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Characterizing complicated behavior from time series constitutes a fundamental problem of con-
tinuing interest and it has attracted a great deal of attention from a wide variety of fields on
account of its significant importance. We in this paper propose a novel wavelet multiresolu-
tion complex network (WMCN) for analyzing multivariate nonlinear time series. In particular,
we first employ wavelet multiresolution decomposition to obtain the wavelet coefficients series
at different resolutions for each time series. We then infer the complex network by regarding
each time series as a node and determining the connections in terms of the distance among the
feature vectors extracted from wavelet coefficients series. We apply our method to analyze the
multivariate nonlinear time series from our oil-water two-phase flow experiment. We construct
various wavelet multiresolution complex networks and use the weighted average clustering co-
efficient and the weighted average shortest path length to characterize the nonlinear dynamical
behavior underlying the derived networks. In addition, we calculate the permutation entropy
to support the findings from our network analysis. Our results suggest that our method allows
characterizing the nonlinear flow behavior underlying the transitions of oil-water flows.

Keywords: Nonlinear time series analysis; Wavelet multiresolution; Complex network; Oil-water
flows

1. Introduction

Characterizing dynamical processes in a time-dependent complex system from observed time series of just
one or at most a few variables is a fundamental problem of significant importance in many research fields.
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Different nonlinear time series analysis methods have been developed to fulfill this challenging task, e.g.,
chaotic analysis [Daw et al., 1995], permutation entropy [Bandt & Pompe, 2002], recurrence plot [Marwan
et al., 2007], and time-frequency representation [Gao et al., 2016]. Nonlinear time series analysis has been
broadly adopted in scientific research and engineering applications. Many theoretical developments and new
methods for nonlinear time series analysis have significantly contributed to the understanding of complex
systems. Complex network originates from graph theory, which is an abstract description of the complex
system, consisting of nodes and the edges between the nodes [Wang et al., 2016; Boccaletti et al., 2014;
Zou et al., 2015; Kim et al., 2013; Huang et al., 2014; Lu et al., 2013; Kenett et al., 2015; Lu & Chen,
2005; Feldhoff et al., 2012]. Recently, the complex network theory has been incorporated into the analysis
of time series and many successful applications have been achieved in different research fields [Wang et
al., 2016; Zhang et al., 2006; 2008; Xu et al., 2008; Lacasa et al., 2008; Marwan et al., 2009; Majhi et
al., 2016; Wang et al., 2015; Xiang et al., 2012; Marwan & Kurths, 2015; Peng et al., 2013; Wang et al.,
2012; Huang et al., 2012; Livi et al., 2016; Wang et al., 2011; Donges et al., 2012; Gao et al., 2015; 2016;
2017; Shen et al., 2014; Jachan et al., 2009; Nakamura et al., 2016], including turbulence [Liu et al., 2010;
Scarsoglio et al., 2016], brain network [Zhang et al., 2016], traffic network [Tang et al., 2016], climate
network [Donges et al., 2011], sunspots [Zou et al., 2014] and multiphase flows [Gao et al., 2013; Mosdorf
& Górski, 2015], etc. Despite the existing results [Schelter et al., 2014], network-based methods dedicated
to analyzing multivariate nonlinear time series still remain much to be developed. Moreover, most of the
complex network inference methods do not pay much attention to the characteristics of the time series at
different resolutions, which is of great value in the analysis of multivariate nonlinear time series. And in
multiresolution analysis domain, the wavelet transform is a powerful mathematical tool which can not only
get the frequency domain characteristics (corresponding to the global characteristics) of the signal, but also
the local characteristics. In addition, one of the advantages of wavelet transform techniques is the ability
to deal with non-stationary time series, which are very common in the analysis of multivariate nonlinear
time series, given the continuous presence of abrupt changes and volatility. The wavelet analysis has been
widely incorporated into the analysis of time series and many successful applications have been achieved
in different research fields [Kao et al., 2013; Jammazi., 2012; He et al., 2012; Pal & Mitra, 2009; Goyal &
Mehra, 2017]. In this regard, we in this paper propose a novel wavelet multiresolution complex network
(WMCN), which enables to characterize dynamical behavior from multivariate nonlinear time series at
different resolutions. We take the multivariate nonlinear time series from experimental oil-water flows as
an example to demonstrate the effectiveness of our approach. Vertical oil-water two-phase flow exists in
a wide range of industrial applications, such as petroleum industry, chemical industry and energy. The
multiphase flow [Gao et al., 2013; 2016; Deising et al., 2015] is a typical nonlinear dynamic system and
numerous studies have been carried out. In particular, characterization of nonlinear flow behavior from flow
signals has attracted a lot of attention. Moreover, as the appearance of multi-electrode sensor [Gao et al.,
2016], the acquisition of multi-channel flow signals becomes possible. However, the sensor measurements
acquired from oil-water flows usually consist of lots of non-stationary multi-resolution components, which
bring many difficulties for the characterization of complex dynamical behaviors in such a complex system.
In this regard, a novel method is required to realize the multi-channel information fusion and multivariate
nonlinear time series analysis. We demonstrate that our WMCN method enables to fulfill this challenging
task. We infer and analyze WMCN from experimental multivariate flow signals at different resolutions.
The results suggest that our method is capable of obtaining the essential and important flow information
at different resolutions and further allows uncovering the complicated nonlinear flow dynamical behaviors
governing the transitions of three typical oil-in-water flow patterns. We also carry out the permutation
entropy analysis to demonstrate the effectiveness of WMCN. The combination of wavelet multiresolution
technique and multivariate complex network opens up new venues to address the challenge in multivariate
nonlinear time series.

