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ABSTRACT 

Vendor managed inventory (VMI) has evolved as a means for manufacturers to 

outsource non-core processes such as administration and inventory management. In 

VMI systems, the vendor takes the responsibility of replenishing manufacturers' sites. 
As a result, the vendor can plan its production and distribution strategy to maintain 

adequate levels of material at manufacturers' sites. On the other hand, the 

manufacturer can concentrate on core processes resulting in fixed cost minimisation 

and better customer service. 

The research project aims at designing a dynamic VMI system. In this system, the 

entire supply chain performance is optimised in terms of production planning at 

vendor's site, distribution strategy, and inventory management at manufacturer's site. 
We also explore some of the complications involved in setting up such a system. 

The VMI system is modelled as a mixed-integer linear program (MILP) using 
discrete-time representation. The mathematical representation follows the resource- 

task network (RTN) formulation. To address the complexity of the problem, different 

optimisation-based solution algorithms are proposed and compared in terms of 

solution quality and CPU time. 

First, the problem is solved directly using an exact detailed model. Secondly, an 

iterative procedure combines a novel aggregate model with the detailed model to 

provide aggregate pre-matches for the detailed binary variables. Finally, a novel 

rolling horizon approach that simultaneously combines the aggregate and the detailed 

models is designed to solve the problem. The entire VMI system is tested with real- 

life data taken from gas and oil companies' industrial case studies. 
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Chapter I 

Introduction 

1.1 Vendor Managed Inventory 

Liebennan and Hillier (2001) define supply chains as: 

44 ... A network of facilities that procure raw materials, transform them into 

intermediate goods and then final products, and finally deliver the products to 

customers through a distribution system that includes an inventory system. Thus, it 

spans procurement, manufacturing, and distribution, with effective inventory 

management ... " 

From this simple definition we can see that the survival of members (or companies) in 

this network depends highly on the co-operation and co-ordination between them. 

However, usually this is not the case and instead of co-ordination, companies in the 

supply chain compete against each other. Therefore, each company tries to achieve 

cost reductions at the expense of other companies in their supply chain. Consequently, 

the supply chain suffers the increased costs that ultimately affect all members. Only 

recently have companies started to realise that they need to compete as supply chains 

instead of competing as single entities (Christopher, 1998). 

Moreover, achieving effective inventory management is a key element of optimising 

supply chain performance. Actually, because of the high associated costs, one 

objective of supply chain management is to minimise inventory buffers between 

different parts of the chain. Inventory minimisation can be achieved by proper 

information sharing about demand forecasts and inventory levels. This is the concept 

of VMI, which is the subject of this project. 
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1.1.1 Traditional systems 

For simplicity, we can generally divide the inventory management methodologies into 

two main categories. The first category is the reactive methodology which is the 

traditional policy used in supply chains now. The reactive policy gets its name from 

responding (reacting) to externally generated orders. Much research has been 

conducted for reactive systems to find the optimal ordering policy. By optimal policy, 

we mean the frequency of orders and quantities ordered. The second category is the 

proactive policy, which is the new evolving methodology replicated in VMl systems. 

The proactive policy gets its name by co-ordinating its plan to take action without 

receiving externally generated orders. 

Imagine a supply chain with only one manufacturer that receives raw materials from 

only one vendor (supplier). Traditionally, the manufacturer is responsible for 

monitoring inventory and placing purchase orders when material stocks fall below a 

certain level. When orders are received, the vendor reacts by dispatching material 

towards the manufacturer. After some delay in processing and distribution (i. e. lead 

time), the material arrives at manufacturer's sites using the available mode of 

transportation. In this system, both the vendor and the manufacturer act independently 

to minimise their costs, which might ultimately affect their supply chain performance. 

The manufacturer's goal in traditional (reactive) systems is: 

To find the optimal order cycle to avoid stock-outs 

To find the optimal order quantity that minimises holding costs 

The vendor's goal in traditional (reactive) systems is: 

0 To find the optimal production plan and inventory policy (at the vendor's site) 

to cover all orders 

0 To respond to orders in an efficient way that minimises the transportation 

costs and lead times of delivering materials to the manufacturer 

0 To try and anticipate orders and build up stocks. 
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Traditional systems can lead to inefficiencies both for vendors and manufacturers: 

o The vendor lacks important information about order requirements received 
from the manufacturer. As a result, the vendor will tend to keep more 
inventories at its site to cover those orders, which results in high holding costs. 

* The vendor might alter its production plans regularly to adapt to some short- 

term orders and demand variability. 

0 The manufacturer utilises some of its resources for non-core processes such as 
inventory management and administration. As a result, the total costs can 
increase and production quality might be compromised. 

9 According to a survey by the European logistics association, the rate of late 

and incomplete deliveries is approximately 10% (Kaipia et al., 2002). Hence, 

the manufacturer's customer service is usually affected by lead-time variations 

for different vendors. As a result, the manufacturer might lose the loyalty of 

some customers. 

1.1.2 Definition of VMI 

In a VMI strategy, the vendor is responsible for proactively maintaining adequate 

levels of materials at the manufacturer's site. Hence, no pressure is put on vendors to 

respond to orders accurately. The VMI contract (Taras, 2001) between the vendor and 

the manufacturer ensures that: 

0 The manufacturer will share demand forecasts and sales information with the 

vendor. This can be achieved by sending the manufacturer's point of sale 

(POS) data to the vendor. 

The vendor will have access to the manufacturer's inventory system. 

Electronic Data Interchange (EDI) is employed for any data exchange between 

the two parties. 

0 The vendor is responsible for replenishing the manufacturer's site with 

material. A mutually agreed-upon policy is set-up for the replenishment policy 

(usually an upper and lower bound on inventory level). Then, the manufacturer 

has to trust the vendor to take over its inventory management according to that 

policy. 
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Therefore, no orders are received anymore in a VMI strategy. Instead, the vendor is 

responsible for maintaining inventory levels at the manufacturer's site within the 

agreed-upon bounds. Some researchers (Christopher, 1998) refer to VMI as Co- 

managed inventory due to the necessary co-operation in those systems. For the 

purpose of this thesis, we will only use the term "VMI". 

VMI strategies necessitate the use of Information Technology (IT) for their 

application. Such IT tools are computer-based distribution optimisers as well as 

material tracking software. In addition, information sharing utilises the Internet and 
EDI systems. Fortunately, some of these tools are commonly used in many 

companies. Therefore, the amount of investment (from the vendor's perspective) in 

the implementation of VMI systems is relatively low. However, the manufacturer is 

required to invest in its IT infrastructure to make production schedules and inventory 

levels more transparent to the vendor (Kuk, 2004). 

The VMI scope considered in our work is modified slightly to meet industry 

requirements. In our VMI system, we deal with continuous products (oil, gas ... etc. ) 

rather than discrete products (stationary, parts ... etc. ). Hence, holding costs are 

neglected at customer sites as long as material is always available to meet customer 

demands and does not exceed storage capacity. A contract between the vendor and the 

customer guarantees that material will always be available to cover the forecasted 

demands. Demand forecasting here is the job of the customer, and the vendor agrees 

only to meet these forecasts for a long period of time (usually a whole year). A 

penalty cost for not meeting demand forecasts is agreed-upon between the two parties. 

1.1.3 Benefits of VM1 

It is obvious that VMI is a promising way of managing supply chains. The resulting 

co-operative system increases the competitiveness on the supply chain scale rather 

than the single company scale. Hence, both vendors and manufacturers can potentially 

benefit from VMI strategies. 
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Potential benefits for the vendor include the following: 

The vendor can co-ordinate its production plans and distribution policies 
(ahead of time) according to well-known demand forecasts, which results in 
fewer production schedule alterations and lower transportation costs. 
Instead of keeping safety stocks, the vendor will tend to keep minimum 
inventory levels which can result in lower stock holding costs at the vendor's 
site. 

Potential benefits for manufacturers include the following: 

By outsourcing non-core processes such as administration and inventory 

management, the fixed costs associated with such processes are eliminated. 
The manufacturer can concentrate on core processes, which results in better 

production quality and customer service. 

e Inventory levels at manufacturers' sites are minimised and stock outs should 
decline substantially which result in significant savings. 

1.1.4 Conclusion 

It is obvious now that VMI is composed of three parts undertaken by the vendor. 
Those parts are production planning, distribution, and inventory management. A 

successful VMI strategy optimally integrates those parts. A potentially better overall 

supply chain performance is attained when VMI is implemented. A detailed 

comparison between traditional and VMI systems is given in (Toni and Zamolo, 

2005). 

In our work, production planning refers to the process of optimising the daily 

production rates of each product at each plant. However, some references (Martin, 

1995) refer to the same concept as the "Master Production Schedule" (MPS). 

Throughout this thesis, we only refer to those rates as production plans. 

A substantial part of the modelling effort is spent on the distribution component of 

VMI systems. Therefore, an extensive introduction and literature review is mainly 

focused on routing and scheduling problems. 
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1.2 Transportation Problems 

6 

Many applications involve the question "How to optimally transport goods? " Our 
work involves the optimisation of the distribution system of supply chains using VMI 
strategies. Moreover, distribution costs represent approximately 10% of the revenues 
of firms. In addition, distribution costs account for more than 45% of the logistics 

costs (Laporte and Osman, 1995). Hence, a brief introduction to transportation 
problems is provided in this section. The simple transportation problem in this section 
is meant to introduce the routing problems presented in the next section. 

Table 1.1: General formulation for transportation tables 

Destinations 

D, D2 
... D, 

-, 
D, Supply 

S, C11 C12 CI, n-I CIn Sup I 

S2 C21 C22 C2, n-I C2n SUP2 

Sources 

Sm- I CM-1, I Cm-1,2 Cm-], n-I Cm-], n 
Sup,, 

-, 

SM CMI Cm2 Cm, n-I CMn SUPM 

Demand I Dem, I DeM2 Dem,, 
-, 

I 
De 

Table 1.1 above shows a typical transportation problem table (Lieberman and Hillier, 

2001). Product is transported from m different sources/suppliers to n different 

destinations/customers. Each source Si, i c- [1,2... m], has a certain supply Supi while 

each destination Dj, jE=- [1,2... n], has a certain demand Demj. A cost cy is associated 

with transporting product(s) from source i to destinationj. Nevertheless, some routes 
between sources and destinations are not allowed. Such routes are given a cost of M 

(very large number) in the transportation table. Hence, a transportation problem will 

have m supply availability constraints and n demand requirement constraints. Solving 

Cii c12 Cl, n-1 Cin 

C21 C22 C2, n-1 C2n 

CM-1,1 CM-1,2 Cm-1, n-1 Cm-1, n 

Cmi m2 Cm, n-1 Cmn 
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transportation problems involves finding the optimal quantities xy transported from 

sources i to destinationsj at costs cij. 

1.2.1 Network representation of the transportation problem 

A transportation problem similar to the one shown in Table 1.1 can be represented 

using network models. Figure 1.1 shows a network representation of a transportation 

problem with m sources and n destinations. In Figure 1.1, the sources and destinations 

represent the nodes of the network. The possible supply routes between sources and 
destinations represent the arcs of the network. Considering demand to be positive, 
then supply will have a negative value (or the other way around). In our work, the 

convention of treating demand as a positive value is enforced. 

-SUP, 

-SUP " 

-Sup m 

Figure 1.1: Network representation of the transportation problem 

A general Linear Programming (LP) formulation takes the form: 

Minimise cx 

subject to 
Ax=b 

Dem 1 

Dem 2 

Dem n 

X>o 
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Where c is a vector of the objective function coefficients, x is a vector of all decision 

variables, A is the coefficient constraint matrix and b is the right hand side. Following 

a similar structure, c will represent a vector of the costs cy and b will represent 
demand requirements and supply availabilities. As a result, a transportation problem 
will have the following LP formulation: 

mn 

Minimise z= 11CUXU 
i=l j=l 

Subject to 
n 

1 xu : ýg supi 

j=I 

M 
1 

Xj = Dem, 

x 
ii >o 

(1.1) 

for i=1,2,..., m 

forj = 1,2,..., n 

for all i andj 

The objective (1.1) minimises the total transportation costs. Constraints (1.2) and (1.3) 

represent supply availabilities and demand requirements, respectively. Constraints 

(1.4) ensure positive values for transported quantities. As the formulation shows, the 

transportation problem has m supply constraints and n demand constraints. The 

resulting overall constraint coefficients matrix (A) has a total of (m+n) constraints. 

Xll X12 **** Xln X21 X22 *- X2n X31 X32'- X3n 

111 

1 

A= 

Supply 

constraints 

Demand 
constraints 

1 

Figure 1.2: Constraint coefficients matrix for the transportation problem 
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Mathematically speaking, transportation problems have a very distinctive structure 
where A takes the general form shown in Figure 1.2. If all demand requirements and 
supply availabilities (Demj and Supi respectively) are integral, then solving the 
transportation problem as an LP problem will lead to an integer optimal 
solution(Williams, 1999; Lieben-nan and Hillier, 2001). The theoretical reason is 

explained by Williams (1999). For every cost vector c and integer right hand side 
vector b, A is a unimodular matrix. The property of unimodularity assures that the 

solution variables xij will have integer values. 

1.2.2 Heuristics for transportation problems 

Many heuristics are widely used in the area of operations research to solve 
transportation problems. The most popular heuristic for transportation problems is the 
North West Comer Rule (NWCR). In this heuristic, the demands of different locations 

are satisfied using the nearest available supply. This heuristic gets its name from the 

position of the starting allocation of supply to demand. Supply allocation starts at the 

uppermost left cell in the transportation table (i. e. northwest comer cell). Usually the 

results obtained from this method are used as an initial solution to a problem where 
further optimisation is needed, or as a preliminary solution where only feasible 

solutions are required. Since NWCR is not a cost-based heuristic, other cost-based 
heuristics have been developed such as Vogel's approximation method (Lieberman 

and Hillier, 2001). 

1.3 Routing Problems 

Many applications involve choosing from a large number of feasible solutions in 

which the order of performing some tasks has to be specified. A problem where the 

sequence of events is essential is called a sequencing problem (Williams, 1999). In 

general, sequencing problems deal with yes-no questions in which decisions affect the 

solution of the problem. Hence, sequencing problems call for integer programming 

(fP) methods in order for these decisions to be incorporated in models. 
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The transportation problem (similar to the form shown in the previous section) is a 

special case of a sequencing problem. A transportation problem involves the decision 

of "what supplier should service each customer with a certain demand using the 

available supply"'? Therefore, a decision has to be made about the supplier-customer 

combinations in addition to the quantities transported. It should be enforced that each 

customer receives a discrete (integer) quantity of the product. Consequently, we end 

up with an MILP problem, which can be difficult to solve. However, the special 

structure of the transportation problem explained above ensures that all solutions will 

take integer values for integer supply availabilities and demand requirements. The LP 

solution to the transportation problem can be viewed as a solution to an IP problem. In 

other words, if the variable xij takes a nonzero value, then the answer to the question 

"Is source i supplying destinationj? " will be "yes" and vice versa. The value of xij in 

the final solution represents the quantity transported from i toj. 

Imagine a transportation problem in which suppliers have to provide customers with a 

product. However, in addition to the feasible routes between suppliers and customers, 

feasible routes exist between customers themselves. A network representation of such 

a problem with two suppliers (Si and S2) and 3 customers (DI, D2, DO is shown in 

Fi gure 1.3. 

Figure 1.3: Network representation with feasible customer-customer routes 
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For example, a decision of how to transport a product from S, to D2 involves finding 

out the optimal route between these nodes. Five possibilities are available: route Sj- 
D2, route SI-DI-D2, route S, -D3-D2, route Sj-Dj-D3-D2, and S, -D3-DI-D2. A total 
transportation cost is associated with each route. Based on the routing decisions, the 

quantities transported can be obtained. These quantities involve unloading at many 
different customer locations. Therefore, the only way to solve this kind of problem is 

via different formulations of the problem in which the optimal route (sequence) is 

chosen. It is obvious that solving a totally connected network problem with n nodes 
involves choosing from a large number of feasible routes (n 2 

-n). As the complexity of 
the problem increases, a feasible rather than optimal solution can be enough. 

In our work, we are interested in sequencing problems to solve transportation 

problems. A transportation problem with a large number of feasible route s/sequences 
is called a routing problem. The name comes from finding the optimal route among 

many feasible routes. One of the earliest and most important routing problems is the 

Travelling Salesman Problem (TSP). 

1.3.1 The travelling salesman problem 

The TSP has emerged as one of the most challenging routing problems in operations 

research. The idea behind the TSP is simple. A salesman has to start from home and 

visit a set of cities and return back home using the minimum distance (cost). The 

simplicity of the idea does not fairly reflect the complexity of the formulation or the 

solution process. 

1.3.1.1 DeflinitionoftheTSP 

Using graph theory, the TSP can be defined as follows (Laporte, 1992): For a graph 

G=(Y, A), define a set of Y vertices and a set of A arcs between those vertices. Let cy 

be the travel cost between vertices i and j. The objective of the TSP is finding the 

least-cost route that passes through each node only once. 
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1.3.1.2 Formulation of the TSP 

There are many formulations to solve TSP problems in which IP is utilised. In 

general, all formulations apply the same constraints. The first and trivial constraint is 
the number of visitations to each node (one visit only). The second constraint is the 

elimination of sub-tours. Sub-tours are tours on subsets of less than n nodes. The 

major differences between TSP formulations appear in the sub-tour elimination 
constraints. Here we only show the earliest TSP mathematical formulation by Dantzig 

et al. (1954): 

I if route between i andj is taken 
Let Xij 

f0 

otherwise 

n 

Minimise Z-1ciixy 
i#j 

Subject to 

1xy 
=1 

1xlj 
=1 

n 
Ix 

:qs1 -1 

QES 

xy (=- 
to'll 

for i == 1,2,..., n 

forj = 1,2,..., n 

for S c: V, 2:! ý JSJ:! ý n-2 

for all i andj, i #j 

Total travel cost (or distance) is minimised by the objective function in (1.5). 

Constraints (1.6) ensure that every node is entered only once. Constraints (1.7) ensure 

that every node is exited only once. Constraints (1.8) ensure the elimination of sub- 

tours, because having a sub-tour on a subset S and ISI arcs and nodes, will violate 

these constraints. Note that constraint (1.8) prohibits sub-tours over n-2 nodes since 

sub-tours over one node and n-I nodes are handled by constraints (1.6) and (1.7). 

Constraints (1.9) represent the binary conditions on xij. 
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1.3.1.3 Applicability of the TSP to our work 

The TSP has many applications in operations research (OR) and its logic can be 

applied to many other non-routing problems such as paper cutting and job 

sequencing. A number of exact and heuristic algorithms have been utilised to solve 
the TSP. A survey of several algorithms used to solve the TSP is given by Laporte 
(1992). A more recent survey can also be found in (Burkard et aL, 1998). 

As far as our work is concerned, the interest in the TSP arises because of the 
following: 

9 The TSP is used as an introduction to other routing problems such as vehicle 

routing problems and ship scheduling. 

9 The aggregate model in our work incorporates some TSP structures such as 

sub-tour elimination constraints (see Chapter 4). 

e In ship scheduling problems, TSP problems with extra constraints are solved 

to generate candidate schedules. Those TSP-generated schedules for each ship 

are further optimised within a ship scheduling context to find exact timings as 

well as optimum speeds. Christiansen and Fagerholt (2001) discuss in detail 

how a travelling salesman problem with capacity constraints, time windows, 

and precedence is solved in a case of ship scheduling. 

In general, the TSP is considered to be the mother of all routing problems. All other 

routing problems (such as vehicle routing problems) can be considered to be TSP 

problems with extra constraints. It is important to note that the TSP is only a routing 

problem. In other words, the time dimension is not considered in such problems. 

Laporte and Osman (1995) give a bibliography with a classification of all different 

routing problems. 

1.3.2 Vehicle routing problems 

The vehicle routing problem (VRP) is the problem of organising a fleet of vehicles to 

deliver some product(s) from depot(s) to customers using a minimum cost. 
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Table 1.2 shows a classification of the VRP by Assad (1988) and Desrochers et al. 
(1990). 

1.3-2.1 Definition of the VRP 

Using graph theory, the basic VRP can be defined as follows (Jalisi, 2000): For a 
graph G=(YA), define a set of Y vertices and a set of A arcs between those vertices. 
Let Y=jy, ji=l,..., n I be a set of n nodes where i=I refers to the depot node and 

i=2 ... n refer to customer nodes. Let V= fvk Ik =mI be a set of m vehicles. Let cy 
be the travel cost between nodes yj and yj. Each customer yj has a certain demand 

requirement of qi. Each vehicle vkhas a capacity of Qk . The objective of the VRP is 
finding the least cost route for vehicles so that all customers' demand is satisfied. As 

mentioned above, the VRP can be considered to be a special case of the TSP. If (m=]) 
n 

and yiqj ), then the VRP reduces to the TSP. Similar to the TSP, the time 
i=2 

dimension is not considered in the VRP. Instead, a total demand per customer is 

satisfied for each routing problem. 

Table 1.2: Classification of the vehicle routing problem 

Commodity 1) Single commodity 
2) Multiple commodities 

Objective 1) Minimise distance 
2) Minimise number of vehicles 
3) Minimise total transportation cost 

Nature of demand 1) Pure pickups 
2) Pure deliveries 
3) Mixed 

Information on Demand 1) Stochastic 
2) Deterministic 

Vehicles Fleet size 1) Fixed 
2) Variable 

Capacity constraints 1) Identical 
2) Different 

Route duration 1) No durations 
2) Identical durations 
3) Different durations 
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1.3.2.2 Formulation of the VRP 

The VRP has many different fon-nulations (Jalisi, 2000). Here, we present the 
formulation related to the TSP. 

I if vehicle k visits customer xj after customer xi Let Xijk --- 

f0 

otherwise 

nm 

Minimise Z CY Xiik (1.10) 

i: #j k 

Subject to 
nm 

II 
Xijk forj=1,2,..., n (1.11) 

i=l k=l 

nn 
I 

Xrpk -E Xpjk : -- 0 fork= ],..., m&p=],..., n 
i=l j=l 
n 

qxk for km (1.13) :: ý Qk 
i*j 
n 

iX 
Ijk for k=1,2,..., m (1.14) 

j=2 

m 

Yi-y +nj]x,,:! ýn-I 
k=l 

Xijk E 
ý0111 

fori: #j&i, j=2,..., n (1.15) 

for all i, j, and k (1.16) 

The objective in (1.10) is the minimisation of the total transportation cost. Constraints 

(I. 11) ensure that every customer is visited only once. Constraints (1.12) ensure that 

each node is entered and exited once. Constraints (1.13) ensure that vehicle capacities 

are not exceeded. Constraints (1.14) ensure that every vehicle is used only once. 

Constraints (1.15) ensure sub-tour elimination (similar to the TSP) while yi and Yj are 

arbitrary real numbers used to force each route to pass through the depot. Constraints 

(1.16) represent the binary conditions on xy. 



Chapter I Introduction 16 

1.3.2.3 Applicability of the VRP to our work 

It should be noted that the formulation and definition provided above is for the basic 
VRP. Some extra constraints are added to the basic VRP because of their importance 
in practice. Some of these practical issues are inventory management and time 

constraints. However, the basic VRP has received much more attention in the 
literature than other practical VRPs (Laporte and Osman, 1995). Many different exact 
and approximate solutions are available for the VRP. Because of its difficulty, 
heuristic algorithms are mainly used to solve the VRP problem. Most of these 
heuristics are two-phase methods (Bramel and Simchi-Levi, 1995). Two-phase 

methods are generally divided into two types. The first type is cluster first-route 

second where customers are clustered into groups, and then an optimal route is 

obtained for each cluster. The second type is route first-cluster second where a TSP is 

solved for all customers, and then customers are clustered into groups. 

We are not interested in the solution procedure of the VRP. For our work, the interest 

in the VRP arises because of the following: 

0 Although we use a different formulation, the aggregate model of the ship- 

scheduling problem presented in our work can be considered as a routing 

problem with some extra practical constraints Oourney times and capacities). 

9 Although we use ships instead of land-based vehicles, a practical VRP called 

the Inventory Routing Problem (IRP), has a great resemblance to the ship- 

scheduling problem of our work in terms of the ob ectives and the j 

formulations. 

The IRP is a VRP where customers have different daily consumption rates of the 

delivered product. The consumption rate of customers results in a daily demand 

requirement for each customer. In addition to minimising the transportation costs, the 

objective of maintaining certain levels of inventory at customers' sites is enforced. A 

literature review of this particular problem is presented in Chapter 2. A fairly recent 

review on dynamic routing and inventory problems is provided by Ukovich et al. 

(1998). 
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1.3.3 Ship scheduling problems 

The VMI system is explored within a ship-scheduling context instead of land-based 

vehicles. As opposed to VRP, our VM1 system includes the combined routing and 
scheduling of ships (i. e. the time element is considered). In other words, products 
have to be received at specific time periods (or time windows), while in VRP, a 
feasible solution is just a route that visits all nodes regardless of time. The time 

element adds a certain complexity to the VM1 Problem which reduces the feasible 

region. Therefore, we explore optimisation-based techniques to solve highly- 

constrained VMI problems while heuristics (which tend to work better in less- 

constrained problems) are mainly used to solve routing problems. 

The shipped products in many ship-scheduling problems are usually quantified in 

cargoes, where each cargo has a specific pickup/delivery dates and specific 
loading/unloading ports. In our work, we do not deal with cargoes since the vendor is 

responsible for deciding how much of the products are to be delivered and when. In 

addition, we consider bulk shipping of continuous products (e. g. oil products) as 

opposed to discrete products (e. g. parts). Moreover, delivery is scheduled for time 

periods rather than time windows because the customer has a continuous (but time- 

varying) level of demand. A comprehensive literature review of ship scheduling 

problems is provided in Chapter 2. The mathematical formulations of the problem are 

explained in Chapter 3. 

1.4 Project Aims 

The PhD project aims at designing an overall dynamic VMI system. In this system, an 

integrated production planning, distribution, and inventory management methodology 

is developed for the vendor. To achieve that aim, the project plan is to use different 

optimisation-based techniques to simulate and optimise the replenishment policy for 

VMI systems. Then, the performance of VMI systems is tested with different 

industrial case studies. 
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A potential future objective is to design a Computerised Decision Support Tool 
(CDST) for Industrial VMI systems. The user is asked to input all the necessary data 
into the CDST. In return, the CDST outputs all required information using the proper 
type of display (tables, charts, graphics ... etc. ). 

Input to CDST. - 

Production sites, maximum production rates, cost of production per product, 
sites' storage capacities and required ship loading times at those sites 

Customer locations, location storage capacities, and required ship unloading 
times at those locations 

Ships available for transport, ship storage capacities, and their initial position 

Valid journeys between sites and locations, journey durations, and costs for 
each ship 

0 Starting and ending dates for the period of optimisation 

Daily forecasted demand of each product at each customer location for the 
period of optimisation 

Initial inventories at locations and ships in addition to the desired final 
inventories 

* Market selling price for each product 

Output of CDSP 

Optimal average daily production rate of each product at each production site 
during the scheduling period 

9 Optimal schedule of joumeys for each ship 

* Optimal loading/unloading rate of material during the scheduling period 

Inventories at all ships, sites, and locations at any day during the scheduling 
period 
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1.5 Problem Statement 

In our work, the entire VMI system in terms of production, transportation, and 
inventory is optimised. 

