stability without any control at41

a sufficiently high speed [27]. This property has a number of important practical implications. For42

instance, recent experiments confirm the long-standing assumption that the bicycle designs that do43

not present the self-stability are difficult for a person to ride, in other words more stable bikes handle44

better [18,28]. Hence, deeper understanding of the passive stabilization can provide new principles for45

the design of more safe and rideable bicycles, including compact and foldable models. Furthermore, it46

is expected to play a crucial part in formulating principles of design of energy-efficient wheeled and47

bipedal robots [29].48

However, the theoretical explanation of the self-stability has been highly debated throughout the49

history of bicycle dynamics [22] to such an extent that a recent news feature article in Nature described50

this as “the bicycle problem that nearly broke mathematics” [18]. An excellent scientific and historical51

review of thoughts on the bicycle self-stability can be found in [21].52

The reason to why “simple questions about self-stabilization of bicycles do not have53

straightforward answers” [20] lies in the symbolical complexity of the Whipple model that contains54

7 degrees of freedom and depends on 25 physical and design parameters [19]. In recent numerical55

simulations [19,20,22] self-stabilization has been observed for some benchmark designs of the Whipple56

bike. These results suggested further simplification of the model yielding a reduced model of a57

bicycle with vanishing radii of the wheels (that are replaced by skates, see e.g. [30]), known as the58

two-mass-skate (TMS) bicycle [27,28]. Despite the self-stable TMS bike has been successfully realized59

in the recent laboratory experiments [27], its self-stability still waits for a theoretical explanation.60

In the following, we will show how location of complex and real exceptional points allows to61

find hidden symmetries in the model suggesting further reduction of the parameter space and, finally,62

providing explicit relations between the parameters of stability-optimized TMS bikes.63

2.1. The TMS bicycle model64

The TMS model is sketched in Fig. 1. It depends on 9 dimensional parameters:

w, v, λs, mB, xB, zB, mH , xH , zH
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Table 1. Notation for the TMS bicycle model

Dimensional Meaning Dimensionless Meaning

v Velocity of the bike
g Gravity acceleration Fr Froude number
w Wheel base

λs Steer axis tilt (rad.) λs Steer axis tilt (rad.)

mH Front fork and handlebar
assembly (FHA) mass µ Mass ratio (mH/mB)

mB Rear frame assembly (RFA) mass

xH (≥ 0) Horizontal coordinate of the χH (≥ 0) Horizontal coordinate of the
FHA centre of mass FHA centre of mass

zH (≤ 0) Vertical coordinate of the ζH (≤ 0) Vertical coordinate of the
FHA centre of mass FHA centre of mass

xB (≥ 0) Horizontal coordinate of the χB (≥ 0) Horizontal coordinate of the
RFA centre of mass RFA centre of mass

zB (≤ 0) Vertical coordinate of the ζB (≤ 0) Vertical coordinate of the
RFA centre of mass RFA centre of mass

t Time τ Time

that represent, respectively, the wheel base, velocity of the bicycle, steer axis tilt, rear frame assembly65

(B) mass, horizontal and vertical coordinates of the rear frame assembly centre of mass, front fork and66

handlebar assembly (H) mass, and horizontal and vertical coordinates of the front fork and handlebar67

assembly centre of mass [27], see Table 1.68

We wish to study stability of the TMS bicycle that is moving along a straight horizontal trajectory
with the constant velocity and remaining in a straight vertical position. In order to simplify the analysis
it is convenient to choose the wheelbase, w, as a unit of length and introduce the dimensionless time

τ = t
√

g
w and 7 dimensionless parameters

Fr =
v
√

gw
, µ =

mH
mB

, χB =
xB
w

, χH =
xH
w

, ζB =
zB
w

, ζH =
zH
w

, λs,

where g is the gravity acceleration, Fr the Froude number and µ the mass ratio, see Table 1. Notice that69

ζB ≤ 0 and ζH ≤ 0 due to choice of the system of coordinates, Fig. 1.70

It has been shown in [19,27] that small deviations from the straight vertical equilibrium of the
TMS bicycle are described by the leaning angle, φ, of the frame and the steering angle, δ, of the front
wheel/skate. These angles are governed by the two coupled linear differential equations