2. Methodology

Wavelet multiresolution technique allows us to decompose a time series into some wavelet coefficients series,
including details and approximations. As an efficient signal processing method, wavelet multiresolution
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technique has been widely used in image processing [Tee et al., 2011], EEG signal analysis [Guler &

Ubeyli, 2005], etc. For a multivariate nonlinear time series {xk,l}Ll=1, k = 1, 2, ..., S with S sub-signal of
equal length L, we first use the wavelet multiresolution technique to obtain the wavelet coefficients series
at different resolutions for each time series. All wavelet transforms can be specified in terms of a low-pass
filter h, which satisfies the standard quadrature mirror filter condition:

H (z)H
(
z−1

)
+H (−z)H

(
−z−1

)
= 1, (1)

where H (z) denotes the z-transform of the filter h. Correspondingly, the high-pass filter g can be defined
as:

G (z) = zH
(
−z−1

)
. (2)

A sequence of filters with increasing length (indexed by i) can be obtained:

Hi+1 (z) = H
(
z2i

)
Hi (z) , i = 0, ..., I − 1, (3)

Gi+1 (z) = G
(
z2i

)
Hi (z) , i = 0, ..., I − 1. (4)

The normalized wavelet and resolution basis function can be defined as

Φi,l (k) = 2i/2hi
(
k − 2il

)
, (5)

Ψi,l (k) = 2i/2gi
(
k − 2il

)
, (6)

where the factor 2i/2 is an inner product normalization, i and l are the resolution parameter and the trans-
lation parameter, respectively. Therefore, the discrete wavelet transform decomposition can be described
as:

CAi (l) = x (k)Φi,l (k) , (7)

CDi (l) = x (k)Ψi,l (k) . (8)

In this paper, we choose the Daubechies2 wavelet [Lina & Mayrand, 1995] and set the maximum

resolution as six. Thus a multivariate nonlinear time series {xk,l}Ll=1, k = 1, 2, ..., S can be decomposed into

six details
{
CDi

n

}k
, i = 1, 2, ..., 6, k = 1, 2, ..., S, n = 1, 2, ..., N and approximations

{
CAi

n

}k
, i = 1, 2, ..., 6,

k = 1, 2, ..., S, n = 1, 2, ..., N , where i represents the resolution, and the larger i is, the higher the resolution
will be; N is the length of the wavelet coefficients series corresponding to the resolution i. We decompose
each single time series, for example {xk,l}Ll=1, k = 1, 2, ..., S, into 12 wavelet coefficients series at six different
resolutions and 6 for details, 6 for approximations. Under each resolution, we extract 12 statistical features
of wavelet coefficients series as follows:

(a) Maximum of the wavelet coefficients series in each subband:

xik,A1 = max
{
CAi

n

}k
, i = 1, 2, ..., 6, n = 1, 2, ..., N, k = 1, 2, ..., S, (9)

xik,D1 = max
{
CDi

n

}k
, i = 1, 2, ..., 6, n = 1, 2, ..., N, k = 1, 2, ..., S. (10)

(b) Minimum of the wavelet coefficients series in each subband:

xik,A2 = min
{
CAi

n

}k
, i = 1, 2, ..., 6, n = 1, 2, ..., N, k = 1, 2, ..., S, (11)

xik,D2 = min
{
CDi

n

}k
, i = 1, 2, ..., 6, n = 1, 2, ..., N, k = 1, 2, ..., S. (12)
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(c) Mean of the wavelet coefficients series in each subband:

xik,A3 =
1

N

N∑
n=1

{
CAi

n

}k
, i = 1, 2, ..., 6, n = 1, 2, ..., N, k = 1, 2, ..., S, (13)

xik,D3 =
1

N

N∑
n=1

{
CDi

n

}k
, i = 1, 2, ..., 6, n = 1, 2, ..., N, k = 1, 2, ..., S. (14)

(d) Standard deviation of the wavelet coefficients series in each subband:

xik,A4 =

√√√√ 1

N − 1

N∑
n=1

(
CAi,k

n − xik,A3

)2
, i = 1, 2, ..., 6, n = 1, 2, ..., N, k = 1, 2, ..., S, (15)

xik,D4 =

√√√√ 1

N − 1

N∑
n=1

(
CDi,k

n − xik,D3

)2
, i = 1, 2, ..., 6, n = 1, 2, ..., N, k = 1, 2, ..., S. (16)

(e) Steepness function of the wavelet coefficients series in each subband:

xik,A5 =
1

(N − 1)

∑N
n=1

(
CAi,k

n − xik,A3

)3

(
xik,A4

)3 , i = 1, 2, ..., 6, n = 1, 2, ..., N, k = 1, 2, ..., S, (17)

xik,D5 =
1

(N − 1)

∑N
n=1

(
CDi,k

n − xik,D3

)3

(
xik,D4

)3 , i = 1, 2, ..., 6, n = 1, 2, ..., N, k = 1, 2, ..., S. (18)

(f) Kurtosis function of the wavelet coefficients series in each subband:

xik,A6 =
1

(N − 1)

∑N
n=1

(
CAi,k

n − xik,A3

)4

(
xik,A4

)4 , i = 1, 2, ..., 6, n = 1, 2, ..., N, k = 1, 2, ..., S, (19)

xik,D6 =
1

(N − 1)

∑N
n=1

(
CDi,k

n − xik,D3

)4

(
xik,D4

)4 , i = 1, 2, ..., 6, n = 1, 2, ..., N, k = 1, 2, ..., S. (20)

Then we construct a new feature vector
{
Xi

k

}
, i = 1, 2, ..., 6, k = 1, 2, ..., S for each single time series

as follows

Xi
k =

{
xik,A1, x

i
k,A2, x

i
k,A3, x

i
k,A4, x

i
k,A5, x

i
k,A6, x

i
k,D1, x

i
k,D2, x

i
k,D3, x

i
k,D4, x

i
k,D5, x

i
k,D6

}
, (21)

where xik,A1 is the normalized value of xik,A1 given by the following formula and so do the others:

xik,A1 =
[
xik,A1 −min

(
xik,A1

)]
/
[
max

(
xik,A1

)
−min

(
xik,A1

)]
, k = 1, 2, ..., S. (22)

We regard each time series as a node and then determine the connections between node p and q in
terms of the distance between the feature vectors extracted from time series p and q as follows

rip,q =
∥∥Xi

p −Xi
q

∥∥ =

√√√√ 6∑
c=1

(
xip,Ac − xiq,Ac

)2
+

6∑
c=1

(
xip,Dc − xiq,Dc

)2
,

c = 1, 2, ..., 6, p = 1, 2, ..., S, q = 1, 2, ..., S, i = 1, 2, ..., 6.

