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Abstract

We consider the hyperkähler extension of Teichmüller space with the Weil-

Petersson metric. We describe its recent construction as a hyperkähler quo-

tient and examine the defining equations for the resulting moduli space.

We examine relations between this moduli space and the quasi-Fuchsian de-

formation space of the surface, with particular attention to the connection

with the canonical holomorphic symplectic structure. We also consider the

connection with Taubes’ moduli space of hyperbolic germs and whether it

is possible to extend the hyperkähler structure in any fashion.
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Chapter 1

1.1 Introduction

The Teichmüller space of complex structures on a surface is a natural ob-

ject of study. It is known to be manifold of dimension −3χ(Σ) where χ(Σ)

is the Euler characteristic of the surface under consideration. Further, Te-

ichmüller space itself has a complex structure and a natural metric, the

Weil-Petersson metric, that together make it into a Kähler manifold. Re-

sults of Feix and Kaledin imply that any real analytic Kähler manifold pos-

sesses a hyperkähler extension realised as some neighbourhood of the zero

section inside its cotangent bundle. In the case of Teichmüller space Don-

aldson [5] explicitly constructed this extension as a hyperkähler quotient. In

this thesis we outline the necessary geometry to define and understand the

hyperkähler extension of Teichmüller space. Consideration of the defining

equations for the extension lead us to analyse a particular family of elliptic

partial differential equations; we present results on the existence and unique-

ness of solutions to these equations. We examine the relations between the

hyperkähler extension and the so-called quasi-Fuchsian space, relating the

various symplectic structures with those of Goldman [10], [11], and Platis

[21]. We also consider the recent work of Taubes on minimal hyperbolic

germs [26].

The thesis is organised as follows:

In chapter 2 we describe the necessary background material in symplectic

and hyperkähler geometry, including the relevant finite dimensional quotient

constructions, before turning to a discussion of complex structures on sur-
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faces and finally a description of Teichmüller space and the Weil-Petersson

metric.

In chapter 3 we present the results of Feix and Kaledin on the existence

of hyperkähler extensions before looking in some detail at a specific example;

the hyperkähler extension of the hyperbolic plane. We explicitly construct a

map from the hyperkähler extension of the hyperbolic plane to the product

H2 × H2 that is used in the sequel. Next we discuss the construction by

Donaldson of the hyperkähler extension of Teichmüller space as an infinite

dimensional hyperkähler qotient.

In chapter 4 we analyse the non-linear partial differential equation arising

in the definition of Donaldson’s moduli space. We obtain results about

its existence and uniqueness which allow us to construct an embedding of

the moduli space M into the cotangent bundle of Teichmüller space. We

describe a certain explict subset of the image of M inside the cotangent

bundle of Teichmüller space, as well as proving that this space is the Feix-

Kaledin hyperkähler extension of Teichmüller space with the Weil-Petersson

metric.

In chapter 5 we introduce the quasi-Fuchsian deformation space QF(Σ)

before explicitly constructing a map from the moduli spaceM into the quasi-

Fuchsian deformation space. We show that the restriction of Goldman’s

holomorphic symplectic form on the representation variety of Σ to the image

of M coincides with a natural holomorphic symplectic form defined by the

hyperkähler structure on M.

In chapter 6 we discuss the question of what subset of the quasi-Fuchsian

deformation space lies in the image ofM and whether, if it is not a surjection

we may extend the hyperkähler structure off M to some larger open set.

Then we describe the construction of Taubes’ moduli space of hyperbolic

germs, a natural extension of the moduli space M. We present results about

when we can extend the hyperkähler structure from M to some larger set

in Taubes’ space.
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Chapter 2

Here we summarise results that are basic to our exposition and recall con-

structions to be used in the sequel. We assume throughout out this section

that all quotients of manifolds by group actions are themselves smooth man-

ifolds.

2.1 Symplectic and hyperkähler geometry

Let M be a 2n dimensional manifold. A symplectic form ω on M is a closed

non-degenerate 2-form. Most of the material in this section may be found

in [20].