Mq̈ + Vq̇ + Pq = 0, q = (φ, δ)T , (1)

where dot denotes differentiation with respect to dimensionless time, τ, and the matrices of mass, M,71

velocity-dependent forces, V, and positional forces, P, are72

M =

(
µζ2

H + ζ2
B −µζHνH

−µζHνH µν2
H

)
, V =

(
0 −µχHζH − χBζB
0 µχHνH

)
Fr cos λs,

P =

(
µζH + ζB −Fr2 cos λs(µζH + ζB)− µνH
−µνH µ(Fr2 cos λs − sin λs)νH

)
, (2)

respectively, with νH = uH
w = (χH − 1) cos λs − ζH sin λs, see Fig. 1.73
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2.2. Preliminaries on Lyapunov stability and asymptotic stability of equilibria74

An equilibrium of a nonlinear dynamical system is said to be Lyapunov stable if all the solutions75

starting in its vicinity remain in some neighborhood of the equilibrium in the course of time [17,31,32].76

For asymptotic stability, the solutions are required, additionally, to converge to the equilibrium as time77

tends to infinity. The first (indirect) method of Lyapunov reduces the study of asymptotic stability of an78

autonomous (time-independent) system to the problem of location in the complex plane of eigenvalues79

of the operator of its linearization [31]. In a finite-dimensional case the eigenvalues are roots of a80

polynomial characteristic equation. Localization of all the roots in the open left half of the complex81

plane is a necessary and sufficient condition for asymptotic stability of a linearization, which usually82

implies asymptotic stability of the original non-linear system [31]. The algebraic Routh-Hurwitz83

criterion provides explicit conditions for asymptotic stability expressed in terms of the coefficients84

of the characteristic polynomial [32]. The Lienard-Chipart criterion is an equivalent version of the85

Routh-Hurwitz criterion, which sometimes gives simpler expressions for the stability conditions [32].86

Solution to the linear differential equation is a linear combination of exponential functions with87

the argument equal to time multiplied with an eigenvalue. Consequently, in the domain of asymptotic88

stability solutions of the linearization exponentially decay in time either with oscillations, which89

corresponds to a complex eigenvalue with the negative real part, or without oscillations, which90

corresponds to a negative real eigenvalue. If all the solutions exponentially decay without oscillations,91

i.e. all eigenvalues are real and negative, the system is said to be heavily damped [32,36,37]. A perturbed92

heavily damped system quickly and monotonously returns to its equilibrium which is percepted by an93

observer as a robust stability. By this reason placement of parameters of a system into the domain of94

heavy damping is a desirable goal in many engineering applications [36,37]. Naturally, heavy damping95

implies asymptotic stability and therefore the domain of heavy damping belongs to the domain of96

asymptotic stability in the parameter space [17].97

Similarly, in the domain of instability a complex eigenvalue with the positive real part corresponds98

to an oscillatory solution with the exponentially growing amplitude. This unstable behavior is99

frequently called flutter, dynamic instability, oscillatory instability or Hopf bifurcation in different100

engineering and physical contexts [32]. In the context of bicycle dynamics the growing oscillations101

are referred to as the weaving instability [19,20]. A positive real eigenvalue corresponds to the static102

instability (or steady-state bifurcation) of an equilibrium described by a non-oscillatory solution with103

an exponentially growing amplitude. A bicycle is capsizing in this case [19,20].104

With the change of parameters of the system one can move from the domain of instability to the105

domain of asymptotic stability in the parameter space. This transition is accompanied by the crossing106

of the imaginary axis in the complex plane either by at least one pair of complex-conjugate simple107

eigenvalues or by at least one real eigenvalue. Exactly on the stability boundary the eigenvalues108

become imaginary or zero, respectively. In multiple parameter systems multiple imaginary or zero109

eigenvalues with different algebraic and geometric multiplicities are generically possible on the stability110

boundary. In physics, a point in the parameter space corresponding to a linear operator (matrix, matrix111

polynomial) with the multiple eigenvalue that has less eigenvectors than its algebraic multiplicity1
112

is called an exceptional point.2 Exceptional points form geometric singularities both on the boundary113

of asymptotic stability and on the boundary of the domain of heavy damping [17,32]. Moreover,114

exceptional points corresponding to complex eigenvalues exist inside both the domain of asymptotic115

stability and the domain of instability. Below we uncover all the exceptional points in the TMS bicycle116

model and with their use find optimal TMS bikes with respect to different stability criteria.117

1 i.e. an operator has a nontrivial Jordan normal form
2 Frequently, the very multiple eigenvalue with the Jordan block in the complex plane is referred to as an exceptional point
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2.3. Asymptotic stability of the TMS bike and the critical Froude number for the weaving motion118