(23)
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The above operations allow us to obtain a distance matrix Ri, i = 1, 2, ..., 6 for six resolutions. Then we
choose the threshold

rri = M i + nσi, (24)

where M i is the mean of the distance matrix Ri, i = 1, 2, ..., 6 and σi is the corresponding standard
deviation and n = 0.10. We can then obtain the network adjacency matrix RAi

pq of the size S × S at
different resolutions i = 1, 2, ..., 6 through the following rule:

RAi
pq =

{
ripq, ripq ≤ rri

0, ripq > rri
, p = 1, 2, ..., S, q = 1, 2, ..., S, i = 1, 2, ..., 6, (25)

where RAi
pq represents the weight of edges in complex networks. That is, an weighted edge between node p

and q exists if ripq ≤ rri; otherwise, node p and q are disconnected if ripq > rri. The topological structure of

the derived complex network can be described by the RAi
pq. Therefore, we can obtain a wavelet multires-

olution complex network (WMCN), which consists of six adjacency matrices at six different resolutions.
Our method allows mapping a multivariate nonlinear time series into weighted complex networks at

different resolutions, which can be quantitatively characterized via network measures [Antoniou & Tsompa,
2008]. We use the weighted average clustering coefficient and weighted average shortest path length to
characterize the derived weighted complex networks. The weighted average clustering coefficient Ci

RAi is
defined as:

Ci
RAi =

1

S

S∑
v=1

CRAi (v) , (26)

Ci
RAi (v) =

∑
p,q RAi

vpRAi
pqRAi

qv∑
p,q RAi

vpRAi
qv

, p ̸= q, (27)

where RAi
vp is the weight between the node v and p, i.e., the element of weighted matrix RAi, Ci

RAi (v)

is the weighted clustering coefficient of each node v. The weighted average shortest path length Li
RAi is

defined as:

Li
RAi =

1

S (S − 1)

∑
p,q∈S,p̸=q

dipq, (28)

dipq = min
γ(p,q)∈Γ(p,q)

 ∑
m,n∈γ(p,q)

RAi
mn

 , (29)

where RAi
pq is the weight between node p and q, dipq is the weighted shortest path between node p and q,

and γ (p, q) is a path from node p and q and Γ (p, q) is the class of paths from p to q.

3. WMCN analysis of multivariate nonlinear flow signals

We carry out the vertical oil-water two-phase flow experiment in the multiphase flow facility, where the
inner diameter of the Plexiglas pipe is 20mm. The experimental process is as the follows: first, we fix the
water-cut (Kw), and gradually increase the mixture flow velocity (Vm). And then, changing the water-
cut, we repeat the above operation to generate all flow conditions. The sampling rate is 4 kHz and the
sampling duration for each flow condition is 30 s. For each flow condition, a novel HCMC sensor (High-
speed Cycle Motivation Conductance sensor) is employed to acquire 48 channel time series from different
spatial locations. The HCMC sensor allows capturing the local oil-in-water flow information in different
spaces. Meanwhile, we use the snapshots from high-speed video camera to define different experimental
flow patterns. During the experiments, we have observed three oil-in-water flow patterns: slug flow (D
OS/W), bubble flow (D O/W) and very fine dispersed flow (VFD O/W).
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(b)

Fig. 1. Distributions of the network measures with the change of total mixture flow velocity for different flow conditions for
a fixed Kw = 60%. (a) Weighted average clustering coefficient; (b) Weighted average shortest path length.
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(b)

Fig. 2. Distributions of the network measures with the change of total mixture flow velocity for different flow conditions for
a fixed Kw = 84%. (a) Weighted average clustering coefficient; (b) Weighted average shortest path length.

