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Abstract

We construct, estimate and explore the monetary policy consequences of a New Key-

nesian (NK) behavioural model with bounded-rationality and heterogeneous agents. We

radically depart from most existing models of this genre in our treatment of bounded ratio-

nality and learning. Instead of the usual Euler learning approach, we assume that agents

are internally rational (IR) given their beliefs of aggregate states and prices. The model is

inhabited by fully rational (RE) and IR agents where the latter use simple heuristic rules

to forecast aggregate variables exogenous to their micro-environment. We find that IR re-

sults in an NK model with more persistence and a smaller policy space for rule parameters

that induce stability and determinacy. In the most general form of the model, agents learn

from their forecasting errors by observing and comparing them with those under RE making

the composition of the two types endogenous. In a Bayesian estimation with fixed propor-

tions of RE and IR agents and a general heuristic forecasting rule we find that a pure IR

model fits the data better than the pure RE case. However, the latter with imperfect rather

than the standard perfect information assumption outperforms IR (easily) and RE-IR com-

posites (slightly), but second moment comparisons suggest that the RE-IR composite can

match data better. Our findings suggest that Kalman-filtering learning with RE can match

bounded-rationality in matching persistence seen in the data.
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1 Introduction

This paper constructs, estimates and explores the monetary policy consequences of a New

Keynesian (NK) behavioural model with bounded-rationality and heterogeneous agents. It

departs from existing models of this genre in its approach to bounded rationality and learning.

There are broadly two choices made by the learning literature at this point: Euler learning

or internal rationality. The first, Euler learning (EL), follows the pioneering work of Evans

and Honkapohja (2001) and assumes, in the case of households, that agents forecast their own

consumption decision next period. Furthermore they know the minimum state variable (MSV)

form of the equilibrium (equivalent to the saddle-path under rational expectations) and use

direct observations or VAR estimates of these states to update their estimates each period

using a discounted least-squares estimator. Then a statistical learning equilibrium is one where

this perceived law of motion and the actual one coincide. For firms the same applies except the

decision is on prices made by firms who are no longer locked into a contract.

Although this form of bounded rationality responds to what many regard as an extreme

assumption of model-consistent expectations, the departure is only a modest one in that agents

still need to know the MSV form of the equilibrium. The defining characteristic of behavioural

macro-models is to limit the cognitive skills of at least a group of agents in the model and this

is achieved by introducing simple ‘heuristic’ learning rules. However this raises the opposite

concern regarding the bounds on bounded rationality: with heuristic rules agents may fall

considerably short of building rational expectations and such models are particularly vulnerable

to the Lucas critique when policy scenarios are studied. The problem is that agents can depart

from rationality in an infinite number of ways leading into the ‘wilderness’ of Sims (1980).

In response to the wilderness concern, the literature on behavioural models adopts a basic

general framework pioneered by Brock and Hommes (1997). To limit the departure from ra-

tionality and rule out stupid behaviour the approach of reinforcement learning proposes that,

although adaptation can be slow and there can be a random component of choice, the higher

the ‘payoff’ (defined appropriately) from taking an action in the past, the more likely it will be

taken in the future.1

The alternative approach to learning adopted in this paper assumes that agents are inter-

nally rational (IR) given their beliefs of aggregate states and prices which are exogenous to

their decisions.2 As with the Euler equation approach, agents cannot form model-consistent

expectations and instead learn about these variables using their knowledge of the MSV form

of the equilibrium. The two approaches then differ with respect to what agents learn about -

their own decisions in the first approach, and variables exogenous to the agents in the second

1See Young (2004) for a general treatment of this approach.
2See Adam and Marcet (2011) who apply the concept to asset-pricing, Eusepi and Preston (2011) for an

RBC model with IR, Woodford (2013) who adopts a similar NK framework as in this paper and Branch and
McGough (2016) for a recent discussion of of IR, also referred to as the ‘infinite time-horizon approach to learning’.
We adopt the general definition of internal rationality used in the first paper: namely that “agents maximize
utility under uncertainty, given their constraints and given a consistent set of probability beliefs about payoff-
relevant variables that are beyond their control or external”. Then beliefs can take the form of a well-defined
probability measure over a stochastic process (the ‘fully Bayesian’ plan), or they can adopt an ‘anticipated utility’
framework of Kreps (1998). Adam and Marcet (2011) adopt the former approach whereas this paper and the
other applications mentioned adopt the latter. Cogley and Sargent (2008) compares the two and encouragingly
find that anticipated utility can be seen as a good approximation to fully Bayesain optimization.
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approach.3

Proceeding to the linearization about a deterministic steady state, as is usual in the litera-

ture, we show that if we require non-rational agents in the model to forecast only macro-variables

exogenous to their decision rules, EL of Evans and Honkapohja (2001) then makes two implicit

assumptions: agents (1) know they are all identical and (2) observe the state vector including

the shock processes. Our formulation, by contrast, makes neither of these assumptions. We

adopt heuristic rules for IR agents which can be thought of as parsimonious forms of forecasting

rules (as in Branch and Evans (2011)) which, for sophisticated agents, would take the form of

high-order VARs. This, we argue, fits well the behavioural approach of assuming agents in the

model with limited cognitive skills.

The main contributions of this paper are as follows: first, we start with the full non-linear

formulation to provide rigorous foundations for NK behavioural models based on rational ex-

pectations (RE) or internal rationality (IR) without assumptions (1) and (2) above; second, we

examine empirically the support for a composite RE-IR model of the Brock-Hommes variety by

Bayesian estimation; third, in our comparisons of different composites including the pure RE

and IR cases, we impose what we term informational consistency where RE and IR agents in

the model share the same information as the econometrician estimating the model.

The nearest paper to ours is Massaro (2013) which presents a calibrated composite het-

erogeneous expectations model of RE and IR-anticipated-utility agents. As in our paper he

emphasizes the need for policymakers to design robust rules that stabilize the economy across

different composite models; but here we focus on the informational assumptions made by the

two sets of agents and we seek empirical support for the modelling choices. We also relax an

implied assumption in his and other models of this genre, that the two groups of agents do not

lend to each other thus leading to a wealth distribution.4

The rest of the paper is structured as follows. Section 2 sets out the standard linear NK

RE model used in the literature and then proceeds to the Brock-Hommes composite model of

rational and boundedly rational agents. Section 3 goes back to the non-linear foundations of

the model and demonstrates why assumption (1) above is required in the Euler learning set-up.

Section 4 examines the information assumptions that are made explicitly or implicitly in the

RE and boundedly rational forms of the NK model. Section 5 sets out our IR model with

heuristic adaptive expectations forecasting rules. Then Section 6 provides numerical results

on the dynamic properties of three possible models of expectations, rational (RE), boundedly

rational with Euler learning (EL) and boundedly but internally rational (IR).5 This section

assumes homogeneous expectations for which all agents (households and firms) form either RE or

IR or EL or expectations. Then in Section 7 we introduce heterogeneity in a full Brock-Hommes

NK model with a composite model of IR and RE agents allowing for a wealth distribution

between the two groups. Section 8 estimates the latter, alongside the pure IR and RE models by

Bayesian methods, and conducts a likelihood race. This section estimates the behavioural model

3See Graham (2011) for a discussion of this distinction.
4IR also fits into the Agent-Based Modelling (ABM) framework: Sinitskaya and Tesfatsion (2014) introduce

forward-looking optimizing agents into an ABM model. They use essentially the IR concept which they refer to
as constructive rational decision-making. This results in a novel AB macro-model in having internally rational
optimizers: households maximize expected intertemporal utility over an infinite time-horizon and firms do the
same with their utility being taken as profit.

5Jump and Levine (2017) provides analytical results for stability.
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in which the adaptive expectations assumption used by IR agents is generalized to a heuristic

forecasting rule. The section provides alternative estimation results imposing different fixed

proportions of rational agents. It first assumes RE agents have perfect information regarding

current state variables. Then it adds an additional learning mechanism assuming that RE

agents do not observe all current state variables and only have an imperfect information set.

Section 9 examines the ability of these estimated variants of the NK model to match the second

moments in the data. Section 10 examines the impulse response functions of the estimated

model and discusses endogenous persistence. Section 11 concludes the paper. A summary of

the full non-linear model is set out in a separate on-line Appendix which also contains details

of the estimation results and the imperfect information solution procedure.

2 The Standard NK Behavioural Model

This section discusses the standard New Keynesian behavioural model framework used by Jang

and Sacht (2012), Jang and Sacht (2014), De Grauwe (2012a), De Grauwe (2012b), Branch and

McGough (2010), Massaro (2013), Cornea et al. (2014), Di Bartolomeo et al. (2016) and others.

2.1 The Workhorse NK Model

We first set out the most basic three-equation linearized workhorse NK model with RE

yt = Etyt+1 − (rn,t − Etπt+1) + u1,t (1)

πt = βEtπt+1 + λyt + u2,t (2)

rn,t = ρrrn,t−1 + (1− ρr)(θππt + θyyt) + u3,t (3)

where yt, πt and rn,t are the output gap, the inflation rate and the nominal interest rate re-

spectively. All variables are expressed in log-deviation form about the steady state. The shock

processes ui,t , i = 1, 2, 3 should be interpreted as exogenous shocks to demand (or preferences),

the supply side and monetary policy respectively and are usually AR(1) processes.6 Expecta-

tions up to now are formed assuming RE and perfect information of the state vector (which

includes the shock processes). Equation (1) is the linearized Euler equation for consumption

which is equated with output in equilibrium (there is no government expenditure). (2) is the

NK Phillips curve and (3) is the nominal interest rate rule in ‘implementable form’ in that it

responds to output relative to the steady state rather than the output gap.

Before relaxing the RE assumption two points about this formulation need to be made.

First, there are no the lagged term in yt in the demand curve (1) nor a lagged term in πt

in the Phillips curve (2). These can enter through the introduction of external habit in the

consumers’ utility function and price indexing respectively. But we choose to focus on learning

as a persistence mechanism, so both these features are omitted. Second, the linearization even

without these persistence terms is only correct about a zero-inflation steady state.

6In fact, the supply side shock is a composite of technology and marginal cost processes in the model developed
in this paper. The AR(1) feature of shock processes is criticized by De Grauwe (2012b) as it implies persistence is
exogenously generated. This paper addresses this critique in developing strong endogenous mechanisms through
learning.
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2.2 The Brock-Hommes Behavioural NK Model

In the Brock-Hommes framework, which we later follow, the model becomes behavioural by a

departure from the RE assumption and the introduction of two groups of agents. One group is

rational and the other forms expectations through simple ‘heuristic’ learning rules. RE agents

form model-consistent expectations fully aware of the existence of IR agents in the composite

model. General adaptive learning rules7 that encompass those adopted by Brock and Hommes

(1997), Hommes (2013), Branch and McGough (2010), De Grauwe (2012b), and De Grauwe

(2012a) are

E∗t yt+1 = E∗t−1yt + λy(yt−j − E∗t−1yt) ; λy ∈ [0, 1], j = 0, 1 (4)

E∗tπt+1 = E∗t−1πt + λπ(πt−j − E∗t−1πt) ; λπ ∈ [0, 1], j = 0, 1 (5)

where we can in principle allow for both current and lagged observations of output and inflation,

j = 0, 1, respectively. Throughout the rest of the paper we make the following information

assumptions: for observations of aggregate output and inflation, j = 1, which is assumed in

the EL approach. Later in the IR approach we need to model observations of market-specific

variables consisting of factor prices, profits and marginal costs. These we assume can be observed

without a lag and therefore j = 0.

Let ny,t, nπ,t be the proportions of rational agents forecasting output and inflation respec-

tively. The IS and NK equations then become

yt = ny,tEtyt+1 + (1− ny,t)E∗t yt+1 − [rn,t − (nπ,tEtπt+1 + (1− nπ,t)E∗tπt+1)] + u1,t (6)

πt = β[nπ,tEtπt+1 + (1− nπ,t)E∗tπt+1] + λ(yt − yFt ) + u2,t (7)

To complete the model we need expressions for the weights ny,t and nπ,t. These follow the

reinforcement learning literature by choosing probabilities

nx,t =
exp(−γΦRE

x,t ({xt}))
exp(−γΦRE

x,t ({xt})) + exp(−γΦAE
x,t ({xt}))

(8)

where ΦRE
x,t ({xt)}) and ΦAE

x,t ({xt)}) are ‘fitness’ measures respectively of the forecast performance

of the rational and non-rational predictor of outcome {xt} = {yt}, {πt} given by a discounted

least squares error predictor

ΦRE
x,t ({xt}) = µREΦRE

x,t−1({xt}) + (1− µRE)([xt − Et−1 xt]
2 + Cx) (9)

ΦAE
x,t ({xt}) = µAEΦAE

x,t−1({xt}) + (1− µAE)[xt−j − E∗t−1−j xt−1]2 ; j = 0, 1 (10)

where Cx represents the relative costs of being rational in learning about variable xt. Thus the

proportion of rational agents in the steady state is given by

nx =
exp(−γCx)

exp(−γCx) + 1

7Anufriev et al. (2015) provide lab-based support for such rules.
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which is pinned down by the γCx. Equations (3) and (4) – (10) constitute the linearized NK

behavioural model.8

3 The Non-Linear New Keynesian Model

So far in the linearized model the justification for the form of adaptive forecasts needs to be

established. In order to address this we step back to the underlying non-linear model and

introduce the distinction between internal decisions and aggregate macro-variables. We start

with the non-linear RE model and proceed from full to bounded rationality in stages.