The TMS model (1), (2) is autonomous and nonconservative, containing dissipative, gyroscopic,
potential and non-potential positional (circulatory [32], curl [33]) forces. Assuming the exponential
solution ∼ exp(sτ) to the linear system (1) and computing det(Ms2 + Vs + P) we write the
characteristic polynomial of the TMS bicycle model:

p(s) = a0s4 + a1s3 + a2s2 + a3s + a4, (3)

with the coefficients119

a0 = −(ζH tan λs − χH + 1)ζ2
B,

a1 = Fr(ζBχH − ζHχB)ζB,

a2 = Fr2(ζB − ζH)ζB − ζB(ζB + ζH) tan λs − (χH − 1)(µζH − ζB),

a3 = −Fr(χB − χH)ζB,

a4 = −ζB tan λs − µ(χH − 1). (4)

Applying the Lienard-Chipart version of the Routh-Hurwitz criterion [32,34] to the polynomial120

(3) yields for λs > 0 the following necessary and sufficient conditions for the asymptotic stability of121

the TMS bicycle122

χH > 1 + ζH tan λs,

χH < 1− ζB
µ

tan λs,

χH < χB,

ζH > ζB,

Fr > Frc > 0, (5)

where the critical Froude number at the stability boundary is given by the expression

Fr2
c =

ζB − ζH
χB − χH

χBχH
ζBχH − ζHχB

tan λs +
χH − 1

χB − χH

χH
ζB

µ− χH − 1
ζBχH − ζHχB

χB. (6)

At 0 ≤ Fr < Frc the bicycle is unstable while at Fr > Frc it is asymptotically stable. The critical123

value Frc is on the boundary between the domains of the asymptotic stability and dynamic instability124

(weaving motion, [19,20,27]). 3
125

For instance, for the wheel base w = 1m the design proposed in [27] is determined by126

λs =
5π

180
rad, mH = 1kg, mB = 10kg, xB = 1.2m, xH = 1.02m, zB = −0.4m, zH = −0.2m. (7)

With (7) we find from (6) the critical Froude number and the corresponding critical velocity

Frc = 0.9070641497, vc = 2.841008324m/s (8)

that reproduce the original result obtained numerically in [27].127

3 Notice that in the recent work [35] a comprehensive analysis of the Lienard -Chipart conditions for the TMS-bicycle reduced
self-stable designs to just two classes corresponding to either positive or negative angles λs and excluded backward stability
for the TMS model. Here we limit our analysis to the (λs > 0)-class of the self-stable TMS bikes.
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2.4. Minimizing the spectral abscissa of general TMS bikes128

The criterion (5) guarantees asymptotic stability of the bicycle at Fr > Frc. However, the character129

of time dependence of the steering and leaning angles could be different at different points within130

the domain of asymptotic stability. Indeed, complex eigenvalues with negative real parts correspond131

to exponentially decaying oscillatory motions whereas negative real eigenvalues yield exponential132

decay of perturbations without oscillations. Recall that if all the eigenvalues of the system are real133

and negative, the system is heavily damped [36,37]. If we wish that the deviations from the straight134

vertical position of the heavily damped TMS bike riding along a straight line also quickly die out, we135

need to maximize the decay rates of the deviations in the following sense.136

The abscissa of the polynomial p(s) is the maximal real part of its roots

a(p) = max {Re s : p(s) = 0} .

Minimization of the spectral abscissa over the coefficients of the polynomial provides a polynomial
with the roots that have minimal possible real parts (maximal possible decay rates). In the case of
the system of coupled oscillators of the form (1) it is known that the global minimum of the spectral

abscissa is amin = ω0, where ω0 = − 4
√

det P
det M [38,39]. Knowing the coefficients of the characteristic

polynomial (4) it is easy to find that for the TMS bicycle

ω0 = − 4

√
1

ζ2
B

ζB tan λs + µ(χH − 1)
ζH tan λs − (χH − 1)

. (9)

Remarkably, if s = ω0 is the minimum of the spectral abscissa, it is the 4-fold root of the fourth-order
characteristic polynomial (3) which is the quadruple negative real eigenvalue with the Jordan block of
order 4 of the linear operator Ms2 + Vs + P [17,38]. In this case the polynomial (3) takes the form

p(s) = (s−ω0)
4 = s4 − 4s3ω0 + 6s2ω2

0 − 4sω3
0 + ω4

0, ω4
0 =

a4

a0
=

det P
det M

. (10)

Comparing (3) and (10) we require that137

a1 = Fr(ζBχH − ζHχB)ζB = −4ω0a0,

a3 = −Fr(χB − χH)ζB = −4ω3
0a0.