We implement our WMCN method to analyze the multivariate nonlinear flow signals. In particular,
we infer various complex networks at different resolutions for each flow condition. Note that, we choose
the proper resolution for different flow patterns, with aim of obtaining the essential and important flow
information. The selection of resolutions depends on the distinct movement frequencies of different flow
patterns. We then calculate the weighted network measures for each generated networks. We show the
calculated results in Figs. 1-4, where Kw represents the fixed water-cut and Vm represents mixture flow
velocity. When the water-cut and mixture flow velocity are low, e.g., by fixing the Kw = 60% and increasing
the Vm from 0.0184 m/s to 0.2579 m/s, the oil-water flows gradually evolve from oil-in-water slug flow
to oil-in-water bubble flow. For a low mixture flow velocity, the oil-water flows appear as vertical oil-
in-water slug flow (D OS/W). The nonlinear flow dynamical behavior underlying this flow pattern lies
in the nonlinear quasi-periodic movements of large oil slugs, trailed by some small oil droplets. The flow
structure of D OS/W flow presents a non-homogeneous distribution characteristic. Specifically, the oil slugs
can simultaneously impact more than one channel when the flows pass through the designed sensor. The
nonlinear signals from D OS/W flow exhibit the features of chaotic oscillations. Consequently, the network
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(b)

Fig. 3. Distributions of the network measures with the change of total mixture flow velocity for different flow conditions for
a fixed Kw = 86%. (a) Weighted average clustering coefficient; (b) Weighted average shortest path length.
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(b)

Fig. 4. Distributions of the network measures with the change of total mixture flow velocity for different flow conditions for
a fixed Kw = 96%. (a) Weighted average clustering coefficient; (b) Weighted average shortest path length.

from D OS/W flow presents a high value of weighted average clustering coefficient and a low value of
weighted average shortest path length. As the mixture flow velocity constantly increases, the turbulence
energy is enhanced, leading to the breakage of large oil slugs and the formation of small oil bubbles. That is,
a transition from oil-in-water slug flow (D OS/W) to oil-in-water bubble flow (D O/W) occurs. As shown
in Figs. 1-3, we find that the measures of WMCN allow efficiently characterizing the underlying nonlinear
flow behaviors governing the transition of flow patterns. Specifically, the complexity and nonlinearity of
the flow signals gradually become more significant in such a flow transition, induced by the nonlinear
dynamical movements of large numbers of oil bubbles. Meanwhile, the non-homogeneous distribution is
weakened as the flow evolves from D OS/W flow to D O/W flow. Correspondingly, the connectivity of
the network is weakened and the connections between the nodes gradually become sparse. As a result, the
weighted average clustering coefficient decreases while weighted average shortest path length increases in
the transition from D OS/W flow to D O/W flow. When the water-cut and mixture flow velocity are high,
e.g.Kw = 96% and Vm exceeds 0.1842m/s, the flow pattern evolves from D O/W flow to very fine dispersed
bubble flow (VFD O/W), in which the oil bubbles are further crushed into very fine oil droplets, whose
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diameters are almost equal. The complexity and nonlinearity of the flow signals are further strengthened
in this flow transition. As shown in Fig. 4, the weighted average clustering coefficient further decreases and
the weighted average shortest path length continually increases in the transition from D O/W flow to VFD
O/W flow, indicating that a mass of oil droplets flow in a water continuum with a complicated nonlinear
dynamics and its flow structure exhibits a feature of homogeneous distribution. These interesting results
indicate that the WMCN analysis is capable of characterizing the nonlinear flow behaviors associated with
the flow transitions from the multivariate nonlinear time series.