Figure 1A Production plants and customer locations 

The vendor is responsible for transporting a number of products from the production 

plants(s) to geographical ly-dispersed customer locations. Forecasted daily/weekly 

demands at customer locations have to be satisfied without exceeding the customer 

storage capacities. No orders are received and the vendor must decide when to 

replenish each customer and by how much. The production rates of each product at 

each production plant must not be exceeded. A fleet of ships owned by the vendor is 

used to transport the product(s). All ships in the fleet have a certain fixed capacity that 

must not be exceeded. In addition, the problem incorporates any factors that affect the 

entire schedule such as plant shut downs and ship maintenance. Figure 1.4 shows an 

example of how the production plants (p, andP8) and the customer locations (12 
... 

17) 

are distributed on the UK map. Arrows on the map show the allowed ship journeys. 

The detailed VMI problem specifications and required data are described below. 
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Objective 

In order to avoid infeasibilities, demand requirements are treated as soft constraints. 
Consequently, the objective becomes maximising the total profit rather than 

minimising the total cost. A penalty for unfulfilled demand requirements for each 

customer is included in the objective function. The total profit is calculated by taking 

the difference between total sales and total costs. Total sales are represented by total 

demand satisfied at all customer locations. Total costs consist of transportation costs 

and penalty costs for unfulfilled demand requirements. If total sales data are not 

available, the objective becomes minimisation of total costs instead. 

Plants1locations information 

Storage tanks at production plants as well as customer locations are dedicated to 

specific products to avoid mixing. In addition to storage capacities, the production 

rates of each product in tonnes per day are given for each production plant. Moreover, 

the initial inventories of each product at every plant/location are given. 

Ships information 

All ships in the fleet have flexible compartments. As a result, any combination of the 

products can be carried onboard as long as the total ship storage capacity is not 

exceeded. In addition, every ship's initial position is known at the beginning of the 

optimisation. Initially, a ship can either be in a particular port or on its way to one. 

Moreover, the initial inventories of each product on each ship are given. 

Products information 

The production costs of all products are given for each plant. In addition, the selling 

prices of each product are given for every customer. 
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Journey information 

Each ship is assumed to be suitable for certain journeys because of some limitations 

such as depth restrictions. At the start of the horizon, all journeys must originate from 

their initial positions. For every ship, journey durations as well as journey costs are 

provided. Shipping costs are based on sailing time and ship type (size, bunker, 
... etc. ). 

Product transhipment (transferring product between ships) is not allowed because of 

the high costs of transferring bulk commodities. There are no limitations on the 

customer locations that a ship can visit although these limitations are common in 

industrial operations. In addition, a ship can unload at different customer locations. As 

for production plant(s), no unloading is allowed. Restricting the feasible journeys does 

not necessarily prohibit a ship from visiting any port. Instead, the route will be 

different while the overall solution is approximately the same. This fact can always be 

true because the journey costs in the VM1 problem satisfy the triangle inequality cij + 

Cjk ý! Cik (Laporte, 1992). In general, if a ship does not load/unload at a location, then 

the conclusion is that ship did not enter the port and it passed through that port on its 

way to another port. 

Loadinglunloading information 

For each plant/location, the pumping rate is fixed. Consequently, the total quantity 

loaded/unloaded per discrete period can be calculated. 

Supply1demand information 

Daily or weekly demand forecasts of each product are satisfied at fixed time periods 

rather than time windows. For every customer location, once product is available and 

needed, we assume that demand is depleted instantaneously. Penalties for not meeting 

a customer's demand are incurred in the objective function. In addition, to VMI 

customers, some external (non-VMI) demand can be included in the problem. We 

assume that external demand (if any) is taken directly from the vendor's storage tank. 
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E,. -%, -tra specifications 

The VMI problem can easily adapt to any additional problem-specific restrictions. 
Such restrictions include ship maintenance and plant shut-downs. 

1.6 Problem Complexity 

An optimisation problem is said to belong to class P if it is tractable on a deterministic 

machine. NP is the set of all problems that are tractable on non-deterministic 
machines (Garey and Johnson, 1979). A problem is NP-complete if a quick algorithm 
to solve this problem can be used to solve all other NP-complete problems quickly. 
NP-hard problems are at least as hard as NP-comPlete problems. 

All nontrivial routing and scheduling problems are NP-hard in general (Bramel and 
Simchi-Levi, 1995). On the same notion, it is very essential to emphasize the level of 
difficulty of the industrial VM1 systems we deal with in our work. In reactive (order- 

driven) systems, the vendor responds to orders received from the customer. Although 

these traditional systems may be unbeneficial to vendors, the resulting problems are 

relatively easier mathematically because many of the key decisions have been taken 

(albeit sub-optimally) by the customer. On the other hand, VMI systems are beneficial 

to the vendor and mathematically difficult to solve. In VMI systems, time becomes 

much more important because customers are using material all the time and they need 

regular replenishments. The vendor looks at the entire demand forecasts of the all 

customers rather than some fixed orders. Consequently, the optimisation of these 

systems involves the entire space of decisions rather than a subset of it. In addition, 

linking routing and scheduling decisions of multiple products with production plans 

and inventory management makes the VMI problem even more difficult. Only 

consideration of physical real-life constraints can reduce the level of difficulty for 

VMI problems. Such constraints include port restrictions. In our work, we first try to 

mathematically model these systems using a dynamic process-scheduling system. 

Then, we propose efficient solution approaches to solve the resulting model. We are 

aiming to derive the maximum benefit from the VMI strategy. Therefore, we raise the 



Chapter I Introduction 23 

challenge by exploring mainly optimisation-based algorithms. Nevertheless, general 
heuristic algorithms are used to show the benefits of optimisation. 

1.7 Thesis Outline 

Chapter 2 provides a relevant literature review. First, a summary of VMI-related work 
is presented. Then, the inventory routing problem is discussed as a special VMI 

problem. Finally, the ship-scheduling problem is extensively reviewed since it 

represents the mode of transportation in the VMI system considered here. 

Chapter 3 describes the mathematical formulation of VMI systems. A detailed MILP 

model is explained first. Then, a direct solution approach using the detailed model is 

introduced. 

Chapter 4 describes the aggregate-time mathematical formulation of VMI systems. An 

aggregate MILP model is explained first. Then, an iterative solution approach using 

the aggregate and detailed models is introduced. 

Chapter 5 discusses the rolling horizon approach tailored for our VMI problem. First, 

background about the rolling horizon is presented. Secondly, mathematical modelling 

of the VMI system in a rolling horizon framework is explained. Finally, a hybrid 

rolling horizon solution approach is introduced. 

Chapter 6 uses an illustrative VMI example problem to evaluate the solution 

approaches described in the previous chapters. First, two general industrial heuristics 

are introduced. Secondly, solutions obtained by optimisation-based approaches are 

compared to those obtained using industrial heuristics. 

Chapter 7 presents a realistic evaluation of the VMI system using industrial case 

studies from different companies. For each case study, the problem is first solved 

using both heuristics and optimisation-based approaches. Then, potential 
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improvements to the current problems are discussed and final recommendations are 

presented. 

Chapter 8 presents some concluding remarks on the VMI problem and the 

mathematical approaches used. Finally, future work areas for the VMI problem are 

provided. 
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Chapter 2 

Literature Review 

The PhD project includes three main parts. The first part is production planning, the 
second part is distribution planning, and the third part is inventory management. The 
VMI system in our research is a dynamic integration of all these parts. There exists 
some work that combines production and distribution (Cohen and Lee, 1988). 
Moreover, there exists some work that combines distribution and inventory planning 
(Dror and Ball, 1987). To our knowledge, there is no previous work in the literature 

which views VMI systems as a dynamic integration of production planning, 
distribution, and inventory management. 

VMI was popularised in the 1980's by Wal-Mart and Procter & Gamble in the US 

(Waller et al., 1999). Therefore, VMI is considered a new area since all VMI work 

started to be published in the late 1990's. However, the main aim of our project is the 

optimisation of VMI systems (production planning, distribution, and inventory 

management). In Section 2.1, a review of existing VMI-related work is presented and 

compared to our project. Since the mode of transportation for our VMI distribution 

system is shipping, a comprehensive literature review is presented for ship scheduling 
in Section 2.3. As for the VRP, we introduce a brief literature review on the special 

case of the IRP because of its direct relevance to VMI objectives. 

Although production planning is a major part of VMI systems, it is not the driving 

force compared to demand, nor should it be. In our work, production plans are 

represented in terms of the daily production rates at all plants. Those rates are subject 

to many constraints such as plant storage and production capabilities. For simplicity, 

we assume that raw materials are always available at the vendor's plants. No literature 

review is presented for production planning problems. Such problems can be explored 

further in terms of raw material availabilities and material requirements planning 

(MRP). However, such considerations will extend the VMI supply chain to include 
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raw material suppliers. This aspect of production planning is out of the scope of this 
thesis and included as a future area of research. 

2.1 Vendor Managed Inventory 

Recall that in Chapter 1, we categorised inventory management methodologies into 

two main categories (Section 1.1.1). The first category is the traditional (reactive) 

strategy and the second category is the proactive (VMI) strategy. In traditional 

strategies, pure inventory problems are solved without comprehensive consideration 

of other aspects. The objective of pure inventory problems is to minimise the holding 

cost over a long time horizon. In such problems, distribution is incorporated only in 

terms of a fixed cost for deliveries. Many inventory models are formulated to find the 

optimal frequency and order quantity. One such important model is the economic 

order quantity model (Christopher, 1998). Other models try to minimise the stocks by 

increasing the order frequency and decreasing the order quantity. Such systems are 

widely used in production assembly lines where materials are ordered "Just In Time" 

to reduce inventory buffers (Beasley, 2003). Extensive work on pure inventory 

models exists in the literature. All these pure inventory models are classified under the 

traditional reactive (order-based) system. No pure inventory models are included in 

our literature review. 

On the other hand, the VMI strategy spans inventory management to include 

production and distribution. Therefore, VMI is a strategy for managing supply chains. 

In Section 2.1.1 a literature review on existing published VM1 work is presented. In 

Section 2.1.2, the existing work in the literature is compared to the VM1 problem in 

this project. 

2.1.1 Selected literature on VMI 

Waller et al. (1999) evaluate the effect of VMI systems on a certain supply chain of 

one vendor and multiple distribution centres some of which are non-VMI retailers. 

The performance measure in their model is the level of inventory at distribution 
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centres. A simulation is conducted on scenarios with different order frequencies and 
different demand variability. The daily demand is normally distributed and the fixed 

mean is relative to the centre's capacity. Daily supply is assumed to cover all demand 

requirements. However, if the amount of orders exceeds the supply on any day, a first- 

come first-served basis is used. No dynamic transportation is modelled in the 

simulation. Randomly generated transportation times are only considered from the 

vendor to the centres. The model is implemented using the SIMAN programming 
language. The model is tested on real-life data from Hewlett Packard. Then, the 

simulation studies the effects on non-VMI customers. Results show that the better co- 

ordination of manufacturing in the VMI system also benefits other non-VMI retailers. 
Finally, different production capacities are tested for the same demand requirements. 
Results show a reduction in production backlogging for the vendor due to elimination 

of large, infrequent orders. As for VMI distribution centres, great reductions in 

inventory levels result for all demand variability cases. 

Achabal et al. (2000) design a VMI decision support system (DSS). The DSS includes 

a specific demand-forecasting model and inventory-management model for each 

retailer. No distribution model is included in the DSS. The forecasting model uses 

sales data and promotion policies to provide demand forecasts. Two types of forecasts 

are generated. First, weekly demand forecasts are generated and passed to the 

inventory model to determine the proper stock levels. Second, aggregate long-term 

forecasts are generated and passed to the manufacturer for production planning. 

Forecasting integrates normal sales, seasonal variations, and retailer-based effects. 

Demand is normally distributed, and target service levels equal the probability that 

demand is less that the target inventory. The target levels (minimum inventory and 

customer service levels) are agreed upon by the vendor and each retailer. A major 

apparel manufacturer implements the DSS with more than 30 retailers. Although 

inventory turnover slightly declined, the service level significantly increased after 

using the VMI DSS. 

Cetinkaya and Lee (2000) solve a VMI problem analytically. One vendor supplies a 

product to a group of retailers with random demand. The source of supply for the 

vendor is the manufacturer. In other words, the vendor places orders to receive the 
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product from the manufacturer where VMI system is applied only between the vendor 
and the retailers. Retailers are clustered in different geographical regions such that 
their demand can be consolidated in one larger load rather than smaller multiple loads. 
The total costs incurred include procurement, inventory holding, waiting costs for 

received but not delivered orders, and transportation costs from the vendor to the 

region of retailers with no lead times. As opposed to other inventory models, 
transportation costs consist of a fixed dispatching cost and a unit-dependent cost 

rather than just fixed delivery costs. The vendor accumulates orders from retailers 

until the beginning of the consolidation cycle rather than directly delivering the 

product. The manufacturer replenishes the vendor with product instantly based on the 

accumulated orders by retailers and the on-hand inventory level at the vendor's site. 
The renewal reward theorem is used to evaluate the expected average cost for the case 

of Poisson demand. The resulting expected average cost is a function of the target 

inventory level at vendor's site and the consolidation cycle time. The minimum 

average total cost is then explicitly used to find the optimal order quantity and 

consolidation cycle. A heuristic approach is used to solve for those optimal values by 

approximating the exact formula. Calculations show that the order quantity reduces to 

the economic order quantity formula if no shipment consolidation is considered. 

Axsater (2001) solves the same problem presented by Cetinkaya and Lee (2000). 

However, the author presents an exact rather than an approximate optimisation 

algorithm of the problem for a range of discrete values for the consolidation cycle 

time. The exact algorithm outperforms the approximate algorithm of Cetinkaya and 

Lee (2000) in terms of cost reductions. 

Kaipia et aL (2002) analyse the time benefits of VMI systems using the entire product 

scale rather than the stock keeping unit (SKU) scale. The analysis objective is to 

eliminate the ordering process and giving that time to the supplier to better organise 

replenishments. Two extreme cases are considered; one is order-based while the other 

is order-free (VMI). Demand data of multiple products are collected for both cases. In 

order-based systems, demand is represented by purchase orders. In VMI systems, 

demand is approximated from consumption rates or sales data. Further parameters of 

demand deviations and response times are then calculated for both cases. The 
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potential time saving of VMI systems is calculated by taking the difference between 
the response times. The ratio between the mean absolute deviations of demand is 
calculated to quantify the bullwhip effect (demand amplification in the supply chain). 
The analysis is applied to three real life case studies. For every case, the order-based 
case is compared to the VMI system. Then, the power is shifted from the vendor to 
the customer by switching from VMI systems to Just-In-Time (JIT) system. Time 
benefits are gained by switching from order-based systems to VMI systems. In 

addition, the VMI system outperforms the JIT system because of the flexibility that 
enables the vendor to better plan operations in VM1 systems. 

Dong and Xu (2002) evaluate the short-term and long-term effect of VMI on a supply 
chain of one manufacturer (supplier) and one buyer (customer). The Economic Order 
Quantity (EOQ) is utilised to describe the buyer's inventory system and the supplier's 

profit by obtaining the optimal purchase price and purchase quantity. Distribution is 

included in the order fixed set-up costs. Note here that the supplier generates orders 
for the buyer. The authors analytically prove that VMI reduces the total inventory 

costs of the system (buyer and supplier). Furthermore, the authors show that only the 

buyer's short-term profits increase after VMI implementation. In the long-term, the 

buyer's profit is still consistent with the short-term result. However, the supplier 
benefits in the long-ten'n as opposed to short-term results. The long-term profit of the 

supplier is directly related to the long-term profit of the buyer because of the 

increased volume of sales. 

Disney and Towill (2002) link the Automatic Pipeline, Inventory and Order Based 

Production Control System (APIOBPCS) with VML APIOBPCS has been used 

before for production scheduling at particular manufacturer. However, the authors 

innovate this system and couple it with a VMI supply chain. The coupled system is 

used with a two-echelon supply chain of one manufacturer (vendor) and one 

distributor (customer). The distributor uses sales data to provide future demand 

forecasting and the re-order point level and passes this information to the 

manufacturer. Then, the manufacturer uses these data to set the production target 

levels. Note that the system contains only production and inventory as the two main 

components of the system. Distribution is accounted for in this system only in terms 
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of delivery lead-time. A closed-loop block diagram representation of the VMI- 
APIOBPCS with a sampling time of I is presented. First, difference equations for 

production, inventory and forecasting are generated. Distribution is represented in the 
loop as a discrete time delay to account for delivery lead-time. All difference 
functions are then transformed to the z-domain to yield the system's discrete transfer 
function. The input is this system is the consumption rate, while the output is the 
inventory level. The performance of VMI-APIOBPCS system is analysed in the time 
domain by taking the inverse z-transform of the transfer function. The initial value 
theorem is used to find the initial conditions of the system. Furthermore, the stability 

of the VMI-APIOBPCS is studied and the stability conditions of the system are 
finally determined. The main parameters that affect the stability of the system are 

related to production rate. Note here that the authors only aim at finding the stable 

region of the system. In other words, no optimisation of VMI-APIOBPCS is 

presented. 

In addition to their work in testing the stability of the VMI-APIOBPCS, Disney and 
Towill (2002) present a related paper that optimises the VMI-APIOBPCS described 

above by minimising the total cost. The total cost is the summation of the distributor's 

inventory cost metric, the system inventory cost metric, and the production adaptation 

cost metric. The objective function is represented by the reciprocal of the Euclidean 

distance from zero in three-dimensional space. Hence, the problem becomes a 

maximisation rather than a minimisation process. Since adapting different production 

rates can affect the inventory level due to bullwhip effect, different ratios of 

production costs to inventory costs are tested. A search algorithm over a user-defined 

range of decision parameters is then used to find the best set of parameters. One of 

these parameters is the ratio of safety stock to consumption rate. This ratio is used to 

evaluate the trade-off between transportation costs (implied by batch sizes) and 

inventory holding costs. Furthermore, results show that the bullwhip effect is reduced 

if the delivery lead-time decreases. 
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2.1.2 A comparison between our work and VMI in the literature 

It is obvious that VMI attracted much attention lately because of its potential benefits 
both for vendors and customers. Researchers are always keen to evaluate these 
benefits. However, the approach and context of such evaluations is usually different. 
We believe that present research only covers some aspects of the VMI problem. A 
classification of differences between the VMI system in our work and literature is 

provided below. 

Evaluation approach 

Different aspects of the VMI problem are tackled to study its performance. Some 

work replicates pure inventory models objectives by obtaining the order frequency 

and quantity. Benefits are assessed analytically in terrns of the optimal order 
quantities and shipment cycle (Cetinkaya and Lee, 2000) or purchase prices (Dong 

and Xu, 2002). Other work views the VMI system within production control systems 
(Disney and Towill, 2002) and the stability of the system is the major objective. 
Available simulations of the VMI system measure the performance by the level of 
inventory (Waller et al., 1999). The decision support system designed by Achabal et 

al., (2000) is heavily dependent on forecasting. Others (Kaipia et al., 2002) explore 

only the benefits of order time elimination. In most published VMI work, very little 

attention is given to the transportation component of the supply chain (Disney et al., 
2003) or on the time-phased replenishment of customers. In our work, a full 

optimisation methodology is suggested to evaluate the benefits of VMI systems. We 

dynamically optimise the VMI system by integrating all of its components 
(production planning, distribution and inventory). 

Distribution optimisation 

Most of the previous work deals with only one customer. In such cases, delivery costs 

are fixed and included in the set-up costs. For models with multiple customers, 

distribution factors are considered in terms of lead-times. In our work, distribution is 
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included where the vendor has to plan the routing of shipments to minimise the 
transportation costs. 

Typ e of p ro du cts 

Most of the research deals with discrete items rather than continuous types of 

materials. In our work, we focus on process industries that deal with continuous 

products such as industrial gases and oil products. 

Order generation 

Some work replicates traditional systems within VMI context. In such work, the 

vendor generates orders (Dong and Xu, 2002). Although some benefits are realised by 

the total reduction of inventory in the system, potential benefits are not totally 

achieved. The time benefit of order elimination is properly explained by Achabal et 

al. (2000). In our work, we eliminate the order process and simultaneous production, 

distribution, and inventory management is passed to the vendor. In the next section, 

we present a selected literature review on the W. 

2.2 Inventory Routing Problems 

The IRP represents one of the most important practical problems of the VRP. 

Although much less published research can be found about the IRP compared to the 

VRP, an abundance of formulations and applications of the IRP can be found in the 

literature. 

The IRP is defined in Chapter I as a special VRP. The main resemblance of the IRP 

to our problem is the objective. Daily customer demand should be satisfied while 

ensuring that the customer's storage capacities are not exceeded. It is obvious that the 

IRP is a much harder problem compared to the VRP. Therefore, in attempting to solve 

these problems, some researchers add many restrictions. Some restrictions can 

produce solutions within a certain gap from the exact optimal solution. The decision 
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of the trade-off between solution quality and reasonable running time is left to the 
expert. For instance, Gallego and Simchi-Levi (1990) prove that a direct policy 
(where each customer is served by only one vehicle) produces solutions within 6% 

margin of optimality. 

Note that only deterministic IRPs are considered in the literature review for our work. 
Some of the articles reviewed have some stochastic analyses. Stochastic demands as 
well as uncertainty in general are discussed as a future work area in Chapter 8. In 
Section 2.2.1, we present a brief review of the deterministic IRP in the literature. In 
Section 2.2.2, a comparison between our work and the literature in the field of the IRP 
in presented. 

2.2.1 Selected literature on IRP 

To our knowledge, Ukovich et al. (1998) present the most recent review on the IRP in 

which the authors refer to the IRP as the dynamic routing-and-inventory problem 
(DRAI). The authors provide a classification of all DRAI in the literature. According 

to their classification, solution methods are divided into two main approaches. The 

first approach isftequency domain where the optimal solution involves finding the 

best replenishment frequencies. The second approach is time domain where the 

optimal solution involves finding replenishment schedules. The authors provide a 

literature review of DRAI problems with both approaches. Note, that the second 

approach (time domain) is the more relevant approach to our work. However, in our 

literature review we view articles with both approaches. 

Dror and Michael Ball (1987) present a heating-oil distribution problem in which they 

reformulate a long-term IRP to a reduced version that deals with short-term decisions. 

Customers are divided into subsets, and the problem is solved for each period (i. e. a 

time domain approach is used). The trade-off between early and later replenishments 

is considered when demand is stochastic. Early replenishment has a probability of 

another replenishment sooner and hence more costs. On the other hand, later 

replenishment has a probability of a stock out. The authors define the expected cost 

function for a single customer case. Then, the single-customer case is extended to 
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cover multiple customers (i. e. IRP) by incorporation of transportation costs. The TSP 
is solved as a sub-problem within the IRP to find the least cost route over a set of 
customers. The model is solved using a three-phase heuristic. The first step involves 
assigning a customer to each time period (as an LP problem). The second step 
involves solving a VRP for each day. The final step involves improving the solution 
by exchanging some of the combinations generated in the previous two steps. At the 
end, the proposed algorithm is compared to the manual one using a real-life problem 
of heating-oil distribution. A 50% increase in performance (units/hour) is obtained 
with this algorithm compared to the manual system. 

Bramel and Simchi-Levi (1995) present a location-based heuristic (LBH) that 
formulates a routing problem as a location problem. The heuristic divides the region 
of all customers to small squares. Each square has a set of customers with a total 
demand less than the capacity of the vehicle. A TSP is solved for each square to 
minimise the total transportation costs for that particular vehicle and set of customers. 
The capacitated concentrator location problem (CCLP) is used to cluster customers 
into minimum-tour groups. The LBH is used to solve a VRP and IRP. While requiring 
similar CPU times, the LBH provides better solutions for the VRP than many other 
heuristics. On the other hand, applying the LBH to the IRP involves extra 

assumptions/constraints. In addition to transportation costs, the total costs involve a 
fixed cost for each placed order and holding costs. There is an infinite storage 

capacity at customers' sites. Demands are treated as hard constraints. The main 

assumption is that customers are divided into subsets. If a customer in any subset is 

served, then all customers in that subset are also served. The authors justify this 

assumption from retailers' and drivers' perspectives. From retailer's point of view, 

orders are received at constant regular times (i. e. frequency approach is used). As for 

drivers, it is reasonable to have drivers specialise in certain routes rather than learning 

all possible routes. The optimal cycle time (time between deliveries) is found using 

the economic order quantity formula. A solution of the IRP is presented with different 

fixed-cost values with uniformly distributed demands (1,10). The solution shows that 

in one-third of the cases, the vehicle load is not exhausted. 
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Campbell et al. (1997) view the IRP within a VMI context. The authors use a two- 
phase algorithm based on cluster first-route second to solve the IRP. Customers are 
first clustered in two cost-compatible groups. Then, the authors develop an integer 

programming approach to solve the routing problem of the IRP. In their modelling, 
the authors make certain assumptions. First, each cluster is served by only one 
vehicle. Second, when a customer in a cluster is visited, then all customers in that 

cluster are visited. This assumption emphasizes the importance of consumption rate 
compatibility of customers in each cluster. However, the authors do not explain the 

clustering method. They refer to the second cost estimate as the method of 
partitioning customers into clusters. 

Viswanathan and Mathur (1997) present a multi-product IRP where the objective is to 

obtain the optimal long-term replenishment policy for products (i. e. a frequency 

approach is used). The authors implement a stationary nested joint replenishment 

policy (SNJRP) heuristic. A stationary policy involves finding equal replenishment 
intervals. A nested policy involves having multiple replenishment intervals for some 

products relative to other products with less replenishment intervals. SNJRP starts by 

calculating the replenishment intervals of customers independently using the power- 

of-two rule (two times the base period). The customer with the lowest interval is 

added to the cluster and assigned a certain weight relative to the route. Customers 

with greater intervals are then added to the cluster (nested) until the capacity of the 

vehicle is exhausted. Then new clusters are constructed with new customers in the 

same manner. The optimisation process involves re-evaluation of some customers' 

intervals based on other customers' capacities and time intervals. SNJRP can produce 

a savings of 10% on the total costs compared to the independent replenishment 

policies. 