2.1.1 The symplectic structure on a cotangent bundle

Let now N be any manifold, there is a canonical symplectic structure on the

cotangent bundle T ∗N . To see this we define a canonical one form, λ, on

the total space T ∗N . Let q = (p, σ) ∈ T ∗N , X ∈ TqT ∗N , and π : T ∗N → N

be the canonical projection map, then:

λq(X) := σ(π∗X).

We define the canonical symplectic structure ω := dλ.

If N is a complex manifold then this construction applied to the holo-

morphic cotangent space T ∗1,0N gives us a holomorphic symplectic structure

ωC on the total space of T ∗1,0N . If we take zi = xi + iyi as local complex

coordinates on N and dzi = dxi + idyi a basis for T ∗1,0N . Writing, for

w ∈ T ∗1,0N , w = widzi gives local complex coordinates on the fibres of
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T ∗1,0N . We may check that:

ωC = dzi ∧ dwi.

Given the suggestive nomenclature the following is not a surprise:

Lemma 2.1.1. The canonical symplectic structure is natural. That is, if

M , N are manifolds and there exists some diffeomorphism φ : M → N , then

the symplectic manifolds (T ∗M,ωM ) and (T ∗N,ωN ) are symplectomorphic.

Here ωM and ωN are the canonical symplectic structures on the cotangent

bundles.

Proof. Since φ : M → N we can immediately construct a map φ̃ : T ∗M →
T ∗N ,

φ̃(p, σ) = (φ(p), φ∗(σ)),

where here φ∗ := (φ−1)∗ on the cotangent vectors, i.e. we are pulling back

by the inverse map. We have the following commutative diagram:

T ∗M
φ̃−−−−→ T ∗N

π1

y π2

y
M

φ−−−−→ N

where the πi are the obvious projections. Now let λN be the canonical

one-form on N , and consider φ̃∗λN . Let q = (p, σ) ∈ T ∗M and suppose

X ∈ TqT ∗M . We have that

φ̃∗λN (X) = λN (φ̃∗X)

= φ∗(σ)(π2∗φ̃∗X)

= σ((φ−1)∗π2∗φ̃∗X)

= σ(π1∗X)

= λM (X).

where we use the relations between the differentials implied by the commu-

tative diagram.

Since the canonical one forms are identified by φ̃ we must have that

the symplectic structures are identified, as pullback commutes with exterior

derivative.
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2.1.2 Symplectic reduction

Under certain circumstances the technique of symplectic reduction allows

us to construct new symplectic manifolds by considering the action of some

group on a given symplectic manifold. Let (M,ω) be a symplectic manifold

and let G be a compact Lie group. Suppose G acts on M via Hamiltonian

symplectomorphisms. That is, for each g ∈ G the action of g on M preserves

the symplectic form, and in addition for any ξ ∈ g there exists a Hamiltonian

function Hξ such that

ι(Xξ)ω = dHξ,

where Xξ is the vector field generated by the infinitesimal action and the

map ξ 7→ Hξ defines a Lie algebra homomorphism g → C∞(M)

Definition 2.1.2. A moment map for the action is a map µ : M → g∗ such

that

Hξ(p) = 〈µ(p), ξ〉,

where the map ξ 7→ Hξ defines a Lie algebra homomorphism g → C∞(M).

Here 〈 , 〉 is the natural pairing of g with its dual. The moment map is

G-equivariant. The main theorem in finite dimensions is:

Theorem 2.1.3 (Marsden-Weinstein). Take (M,ω) and G as above, and let

the moment map for the action be given by µ : M → g∗. Since the moment

map is G-equivariant and 0 ∈ g∗ is a fixed point for the coadjoint action,

the preimage of µ−1(0) is invariant under G. Assume that

1. 0 is a regular value of µ so that µ−1(0) is a submanifold of M .

2. G is acting freely and properly on µ−1(0) so that the quotient µ−1(0)/G

is a manifold.

Then there is a natural symplectic structure on the quotient µ−1(0)/G.

If, in addition, M is a Kähler manifold with Kähler form ω and G pre-

serves the complex structure I, then the quotient µ−1(0)/G is also Kähler

manifold.