Dividing the first equation by the second one, we get the relation

ζBχH − ζHχB
χB − χH

=
−1
ω2

0

that we resolve with respect to χB to obtain the following design constraint (or scaling law)

χB =
ω2

0ζB − 1
ω2

0ζH − 1
χH . (11)

Another constraint follows from the requirement a2 = 6ω2
0a0:

Fr2(ζB − ζH) + (6ω2
0ζHζB − ζB − ζH) tan λs = ζ−1

B (χH − 1)(6ω2
0ζ2

B + µζH − ζB). (12)
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Figure 2. (Left) The growth rates for the benchmark TMS bicycle (7). (Right) The growth rates of the
optimized TMS bicycle with ζB = −0.4, ζH = −0.2, χB = 1.19, χH = 1.02, µ = 20.84626701, and λs =

0.8514403685 show that the spectral abscissa attains its minimal value amin = −1 at FrEP = 2.337214017
at the real exceptional point of order 4, EP4.

Let us optimize stability of the benchmark (7). Set, for example, ω0 = −1. Then, taking from
the benchmark (7) the parameters ζB = −0.4, ζH = −0.2, and χH = 1.02 we find from Eq. (11) that
χB = 1.19. With these values the constraint (12) is

− 0.432 tan λs − 0.0272 + 0.08Fr2 + 0.004µ = 0, (13)

the relation (9) yields
0.368 tan λs − 0.02µ− 0.0032 = 0, (14)

and the characteristic polynomial evaluated at s = −1 results in the equation

0.192 tan λs − 0.0048− 0.136Fr + 0.08Fr2 − 0.016µ = 0. (15)

The system (13)–(15) has a unique solution with the mass ratio µ > 0:

Fr = 2.337214017, µ = 20.84626701, λs = 0.8514403685.

This means that the optimized TMS bicycle attains the global minimum of the spectral abscissa at138

FrEP = 2.337214017 where all four eigenvalues merge into a quadruple negative real eigenvalue139

s = −1 with the Jordan block, Fig. 2(right). This eigenvalue we call a real exceptional point of order 4 and140

denote as EP4. For comparison we show in Fig. 2(left) the growth rates of a generic benchmark TMS141

bicycle (7).142

Why the location of the real EP4 is important? In [17] it was shown that this exceptional point143

is a Swallowtail singularity on the boundary of the domain of heavy damping inside the domain of144

asymptotic stability of a system with two degrees of freedom. Furthermore, the global minimum145

of the spectral abscissa occurs exactly at the Swallowtail degeneracy. In [17] it was shown that the146

EP4 ‘organizes’ the asymptotic stability and its knowledge helps to locate other exceptional points147

governing stability exchange between modes of a coupled system. Below we demonstrate this explicitly148

for the TMS bikes with χH = 1.149
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2.5. Self-stable and heavily damped TMS bikes with χH = 1150

2.5.1. The critical Froude number and its minimum151

Why χH = 1? First, both the benchmarks reported in [27] and their experimental realizations
have χH ≈ 1. Second, this choice leads to a dramatic simplification without affecting generality of our
consideration. Indeed, the expression (6) for the critical Froude number evaluated at χH = 1 reduces
to

Fr2
c =

ζB − ζH
ζB − χBζH

χB
χB − 1

tan λs. (16)

Choosing χH = 1 automatically makes Frc and the stability conditions (5) independent on the mass152

ratio µ. Additionally, the criteria (5) imply χB > 1 and |ζB| > |ζH |.153

Therefore, choosing χH = 1 reduces the dimension of the parameter space from 7 to 5. The154

self-stability of the (χH = 1)–bike depends just on Fr, χB, ζH , ζB, and λs.155

Given ζH , ζB, and λs find the minimum of the critical Froude number (16) as a function of χB. It
is easy to see that the minimum is attained at

χB =

√
ζB
ζH

(17)

and its value is equal to

Frmin =

√√
|ζB|+

√
|ζH |√

|ζB| −
√
|ζH |

tan λs. (18)

These results suggest that all the critical parameters for the (χH = 1)–bike can be expressed in a156

similar elegant manner by means of ζH , ζB, and λs only. Let us check these expectations calculating157

the location of the real exceptional point EP4 for the (χH = 1)–bike.158

2.5.2. Exact location of the real exceptional point EP4159

Indeed, with χH = 1 the expression (9) for the real negative quadruple eigenvalue at EP4 yields