Bard et al. (1998) present the first work on IRP that introduce satellite facilities 

(IRPSF). Satellite facilities are geographically distributed depots that can serve as re- 

supply points for vehicles. Similar to all VRPs, vehicles have to go back to the central 

warehouse by the end of the day. In other words, no overnight stays are allowed at 

satellite facilities. The authors use a similar decomposition technique proposed by 

Dror and Ball (1987) to reduce the long-term problem into a short-term problem (i. e. a 
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time domain approach is used). The general decomposition approach starts with 
identifying customers whose replenishment dates are within the planning horizon. A 
trade-off between assigning customers to their replenishment dates and cost of 
otherwise is evaluated. For the customer-day combination, a VRP problem with 
satellite facilities is solved to minimise the total transportation cost. Finally, the 

solution is improved by exchanging customers between certain routes. The step of 
solving the VRPSF is compared with three different existing VRP heuristic 

algorithms. The decomposition approach is tested with different mean and variance 

values for consumption rates with a fixed unloading time. Results are compared for 

each VRP heuristic used. Note here that the initial step of assigning customers to days 

is the inventory part of the IRP. The rest is just solving the VRP for each day. The 

latter step involves most of the work in the method. 

Rusdiansyah and Tsao (2005) combine IRP and VMI in a vending machine supply 

chain over a planning horizon of six days. The objective function is to minimise the 

holding costs and average travelling costs. Every retailer (customer) is allowed a 

certain number of visits in the planning horizon within specific time windows. A 

heuristic algorithm containing two phases (initialisation and improvement) is used to 

solve the problem. In the initialisation phase, a visit frequency is determined for each 

retailer. In the improvement phase, visit-day combination interchanges are performed 

using a Tabu Search (TS) algorithm. The mathematical model was coded using the C- 

language. The model was then tested using real data examples. Examples show that 

combining inventory and travel costs in one model can result in huge savings. 

2.2.2 Comparison between our work and IRP in the literature 

It is obvious that there exists some resemblance between the ship-scheduling problem 

considered in our VMI system and the so-called IRP. The main common area is 

inventory management. In both problems, customers' locations have certain capacities 

and demand must be satisfied while not exceeding those capacities. However, since 

the mode of transportation is different (ships in our case), the problem formulation 

and solution procedures are different. Differences between ship routing and land- 
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based vehicle routing are discussed by Ronen (1983). We try to classify the 
differences between our problem and the IRP as follows: 

Central supply 

In the IRP, there is always a central supplier/warehouse. Sometimes the IRP is 

referred to as one-warehouse multi-retailer distribution system. The existence of 
satellite facilities in some problems (Bard et al., 1998) does not undermine the role of 
the central warehouse where all vehicles have to start from and return to. In our 

problem, there is no central supplier and ships can end up in any port. 

Number of customerslfleet size 

IRPs deal with a large number of customers (usually hundreds). The fleet size is also 

greater in case of the IRP. In our problem, and similar to all shipping problems, we 
have fewer customers and a much smaller fleet size. 

Costs involved 

In the IRP, costs include transportation costs, fixed cost per delivery, and inventory 

holding costs. In our model, we only consider transportation costs with no fixed 

delivery costs. Because we deal with industrial VMI systems, material availability is 

the main priority. Hence, we do not include any holding costs. 

Time horizon 

The optimisation process in the IRP involves long-term decisions such as annual plans 

(sometimes over an infinite time horizon). Consequently, optimality is measured 

according to the average of customer satisfaction over the time horizon. In the ship 

scheduling problem, we deal with short-to-intermediate-term scheduling. Hence, the 

service level is evaluated per customer. 
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Demand information 

In the IRP customers have certain consumption rates. This consumption rate can be 
translated into demand in our case. However, in the IRP, consumption rates are 
usually treated as hard constraints. In our problem, we deal with demand as soft 
constraints but demands can vary significantly between time periods. Moreover, 
demand requirements in our problem are not necessarily fixed for each customer as 
opposed to consumption rates in most IRPs. 

Discharge quantities 

IRPs deal with small loads compared to the capacity of the vehicle. Usually, it is 

specified that a set of customers be replenished only by one vehicle. This vehicle is 

assigned to an optimal route that visits all these customers. In our problem we deal 

with bulk shipments, where load quantities are of the same order of the ship capacity 
(most of the time full loads are delivered to customers). Moreover, any customer in 

our problem can be visited by more than one ship. 

Solution approaches 

Most of the solution methods are two-phase approaches (usually cluster first-route 

second). With a large number of customers, these approaches seem reasonable and 

more efficient. The optimisation then involves how customers are clustered in an 

efficient way so their demand consumption is compatible. Hence, when a vehicle 

visits the cluster, it usually delivers to all customers in that cluster. The second phase 

of the optimisation is a TSP for that particular vehicle to replenish that group of 

customers. In our VMI system, we formulate the ship-scheduling problem as an RTN. 

Then, the problem is solved using MILP optimisation-based algorithms. In the next 

section, we present a selected literature review on the Ship Routing and Scheduling 

Problem (SRS). 
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The world's population is increasing while resources remain scarce. Consequently, 

the world economy is moving toward international trade where shipping is the most 
important transportation method. In addition, ships cost millions of dollars and their 

operations (fuel consumption and servicing/maintenance) cost thousands of dollars. 

Therefore, optimising ship routing and scheduling can result in very significant 
savings. Moreover, important capital investment decisions (i. e. ship procurements and 
sizing) can be based on the routing-and-scheduling aspect of shipping. 

The SRS problem has been an interesting area of research for the last century. 
Although the idea seems simple and straightforward, solving SRS problems is 

mathematically complex in general. Hence, the quality of the mathematical 
formulation can be of great importance to solving these problems. Amazingly, in spite 

of the potential savings and the challenging nature, the SRS problem has received 

relatively little attention compared to other vehicle routing problems. Because the 

mode of transportation in our VMI system is shipping, we present an extensive review 

of the SRS problem in Section 2.3.1. In Section 2.3.2, a comparison between our work 

and the literature in the field of SRS in presented. 

2.3.1 Selected literature on SRS 

(Ronen (1983) in his comprehensive review of SRS problems explains the reasons for 

the low attention the SRS problem received compared to the VRP. The main reasons 

are the structure of SRS problems and the underlying uncertainty due to weather or 

mechanical difficulties associated with ships. He also describes the range of ship 

scheduling as short-ten-n (days to weeks), medium-term (weeks to months), and long- 

term (months to years). In this review, Ronen categorises the modes of operations for 

ships into three main categories: liner (similar to bus routes), tramp (similar to taxi- 

cabs) and industrial (similar to a private fleet of trucks). Our problem (like most of 

industry operations) falls under the third category since the vendor (supplier) owns the 

fleet of ships and utilises this fleet to meet the requirements of its customers at a 

minimum cost. Chronologically, the review of Ronen (1983) is the earliest 
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contribution to our literature survey of SRS. Similar to the classification of the VRP 

provided in Section 1.3.2, Ronen introduces a classification for SRS problems (mode, 
time windows, ports, products, ships, demands, 

... etc. ). Finally, the presentation of 
the differences between the VRP and the SRS problem is of great importance to our 
work since our problem captures similar features of both problems. Briefly, the main 
differences mentioned by Ronen (1983) are: 

1) Great variations between ships in capacity, speed, and operating costs. 
2) The mode of operation (liner, tramp, or industrial) dictates the scheduling 

environment. 
3) The higher uncertainty associated with ships due to longer journey times. 
4) The limitations of drivers' circumstances that usually forces vehicles to return 

to their point of origin. 
5) The flexibility of continuous operation of ships (days or weeks) compared to 

vehicles. 
6) Ship schedules are more flexible compared to those of vehicles. Therefore, 

ship schedules can be changed easily. 

Ronen (1986) presents an SRS problem using heuristics and non-linear optimisation. 

He uses three algorithms to solve a ship-scheduling problem. Those algorithms are: 

The exact algorithm, single step cost minimization algorithm, and a random 

generation algorithm. Each ship is assigned to only one route that includes certain 

ports due to port entry restrictions. The objective is to minimise the total shipping cost 

that includes route costs, unloading costs, and port charges. The problem is structured 

as mixed-integer non-linear problem. Non-linearity arises from including costs per 

unit shipped on ships. The results of the three solution algorithms are compared to the 

general rule of sending the largest ships to farthest ports (based on the existing 

system). The exact algorithm used the context of the transportation problem to find 

the optimal solution. The random generator algorithm chooses a ship randomly using 

a uniform distribution. Randomly, ports are chosen until the load of the ship is 

exhausted or there are no remaining ports. Finally, the algorithm calculates the 

optimum route for each ship based on its designated ports. On the other hand, the 

single step cost minimization heuristic algorithm uses the tonnage-mileage 
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relationship as a basis. Since the exact algorithm consumes a lot of computational 
time depending on the size of the problem, the random generator and the heuristic 

proved to produce near optimal (and sometimes optimal) results depending on the size 
of the problem. In all cases the "industry rule" produced the worst solution. 

Ronen et aL (1987) present a crude oil transportation problem. The cost of scheduling 
includes opportunity costs, fuel consumption, port entry charges, and charter ship 
costs. The problem is structured as a set-partitioning problem (SPP) in the sense that 

only feasible independent schedules are generated. However, the authors suggested 

and used an updated SPP that he called the Elastic Set Partitioning Problem (ESPP). 

In (ESPP) some constraints can be violated at some penalty in the objective function 

in order to avoid infeasibilities. The procedure included the generation of all feasible 

schedules for all ships, the cost calculations associated with each schedule, and finally 

the optimisation process to choose the optimal set of schedules. The schedule 

generator takes into account all mentioned cost/port restrictions and specifies the 

cruising speed based on that schedule. Then the cost calculator ties all these 

cost/restrictions and comes up with the total cost for that schedule on that ship. 
Finally, the optimisation procedure solves the problem to oPtimality by satisfying all 

cargo and ship constraints (i. e. each ship is assigned to one schedule only, and each 

cargo can be used only once). As a result, the oPtimisation problem is an MILP 

problem. The model is tested using operational data with different test conditions 

(cargoes, time horizon, ports ... etc. ). The problem is solved in relatively short CPU 

times. 

To our knowledge, Miller (1987) presents the first work that considers integration of 

distribution and inventory. Miller uses a node-arc formulation to generate all feasible 

schedules for ships. This formulation contains four different types of nodes for every 

period over the time horizon in order to capture every single detail of the simulation. 

Arcs represent journeys between locations in the network. In addition to cost 

information, the generated schedules include information about inventory at end 

terminals. The solution procedure consists of four steps. The first step uses a heuristic 

approach to generate feasible schedules without applying any constraints. The second 

step uses generated routes to apply the constraints and produce any violations. The 
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third step is a report generator for the scheduler to make any 
corrections/improvements to schedules in the fourth and last step. In addition to user 
interventions, the system makes its own improvements towards optimisation. Tested 

with a real life problem for shipping multi-chemical products, the four-step user- 
interactive procedure proved to be a good tool for obtaining near-optimal results. 

Fisher and Rosenwein (1989) present one of the earliest research papers on SRS with 
time windows. The objective is to minimise the total transportation cost (charter costs 

and fleet operating costs). In addition to the usual constraints (capacity, 

loading/unloading, port restrictions), a cargo sequence constraint is added because 

some products cannot be lifted using the same compartments. For each ship, a 

maximum cruising speed is specified. Using cruising speeds and distances between 

ports, arrival times at those ports can be calculated. The solution method consists of 
two phases. First, all feasible schedules are generated where a possibility of all 
feasible schedules as well as a possibility of eliminating some schedules is given. 
Then a set packing formulation is used to solve the problem (i. e. choosing the optimal 

set of schedules) using Lagrangian LP-relaxation. Finally, interactive graphical 

reports are generated to allow clear vision and some manual corrections to schedules. 

The model was tested with a real life problem for the US navy. The system shows a 

significant improvement over manual scheduling. 

Kao and Lee (1996) tackle a ship-scheduling problem in order to minimise the idle 

time for ships inside loading/unloading ports (demurrage). Ships are treated as jobs 

while docks are treated as loading/unloading machines. Here, the port does the 

scheduling in order to minimise the demurrage costs that the port has to pay to ship 

owners. Therefore, the available information to the port authorities is the ship arrival 

times and due dates (the date in which loading/unloading has to finish). Since 

machines are set-up in a parallel manner, different machines can be used at the same 

time. Constraints include starting a job after its ready time and before the end of the 

time horizon In addition to other feasibility constraints such as assuring that the 

number of jobs does not exceed the number of machines. To avoid infeasibilities, jobs 

are allowed to start after their due date, however, this will incur cost penalties. The 

problem is structured as only a binary integer programming model (i. e. only decision 
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variables are to be obtained). A real-world example is applied to test the efficiency of 
the model using a uniform inter-arrival time distribution for ships and medium-term 
(90 days) time horizon for fifteen ships. Applying this model to the problem 
decreased the idleness of the docks from 30% to 10%. 

In addition to a brief review of ship-scheduling systems including early and recent 
literature, Kim and Lee (1997) present a decision support system (DSS) for ship 

scheduling. The authors state the major difference between liner and industrial 

operations mentioned by Ronen (1983). In liner operations, carriers have fixed costs 
for transportations. On the other hand, industrial carriers base their operations on 
demand and supply information (which is the case with our problem in our work). The 

authors use a set-packing formulation to solve a ship-scheduling problem to design a 

DSS. However, the generation of schedules is unique. The new procedure generates a 

feasible graph of all possible schedules. Then, all feasible schedules are generated 

from that graph. These feasible schedules are then inserted into the LINDO optimiser 

to find the optimal solution. The DSS is tested using a real-life scenario. The DSS 

produced good results in short CPU times with some visual output for optimal 

schedules. 

To our knowledge, Nygreen and Christiansen (1999) present the first recent article 

that combines ship routing with inventory constraints. They present an SRS with 

inventory considerations of the visited harbours. The problem is structured as a "path 

flow formulation" and uses "decomposition approach" to solve the problem. The LP- 

relaxation uses "column generation" where columns represent routes of ships and 

sequences for harbours. The technique used for solving the ship-scheduling problem 

is a combination of the multi-vehicle pickup and delivery problem with time windows 

and a multi-inventory problem. The procedure uses a Dantzig-Wolfe decomposition 

algorithm to solve sub-problems for each ship as well as each harbour. The sub- 

problems are integrated to solve the master problem. Each harbour has stock limits 

and rates of production/consumPtion of the shipped product. The initial state of ships 

can be anywhere including harbours and the sea. The cost includes fuel usage as well 

as harbour entry charges. The problem resembles the multi-pickup and multi-delivery 

vehicle routing with time windows in the transportation part of the problem. It is 
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important to note that time windows are associated with harbours as a whole. 
Consequently, visiting different nodes within a harbour should be within the time 
window of that harbour. Sub-problems are solved independently (both using the 
shortest path problem to find roust/sequences) and more constraints are introduced in 
the master problem. Since the problem includes column generation, the authors have 

written their branch and bound algorithm and used the SCICONIC subroutine library 
for solving the master matrix with some modification for column generation. It is 

worth mentioning that solving a problem with this size is very time-consuming, 

therefore, the authors have implemented some techniques to reduce the number of 

possibilities by reducing time windows and reducing the number of routes. The 

procedure is tested with a problem of shipping ammonia in Northern Europe with 
three ships and eleven harbours for a time horizon of a month. Results for two 
different time windows are presented. Nygreen and Christiansen (1999) present a 

similar work to their contribution in 1998 with emphasis on the path flow formulation 

and solving the LP-relaxations of the model using the simplex method. 

To our knowledge, Fagerholt (2000) presents the first SRS article to treat time 

windows as soft constraints. As a result, each customer has an inner and an outer time 

window. A special cost function is enforced for any inner window violations. The cost 

for not meeting that time constraint is added to the objective function. Therefore, the 

objective becomes minimizing the total cost of transportation (fuel usage, port 

charges, and charter ships) and "inconvenience" costs (incurred by not meeting the 

customer time). In addition, each customer is associated with a cost factor that is 

added specially for that particular customer. Hence, the importance of each customer 

in the model is quantified in the overall model. In common with other research, the 

solution method involves two phases. First, all feasible schedules are generated. 

Second, the master problem is solved using a set-portioning formulation. The 

schedule generation procedure uses heuristics to eliminate some schedules (based on 

waiting time and capacity utilisation). Then, the travelling salesman problem with 

time windows and capacity constraints is applied to generate the most promising 

schedules. Transportation costs are related to cruising speed, which is related to fuel 

consumption. On the other hand, inconvenience costs are related to violations of time 

windows. Therefore, the set-portioning optimisation process involves finding the 
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starting time as well as the times of all stops in order to minimise the total cost. The 
master problem is run using General Algebraic Modelling System (GAMS) as the 
model builder and the CPLEX package as the solver. The schedule generator is 

written in Pascal. The model is tested with different real-life cases and different cost 
functions (linear, quadratic, ... etc. ). Although they differ depending on the cost 
function used, results in terms of deviation from the hard time window case show that 
a substantial savings in transportation costs can be achieved if customers allow some 
flexibility in the their time windows. 

Christiansen and Fagerholt (2000) present the first SRS problem with cargo flexibility 

for multi product shipments. Ship scheduling with multiple products has been 

described in the literature. However, Christiansen and Fagerholt (2000) include cargo 

allocation as part of the optimisation procedure. The problem is divided into two sub- 

problems; the first sub problem solves the scheduling problem in a similar way to 

multi pickup multi delivery routing with time windows. The second sub problem is 

solved as a multi allocation problem (mixing of products is not allowed). The solution 

procedure uses two phases like all previous articles. In the first phase, all feasible 

schedules are generated along with different allocations in all ships. This step is 

performed using the travelling salesman problem with allocation, time windows and 

precedence constraints (TSP-ATWPC). The second phase involves solving the 

problem as a set-partitioning problem (each ship sails on one schedule) to find the 

optimal schedule for each ship. The schedule generation is done in a systematic way. 

The generation algorithm was coded in Pascal while GAMS/CPLEX combination is 

used for optimisation. The model is tested with a problem of shipping fertilizers using 

different values of an allowance factor (which accounts for acceptable waiting 

time/capacity utilisation). With low values of the allowance factor (less number of 

schedules), the problem solved faster although it sometimes eliminated the optimal 

solution. On the other hand, for high values of the allowance factor (all feasible 

schedules), CPU times increased slightly while optimal solutions are obtained. 

Christiansen and Fagerholt (2001) explain in detail the TSP-ATWPC used to generate 

the schedules in their previous article. The TSP is cited for different problems in the 

literature even with time windows and precedence, however this is the first article to 
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consider allocation in the TSP problem. The TSP-ATWPC is a sub-problem to 

generate a limited set of most promising feasible schedules for the main scheduling 

problem. In addition to usual TSP, allocation is added to force feasible cargo set-ups 
inside compartments. Time windows are added to arrange visitation within specified 
time windows, and precedence constraints force loading ports to be visited prior to 

unloading ports. Since TSP-TWPC is discussed previously in the literature, the 

allocation problem is emphasised by Christiansen and Fagerholt (2001). Due to 

different allocation possibilities, the number of schedules will increase. However, 

some restrictions are imposed to reduce the number of possibilities of cargoes such as 
having a utilisation factor for each ship. This utilisation factor has to exceed some 

certain amount in order for multiple cargo-combinations to be generated for that ship. 

A dynamic programming model is used to solve the TSP-ATWPC in which the 

objective of minimizing the total waiting time is used as an approximation of reducing 

the total costs in the master problem. The TSP-ATWPC is written in Pascal. The 

procedure produced different results with respect to different examples by varying the 

utilisation factor between the two extremes (0 and 1). The solution of the set- 

partitioning problem is shown by Christiansen and Fagerholt (2000). 

After evaluating the use of soft time windows, Fagerholt (2001) solves a similar SRS 

problem. In addition to soft time windows, the problem is more complex than that of 

Christiansen and Fagerholt (2000) due to multiple compartments (i. e. ships can lift 

more than one cargo). Moreover, an extra shortest-path formulation algorithm is used 

to further optimise sequences generated by TSP-ATWPC. The solution procedure 

consists of two phases. The first phase is the generation of schedules. The schedule 

generation phase involves three steps. In the first step, feasible schedules that satisfy 

some heuristics (time/capacity utilisations) are generated. Next, a TSP-TWPC is 

solved for every sequence to choose most promising ones. Finally, for every fixed 

sequence of visits, a shortest path formulation is used to optimise the schedule for that 

sequence in terms of the total costs where specifying the cruising speed affects the 

fuel usage and arrival times. Consequently, operating costs and inconvenience costs 

are calculated. The second phase of the solution procedure is solving the problem 

using set-portioning formulation to find the best schedule for each ship. In the second 

phase, schedules are available and optimisation process assures starting of service and 
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the times of each stop. The schedule generator (including heuristics, TSP-CTWP, and 

schedule optimisation) is written in Pascal. The MILP is written in GAMS using the 
CPLEX solver. The model is tested with a real-life bulk-shipping problem in North 

Europe using different cases (in terms of nodes, time horizon, and time discretisation, 

cost functions ... etc. ). Significant savings in transportation costs are achieved when 

using soft time windows. 

Christiansen and Fagerholt (2002) represent the first work to include penalty costs due 

to arriving outside operating hours in a port. The authors present a problem of ship 

scheduling where ports have restrictions (in addition to fees and depths) on operating 
hours. Therefore, a ship entering a port outside the operating hours will result in the 

ship being idle until the start of service at that port. Operating hours can extend the 

time window of loading/unloading in those ports. Assuming that operating hours are 

relatively short compared to the time window, the time window can be viewed as 

multiple time windows. The authors define a "risky" arrival (such as arriving near a 

weekend) for which a penalty cost in incurred. The penalty cost as well as the length 

of the risky interval associated with risky arrivals is based on the planner's 

experience. The ships have fixed speeds because fixed speeds will lead to dependent 

evaluation of risky arrivals. In other words, ships will not have the luxury of changing 

speed to avoid risky arrivals. Instead, avoiding risky arrivals will be the job of the 

scheduler. The solution procedure involves the generation of all feasible schedules in 

a systematic way. Heuristics are applied to eliminate some schedules due to 

time/capacity utilisation. Then a travelling salesman problem with capacity, penalised 

multiple time windows, and precedence constraints (TSP-CPmTWPC) is solved for 

each schedule to produce the optimal schedule for each set of nodes. The TSP- 

CPmTWPC is solved using dynamic programming. No further sequence optimisation 

is used for schedules generated by TSP-CPmTWPC. All costs associated with these 

schedules are calculated including penalising for idle times. Finally, a set-partitioning 

fon-nulation is used to solve the problem to optimality. The schedule generator 

(including heuristics, TSP-CPmTWPQ is written in Pascal. The MILP is written in 

GAMS using the CPLEX solver. The model is tested with a real-life bulk-shipping 

problem in north Europe with different cases (in terms of nodes, cargoes, time 

horizon, different costs and so on). The results showed an increasing avoidance of 
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risky arrivals as the penalty cost increases. However, due to introduction of penalty 
costs (for arriving at risky times), the transportation costs increased compared to the 

available manual costs because of the different (more expensive) routing incurred 

Jetlund and Karimi (2004) solve a short-term ship-scheduling problem of multiple 

chemical products. To simplify the problem the authors make several assumptions. 
One assumption assures that a ship cannot visit a port more than once during the 

planned schedule. The problem is constructed as an MILP deterministic model with 

possible reruns to include any new information. A new heuristic approach that solves 
the main problem for every flexible-compartment ship is proposed. The heuristic 

assigns cargoes to ships permanently during the planning horizon. Assigning cargoes 

to ships is performed by calculating the maximum marginal profit of any cargo on any 

ship. Hence, the problem is solved ship by ship to maximise the ship's profit. Runs 

were performed using the CPLEX solver on GAMS. The heuristic decision support 

system (DSS) was tested using real data from an international chemical shipping 

company. The DSS showed a 33 % increase in the company's profit compared to their 

actual schedule. 

Cheng and Duran (2004) develop a DSS to improve the logistics of a world-wide 

crude oil transportation supply chain. The supply chain consists of one central supply 

location and four main demand regions. The DSS combines discrete even simulation 

and stochastic optimal control. The discrete event simulation model is used to 

represent the tanker queuing system. The stochastic optimal control model is used 

evaluate the impact of decision-making on the state of the system (i. e. inventories and 

ship locations). After building the integrated DSS, multiple runs (scenarios) were 

performed to evaluate the system's performance. Although, results show that the DSS 

show expected behaviour, the authors are suggesting that more runs should be 

performed for further validation. 

Karimi et aL (2005) describe an interesting ship-scheduling problem of tank 

containers. Tank containers are used on ships, trucks, or trains as opposed to drums. 

Tank containers are fixed in size, environment-friendly, and cleanable modes that can 

be used with different transport methods besides shipping. An empty tank container is 
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moved first from a container company to a chemical company's site. The container is 
loaded with a chemical product at the chemical company's site. Then, the product is 

sent to a particular destination to be unloaded. Finally, the containers are cleaned and 
repositioned to their origin or other sites that need them. The transportation network 
consists of depots, ports and sites. A site receives containers and loads them. A depot 

receives empty containers, cleans them, and sends them to sites or other depots. In 

general, a land route takes the containers from their origin to sea ports. Shipping is 

then used to transport the loaded containers to another sea port. Finally, a land route is 

used take the emptied containers back to their origin or to other sites. The objective 

minimises the total cost of container movements (land and sea based). Many 

assumptions are made to the initial problem such that ships have unlimited capacities 
(i. e. every ship can carry any number of containers). Hence, no distinction is made 
between land and sea based transportation methods. A two-phase approach is used to 

solve the initial container movement problem. First, an "event-based" model is used 

to generate possible movements based on the order list. Second, a linear programming 
formulation is used to choose the set of events that minimise the total cost. After 

testing the initial model with an illustrative example, a new model with more realistic 

extensions is presented. Such extensions include limited ship capacities and time 

windows as opposed to just in time (JIT) strategy. In both models, ship schedules are 

know in advance, the model only specifies which container should go on which ship. 

(Christiansen et al., 2004) presents one of the most recent review papers on the ship 

scheduling and routing problem. This review includes the latest papers on ship routing 

and scheduling. The review is divided into two main parts; strategic planning and 

tactical decisions. Strategic planning involves the design and sizing of the fleet. 

Tactical decisions deals with the optimisation of the flee operations. The different 

modes of operations (liner, tramp, and industrial) are discussed under the tactical 

decisions. Finally, the review explores some new trends and potential research areas 

in the shipping industry. 
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2.3.2 Comparison between our work and SRS in the literature 

Our VMl problem is structured using the RTN formulation (explained in Chapter 3). 
The resulting MILP problem is then optimised to minimise the total transportation 

cost. Ships and customers capacity limitations are treated as hard constraints. 
However, customers' daily/weekly demand is treated as soft constraints. A penalty is 

imposed for each unit of customer's unmet demand requirements. As a result, the 

minimisation problem is transferred into a maximisation of Profit with a penalty of 

unmet demands. The main differences between our VMI ship-scheduling problem and 

other literature work are classified as follows: 

VMI context 

The basic and conceptual difference between our work and previous literature work is 

the context of VMI systems. In VMI, customers demand requirements are dealt with 
in proactive manner. As opposed to all previous articles, demands of customers are 

known and all SRS models are "order-driven". In most SRS problems in the literature, 

cargoes have certain pickup date and port and delivery date and port. In our work, 

demands represent forecasts (done by customers, vendor, or both) rather than orders. 