In order to prove this theorem we require the following result about

linear symplectic reduction.
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Lemma 2.1.4. Let V be a symplectic vector space, that is, a 2n dimensional

vector space equipped with a non-degenerate skew bilinear form ω. Let W be

a subspace of V and denote by Wω the symplectic complement of W :

{v ∈ V |ω(v, w) = 0 ∀ w ∈W}.

Suppose Wω ⊆ W , then the symplectic structure on W descends to a sym-

plectic structure on the quotient W/Wω.

Proof. Let ω̃([u], [v]) = ω(u, v). Since ω(u, v) = ω(u + uω, v + vω) for any

uω, vω ∈Wω we have that ω̃ is well defined. Suppose for some [v] ∈W/Wω

we have ω̃([v], [w]) = 0 for all [w] ∈W/Wω. Then picking a representative v

for [v] we see this would contradict the fact that ω is non degenerate unless

[v] = 0.

Now we return to the proof of theorem 2.1.3

Proof. Let N := µ−1(0)/G be the quotient manifold. We need to define a

symplectic form on TnN for each n ∈ N . Let π : µ−1(0) → N be the natural

projection map and ι : µ−1(0) →M be inclusion, we will show that ω̃ given

by

π∗ω̃ = ι∗ω.

is a symplectic form on N .

Define O(p) := {g(p) | g ∈ G}, the orbit of G through p. Firstly we

show that, if µ(p) = 0, TpO(p) = (Tp(µ−1(0)))ω and hence by lemma 2.1.4

we have a well defined non-degenerate skew bilinear from on each quotient

Tp(µ−1(0))/TpO(p).

Now, µ(p) = 0 implies Hξ(p) = 〈µ(p), ξ〉 = 0 for all ξ ∈ g. It follows

that ω(Xξ, Y ) = dHξ(Y ) = 0 for all Y ∈ Tp(µ−1(0)), since Hξ is constant

on µ−1(0). But Xξ(p) ∈ TpO(p) and conversely every element of TpO(p) is

of the form Xξ(p) for some ξ ∈ g therefore TpO(p) ⊆ (Tp(µ−1(0)))ω. Then

we have

dim(Tp(µ−1(0)))ω = dim(M)− dim(Tp(µ−1(0)) = dim(G)

which is the dimension of TpO(p) so TpO(p) = (Tp(µ−1(0)))ω.
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So on each Tp(µ−1(0))/TpO(p) we have that ω̃ is well defined; we now

need to check it is uniquely defined at each point of the quotient N . But

π∗ω̃π(p)(u, v) = ωp(u, v)

= (ψ∗gω)ψg(p)(u, v)

= ωψg(p)(ψg∗u, ψg∗v)

= π∗ω̃π(ψg(p))(ψg∗u, ψg∗v).

Therefore

ω̃π(p)(π∗u, π∗v) = ω̃π(ψg(p))(π∗u, π∗v),

as desired, and all tangent vectors on N are of the form π∗u for some tangent

vector u on M since π is surjective.

We know ω̃ is non degenerate since each ω̃p is, so it remains to check

that it is closed. But this follows since

0 = ι∗dω = dι∗ω = dπ∗ω̃ = π∗dω̃

and π is a surjection.

We now need to prove the last assertion. Suppose M has a complex

structure I compatible with ω, so that we obtain a real metric g on M

defined by

g(X,Y ) = ω(X, IY ),

for any X,Y ∈ TpM . Now this metric restricts to give us a metric on the

subset µ−1(0), and the decomposition of the tangent space of µ−1(0) as

Tpµ
−1(0) = TpO(p)⊕ TpO(p)⊥,

defines a connection in the prinicipal G bundle µ−1(0) over µ−1(0)/G.

Now we can define a complex structure on the quotient µ−1(0)/G as fol-

lows. Let X ∈ T[p]

(
µ−1(0)/G

)
, take its unique horizontal lift X̃ ∈ Tpµ−1(0).