ω0 = − 4

√
1

ζBζH
. (19)

The design constraint (11) reduces to the scaling law

χB =

√
ζB
ζH

(20)

which is nothing else but the minimizer (17) of the critical Froude number ! Solving simultaneously
the equation (12) and the equation p(ω0) = 0 we find explicitly the second design constraint that
determines tan λs at EP4:

tan λs =
ω2

0(ζB − ζH)

16ζH

(ζB + ζH)ω
2
0 − 6

(ζB + ζH)ω
2
0 − 2

. (21)

Finally, from the same system of equations we find that the Froude number at EP4, FrEP4 , is a root of
the quadratic equation(

ω2
0ζB − 1

)
Fr2

EP4
+ 2ω3

0ζBFrEP4 − (ω2
0ζB + 1) tan λs = 0, (22)

where ω0 is given by equation (19) and tan λs by equation (21).160
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Figure 3. (Upper left) The discriminant surface of the characteristic polynomial of the TMS-bike with
χH = 1, ζH = −0.2, and ζB = −0.4 showing the Swallowtail singularity at EP4. The cross-section of the

domain of asymptotic stability and the discriminant surface at (upper right) Fr = FrEP4 =
3
√

110
√

2−120
8 ,

(lower left) Fr = FrEP4 − 0.1 and (lower right) Fr = FrEP4 + 0.5.

Table 2. TMS bike designs with χH = 1

Bike χH χB ζH ζB ω0 λs (rad.) Frc FrEP

EP4 1
√

2 −0.2 −0.4 −
√

5
4√2

arctan
(

15
4 −

75
32

√
2
) √

30
√

2+120
8

3
√

110
√

2−120
8

2EP2 1
√

2 −0.2 −0.4 −
√

5
4√2

arctan
(

15
4 −

75
32

√
2
)
− 0.05 ≈ 1.482682090 ≈ 2.257421384

CEP2 1
√

2 −0.2 −0.4 −
√

5
4√2

arctan
(

15
4 −

75
32

√
2
)
+ 0.80 ≈ 3.934331969 ≈ 4.103508160

Let us take ζH = −0.2 and ζB = −0.4 as in the benchmark (7). Then (20), (21), and (22) locate the
EP4 in the space of the parameters giving (Table 2)

χB =
√

2, tan λs =
15
4
− 75

32

√
2, FrEP4 =

3
√

110
√

2− 120
8

≈ 2.236317517.
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Figure 4. χH = 1, ζH = −0.2, and ζB = −0.4. (Left) For χB =
√

2 the boundary between the domains
of weaving and asymptotic stability in the (Fr, λs) - plane shown together with the domain of heavy

damping that has a cuspidal point corresponding to a negative real eigenvalue ω0 = − 4
√

25
2 with the

Jordan block of order four (EP4). The EP4 belongs to a curve (23) that corresponds to (dashed part)
conjugate pairs of double complex eigenvalues with the Jordan block of order two (complex EP2) and
(solid part) to couples of double real negative eigenvalues with the Jordan block of order two (2EP2).

(Right) The same in the (Fr, χB)–plane at λs = arctan
(

15
4 −

75
32

√
2
)

rad. The domain of heavy damping
degenerates into a singular point - the Swallowtail singularity.

2.5.3. Discriminant surface and the EP-set161

The located EP4 corresponds to a quadruple negative real eigenvalue s = ω0 = −
√

5
4√2

. It is known162

that EP4 is the Swallowtail singular point on the discriminant surface of the fourth-order characteristic163

polynomial [17]. In Fig. 3 the discriminant surface is plotted in the (Fr, χB, λs) –space for the TMS-bike164

with χH = 1, ζH = −0.2, and ζB = −0.4 showing the Swallowtail singular point with the position165

specified by the first line of the Table 2. The discriminant surface has two cuspidal edges as well as166

the line of self-intersection branching from the EP4. These singularities belong to the boundary of a167

domain with the shape of a trihedral spire. This is the domain of heavy damping. In its inner points all168

the eigenvalues are real and negative [17].169

We see that the line of self-intersection lies in the plane χB =
√

ζB
ζH

. Restricted to this plane
(parameterized by Fr and λs) the discriminant of the characteristic polynomial (3) simplifies and
provides the following expression for the curve that contains the line of self-intersection of the
discriminant surface

Fr =
ω2

0ζB − 1
ω2

0ζB + 1
2 tan λs√

ω4
0ζB + 4 tan λs

ω2
0ζB−1

ω2
0ζB+1

. (23)