3.1 Households

Household j chooses between work and leisure and therefore how much labour it supplies. Let

Ct(j) be consumption and Ht(j) be the proportion of this available for work or leisure spent

at the former. The single-period utility we choose, compatible with a balanced growth steady

state, is

Ut(j) = U(Ct(j), Ht(j)) = log(Ct(j))−
Ht(j)

1+φ

1 + φ

and the value function of the representative household at time t dependent on its assets B is

given by

Vt(j) = Vt(Bt−1(j)) = Et

[ ∞∑
s=0

βsU(Ct+s(j), Ht+s(j))

]
(11)

The household’s problem at time t is to choose paths for consumption {Ct(j)}, labour supply

{Ht(j)} and holdings of financial savings to maximize Vt(j) given by (11) given its budget

constraint in period t

Bt(j) = RtBt−1(j) +WtHt(j) + Γt − Ct(j)− Tt (12)

where Bt(j) is the given net stock of financial assets at the end of period t, Wt is the wage rate,

Tt are lump-sum taxes, Γt are profits from wholesale and retail firms owned by households and

Rt is the real interest rate paid on assets held at the beginning of period t given by

Rt =
Rn,t−1

Πt

where Rn,t and Πt are the nominal interest and inflation rates respectively. Wt, Rn,t, Πt and Γt

are all exogenous to household j. As usual all real variables are expressed relative to the price

of final output. The standard first order conditions are

Et [Λt,t+1(j)Rt+1] = 1

8De Grauwe (2012b), and De Grauwe (2012a) construct a rather different composite EL-type model consisting
of ‘fundamentalist’ rather than rational agents alongside adaptive learners. For the former RE E(·) are replaced
with Efyt+1 = yFt and Efπt+1 = 0. Thus fundamentalists always believe next period’s output gap is zero and
the net inflation rate will return to its steady-state value of zero. The same author also assumes Cx = 0 in (9).
Aurissergues (2017) studies a composite model closer to that in our paper, but again in an EL framework, where
non-RE agents learn the autocorrelation of endogenous variables. He shows that these agents can actually form
better forecasts and dominate in the long run through switching.
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UH,t(j)

UC,t(j)
= −Wt

where Λt,t+1(j) ≡ β
UC,t+1(j)
UC,t(j)

is the stochastic discount factor for household j, over the interval

[t, t+ 1]. For our choice of utility function UC,t = 1
Ct

and UH,t = −Hφ
t so these become

1

Ct(j)
= βEt

[
Rt+1

Ct+1(j)

]
(13)

Ct(j)Ht(j)
φ = Wt ⇒ Ht(j) =

(
Wt

Ct(j)

) 1
φ

(14)

We now express the solution in a form suitable for moving from a RE to a learning equilibrium.

Solving (12) forward in time and imposing the transversality condition on debt we can write

Bt−1(j) = PVt(Ct(j))− PVt(WtHt(j))− PVt(Γt) + PVt(Tt) (15)

where the present (expected) value of a series {Xt+i}∞i=0 at time t is defined by

PVt(Xt) ≡ Et
∞∑
i=0

Xt+i

Rt,t+i
=
Xt

Rt
+

1

Rt
PVt+1(Xt+1) (16)

writing Rt,t+i ≡ RtRt+1Rt+2 · · ·Rt+i as the real interest rate over the interval [t− 1, t+ i].

The forward-looking budget constraint (15) holds for the representative household. In ag-

gregate because agents only borrow from or lend to one another there is no net debt so Bt−1 = 0.

Then in a symmetric equilibrium with Ct(j) = Ct and Ht(j) = Ht, (15) and (14) become

PVt(Ct) = PVt

W 1+ 1
φ

t

C
1
φ

t

+ PVt(Γt)− PVt(Tt)

Ht =

(
Wt

Ct

) 1
φ

Solving (13) forward in time and using the law of iterated expectation we have for i ≥ 1

1

Ct
= βiEt

[
Rt+1,t+i

Ct+i

]
; i ≥ 1 (17)

We now express the solution to the household optimization problem for Ct and Ht that

are functions of point expectations {E∗tWt+i}∞i=1, {E∗tRt+1,t+i}∞i=1 and {E∗tΓt+i}∞i=0 treated as

exogenous processes given at time t. With point expectations we use (17) to obtain the following

optimal decision for Ct+i given point expectations E∗tRt+1,t+i

Ct+i = Ctβ
iE∗tRt+1,t+i ; i ≥ 1 (18)

E∗t (Wt+iHt+i) =
(E∗tWt+i)

1+ 1
φ

C
1
φ

t+i

(19)

Substituting (18) and (19) into the forward-looking household budget constraint, using
∑∞

i=0 β
i =

6



1
1−β and E∗tRt,t+i = RtE∗tRt+1,t+i for i ≥ 1 , we arrive at

Ct
(1− β)

=
1

C
1
φ

t

(
W

1+ 1
φ

t +

∞∑
i=1

(β
1
φ )−i

(
E∗tWt+i

E∗tRt+1,t+i

)1+ 1
φ

)

+ Γt − Tt +
∞∑
i=1

E∗t (Γt+i − Tt+i))
E∗tRt+1,t+i

which can be written in recursive form as

Ct
(1− β)

=
1

C
1
φ

t

(
W

1+ 1
φ

t + Ω1,t

)
+ Γt − Tt + Ω2,t (20)

Ω1,t ≡
∞∑
i=1

(β
1
φ )−i

(
E∗tWt+i

E∗tRt+1,t+i

)1+ 1
φ

= (β
1
φ )−1

(
E∗tWt+1

E∗tRt+1,t+1

)1+ 1
φ

+
Ω1,t+1

β
1
φE∗tRt+1

Ω2,t ≡
∞∑
i=1

E∗t (Γt+i − Tt+i)
E∗tRt+1,t+i

=
E∗t (Γt+1 − Tt+1)

E∗tRt+1,t+1
+

Ω2,t+1

E∗tRt+1

Consumption is then given by (20) assuming point expectations or by the symmetric form

of the Euler equation (13) under full rationality (i.e. households know symmetric nature of

equilibrium with Ct(j) = Ct). Ct is a function of non-rational point expectations {E∗tWt+i}∞i=1,

{E∗tRt,t+i}∞i=i and {E∗tΓt+i}∞i=1 treated as exogenous processes given at time t as opposed to ratio-

nal model-consistent expectations {EtWt+i}∞i=0 etc. Since Etf(Xt) ≈ f(Et(Xt)); Etf(XtYt)) ≈
f(Et(Xt)Et(Yt)) up to a first-order Taylor-series expansion, assuming point expectations is

equivalent to using a linear approximation (given below) as is usually done in the literature.

3.2 Firms

Wholesale firms employ a Cobb-Douglas production function to produce a homogeneous output

Y W
t = F (At, Ht) = AtH

α
t

where At is total factor productivity. Profit-maximizing demand for labour results in the first

order condition

Wt =
PWt
Pt

FH,t = α
PWt
Pt

Y W
t

Ht
(21)

The retail sector costlessly converts a homogeneous wholesale good into a basket of differentiated

goods for aggregate consumption

Ct =

(∫ 1

0
Ct(m)(ζ−1)/ζdm

)ζ/(ζ−1)

(22)

where ζ is the elasticity of substitution. For each m, the consumer chooses Ct(m) at a price

Pt(m) to maximize (22) given total expenditure
∫ 1

0 Pt(m)Ct(m)dm. Assuming government ser-

vices are similarly differentiated, this results in a set of demand equations for each differentiated
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good m with price Pt(m) of the form

Yt(m) =

(
Pt(m)

Pt

)−ζ
Yt (23)

where Pt =
[∫ 1

0 Pt(m)1−ζdm
] 1

1−ζ
. Pt is the aggregate price index. Ct and Pt are Dixit-Stigliz

aggregates – see Dixit and Stiglitz (1977).

Following Calvo (1983), we assume that there is a probability of 1 − ξ at each period that

the price of each retail good m is set optimally to POt (m). If the price is not re-optimized,

then it is held fixed. For each retail producer m, given its real marginal cost MCt =
PWt
Pt

, the

objective is at time t to choose {POt (m)} to maximize discounted real profits

Et
∞∑
k=0

ξk
Λt,t+k
Pt+k

Yt+k(m)
[
POt (m)− Pt+kMCt+k

]
subject to (23), where Λt,t+k ≡ βk

UC,t+k
UC,t

is the stochastic discount factor over the interval

[t, t+ k]. The solution to this is standard and give by

POt (m)

Pt
=

ζ

ζ − 1

Et
∑∞

k=0 ξ
kΛt,t+k (Πt,t+k)

ζ Yt+kMCt+k

Et
∑∞

k=0 ξ
kΛt,t+k (Πt,t+k)

ζ (Πt,t+k)
−1 Yt+k

Denoting the numerator and denominator by Jt and JJt respectively, and introducing a mark-up

shock MSt to MCt, we write in recursive form

POt (m)

Pt
=

Jt
JJt

(24)

Jt − ξEt[Λt,t+1Πζ
t+1Jt+1] =

1

1− 1
ζ

YtMCtMSt (25)

JJt − ξEt[Λt,t+1Πζ−1
t+1JJt+1] = Yt (26)

(see the lemma in Appendix C). Using the fact that all resetting firms will choose the same

price, by the Law of Large Numbers we can find the evolution of inflation given by

1 = ξ (Πt−1,t)
ζ−1 + (1− ξ)

(
POt
Pt

)1−ζ

(27)

Price dispersion lowers aggregate output as follows. Market clearing in the labour market gives

Ht =

n∑
m=1

Ht(m) =

n∑
m=1

(
Yt(m)

At

) 1
α

=

(
Yt
At

) 1
α

n∑
m=1

(
Pt(m)

Pt

)− ζ
α

using (23). Hence equilibrium for good m gives

Yt =
Y W
t

∆α
t

(28)
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where price dispersion is defined by

∆t ≡

(
n∑

m=1

(
Pt(m)

Pt

)− ζ
α

)

Assuming as before that the number of firms is large we obtain the following dynamic relation-

ship:

∆t = ξΠ
ζ
α
t ∆t−1 + (1− ξ)

(
Jt
JJt

)− ζ
α

(29)

3.3 Closing the Model

To close the model we first require total profits from retail and wholesale firms, Γt, is remitted

to households. This is given in real terms by

Γt = Yt −
PWt
Pt

Y W
t︸ ︷︷ ︸

retail

+
PWt
Pt

Y W
t −WtHt︸ ︷︷ ︸

Wholesale

= Yt − α
PWt
Pt

Y W
t

using the first-order condition (21). Then to complete closure we have resource and balanced

government budget constraints:

Yt = Ct +Gt

Gt = Tt

where Gt is an exogenous demand process, and a monetary policy rule for the nominal interest

rate given by the following implementable Taylor-type rule:

log

(
Rn,t
Rn

)
= ρr log

(
Rn,t−1

Rn

)
+ (1− ρr)

(
θπ log

(
Πt

Πtarg,t

)
+ θy log

(
Yt
Y

)
+ θdy log

(
Yt
Yt−1

))
+ εMP,t (30)

logAt − logA = ρA(logAt−1 − logA) + εA,t

logGt − logG = ρG(logGt−1 − logG) + εG,t

logMSt − logMS = ρMS(logMSt−1 − logMS) + εMS,t

log Πtarg,t − log Π = ρπ(log Πtarg,t−1 − log Π) + επtarg ,t

and εMP,t is an i.i.d. shock to monetary policy. Πtarg,t is a time-varying inflation target following

an AR(1) process. This completes the model.

3.4 Recovering the NK Workhorse Model

We now pose the question: can the linearized form of the non-linear model about the steady state

reduce to the standard workhorse model in Section 2.1 where rational expectations Etyt+1 and

Etπt+1 or non-RE E∗t yt+1 and E∗tπt+1 can be treated as expectations by individual households

and firms respectively of aggregate future output and inflation respectively? To answer this
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consider the linearized form of the above set-up about a zero inflation and growth deterministic

steady state. With RE the household j’s first order conditions take one of two forms. Either:

α1ct(j) = α2wt + α3(ω2,t + rt) + α4ω1,t (31)

ω1,t = α5Etwt+1 − α6Etrt+1 + βEtω1,t+1

ω2,t = (1− β)(γt − gt)− rt + βEtω2,t+1

γt =
1

γy
yt −

α

γy
(wt + ht)

from (20) where lower case variables xt ≡ log(Xt/X) where X is the steady state of Xt; cy ≡ C
Y ,

γy ≡ Γ
Y , gy ≡ G

Y and γt is exogenous profit per household (a function of aggregate consumption

and hours). Positive coefficients are given by α1 ≡ 1 + α
φcy

, α2 ≡ (1 − β)(1 + 1
φ) αcy , α3 ≡ γy

cy
,

α4 ≡ βα
cy

, α5 ≡ (1− β)(1 + 1
φ) and α6 ≡ (1 + 1

φ).

Alternatively from the Euler equation (13):

ct(j) = Etct+1(j)− Etrt+1 (32)

If now we make the assumption that households are identical and know this symmetric nature of

the equilibrium then we have that Etct+1(j) = Etct+1 which is now an expectation of a variable

exogenous to household j. Then in a symmetric equilibrium.

ct = Etct+1 − Etrt+1 (33)

Linearizing the household supply of hours decision, the resource constraint and the Fisher

equation we have,

yt = (1− gy)ct + gygt (34)

rt = rn,t−1 − πt + rst−1 (35)

ht =
1

φ
(wt − ct)

Then in a special case where Gt = 0 and there is no distinction between public and private

consumption, gy = 0 and yt = ct. Equations (33)–(35) with rst = u1,t reduces to (1) where

Etyt+1 is the forecast of aggregate output. With RE using (31) or (32) results in the same

equilibrium, but under bounded rationality with the same beliefs considered below this is no

longer the case.