Since the horizontal subspace of the connection is defined to be TO(p)⊥ we

must have that for all ξ ∈ g,

0 = g(Xξ, X̃)

= ω(Xξ, IX̃)

= dHξ(IX̃)

= d(〈µ, ξ〉)(IX̃).
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Since this holds for all ξ we must have that µ is not changing in the direction

of IX̃ and hence that IX̃ ∈ Tpµ−1(0). Define the almost complex structure

Ĩ on the quotient by

ĨX = π∗(IX̃),

for X̃ any horizontal lift of X. We need to show that this is well defined,

the proceeding discussion shows π∗(IX̃) ∈ T[p](
(
µ−1(0)/G

)
so it certainly

lies in the right space, we need it to be independent of the point q ∈ [p]

we lifted to. This follows since G preserves both the complex structure I

and the horizontal subspaces of the connection. To see that Ĩ is an almost

complex structure observe that for X̃ ∈ Tpµ−1(0) and ξ ∈ g:

g(Xξ, IX̃) = −ω(Xξ, X̃)

= −d(〈µ, ξ〉)(X̃)

= 0.

Thus IX̃ is orthogonal to the orbit, and if X̃ is horizontal we therefore have

that IX̃ is horizontal.

We need to show that I is integrable. This follows immediately from the

fact that for any horizontal vector fields X̃, Ỹ on µ−1(0):

π∗[X̃, Ỹ ] = [π∗X̃, π∗Ỹ ].

π∗IX̃ = Ĩπ∗X̃,

so that if the Nijenhuis tensor vanishes on M it must also on µ−1(0)/G.

This complex structure is clearly compatible with the symplectic form

on the quotient and the quotient is therefore Kähler.

2.1.3 Symplectic reduction of cotangent bundles

Suppose M is a manifold and let ω be the canonical symplectic structure

on T ∗M . Suppose that we have some group G acting by diffeomorphisms

on M . It follows from the fact that the canonical symplectic structure on

the cotangent bundle is natural that G acts by symplectomorphisms on the

symplectic manifold (T ∗M,ω). There exists a moment map for the action of

G on T ∗M and we may form the Marsden-Weinstein quotient T ∗M//G. Let
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G̃ be another group of diffeomorphisms of M such that G ⊆ G̃. If we have

an identification of the symplectic quotient T ∗M//G with the cotangent

bundle of the quotient of M by the action of G̃ then we may hope that

the induced symplectic structure on the symplectic quotient coincides with

the canonical symplectic structure on the cotangent bundle T ∗(M/G̃). We

consider such a result now.

Let M , G, G̃ be as above, with ω the canonical symplectic structure on

the cotangent bundle T ∗M and ω̂ the canonical symplectic structure on the

cotangent bundle T ∗(M/G̃). Let µ be the moment map for the action of G

on T ∗M and suppose that if q = (p, σ) ∈ µ−1(0) then σ is in the annihilator

of the kernel of the map π2∗ : TpM → T[p](M/G̃). Since the tangent space

at a point [p] ∈M/G is given by

T[p](M/G) ∼= TpM/ker(π2∗),

we see that if q = (p, σ) ∈ µ−1(0) then σ defines a point in T ∗[p](M/G).

Suppose that the resulting map

ι̃ : µ−1(0)/G→ T ∗(M/G̃),

is injective and the following diagram commutes:

µ−1(0) ι−−−−→ T ∗M
π−−−−→ M

π1

y y π2

y
µ−1(0)/G ι̃−−−−→ T ∗(M/G̃) π̃−−−−→ M/G̃

In this situation we have the following proposition:

Proposition 2.1.5. The canonical injection ι̃ : T ∗M//G ↪→ T ∗(M/G̃) sat-

isfies

ι̃∗ω̂ = ω̃,

where ω̃ is the symplectic structure on µ−1(0)/G and ω̂ is the canonical

sympectic structure on T ∗(M/G̃).