In Fig. 4(left) the curve (23) is plotted for χH = 1, ζH = −0.2, ζB = −0.4 and χB =
√

2 in the170

(Fr, λs)–plane. A point where this curve has a vertical tangent is the Swallowtail singularity or171

EP4. The part of the curve below the EP4 is a line of self-intersection of the discriminant surface172

corresponding to a pair of different negative double real eigenvalues with the Jordan block, i.e. to a173

couple of real exceptional points which we denote as 2EP2.174

The curve (23) continues, however, also above the EP4. This part shown by a dashed line in175

Fig. 4(left) is the set corresponding to conjugate pairs of complex double eigenvalues with the Jordan176

block, or complex exceptional points that we denote as CEP2. Since the curve (23) is a location of three177
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instability

(Capsizing)

EP3

Fr

Asymptotic stability

Heavy damping

Dynamic 

instability

(Weaving)

EP3

EP3

22EP
c

Fr

Figure 5. χH = 1, ζH = −0.2, and ζB = −0.4. (Left) For χB =
√

2− 0.1 the boundary between the
domains of weaving and asymptotic stability in the (Fr, λs) - plane shown together with the domain
of heavy damping that has a cusp corresponding to a negative real eigenvalue with the Jordan block
of order three (EP3). The EP3 belongs to the cuspidal edge of the swallowtail surface bounding the

domain of heavy damping. (Right) The same in the (Fr, χB)-plane at λs = arctan
(

15
4 −

75
32

√
2
)
− 0.18

rad. Notice the cuspidal EP3-points and the self intersection at the 2EP2 point on the boundary of the
domain of heavy damping.

types of exceptional points we call it the EP-set. Notice that the codimension of the EP-set is 2 and by178

this reason its location by numerical approaches is very non-trivial.179

2.5.4. Location of the EP-set and stability optimization180

What the location of the EP-set means for the stability of the TMS bike? Drawing the domain of181

asymptotic stability together with the discriminant surface and the EP-set in the same plot, we see that182

the EP-set lies entirely in the domain of asymptotic stability, Fig. 4. The 2EP2 part of the EP-set bounds183

the domain of heavy damping in the plane χB =
√

ζB
ζH

=
√

2.184

Look now at the cross-sections of the asymptotic stability domain and the discriminant surface in185

the (χB, λs)–plane, Fig. 3. Remarkably, the value χB =
√

ζB
ζH

=
√

2 is a maximizer of the steer axis tilt186

λs both at the onset of the weaving instability and at the boundary of the domain of heavy damping.187

In the latter case the maximum is always attained at a singular point in the EP-set: either at EP4 when188

Fr = FrEP4 or at 2EP2 when Fr > FrEP4 . The global maximum of the steer axis tilt on the boundary of189

the domain of heavy damping is attained exactly at EP4 which is also the point where the spectral190

abscissa attains its global minimum. Taking into account that χB =
√

ζB
ζH

=
√

2 is a minimizer of the191

critical Froude number that is necessary for asymptotic stability, we conclude that the both of the192

design constraints, (20) and (21), play a crucial part in the self-stability phenomenon:193

The most efficient self-stable TMS bikes are those that have better chance to operate in the heavy damping
domain and simultaneously have the minimal possible spectral abscissa. In the case when χH = 1, these bikes
should necessarily follow the scaling laws

χB =

√
ζB
ζH

and 0 < tan λs ≤
ω2

0(ζB − ζH)

16ζH

(ζB + ζH)ω
2
0 − 6

(ζB + ζH)ω
2
0 − 2

, where ω0 = − 4

√
1

ζBζH
. (24)

194
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Even in the case of an approximate scaling law χB ≈
√

ζB
ζH

the domain of heavy damping is195

large enough, Fig. 5, suggesting that the formulated principle produces sufficiently robust design of196

self-stable TMS bikes.197

2.5.5. Mechanism of self-stability and CEP2 as a precursor to bike’s weaving198

What happens with the stability of TMS bicycles that have large steer axis tilt? To answer this199

question let us look at the movement of eigenvalues in the complex plane at different λs and χB as the200