The vendor is responsible for meeting these demand forecasts by regular 

replenishments of customer sites. The VMI context increases the difficulty of the 

problem as explained in Section 1.6. 

Time constraints 

For all articles that deal with time constraints, the delivery/pickup has a time windows 

(demand has to be satisfied within a certain time interval) regardless of this time 

window being hard (Fisher and Rosenwein, 1989) or being soft (Fagerholt, 2000). In 

our work, demand is dealt with on a daily/weekly basis with the assumption that the 

customer uses the material continually. Therefore, our problem is more dynamic 

compared to other problems. Dynamic demand increases the complexity of the 

problem significantly. 
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Solution approaches 

Most solution algorithms are heuristic and meta-heuristic algorithms rather than 

optimisation-based approaches. Available optimisation based approaches are based on 
the arc-flow or the path flow-models. Arc-flow models find the best feasible path by 

evaluating the arcs to be included in the schedule. Path-flow models divide the 

solution into two phases. The first phase is the generation of feasible schedules 
regardless of any heuristic optimisation to those schedules. The second phase is 

usually solving a set-portioning problem where every ship is allowed only one 

schedule regardless of the method or LP-relaxation used. We use a dynamic RTN 

formulation to solve the VMI problem as a whole (see Chapter 3 for details of the 

mathematical formulation). By supplying allowed journeys between locations (along 

with times and costs) as input data, the procedure is more robust to include the return 

of ships to reload from production plant(s). The RTN formulation of the whole 

problem can be viewed as a simulation-based optimisation of the VMI system. As a 

result, every fine detail of the problem (inventory levels and ship locations) can be 

tracked as time passes. Another advantage of the RTN formulation is the flexibility of 

adding more VMI aspects to the system. Production planning instead of supply 

information is easily incorporated with this formulation. In addition, we propose novel 

optimisation-based approaches such as time aggregation and rolling horizon 

algorithms. Those approaches produce near-optimal solutions for large problems in 

reasonable CPU times. 

2.4 Discussions and Motivations 

Based on the previous introduction and literature review, we can see how the 

proposed PhD research project is unique in many aspects. First, the VMI system is 

considered to be a new emerging strategy and potential benefits of this system have 

not been totally realised. 

Secondly, the context in which we evaluate the VMI system is different than what is 

available in the literature. We try to explore the total potential benefits of VMI 
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implementation in a more practical, dynamic, and simulation-based methodology. In 
the literature, usually only partial components of the VMI system are considered in 
detail. One category of literature work couples production and inventory management 
while distribution is evaluated only as lead-times (Waller et aL, 1999). Another 

category of literature work couples distribution and inventory management in vehicle 
routing context (Dror and Ball, 1987) and in ship scheduling context (Miller, 1987). 
In this category, extensive work is done on the distribution system using heuristic 

algorithms. In our project, a full optimisation of the VMI system is proposed. All 

three major components of VMI systems (production planning, distribution, and 
inventory management) are simultaneously considered in a dynamic model. 

Thirdly, the VMI system considered in this project is optimised using ships as the 

mode of transportation. A formulation similar to the resource-task network, RTN 

(usually used in the field of process scheduling) is utilised to model the MILP 

problem of the VMI system. The RTN formulation (Pantelides, 1994) explores the 

specific dynamic details of the system in terrns of products, journeys, the locations of 

ships, and inventory levels. The added complexity of the RTN formulations in such 

supply chain scale systems is dealt with using different mathematical algorithms such 

as time aggregation. The tight aggregate model is designed and used as an upper 

bound for the detailed problem. Finally, a novel more robust rolling horizon approach 

is designed and utilised to solve large-scale problems efficiently. 

In conclusion, a major contribution is expected from the VMI system in this project. 

A novel assessment of the VMI system as an emerging supply management strategy is 

anticipated. Novelty arises in the dynamic consideration of such systems, the overall 

simulation-based approach proposed to optimise these systems, and in the 

mathematical algorithms used to apply those approaches. Ultimately, real-life 

industrial case studies using the proposed VMI system are considered. We expect that 

the scale of these case studies and the performance of the VMI strategy compared to 

other strategies can enhance the contribution of this research. The developed system is 

incorporated into a prototype CDST, which will facilitate the operations and 

popularise the VMI concept. 
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Chapter 3 

Model Formulation 

Approach 

3.1 Discrete Time Formulation 

and Direct Solution 

To model the VMI system, we follow a similar approach to the RTN formulation 
proposed by Pantelides (1994). Based on the standard RTN framework, a unified 
approach is taken to represent all resources in the scheduling problem. Consequently, 
there is no difference between products and equipments since both are treated as 
resources. On the other hand, a task is any operation that uses one or more of the 
available resources. 

Consider an example VMI problem that consists of one plant (P), one customer (C), 

one ship (S), and one product (X). Theoretically speaking, an RTN sequence of tasks 
might be as follows: 

1) A "charge" task to load X from P to S. 

2) A "journey" task to transfer X from P to C. 

3) A "discharge" task to unload X from S to C. 

In spite of the generic resemblance, our VMI system diverges from the standard RTN 

formulation. Because we actually have a journey task, ship resources clearly follow 

the standard RTN formulation. On the other hand, product resources do not follow the 

standard RTN formulation because we do not have an explicit charge/discharge task , 
but rather we just use continuous variables to denote charging and discharging (see 

Section 3.2). In other words, resources (ships and products) are not treated uniformly 
in our VMI model. Following the modified RTN logic, variables in our model are 

divided into two types; state variables and event variables. Figure 3.1 below shows 

how these variables are arranged along the time horizon. 
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State variables 

At t=O, a fixed value is specified for all state variables. Then, constraints for state 
variables are generated at for each time period (t=],..., H+]). In our VMI problem, the 
main state variables are: 

1) Inventory in a port 
2) Inventory in a ship 
3) Existence of a ship in a location 

Event variables 

An event may take place at each time period (t = The end of the time horizon 
is dealt with as a state (i. e. no event takes place at H+1). In our problem, the main 
event variables are: 

1) Start of a journey 

2) Loading from port to ship 
3) Unloading from ship to port 

State is checked 
Event can take place 

4 ................................................................................ Time Horizon ...................................................................................... 0. 

........... 

H-1 H H+l 

Figure 3.1: Time discretisation diagram 
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3.2 Detailed Mathematical Formulation 

The mathematical fon-nulation of the VMI problem is presented in detail as follows: 

Indices 
i Products 

1 Ports which include production sites and customer locations 

S Vendor-owned ships available for transport 

i Possible journeys between ports 

t Time periods (1,2,..., H+]) where 0 is the initial state 

Sets 

p Production sites only (p g; ý 

n- 

Parameters 

At Discretisation interval 

Length of the time horizon under consideration 

FDjjt Demand forecasts of product i at time t for VNH customer location 1 
Vn 

AL, ipt External (non-VMI) customers' demand of product i at time t taken from production site p 

a Penalty cost multiplier in the objective function 

C, j Cost ofjourneyj on ship s 

TSj Duration of journeyj on ship s 

Tj Total quantity that can be loaded/unloaded at port 1 based on the pumping rate (tonnes per J t) 

SLj Starting location for journeyj 

FLj Finishing location for journeyj 

vil Storage capacity of product i at port 1 

vs Total storage capacity of ship s 

qjP Maximum production rate of product i at production site p 

0 Start of shut-down period at production site p 
P 

end End of shut-down period at production site p 
P 

a shut Maximum production rate of product i at production site p during shut-down period 
ip 
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Pip Cost of producing a single unit of product i at production site p (pip > 0) 

v Selling price of product i to VMI customers 

ext Selling price of product i to external (non-VNH) customers 

LI t jo, 1 
Initial inventory of product i at port 1 

S I 0 t i, Is 
Initial inventory of product i at ship s 

LI t end 
d Final desired inventory of product i at port 1 

Si t end 
is Final desired inventory of product i at ship s 

Maximum number of ships allowed in port 1 

t'I if the initial port for ship s at t is port 1; 0 otherwise sit 
61,1 if ship s is allowed to visit port 1; 0 otherwise 

q s, /, / 
Length of the maintenance period for ship s at port 1 starting at time t; 0 otherwise 

Continuous variables 

Qdi, lt Amount of product i discharged from ship s to customer location I at time t 
QCj, jt Amount of product i charged from production site I to ship s at time I 
LIjit Inventory of product i at port I at time t 

Mist Inventory of product i on ship s at time t 

Dil, Actual satisfied demand of product i at time I for customer location 1 

Ail, A penalty cost incurred for not meeting demand of product i at time t for customer location 1 

Binary variables 

XSj tI if s starts journeyj at time t; 0 otherwise 

Rsit I if s is at port I at time t; 0 otherwise 

56 

The objective is to maximise the total profit. Profit is defined as the total revenues 

minus the total costs. Total revenues are represented by total demand satisfied at all 

customer locations multiplied by the price of each product. Total costs consist of cost 

of production, transportation, and penalties. Note that a negative sign is added to the 
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production costs term since supply is always negative (i. e. 
Di, 

IIEP, f :! ý 0 ). The value cc is 

based on the problem in hand. As a goes to infinity demand becomes a hard 
constraint. Equations 3.1-3.23 represent the mathematical formulation of the detailed 

model. 

Maximise 

revenues 

P 'xD,,, + VM pi x XD,,, ) 
iI HOP IJEP 

production 

-2: 1] 
,, ujj (Dil, + XDI, 

NEP 

transportation 

-IIc, jIx, jf SiI penalty 

- al II 
i Hop I 

Subject to thefollowing Constraints: 

Penalty cost 

(3.1) 

The penalty cost incurred for not meeting demand requirements is calculated by the 

taking the difference between forecasted and actual demands at all times. Note that 

Constraints 3.2 are generated for customer locations only. 

Aj/l ý! FDI, - Dil, V i, I=customer location, t=1,2,..., H (3.2) 

Initial vort constraints 
Initially, a ship can either be at a certain port or on the way to that port. If a ship s 

exists in a port I then t* = to and R t, ' =1 for that ship-port combination. However, if 
- S'I'l 

a ship s is on its way to a certain port 1, it will be at that port at a time t* > to. Where, 

t* represents the activation time of every ship s. Therefore, Constraints 3.3 ensure that 

all ships are not activated before their respective t*. Constraints 3.4 assign the initial 

port of each ship at its activation time t 



Chapter 3 Model Formulation and Direct Solution Approach 58 

0VS, to (3.3) 

R V S, 1, t* t: (R ts (3.4) 
- s, i, t 

Ship allocation constraints 

For each ship-port combination at the beginning of each time, that ship exists in that 

port only if it was there during the previous time period, or it has just arrived from 

another port. On the other hand, a particular ship will not exist in a particular port at 
the beginning of a time period if it was not there from the previous time period, or it 

has just left the location at the beginning of that time period. Note that R is defined as 

a binary variable in the formulation. However, during solution, R is actually treated as 

a continuous variable with lower and upper bounds (0:! ý R: ý I) to reduce the running 

time. To avoid infeasibilities, Constraints 3.5 are generated starting with (t*+]) where 

t* is the activation time for every ship. 

j: I=FLj J]x sj/-rjs 

.4s, 
j, l 

j: l=SLj 
V s, 1, t=t*+I, t*+2,..., H+l (3.5) 

where t'> ri, 

Loadiniz time constraints 
At any time period, the loading/unloading quantity is less than the maximum loading 

rate per time period. Constraints 3.5-3.7 assure that a ship s remains in port 1 for a 

certain loading/unloading time. Loading/unloading time depends on the pumping rate 

at 1. If a ship is just passing through 1, the LFIS in Constraints 3.6-3.7 will be equal to 

zero. Hence, the loading/unloading time (RHS) will be equal to zero. 

T, x R,,, 

Qdsll T, x Rsl, 

s, 1, t=I, Z..., H (3.6) 

V s, 1, t=1,2,..., H (3.7) 
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Port mass balances 

59 

The forecasted inventory in each port at the beginning of each time interval is equal to 
the inventory at the beginning of the previous interval in addition to any material 
transferred to that port at the beginning of that time interval minus any material 
transferred from that port at the beginning of that time interval minus the forecasted 
demand taken from that port at the beginning of that time interval. 

Li +, I (Qd,,,, - Qc,,,, ) - (Dil, + XDjj, ) 
s 

Ship mass balances 

V U, t=1,2,..., H+l (3.8) 

The inventory of each product in each ship at the beginning of each time interval is 

equal to the value from the last time period, plus any material charged to that ship at 
the beginning of the time interval minus any material discharged from that ship at the 

beginning of that time interval. 

si + (Qcisl, - Qdisl, 

Initial inventory constraints 

V ij, t=1,2,..., H+l (3.9) 

Initial actual inventories of each product at every port (Constraints 3.10) and every 

ship (Constraints 3.11) are specified by the user. 

LI t0 
-d 

-s 
Sii, 

s, t=to = si tio 

V ij (3.10) 

IV is (3.11) 

Final inventory constraints 

Final desired inventories of each product at every port (Constraints 3.12) and every 

ship (Constraints 3.13) are specified by the user. 

t,,, d 

end S, 
i, s, I=H+l = S, 

- 
tis 

V i, 1 (3.12) 

V is (3.13) 
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Capacitv constraints 

60 

For any port or ship, inventories of all products at any time should not exceed the 

storage capacity. In Constraints 3.14, port storage capacities are given per product. In 
Constraints 3.15, only ship total storage capacities are considered because of the 

nature of flexible-compartment ships. 

Hill :! ý V/il 

siil 

Demand constraints 

V i, 1, t=1,2,..., H+l (3.14) 

V s, t=1,2,..., H+l (3.15) 

The actual demand satisfied should not exceed demand forecasts for customer 
locations (Constraints 3.16). For production sites, demand is negative to represent 

supply of material. However, supply should not exceed the maximum production rate 

of each product (Constraints 3.17). 

0: 5 D, 11 : 5- FDjjI V i, l=customer location, t=1,2,..., H+l (3.16) 

- a,, :! ý D, lt <0Vi, I=production site, t=1,2,..., H+l (3.17) 

Shut-down constraints 
During a shut-down period, the daily production rate for each production site is 

reduced to a user-specified quantity u'hu'< ip ip 

< Dill <0 I=production site, tE-= [ýO 
, 

ýend (3.18) pp 

Maximum number of ships in a port 

The total number of ships existing at a port should not exceed that port's maximum 

capacity of ships at any time. 

t=1,2,..., H+l (3.19) RI, : 5A 
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Port restriction constraints 
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Some ships are not allowed to visit certain ports because of many reasons such as 
depth restrictions. A user specified parameter 6,1 is equal to zero if a ship s is not 
allowed to visit port 1. 

E EXS, 
i, t j: I=FLj I Vs, 1: 6,1=0 (3.20) 

Ship maintenance constraints 
If maintenance is required for ship s at port I at any time t, then this ship should 

remain at that port for the total maintenance period . (Constraints 3.21) In 

addition, no loading or unloading is allowed during the maintenance period 
(Constraints 3.22-3.23). 

R,,,,, =I 

Qci, s, l, t = 
Qci,,,,,, = 
where tll=t :> 0) 

S, 
1, t C_ 

Al A+ 

= [t t 17 (3.21) 

V i, S, 1, t E=- It 
,t+q S'I'l 

1 

(3.22) 

V S, 1, t E= 
A 1, 

_ [t yt+ (3.23) 

Equations 3.1-3.23 above conclude the detailed model which can be used to 

dynamically model ship movement, underlying loading, and production in a compact 

fonn. 

3.3 Direct Solution Approach 

The detailed model can be used to solve the entire VMI problem directly. Figure 3.2 

shows a flow chart of the direct approach. The input data of the VMl system are 

inserted into the detailed model. An integer feasible solution is ultimately found for 

any reasonable problem size. 
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The solution provided by the direct approach is the global optimal solution of the 
VMI problem. This solution can be used as a bound to benchmark other solution 
approaches explained in the following chapters. 

VMI system 
Input data 

Detailed model 

Output 

Figure 3.2: Direct approach flow chart 

In Chapter 6, an illustrative example is used to evaluate the efficiency of the direct 

solution approach. Compared to heuristic algorithms, great benefits are attained when 
applying the direct approach. However, results show that as the complexity of the 
VMI problem increases, the direct solution consumes substantial CPU times (see 

Chapter 6). Hence, it is necessary to explore other optimisation-based approaches to 

solve complex VMI problems. Such approaches can capture the level of details 

embedded in the RTN formulation while reducing the solution time. Therefore, we 
introduce an aggregate RTN model of the VMI problem in Chapter 4. The aggregate 

model is used within different solution approaches to solve the VMI problem. 
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Chapter 4 

Iterative Approach using Aggregate Time 

Formulation 

As described in Section 3.1 , the detailed VMI problem is modelled using discrete time 

representation where the time horizon is divided into equal intervals. The length of 
each interval (i. e. discretisation period) is equal to the duration of the shortest event. 
As opposed to continuous time representations, an event can take place only at the 

start of those intervals. 

The routing and scheduling elements involved in VMI systems make these problems 

quite complex. As the time horizon, number of ships, or number of feasible journeys 

increases, the VMI problem size increases. As a result, obtaining detailed solutions 

for large-scale VMI problems is very difficult. Therefore, time aggregation can be 

used as an alternative or as part of a decomposition procedure to solve these 

problems. In this chapter, the aggregate model is used as a part of an iterative solution 

approach to the VMI problem. In chapter 5, the aggregate model is combined with the 

detailed model to form a novel rolling horizon approach. Near-optimal (sometimes 

optimal) solutions can be produced while the VMI level of detail is maintained. 

In this chapter, we use the same basic time aggregation concept explained by 

Wilkinson (1996) using only one aggregated time period. In other words, the detailed 

time horizon is replaced by one aggregated time period of length H. Hence, all 

detailed variables in the VMI model are represented by new aggregate variables. 

These variables are expressed over the entire horizon H instead of time intervals. For 

example, we are not interested in the quantity delivered per interval (Qdi,,, ). Instead, 

we are interested in the total quantity delivered over the entire horizon (I Qdislt 
t 

The same can be said about all other continuous variables (demand and inventories). 

Then, the problem reduces to a ship routing problem instead of a ship-scheduling 

problem because the time element disappears. This routing problem includes extra 

constraints such as journey times and capacity limitations. 



Chapter 4 Iterative Approach using Aggregate Time Formulation 64 

One major difference between our aggregate formulation and process scheduling 
aggregate formulations is the representation of the binary variables. Recall from 
Chapter 3 that the main binary variable in the detailed model was the journey 
decisions (Xjt). Since the time element in the aggregate representation disappears, a 

new integer (not binary) variable ( Xsj =I Xsj, ) is expected to represent j ourneys in 
t 

the aggregated time period, where Xsj is the number of journeysj undertaken by ship s 
during the entire horizon H. However, we cannot use these variables in our aggregate 

model, because of a problem unique to routing; sub-tours. 

To introduce sub-tours, we can construct a simple example of one ship (s) and four 

ports (pi 
... P4) as shown in figure 4.1. The total number of valid journeys between 

ports is 12 (i. e. 42 -4). Aggregate constraints (similar to Equations 4.3 and 4.4) ensure 

that charging/discharging can only take place at visited ports. The set of journeys 

shown in figure 4.1 can be feasible in terms of charging/discharging since every port 

is visited once. However, the resulting set of integer journey variables (Xsl= Xs2= Xs3== 

Xs4=1)is infeasible as it leads to two sub-tours (PI -P2 -p, andP3 -P4 -P3)- 

PI) P2 

Figure 4.1: Illustrative diagram of sub-tours 

Because we need to deal with sub-tours, a new binary variable is introduced in the 

aggregate model to represent j ourneys (Nsjz). 

Where Nj, 

Ih ifJ is the Z journey of s 

otherwise 
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The added index z represents the order at which journey events occur. This index is 

essential in the proposed novel sub-tour elimination constraints (Equation 4.9). 

As previously mentioned, the aggregate model is only used to generate ship-joumey 
pre-matches for the detailed model to determine the timings of these joumeys. 
However, there is no assurance that the generated pre-matches will produce a feasible 
detailed solution. Hence, the generation of pre-matches is an iterative procedure (see 
flow chart in Section 4.2). Note that the set of ports in the aggregate model also 
includes an extra dummy location. The dummy location acts as a sink node in any 

routing sequence (i. e. every ship has to terminate in the dummy location). Journey 

costs as well as sailing times to the dummy location are equal to zero. 

4.1 Aggregate Mathematical Formulation 

Indices 

i Products 

I Ports which include production sites, customer locations, and the dummy location 

Vendor-owned ships available for transport 

Possible journeys between ports in addition to journeys to dummy location 

Journey number (1,2,..., j*. ) wherej,,. is estimated (see appendix) 

Iteration number 

Sets 

p Production sites only (p C: 

Parameters 

H Length of the time horizon under consideration 

TFDjj Total demand forecasts of product i for VMI customer location 1 (TFDjj =Z FDjIt 
t 

TXDip Total (non-VMI) demand of product i taken from production site p( TXDil XDjj, 
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Penalty cost multiplier in the objective function 

cSj Cost of journeyj on ship s 

, r, j Duration of journeyj on ship s 

Tj Total quantity that can be loaded/unloaded at port 1 (tonnes per J t) based on the pumping rate 
SLj Starting location for journeyj 

FLj Finishing location for j ourneyj 

Vil Storage capacity of product i at port 1 

vs Total storage capacity of ship s 

Uip Maximum production rate of product i at production site p 

ýO Start of shut-down period at production site p P 

end End of shut-down period at production site p P 

Pip Cost of producing a single unit of product i at production site p (pip > 0) 

P, vM, Selling price of product i to VMI customers 

Ut Selling price of product i to external (non-VMI) customers 

0 LI t j, Initial inventory of product i at port 1 

0 t j, Initial inventory of product i at ship s S 

LI t end Final desired inventory of product i at port 1 
- ii 

SLt end Final desired inventory of product i at ship s is 

tsIt i if the initial port for ship s is port I at time t; 0 otherwise 

R to 1 if the initial port for ship s is port 1; 0 otherwise R tso, R_t,,, 
S1 S/ 

t 

ts Activation time of ship s, ts tR- tsIt 

61,1 if ship s is allowed to visit port 1; 0 otherwise 
A 

sit^ 
Length of the maintenance period for ship s at port 1 starting at time t; 0 otherwise 

Continuous variables 

A 

Q dis, Total amount of product i discharged from ship s to customer location 1 over H 

A 

QCiSI Total amount of product i charged from production site 1 to ship s over H 
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TDi, Total actual satisfied demand of product i for customer location 1( TDil Dil, 

TA j, Total penalty cost for not meeting demand of product i for location 1 (TAil A ilt 
t 

Binary variables 

N, j, 1 if j is the zo'joumey of ship s; 0 otherwise 
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The objective in the aggregate model is to maximise the total profit (similar to the 

detailed model). Note that the transportation term is replaced with aggregate journeys 

N#, instead of the detailed journeys Xj,. Equations 4.1-4.15 represent the 

mathematical formulation of the aggregate model. 

Maximise 

revenues 

_j, 
p" xTDil 

ext 
x TXDil) 

i HOP IJEP 

production 

- 
Jail (-TDil - TADjj) 

i HEP 

transportation 

Sz 
penalty 

-aE A, IT 
i HVP 

Subject to thefollowing Constraints: 

(4.1) 

Penalty cost 

The penalty cost incurred for not meeting demand requirements is calculated by the 

taking the difference between forecasted and actual fulfilled demands over the entire 

time horizon for customer locations only. 

TA j, > TFDjj - TDil V i, 1=customer location (4.2) 
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Loading constraints 
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The total amounts of material transferred to/from any port should not exceed the 
capacity of the ship. Note that an extra term is added to the RHS of Constraints 4.3. 
This term accounts for any material initially existing on the ship. 

A 

N, + SI to : [R to 
- is j: I=FLj z 

Q cjl 
j: I=SLj 

Port mass balances 

V s, 1 (4.3) 

V s, 1 (4.4) 

The inventory of each product in each location at the end of the time horizon is equal 
to any material present initially there in addition to the total material transferred to 

that location minus any material transferred from that location minus the total demand 

at that location. 

AA 

Lj_tend 
= Ll tio, +Q cil) - (TDil + TXDil) ii - il 

s 
(Q dil V i, 1 (4.5) 

Ship mass balances 

The inventory of each product in each ship at the end of the time horizon is equal to 

any material present initially there in addition to the total material charged to that ship 

minus any material discharged from that ship. 
Sj_tend = SI tO 

is - is 1](Q^ci, l -Q^di,, ) V i, s (4.6) 

Time constraints 

The loading time of first journey only, journey duration times, and unloading times of 

all journeys should not exceed the total active time horizon (H+I-t, *). Note that 

maintenance time q is subtracted from the RHS in Constraints 4.7. Loading and 

unloading time in the aggregate model is estimated by dividing the ship capacity (qf, ) 

over the maximum pumping rate per interval (T). 
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x N.,, j, ++ Njý, :! ý (H +I-t *) - 1] Z=l s 
11 17slt^ 

j I=sLj T, I=FLj Ti z 7., 

Joumey constraints 
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Vs (4.7) 

The zhjoumey of each ship must be constrained to a maximum value of one. If no 
journey is needed, the LHS in Constraints 4.8 will be equal to zero. 

YN,. 
z 

<1 
i, 

7Vs, z (4.8) 

Sub-tour elimination constraints 
Sub-tours are eliminated using connectivity constraints. Note that each side of the 
inequality in Constraints 4.9 is at most equal to one. As a result, this constraint assures 
that a ship can never start aj ourney from a location (i. e. LHS = 1) unless its previous 
journey finished at that location (i. e. RHS = 1). 

N,, j, :! ý- 1] N,, j,,, Z+l ji=sLj j: I=FLj 

Logical constraints: 

V s, 1, z: #j,,,,, (4.9) 

In any tour, every ship has to terminate at the dummy port. Therefore, for every ship, 

the number of journeys departing towards the dummy port is equal to one (Constraints 

4.11). For all other ports (production sites and demand locations), only one of three 

situations is possible. First, a port is used as the origin of a tour (i. e. a ship is initially 

there) resulting in a value of -I in Constraints 4.10. Second, a port is visited during a 

tour (and existed to another port) resulting in a value of 0 in Constraints 4.10. Third, a 

port is not visited in a tour also resulting in a value of 0 in Constraints 4.10. 

- N�j, 
z - j: I=FL, z 

(1Z-1 N�j, 
j: I=FLj z j: I=SLj 

N,, j,, ) 
j: I=SLi 

N,, j,, ) 
z 

V s, 1# dummy (4.10) 

V s, 1= dummy (4.11) 
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Initial port constr. aints 
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A ship has to leave from where it is initially. Note that the RHS in Constraints 4.12 

will take a value of either 0 (i. e. ship is not initially there) or a value of -1 (i. e. ship is 
initially there). Constraints 4.10-4-12 ensure consistent tours in the aggregate model. 