Turning to the supply side, for the wholesale sector:

yt = at + αht

mct = wt − yt + ht

For retail firm m, linearizing (24)–(26) and (27) about a zero net equation steady state we have:

pot (m)− pt = βξEt[πt+1 + pot+1(m)− pt+1] + (1− βξ)(mct +mst) (36)

ξπt = (1− ξ)(pot − pt) (37)
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Solving forward

pot (m)− pt = Et
∞∑
i=0

(βξ)i[βξπt+i+1 + (1− βξ)(mct+i +mst+i)]

Then in a symmetric equilibrium we have

πt =
(1− ξ)
ξ

(
Et
∞∑
i=0

(βξ)i[βξπt+i+1 + (1− βξ)(mct+i +mst+i)]

)
(38)

where Et[πt+i+1] and Et[mct+i+mst+i] are expectations of aggregate inflation and real marginal

costs, both variables exogenous to individual price-setters. However, if we assume price-setters

know they are identical then we can use (37) to obtain

pot (m)− pt = pot − pt =
ξ

(1− ξ)
πt

Then substituting back into (36) we arrive at

πt =
(1− ξ)(1− βξ)

ξ
E∗t

∞∑
i=0

βi(mct+i +mst+i) (39)

which omits learning about aggregate inflation. (39) is the familiar linearized Phillips curve.

Under RE, (38) and (39) are equivalent. Putting mct = wt− at + ht = (1 + φ)ht = (1 + φ)(yt−
at)/α, (39) in recursive form gives (2) with λ = (1−ξ)(1−βξ)(1+φ)

αξ and u2,t = λmst.

To summarize, the ‘Euler Learning’ form of the workhorse linearized model expressed in

terms of expectations of aggregate output (or the output gap) and inflation is valid under

bounded rationality provided that individual households and price-setting firms know the sym-

metric nature of the equilibrium. Then Euler learning is equivalent to internal rationality. If

we drop this assumption, then (31) and (38) must be used given non-RE beliefs of these same

aggregates and in addition expectations of the wage rate, interest rate, profits and government

spending. This will be the form of the model we use under internal rationality.

4 Perfect versus Imperfect Information

We now examine the information assumptions that are made explicitly or implicitly in the RE

and boundedly rational forms of the NK model. In linearized form of the NK model this can

has a state-space form:[
zt+1

Etxt+1

]
= E

[
zt

xt

]
+

[
F

0

]
εt+1 ; wt = G

[
zt

xt

]
(40)

where zt is a (n−m)×1 vector of predetermined variables at time t with z0 given, xt, is a m×1

vector of non-predetermined variables and wt is a vector observable macro-economic variables

which when we come to estimation will be the data used by the econometrician. All variables

are expressed as proportional deviations about a steady state. E, F and G are fixed matrices,
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εt as a vector of random zero-mean shocks. RE under perfect information are formed assuming

a full information set {zs, xs, εs}, s ≤ t, E, F,G.

We now proceed to the assumption that there are non-rational agents who are unable to form

model-consistent expectations. For such agents, in the learning literature pioneered by Evans

and Honkapohja (2001) learning rules are specified in terms of the minimum state variable

representation of the perfect information model-consistent solution to (40). If the number

of eigenvalues outside the unit circle is equal to the number of non-predetermined variables,

the system has a unique equilibrium which is also stable with saddle-path xt = −Nzt where

N = N(D) and depends on the rule (see Blanchard and Kahn (1980); Currie and Levine (1993)).

Instability (indeterminacy) occurs when the number of eigenvalues of E outside the unit circle

is larger (smaller) than the number of non-predetermined variables.

Partitioning E conformably with zt and xt, the RE perfect information solution takes the

form of a first-order VAR

zt = [E11 − E12N ]zt−1 + Fεt (41)

xt = −Nzt (42)

Etxt+1 = −NEtzt+1 = −N [E11 − E12N ]zt (43)

In the learning literature with ‘Euler-learning’ (also termed by Ellison and Pearlman (2011)

as ‘saddle-path learning’) agents are the assumed to make their forecast (43) by using (41) to

estimate a first order VAR in zt. As we have seen this implies that agents know they are all

identical. But perfect information makes a further assumption that agents observe the state

vector including the shock processes.

We now express learning rules in terms of a subset of wt = [yt, πt, rn,t]
′. Observing these

three time-series under RE enables agents (and the econometrician) to back out the shocks and

to express wt as an infinite VAR (Fernandez-Villaverde et al. (2007) and Levine et al. (2012)).

To show this write the RE solution as the following ARMA process

zt = Azt−1 +Bεt (44)

wt = Czt−1 +Dεt (45)

Because we have three shocks and three observables, the matrix D is square. Assume now

it is also non-singular which is only possible if wt are observations without lags. Then εt =

D−1(wt − Czt−1) and substituting into (44) and denoting the lag operator by L, we have

[(I − (A−BD−1C)L]zt = BD−1wt (46)

Hence combining (41) – (46) we have

zt =

∞∑
i=0

(A−BD−1C)iBD−1wt−i (47)

wt = C
∞∑
i=1

(A−BD−1C)iBD−1wt−i +Dεt (48)
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Convergence of the summations in (47) and (48) requires that the matrix (A−BD−1C) has all

eigenvalues within the unit circle. Then equation (48) is an infinite VAR for the three observables

wt = [yt, πt, rn,t]
′ which is estimatable from output, inflation and interest rate data.9 It follows

that the RE forecast is:

Etwt+1 = C

∞∑
i=0

(A−BD−1C)iBD−1wt−i (49)

whereas the adaptive heuristic rules (4) and (5) are parsimonious representations of (49):

E∗t yt+1 =

∞∑
i=0

λiyyt−i ; or E∗t yt+1 =

∞∑
i=1

λiyyt−i

E∗tπt+1 =

∞∑
i=0

λiππt−i ; or E∗tπt+1 =

∞∑
i=1

λiππt−i

Thus we can interpret the heuristic rules as parsimonious forecasting models in which non-

rational agents choose under-parameterized predictors (see Branch and Evans (2011)).

We conclude that unless shock processes are either known or observed then at best with the

number of shocks equal to the number of observables and no lags in the latter, a well-specified

forecasting rule in the form of an infinite VAR is available and may be e-stable converging to

the RE equilibrium.10 Otherwise the ARMA solution (44)–(45) is not invertible. In fact none

of these conditions are satisfied in the set-up we consider when we come to estimation: we have

more shocks than observables and our heuristic rules assume aggregate variables are observed

with a lag. Thus if we are to compare like with like, rational agents also observe with a lag and

we must therefore solve under imperfect information. We return to this issue in Section 8.

5 Internal Rationality

With internal rationality and anticipated utility (also known as the ‘infinite horizon approach’),

our model of learning is one in which agents are rational regarding their internal decisions, but

have no macroeconomic model to form expectations of aggregate variables. We draw a clear

distinction between aggregate and internal quantities so that identical agents in our model are

not aware of this equilibrium property (nor any others). We now drop the key assumption for

Euler learning that agents know they are all identical.

We utilize the internal household and retail firm decision rules set out in Section 3.4. To

close the model, we need to specify the manner in which internally rational households and

firms form their expectations. To do so, we assume that variables which are local to the agents,

in a geographical sense, are observable within the period, whereas variables that are strictly

macroeconomic are only observable with a lag. This categorization regarding information about

the current state of the economy follows Nimark (2014). He distinguishes between the local

information that agents acquire directly through their interactions in markets and statistics

9If this matrix is not stable, then the Spectral Factorization Theorem states that provided A is a stable matrix,
then there exists an infinite VAR representation; but in this case the estimated shocks are not the fundamental
ones εt. See Fernandez-Villaverde et al. (2007) for an example.

10Approximating the infinite lag with a finite one introduces a further degree of missecification.
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that are collected and summarised, usually by governments, and made available to the wider

public.11 The only exception to this is the nominal interest rate, which we assume is observable

within the period given the timing structure of NK models. Given this, we assume a strict form

of naive expectations. Thus internally rational household expectations are given by

E∗t rt+1 = rn,t − E∗tπt+1 (50)

E∗t rt+i = rn,t+i−1 − E∗tπt+i ; i ≥ 2 (51)

E∗t rn,t+i = E∗t rn,t+1 ; i ≥ 1 (52)

E∗h,tπt+i = E∗h,tπt+1 ; i ≥ 1 (53)

E∗twt+i = E∗twt+1 ; i ≥ 1 (54)

E∗tγt+i = E∗tγt+1 ; i ≥ 1 (55)

Then expressing Etω1,t+1 and Etω2,t+1 in (31) as forward-looking summations and using (50)–

(55), we arrive at the IR consumption equation

α1ct = α2wt + α3(ω2,t + rt) + α4ω1,t

ω1,t =
1

1− β
[α5E∗twt+1 − α6(βE∗t rn,t+1 − E∗tπt+1)]− α6rn,t

ω2,t = (1− β)(γt − gt)− rt +
β

1− β
((1− β)(E∗tγt+1 − E∗t gt+1)− E∗t rt+1)

which is now expressed in terms of one-step ahead forecasts by

E∗txt+1 = E∗txt + λx(xt−j − E∗txt) ; x = w, rn, π, γ ; j = 0, 1

Internally rational households make rational inter-temporal decisions for their consumption and

hours supplied given adaptive expectations of the wage rate, the nominal interest rate, inflation

and profits. These macro-variables may in principle be observed with or without a one-period

lag (j = 1, 0), but as stated earlier we assume j = 0 for market-specific variables wt, γt, and

j = 1 for aggregate inflation πt. However we assume the current nominal interest rate, rn,t is

announced and therefore also observed without a lag.

For retail firm m with adaptive expectations

E∗tπt+i+1 = E∗tπt+1 ; i ≥ 0

E∗t (mct+i +mst+i) = E∗t (mct+1 +mst+1) ; i ≥ 1

so that

pot (m)− pt =
βξ

1− β
E∗f,tπt+1 + (1− βξ)(mct +mst) +

β

1− β
E∗t (mct+1 +mst+1)

One-step ahead forecasts are given by

E∗txt+1 = E∗txt + λx(xt−j − E∗txt) ; x = πf , (mc+ms); j = 0, 1

11His paper actually focuses on a third category, information provided by the news media, and allows for
imperfect information in the form of noisy signals, issues which go beyond the scope of our paper.
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Internally rational retail firms make rational inter-temporal decisions for their price and output

given adaptive expectations of the aggregate inflation rate and their post-shock real marginal

shock wage rate. As before these variables may be observed with or without a one-period lag

(j = 1, 0), but for aggregate inflation we assume j = 1 as for households, but j = 0 for the

market-specific variable mct. Note that we can in principle distinguish between households’ and

firms’ expectations of inflation.

6 Stability Analysis

We now have three possible models of expectations, rational (i.e. model consistent), boundedly

rational with Euler learning and boundedly but internally rational. We denote these three cases

by RE, EL and IR respectively. In this section we consider homogeneous expectations for which

all agents (households and firms) form either RE or IR or EL expectations. In the next section

we then allow for the possibility that households and firms are heterogenous across these groups

(but retain intra-group homogeneity).

In the numerical results below we fix parameters at their priors used later in the Bayesian

estimation apart from the adaptive learning parameter λx which we set at unity. As stated

above we make the following information assumptions: for observations of aggregate output

and inflation j = 1 which is assumed in the EL approach. Later in the IR approach we need to

model observations of market-specific variables consisting of factor prices, profits and marginal

costs. These we assume can be observed without a lag and therefore j = 0. Note this only

applies to the EL and IR agents but the RE equilibrium for now assumes perfect information

where agents observe all current values of state variables. Later in Section 8 we address this

inconsistency and assume all agents have the same imperfect information (II) set as for IR

agents. However for rational agents the stability conditions considered now can be derived from

a perfect foresight equilibrium and are independent of the information assumption.

Figures 1 and 2 compare the models in (ρr, θπ) space with θy = 0.3 and θdy = 0. Finally

Figure 3 sets ρr = 1 and compares EL and IR models in (αy, απ) space having re-parameterized

the rule as rn,t = ρrrn,t−1 + αππt + αyyt. Note that this rule reduces to a price-level rule when

αy = 0. The differences in the sizes of the policy spaces that result in a saddle-path stable

equilibrium are significant. Furthermore a clear ranking of the sizes of these spaces emerges

with RE ⊃ EL ⊃ IR. This means that unless the policy rule is designed for the IR model,

uncertainty as to which model of expectations is correct can lead to a rule that is unstable or

has infinite multiple equilibria (i.e., is indeterminate).

7 Heterogeneous Expectations across Households and Firms

Now we come to the full Brock-Hommes NK model but with IR rather than EL boundedly

rational agents. The composite RE-IR model then has an equilibrium (in the original non-

linear form)

Hd
t = nh,t (Hs

t )RE + (1− nh,t) (Hs
t )IR

Ct = nh,t (Ct)
RE + (1− nh,t) (Ct)

IR = Yt −Gt
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Figure 1: Comparison of Stability Properties of RE and EL Models. ρr > 0, λx = 1.
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Figure 2: Comparison of Stability Properties of EL and IR Models. ρr > 0, λx = 1.
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Figure 3: Comparison of Stability Properties of EL and IR Models. ρr = 1, λx = 1.
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P ot
Pt

= nf,t

(
P ot
Pt

)RE
+ (1− nf,t)

(
P ot
Pt

)IR
Note that rational agents in this model form model-consistent expectations taking into account

the presence of internally rational agents.

We first consider the properties of the model with fixed exogenous proportions of RE and

IR agents. Then we allow these proportions to be determined endogenously. Finally we model

the wealth distribution between RE and IR agents.

7.1 Exogenous Proportions of RE and IR Agents

Figure 4 provides a stability analysis with a price level rule (ρr = 1, αy = 0 in the re-

parameterized rule rn,t = ρrrn,t−1 + αππt + αyyt), and nh = nf = n in the steady state.

We can see that fast learning (λx = 1) results in a larger regions of instability (a smaller policy

space) than the case of slower learning (λx = 0.25).