4. Permutation entropy analysis of nonlinear flow signals

We calculate the permutation entropy (PE) [Bandt & Pompe, 2002; Liu et al., 2011] for the multivariate
nonlinear flow signals, aiming at interpreting and supporting our MWCN results. The permutation entropy
enables to measure the complexity of a univariate time series. The basic idea of the permutation entropy
can be described as follows:

Firstly, we embed a one-dimensional time series {x (i)} , i = 1, 2, ..., n to a m-dimensional space:

Xi = [x (i) , x (i+ τ) , ..., x (i+ (m− 1) τ)] , (30)

where m represents the embedded dimensions and τ is the delay time. For a given, but otherwise arbitrary
i, the m number of real value Xi = [x (i) , x (i+ τ) , ..., x (i+ (m− 1) τ)] can be arranged in an increasing
order:

x [i+ (j1 − 1) τ ] ≤ x [i+ (j2 − 1) τ ] ≤ ... ≤ x [i+ (jm − 1) τ ] . (31)

When an equality occurs, e.g., x [i+ (j1 − 1) τ ] = x [i+ (j2 − 1) τ ], we sort them according to the value
of j1 and j2 by the following rules: If j1 < j2, x [i+ (j1 − 1) τ ] < x [i+ (j2 − 1) τ ]; else, x [i+ (j1 − 1) τ ] ≥
x [i+ (j2 − 1) τ ]. Thus, for each one-dimensional time series {x (i)} , i = 1, 2, ..., n, we can obtain a set of
symbol sequences:

S (l) = (j1, j2, ..., jm) , l = 1, 2, ..., k, k ≤ m!, (32)

where S (l) represents one of the m! different symbol sequences of the m-dimensional phase space map.
The permutation entropy [Bandt & Pompe, 2002] of time series can be defined as

Hp (m) = −
k∑

j=1

PjlnPj , (33)

where Pj represents the probability of occurrence of each symbol sequence. The permutation entropy Hp

allows measuring the complexity of nonlinear time series.
We calculate the permutation entropy (PE) of 48 channel signals for three different flow patterns

and show the results in Fig. 5, where the distribution of permutation entropy is presented in the form
of a radar map. As can be seen, the permutation entropies of oil-in-water slug flow (D OS/W) exhibit
small values and their distribution is rather non-uniform, indicating the chaotic quasi-periodic dynamics
of large oil slugs and heterogeneous distribution of oil phase. For the oil-in-water bubble flow (D O/W),
the value of permutation entropy of each channel is slowly increasing, and the difference between the
channels is narrowing, suggesting that the heterogeneity of mixture flow is weakened and meanwhile the
complexity and nonlinearity of the flow signals become more significant. For the very fine dispersed bubble
flow (VFD O/W), the distribution of permutation entropy presents a uniform feature and the values are
large, indicating that the flow distribution is homogeneous and the nonlinear dynamics underlying VFD
O/W flow is most complicated among three vertical oil-water flow patterns. These results well support
the findings from WMCN analysis, which renders the WMCN method potentially powerful for realizing
multi-channel information fusion.
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Fig. 5. Distributions of permutation entropy of multivariate nonlinear flow signals for three different flow patterns.

5. Conclusion

In summary, we have articulated a novel wavelet multiresolution complex network (WMCN) for analyzing
multivariate nonlinear time series. The basic idea of WMCN is to extract wavelet coefficients series at
different resolutions from each time series by using wavelet multiresolution decomposition. We then infer
the WMCN by regarding each time series as a node and determining the connections in terms of the
distance between the feature vectors extracted from wavelet coefficients series. We infer WMCNs from
multivariate nonlinear flow signals and use the weighted average clustering coefficient and the weighted
average shortest path length to characterize the derived networks. The results suggest that our method
is capable of uncovering the chaotic and nonlinear flow behavior governing the transitions of different oil-
in-water flow patterns at different resolutions. In addition, we calculate the distributions of permutation
entropy for multivariate nonlinear flow signals and the results well support the findings from WMCN
analysis. Bridging wavelet multiresolution and multivariate complex network provides a novel methodology
for analyzing multivariate nonlinear time series which widely exist in nonlinear science and engineering.
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