(z IN,, 
j, 

I 
-R ., 

I Nj, ) = 
j: I=FLj z j: I=SLj z, 

slilt, 

Port restriction constraints 

V s, 1 #dummy (4.12) 

Some ships are not allowed to visit certain ports because of many reasons such as 
depth restrictions. A user specified parameter 5,1 is equal to zero if a ship s is not 

allowed to visit port 1. 

N,, j, j: I=FLj z 

Ship maintenance constraints 

Vs, 1: 6,1=o (4.13) 

To account for ship maintenance in the aggregate model, we ensure that a ship s exists 

initially at port 1, or make sure that s visits port 1 at least once. Note that Constraints 

4.7 account for the time spent in maintenance. On the other hand, Constraints 4.14 

consider only the port at which maintenance is required. 

N,, j, +R >1 
SlIlt, j: I=FLj z 

InteRer cuts 

V S, 1 Of >0 (4.14) 
t 

As part of the iterative procedure, aggregate solutions that do not lead to feasible 

detailed solutions are excluded. For each iteration k (except for the first iteration), the 

integer cuts are added as extra constraints to the aggregate model. At each iteration k, 

the number of integer cut constraints is k-1. For each iteration k, Uk is the sets of 

variables Nj, equal to one, and Lk iSthe sets of variables Nsjz equal to zero (Jorgensen, 

2000). 
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Ns, j, z 
N,, j, z :! ý card(Uk) -1 

Uk Lk 

4.2 Iterative Solution Approach 
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V k# 1 (4.15) 

Figure 4.2 shows a flow chart of the iterative approach. The input data are inserted 
into the aggregate model. An optimal solution to the aggregated problem is generated 
in terms of ship-journey matches. These ship-joumey matches are then inserted into 

the detailed model for exact timings to be accounted for. To reduce running times, the 
detailed model is restricted to use the aggregate pre-matches without any changes. 

Note that the iterative approach combines the detailed and aggregate model in a 

sequential manner. First, the aggregate model only (Equations 4.1-4.15) is solved to 

optimality leading to certain ship-journey pre-matches for the 1ý h iteration (N' Siz 
Then, the detailed model only is solved while restricting the space of binary decisions 

only to those pre-matches. In other words, an extra constraint (Equation 4.16) is added 

to the set of detailed constraints (Equations 3.1-3.23). This procedure is repeated 

every kfh , iteration. 

k 
s X., Nyz 

z 
V k, s, j (4.16) 

Since we use soft demand in the detailed model, a solution will always be generated 

no matter what pre-matches are used. So, an optimality condition is used as a criterion 

for stopping the iterative procedure. If the detailed solution is within a certain 

specified percentage of the aggregate solution (e. g. 5%), then the iterative process 

stops. In other words, the aggregate solution is used as an upper bound to the detailed 

solution. To prohibit the iterative algorithm from running infinitely, a maximum 

running time or/and a maximum number of iterations is specified for the iterative 

procedure. 
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Figure 4.2: Iterative approach general flow chart 

It is important to note that deriving the aggregate formulation from the detailed one is 

not a straightforward process. This is due to the nature of the VMI problem (existence 

of sub-tours) which necessitates some divergence from the basic aggregate time 

formulations (i. e. introduction of Nj, ). Consequently, proving other aggregate RTN 

theoretical properties (Wilkinson, 1996) of our fortnulation is mathematically 

difficult. Such properties include having an aggregate formulation that is a strict 

relaxation of the detailed one (i. e. proving that every feasible solution to the detailed 
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problem is also a feasible solution to the aggregate problem). So, it is fair to say that 
there is no proof that our detailed solution will always be within the aggregate 

solution feasible region (although this was the case in the illustrative example 

problem in Chapter 6). 

Satisfying these properties is important to validate the iterative approach, where the 

aggregate solution is used as an upper bound to the detailed one. However, the major 

contribution of the aggregate model is expected in the rolling horizon algorithm 
(Chapter 5) where time aggregation is linked with the detailed model. In a rolling 
horizon framework, the aggregate model is not used as an upper bound to the detailed 

solution. Instead time aggregation is used only as a tool to predict future decisions and 

targets. Hence, the impact of having a less tight aggregate formulation is expected to 

be reduced. 

The illustrative example in Chapter 6 shows that optimal solutions are attainable with 

the use of the iterative approach. A substantial reduction in CPU time is expected with 

static demand. However, the more dynamic demand is, the greater the gap between 

the aggregate solution and the detailed solution (see Chapter 6). Hence, we introduce 

a more robust rolling horizon approach in Chapter 5 to solve the VMI problem. 
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Chapter 5 

Rolling Horizon Approach 

5.1 Background and General Definition 

Solving planning problems with a rolling horizon has been used in many applications 
such as process scheduling problems (Dimitriadis, 2000). The idea of the rolling 
horizon, however, has been available for a long time. The basic concept of the rolling 
horizon is based on dividing a main problem with a long time horizon into sub- 
problems with shorter time horizons. As a result, more weight is given to near-future 
decisions relative to far-future decisions. As the number of variables or the time 
horizon increases, solving scheduling problems can be very expensive and computing 
times increase dramatically. Hence, the rolling horizon is also used to reduce the 

computing times of large problems. The rolling horizon has been used for IRPs by 

Bard et al. (1998) and by Jaillet et al. (2002). To our knowledge, no published work 

on the modelling of ship scheduling exists with a rolling horizon. In our work, we 

apply the forward rolling horizon (FRH) approach to solve the entire VMI problem. 
Furthermore, we introduce a novel hybrid forward rolling horizon (HFRH) approach 

to solve the same VM1 problem. 

A rolling horizon algorithm is based on dividing the scheduling horizon into a 

sequence of sub-problems. In each of these sub problems only part of the scheduling 

problem is solved in detail while the problem is aggregated for the rest of the time 

horizon. In other words, the time horizon is divided into two time blocks (TBs), one is 

detailed and the other is aggregate. Figure 5.1 shows a flow chart of the general 

rolling horizon approach. 

The main idea behind the rolling horizon algorithm is that solving the MILP in detail 

for a small part of the time horizon is relatively simple compared to solving the MILP 

in detail for the entire time horizon. When the detailed TB covers the entire time 

horizon, the MILP will still be simpler because some of the variables (only binary 

variables in our case) will already have been fixed from previous intervals. In addition 
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to producing near-optimal results, this approach can reduce the computation time 
substantially. 

Divide horizon into detailed TB I 
and aggregate TB 

I 

Solve the MILP to Optimality 

Does detailed TB NO I 
cover the entire Some of the variables of the The size of the detailed TB is 
time horizon? detailed TB are fixed increased and the aggregate TB is 

decreased by an equal amount 

YES 

STOP 

Figure 5.1: General rolling horizon approach flow chart 

For a total time horizon of H, the number of iterations (i. e. rolling horizon time 

intervals) is n. First, H is divided into a detailed TB of one interval and an aggregate 

TB of (n-1) intervals. In the second iteration, the detailed TB is increased by one 

interval and the aggregate TB is decreased to (n-2) intervals. This procedure is 

continued until the detailed TB covers the whole time horizon H. At the beginning of 

any iteration, some of the variables are fixed as Figure 5.1 shows. 

Recall that in Chapter 4, the iterative approach combines the aggregate and the 

detailed models sequentially to solve the VMI problem. Ship-joumey matches 

provided by the aggregate model were used to produce an optimal solution in the 

detailed model. However, in the rolling horizon approach, the aggregate and detailed 

models are combined simultaneously and time aggregation is used for a different 

reason. We are not interested in any ship-joumey matches from the aggregate TB in 
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the rolling horizon approach. However, the two models are linked through boundary 
conditions to solve the problem (see Section 5.2.1). Time aggregation is used for 
future journey and inventory considerations. Hence, using time aggregation will force 
the optimisation process to look ahead and keep enough inventories at locations in 

order to foresee any future demand needs for those locations. Time aggregation can 
also be used in a "receding horizon" procedure where only a portion of the solution is 
implemented and then the scheduling problem is re-solved periodically and updated. 
This might be very practical in situations where journey times are subject to 
considerable uncertainty. 

Define the two extreme cases of solution algorithms as exact and heuristic. An exact 
algorithm solves the scheduling problem directly where an optimal solution is 

guaranteed "ultimately". On the other hand, a heuristic algorithm solves the 

scheduling problem indirectly by using multi-phase approaches or search algorithms 

and optimal solutions are not guaranteed. However, the running time reduction in the 

case of heuristics may be worth the sacrifice of the optimal solution. Since all routing 

and scheduling problems are NP-hard, popular algorithms to solve these problems are 
heuristics rather than exact algorithms. Following the same reasoning, solving a 

problem with a rolling horizon can be considered as a pseudo-exact algorithm. The 

rolling horizon approach is exact in the sense that for the sub-problem in hand, an 

exact solution is found. A rolling horizon is heuristic approach in the sense that the 

whole problem is divided into sub-problems. 

Theoretically, there is no guarantee that an overall optimal solution will be found 

using the rolling horizon approach. As Chapter 6 shows, solving VMI problems 

directly in reasonable times using RTN-type formulations is extremely difficult. 

Therefore, the rolling horizon approach seems to be a sensible optimisation-based 

algorithm to solve such problems. Moreover, the rolling horizon algorithm might lead 

to infeasible solutions due to many reasons. The main reason is the level of accuracy 

of the aggregate representation. Some variables can be overestimated or 

underestimated in the aggregate TB, which leads to infeasibilities in the detailed TB 

of any subsequent iteration. In addition, choosing the boundaries between the 

aggregate TB and the detailed TB can greatly affect the feasibility of the solution. 
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However, in our work, infeasibilities that might arise because of the rolling horizon 

are avoided. First, we only fix binary variables between iterations. Consequently, 

approximations of continuous variables in the aggregate TB cannot affect the 
feasibility of the solution. Secondly, we use soft demand constraints instead of hard 
demand constraints. Consequently, not meeting demand requirements because of the 

rolling horizon boundaries will not lead to infeasibilities. 

5.2 Forward Rolling Horizon Approach 

A rolling horizon approach is implemented either in forward or backward fashion. 

Figure 5.2 shows a diagram of the forward rolling horizon (FRH) approach. 

Iteration I 

Iteration 2 

DETAILED 

fixed 

AGGREGATE 

AGGREGATE 

Iteration 3 

fixed I fixed 

DETAILED 

Figure 5.2: Forward rolling horizon diagram for three time intervals 

The backward rolling horizon (BRH) approach follows the same procedure except it 

starts from the end and works backward to the beginning of the time horizon. We only 

apply FRH because we are dealing with ship routing and scheduling within the VMI 

system. The final state of the VMI system is not defined as ships can end their 
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journeys in any site/location. However, in FRH, the initial state of the VMI system 
(initial location of ships and initial inventories) is defined and the optimisation can 

progress normally. In process scheduling systems, BRH can be applied because the 
final state of the system is well-defined (e. g. target inventories of materials). 

5.2.1 Forward rolling horizon mathematical formulation 

The FRH approach explained above uses the detailed model to solve the problem in 

the detailed TB. The aggregate TB is linked with the detailed TB through two sets of 

boundary conditions. Those conditions are mass balances and journey continuations. 

In mass balance constraints, we ensure that the amount of material at the beginning of 

the aggregate TB is equal to the amount of material at the end of the detailed TB 

(Equations 5.27 and 5.28). As for journey constraints, we allow ships to start a 

journey in the detailed T13 and end in the aggregate TB (Equations 5.25 and 5.29). If a 

ship does not start a journey in the detailed TB, then this ship will be at its previous 

port at the start of the aggregate T13 (Equation 5.34). Because the rolling horizon 

approach combines the detailed and the aggregate models, most of the mathematical 

information for this approach is shown in Sections 3.4 and 4.1. We only show here 

any additional indices, parameters, or variables. 

Indices 

k An index for rolling horizon time intervals (specified by user) 

Parameters 

w0 Beginning of theerolling horizon time interval (w 0= to) 
kI 

w end End of the e rolling horizon time interval (w end H+I 
k card(k) 

Continuous variables 
A 

Qdi, l Quantity of product i discharged from ship sto customer location lover aggregate TB 
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A 

Q Ci'l Quantity of product i charged from production site I to ship s over aggregate TB 

Binary variables 

N, j, I if j is the zth j ourney of ship s; 0 otherwise 
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The objective is to maximise the total profit. Profit is defined as the total revenues 

minus the total costs. The total revenues are represented by total satisfied demand 

multiplied by the price of each product. The total costs consist of cost of production, 

transportation, and penalties. Here, we have two types of transportation costs; detailed 

journey costs and aggregate journey costs. Note that the objective function is 

optimised k times subject to the same constraints. However, binary variables are fixed 

while the time domain for each constraint is changing every k1h time. Constraints in 

the detailed TB are generated k times. Constraints in the aggregate TB are generated 

k-I times since no aggregate TB exists at the last interval (i. e. the detailed TB covers 

the remainder of the time horizon). Equations 5.1-5.36 represent the mathematical 

formulation of the aggregate model. Constraints 5.2-5.15 are general constraints 

applied over the entire time horizon. Constraints 5.16-5.24 are generated in the 

detailed TB only. Constraints 5.24-5.36 are generated in the aggregate TB only. 

Maximise 

revenues 

-, 4, 
Oexl vm'xD + 2] x XDil, ) EDIA 

ilt i 
iI HOP IJEP 

production 

-1] 2] p, l (Dil, + XD,,, ) 
i IJEP 

transportation 

.'EC, 
X, - 1] 

S 
penalty 

'2] 
2] Ail, -al 

i Hop 

(5.1) 
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Subject to thefollowing constraints: 

Penalty cost 

The penalty cost incurred for not meeting demand requirements is calculated by the 
taking the difference between forecasted and actual demands at all times. Note that 
Constraints 5.2 are generated for customer locations only. 

Ai/l ý! FDj, - D, 11 i, 1=customer location, t=1,2,..., H (5.2) 

Initial port constraints 

Initially, a ship can either be at a certain port or on the way to that port. If a ship s 

exists in a port 1 then t* =? and R_t,,,,, =1 for that ship-port combination. However, if 

a ship s is on its way to a certain port 1, it will be at that port at a time t* > to, where, t 

represents the activation time of every ship s. Therefore, Constraints 5.3 ensure that 

all ships are not activated before their respective t*. Constraints 5.4 assign the initial 

port of each ship at its activation time t*. 

R =O s, 1, i<t (, ý-t S, I, (5.3) 

R . =1 s, 1, t=t 

Initial inventory constraints 

0 
S, 1, t*= t: (]ý-ts',,, (5.4) 

Initial actual inventories of each product at every port (Constraints 5.5) and every ship 

(Constraints 5.6) are specified by the user. 

LI t0 
- 

il 

si to Sil, 
s, t=lo =- is 

V i, 1 (5.5) 

V i, s (5.6) 

Final invento[y constraints 

Final desired inventories of each product at every port (Constraints 5.7) and every 

ship (Constraints 5.8) are specified by the user. 
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LIj LI t end 

SI t end 
is 

Demand constraints 

V i, 1 (5.7) 

(5.8) 

The actual demand satisfied should not exceed demand forecasts for customer 
locations (Constraints 5.9). For production sites, demand is negative to represent 
supply of material. However, supply should not exceed the maximum production rate 
of each product (Constraints 5.10). 

0: ý Dil, : ý- FD, I, V i, l=customer location, t=1,2,..., H+l (5.9) 

- ail :5 Dilt <0Vi, 1=production site, t=1,2,..., H+l (5.10) 

Shut-down constraints 
During a shut-down period, the daily production rate for each production site is 

reduced to a user-specified quantity . 
Aut < 
ip Uip 

shui <D <0 d- ill 

Port restriction constraints, 

IV i, 1=: production site, tE [ý' 
, 

end 
pp 

Some ships are not allowed to visit certain ports because of many reasons such as 

depth restrictions. A user specified parameter 6,1 is equal to zero if a ship s is not 

allowed to visit port 1. 

I Exs, 
j, t == 0 

j: I=FLJ t 
V s, 1: 6,1 =0 (5.12) 

Ship maintenance constraints 

If maintenance is required for ship s at port 1 at any time t, then this ship should 

remain at that port for the total maintenance period (Constraints 5.13). In 

addition, no loading or unloading is allowed during the maintenance period 

(Constraints 5.14-5-15). 
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R,,,,, =I t JE 
AA 

=rt, t+q (5.13) 

=0 

Qci,,,,,, = 
where t^=t :> 0) 

[tA, tA+ )7 
S'I'l 

I 

S, 1, tE [tA, tA+ q 
S, I, l 

] 

(5.14) 

(5.15) 

Detailed TB ship allocation constraints 
For each ship-port combination at the beginning of each time, that ship exists in that 

port only if it was there at the previous time period, or it has just arrived from another 
port. On the other hand, a particular ship does not exist in a particular port at the 
beginning of a time period if it was not there from the previous time period, or it has 

just left the location at the beginning of that time period. To avoid infeasibilities, 

Constraints 5.17 are generated starting with (t*+]) where t* is the activation time for 

every ship. In addition, Constraints 5.17 are generated up to the end of the k th interval. 

R,, I, t =R +IX. /- 
Ix 

W end S'I't-1 s, j, t -rj, -d s, j, l V s, 1, t=t*+], t*+2,..., k (5.17) 
j: I=FLj j: I=SLj 

where t' > Tjs 

Detailed TB loading time constraints 

At any time period, the loading/unloading quantity is less than the maximum loading 

rate per time period. Constraints 5.17-5.19 assure that a ship s remains in port I for a 

certain loading/unloading time. Loading/unloading time depends on the pumping rate 

at L If a ship is just passing through 1, the LHS in Constraints 5.18-5.19 will be equal 

to zero. Hence, the loading/unloading time (RHS) will be equal to zero. Constraints 

5.18-5.19 are generated up to the end of the e interval. 

T, x 

T, x 

end 1,2, wk 

W end t= 1,2, ..., k 
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Detailed TB port mass balances 

The forecasted inventory in each port at the beginning of each time interval is equal to 
the inventory at the beginning of the previous interval in addition to any material 
transferred to that port at the beginning of that time interval minus any material 
transferred from that port at the beginning of that time interval minus the forecasted 
demand taken from that port at the beginning of that time interval. Constraints 5.20 

are generated up to the end of the e interval. 

LI +I 
, 
(Qd,,,, - Qci,,, (DI, + XD, I, 

s 

Detailed TB ship mass balances 

1, t=1,2, w 
end (5.20) k 

The inventory of each product in each ship at the beginning of each time interval is 

equal to the value from the last time period, plus any material charged to that ship at 

the beginning of the time interval minus any material discharged from that ship at the 

beginning of that time interval. Constraints 5.21 are generated up to the end of the e 

interval. 

si si +I (QcsI, - Qdi,,, 

Detailed TB capacity constraints 

end 
s, t 2, wk (5.21) 

For any port or ship, inventories of all products at any time should not exceed the 

storage capacity. In Constraints 5.22, port storage capacities are given per product. In 

Constraints 5.23, only ship total storage capacities are considered because of the 

nature of flexible-compartment ships. Constraints 5.22-5.23 are generated up to the 

end of the e interval. 

Lidt 
!ý wil 

sii" 

W end V 1, t=1,2,..., k 5.22) 

s, t=1,2,..., W end (5.23) k 
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Detailed TB maximum number of ahjgLjjA_Mq 
The total number of ships existing at a port should not exceed that port's maximum 
capacity of ships at any time. Constraints 5.24 are generated up to the end of the kh 
interval. 

1: Rsl, 

s 

Aggregate TB loading constraints 

1, t=1,2,..., W, "d (5.24) k 

The total amount of material transferred to/from any port should not exceed the 

capacity of the ship. The last term in the RHS of Constraints 5.25 represents journeys 

starting in the previous interval and ending in the next e interval. 

end_, 

QA dil 
Wk 

Vf, (1] N, 
-, V, + 1] X, 

.'V, 
) 

j: I=FLj zI= Wkend _,,., j + 

Q Ci'l :! ý E IN, 
.. ' ýz 

j: I=SLj z 

Aggregate TB port mass balances 

V s, 1 (5.25) 

IV s, 1 (5.26) 

The inventory of each product in each location is equal to any material present 

initially there in addition to the total material transferred to that location minus any 

material transferred from that location minus the total demand at that location. 

Constraints 5.27 are generated for the e aggregate TB only (i. e. H +I- W end k 

AA 

Li-t end - Ll Wend 
+I-Qc,,, ) (Dil, + XDil, ) V ij (5.27) (Q dil 

st 

AgRreRate TB ship mass balances 

The inventory of each product in each ship is equal to any material present initially 

there in addition to the total material charged to that ship minus any material 

discharged from that ship. Constraints 5.28 are generated for the eý aggregate TB 

end 
only (i. e. H+1 -Wk 

)* 
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AA 

SI t end 

= SI end+ 

- 
is ', ', '=Wk 

Agaregate TB time constraints 

85 

is (5.28) 

Constraints 5.29 assure that the duration of any sequence of tasks undertaken by any 
ship will not exceed the aggregate time block. The first term represents the 

overlapping time of inter-inter-val ship journey durations in addition to their unloading 
times. The second term represents the durations of all aggregate journeys in addition 
to their unloading times. The RHS represents the kth active aggregate time horizon. 

Note that the maintenance time t7,,,,, is subtracted from the RHS. Loading and 

unloading time in the aggregate model is estimated by dividing the ship capacity (V, ) 
by the maximum pumping rate per interval (TI). 

I=Wend_l k 
(Zs 

_ Wend t 
k 

=Wkend_rj +1 

)X 
sj T i =FLj I 

NJ� :5H+1- max(wk, t*) - 2: 2: i7,1, ý 
i Si l=FLJ Ti Z 

Vs (5.29) 

Aggregate TB journey constraints 

The zh journey of each ship must be constrained to a maximum value of one. If no 

journey is needed, the LHS in Constraints 5.30 will be equal to zero. 

YN, <1 V s, z (5.30) 

Sub-tour elimination constraints 

Sub-tours are eliminated using connectivity constraints. Note that each side of the 

inequality below is at most equal to one. As a result, this constraint assures that a ship 

can never start a journey from a location (i. e. LHS = 1) unless its previous journey 

finished at that location (i. e. RHS = I). 

N,, j, z+l 
N,, j,, V S, z#j"", (5-3 1) 

jl=sLj j: I=FLj 
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Aggregate TB logical constraints: 
A ship can start from any port, but it has to end up in the dummy location (similar to 
Equations 4.10-4.11). 

N,, j, - z j: l=FLj z 

N,, j" - 
j: I=FLj z jj=SLJ 

< 
j: I=SLj 

N,, j,, ) 
z 

V s, 1 #dummy (5.3 2) 

V s, 1= dummy (5.33) 

Initial port constraints 

A ship has to leave from where it is initially. Note that the RHS of the Constraints 
5.34 will take a value of either 0 or - 1. A value of -I means that a ship was there at the 

end of the e interval or it has arrived from the previous interval during an inter- 

interval journey. 

end_ Wk I 

., 
IN, 

'j, - 
1] N,, j, _, 

) = -( I X, 
j: I=FLj z end s, i,, =wke-d) S, dummy (5.3 4) 

j: I=SLi z j=FLj = 1 Wk 

Aggregate TB port restriction constraints 

Some ships are not allowed to visit certain ports because of many reasons such as 

depth restrictions. A user specified parameter 6,1 is equal to zero if a ship s is not 

allowed to visit port 1. 

2: 2: N�j, =0 
j: I=FL, z 

Vs, 1: 6,1=0 (5.35) 

Aggregate TB ship maintenance constraints 

To account for ship maintenance in the aggregate model, we ensure that a ship s exists 

initially at port 1, or it has made an inter-interval journey to 1, or makes an aggregate 

journey to port I at least once. 
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, =Wkend-i 

X, + IN, 
., vý, + Rend 

j=FLj t=wke"d-r., j+1 j: I=FLJ z 
S, l, t=Wk 

where t'= t rl >0 and t> W end 
k) 

V s, 1 #dummy, t1 (5.3 6) 

Equations 5.1-3.36 above conclude the FRH mathematical model which combines the 
detailed model (Chapter 3) and the aggregate model (Chapter 4). Note that the FRI-I 
includes one detailed TB and one aggregate TB. In Section 5.3 we introduce a novel 
hybrid FRH model that also includes one detailed TB and one aggregate TB. 
However, another type of aggregation is implemented and included in the overall 
model in order to further improve the proposed FRH approach. 

5.3 Hybrid Forward Rolling Horizon Approach 

Figure 5.3 shows a flow chart of the HFRH. In each time interval, the problem is not 

solved for all available ships in the detailed TB. Instead, we start with one ship and 

solve for that ship only. Then, another ship is added and we solve for that ship while 

the schedule of the first ship is fixed. This procedure continues until we cover all 

available ships. However, while solving in detail for each ship; other ships are 

represented in an aggregate manner during that detailed TB. 

The reason for ship aggregation is to allow every ship to consider the performance of 

other ships during the optimisation process. However, ship aggregation can not 

capture the exact details of the performance of all ships. Consequently, optimal 

solutions can be missed because every ship's schedule is fixed between iterations. 

Moreover, the order in which ships are passed to the solver can affect the final 

solution. Therefore, it is fair to say that the HFRH approach does not guarantee 

optimality. 

Nevertheless, ship aggregation was successful to eliminate the effect of the order of 

ships in case of the illustrative example. As a result, optimal solutions were attained 

with an arbitrary order of ships (see Chapter 6). 
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Separate time horizon into 
detailed TB and aggregate TB 

----------------------------------------------------------------- 

'hoose only one ship 

whC110 
ie aggregating for the 

rest 

Start the optimizati 

Did we cover all 
available shipas'? 

Il 

Obtain a sche 

L -------------- 

YES 

Choose another ship and 
aggregate for non-chosen 

"N 
Fix the schedule for previously chosen ships 

ile for detailed TB 

------------------------------------------------4 

Does detailed TB 
cover the entire 
time horizon? 

YES 

I 
Obtain a schedule for the entire time horizon 

I 

Fix the binary variables of the The size of the detailed TB is 
detailed TB increased and the aggregate TB is 

decreased by an equal amount 

Figure 5.3: Hybrid forward rolling horizon flow chart 

The diagram in Figure 5.4 shows how the HFRH works for a case of two ships and 

two time intervals. Note that we execute the optimisation four times (i. e. 

card(k) x card(s)). In the 'fixed' parts of the problem, the binary variables are fixed, 

but the continuous ones can be re-optimised. 
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DETAILED TB AGGREGATETB 

Time 
Iteration I 

S, modelled in detail S, modelled in aggregate 
S2 modelled in aggregate S2 modelled in aggregate 

----------------------------------------------------------------------------------------------- 

DETAILED TB AGGREGATETB 

Time 
Iteration I 

S, is fixed S, modelled in aggregate 
S2 modelled in detail S2 modelled in aggregate 

DETAILED TB 

Time 
Iteration 2 FIXED 

S, is fixed S, modelled in detail 

S2 is fixed S2 modelled in aggregate 

----------------------------------------------------------------------------------------------- 

DETAILED TB 

Time 
Iteration 2 FIXED 

S, is fixed S, is fixed 

S2 is fixed S2 modelled in detail 

Figure 5.4: Hybrid forward rolling horizon diagram for two time intervals and two ships 
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5.3.1 Hybrid forward rolling horizon mathematical formulation 

The HFRH approach explained above uses the detailed model to solve the problem in 
the detailed TB for a set of detailed ships sd, and set of aggregate ships Sagg. The 

aggregate TB is linked with the detailed TB through two sets of boundary conditions 
(see Section 5.2.1). Most of the mathematical information for this approach is shown 
in section 5.2.1. We only show here any additional indices, sets or variables. 