So far we have confined the simulations to parameter regions of the model and policy rule that

result in saddle-path stability. If we enter a region of local instability, but global boundedness,

we see chaotic dynamics as highlighted generally in Hommes (2013) and for an NK model with

Euler learning in Branch and McGough (2010). Two points should be made concerning this

possible outcome. First, there is then enormous inflation volatility under chaos so the model

is one of hyper-inflation. Second, we have seen that this clearly undesirable outcome can be

avoided by an appropriate choice of monetary policy rule.
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Figure 4: Stability of RE-IR heterogeneous-agent model with price-level rule under
fast and slow learning.

Figure 5 plots the impulse response functions (IRFs) with standard parameters for the rule

for a shock to monetary policy under fast and slow learning. Figures 10 to 11 in the Online

Appendix show IRFs for shocks to technology and the mark-up shock. Not surprisingly fast

learning sees an IRF converge faster to the RE case, but in either case IR introduces more

persistence compared with RE. This suggests this feature should lead to a better fit of the data

without relying on other persistence mechanisms (shocks, habit or price indexing). This we

examine in the estimation of our model.
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Figure 5: RE versus RE-IR Composite Expectations with nh = nf = 0.5, λx = 0.25, 1.0;
Taylor rule with ρr = 0.7, θπ = 1.5 and θy = 0.3, θdy = 0, Monetary Policy Shock

7.2 Endogenous Proportions of RE and IR Agents

Proportions of rational households and firms are given by

nh,t =
exp(−γΦRE

h,t )

exp(−γΦh,t)RE + exp(γΦIR
h,t)

nf,t =
exp(−γΦRE

f,t )

exp(−γΦRE
f,t ) + exp(γΦIR

f,t )

where fitness for households given by

ΦRE
h,t = µREh ΦRE

h,t−1 +
(

weighted sum of forecast errors + Ch

)
ΦIR
h,t = µIRh ΦIR

h,t−1 +
(

weighted sum of forecast errors
)

with similar expressions for firms with a subscript f replacing h. Using the estimated model of

the next section, Table 1 provides a third order perturbation solution of non-linear NK RE-IR

Model. In the estimation the model is linearized and the proportions nh,t and nf,t are fixed.

Non-linear estimation is required to pin down the parameters nh, nf in the steady state, and

µRE,IRh , µRE,IRf and γ in the reinforcement learning process. So here we impose them as reported

in the table. We also scale the estimated standard deviations of the shocks using a parameter

σ = 1, 2. The results are that our heterogenous agent model with IR alongside RE agents
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Variable Stochastic Mean Standard Deviation (%) Skewness Kurtosis
Ct
C 0.9993 2.47 0.2792 0.0371
Ht
H 1.0002 0.19 0.0192 0.0327
Wt
W 0.9996 2.15 0.2771 0.0215
Πt
Π 0.9999 0.46 0.0159 0.0645
Rn,t
Rn

0.9999 0.46 0.0070 0.0651

ΦRE
h,t − Ch -0.000065 0.000020 -0.7589 0.9487

ΦAE
h,t -0.000084 0.000054 -1.8238 5.7852

ΦRE
f,t − Cf -0.000011 0.000009 -0.7203 0.7834

ΦAE
f,t -0.000069 0.000053 -2.2156 8.8686

nh,t(γ = 1;σ = 1) 0.093301 0.000004 1.8039 6.0897

nf,t(γ = 1;σ = 1) 0.098603 0.000004 2.2688 9.2725

nh,t(γ = 100;σ = 1) 0.094221 0.003634 1.8039 6.0897

nf,t(γ = 100;σ = 1) 0.101751 0.004303 2.2688 9.2725

nh,t(γ = 1000;σ = 1) 0.102506 0.036343 1.8039 6.0897

nf,t(γ = 1000;σ = 1) 0.130105 0.043030 2.2688 9.2725

nh,t(γ = 1000;σ = 2) 0.129993 0.146939 1.8403 6.6096

nf,t(γ = 1000;σ = 2) 0.224367 0.174046 2.3668 10.5098

Table 1: Third Order Solution of the Estimated NK RE-IR Model; µREh = µIRh =
µREf = µIRf = 0.0; γ = 1, 100, 1000

introduces high kurtosis and skewness12 in macro variables and learning results in the numbers

of rational agents increasing from the estimated deterministic steady state value of 0.093 and

0.099 to 0.13 and 0.22 for households and firms respectively in the stochastic steady state.

7.3 Wealth Distribution

Up to now we have assumed that there is no net lending of borrowing between each of the RE

and IR households. We now relax this assumption and allow for a wealth distribution between

these groups. To achieve a stationary path for bond holdings we need to introduce a portfolio

adjustment cost. Consider the jth RE household with a budget constraint:

BRE
t (j) = RtB

RE
t−1(j) +WtHt(j)

RE + Γt − Ct(j)RE − Tt −
$

2
(BRE

t−1(j)−B)2

Then zero net wealth in aggregate implies that nh,tB
RE
t = −(1− nh,t)BIR

t .

Define the Lagrangian at time t = 0 as

Et
[ ∞∑
t=0

βt[U(CREt (j), HRE
t (j))

+ λt(RtB
RE
t−1(j) +WtH

RE
t (j)− Γt − CREt (j)− Tt −

$

2
(BRE

t−1(j)−B)2)−BRE
t (j)]

]
12The absence of kurtosis in the standard NK model, often highlighted in the literature (see, for example,

De Grauwe (2012a) is in part simply the consequence of linearization and non-normality is a feature of higher
order approximations.
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Then given BRE
0 (j) the first order conditions are

CREt : UREC (j)− λt = 0

BRE
t : Et

[
βλt+1(Rt+1 −$(BRE

t (j)−B))− λt
]

= 0

Hence the consumption Euler equation becomes

Et

[
β
UREC,t+1(j)(Rt+1 −$(Bt(j)−B))

UC,t(j)

]
= Et

[
ΛREt,t+1(j)(Rt+1 −$(BRE

t (j)−B))
]

= 1

The remaining change to the model is to replace CIRt with CIRt −BIR
t .

With the same choice of parameter values as before and $ chosen to be very small, Figure

6 compares the impulse responses of the RE model with the heterogeneous agent RE-IR model

with exogenous and equal proportions of RE and IR households and firms. Figures 12–13 in the

Online Appendix provide impulse response functions for technology and government spending

shocks. The case where the wealth distribution between RE and IR households is included is

compared with that where (as in all the heterogeneous NK model literature) it is suppressed.

The figures suggest that with our calibration the wealth distribution effect does not significantly

change the equilibrium, at least up to first order for which the impulse responses are computed.
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Figure 6: Wealth Distribution and Impulse Responses – Monetary Policy Shock

8 Bayesian Estimation

We now turn to the estimation of an empirical NK behavioural model which differs from the

linearized form used up to now in two respects: first, we assume that the a steady state about

which the perturbation solution is computed has a non-zero net growth and inflation. The

former is stochastic and given by gt = (1 + g) exp(εAtrend) − 1 where εAtrend is a shock to

technology trend. The estimation then is conducted to be consistent with the long-term trend

of output and inflation in the data used in the estimation. Second, we generalize the adaptive
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expectations assumption used by IR agents in the previous section drawing upon Hommes et al.

(2015), Anufriev et al. (2015) and Hommes (2011). For any variable with outcome Xt we study

heuristic forecasting rules of the form:

Xe
t = Xλ1

t−1(Xe
t−1)1−λ1

(
Xt−1

Xt−2

)λ2
; λ1 ∈ [0, 1], λ2 ∈ [−1, 1]

where Xe
t ≡ E∗t−1Xt. If we put λ2 = 0, this reduces to the adaptive expectations case of the

previous sections.

We estimate three models with wealth distribution: the NK RE model, the NK model with

individual rationality (IR Model) and the behavioural composite model with heterogeneous

expectations (RE-IR Model). For the RE agents in either the ‘pure’ or composite RE model we

assume and compare perfect or imperfect information sets as discussed in Section 4. Bayesian

methods are employed using Dynare adapted to handle imperfect information.13 We use a

subset of the observable set used in Smets and Wouters (2007) in first difference at quarterly

frequency but extend the sample length to the second quarter of 2008, before the outbreak of

the 2008-09 crisis. Thus the sample period is 1984:1-2008:2. These observable variables are the

log differences of real GDP and the GDP deflator, and the federal funds rate. All series are

seasonally adjusted and taken from the FRED Database available through the Federal Reserve

Bank of St.Louis and the US Bureau of Labour Statistics.

8.1 The Measurement Equations and Priors

The corresponding measurement equations for the 3 observables are:14

 D(logGDPt) ∗ 100

log(GDPDEFt/GDPDEFt−1) ∗ 100

FEDFUNDSt/4 ∗ 100

 =


log
(
Yt
Y t

)
− log

(
Yt−1

Y t−1

)
+ trend + εy,t − εy,t−1 + εA,t

log
(

Πt
Π

)
+ consπ + επ,t

log
(
Rn,t
Rn

)
+ consr


where constants trend, consπ and consr are related to the steady state of our model by

Π = consπ/100 + 1

log(1 + g) = trend/100

Rn =
Π

βg
=

Π(1 + g)

β
= consr/100 + 1

This implies that β is determined empirically as

β =

(
consπ + 100

consr + 100

)
(1 + g)

We introduce measurement errors on two observables, output and inflation (εy,t and επ,t) so

in total there are 3 variables in the observations, 4 exogenous AR(1) processes (At, Gt, MSt,

Πtarg,t) and 4 further i.i.d shocks including measurement errors, (εMP,t, εAtrend,t and εy,t, επ,t).

13Levine et al. (2017a) provides full details of this addition to Dynare.
14Yt = GDPt, Y t =trend and trend growth =log Y t−log Y t−1 = log(1+g)+εA,t. εy,t and επ,t are measurement

equations for output and inflation respectively.
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Thus there are 8 shocks and 3 observables meaning that the invertibilty condition discussed in

Section 4 is not satisfied. A number of the structural parameters are fixed, so as to match their

sample means or in accordance with previous studies and are collected into Θf :

Θf ≡ [ζ, α, µREh , µIRh , µREf , µIRf , γ] = [7.0, 0.7, 0.5, 0.5, 0.5, 0.5, 1.0]

These parameters are necessary to solve and linearize the models but are problematic for estima-

tion (e.g. identification). From Section 7 the parameters in the RE-IR model, [µREh µIRh µREf µIRf γ],

do not enter into the first-order solution for the linearized model but only affect the second-

order or higher solutions. They cannot be identified in the first-order solution that is used for

estimation so are imposed at their mid-point values as above. As in De Grauwe (2011) we fix γ

to unity so that allow for a moderate degree in the intensity of individual choice. The remaining

calibration values for [ζ, α] are standard choices in the DSGE literature.

For the remainder of parameters gamma and inverse gamma distributions are used as priors

when non-negativity constraints are necessary, and beta distributions for fractions or probabil-

ities. Normal distributions are used when more informative priors seem to be necessary. The

prior means and distributions of these parameters can be found in Table 2. The values of priors

are in line with those in Smets and Wouters (2007). The Calvo coefficient ξ is assumed to

be beta distributed with prior mean of 0.5 and prior standard deviation of 0.2, implying that

prices are sticky for two quarters. We draw all the AR(1) parameters ρA, ρMS , ρπ and ρG,

and the lagged interest rate ρr from the beta distribution in order to restrict them to the open

unit interval. Similarly, the beta distribution we use on the adaptive expectations learning

parameter λ1 also restricts it to the open unit interval, but we set a generalized beta prior for

λ2 with support [−1, 1] and 0 mean. For all these beta distribution parameters we centre the

prior density in the middle of the unit interval.

A common theme in papers that study empirical RBC/DSGE models is the difficulty in

pinning down the parameter of labour supply elasticity φ. Inference on the inverse Frisch

elasticity of labour supply has been found susceptible to model specifications, and exhibiting

wide posterior probability intervals. So we assume a normal distribution with mean 2.0 and

standard deviation of 0.5 for the parameter which is well within the range of point estimates

reported in the RBC and labour literature. For the Taylor rule parameter on inflation the

prior is set to obey the Taylor principle is centred at the value suggested by Taylor. With

regard to output level and growth the response of interest rate is smaller but we do not rule out

negative responses for both parameters. Finally the priors on the standard deviations of the

exogenous shocks and measurement errors are assumed to have inverse gamma distributions.

The uncertainty held about these elements motivates an open interval for their priors that

excludes zero and is unbounded.

8.2 Identification Checks and Estimation of the Posterior Distribution

Based on the prior information, we first conduct some pre-estimation identification diagnostics

and report them in detail in Appendix D. We find that the sensitivity effect of nf at its posterior

mean point is relatively weak and also at their estimated values, the pair-wise collinearity

between nf and ξ is very close to an exact linear dependence between the pair (0.9927). From
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Parameter Notation Prior distribution
Density Mean S.D/df

Calvo prices ξ B 0.50 0.10
Labour supply elasticity φ N 2.00 0.50
Adaptive learning ∈ [0, 1] λ1 B 0.50 0.20
Adaptive learning ∈ [−1, 1] λ2 B 0.00 0.30

Interest rate rule

Inflation θπ N 1.50 0.25
Output θy N 0.12 0.05
Output growth θdy N 0.12 0.05
Interest rate smoothing ρr B 0.75 0.10

AR(1) coefficient

Technology ρA B 0.50 0.20
Government spending ρG B 0.50 0.20
Price mark-up ρMS B 0.50 0.20
Inflation target ρπ B 0.50 0.20

Standard deviation of shocks

Technology trend sd(εAtrend) IG 0.10 2.00
Technology sd(εA) IG 0.10 2.00
Government spending sd(εG) IG 0.10 2.00
Price mark-up sd(εMS) IG 0.10 2.00
Inflation target sd(επtarg) IG 0.10 2.00
Monetary policy sd(εMP ) IG 0.10 2.00

Standard deviation of measurement errors

Observation error (output) sd(εy) IG 0.10 2.00
Observation error (inflation) sd(επ) IG 0.10 2.00

Table 2: Prior Distributions

high correlations to near-exact collinearity one may suspect some weak identification. Figure

15 in the Online Appendix shows the identification strength and sensitivity component in the

moments using the composite RE-IR estimation results and shows again the sensitive strength

in the moments of nh is very weak. Therefore in this section we compare the cases without

estimating nf and nh so the proportions nh = nf = n = 0.5, 0.1 are fixed to the values we used

in the stability section earlier in the paper.