Proof. We prove this by considering the behavior of the canonical one forms

on µ−1(0) and T ∗(M/G̃). Take q = (p, σ) ∈ µ−1(0) and let X ∈ Tqµ
−1(0),

since the diagram commutes we have immediately that

π2∗ ◦ π∗ ◦ ι∗(X) = π̃∗ ◦ ι̃∗ ◦ π1∗(X).
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Writing λ̂ for the canonical one form on T ∗(M/G̃) and λ for the canonical

one form on T ∗M ,

(π∗1 ◦ ι̃∗λ̂)(X) = λ̂(ι̃∗ ◦ π1∗(X))

= σ(π̃∗ ◦ ι̃∗ ◦ π1∗(X))

= σ(π2∗ ◦ π∗ ◦ ι∗(X))

= σ(π∗ ◦ ι∗(X))

= (ι∗λ)(X).

Here we have used the fact that σ is in the annihilator of kerπ2∗.

Recall that the symplectic structure ω̃ on the Marsden-Weinstein quo-

tient T ∗M//G is defined by

π1
∗ω̃ = ι∗ω.

Since we have seen that

π∗1 ◦ ι̃∗λ̂ = ι∗λ,

we must have that

π∗1 ◦ ι̃∗ω̂ = ι∗ω,

which implies that

ι̃∗ω̂ = ω̃,

which is what we were trying to show.

2.1.4 Hyperkähler geometry

The material in this section may be found in the paper [14]. Let M be a 4n

dimensional smooth manifold.

Definition 2.1.6. A hyperkähler structure on M is a quadruple (g, I, J,K),

where g is a metric on M and each of I, J,K is an integrable orthogonal

complex structure on M parallel with respect to the Levi-Civita connection.

Further the complex structures satisfy the quaternion algebra identities:

I2 = J2 = K2 = −1,

IJ = −JI = K,
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KI = −IK = J,

JK = −KJ = I.

Since each complex structure is parallel, each induces in combination

with g a Kähler metric on M . We have corresponding Kähler forms:

ω1(X,Y ) = g(IX, Y ), ω2(X,Y ) = g(JX, Y ), ω3(X,Y ) = g(KX,Y ).

The following is clearly a generalisation of the Marsden-Weinstein quo-

tient from the previous section. We suppose that the group action in what

follows is sufficiently nice for the quotient to be a manifold.

Theorem 2.1.7. Let (M, g, I, J,K) be a hyperkähler manifold and suppose

there is an action of a group G of isometries on M preserving the three

symplectic forms ωi. Suppose in addition that we have three moment maps

µi, one for each symplectic form. Then the quotient

M///G =
⋂
i µ

−1
i (0)
G

has a natural hyperkähler structure.

Proof. We shall reduce the proof of this to three applications of theorem

(2.1.3). Define the complex valued map µI : M → g∗ ⊗ C,

µI := µ2 + iµ3.

Further, for ξ ∈ g define the complex valued function µξI : M → C,

µξI := 〈µI , ξ〉 = 〈µ2, ξ〉+ i〈µ3, ξ〉.

Here the angle brackets denote the natural pairing between g and its dual.

From these definitions we see immediately that for Y a vector field on M ,

dµξI(Y ) = dH2
ξ (Y ) + idH3

ξ

= ω2(Xξ, Y ) + iω3(Xξ, Y )

= g(JXξ, Y ) + ig(KXξ, Y ),
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and

dµξI(IY ) = g(JXξ, IY ) + ig(KXξ, IY )

= −g(KXξ, Y ) + ig(JXξ, Y )

= idµξI(Y ).

Since d = ∂+∂ we see by comparing types that the above relationship must

hold for ∂µξI(Y ) as well. Now taking Y ∈ T 1,0
I M we see that

i∂µξI(Y ) = ∂µξI(IY ) = −i∂µξI(Y ),

so that

∂µξI = 0.