Indices 

an index for rolling horizon time intervals (specified by user) 

an index for aggregate journey number (1,2,. .. jmax2 ) in the aggregate TB k 

maxI an index for aggregate journey number (1,2,.. -ik) in the detailed TB 

Sets 

Sdel ships modelled in detail during detailed TB (sde, c- s) 

S"gg ships modelled in aggregate during detailed TB (S,, gg c S) 

Continuous variables 

JA 

Qdi, l Quantity of product i discharged from ship sto customer location lover I' aggregation 

JA 

Qci, ll Quantity of product i charged from production site lto ships over I' aggregation 

2 "' 
Qd,,, Quantity of product i discharged from ships to customer location /over 2 nd aggregation 

2^ 
QCj, jj Quantity of product i charged from production site lto ships over 2 nd aggregation 

Binary variables 

N, j, I if j is the Zth journey of ship s; 0 otherwise (2 nd aggregation) 

msjy I if j is the ýh journey of ship s; 0 otherwise (I' aggregation) 
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The objective is to maximise the total profit. Profit is defined as the total revenues 
minus the total costs. The total revenues are represented by the total demand satisfied 
at all customer locations multiplied by the price of each product. The total costs 

consist of the cost of production, transportation, and penalties. Here, we have three 

types of transportation costs; detailed journey costs X and aggregate journey costs M 

and N. Note that the objective function is optimised (card(k). card(s)) times subject to 

the same constraints. Every kth interval, we start with detailed ships sd,, and aggregate 

shipsSagg. During that interval, the problem is solved to optimality, previous sd,, are 
fixedý andSaggis reduced. This procedure is continued until we cover all ships in detail 

during that interval (i. e. Sagg -=O and sdt = s). We move to the next interval using the 

same strategy until we cover all intervals. Equations 5.37-5.61 represent the 

mathematical formulation of the HFRH approach. 

Maximise 

revenues 
vm' xD + 1] (E Pi ill , pi"' x XDil, ) 

it HOP HEP 

production 
p, l (Dil, + XD,,, ) -Z 

i IJEP 

transportation 

-IE Cli (E Xlit 
Sit 

penalty 
Ail, -aZ 

i Hop I 

J]M, 
vy+jN, 

yz 

Subject to thefollowing constraints: 

(5.37) 

All general and detailed constraints are similar to those of the FRH approach 

described by Equations 5.2-5.24. Here we only show the unique aggregate constraints. 

As previously mentioned, we have two types of aggregations. Constraints 5.38-5.49 

represent the Ist aggregation constraints which deal with aggregate ships in the 

detailed TB. In the I" aggregation constraints, journeys are represented using the 

variable Mjy. Note that the I't aggregation constrains are generated for the subset s,, gg 
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only. On the other hand, Constraints 5.50-5.61 represent the 2 nd aggregation 
constraints which deal with ships in the aggregate TB. In the 2 nd aggregation 
constraints, journeys are represented using the variable Nj,. Note that the 2 nd 

aggregation constraints are generated for the subset sd,, only. 

I" agaregation discharge constraints 

The total material discharged into any port should not exceed the capacity of that ship. 
In addition to aggregate journey capacity constraints, the RHS contains two extra 
terms. First term is generated during the first time interval only and accounts for any 
material initially existing on that ship. The second term is generated for all successive 
intervals (k>]) and accounts for material on ships making inter-interval journeys. 

Qd I 
isl 

< 

(ESI to: [R 1]): k=I is s, l, t=t* 
0 týWk -1 

+( 
E Ex, 

, ý, ): k>I 
j: I=FLj k -rsj +1 týWo 

I 
Y/S *I msjy 

j: I=FLj y 

I" aggregation charge constraints 

VS= Sagg, 1 (5.3 8) 

The total material charged into any ship from any port should not exceed the capacity 

of the ship. 

JA 
c 

isi 
:5E V/, 

E 
msjy 

j: I=SLj y 

V S= Sagg, 1 (5.39) 

I" aggregation port mass balances 

The Inventory of each product in each location is equal to any material present 

initially there in addition to the total material transferred to that location minus any 

material transferred from that location minus the total demand at that location. Note 

that, Constraints 5.40 are generated only for the e detailed TB under optimisation 

(i. e. w'"d-wo). kk 
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LIi, 
l,, =Wkend 

= 
LI 

0 ', ', '=Wk 

JA JA 

(Q ds, Q csl) 
S=Sagg 

I=Wkend 

Qcsl, ) 
S=Sdet '=Wko 

end t=Wk 

(Dil, + XD,,, ) 
'=Wk 

I" aggregation ship mass balances 

V i, 1 (5.40) 

The inventory of each product on each ship is equal to any material present initially 
there in addition to the total material charged to that ship minus any material 
discharged from that ship. Constraints 5.41 are generated for aggregate ships during 

end 0 the e detailed TB under optimisation (i. e. wk -Wk)* 

= 
si + 

JA JA 

end -Qdi,, ) 
Sý, 

', '=Wk ', ', t=Wko 
(Q cil V i, s =s,, gg (5.4 1 

.1" aggregation time constraints 
Constraints 5.42 assure that the duration of any sequence of tasks undertaken by any 

ship will not exceed the aggregate time block. The first term represent material 
initially present at ships. The second ten'n represents the overlapping time of inter- 

interval ship journey durations in addition to their unloading times. The third and 

fourth terms represent the times of all aggregate journeys in addition to their 

unloading times. The RHS represents the kh active aggregate time horizon. Note that 

maintenance time is subtracted from the RHS. Loading and unloading time in the 

aggregate model is estimated by dividing the ship capacity (V, ) by the maximum 

pumping rate per interval (TI). 
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-s x Ms, j, y=, 
): k=1 

j I=SLJ T, 

t=W, O-l 
-wo +t+ ýý-)xX 

., ): k>l s k Si 
'=Wk-rsj+l I=FLj T 0 

++I 
"f 

s )I msjy 

I=FLj Tj y 

+I (Isj +I ýý-s )I Ns 
I=FLi TI 

z, 
7ý 

HI- max(wko t: ) 
-q 

I" aggregation i oumey constraints 

V S=Sagg 
(5.42) 

The y th journey of each ship must be constrained to a maximum value of one. If no 
journey is needed, the LHS of Constraints 5.43 will be equal to zero. 

Im, 
<I 

i, VS =Sagg) Y 
(5.43) 

I" aggregation sub-tour elimination constraints 

Sub-tours are eliminated using connectivity constraints. Note that each side of the 

inequality below is at most equal to one. As a result, Constraints 5.44 assure that a 

ship can never start a journey from a location (i. e. LHS = 1) unless its previous 

journey finished at that location (i. e. RHS = I). 

J]m :! ý Em 
.. d S, j, y+l 6.., slily 

j: I=SLj j: I=FLj 
Vs =s,, gg, 1, y #j 1. 

z,, 
(5.44) 

. 
1" aggregation lojzical constraints: 

A ship can start from any port, but it has to end up in the dummy location. 

S, j slj, y I -. JM Y- E Em )<O 
j: I=FLj y j: I=SLj y 

EE ms, 
j, y 

E ms, 
j, y) 

j: I=FLj y jl=SLj y 

s=s,, gg, 1# dummy (5.45) 

V s=s,, gg, 1= dummy (5.46) 
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I" aggregation initial port constraints 

A ship has to leave from where it is initially. Note that the RHS of constraints 5.47 

will take a value of either 0 or - 1. A value of -I means that a ship was there at the end 
of the e interval or it has arrived from the previous interval during an inter-interval 
joumey. 

s 1] J]m = (I 
zm, 

j, y 
-, 

-, 
slj, y 

j: I=FLj y j: l=sLj y 

ý0 Wk 
X, 

+ Rs,,, 
I=wo k j=FLj i=wko-z,, j+l 

I" aggregation port restriction constraints 

V S=Sagg, 1# dummy (5.47) 

Some ships are not allowed to visit certain ports because of many reasons such as 
depth restrictions. A user specified parameter Jj is equal to zero if a ship s is not 

allowed to visit port 1. 

EE M"i, 
Y =0 j: I=FLj y 

I" aggregation ship maintenance constraints 

V S=Saggl : 6,1 =0 (5.48) 

To account for ship maintenance in the detailed TB, we ensure that a ship s exists 

initially at port 1, or it has made an inter-interval journey to 1, or makes an aggregate 

journey to port I at least once. 

0-1 t=Wk 
X, M, 

0> +E 
,Z vy+R .dS, 

I, '=Wk 
0 j=FLj t=wk-i,, j+1 j: I=FLj y 

W0W end) 
where t'= t>0 and kk 

V S=: Saggy 1 #dummy, t' (5-49) 

2 nd aggregation loading Constraints 

The total material transferred to/from any port should not exceed the capacity of the 

ship. The last term in the RHS of Constraints 5.50 represents journeys starting in the 

previous interval and ending in the next kýý interval. 
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end 
'A 

dil 
I=Wk 

. -, ý, +IX, 
. dQ 

N, 
.d 

j: l=FLj z end 
_ +1 

2Ac Q 
ýz isl Vf, Ns 

j: I=SLj z 

nd aggregation port mass balances 

V s=sdet, 1 (5.5 0) 

V s=sd,, 1 (5.51) 

The inventory of each product in each location is equal to any material present 
initially there in addition to the total material transferred to that location minus any 
material transferred from that location minus the total demand at that location. 

Constraints 5.52 are generated for the e aggregate TB only (i. e. H +I- W end 
k 

end 
2^ 

LI-t L, 
end+ (Q Q c,,, ) ', ', t=Wk (D, l, + XD,,, ) V i, 1 (5.52) 

s 

2 nd aggregation ship mass balances 

The inventory of each product on each ship is equal to any material present initially 

there in addition to the total material charged to that ship minus any material 
discharged from that ship. Constraints 5.53 are generated for the e aggregate TB 

only (i. e. H+1 _ W, "d). 
k 

2^ 2^ 
SI 

-t 
end 

= SI, end+ (Q c,,, Q d,,, ) Vs (5.53) is i ', '=Wk 

2 nd aggregation time Constraints 

Constraints 5.54 assure that the duration of any sequence of tasks undertaken by any 

ship will not exceed the aggregate time block. The first term represents the 

overlapping time of inter-interval ship j oumey durations in addition to their unloading 

times. The second term represents the times of all aggregate journeys in addition to 

their unloading times. The RHS represents the e active aggregate time horizon. Note 

that maintenance time is subtracted from the RHS. Loading and unloading time 

in the aggregate model is estimated by dividing the ship capacity (V, ) by the 

maximum pumping rate per interval (TI). 
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I vf, )"X, vi I=FLj Ti 

I=FLJ Ti 
z 

HI- max(wko, t: ) -? 7 s 

V s=sdet (5.54) 

2 nd aggregation journey constraints 

The z th journey of each ship must be constrained to a maximum value of one. If no 
journey is needed, the LHS of constraints 5.55 will be equal to zero. 

EN, <1 
iVs, z (5.5 5) 

2 nd aggregation sub-tour elimination constraints 
Sub-tours are eliminated using connectivity constraints. Note that each side of the 
inequality below is at most equal to one. As a result, Constraints 5.56 assures that a 

ship can never start a journey from a location (i. e. LHS = 1) unless its previous 
journey finished at that location (i. e. RHS = 1). 

N,, j, :5 Nj, 
ý Z+l j: I=SLj j: I=FLj 

nd aggregation logical constraints: 

Z ; 6j 2 
ax (5.56) m 

A ship can start from any port, but it has to end up in the dummy location. 

< 
j: I=FLi z j: I=SLj z 

N,, j, 
N, 

'j, j: I=FLj z j: I=SL, z 

2 nd aggregation initial 12ort constraints 

IV s, 1# dumMY (5.5 7) 

s, I= dummy (5.5 8) 

A ship has to leave from where it is initially. Note that the RHS of constraints 5.59 

will take a value of either 0 or -1. For detailed ships, a value of -1 means that a ship 
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was there at the end of the e interval or it has arrived from the previous interval 
during an inter-interval journey. For aggregate ships, the terminal port is the port ship 
has just left on its way to the dummy location. 

N,, j,, j: I=FLj z j: I=SLj 

end_, Wk 

X, 

, +R s, l, t=wk-d 
S= Sdet 

j=FLi t=wke"d-rj+l 

I Ims1i, 

y): 
S= Sagg 

j: FL, =dummy y 

2 nd aggregation port restriction constraints 

V s, 1= dummy (5.59) 

Some ships are not allowed to visit certain ports because of many reasons such as 
depth restrictions. A user specified parameter 6,1 is equal to zero if a ship s is not 

allowed to visit port 1. 

N,, j, =0 
j: I=FLj zz 

Vs, 1: 6,1=0 (5.60) 

2 nd aggregation ship maintenance constraints 

To account for ship maintenance in the aggregate model, we ensure that a ship s exists 

initially at port 1, or it has made an inter-interval journey to 1, or makes an aggregate 

journey to port 1 at least once. 

I=W, nd_l 
k 

1] 

., 
EX, 

v, ++ Rend 
j=FLj end_,. +1 

S, I, t=Wk V s, 1# dummy, t' (5.6 1) 
t=Wk jj j: I=FLj z 

where t= t>0 and t> W end 
k 

The FRH and HFRH approaches involve many decisions that are problem specific. 

Such decisions deal with the number of time intervals used and the position of time 

boundaries between the detailed and aggregate time blocks. Time interval s/boundaries 

can affect the optimisation process in terms of the optimal solutions and running 

times. Those intervals/boundaries should be selected based on the length of the time 
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horizon and the durations of tasks involved. Therefore, a rolling horizon time interval 

must not be too long or it will result in large CPU times. In addition, a rolling horizon 

interval must not be too short to exclude some tasks. In our problem, the effect of time 

intervals is minimised due to the fact that we allow a journey to start in one interval 

and terminate in the next interval. For example, assume that a ship performs certain 

tasks in the detailed TB with only two remaining days in that TB. This ship can start 

another inter-interval journey (J) of five days starting in the detailed TB and ending in 

the aggregate TB. As a result, three days of that ship's total time will be subtracted 

from the aggregate TB (see Figure 5.5). We also assure that the next journey in the 

aggregate TB starts from where the previous journey ended. In addition, we account 

for any material carried over from the detailed TB to the aggregate TB though the 

proper mass balance equations (see Section 5.2.1). 

.4 Detailed tasks .................... Inter-interval journey (J) ........ Aggregate tasks ...................... * 

2 H+J 

........................ Detailed TB .............................. 
I 
........................ Aggregate TB ................................................ 

Figure 5.5: Illustrative diagram for inter-intervals journeys 

In the next chapter all the mathematical approaches described in Chapters 3,4 and 5 

are tested using an illustrative example. Results show that the FRH and the HFRH are 

the best solution approaches compared to the direct and iterative approaches. 
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Chapter 6 

Results and Discussion 

The GAMS software (Brooke et al., 1992) was used to model the VMI system. All 

GAMS runs were performed on the Linux machines using the CPLEX package v9.5 

as the MILP solver. 

6.1 Illustrative Example Specifications 

To evaluate the solution approaches described earlier, an illustrative example is 

solved in this chapter using different demand data. Two sets of demand data are 

compared. The first set uses static demand while the second set uses dynamic demand. 

The illustrative example specifications are explained below. 

Figure 6.1: Illustrative example port layout on the UK map 
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Available ports: 

As the map in Figure 6.1 shows, ports include two production plants and six customer 
locations. The capacity of each port is given in metric tonnes (t) as shown in Table 
6.1. 

Table 6.1: Port capacities for the illustrative example 
Production plants Total storage capacity (t) 

PI 1000 
P8 1000 

Customers 
12 500 
13 500 
14 500 
19 500 
19 500 
19 500 

Available ships: 
All ships are initially at the ports beside the production plants. We assume that s, and 

s3 start from plant p, while S2 and S4 start from P8. Table 6.2 shows the ship capacities 

as well as their initial ports. In addition, all ships are initially empty. 

Table 6.2: Ship capacities and initial ports for the illustrative example 

Ships Total storage cap (t) Initial port 
Si 300 at p, 
S2 300 at P8 
S3 300 at pi 
S4 300 1 at P8 

_j 

Products information: 

Table 6.3 shows the production costs and production rates of the single product i at 

every production plant. 

Table 6.3: Production costs and rates for the illustrative example 

Product Price cost ($/t) at Production Production rate (t/day) at A 

name 

1 
($/t) . _ p] P8 p] P8 

i 2000 1000 1000 200 200 
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Joumey information: 

Note that journeys on different ships can have different durations and different costs. 
However, inbound and outbound journey durations and costs are the same for each 
ship. In this example, we assume that the journey durations are fixed for all ships 
while the journey costs are different. Table 6.4 shows the journey costs and durations 

on every ship in the fleet. 

Table 6A Journey costs and durations for the illustrative example 

Journey no. From To S, S2 S3 S4 

$xlO' days $xIO3 days $xlO' days $xlO' days 
I pi 12 51 1 62 1 107 1 83 1 
2 1 

13 75 2 85 2 128 2 110 2 
3 PI 19 46 1 61 1 100 1 74 1 
4 pi 19 99 1 2 106 2 143 1 2 137 2 
5 12 1 51 1 62 1 107 1 83 1 
6 13 P, 75 2 85 2 128 2 110 2 
7 19 P, 46 1 61 1 100 1 74 1 1 
8 19 P, 99 2 106 2 143 2 137 2 
9 12 13 79 1 83 1 64 1 83 1 
10 13 12 79 1 83 1 64 1 83 1 
11 14 13 73 1 80 1 66 1 87 1 
12 13 14 73 1 1 80 1 66 1 87 1 
13 19 19 57 1 73 1 67 1 74 1 
14 19 19 57 1 73 1 67 1 1 74 1 
15 19 19 63 1 77 1 88 1 57 1 
16 19 19 63 1 77 1 88 1 57 1 
17 P8 14 57 1 73 1 67 1 74 1 

18 
_ 
P8 13 79 2 83 2 130 2 115 2 

19 P8 19 52 1 66 1 104 1 88 1 

20 
-- 

P8 19 89 2 84 2 124 2 113 2 

21 14 8 57 1 73 
-1 

67 1 74 1 
22 13 P8 79 2 83 2 130 2 115 2 

23 19 P8 52 1 66 1 104 1 88 1 

24 9 
_L__ 

JP8 1 2 124 2 113 12 

Loading times: 

A ship requires different loading/unloading times depending on the pumping rate in 

the port. In this example, we assume that all loading and unloading times are fixed at 

one day. 
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Time horizon: 

The scheduling horizon under consideration for this example is 10 days with a 
discretisation interval of one day. Based on trial and error, a time horizon of 10 days 
is short enough to yield a detailed solution using the direct approach. In addition, 10 
days is long enough to be divided into two reasonable rolling horizon intervals of 5 
days each. 

Initial and final inventories in ports: 
Initial inventories of product i at each port refer to amounts of products existing 
before the optimisation starts. Final inventories refer to the desired quantities of 
product i to be present at each port at the end of the last day. In our model, initial and 
final inventories are assumed to be equal to the safety stock. 

Table 6.5: Initial and desired final inventories for the illustrative example 

Port Initial inventory o Final inventory of i (t) 
pi 400 400 
P8 400 400 
12 100 100 

13 100 100 

14 100 100 

19 100 100 

19 100 100 

19 100 100 

D- 
Regardless of the demand data, the illustrative problem mathematical model 

information is the same. Table 6.6 shows the number of equations, number of binary 

variables, and the number of continuous variables for the illustrative example. The 

mathematical data for the illustrative example are generated with the detailed model 

using the constraints in Section 3.2. The fully relaxed solution is obtained by treating 

all binary variables in the detailed model as continuous variables. 

Table 6.6: Illustrative example mathematical model information 

Mathematical model information 
Number of equation 1500 
Number of binýýýý. 960 
Number of continuous variables 2480 
Fully relaxed solution _ 

1,400,000 
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6.2 General Heuristic Algorithms 

To show the benefits of optimisation, two general heuristics (based on industry rules 
of thumb) are tailored to solve the illustrative example. Optimisation-based 

approaches are then compared to heuristic algorithms in terms of objective values. 

6.2.1 Nearest port heuristic (HI) 

H1 is based on starting to replenish demand locations that are closer to production 
sites. This heuristic is more applicable to problems with static demand. The general 
procedure for this heuristic is described as follows: 

1. Start with the production site with the most available ships. 
2. Send a full load of the largest available ship to the nearest demand location. If 

a full shipload more than covers the entire demand of that location, go to the 

nearest demand location and so on until the product on that ship is used. 
Otherwise, go to step 3. 

3. Send the ship to nearest production site to reload. Go to step 2. 

4. Continue until the demand at all locations is satisfied. At anytime, if the 

duration of sending the same ship to another location exceeds the time 

horizon, then send another available ship from the nearest available production 

site. 
This procedure is described further with numeric data in the illustrative example's 

static demand case in Section 6.3. 

6.2.2 Priority heuristic (H2) 

H2 is based on committing to demand locations with higher priority. Priority can be 

evaluated in terms of demand time and customer importance. This heuristic is more 

applicable to problems with dynamic demand. The general procedure for this heuristic 

is described as follows: 

1. Start with the production site with the most available ships. 

2. Send a full load of the largest available ship to location with the earliest 

demand requirement. If a full shipload more than covers the entire demand of 
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that location, go to the nearest the location with next earliest demand and so on 
until the product on that ship is used. Otherwise, go to step 3. 

3. Send the ship to nearest production site to reload. Go to step 2. 
4. Continue until the demand at all locations is satisfied. At anytime, if more than 

one location has similar demand priorities, then send the available ship to the 
nearest one. 

This procedure is described further with numeric data in the illustrative example's 
dynamic demand case in Section 6.4. 

6.3 Static Demand Data 

The example explained above is first solved using a set of static demand. In other 
words, we assume that demand is needed only at the final day (day 10). For 

simplicity, we assure that the total demand (in tonnes) for every customer does not 
exceed a full shipload. Therefore, demand data are generated using a uniform 
distribution with bounds [200,300]. Table 6.7 below shows the demand requirement 
for each customer in the problem. 

Table 6.7: Static demand data with a uniform distribution [200,300] 
12 13 14 15 16 17 

tj 4 tg 0 0 0 0 0 0 

tio 220 280 260 230 230 220 

To apply HI, we need to know which production site has the most available ships. 

Since both production points have two ships each of the same size, we arbitrarily start 

with production point pl. We send Sj from pi with 300 units towards 12. The product 

on S, covers the entire demand of 12, so we send S, from 12 to 13with 80 units. Because 

the duration of sending S, back to pI then to 13again will exceed day 10, we send S3 

from p, to 13 with a full load. S3 discharges 200 units in 13 and then goes to 14 carrying 

the remaining 100 units. Because no journeys are allowed from p, to 14 directly, S2 is 

sent from P8 to 14. However, S2 carries only 200 units to 14 because no allowed route is 

available from 14 to another unsatisfied demand location. Then, S2 returns to P8 to 

reload. S2 is sent with a full load to 19.230 units are discharged at 19 and the rest is 



Chapter 6 Results and Discussions 106 

carried to 19. Because the duration of sendingS2back to P8 then to 19 again will exceed 
day 10, we sendS4with a full load from P8 to 19. S4discharges only 160 units at 19 and 
the rest is carried to 19. Since 19 is the only remaining unsatisfied location, we look for 
a feasible ship to cover its demand. The best way is to send a ship from p, to 19 with 
the reaming 80 units. The only ship that can make it within the time horizon is SI. 
Therefore, we send S, from13 (its final location) to p, to reload. Then we send S, to 19 
carrying the remaining 60 units. Figure 6.2 shows a Gantt chart of the schedule 
obtained for the static demand case using heuristic HI. 

tl t2 t3 

pl 412 
(300) 

S 
p8414 
(200) 

S3 

S4 

p8413 
(300) 

1 

p8416 
(300) 

1 

t4 I t9 I tg 

1341 
(100), 

16417 
(140) 

1 

tq I ti 

Figure 6.2: Gantt chart of the illustrative example solution with static demand using 
heuristic HI 

Table 6.8 below shows the ship-journey matches, the best obtained solutions, and the 

CPU times used to reach those solutions for the case of static demand. Note that CPU 

time calculations are different depending on the approach used. In case of the direct 

approach, the CPU time is the resource usage produced by GAMS. As for the iterative 

approach, the CPU time is the summation of all resource usages of aggregate and 

detailed solutions for all iterations used. For the rolling horizon approaches, the CPU 

time is the summation of all resource usages of all solutions over all time intervals. 

Note that the number of iterations field is applicable only in case of the iterative 

approach while the number of intervals is applicable only in case of the rolling 

horizon approaches. On the other hand, optimality criteria are also different depending 

on the used approaches. In case of the direct approach, a 10% relative optimality (gap 
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between integer solution and best bound) is specified. As for the iterative approach, a 
5% optimality gap between the aggregate and detailed solutions is specified. Finally, a 
0% relative optimality is specified for the FRH and HFRH approaches. 

All optimisation-based approaches solve the problem to oPtimality with 100% 
demand satisfaction for all customer locations. Although the optimal solution is 

exactly the same based on the ship-journey matches, CPU times differ greatly. Even 
for a short time horizon of ten days, the direct approach takes approximately II hours, 

which is totally unreasonable for the size of this problem. This high computational 
effort explains why routing and scheduling problems are not solved exactly. As 

explained above, HI can be applied to this example manually in a reasonable time. 
However, HI solves the problem with an objective value of 736 (ý 16 % decrease in 

profit). Such results show the benefits of optimisation approaches compared to 
heuristic algorithms. Nevertheless, there exist a trade-off between CPU times and 

objective values. Moreover, note that the gap between the optimal MILP solution and 

the fully relaxed solution is around 37 %. This gap can be used to evaluate the effect 

of demand variation in Section 6.4. 