Turning to the estimation, the joint posterior distribution of the estimated parameters is

obtained in two steps. First, the posterior mode and the Hessian matrix are obtained via

standard numerical optimization routines. The Hessian matrix is then used in the Metropolis-

Hastings (MH) algorithm to generate a sample from the posterior distribution. Two parallel

chains are used in the Monte-Carlo Markov Chain Metropolis-Hastings (MCMC-MH) algorithm.

Thus, 100,000 random draws (though the first 25% ‘burn-in’ observations are discarded to

remove any dependance from the initial conditions) from the posterior density are obtained

via the MCMC-MH algorithm, with the variance-covariance matrix of the perturbation term

in the algorithm being adjusted in order to obtain reasonable acceptance rates (between 20%-

40%). We run an iterative process of MCMC simulations in order to calibrate the scaling

factor to achieve the desired rate of acceptance which is key for the speed of convergence of the

MCMC-MH chains, which are also sensitive to the number of MCMC iterations. The former

ensures that more of the parameter region is searched more regularly, but at the expense of

reducing the acceptance ratio. In this estimation the number of draws we choose is sufficient to

allow for convergence. To formally test and to check the convergence, besides calibrating the
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acceptance rate, we use the convergence indicators recommended by Brooks and Gelman (1998)

and Gelman et al. (2003).

8.3 Bayes Factor Comparison

We first focus on the pure RE, pure IR and the composite RE-IR models when RE agents have a

perfect information set. We employ the Bayes Factor (BF) from the model marginal likelihoods

to gauge the relative merits across the four models in Table 3.

Model Pure RE (PI) Pure IR RE(PI)-IR (n=0.5) RE(PI)-IR (n=0.1)

LL -143.05 -138.90 -139.38 -138.15

Prob 0.0042 0.2666 0.1649 0.5643

Table 3: Marginal Log-likelihood Values and Posterior Model Odds: RE Agents
with Perfect Information (PI)

Models IR (Pure IR) and RE-IR (n = 0.1, 0.5) all substantially outperform their RE coun-

terpart which is firmly rejected by the data. Formally, using the Bayesian statistical language

of Kass and Raftery (1995), a BF, the quotient of the probabilities reported, greater than 100

(marginal log-likelihood difference over 4.61) offers “decisive evidence”. Thus we have decisive

support for the pure IR and some composite behaviour from the US data we observe. However

the BF differences between the non-RE models are not strong.

Next we assume an imperfect information set for the RE agents of the form:

It = [Ys−1,Πs−1, Rn,s ; s ≤ t]

The policy maker is assumed observe current output, inflation and to know to know her own

current inflation target. The implemented rule therefore is still (30), but the perceived rule for

RE agents with II, again imposing point expectations, is now given by the rule:

log

(
Rn,t
Rn

)
= ρr log

(
Rn,t−1

Rn

)
+ (1− ρr)

(
θπ log

(
EtΠt

EtΠtarg,t

)
+ θy log

(
EtYt
Y

)
+ θdy log

(
EtYt
Yt−1

))
+ εMP,t (56)

where rational expectations under II of current inflation, output and the inflation target are

now required to implement the rule. An important point to stress is that this is the same

information set we assume for IR agents when they come to update their heuristic rule. In

this sense we now have informational consistency across IR and RE agents, and also with the

econometrician estimating the model. This feature we believe is new for the heterogeneous

behavioural NK model literature.15 The results for the likelihood race are reported in Table 4.

15If we assume informational consistency for the policymaker as well then her information set would be It =
[Ys−1,Πs−1, Rn,s,Πtarg,t]. Then the implemented rule becomes (56), rather than (30), but with EtΠtarg,t replaced
with Πtarg,t (since the policymaker knows her own target). But then the set-up involves two imperfect information
sets and goes beyond our II framework with only one. This more general case is studied in Lubik et al. (2017) who
show that this generalization results in different Blanchard-Kahn stability conditions for perfect and imperfect
information.
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Model Pure RE (II) Pure IR RE(II)-IR (n=0.5) RE(II)-IR (n=0.1)

LL -135.60 -138.90 -136.83 -137.88

Prob 0.6986 0.0258 0.2042 0.0715

Table 4: Marginal Log-likelihood Values and Posterior Model Odds: RE Agents
with Imperfect Information (II)

Now a very different picture emerges when comparing the RE model with the behavioural

alternatives. RE with imperfect information (RE(II)) actually wins the likelihood race. In

formal Bayesian language, a BF of 10-100 or a marginal likelihood range of [2.30, 4.61] is

“strong to very strong evidence” so the RE(II) strongly dominates the pure II and RE(II)-IR

with n=0.1. But the likelihood race cannot separate the RE(II) and RE(II)-IR composite model

with n=0.5. In Section 9 we examine whether the ability to match second moments of the data

is able to separate these two models. But first we turn to the parameter estimation results.

8.4 Parameter Estimation Results

Table 5 contains summary statistics of the posterior distributions of the NK models. We re-

port posterior means of the parameters of interest and 95% probability intervals alongside the

posterior model odds for all 7 models so far: RE(PI), RE(II), IR and RE(PI)-IR or RE(II)-IR

with n = 0.5, 0.1.

The price stickiness parameter, ξ, is estimated to be larger than assumed in the prior

distribution (0.59). This implies that there is some degree of price stickiness and the implied

average contract duration is about 2.44 quarters from this model. The posteriors of this model

also indicate a Frisch labour supply elasticity, φ−1 = 0.61 and a strong response to inflation

that satisfies the Taylor principle, θπ = 1.77. In terms of the persistence of the exogenous

shocks, the estimates of the AR(1) coefficients show that the technology and inflation shocks

are inertial. According to the estimated standard deviation, the technology shock stands out as

being the most volatile structural shock in this economy. The interest rate policy shock is less

volatile and is less important in driving inflation, consumption and output. The variations in

measurement error of output is relatively moderate in this model but there is a sizeable estimate

of the inflation measurement error. Overall these estimates are in the range often found in the

existing literature.

The IR solution equilibrium we propose departs from the standard RE solutions and allows a

process of adaptive learning driven by the speed of learning parameter λ1 ∈ [0, 1] and λ2 ∈ [−1, 1]

for the household and firms respectively. The closer λ is to zero slower the learning process

is, which is the key mechanism of this setup because this introduces more dynamics into the

model.

Focusing on the parameter characterising the degree of price stickiness, ξ, again, the mean

estimates report an average price contract duration of around 1.96 and 1.92 quarters for IR

and RE-IR. Their estimated 95% intervals imply that price contacts change in the ranges of

∈ (1.54, 2.50) suggesting that the firms of IR and RE-IR economies change prices as frequently

as once every 1.5 quarters. The estimated contract length is shorter in the non-pure-RE models.

The estimates of the AR(1) coefficients show that the technology shock is significantly inertial.
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With IR in the model, the exogenous technology shock volatility contributes the most to the

variation in the data and the monetary/fiscal policy volatility mattes much less for this aspect

of the fit. The price mark-up shock (the uncertainty interval) is sightly larger than that of the

RE model because the expectation heterogeneity in the model increases inflation volatility (un-

certainty) and acts as a persistent force in this behavioural economy in the inflation fluctuations

(this is also evident in the following section when we examine the implied model moments). The

measurement error on inflation also has some sizeable contribution.

For the policy rule, we find that for the behavioural models the parameter estimate for

the degree of interest rate smoothing indicates that there is a low degree of persistence in the

nominal interest rate which is much lower than observed in the literature. The responses to

output (θy, θdy) are very low, nearly non-existent, while the feedback to inflation (θπ) is strong,

implying a stronger concern from the monetary authorities about inflation variability, relative

to the moments in output, which is caused by the varying forecast behaviours from agents’

heterogenous expectations.

Overall, the parameter estimates are reasonably robust across information specifications, de-

spite the fact that the II alternative leads to a much better model fit based on the corresponding

posterior marginal likelihood. It is interesting to note that the point estimates of almost every

single parameter under II are tighter and more strongly determined compared with the case

under the standard PI assumption, i.e., the confidence intervals are more tightly estimated with

II, so this helps to explain its superior performance in the likelihood race.

9 Matching Second Moments

In this section we examine the model second moments, which has been a standard practice for

researchers in the RBC tradition. We consider second moments and autocorrelations in turn.

In this section, we mainly focus our analysis on the baseline RE model with its II variant,

the behavioural IR and the outperforming composite, including conditional second moments

implied by the estimated models such as impulse responses.

In terms of matching volatility the behavioural composite RE(II)-IR is able to match pre-

cisely the rate of change of output (henceforth referred to as ‘output’) standard deviation in the

data and performs very well at getting much closer to the interest rate data, whereas the pure

RE model (including II) performs very poorly at capturing inflation and interest rate volatility,

lying well-outside the 95% confidence bands. In the pure RE(PI) economy, the central bank

can reduce output variability by applying a policy regime with strong output responses, but

this comes at a cost of much higher inflation volatility. However, for the behavioural composite,

there is room for improvement in matching inflation volatility. The model’s ability of matching

inflation moments is distorted, generating much volatility in inflation than the data and as noted

this can be explained by the role played by the more volatile pricing shock (εMS) found in the

estimated models which gives rise to the amplification effects on inflation dynamics caused by

the expectation heterogeneity in the behavioural economy. The pure IR model is able to reduce

this volatility while still matching output well.

Table 6 also reports the cross-correlations of the 3 observable variables vis-a-vis output.

All the estimated models do well and predict the correct sign for the output-inflation cross-
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Pure RE(PI) RE-IR(n=0.5) RE-IR(n=0.1) Pure IR Pure RE(II) RE-IR(n=0.5,II)RE-IR(n=0.1,II)

ξ 0.59 [0.50:0.68] 0.49 [0.35:0.62] 0.48 [0.35:0.61] 0.49 [0.35:0.64] 0.60 [0.54:0.67] 0.43 [0.30:0.58] 0.42 [0.27:0.56]
φ 1.64 [0.71:2.66] 1.73 [0.87:2.58] 1.74 [0.88:2.65] 1.63 [0.72:2.57] 1.44 [0.64:2.22] 2.00 [1.75:2.32] 1.81 [1.59:2.05]

Adaptive learning
λ1 - 0.17 [0.04:0.38] 0.29 [0.04:0.65] 0.29 [0.04:0.66] - 0.66 [0.53:0.86] 0.51 [0.30:0.73]
λ2 - 0.58 [0.37:0.82] 0.47 [0.16:0.82] 0.40 [0.04:0.85] - 0.14 [-0.03:0.34] 0.20 [0.01:0.51]

Proportion of rationality (imposed)
nh 1.00 0.50 0.10 0.00 1.00 0.50 0.10
nf 1.00 0.50 0.10 0.00 1.00 0.50 0.10

Interest rate rule
θπ 1.77 [1.46:2.11] 1.28 [1.12:1.43] 1.22 [1.05:1.46] 1.17 [1.06:1.26] 1.55 [1.22:1.85] 1.10 [1.04:1.17] 1.09 [1.04:1.13]
θy 0.09 [0.01:0.17]-0.03 [-0.06:0.00]-0.02 [-0.05:0.00]-0.01 [-0.04:0.01]0.14 [0.06:0.22] 0.01 [-0.00:0.03] 0.00 [-0.01:0.01]
θdy 0.11 [0.03:0.20] 0.02 [-0.03:0.07] 0.02 [-0.03:0.07] 0.00 [-0.01:0.01] 0.10 [0.01:0.18] 0.11 [0.05:0.18] -0.00 [-0.04:0.03]
ρr 0.55 [0.40:0.68] 0.40 [0.33:0.47] 0.39 [0.33:0.45] 0.41 [0.36:0.46] 0.49 [0.37:0.61] 0.36 [0.30:0.44] 0.38 [0.32:0.44]

AR(1) coefficients
ρA 0.86 [0.78:0.94] 0.96 [0.93:0.99] 0.96 [0.92:0.99] 0.96 [0.92:0.99] 0.36 [0.08:0.65] 0.96 [0.94:0.99] 0.96 [0.93:0.99]
ρG 0.49 [0.23:0.71] 0.51 [0.19:0.84] 0.54 [0.24:0.86] 0.51 [0.14:0.80] 0.41 [0.25:0.58] 0.51 [0.21:0.88] 0.51 [0.29:0.68]
ρMS 0.50 [0.16:0.84] 0.50 [0.18:0.79] 0.50 [0.18:0.81] 0.53 [0.21:0.84] 0.47 [0.18:0.80] 0.58 [0.41:0.76] 0.56 [0.24:0.83]
ρπ 0.97 [0.94:0.99] 0.73 [0.40:0.96] 0.57 [0.25:0.95] 0.54 [0.21:0.89] 0.98 [0.96:0.99] 0.66 [0.49:0.86] 0.48 [0.34:0.69]