Froude number increases from 0 to 5, Fig. 6. At Fr = 0 the bicycle is effectively an inverted pendulum201

which is statically unstable (capsizing instability [20]) with two real negative eigenvalues and two202

real positive eigenvalues. As Fr increases the positive eigenvalues move towards each other along the203

real axis. The same happens (at a slower rate) with the negative eigenvalues. Eventually, the positive204

real eigenvalues merge into a double real eigenvalue s = −ω0 > 0. The subsequent evolution of205

eigenvalues depends on χB and λs.206

If χB =
√

ζB
ζH

=
√

2 then with the further increase in Fr the double eigenvalue s = −ω0 > 0 splits207

into a conjugate pair of complex eigenvalues with positive real parts causing weaving instability. This208

pair evolves along a circle (Re s)2 + (Im s)2 = ω2
0 and crosses the imaginary axis exactly at Fr = Frc209

given by equation (16), which yields the asymptotic stability of the bicycle.210

The further evolution of the eigenvalues depends on the steer axis tilt λs, Fig. 6. If λs satisfies211

the constraint (21) then the complex eigenvalues with the negative real parts moving along the circle212

approach the real axis and meet the two negative real eigenvalues exactly at Fr = FrEP4 forming a213

quadruple negative real eigenvalue s = ω0, i.e. the real exceptional point EP4. At this moment all the214

four eigenvalues are shifted as far as possible to the left from the imaginary axis, which corresponds215

to the global minimum of the spectral abscissa, Fig. 6(upper row). Further increase in Fr leads to the216

splitting of the multiple eigenvalue into a quadruplet of complex eigenvalues with negative real parts217

(decaying oscillatory motion) and to the increase in the spectral abscissa.218

If χB =
√

ζB
ζH

=
√

2 and λs is smaller than the value specified by (21), then the pair moving along219

the circle reaches the real axis faster than the negative real eigenvalues meet each other, Fig. 6(middle220

row). Then, the complex eigenvalues merge into a double negative real eigenvalue s = ω0 which splits221

into two negative real ones that move along the real axis in the opposite directions. At these values of222

Fr the system has four simple negative real eigenvalues, which correspond to heavy damping. The223

time evolution of all perturbations is then the monotonic exponential decay, which is favorable for224

the bike robustness. At Fr = FrEP which is determined by the equation (23) two real negative double225

eigenvalues originate simultaneously marking formation of the 2EP2 singularity on the boundary of226

the domain of heavy damping. Further increase in Fr yields splitting of the multiple eigenvalues into227

two pairs of complex eigenvalues with negative real parts (decaying oscillatory motion).228

If χB =
√

ζB
ζH

=
√

2 and λs is larger than the value specified by (21), then the pair moving along229

the circle do it so slowly that the real negative eigenvalues manage to merge into a double negative230

real eigenvalue s = ω0 and then become a pair of two complex eigenvalues evolving along the same231

circle towards the imaginary axis, Fig. 6(lower row). The pairs of complex eigenvalues meet on the232

circle at Fr = FrEP which is determined by the equation (23), i.e. at a point of the EP-set corresponding233

to a pair of complex exceptional points EP2. After the collision the eigenvalues split into four complex234

eigenvalues with the real parts.235

From this analysis we see that λs indeed determines the balance of the rate of stabilization of236

unstable modes and the rate of destabilization of unstable modes. The former is larger when λs is237

smaller than the value specified by (21) and the latter is larger when λs exceeds the value specified238

by (21) thus confirming the design principle (24). The perfect balance corresponds to the angle λs239

specified by (21), which yields global minimization of the spectral abscissa.240

When χB 6=
√

ζB
ζH

, then the eigenvalues evolve close to the circle (Re s)2 + (Im s)2 = ω2
0 but this241

evolution again differs for different values of λs. If for λs smaller than the value specified by (21) the242
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2.322.252.18
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Re s EP4
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EP2

EP2

EP2

EP2

2.322.252.18

Fr

Re s

Heavy damping

EP2

EP2

Im s

Re s 50 Fr

Re s
Complex EP2

Figure 6. χH = 1, ζH = −0.2, ζB = −0.4. Stabilization of the TMS bike as Fr is increasing from 0 to

5 for (upper row) λs = arctan
(

15
4 −

75
32

√
2
)

rad., (middle row) λs = arctan
(

15
4 −

75
32

√
2
)
− 0.05 rad.,

and (lower row) λs = arctan
(

15
4 −

75
32

√
2
)
+ 0.8 rad. The eigenvalue curves are shown for (black)

χB =
√

2, (blue) χB =
√

2− 0.01, and (red) χB =
√

2 + 0.01 in the upper and middle rows and for
(black) χB =

√
2, (blue) χB =

√
2− 0.1, and (red) χB =

√
2 + 0.1 in the lower row. Notice the existence

at χB =
√

2 of (upper row) a real exceptional point EP4, (middle row) a couple of real exceptional
points EP2, and (lower row) a couple of complex exceptional points EP2 and repelling of eigenvalue
curves near EPs when χB 6=

√
2.
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38 20

23

44

20

Figure 7. Experimental realization of a self-stable TMS bicycle design found by trials and errors in
[18,27] with χB = 1.526, χH = 0.921, ζB = −1.158, ζH = −0.526 approximately fits the scaling law (20).