Table 6.8: Illustrative example results for the static demand case 

(Fully relaxed solution =1,400,000) 

Approach used CPU time Best solution Shýpjourney matches 
Nearest port heuristic (HI) 736,000 SI(jl, j9, j6j3) 

S2(j 17j2 Ij 19j 16) 
S3(j2j 12) 
S4(j20j 14) 

Direct approach 10.5 hours 879,000 SI(j3, j7, jl) 
S2(j 19, j23j2O) 
S3(j2) 
S4(j 17) 

Iterative approach 27 seconds 879,000 SI(j3, j7jl) 

(I iteration used) 
S2(j 19j23j2O) 
S3(j2) 
S4(. j 17) 

FRH approach 133 seconds 879,000 SI(j3, j7, jl) 

tj -, 4 t5 (interval 1) S2(jl9j23j2O) 
t6 4t] 

O(interval 2) 
S3(j2) 
S4(j 17) 

HFRH approach 20 seconds 879,000 SI(j3, j7jl) 
tj 4 t5 (interval 1) S2(jl9j23j2O) 

S3(j2) 
t64tjo (interval 2) S., ( i 17) 
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On the other hand, the iterative approach reaches the same optimal solution in 27 

seconds using only one iteration. Hence, for such problems where demand is not 
dynamic, the use of aggregation can be of great benefit. Moreover, the FRH and the 
HFRH both reach the same optimal solution in much shorter times compared to the 
direct approach. Note that the simplicity of the static demand justifies the use of time 

aggregation. Problems with more dynamic demand are almost impossible to solve 

with time aggregation, as will be illustrated later. 

tj I 

p1417 
(220) 

p8 415 
(230) 

S 

S4 

p8 416 1 
(230) 

tio 

Figure 6.3: Gantt chart of the illustrative example optimal solution with static demand 

A Gantt chart of the optimal solution (using optimisation-based approaches) is shown 

in Figure 6.3. Because the static demand quantity does not exceed a full shipload, 

every location is visited only once in the optimal schedule. A more realistic demand 

dataset is solved in the next section. 

6.4 Dynamic Demand Data 

To study the effect of demand variation with time, we use the same total demand 

required by each customer. However, we split this demand over the entire time 

horizon. Therefore, half of the demand is required on the fifth day and half is required 

t3 I t4 I tg I tg I t9 I t8 It 

on the tenth day. Table 6.9 shows the demand of each customer in the problem. 
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Table 6.9: dynamic demand data with a uniform distribution [200,300] 
12 13 14 15 16 17 

tl 4 t4 0 0 0 0 0 0 

t5 110 140 130 115 115 110 
0 0 0 0 0 0 

110 140 130 115 115 110 

To apply H2, we need to know which production site has the most available ships. 

Since both production points have two ships each of the same size, we arbitrarily start 

with production point pl. Since all locations require demand on the 5 th day, we choose 

to send a full shipload of S, from p, towards 12 (nearest demand location). The product 

on S, covers the entire day-five demand of 12, so we send S, from 12 to l3with the 

remaining 190 units. To cover other locations' day-five demands, we send S3from p] 

to 19 (nearest demand location) with a full load. S3discharges I 10 units in 19 and then 

goes to 19 carrying the remaining 190 units. The only remaining locations with 

demand on day five are 14 and 15. Therefore, S2 is sent from P8 to 14carrying the entire 

demand of 14 (because no allowed route is available from 14 to 19). Similarly, S4goes 

from P8 to 19 carrying its entire demand (230 units). To satisfy day-ten demand at all 

locations (except 14 and 19), S, returns to pi to reload before leaving to 12 (nearest 

demand location). Similarly, S3retums top, before leaving to 19. S2andS4both return 

to P8 to replenish locations 13 and 19 respectively (see Figure 6.4). 

ti I t2 I t3 I t4 tg I 

.- 
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Figure 6A Gantt chart of the illustrative example solution with dynamic demand using 

heuristic H2 
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Table 6.10 shows the ship-journey matches, the best obtained solutions, and the CPU 
times used to reach those solutions for the dynamic demand case. 

Table 6.10: Illustrative example results for the dynamic demand case 
(Fully relaxed solution =1,400,000) 

Approach used CPU time Best solution Ship-journey matches Priority 655,000 SI(j 1, j9, j6j 1) 
heuristic (H2) S2( j 17, j 2 Ij 18) 

S3(j3, jl3j8, j3) 
9, j23j2O) 

Direct approach 2.5 hours 769,000 SI(j3, j7, jl) 
S2( j 17, j 2 Ij 19) 
S3(j IýM 
S4(j 19, j 16) 

Iterative approach 3 days None None 
(JOOO iterations used) 
FRH approach 15 minutes 769,000 SI(j 3, j 7, j 1) 
t, -: ý t5 (interval 1) S2( j 17, j 21j 19) 
t6 -7\tl 0 (interval 2) S30 19 M 

S4( i 9, j 16) 
HFRH approach 93 seconds 769,000 SI(j3gj7jl) 
t, 4 t5 (interval]) SA i 17J21 j 19) 
t6 74t] 0 (interval 2) SA iIý j9) 

9, j 16) 

Note here that the iterative approach runs for over three days without reaching the 

optimal solution. This is due to the type of time aggregation involved in the iterative 

approach. Because of time aggregation, the demand of each location is summed up 

over the entire time horizon. Hence, demand requirement timing is lost completely. 

During every iteration, the aggregated problem is solved without reaching a feasible 

solution to the dynamic problem. In fact, the direct approach is more successful to 

reach the optimal solution in less than three hours. On the other hand, the FRH and 

the HFRH both reach the optimal solution in much less time. H2 solves the problem 

with an objective value of 655 (--15 % decrease in profit). Similar to static demand 

case, this result emphasises the effect of optimisation on solution quality. Because of 

the dynamic demand, the gap between the MILP optimal solution and the fully 

relaxed solution increases to 45 %. 

As we mentioned in Section 1.6, VMI problems include production, routing and 

scheduling, and inventory management. Therefore, VMI problems are very difficult to 
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solve exactly even for a simple problem like our example. In addition, the use of 
heuristic algorithms can result in great deviations from the optimal solutions. Hence9 
the use of other optimisation-based approaches is necessary to solve such problems in 
reasonable CPU times. 
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Figure 6.5: Gantt chart of the illustrative example optimal solution with dynamic 
demand 

t 

A Gantt chart of the optimal solution is shown in Figure 6.5. For some locations (12 

and 19), initial inventories do not cover the demand required at t9. Such locations are 

visited more than once to ensure product availability. As a result, the final optimal 

solution value in this case is less than that of the static demand case where every 

location is visited only once. 

The illustrative example is only used to compare all the solution approaches in terms 

of solution quality and CPU time. Because of the nature of the example problem and 

the short time horizon, no inventory levels are shown for the illustrative example. 

6.5 Conclusions 

The four proposed optimisation-based approaches are tested using an illustrative 

example of reasonable size with two case scenarios. First, the example is solved with 

a set of static (non-dynamic) uniformly distributed demand data. Second, the same 

t 

pl4t2 
(200) 
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example is solved with a set of relatively dynamic uniformly distributed demand data. 
The direct solution approach takes relatively longer CPU times to solve this simple 
example. For larger size examples, the direct approach can run indefinitely without 
reaching a feasible solution. Note that the CPU time for the direct approach in the 
case of dynamic demand was much shorter that the CPU time consumed in case of the 
static demand case. This is due to the available state space based on demand 
information. When demand is static, almost all the possible journey routes and times' 

combinations are available to the solver. On the other hand, when demand is dynamic, 
limited combinations are initially available to satisfy near future demand requirements 
which consequently affect the global optimal solution. 

The heuristic algorithms HI and H2 succeeded in providing a feasible solution to the 
illustrative example manually. However, the gap between the heuristic solution and 
the optimal solution was more than 15 %. This gap shows the benefits of 

optimisation-based approaches over popular industrial heuristic algorithms. This gap 

can increase substantially based on the problem size. 

For the static demand case, the iterative approach led to the optimal solution in a very 

short time. However, dynamic demand increases the gap between the aggregate and 

the detailed solutions to make it difficult for the iterative approach to solve the 

problem. In other words, as the demand becomes more dynamic, it becomes harder 

for the detailed solution to feasibly fit the aggregately-generated ship-joumey pre- 

matches. Hence, the iterative approach is recommended to solve problems with static 

demand only. 

Both the FRH and the HFRH approaches solve the example with static and dynamic 

demand data in reasonable CPU times. Both approaches proved to be robust enough 

regardless of the type of demand data. In addition, the HFRH approach showed a 

reasonable edge over the FRH approach. While the solution quality is the same, the 

HFRH approach consumed relatively shorter CPU times than the FRH approach. 

Considering the type of mathematical modelling used, the HFRH approach is the most 

robust solution approach for our VMI system. 
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Chapter 7 

Industrial Case Studies 

In this chapter the VMI system is tested using real industrial case studies from 
different worldwide companies. Due to confidentiality, the following case studies are 
described on a no-name basis. Hence, company names as well as any other sensitive 
information are not disclosed. Only symbols are used to represent various details of 
these case studies. However, the context of the VMI problem is not distorted in any 
way during these tests. 

7.1 Industrial Case 1: LNG shipping 

Liquefied Natural Gas (LNG) is an important source of energy. Mainly, LNG is used 

as a raw material to produce electricity. A pioneer LNG producer company in the 
Arabian Gulf region (A) has been associated with a giant LNG consumer company in 

the Far East (B). A 20-year agreement between the two companies was signed in the 

late nineties. Based on this agreement, A will supply B with four million tonnes of 
LNG annually. This quantity will be delivered using the supplier-owned ships. 

Although B is A's main customer, B is not the only customer at the moment. Other 

European customers occasionally buy LNG from A using their own ships. Hence, A 

has only one VMI customer (B) and many external non-VMI customers. 

Currently, the company is conducting a feasibility study to investigate the possibility 

of adding another VMI customer in the Far East (C). They would like to know if the 

company's existing plant capacity and shipping capabilities are sufficient. In addition, 

they want to assess the economic benefits of such a move. Because of the current 

scheduling technique and the lack of coordination between shipping and production, 

A is barely able to fulfil its commitments to its main customer. So, the possibility of 

adding another VMI customer seemed unrealistic at the beginning. However, the 

company's management is undertaking major changes to its current scheduling 

techniques in order to increase their potential profit. We were privileged to take part 

in this study as it represents a great opportunity to test the proposed CDST. 
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7.1.1 Problem specifications 

The first step is to solve the original VMI problem with only one main customer and 
occasional non-VM1 customers. This step can be used to benchmark the new move. In 
other words, by calculating the actual profit at the moment, we can assess the benefits 

of adding another VMI customer. The second step is to solve the problem after adding 
C as another VM1 customer. The original problem specifications are given below: 

Available ports: 
As mentioned above, there is only one production plant and one customer. Table 7.1 

shows the storage capacities and number of ships for both ports. Note that the storage 

capacity of B is much greater compared to that of A. For this case, the capacity of B is 

not an effective factor in the optimisation. 

Table 7.1: Port information for industrial case 1 

Ports Total storage capacity (t) Maximum allowed number of ships 
A 100,000 5 
B 5,000,000 4 

Available ships: 
To fully optimise the VMI problem, the correct specification of the initial locations of 

all ships is essential. Therefore, some ships might be on t eir way to some port as 

opposed to actually being there (see Table 7.2). 

Table 7.2: Ship information for industrial case I 

Ships Total storage capacity (t) Initial port Time needed to be there (days) 

Sl 63,000 at B 0 

S2 63,000 on its way to B 4 

S3 63,000 on its wa to B 8 

S4 63,000 on its wa 12 

S5 63,000 atA_ 0 

S6 63ý000 on its way to A 4 

S7 63,000 on its wa 8 

S8 63,000 on its way to A 12 
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Products information: 

Table 7.3 shows the production rate, cost, and price of LNG. Note that the selling 
price shown in the table is particular to B only. 

Table 7.3: Product information for industrial case 1 
Product 
name 

Price 
($/t) 

Production cost ($/t) atA Production rate (t/day) at A 

LNG 255 107 17,000 

Joumey information: 

All costs and durations of journeys are the same for all available ships in the fleet. A 

round trip journey from A to B costs $3.4 million. A one way (inbound or outbound) 
journey between A and B takes 16 days on all ships. 

Loading times: 

A ship takes one day to be charged at A and one day to be discharged at B. 

Time horizon: 

The scheduling period under consideration is one year (366 days) with a discretisation 

interval of one day. 

Demand information: 

A is committed to supplying B with four million tonnes of LNG during the year of 

interest. To fully represent the annual contract, we mathematically assume that all this 

demand is only needed at the end of the year (day 366). In reality, the annual demand 

is scattered over the entire year. However, no particular pattern can be suggested since 

many factors can affect the optimal schedule. For example, the total quantity 

delivered in a given month can be much more/less than the previous month due to 

plant shut-downs or ship maintenance. Moreover, this assumption does not affect the 

optimisation process because satisfying the total demand requires that the entire 

quantity is actually scattered over the entire year. 

Initial 

The initial inventory at A is 70,000 tonnes. We assume that B is initially empty. 
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Initial inventories on shiDS: 

As Table 7.4 shows, ships SI-S4 are on their way to or at B initially with full loads 
onboard. Ships S5-S8are on their way to or at A with no material onboard. 

Table 7.4: Initial ship inventories for industrial case I 
Ship Initial Inventory 

-si 
63,000 

S2 63,000 
S3 63,000 
S4 63,000 
S5 0 

S6 0 

S7 0 

S8 0 

Plant shut-downs: 
Plant A contains three production trains with total production capacity of 17,000 

t/day. Train I has a production capacity of 9,000 t/day, while train 2 and train 3 

together have a production capacity of 8,000 t/day. Each production train undergoes 

planned maintenance shut-downs every other year for exactly 35 days. In a particular 

year, train 2 and train 3 are shut-down. The next year, only train]. is shut down. 

Therefore, during shut down periods the total production rate decreases to 9,000 or 

8,000 t/day depending on the year. For the one-year horizon in this problem we 

assume that train I is shut down and the total production rate reduces to 8,000 t/day 

for the 35-day shut-down period (see Table 7.5). 

Table 7.5: Shut-down information for industrial case 1 

Plant Shut-down 
starting time 

Shut-down 
ending time 

Production rate during shut- 
down (t/day) 

A 15/3 20/4 8,000 

Ship maintenance: 
Every year two ships undergo regular maintenance. Usually this maintenance period 

overlaps with the shut down period. To assume the worst case scenario, we will force 

maintenance to coincide with the shut-down period for S, and S2. Table 7.6 shows the 

starting and ending time of maintenance for ships S, and S2. 
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Table 7.6: Ship maintenance information for industrial case 1 
Ships Port at which 

maintenance is required 
Startinj time Ending time 

sl A 15/3 20/4 
S2 A 15/3 20/4 

Extemal customers demand: 

Occasionally some European customers are sold LNG. Those customers use their own 
ships to collect it. External customer demand (in terms of quantity and shipping dates) 
is usually known in advance. For the sake of optimising the VMI system to the full 

extent, external customers are given priority for any supply. Therefore, all the 

required data from external customers will be the shipment date, the quantity of the 

shipment (Q), and the number of ships used (NS). Because these customers ship their 

products themselves, the selling price is slightly reduced. Table 7.7 shows the external 
demand information for this case study. 

Table 7.7: External demand information for industrial case 1 

Date4 23/1 2/4 7/7 8/9 11/10 
Product I Price NS T NSI Q NS Q 4 

I'S Q NS Q 
LNG 1 $235 11 57,000 11 _ 57,000 1 50,000 1 50,000 1 57,000 

7.1.2 Problem solution 

As shown in Chapter 6, the HFRH proved to be the most robust solution approach. 

Other approaches failed to produce results for this case study. In order to compare the 

optimal solution with the heuristic one, we solve the same problem using heuristic H2 

(see Section 6.4). 

For this case study, we divide the time horizon into five intervals. We arbitrarily 

choose a length of 75 days for the first four intervals, the remaining 66 days is the 

length of the fifth and final interval. The mathematical information for the original 

problem of this case study is shown in table 7.8. 
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Table 7.8: Original problem mathematical information for industrial case 1 

_Number 
of equations 35,371 

_Number 
of binary variables 5,760 

_Number 
of continuous variables 31,975 

Rolling horizon time intervals Five intervals 
(tl-->t75-->tl5O--)t2254t3OO-->t366) 

The results of solving the original problem using H2 and the HFRH approach are 
shown in Table 7.9. Because H2 is applied manually, no CPU time is shown for this 

algorithm. The relative optimality (gap between integer solution and best node in 

GAMS) is specified at I% for the HFRH approach. 

Table 7.9: Original problem results for industrial case 1 

(Fully relaxed solution =$ 694 million) 

Priority heuristic (H2) HFRH approach 
Profit $ 513 million $ 513 million 
Total material delivered to B 4,032,000 t 

(64 full shiploads) 
4,032,000 t 

(64 full shiploads) 
Average daily production rate at A 10,920 t/day 10,920 t/day 
Ship utilisation percentage 73% 73% 
Solution CPU time 30 minutes 
Relative optimality I% 

! tj 

Because we only have one customer, the HFRH and H2 reach the same objective 

value. However, applying H2 manually requires a lot of effort because of the need of 

production plans co-ordination. In addition, ship maintenance, external demand and 

plant shut downs for this case study can disturb any systematic method to solve the 

problem manually. In general, the same number of full shiploads is required which 

leads to the same final solution. Because having only one customer restricts the space 

of journey decisions, the gap between the best solution and the fully relaxed one is 

25%. 

Note that the original problem is optimised with an average daily production of 

10,920 tonnes including shut-downs. The ship utilisation (busy days/idle days 

excluding maintenance) is 73%. Certainly, there is enough room to push production 

and shipping to their limits and study the possibility of adding another customer. 
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7.1.3 Potential modifications 

In addition to the problem details explained in Section 7.1.1, another customer C is 

added to the problem. As a result, a new journey route is added between A and C. 
According to the company, the round trip journey between A and C costs $ 2.8 

million. All ships take 14 days for a one way journey between A and C. The 

unloading time at C is one day. To represent the commitment to the contract, we 
decided to treat B's demand as hard constraints. However, we do not introduce any 
demand for C as the optimisation should find the best possible and profitable quantity 
to be delivered to C. The mathematical information of the modified problem is shown 
in table 7.10. 

Table 7.10: Modified problem mathematical information for industrial case 1 

Number of equations 45,573 
_ Number of binary variables 11,520 
_ Number of continuous variables 41,974 
_ Rolling horizon time intervals 

II 

Five intervals 
(tl4t75-->tl5O-->t225-->t3OO-->t366) 

The results of solving the modified problem using H2 and the HFRH are shown in 

Table 7.11. Because it H2 is applied manually, no CPU time is shown for this 

algorithm. Due to the increased complexity of the modified problem, the relative 

optimality specification is increased to 5% for the HFRH approach. 

Table 7.11: Modified problem results for industrial case I 

(Fully relaxed solution =$ 769 million) 

Profit 
Total material delivered to B 

Total material delivered to C 

Avera e dail roduction rate at A 
Ship utilisation percen age 
Solution CPU time 
Relative optimality 

Priority±Suý 
$ 570 million 
4,032,000 t 

tipLoads (6 4 Lu ILI sh 
567,000 t 

(9 full shiploads) 
12,4 60 Ity/Aay 

84% 

HFRH approach 

_$ 
597 million 

4,032,000 t 
64 full shiploads 

819,000 t 
13 full shiploads 

13,150 t/ 
88% 

100 minutes 
5% 
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Because we have two customers in the modified problem, the HFRH and H2 final 
solutions differ slightly. Consequently, the optimal solution is better than the heuristic 
one. Recall from Chapter 6 that H2 is a priority heuristic. Since B is the main 
customer with a VMI contract, B is given priority over C Hence, using H2, we try to 
satisfy the demand of B entirely before we deliver any material to C. As a result, we 
can build on the original problem's schedule for this heuristic. 

Due to adding C, the number of equations and continuous variables increased 

considerably. Since adding another customer increases the space of available options, 
the number of binary variables has doubled. However, the optimisation process 
pushed production and shipping to their limits. The average daily production 
increased by 12% while ship utilisation increased to 88%. As a result, the potential 
profit increased to $597 million (-- 16% increases in profit). Due to the extra number 

of binary and continuous variables, the CPU time was tripled. Taking into account the 
increased problem size, the CPU time of 100 minutes is still considered reasonable. It 

is worth mentioning that the gap between the best solution and the fully relaxed one 

remains at 25% in spite of the added complexity. This shows that the complexity 
(although increased in terms of binary variables) is still ineffective due to the 

exclusion of journeys between customers B and C 

Figures 7.1 and 7.2 are Gantt charts of the modified problem solutions using H2 and 

HFRH, respectively. As shown in Figure 7.1, all ships are initially serving only 

customer B. After the entire demand of B is satisfied, attention is focused entirely to 

deliver material to C. Such results emphasise the limitations of heuristic solutions 

since delivering product to customer C only at the end of the year is not realistic. On 

the other hand, figure 7.2 shows that material is delivered to both customers with no 

specified order. In other words, deliveries to both customers are relatively scattered 

over the entire year. This shows the versatility of optimisation-based approaches not 

only in the objective value, but also in the physical quality of the solution. 
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7.1.4 Recommendations 

121 

Based on the results of the previous section, adding another customer in the Far East 

is feasible even with existing production and shipping capabilities. A new contract to 

supply customer C with 819,000 tonnes of LNG annually can be very profitable to 

company A. A potential 16% increase in profit can be attained annually while no new 

investment is needed. The existing production capacity will be pushed to nearly its 

upper bound while available ships will be busier during the year. These results were 

presented to A's management to support the move of adding another long-term VMI 

customer in the Far East. We still await the company's response as to how beneficial 

this study was in aiding the decision making policy. 
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7.2 Industrial Case 2: Oil products shipping 

An international oil company deals with a problem of optimising a VMl system 
between a refinery (P) and multiple terminals. Six oil products must be shipped to 
satisfy the demand of the geographically-dispersed terminals. Only three flexible- 
compartment ships are used to deliver the products to the ten-ninals. However, the 
vendor's current production and shipping capabilities cannot satisfy the total demand 

of all these terminals. As a result, the vendor occasionally requests those products to 
be produced and delivered by third parties at different prices. This does not violate the 
VMI contract as the vendor is still responsible for delivering the products to those 
customers. Nevertheless, it is more costly to the vendor to go to third parties. 

Recently, the company have introduced new ships/terminals into this system and the 

only available solution is based on heuristic algorithms. In addition, due to 

confidentiality reasons, no production costs and product prices are available to us. 
Hence, the objective becomes minimising the total transportation cost instead of 

maximising the total profit. Transportation costs include third party shipping as well 

as vendor-owned shipping. The problem for us was to find the optimal ship schedule 

that minimises the total quantity ordered from third parties. In addition, a log of all 

quantities of all products to be ordered from third parties is produced with the optimal 

solution. The VMI problem specifications are given in the next subsection. 

7.2.1 Problem specifications 

A layout of the refinery, the ten-ninals, and available journey routes is shown in the 

Figure 7.3. Two sets of terminals are available; primary terminals (A, B, &Q and 

secondary terminals (D, E, F, G, & H). Double arrows on the layout represent the 

possibility of inbound and outbound journeys. Because of Profitability issues and 

depth restrictions, the demand of the secondary tenninals must be satisfied entirely by 

P. On the other hand, extra material can be ordered from third parties to satisfy the 

demand of the primary terminals only. 
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Figure 7.3: Port layout for industrial case 2 

Time horizon: 

The scheduling period under consideration is one month (30 days). Because the 

shortest event Oourney or loading) takes place in a half day, the discretisation interval 

is chosen to be a half day (12 hours). Therefore, the total number of discrete time 

periods is equal to sixty. 

, 
Products information: 

Six oil products are available. As Table 7.12 shows, no production costs or product 

prices are given. Only the production rates at P of all products are provided. 

Table 7.12: Product information for industrial case 2 

Product name Production Eate (t/da., ) at 
5232 

12 10529 
i3 2957 
14 2460 
i9 2906 

L--Lg- 140 
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Available ports: 

The ports include one production plant and eight customers (terminals). Note here that 
the storage capacity is given per product since particular storage tanks are specified 
for each product in each port. Table 7.13 shows the storage capacities for each 
product at each port. 

Table 7.13: Port information for industrial case 2 

Production plants Storage capacity 
i, i2 i3 i4 

P 36046 77002 61270 26844 42019 12629 
Customers 

A 2220 2286 2785 5532 4942 224 
B 4358 4014 995 1241 0 510 
C 4198 2635 2466 15327 2504 1379 
D 476 455 0 0 0 0 
E 219 258 532 0 0 0 
F 279 339 320 0 0 0 
G 1025 865 1220 0 0 0 
H 0 560 0 0 0 

Available ships: 
Three flexible compartment ships are available for transport. Due to the number of 

compartments and mixing specifications, Ships Sj and S2can carry products il, i2, and 

i3 only. Ship S3 can carry products 4, ig, and ig only. Hence, any ship can take any 

combination of the three specified products as long as the total storage capacity is not 

exceeded. All ships originate from the production plant P. S, has the smallest storage 

capacity while Ships S2and S3have the same total storage capacity (see Table 7.14). 

Table 7.14: Sh'P information for industrial case 2 

Ships Total storalze capacity (t) Initial E 

S, 
- 

2400 at P 

S2 4250 at P 

S, 4250 at P 

_ma 
ý Journgy Lpfor iatio. 

As the layout in Figure 7.3 shows, the journey network is complex. This network was 

constructed by the vendor based on the geographical position of each port. As Table 
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7.15 shows, journey costs and durations are equal for ships S2and S3while S, differs 
because of its smaller size. 

Table 7.15: Journey information for industrial case 2 
Journey From To S, S2 S3 

no. $ ý72day 
$ V2day $ 

1 p A 16429 2 20047 2 20047- 2 
2 P B 15586 1 20192 1 20192 1 
3 p c 11999 1 15330 1 15330 1 
4 p D 20919 3 25100 3 25100 3 
5 p F 24567 4 29267 4 29267 4 
6 A P 16429 2 20047 2 20047 2 
7 B p 15586 1 20192 1 20192 1 
8 c p 11999 1 15330 1 15330 1 
9 D p 20919 3 25100 3 25100 3 
10 F p 24567 4 29267 4 29267 4 
11 A c 6796 1 8288 1 8288 1 
12 A G 11353 2 13513 2 13513 2 
13 c A 6796 1 8288 1 8288 1 
14 c D 11285 2 13342 2 13342 2 
15 c E 9115 2 10450 2 10450 2 
16 c F 19490 4 22733 4 22733 4 
17 c G 10998 2 12768 2 12768 2 
18 D c 11285 2 13342 2 13342 2 
19 D E 4558 1 5225 1 5225 1 
20 D G 10998 2 12768 2 12768 2 
21 D H 6321 1 7733 1 7733 1 
22 E c 9115 2 10450 2 10450 2 
23 E D 4558 1 5225 1 5225 1 
24 E F 10375 2 12283 2 12283 2 
25 E H 10878 2 12958 2 12958 2 
26 F c 19490 4 22733 4 22733 4 

27 F E 10375 2 12283 2 12283 2 

28 F G- 14933 3 17508 3 17508 3 

29 Fý ýH 14933 3 17508 3 17508 3 

30 G A 11353 2 13513 2 13513 2 

31 G c 10998 2 12768 2 12768 2 

32 G D- 10998 2 12768 2 12768 2 

33 G F 14933 3 17508 3 17508 3 
- 34 G H 6321 1 7733 1 7733 1 
- 35 H D 6321 1 7733 1 7733 1 

8 2 
36 H E 10878 2 12958 2 1295 

17508 3 
37 ýH F 14933 3 17508 3 

_ 7733 1 
38 

_11 
J H 
_G 

6321 1 7733 1 
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Loading times: 

Based on the pumping rate for each port, we can calculate the maximum 
charge/discharge quantity per half day. Table 7.16 shows the maximum 
loading/unloading rate per half day for every port. 