Standard deviation of shocks
εAtrend0.55 [0.48:0.62] 0.09 [0.06:0.11] 0.09 [0.06:0.12] 0.09 [0.07:0.12] 0.59 [0.53:0.66] 0.08 [0.05:0.11] 0.09 [0.06:0.12]
εA 0.06 [0.03:0.10] 0.56 [0.49:0.62] 0.55 [0.47:0.62] 0.54 [0.48:0.61] 0.07 [0.03:0.12] 0.60 [0.54:0.66] 0.60 [0.53:0.65]
εG 0.14 [0.02:0.30] 0.06 [0.03:0.10] 0.06 [0.02:0.09] 0.14 [0.02:0.29] 0.08 [0.02:0.19] 0.07 [0.02:0.11] 0.10 [0.02:0.24]
εMS 0.07 [0.03:0.11] 0.07 [0.02:0.12] 0.10 [0.03:0.22] 0.10 [0.02:0.22] 0.08 [0.03:0.14] 0.10 [0.02:0.23] 0.10 [0.02:0.24]
επ 0.08 [0.05:0.10] 0.05 [0.03:0.06] 0.04 [0.03:0.06] 0.04 [0.02:0.06] 0.07 [0.04:0.09] 0.04 [0.02:0.06] 0.04 [0.02:0.06]
εMP 0.07 [0.02:0.12] 0.04 [0.02:0.05] 0.04 [0.03:0.06] 0.04 [0.02:0.05] 0.06 [0.02:0.09] 0.04 [0.02:0.05] 0.04 [0.02:0.05]

Standard deviation of measurement errors
εy 0.06 [0.03:0.10] 0.06 [0.03:0.11] 0.07 [0.03:0.13] 0.07 [0.02:0.12] 0.06 [0.03:0.09] 0.06 [0.03:0.09] 0.06 [0.02:0.10]
επ 0.52 [0.45:0.65] 0.47 [0.40:0.54] 0.48 [0.42:0.55] 0.48 [0.42:0.57] 0.60 [0.53:0.67] 0.53 [0.47:0.59] 0.53 [0.47:0.61]

Price contract length
1

1−ξ 2.44 1.96 1.92 1.96 2.50 1.75 1.72

Marginal likelihood and posterior model odd
LL -143.05 -139.38 -138.15 -138.90 -135.60 -136.83 -137.88
Prob. 0.0004 0.0149 0.0509 0.0241 0.6523 0.1907 0.0667

Table 5: Bayesian Posterior Distributions for RE, IR and Composite RE-IR Models:
Perfect Information (PI) and Imperfect Information (II) Assumptions for RE Agents. For all
estimated models we use observations with a lag and the information set for lag 1 case at time
t is It = {Yt−1,Πt−1, Rn,t}. n = nh = nf = 0.5, 0.1 are imposed in this estimation. The trend
or mean of the data variables are calculated directly from the data and not estimated with the
rest of the model. The steady state is consistent with these values.
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correlation and the best performing behavioural composite is also highly successful in repro-

ducing the co-movement in the data. However, in terms of the output-interest rate correlation,

all models perform poorly and have the wrong sign although the RE-II assumption improves

in this dimension, getting slightly closer to the data. Overall, the strength of the composite-II

behaviour reproducing business cycles lies in the output and interest rate moments as the esti-

mated model matches most of the US data and the empirical moments are captured well-within

the 95% uncertainty bands in the data.

Standard Deviation
Output Inflation Interest rate

US Data 0.58 0.24 0.61
(0.50, 0.69) (0.21, 0.27) (0.55, 0.70)

Pure RE(PI) 0.54 1.02 0.84
Pure IR 0.53 0.68 0.45
Pure RE(II) 0.60 1.17 0.97
Heuristic-RE(II)-IR (n = 0.5) 0.58 0.78 0.58

Cross-correlation with Output
US Data 1.00 -0.12 0.22

(-) (-0.31, 0.10) (0.02, 0.39)
Pure RE(PI) 1.00 -0.02 -0.02
Pure IR 1.00 -0.04 -0.05
Pure RE(II) 1.00 -0.01 -0.01
Heuristic-RE(II)-IR (n = 0.5) 1.00 -0.07 -0.08

Table 6: Selected Second Moments (At the Posterior Means): For the empirical mo-
ments computed from the dataset the bootstrapped 95% confidence bounds based on the sample
estimates are presented in parentheses.

If we look at the autocorrelations up to 10 lags in Figure 7, the picture is also somewhat

mixed. Overall it shows very good goodness-of-fit of RE-IR Composite under II to data in terms

of successfully capturing the autocorrelations up to many lags – in any case, almost all of the

moments are inside the 95% confidence intervals of the empirical moments of autocorrelations,

which leads to some confidence in the estimated models. Model RE with and without II is

problematic in reproducing the output autocorrelations at the first two and three orders, ACF

lying outside of the lower interval and having the wrong sign. The behavioural composite with

the generalized forecasting rule is capable of generating more persistence in inflation and interest

rate than the IR special case and the reason for this lies in the estimated learning mechanism

of the adaptive expectations scheme in, for example, forecasting inflation movements from their

RE counterparts. These autocorrelations are able to reproduce an important stylized fact,

namely the persistence of aggregate inflation usually observed in empirical data, generating

much inertia in the time path to match the actual inflation (also shown in the IRF predictions

below). This is more effective than the pure RE case with II learning and/or exogenous shock

dynamics which generates too much inertia. Finally switching the information set from PI to

II for the RE model produces a little more persistence, captured by the implied correlograms

of inflation.

The findings in this section are generally in line with those in Jang and Sacht (2014), who

conduct an empirical investigation on moment matching using a bounded rationality behavioural

model à la De Grauwe (2011) estimated by the Simulated Method of Moments for the Euro
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Area. They find that their results can mimic the real data well, slightly outperforming the linear

RE counterpart in some of the moments, or are at least as good as the RE model in terms of

providing fits for auto- and cross-covariances of the data. Perhaps the main message to emerge

from this RBC type of model validity exercise is that it can be misleading to assess model fit

using a selective choice of second moment comparisons as there are trade-offs in terms of fitting

some second moments well, at the expense of others. As pointed out the most comprehensive

form of assessment of competing models is via likelihood comparisons. In this moments analysis

there is some evidence that shows a good fit of both RE(II) and Composite RE-IR, in particular

how they capture the autocorrelation dynamics and output volatility, to some dimensions of the

data but this needs to be analysed with some caution and the probabilistic assessment using the

marginal likelihoods provides the most decisive support. Our estimated models so far replicate

the stylized facts, yielding persistence in aggregate data, obtaining reasonable inertia to get

close to the data with the endogenized learning mechanisms – this shows an improved ability of

the DSGE model with II and IR behaviour to generate endogenous propagation mechanisms.

This explains the improved overall model fit in the comparison section.

1 2 3 4 5 6 7 8 9 10

Lag

-0.4

-0.2

0

0.2

0.4

0.6

A
C

F

Output

1 2 3 4 5 6 7 8 9 10

Lag

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

A
C

F

Inflation

1 2 3 4 5 6 7 8 9 10

Lag

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

A
C

F

Interest rate

Data
Pure RE(PI)
Pure IR
Pure RE(II)
Heuristic-RE(II)-IR (n=0.5)

Figure 7: Autocorrelations of Observables in the Actual Data and in the Estimated
Models: The approximate 95% confidence bands are constructed using the large-lag standard
errors (see Anderson (1976)).

10 Posterior Impulse Responses and Endogenous Persistence

As shown above from the estimated models and the moment analysis, both the heuristic rules

and RE-II learning mechanisms introduces more dynamics (persistence) into the model solu-

tions. As a result, the empirical models incorporating either form of endogenous learning can

significantly outperform the standard RE-PI model in the likelihood comparison. The empirical

impulse response functions from the estimated models in this section support these conclusions.

In Figures 8 - 9, relaxing PI in particular introduces more persistence compared with RE-PI,

generating more hump-shaped trajectories after the system is shocked suggesting this feature
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Figure 8: Estimated Impulse Responses – Technology Shock
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Figure 9: Estimated Impulse Responses – Monetary Policy Shock

should lead to a better fit of the data without relying on other model internal inertia mecha-

nisms.

The IRFs also attempt to address the difficulty of generating reasonable endogenous per-

sistence in DSGE frameworks and replicating the observed business cycle stylized facts. As

already seen in Table 5, our baseline RE model with II learning statistically dominates all other

modelling assumptions. Relaxing 50% pure rationality in the baseline model with the general

heuristic learning rule also performs well. Model fit can be much improved without resorting to

building a large number of frictions and shocks, offering a parsimonious approach while relaxing

the extreme RE and PI. Of particular interest for the evaluation of using internal propagation

mechanisms, relaxing full rationality leads to a reduction in the estimated degree of price stick-

iness ξ. In addition, relaxing the RE and perfect information restrictions generally leads to a

reduction in the estimated persistence of the shock processes (e.g. ρA or ρπ in particular).
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We also find that the lagged interest rate is highly significant in the estimated policy rule, but

the estimated inertia is much reduced when IR and II are introduced, suggesting a reduction

in the persistence needed in the rule. The monetary policy volatility matters much less for

explaining the data variation aspect of the fit when the model is no longer pure RE. Overall

taking the results reported in Sections 8, 9 and 10, we can capture business cycle movements

without having to assume either highly autocorrelated shocks, high policy rule persistence

and/or the presence of endogenous inertia in the model due to, for example, habit formation in

consumption and lengthy price-setting contracts. This contrasts with standard DSGE models

in a RE-PI environment.

11 Conclusions

This paper studies an NK behavioural model for which boundedly rational beliefs of inter-

nally rational (IR) economic agents are about payoff-relevant macroeconomic variables that are

exogenous to their decision rules. IR agents do not know they are identical, as opposed to

Euler-learning (EL) where agents are (implicitly) assumed to know the symmetric nature of the

equilibrium. We compare pure forms of RE, IR and EL models before proceeding to construct

a Brock-Hommes composite model with reinforcement learning.

We examine the policy space of feedback parameters in a Taylor-type rule with interest rate

persistence. We find that the pure IR model has a smaller policy space than pure EL which

in turn is smaller than pure RE, making it more prone to local instability and the possibility

of chaos. The differences in the sizes of the policy spaces that result in a saddle-path stable

equilibrium are significant. Furthermore a clear ranking of the sizes of these spaces emerges

with RE ⊃ EL ⊃ IR. This means that unless the policy rule is designed for the IR model,

uncertainty as to which model of expectations is correct can lead to a rule that is unstable or

indeterminate.

In a Bayesian estimation of the RE-IR composite model with exogenous proportions of

RE and IR agents, informational assumptions are central to the paper. In comparisons of

different composites including the pure RE and IR cases, we impose what we term informational

consistency where RE and IR agents in the model share the same imperfect information as the

econometrician estimating the model. We contrast this with the standard assumption that RE

agents have perfect information of the current state variables. We find in a likelihood race

that the RE model with imperfect information (II) outperforms the IR model which in turn

outperforms RE with perfect information (PI). When we examine the behavioural composite

model with a general heuristic forecasting rule and the RE agents having only II, the behavioural

model cannot be statistically distinguished from RE with II. Second moment comparisons with

the data are mixed, but the RE-IR composite with II captures more dimensions than RE with II

with the latter projecting more drawn-out impulse response trajectories. These results suggest

that persistence can be injected into the NK model to improve data fit in two contrasting

ways: bounded-rationality with learning, and retaining RE, but with imperfect information

Kalman-filtering learning.

Our results for a very simple NK model suggest a new agenda for constructing empirical

medium-sized NK models. Future work will embed the RE-IR composite model into a richer
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NK model along the lines of Smets and Wouters (2007), use non-linear estimation methods to

identify a number of parameters involving reinforcement learning that are not identified using

linear Bayesian estimation and examine optimal monetary policy. Future work on the policy

aspect will follow Hall and Mitchell (2007), Geweke and Amisano (2012) and Deak et al. (2017)

and estimate an optimal pool of RE and RE-IR composites to design a robust rule across such

model variants.
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ONLINE APPENDICES (Not for Publication)

A Summary of Composite RE-IR Model

In stationarized form the model for exogenous proportions nh,t and nf,t we have:
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RE Households:

UREt = U(CREt , HRE
t ) = logCREt − (HRE

t )1+φ

1 + φ

UREC,t = Et[βg,t+1U
RE
C,t+1Rt+1]

βg,t = β/(1 + gt)

gt = (1 + g) exp(εAtrend)− 1

Rt =
Rn,t−1

Πt

UREC,t =
1

CREt

UREH,t = −(HRE
t )φ

−
UREH,t

UREC,t
= Wt

IR Households:

U IRt = U(CIRt , HIR
t ) = logCIRt −

(HIR
t )1+φ

1 + φ

CIRt
(1− Etβg,t+1)

=
1

(CIRt )
1
φ

W 1+ 1
φ

t +

((
E∗tRn,t+1

Rn,t

)
E∗tWt+1

)1+ 1
φ

(Etβg,t+1)
1
φ (E∗tRext+1)

1+ 1
φ − 1


+ Γt −Gt +

(
E∗tRn,t+1

Rn,t

)
E∗t (Γt+1 −Gt+1)

E∗tRext+1 − 1

≡ 1

(CIRt )
1
φ

(
W

1+ 1
φ

t +

(
E∗tRn,t+1

Rn,t

)1+ 1
φ

Ω1,t

)

+ Γt −Gt +

(
E∗tRn,t+1

Rn,t

)
Ω2,t

where

Ω1,t =
(E∗tWt+1)

1+ 1
φ

(Etβg,t+1)
1
φ (E∗tRext+1)

1+ 1
φ − 1

Ω2,t =
E∗t (Γt+1 −Gt+1)

E∗tRext+1 − 1

E∗tRext+1 =
E∗tRn,t+1

E∗h,tΠt+1

U IRC,t =
1

CIRt

U IRH,t = −(HIR
t )φ

−
U IRH,t

U IRC,t
= Wt
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Wholesale Firms:

Y W
t = F (At, Ht) = AtH

α
t = At(nh,tH

RE
t + (1− nh,t)HIR

t )α

Yt =
Y W
t

∆α
t

PWt
Pt

FH,t =
PWt
Pt

αY W
t

Ht
= Wt

1 = ξΠζ−1
t + (1− ξ)

(
nf,t

(
JREt
JJREt

)1−ζ

+ (1− nf,t)
(
JIRt
JJIRt

)1−ζ)