Indeed,
√

ζB
ζH

= 1.484 is close to χB = 1.526.

eigenvalue evolution remains qualitatively the same, as is evident from Fig. 6(middle row), for λs243

larger than the value specified by (21) the eigenvalues experience strong repulsion near the location244

of CEP2, i.e. when the parameters evolve close to the EP-set of complex exceptional points. Such245

behavior of eigenvalues in dissipative systems permanently intrigues many researchers. For instance,246

Jones [13] remarked in the context of the stability of the plane Poiseuille flow that “unfortunately, it is247

quite common for an eigenvalue which is moving steadily towards a positive growth rate to suffer248

a sudden change of direction and subsequently fail to become unstable; similarly, it happens that249

modes which initially become more stable as [the Reynolds number] increases change direction and250

subsequently achieve instability. It is believed that these changes of direction are due to the nearby presence251

of multiple-eigenvalue points.” This ‘nearby presence’ of complex exceptional points is elusive unless252

we manage to locate the EP-set. For the TMS bike we have obtained this set in the explicit form given253

by equations (19), (20), and (23). Dobson et al. [14] posed a question “is strong modal resonance254

a precursor to [oscillatory instability]?” The strong modal resonance is exactly the interaction of255

eigenvalues at CEP2 shown in Fig. 6(lower row). Knowing the exact location of the EP-set of complex256

exceptional points we can answer affirmatively to the question of Dobson et al. Indeed, the complex257

EP-set shown as a dashed curve in Fig. 4(left) tends to the boundary of asymptotic stability as λs → π
2 .258

This means that the CEP2 in Fig. 6(lower row) come closer to the imaginary axis at large λs and259

even small perturbations in χB can turn the motion of eigenvalues back to the right hand side of the260

complex plane and destabilize the system. Fig. 6(lower row) also demonstrates the selective role of261

the scaling law χB =
√

ζB
ζH

in determining which mode becomes unstable. The conditions χB >
√

ζB
ζH

262

and χB <
√

ζB
ζH

affect modes with the higher or the lower frequency, respectively. In fact, in the263

limit λs → π
2 the dissipative system becomes close to a system with a Hamiltonian symmetry of264

the spectrum. This could be a reversible, Hamiltonian or PT-symmetric system [9,10,12,32] which265

is very sensitive to perturbations destroying the fundamental symmetry and therefore can easily be266

destabilized.267
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2.5.6. How the scaling laws found match the experimental TMS bike realization268

In Fig. 7 we show the photograph of the experimental TMS bike from the work [27], see also [18].
If we measure the lengths of the bike right on the photo, we can deduce that for this realization the
design parameters are χB = 1.526, χH = 0.921, ζB = −1.158, ζH = −0.526. Hence,√

ζB
ζH

= 1.484 ≈ χB = 1.526,

which means that the scaling law (20) is matched pretty well. This leads us to the conclusion that269

the trial-and-error engineering approach to the design of a self-stable TMS bike reported in [27] has270

eventually produced the design that is close to the optimally stable with respect to at least three271

different criteria: minimization of the spectral abscissa, minimization of Frc and maximization of272

the domain of heavy damping. Indeed, our scaling laws (20) and (21) directly follow from the exact273

optimal solutions to these problems.274

3. Conclusions275

We have found new scaling laws for the two-mass-skate (TMS) bicycle that lead to the design of276

self-stable machines. These scaling laws optimize stability of the bicycle by several different criteria277

simultaneously. The matching of the theoretical scaling laws to the parameters of the TMS bikes278

realization demonstrates that the trial-and-error engineering of the bikes selects the most robustly279

stable species and thus empirically optimizes the bike stability. We have found the optimal solutions280

directly from the analysis of the sets of exceptional points of the TMS bike model with the help of a281

general result on the global minimization of the spectral abscissa at an exceptional point of the highest282

possible order. We stress that all previous results on the self-stability of bicycles even in the linear case283

have been obtained numerically.284
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