Table 7.16: Loading information for industrial case 2 

Plant Maximum loading quantity 
(tonnes per half day) 

p 4800 
Customers Maximum unloading quantity 

(tonnes per half day) 
A 2400 
B 2640 
c 3240 
D 1200 
E 1680 
F 600 
G 2400 
H 2400 

Initial inventories in ports: 
The refinery P and the primary terminals have initial inventories of products while 

secondary terminals do not have any initial inventories. 

Table 7.17: Initial port inventories for industrial case 2 

Production plants Initial inventories (t) 
i, i2 ij i4 i9 i9 

P 21200 16300 27600 13700 26300 7000 

Customers 
A 1730 2190 310 4040 2370 110 

B 1560 2870 0 410 
-0 

310 

C 2130 1410 . 1140 760 1180 560 

D _ 0 0 0 0 0 0 

E 0 0 0 0 0 0 

F 0 0 0 0 0 0 
- 0 G 0 0 0 0 0 

H 0 L-ý_j 0 0 0 0- 
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Demand information: 

The demand over the time horizon of one month is given per product for every 
terminal. The demand is daily for the primary terminals and monthly for the 
secondary terminals. Since the discretisation interval is half a day, the even time 
periods represent full days. For readability, we present the demand data in three 
separate tables. Table 7.18 shows the daily demand for terminals' A, B and C of 
products il, i2, and i3only. 

Table 7.18: Primary terminals demand of products (ij, i2, & i3) for industrial case 2 
Time A B c 

i2 13 i2 i3 il i2 i 
t2 180 180 140 320 310 0 210 210 90 
t'd 180 180 140 320 310 0 210 210 90 
tQ 180 180 140 320 310 0 210 210 90 
tR 180 180 140 320 310 0 210 210 90 
tin 180 180 140 320 310 0 210 210 90 
t12 120 130 65 180 110 0 120 150 0 
t1d 120 130 65 180 110 0 120 150 0 
tig 180 180 140 320 310 0 210 210 90 
tIR 180 180 140 320 310 0 210 210 90 
t2fi 180 180 140 320 310 0 210 210 90 
t-?;? 180 180 140 320 310 0 210 210 90 
t24 180 180 140 320 310 0 210 210 90 
t29 120 130 65 180 110 0 120 150 0 
t2R 120 130 65 180 110 0 120 150 0 
tin 180 180 140 320 310 0 210 210 90 
t? 2 180 180 140 320 310 0 210 210 90 
114 180 180 140 320 310 0 210 210 90 
tig 180 180 140 320 310 0 210 210 90 
t?. q 180 180 1 140 320 310 0 210 210 90 
GO 130 130 65 180 110 0 120 150 0 
142 130 130 65 180 110 0 120 150 0 
144 180 180 140 320 310 0 210 210 90 
149 180 180 140 320 310 0 210 210 90 
GR 180 180 140 320 310 0 210 210 90 

tu 180 180 140 320 310 0 210 210 90 
t92 180 180 140 320 310 0 210 210 90 
t94 130 130 65 200 110 0 140 150 0 

t99 130 130 65 200 110 0 140 150 0 

tg, q 180 180 
-, 

140 320 310 0 210 210 90 

t9a 180 T 8ýO 140 320 310 0 210 210 90 

Table 7.19 shows the demand for terminals A, B and C of products 4, ig, and ig only. 

Note that the primary terminals' demand for those products is given every five days. 
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Table 7.19: Primary terminals demand of products (4, i5, & i6) for industrial case 2 
Time A B c 

14 19 
-ig 

i9 i4 1*9 119 

tin 865 545 0 0 0 0 1080 155 0 
t2n 865 545 0 0 0 14(o) 155 0 
ho 865 545 0 0 0 0 1080 155 100 
t4a 865 545 0 0 0 140 1080 155 0 
tgo 865 545 60 0 0 0 1080 155 
t, )O 865 545 60 

. 
0 0 140 

, 1080 1 155 

Table 7.20 shows the monthly demand for the secondary terminals' of products il, i2, 

and i3 only. Note that the secondary terminals' demand of products i4, ig, and ig is 

equal to zero. 

Table 7.20: Secondary terminals demand of products (ij, i2, & i3) for industrial case 2 

Time D E F G H 
il i 

-;, 
i? iI i7 i iI b i i i7 i iI i2 i 

t9a 390 
1 

360 0 110 150 220 60. 70 
1 

160 380 580 60 0- 220 1 60 

Extemal demand: 

Beside the customers shown above, the vendor supplies other VMI customers using 

other means than shipping. Such means include trains, pipelines, and trucks. We 

include the total material taken from the same refinery (P) using other means of 

transportations. Table 7.21 shows the total external quantities of each product needed 

every five days. 

Table 7.21: External demand information for industrial case 2 
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Port restrictions: 

Because of depth restrictions, the larger ships (S2 and S3) cannot enter the secondary 
terminals' ports. As Table 7.22 shows, a value of I means that a ship can enter a port 
while a value of 0 means a ship cannot enter a port. 

Table 7.22: Port restrictions for industrial case 2 
Ship Port 

P A B C D E F G H 
S, I I I I I I I I I 
S2 I II II 1 0 0 0 0 I oI 

I S3 I I 1 0 o1 01 0 

7.2.2 Problem solution 

As shown in Chapter 6, the HFRH proved to be the most robust solution approach. 
Other approaches failed to produce results for this case study. In order to compare the 

optimal solution with the heuristic one, we solve the same problem using heuristic H2 
(see Section 6.4). 

For this case study, we divide the time horizon into six intervals of ten periods (five 

days) each. The mathematical information for the original problem of this case study 
is shown in table 7.23. 

Table 7.23: Original problem mathematical information for industrial case 2 

Number of equations 17,392 
Number 49080 
Number of continuous variables 41,719 
Rolling horizon time intervals 

I 

Six intervals 
(tl4tlO-->t2O->t3O-->t4O->t5O4t6O) 

Given the complex network of journeys above, the number of binary variables is 

around 4000 due to the port restrictions. The results of solving the original problem 

using H2 and the HFRH approach are shown in Table 7.24. Because H2 is applied 

manually, no CPU time is shown for this algorithm. The relative optimality (gap 

between integer solution and best node in GAMS) is specified at 5% for the HFRH 

approach. 
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Table 7.24: Original problem results for industrial case 2 
(Fully relaxed solution = 6,300) 

Priority heuristic (H2) . HFRH approach Transportation cost $760,000 $721,000 
Ship utilisation percentage 80% - - 79% 
Solution CPU time - 22 minutes Relative optimality 5% 

The manual scheduling system which the company currently uses is based on 
heuristics and decomposition. Since only S, is allowed into secondary terminals, no 
other ship is assigned any journeys to secondary terminals. Therefore, H2 is applied 
for S, with the secondary terminals only. In addition, H2 is applied for S2and S3with 

the primary terminals only. In other words, S, does not deliver any material to the 

primary terminals. Figure 7.4 shows a Gantt chart of the original problem solution 
using H2. The heuristic solution is within 5% of the optimal solution. This result 

explains the company's reliance on heuristic algorithms for this complex problem. 

On the other hand, the HFRH approach obtains a solution that is better in quality 

compared to the heuristic one. This improvement is due to letting S, visit primary 

terminals as well as secondary tenninals. Figure 7.5 shows a Gantt chart of the 

original problem solution using HFRH. The main difference between figures 7.4 and 

7.5 is that SI is allowed to visit primary terminals in the second chart. An interesting 

phenomenon is the multiple visits of ships to adjacent ports in a short time periods. 

This is due to demand variability and capacity constraints in case of the primary 

terminals. In other words, a ship visits a port, moves to the next port, then comes back 

to visit the same previous port without loading in between. 

Both the HFRH ship utilisation percentage and total CPU time seem reasonable for 

this problem. The transportation costs include third party shipping which is equal to 

the vendor's shipping costs multiplied by two. Doubling the third party shipping costs 

is a reasonable assumption since the vendor is trying to minimise orders from third 

parties. Note that there is a substantial gap between the optimal HFRH solution and 

the fully relaxed one due to the huge binary decisions involved. 
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Taking into account material ordered from third parties, the demand of all terminals 
was fully satisfied. Table 7.25 shows a log of quantities of each product ordered from 

third parties for primary terminals A and B. No material is needed for primary 
terminal C. Note that the minimum order quantity from third parties is equal to the 

capacity of the smallest ship (2400 tonnes). 

Table 7.25: Original problem optimal third party quantities for industrial case 2 

Day required Quantities (t) ordered from third parties to be delivered to A 
i, i2 i3 4 i9 i9 

10 2170 490 0 0 0 0 

Day required Quantities (t) ordered from third parties to be delivered to B 
i, 12 i3 4 i9 ig 

28 1 522 1776 0 0 0 420 

Third party quantities are generated by the model per discrete period (for every half 

day). However, we forced the model to generate those quantities at even time periods 

which represent full days in reality. In the case of the original problem, two full 

shiploads are needed from third parties. One shipload of products il and i2 is required 

for terminal A. Another shipload of products il, i2, and ig is required for terminal B. 

As previously mentioned, the existing production capacity of refinery P cannot satisfy 

the demand of all terminals for some products. As a result, the production rates for 

such products are operating around their upper bounds to minimise the total quantity 

ordered from third parties (see Table 7-26). 

Table 7.26: Original problem optimal production rates for industrial case 2 

Product 
name 

i2 

i3 

i4 

i9 

ig 

Average production rate 

4748 
8921 
2703 
2186 
2640 
117 

Maximum production rate 
(t/day) at P 

5232 
10529 
2957 
2460 
2906 
140 

Throughput 

91 % 
85% 
91 % 
89% 
91 % 
84% 



Chapter 7 Industrial Case Studies 136 

Figure 7.6 shows the inventory levels of each product at the primary terminals only. 
No secondary terminal inventories are shown since the demand is static for those 
terminals. While the initial inventory of each product is specified by the user, we 
force the model to reserve an equal amount of inventory at the end of the time 
horizon. As seen in Figure 7.6, the inventory levels are roughly the same for most 
products during the entire month. This shows the efficiency of the VMl system that 
keeps adequate levels of products during the entire planning horizon. 

7.2.3 Potential modifications 

Utilising the current production and shipping capabilities is a first priority to the 

vendor. The objective minimises the cost of transportation between ports. Due to the 
higher production and transportation costs, the optimisation process reduces the total 

quantities ordered from third parties. However, we can further explore potential 
investments that might lead to better solutions. These modifications are evaluated in 

terms of operational (transportation) costs only. No investment costs are considered in 

these evaluations. We solve the problem after each modification to evaluate the 

potential profit. We only use the HFRH approach to solve the modified problems and 

compare the results to the original problem's solution. Due to the increased 

complexity of the modified problems, the relative optimality specification is increased 

to 10% for the HFRH approach. 
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Figure 7.6: Original problem inventory levels for industrial case 2 
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9.2.3.1 Adding anew type Iship 

Consider an investment of adding a small size ship to carry products il, i2, and i3 (type 
I ship). Running the new problem leads to the results shown in Tables 7.27 and 7.28. 

Table 7.27: Mathematical information for industrial case 2 after addinq tvpe I ship 
Number of equations 19,613 
Number of binary variables 6,360 
Number of continuous variables 52,213 
Rolling horizon time intervals 

I 
Six intervals 

(tl--)tlO--)t2O4t3O--)t4O--)t5O--)t6O) 

Note that the addition of the new ship increases the number of variables compared to 
the original problem (Table 7.23). 

Table 7.28: Potential results for industrial case 2 after adding type I ship 
(Fully relaxed solution = 5,000) 

Transportation cost $674,000 
Ship utilisation percentage 80% 
Solution CPU time 145 minutes 
Relative optimality 10%- 

Adding a type I ship decreases the transportation costs by 7% with a longer CPU time. 

A total CPU time of less than three hours is still reasonable considering the increase in 

the number of binary variables. Table 7.29 shows the total quantities ordered from 

third parties. 

Table 7.29: Potential third party quantities for industrial case 2 after adding a type I 

ship 

Day required Quantities (t) ordered from third parties to be delivered to B 
il i3 4 ig i9 

28 514 IAý6 0 0 420 

As Table 7.29 shows, only one full shipload is ordered from third parties to be 

delivered to terminal B. In addition, the refinery production rates remain the same for 

all products. Table 7.30 shows that only the production rate of i2increased by 1%. 
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Table 7.30: Potential production rates for industrial case 2 after adding a tvDe I shin 
Product Average production Maximum Throughput Increase in 
name rate (t/day) at P production rate throughput 

(t/day) at P 
11 4820 5232 92% 0% 
i2 8947 10529 85% 1% 
i3 2702 2957 91 % 0% 
i4 2186 2460 89% 0% 
i9 2640 2906 91% 0% 
i9 117 140 84% 0% 

9.2.3.2 Adding anew type Hship 

We now consider an investment of adding a small size ship to carry products i4, ig, 

and ig (type 11 ship). Running the new problem leads to the results shown in Table 
7.31. 

Table 7.31: Potential results for industrial case 2 after adding type 11 ship 
(Fully relaxed solution = 5,000) 

Transportation cost $ 718,000 
Ship utilisation percentage 80% 
Solution CPU time 100 minutes 
Relative optimalit 10% 

Note that the addition of the new ship increases the number of variables compared to 

the original problem (similar to adding a type I ship). Therefore, the same 

mathematical information is obtained by adding a type 11 ship (see Table 7.27). 

Adding a type 11 ship leads to a negligible improvement compared to the original 

transportation cost with a longer CPU time. A total CPU time of less than two hours is 

still reasonable considering the increase in the number of binary variables. 

Nevertheless, the main advantage of adding at type 11 ships is the elimination of third 

party orders. No material is ordered from third parties for any of the primary 

terminals. Consequently, as Table 7.32 shows, the production rate of ig increased by 

10% to cover for third party quantities ordered for terminal B in the original problem. 
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Table 7.32: Potential production rates for industrial case 2 after adding a type 11 ship 
Product 
name 

Average production 
rate (t/day) at P 

Maximum 
production rate 

(t/day) at P 

Throughput Increase in 
throughput 

4837 5232 92% 0% 
i2 8996 10529 85% 1% 
13 2702 2957 91% 0% 
14 2186 2460 89% 0% 
i9 2640 2906 91% 0% 
ig 1 131 140 94% 10% 

9. Z3.3 Adding newpumps to terminalsA andB 

Looking at the optimal solution of the original problem, we see that only terminals A 

and B required delivery from third parties. So, as a potential investment, we consider 
buying new pumps from these terminals. We assume that the unloading rate from at 
these two terminals will be doubled as a result. Running the new problem leads to the 

results shown in Table 7.33. Note that doubling the unloading rate does not change 

the number of variables compared to the original problem (see Table 7.23). 

Table 7.33: Potential results for industrial case 2 after adding type 11 ship 
(Fully relaxed solution = 6,300) 

Transportation cost $ 638,000 
_ Ship utilisation percentage 79% 
_ Solution CPU time 80 minutes 
_ 
_Relative 

optimality 10% 

Adding new pumps at A and B increases the total ship-discharge quantities at those 

terminals, which reduces the total number of ship loads required to satisfy those 

terminals' demand. Consequently, the total transportation costs decreases by 12% 

after adding new pumps at A and B. Table 7.34 shows the total quantities ordered 

from third parties. 

Table 7.34: Potential third party quantities for industrial case 2 after adding new pumps 

Day req Quantities ordered from thilrad arties tL be delivered to B 
i, i2 i3 i4 i9 i9 

708 000 420 28 1272 0 
107 
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As Table 7.34 shows, only one full shipload is ordered from third parties to be 
delivered to terminal B. In addition, refinery production rates remain the same for all 
products. Table 7.35 shows that only the production rate of i2 increased by 1% 

compared to the original problem. 

Table 7.35: Potential production rates for industrial case 2 after adding new pumps 
Product 
Name 

Average 
production rate 

(t/day) at P 

Maximum 
production rate 

(t/day) at P 

Throughput Increase in 
throughput 

il 4794 5232 92% 0% 
12 8973 10529 85% 1% 
ij 2702 2957 91 % 0% 
i4 2186 2460 89% 0% 
i9 2640 2906 91% 0% 
i9 117 140 84% 0% 

7.2.4 Recommendations 

A complex VMI problem to deliver six oil products from a refinery to geographically 

dispersed terminals is described. The vendor is committed to meet the demand of each 

product for all terminals. Besides using its three flexible-compartment ships for 

delivery, the vendor is responsible for ordering any necessary extra products from 

third parties. Terminals are classified into two categories; primary and secondary 

terminals. Primary terminals (A, B, and Q have higher demands of all six Products 

and relatively more accessible ports. Secondary terminals (D, E, F, G, and H) have 

lower demands of only three products while having less accessible ports. As a result, 

the demand of the secondary terminals must be fully satisfied using the vendors' 

ships. On the other hand, the demand of the primary terminals can be satisfied using 

the vendors' ships as well as third-party ships. The original problem is solved to lead 

to a near-optimal production and shipping schedule. In addition, a log of all required 

third-party quantities by the primary terminals is provided to the vendor. The log 

shows the required quantity, the product type, and the day at which this quantity is 

required. 
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Different investment scenarios are tested each with a possible improvement in the 

optimal solution. Adding a type I ship results in a 7% reduction in the transportation 

cost. Doubling the pumping rate at terminals A and B results in a 12% reduction in the 

transportation cost. In both scenarios, only one shipload of third party quantities is 

needed. On the other hand, adding a type 11 ship results in a negligible change in the 

total transportation cost. However, no third party quantities are needed in this 

scenario. The decision is left to the vendor to evaluate the trade-off between total 

costs and third party orders. Obviously, avoiding third party orders might have an 

extra monetary value to the vendor. Hence, adding a type 11 ship could be the best 

option to the vendor provided that the investment cost is reasonable. 
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Chapter 8 

Conclusions and Future Directions 

8.1 Conclusions 

Outsourcing non-core business processes is a growing objective in most industries. 
VMI plays an important role in achieving that objective. By letting the vendor take 
over material replenishment in the manufacturer's site, the manufacturer will 
concentrate on other core processes. In return, end customers will receive better 
service quality while costs are minimised for both manufacturers and vendors. In 
industrial VMI systems, a single or multiple products are shipped from production 
plant(s) to satisfy demand forecasts in other customer locations using minimum 
transportation cost. Achieving the optimisation goal includes satisfying other 
constraints such as storage capacity, production capabilities, and time requirements. 
Hence, a VM1 system integrates the three major components of production planning, 
distribution, and inventory management. Our work efficiently modelled a shipping- 
based VMI system in order to assess its benefits. A CDST was designed to aid in the 

process of optimising the performance of industrial VMI systems. 

The VMI system has been modelled as an MILP using the RTN formulation. Two 

types of mathematical models were designed to represent the VMI system; detailed 

and aggregate models. The detailed model represents the VMI system dynamically 

while the aggregate model focuses on steady-state overall decisions. These two 

models are combined carefully to construct different solution approaches. To evaluate 

these solution approaches, the VMI problem was solved directly using the detailed 

model only. An illustrative example VMI problem was used to test all solution 

approaches including the direct approach. The optimisation-based solutions were 

compared to solutions provided by industrial heuristic algorithms. TO evaluate the 

robustness of all solution approaches, the example was solved with two different sets 

of demand data. The first set of data was static while the other set was relatively more 

dynamic. Since all routing and scheduling problems are NP-hard, the direct approach 

consumed unreasonably long CPU times to reach the optimal solution. This justifies 
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the use of heuristic algorithms for such problems even on the expense of the objective 
value. The industrial heuristics HI and H2 proved to be practical tools in producing a 
feasible solution for complex problems. However, our work focuses on the design of 
optimisation-based approaches to solve complex VMI problems. 

The iterative approach combines the aggregate and the detailed models sequentially. 
In other words, ship-journey combinations generated by the aggregate model are used 
as pre-matches to the detailed problem. In case of static demand data, the iterative 

approach solves the illustrative example in much less time compared to the direct 

solution approach. However, the iterative approach fails to solve the problem with 
dynamic demand data. In fact, the direct solution approach was more successful than 
the iterative approach in reaching an optimal solution for the dynamic demand dataset. 
Time aggregation proved to be effective only for the static demand dataset. Static 
demand greatly reduces the gap between the aggregate and detailed solution. On the 

other hand, the more dynamic the demand is, the greater the gap between the 

aggregate and detailed results. Therefore, time aggregation can only be applied to 

cases with static demand where promising results are expected. 

The direct solution approach requires unrealistically long CPU times to reach optimal 

solutions while the iterative approach fails to solve dynamic VMI problems. The 

rolling horizon approach seems to be a good compromise to balance the trade-off 

between detailed modelling and long CPU times. The forward rolling horizon (FRH) 

approach combines the aggregate and detailed models simultaneously using tight 

boundary conditions. When used to solve the illustrative example problem, FRH 

produced optimal solutions (similar to the ones produced by the direct approach). 

Moreover, FRH was robust to solve the problem with both static and dynamic 

datasets. A novel HFRH approach was proposed to solve the VMI problem. In the 

HFRH approach, ships are passed one by one to the optimisation process while other 

ships are aggregated during that time block. The HFRH approach proved to be more 

robust even when compared to the plain FRH approach. The same optimal solutions 

were reached in relatively shorter CPU times. Because all other approaches failed to 

produce optimal solutions for the industrial case studies, the HFRH approach was the 

only successful approach to solve those case studies in Chapter 7. 
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Recall from Section 5.3 that we do not pass the ships to the HFRH algorithm in any 
specific order. Instead, ships are passed in an arbitrary order. As explained in Section 
5.3, the order in which ships are solved can affect the global optimal solution. This 
was not the case for illustrative example problem in Chapter 6 where solutions 
provided by the HFRH approach matched the optimal solutions (obtained by the 
direct approach). However, we cannot guarantee that this also applies for the 
industrial case studies in Chapter 7. Although solutions provided by the HFRH were 
more successful than those provided by heuristics, further sensitivity analysis (to the 
order of ships) can be performed to the industrial case studies. 

8.2 Future Directions 

In this section some potential work areas are suggested for any future research. These 

areas were not included in our work because of time limitations. However, for some 

areas, more reasons are mentioned as to why they were not included in our work. 

* Optimisation of time intervals: 

At the moment, rolling horizon time intervals are chosen manually and equally. To 

speed up the solution time, those intervals can be optimised using a small MILP pre- 

model. If we choose the number of binaries as a metric, then the time horizon should 

be divided such that the number of binary variables in each interval is roughly the 

same. A minimum interval length is also provided to avoid very short intervals. This 

pre-model can result in uneven time intervals with approximately equal numbers of 

binary variables. 

Ship queuing: 

Currently, the VMI model restricts the total number of ships existing in any port to a 

maximum user-specified capacity. Consequently, a ship will remain in any previous 

port in order not to violate this constraint. A more realistic method of modelling port 

capacity is to construct a ship queuing system in ports. If the total number of ships is 

exceeded, any incoming ships will queue for a vacant berth. Queuing can be presented 

in terms of extra waiting time at the port in addition to any load ing/un loading times. 
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Mathematically, the queuing system can be achieved by introducing a shadow port for 
every available port. If the actual port is full, the ship will go to the shadow port and 
wait for a vacancy in the actual port. An imaginary journey of zero duration between 
the actual and shadow ports is added to the model. 

* Graphical user interface: 

In order to complete the CDST, a user friendly-interface should be designed for data 
input and schedule output. The interface can greatly facilitate the testing of future case 
studies. MS Access coupled with Visual Basic can be used to design the interface. 

9 Inco! poration of fixed-compartment ships: 
Ships used in the VMI system are considered to be flexible-compartment ships. These 

ships are provided with special movable bulkheads. As a result, if more than one 
product is being shipped, any different quantities of these products can be shipped 
together provided that the total quantity does not exceed the ship capacity. On the 

other hand, fixed-compartment ships are provided with separate storage facilities 

onboard. Therefore, shipping more than one product requires a special kind of 

optimisation in order to efficiently utilise the total storage capacity. Incorporation of 
fixed-compartment ships requires an MILP model and linking this model with the 

entire VMI system will greatly affect the total solution speed. Fixed-compartment 

ships are usually old and most newly-manufactured ships are flexible-compartment 

ships. Howeverý considering these ships in VM1 systems poses an interesting 

modelling challenge. 

o Demand forecastin 

In industrial VMI systems, a contract between the vendor and the customer guarantees 

that material will always be available to cover the forecasted demands. Demand 

forecasting in such systems is done by the customer, and the vendor agrees only to 

meet these forecasts for a long period of time (usually a whole year). A penalty cost 

for not meeting demand forecasts is negotiated between the two parties. Nevertheless, 

to further improve the CDST, demand forecasting can be included as pre-optimisation 

stage - 
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9 Conside 1: 

Deterministic VMI problems are NP-hard by nature. Adding uncertainty will make 
the problem more difficult to solve even with the proposed solution approaches. 
Moreover, uncertainty is present in every decision in the VMI system such as journey 
durations, demand fluctuations, unplanned shut-downs, ship breakdown, etc. 
Including all these uncertainties in the model is impossible. The current CDST is 
designed to provide an optimal schedule for a specific time horizon. To account for 

any unforeseen disturbances, the CDST can be used to resolve the problem more 
frequently while extending the time horizon with every resolution. A future objective 
is to try to derive "robust" schedules that will perform well under different scenarios. 

0 Production planning extension 

VMI systems integrate production planning, distribution, and inventory management. 

In addition to the optimal ship schedule, we optimise the system from the vendor's 

perspective by providing the optimal daily production plans. Those plans are optimal 

because they meet the shipping schedule and the vendor's storage capacity. A further 

optimisation of production planning can be considered to explore the raw material 

availabilities. In other words, the supply chain can be extended to cover the raw 

material supplies to the vendor by other members. Because of the production 

schedules' dependencies on materials, the use of Material Requirements Planning 

(MRP) can be of great benefit (Martin, 1995). 
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Appendix 

Calculation ofj.,,, 

j .... is the maximum number of aggregate journeys Onx = card(z)). Because we do not 
know the total number of journeys a ship can take, we estimate the maximum number 

of journeys it can take during the entire time horizon. jna,, is calculated by dividing the 

total time horizon (H) by the shortest possible sequence of events. The following 

equation shows the mathematical derivation. Note that the denominator contains the 

minimum journey and unloading durations (excluding the journey to the dummy 

location). Then, an extra journey is added to cover the trip to the dummy location. The 

division values might lead to non-integer value. Therefore, it is rounded up to the next 

integer. 

imax =1 _1+1 
min(rsj) + min(V/s / TI) 

c) 