∆t = ξΠ
ζ
α
t ∆t−1 + (1− ξ)

nf,t( JREt
JJREt

)− ζ
α

+ (1− nf,t)
(
JIRt
JJIRt

)− ζ
α


MCt =

PWt
Pt

=
Wt

FH,t

Γt = Yt − αMCtY
W
t

RE Retail Firms:

JJREt − ξEt[Πζ−1
t+1JJ

RE
t+1βg,t+1] = Yt

(
nh,tU

RE
C,t + (1− nh,t)U IRC,t

)
JREt − ξEt[Πζ

t+1J
RE
t+1βg,t+1] =

(
1

1− 1
ζ

)
YtMCtMSt

(
nh,tU

RE
C,t + (1− nh,t)U IRC,t

)
(
P 0
t

Pt

)RE
=

JREt
JJREt

IR Retail Firms:

JIRt =

(
1

1− 1
ζ

)
(YtMCtMSt + Ω3,t)

JJIRt = Yt + Ω4,t(
P 0
t

Pt

)IR
=

JIRt
JJIRt

where

Ω3,t =
ξ(E∗f,tΠt+1)ζE∗tYt+1E∗tMCt+1E∗tMSt+1

E∗f,tRt+1 − ξ(Πt+1)ζ

Ω4,t =
ξ(E∗f,tΠt+1)ζ−1E∗tYt+1

E∗f,tRt+1 − ξ(E∗f,tΠt+1)ζ−1

where

E∗f,tRt+1 = E∗f,t
[
Rn,t
Πt+1

]
=

Rn,t
E∗f,tΠt+1

One-Period Ahead Adaptive Expectations:

E∗t [βg,t+1] = E∗t−1[βg, t] + λ1,βg

(
βg,t−1 − E∗t−1[βg,t]

)
+ λ2,βg (βg,t−1 − βg,t−2) ; λi,βg ∈ [0, 1]
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E∗t [Gt+1] = E∗t−1[Gt] + λ1,G

(
Gt − E∗t−1[Gt]

)
+ λ2,G (Gt −Gt−1) ; λi,G ∈ [0, 1]

E∗t [Wt+1] = E∗t−1[Wt] + λW
(
Wt − E∗t−1[Wt]

)
+ λ2,W (Wt −Wt−1) ; λi,W ∈ [0, 1]

E∗t [Γt+1] = E∗t−1[Γt] + λ1,Γ

(
Γt − E∗t−1[Γt]

)
+ λ2,Γ (Γt − Γt−1) ; λi,Γ ∈ [0, 1]

E∗t [Rn,t+1] = E∗t−1[Rn,t] + λ1,Rn

(
Rn,t − E∗t−1[Rn,t]

)
+ λ2,Rn (Rn,t −Rn,t−1) ; λi,Rn ∈ [0, 1] (households)

E∗h,t[Πt+1] = E∗t−1[Πt] + λ1h,Π

(
Πt−1 − E∗t−1[Πt]

)
+ λ2h,Π (Πt−1 −Πt−2) ; λih,Π ∈ [0, 1] (households)

E∗f,t[Πt+1] = E∗t−1[Πt] + λ1f,Π

(
Πt−1 − E∗t−1[Πt]

)
+ λ2h,Π (Πt−1 −Πt−2) ; λif,Π ∈ [0, 1] (firms)

E∗t [Yt+1] = E∗t−1[Yt] + λ1,Y

(
Yt−1 − E∗t−1[Yt]

)
+ λ2,Y (Yt−1 − Yt−2) ; λi,Y ∈ [0, 1]

E∗t [M̃Ct+1] = E∗t−1[M̃Ct] + λ1,MC

(
M̃Ct − E∗t−1[M̃Ct]

)
+ λ2,MC

(
M̃Ct − M̃Ct−1

)
; λi,MC ∈ [0, 1]

where M̃Ct ≡MCtMSt. Note that we have used the first order approximation log Xt
X ≈

Xt−X
X .

Wealth Distribution:

First define bond holdings of IR households by

BIR
t = RtB

IR
t−1 +WtH

IR
t + Γt − CIRt − Tt −

$

2
(BIR

t−1 −B)2

having introduced a portfolio cost adjustment with a small $. Then replace CIRt and Euler

equation above with

CIRt −BIR
t

(1− E∗tβg,t+1)
=

1

(CIRt )
1
φ

W 1+ 1
φ

t +

((
E∗tRn,t+1

Rn,t

)
E∗tWt+1

)1+ 1
φ

(E∗tβg,t+1)
1
φ (E∗tRext+1)

1+ 1
φ − 1

+ Γt −Gt

+

(
E∗tRn,t+1

Rn,t

)
E∗t (Γt+1 −Gt+1)

E∗tRext+1 − 1

≡ 1

(CIRt )
1
φ

(
W

1+ 1
φ

t +

(
E∗tRn,t+1

Rn,t

)1+ 1
φ

Ω1,t

)

+ Γt −Gt +

(
E∗tRn,t+1

Rn,t

)
Ω2,t

UREC,t = Et
[
βg,t+1U

RE
C,t+1(Rt+1 −$(BRE

t −B))
]

where zero net wealth implies nh,tB
RE
t = −(1− nh,t)BIR

t .

Closure of Model:

Yt = nh,tC
RE
t + (1− nh,t)CIRt +Gt

Gt = Tt

log

(
Rn,t
Rn

)
= ρr log

(
Rn,t−1

Rn

)
+ (1− ρr)

(
θπ log

(
Πt

Πtarg,t

)
+ θy log

(
Yt
Y

)
+ θdy log

(
Yt
Yt−1

))
+ εMP,t (Perfect Information)

log

(
Rn,t
Rn

)
= ρr log

(
Rn,t−1

Rn

)
+ (1− ρr)

(
θπ log

(
Et[Πt]

Πtarg,t

)
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+ θy log

(
Et[Yt]
Y

)
+ θdy log

(
Et[Yt]
Yt−1

))
+ εMP,t (Imperfect Information)

logAt − logA = ρA(logAt−1 − logA) + εA,t

logGt − logG = ρG(logGt−1 − logG) + εG,t

logMSt − logMS = ρMS(logMSt−1 − logMS) + εMS,t

log Πtarg,t − log Π = ρπ(log Πtarg,t−1 − log Π) + επ,t

Endogenous Proportions of RE and IR Agents:

The payoff for households and firms is expressed on terms of a discounted sum of past weighted

forecast errors, Φh,t say, starting at t = 0 for with rational and non-rational households respec-

tively:

ΦRE
h,t = µREh ΦRE

h,t−1 − (1− µREh )
(
wβg(βg,t − Eh,t−1βg,t)/βg)

2 + wG((Gt − Eh,t−1Gt)/G)2

+ wW ((Wt − Eh,t−1Wt)/W )2 + wh,Π((Πt − Eh,t−1Π)/Π)2

+ wΓ((Γt − Eh,t−1Γt)/Γ)2 + wR((Rn,t − Et−1Rn,t)/Rn)2 + Ch

)
ΦIR
h,t = µIRh ΦIR

h,t−1 − (1− µIRh )
(
wβg(βg,t − E∗h,t−1βg,t)/βg)

2 + wG((Gt − E∗h,t−1Gt)/G)2

+ wW ((Wt − E∗h,t−1Wt)/W )2 + wh,Π((Πt − E∗h,t−1Π)/Π)2 + wΓ((Γt − E∗h,t−1Γt)/Γ)2

+ wR((Rn,t − Et−1Rn,t)/Rn)2)
)

The parameter Ch is a fixed cost of being rational for households. For firms this becomes

ΦRE
f,t = µREf ΦRE

f,t−1 − (1− µREf )
(
wY ((Yt − Ef,t−1Yt)/Y )2 + wf,Π((Πt − Ef,t−1Π)/Π)2

+ wMC((M̃Ct − Ef,t−1M̃Ct)/MC)2 + Cf

)
ΦIR
f,t = µIRf ΦIR

f,t−1 − (1− µIRf )
(
wY ((Yt − E∗f,t−1Yt)/Y )2 + wf,Π((Πt − E∗f,t−1Π)/Π)2

+ wMC((M̃Ct − E∗f,t−1M̃Ct)/MC)2
)

where the parameter Cf is a fixed cost of being rational for firms and we allow for the possibility

that Ch 6= Cf .

Note that for variable Xt, Et−1Xt above denotes rational expectations so that putting

(EX)t−1 ≡ Et−1Xt we have the Dynare set-up

(EX)t = EtXt+1 coded as EiX = X(+1) for i = h, f where appropriate

Then the proportions of rational households and firms is given by

nh,t =
exp(γΦRE

h,t )

exp(γΦh,t)RE + exp(γΦIR
h,t)

=
exp(γ(ΦRE

h,t − ΦIR
h,t))

exp(γ(ΦRE
h,t − ΦIR

h,t)) + 1

nf,t =
exp(γΦRE

f,t )

exp(γΦf,t)RE + exp(γΦIR
f,t )

=
exp(γ(ΦRE

f,t − ΦIR
f,t ))

exp(γ(ΦRE
f,t − ΦIR

f,t )) + 1
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Thus the proportion of rational agents in the steady state is given by

nh =
exp(−γCh)

exp(−γCh) + 1

nf =
exp(−γCf )

exp(−γCf ) + 1

which is pinned down by the cost parameters (Ch, Cf ) (which can be positive or negative).

Welfare and Consumption Equivalence:

Ut = log((nh,tC
RE
t + (1− nh,t)CIRt )−

(nh,tH
RE
t + (1− nh,tHt)

IR)1+φ

1 + φ

welt = (1− βg,t)Ut + Et[βg,t+1welt+1]

welREt = (1− βg,t)UREt + Et[βg,t+1wel
RE
t+1]

welIRt = (1− βg,t)U IRt + Et[βg,t+1wel
IR
t+1]

CEt = log(1.01Ct)− log(Ct)

B Balanced Growth Steady State

In recursive form the zero-growth zero-inflation (Π = 1) steady state of can be written

R =
1

β

Λ = β

MC =
PW

P
= 1− 1

ζ
C

Y
= 1− gy

H =
α∆αMC

κ(1− gy)
Y W = (AH)α

Y =
Y W

∆α

W = α
PW

P

Y W

H

J =
YMCUC

(1− 1
ζ )(1− ξβΠζ)

JJ =
Y UC

(1− ξβΠζ−1)

Hence with Π = 1, J = JJ

∆ = 1

Γ = Y − αMCY W
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For a particular steady state inflation rate Π > 1 the NK features of the steady state become

J

JJ
=

(
1− ξΠζ−1

1− ξ

) 1
1−ζ

MC =
PW

P
=

(
1− 1

ζ

)
J(1− βξΠζ)

JJ(1− βξΠζ−1)

∆ =
(1− ξ)α

(
J
JJ

)−ζ
1− ξΠζ

Then PWY W /PY = MC∆.

We can now easily set up the model with a balanced-exogenous-growth steady state. Now

the process for At is replaced with

At = ĀtA
c
t

Āt = (1 + g)Āt−1 exp(εA,t)

logAct − logAc = ρA(logAct−1 − logAc) + εA,t

where At is a labour-augmenting technical progress parameter which we decompose into a

cyclical component, Act , modelled as a temporary AR(1) process and a stochastic trend, whose

log is a random walk with drift, Āt. Thus the balanced growth deterministic steady state path

(bgp) is driven by labour-augmenting technical change growing at a net rate g. If we put

g = εtrend,t = 0 and Āt = 1, we arrive at our previous formulation with Act = At.

Now stationarize variables by defining cyclical and stationary components:

(Y W
t )c ≡ Y W

t

Āt
= ActH

α
t

Cct ≡
Ct
Āt

W c
t ≡ Wt

Āt

U ct ≡ logCct − κ
H1+φ
t

1 + φ

U cC,t ≡
1

Cct

Λt,t+1 = β
UC,t+1

UC,t
= βg,t+1

U cC,t+1

U cC,t

for all non-stationary variables where

gt ≡
(Āt − Āt−1)

Āt
= (1 + g) exp(εA,t)− 1

βg,t ≡ β(1 + gt)

is the stochastic steady state growth rate and the stationarized Euler equation and the Calvo
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pricing become

Et [Λt,t+1Rt+1] = Et

[
βg,t+1

U cC,t+1

U cC,t
Rt+1

]
= 1

and

ĴJ
c

t − ξEt[Π
ζ−1
t+1 ĴJ

c

t+1Λt,t+1] = Y c
t

Ĵct − ξEt[Π
ζ
t+1Ĵ

c
t+1Λt,t+1] = Y c

t MCtMSt

or equivalently

ĴJ
c

t − ξEt[Π
ζ−1
t+1 ĴJ

c

t+1βg,t+1] = Y c
t U

c
t

Ĵct − ξEt[Π
ζ
t+1Ĵ

c
t+1βg,t+1] = Y c

t U
c
tMCtMSt

The steady state for the rest of the system is the same as the zero-growth one except for

the following relationships:

R =
1

βg
=
Rn
Π

where R and Rn are the real and nominal steady state interest rates and Π is inflation.

C Proof of Lemma

In the first order conditions for Calvo contracts and expressions for value functions we are

confronted with expected discounted sums of the general form

Ωt = Et

[ ∞∑
k=0

βkXt,t+kYt+k

]

where Xt,t+k has the property Xt,t+k = Xt,t+1Xt+1,t+k and Xt,t = 1 (for example an inflation,

interest or discount rate over the interval [t, t+ k]).

Lemma

Ωt can be expressed as

Ωt = Yt + βEt [Xt,t+1Ωt+1]

Proof

Ωt = Xt,tYt + Et

[ ∞∑
k=1

βkXt,t+kYt+k

]

= Yt + Et

[ ∞∑
k′=0

βk
′+1Xt,t+k′+1Yt+k′+1

]

= Yt + βEt

[ ∞∑
k′=0

βk
′
Xt,t+1Xt+1,t+k′+1Yt+k′+1

]
= Yt + βEt [Xt,t+1Ωt+1] �
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C.1 Proof of Equation 29

In the next period, ξ of these firms will keep their old prices, and (1 − ξ) will change their

prices to POt+1. By the law of large numbers, we assume that the distribution of prices among

those firms that do not change their prices is the same as the overall distribution in period t.

It follows that we may write

∆t+1 = ξ
∑

jno change

(
Pt(j)

Pt+1

)−ζ
+ (1− ξ)

(
Jt+1

JJt+1

)−ζ

= ξ

(
Pt
Pt+1

)−ζ ∑
jno change

(
Pt(j)

Pt

)−ζ
+ (1− ξ)

(
Jt+1

JJt+1

)−ζ

= ξ

(
Pt
Pt+1

)−ζ∑
j

(
Pt(j)

Pt

)−ζ
+ (1− ξ)

(
Jt+1

JJt+1

)−ζ
= ξΠζ

t+1∆t + (1− ξ)
(
Jt+1

JJt+1

)−ζ
�
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D Addition to Section 7
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Figure 10: RE versus RE-IR Composite Expectations with nh = nf = 0.5, λx = 0.25, 1.0;
Taylor rule with ρr = 0.7, θπ = 1.5 and θy = 0.3. Technology Shock
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Figure 11: RE versus RE-IR Composite Expectations with nh = nf = 0.5, λx = 0.25, 1.0;
Taylor rule with ρr = 0.7, θπ = 1.5 and θy = 0.3. Mark-up Shock
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Figure 12: Wealth Distribution and Impulse Responses – Technology Shock
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Figure 13: Wealth Distribution and Impulse Responses – Government Spending
Shock
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E Identification Strength at Priors and Posteriors

It is necessary to confront the question of parameter identifiability in our DSGE models before

taking them to the data, as model or parameter identification is a prerequisite for the infor-

mativeness of different estimators, and their effectiveness when one uses the models to address

policy questions. In this section we focus on detecting parameter identification difficulties that

are inherent in the structure of the models. As mentioned we fix some parameters before es-

timation because of their non-identification in the model solution (at first order). The aim of

this section is to scan the parameters we choose to estimate in terms of their identification in

our models. Among the authors who have made the most recent contributions to addressing

the identification issues in DSGE models are Iskrev (2008) and Iskrev (2010b), Canova and

Sala (2009), and Komunjer and Ng (2011). We use Iskrev (2010b)’s computational toolbox to

perform formal identification checks on the reduced form parameters and structural parameters.

This approach is based on evaluating analytically the information matrix of the reduced-form

model and checking for rank deficiency of gradient matrix (the Jacobian). Our checks are per-

formed in terms of a local analysis that is based on the identification evaluation at the point

values of the prior means in Table 2 and a ‘global’ prior exploration of point identification

properties by taking a Monte Carlo samples from the prior space. The identifiability of each

draw including the mean prior is established by studying the ranks of Jacobian of the model

and given the set of observable variables and the sample size (the sample moments).

We take our models to the identification toolbox that computes the Jacobian numerically

of the model (the solution) and the moments for rank evaluations prior to estimating them.

To completely rule out a flat likelihood at the local point we also check collinearity between

the effects of different parameters on the likelihood. If there exists an exact linear dependence

between a pair and among all possible combinations their effects on the moments are not distinct

which must indicate a flat likelihood and lack of identification. We find that the Jacobian matrix

has full rank and that the models can be identified locally within the prior space. This includes

our key parameters for behaviourial heterogeneity λ1, nh and nf .

A further output of Iskrev (2010b)’s identification routine is the analysis of identification

strength, i.e., focusing on weak identification, summarized in Figures 13 - 16 in Appendix B.

The procedures are based on either the asymptotic or a moment information matrix. The

first can be obtained given a sample of size T , whereas the second can be computed based on

Monte Carlo simulations for samples of size T , from which sample moments of the observed

variables are computed, forming a sample of N replicas of simulated moments. The corre-

sponding information matrix is then obtained as IT (θ|mT) = HTΣmTHT , where ΣmT is the

covariance matrix of simulated moments and HT the derivatives of the vector collecting all the

reduced-form coefficients. We now examine more carefully all our parameters at the means of

the prior and posterior distributions and using the prior uncertainty. We focus this analysis

on the two behaviourial models and report the sensitivity measure and collinearity results for

all parameters evaluated at the prior mean, relative to the prior standard deviation and at the

posterior mean obtained using the estimated models in the next section. Note that, in Ap-

pendix B, all their parameters are sensitive in affecting the likelihood through their effects on

the moments of the observed variables. Table 7 highlights the effects of λ1, nh and nf on the
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likelihood which are very strong (at least at the prior means). Although some similarities in

terms of pair-wise collinearity are detected it is important to confirm that no linear dependance

(non-identification) is found across the estimated parameters in these models.

Sensitivity Collinearity

Prior Mean Posterior Mean Prior Mean Posterior Mean

θi ∆iθi ∆prior
i θi ∆iθi %i θj %i θj

λ1 25.0845 15.2038 19.5426 0.6532 θπ 0.5649 επ
nh 47.6276 27.7389 0.5148 0.9253 εAtrend 0.8685 θπ
nf 186.7911 37.1511 5.3974 0.8390 θy 0.9927 ξ

Table 7: Identification at Priors and Posteriors (Parameters λ1, nh and nf)

We follow Iskrev (2010a)’s procedures and measure the identification strength, based on the

information matrix IT (θ), as sensitivity of the information derived from the likelihood to the

parameters and collinearity between the effects of different parameters on the likelihood. The

‘strength’ of identification can be decomposed into a ‘sensitivity’ and ‘correlation’ component.

The first referring to the case when weak identification arises when the moments do not change

with θi and the second when collinearity dampens the effect of θi. The former is defined as

∆i =
√
θ2
i · IT (θ)(i,i)

which can also be normalised relative to the prior standard deviation for θi: σ(θi), weighting

the information matrix using the prior uncertainty:

∆prior
i = σ(θi) ·

√
IT (θ)(i,i)

It is possible to show the standard error of a parameter:

s.e.(θi) =
1

∆i

1√
1− %2

i

where %i denotes collinearity between the effects of different parameters so that lack of identi-

fication and a flat likelihood may be due to either ∆i = 0 or %i = 1.

F Solution of Linearized Models under Imperfect Information

We write a RE model in the general non-linear form:

Et[f(yt, yt+1, yt−1, εt)] = 0 (F.1)

with Et now referring to expectations subject to an information set that may be imperfect.

Either analytically, or numerically using the methods of Levine and Pearlman (2011), a log-

linearized form state-space representation can be obtained as[
zt+1

Etxt+1

]
= G

[
zt

xt

]
+H

[
Etzt
Etxt

]
+

[
B

0

]
εt+1 (F.2)
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Figure 14: Identification Strength at Prior Means in Model RE-IR with Estimated
nh, nf
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Figure 15: Identification Strength at Posterior Means in Model RE-IR with Esti-
mated nh, nf
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Figure 16: Identification Strength at Prior Means in Model IR
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Figure 17: Identification Strength at Posterior Means in Model IR
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where zt, xt are vectors of backward and forward-looking variables, respectively, and εt is a

vector of shock variables. We define G =

[
G11 G12

G21 G22

]
, with H similarly defined. The reason

for transforming the equations of the model from the linearized version of (F.1) is that the

corresponding solution method of Sims (2002) does not extend easily to imperfect information.

In addition we assume that agents all make the same observations at time t, which are given,

in non-linear and subsequently linearized forms respectively, by

Mobs
t = m(yt)

mt =
[
M1 M2

] [ zt

xt

]
+
[
L1 L2

] [ Etzt
Etxt

]
(F.3)

Note that the expressions involving Etzt,Etxt arise from rewriting the model in Blanchard-Kahn

form (F.2). The presence of these terms is what distinguishes our results on invertibility from

those of Baxter et al. (2011), and in addition we do not make the assumption that agents have

full current information on all variables for which forward expectations are present in the model.

Thus the information set at time t for all agents is {ms : s ≤ t}. For ease of notation

we assume that if any variables are observed with measurement error, then these variables are

included in the state space, and the measurement errors are then part of the vector εt. Given the

fact that expectations of forward-looking variables depend on the information set, it is hardly

surprising that the absence of perfect information will impact on the path of the system. A

full derivation of the solution for the general linear setup above is provided in Pearlman et al.

(1986), but is outlined below.

F.1 Perfect Information Case

We first consider the solution for (F.2) and (F.3) under perfect information; in this case we

assume that all stocks dated t− 1 and other variables dated t in (F.2) are fully observed during

the course of period t. These would include beginning-of-period capital stock kt−1, beginning-

of-period net worth nt−1, all flows such as output, consumption, investment, all output and

factor prices, inflation over the period and all end-of-period realizations of exogenous stochastic

processes such as at, gt etc.

For this perfect information case (where Etzt = zt,Etxt = xt) there is a saddle path satisfy-

ing:

xt +Nzt = 0 where
[
N I

]
(G+H) = ΛU

[
N I

]
(F.4)

where ΛU is a matrix with unstable eigenvalues. If the number of unstable eigenvalues of (G+H)

is the same as the dimension of xt, then the system will be determinate.16 We then ask whether

observations by the econometrician of the form (F.3) will lead to invertibility.

From the saddle path relationship (F.4), it is clear that the reduced-form representation of

16Note that in general the dimension of xt will not match the number of expectational variables in (F.1). The
algorithm in Levine and Pearlman (2011) will eliminate linear dependency among expectational variables and
will also convert the system at = ρat−1 + εt, bt = Etat+1 into at = ρat−1 + εt, bt = ρat.
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the model is now

zt = (G11 +H11 − (G12 +H12)N)zt−1 +Bεt mt = (M1 + L1 − (M2 + L2)N)zt

Expressing mt in terms of zt−1 and εt, from Fernandez-Villaverde et al. (2007) we deduce that a

necessary and sufficient condition for invertibility (see (45)) is that D̃ = EB is invertible, where

E = M1 + L1 − (M2 + L2)N .

F.2 Imperfect Information Case

We first briefly outline how the imperfect information setup is solved, and the provide the

conditions for invertibility. Following Pearlman et al. (1986), we use the Kalman filter updating

given by[
zt,t

xt,t

]
=

[
zt,t−1

xt,t−1

]
+ J

[
mt −

[
M1 M2

] [ zt,t−1

xt,t−1

]
−
[
L1 L2

] [ zt,t

xt,t

]]

where we denote zt,t ≡ Et[zt] etc. The Kalman filter was developed in the context of backward-

looking models, but extends as we see here to forward-looking models. The basic idea behind

it is that the best estimate of the states {zt, xt} based on current information is a weighted

average of the best estimate using last period’s information and the new information mt. Thus

the best estimator of the state vector at time t− 1 is updated by multiple J of the error in the

predicted value of the measurement as above, where J is given by

J =

[
PD′

−NPD′

]
Γ−1

and D ≡ M1 −M2G
−1
22 G21, M ≡ [M1 M2] is partitioned conformably with

[
zt

xt

]
, Γ ≡ EPD′

where E ≡M1 + L1 − (M2 + L2)N and P satisfies the Riccati equation (F.2) below.

With only one imperfect information set, the same saddle path relationship (F.4) as for

perfect information holds.17 Then using the Kalman filter, the solution as derived by Pearlman

et al. (1986) 18 is given by the following processes describing the pre-determined and non-

predetermined variables zt = z̃t + zt,t−1 and xt, and a process describing the innovations z̃t ≡
zt − zt,t−1:

Predetermined : zt+1,t = Czt,t−1 + CPD′(DPD′)−1Dz̃t

Non-predetermined : xt = −Nzt,t−1 −G−1
22 G21z̃t − (N −G−1

22 G21)PD′(DPD′)−1Dz̃t

Innovations : z̃t+1 = Az̃t −APD′(DPD′)−1Dz̃t +Bεt+1

where

C ≡ G11 +H11 − (G12 +H12)N, A ≡ G11 −G12G
−1
22 G21, D ≡M1 −M2G

−1
22 G21

17But see footnote 15 and Lubik et al. (2017) for the case of more than one imperfect information set.
18A less general solution procedure for linear models with imperfect information is in Lungu et al. (2008) with

an application to a small open economy model, which they also extend to a non-linear version.
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and P is the solution of the Riccati equation given by

P = APA′ −APD′(DPD′)−1DPA′ +BB′

where we assume that the shocks are normalized such that their covariance matrix is given by

the identity matrix.

The measurement mt, as shown by Pearlman et al. (1986), can now be expressed as

mt = Ezt,t−1 + EPD′(DPD′)−1Dz̃t

We can see that the solution procedure above is a generalization of the Blanchard-Kahn solution

for perfect information and that the determinacy of the system is independent of the choice of

a perfect or a single imperfect information information set.

F.3 When is the System Invertible?

We now pose the question: given the econometrician’s information set, under what conditions

do the RE solutions under agents’ different information sets actually differ? When can the

econometrician infer the full state vector, including shocks?

Fernandez-Villaverde et al. (2007) do not attempt to answer this question. Their focus is on

the complete reduced form of the solution from the perspective of the econometrician; the source

of this reduced form i.e its dependence on the information set of the agents is not discussed at

all. As we have seen above, the reduced form under any information set is of the standard state

space type investigated by Fernandez-Villaverde et al. (2007), but the invertibility properties

depend on the information set.

Levine et al. (2017b) show the following: If EB is of full rank (i.e. number of observables =

number of shocks) but D is not of full row rank, then imperfect information is not equivalent

to full information, and the system is then not invertible. This is a new result in the literature,

which says that if a limited information set under perfect information is invertible, it does not

follow that the same limited information set under imperfect information is also invertible.
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