Therefore µξI is a holomorphic function on M for every ξ ∈ g. This tells us

precisely that the map µI : M → g∗ ⊗C is holomorphic since we may think

of the ξ as giving complex coordinate functions on g∗ ⊗ C. Now consider

the submaniold of M defined by µ−1
I (0) = µ−1

2 (0) ∩ µ−1
3 (0). Since we know

from the above that µI is a holomorphic map this is a complex submanifold

of M with respect to the complex structure I. Therefore the metric induced

by the restriction of g is Kähler. By hypothesis, the group G acts on µ−1
I (0)

preserving the symplectic form ω1 and complex structure I, with moment

map given by the rstriction of µ1 to µ−1
I (0). Applying theorem (2.1.3) we

see that the quotient (µ−1
I (0) ∩ µ−1

1 (0))/G is a Kähler manifold with the

complex structure induced by I and the symplectic structure induced by

ω1. Repeating the argument with the complex structures J and K we arrive

at the desired conclusion.

2.2 Complex structures

In this section we examine the theory of complex structures on surfaces. We

start by discussing the case of linear complex structures on R2 before gen-

eralising this construction to surfaces. Finally we describe the construction

and properties of the Teichmüller space of a surface.
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2.2.1 Linear complex structures on R2

We fix conventions. Take the natural coordinates (x, y) on the vector space

R2, and fix the orientation dx ∧ dy. A complex structure on R2 is an endo-

morphism of R2 that squares to minus the identity. We have for example

the standard complex structure J0 on R2,(
0 −1

1 0

)
.

The set of all complex structures on R2 is written J (R2). By definition,

J (R2) = {J ∈ End(R2)|J2 = −1}.

A complex structure on R2 induces a natural orientation by taking {∂x, J∂x}
as an ordered basis for the tangent space. The space of complex structures

on R2 compatible with the fixed orientation is written J +(R2).

There is a natural left action of SL2R on J +(R2) by conjugation:

A : J 7→ AJA−1.

This action is transitive and the stabiliser of the standard complex structure

J0 is SO2R, hence we may identify J +(R2) with the coset space SL2R/SO2R.

The tangent space at J in J +(R2) is given by the set of endomorphisms

of R2 that anticommute with J ,

TJJ +(R2) = {H ∈ End(R2) | HJ = −JH}.

An immediate consequence of this is that the tangent vectors at J0 are

symmetric and trace free matrices. That is, given H ∈ TJ0J +(R2) we may

write it

H =

(
u v

v −u

)
.

There is a natural inner product on J +(R2) given by the standard trace

form. That is, given H1,H2 ∈ TJJ +(R2), define

〈H1,H2〉 =
1
2
Tr(H1H2).

This metric is trivially SL2R equivariant because the trace form is.
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There is a natural complex structure Φ on J +(R2). This is given at a

point J ∈ J +(R2) by multiplication by J . That is:

Φ : TJJ +(R2) → TJJ +(R2)

H 7→ JH.

Given a J ∈ J +(R2) we may consider the natural splitting:

R2 ⊗ C = V 1,0
J ⊕ V 0,1

J .

Here V 1,0
J is the +i eigenspace, and V 0,1

J the −i eigenspace for the complex-

ified action of J .

Lemma 2.2.1. There are natural identifications

TJJ +(R2) ∼= Hom(V 1,0
J , V 0,1

J ) ∼= V ∗1,0J ⊗ V 0,1
J .

Proof. Firstly we construct a map TJJ +(R2) → Hom(V 1,0
J , V 0,1

J ). Let H ∈
TJJ +(R2) and v ∈ V 1,0

J , define a map

λH : V 1,0
J → V 0,1

J ,

by λH(v) := Hv where we extend the action of H to R2 ⊗C linearly. Then

JλH(v) = JHv = −HJv = −iHv = −iλH(v),

so that λH(v) ∈ V 0,1
J as claimed.

Now let λ ∈ Hom(V 1,0
J , V 0,1

J ). We define a map Hλ ∈ End(R2) by

Hw = λ(w̃) + λ(w̃),

where 2w̃ = (w − iJw) ∈ V 1,0
J . Since for all w ∈ R2 we have:

HJw = λ(Jw̃) + λ(Jw̃) = iλ(w̃)− iλ(w̃) = −Jλ(w̃) + Jλ(w̃) = −JHw,

we see that H anticommutes with J as desired.

Suppose now we have fixed a non-degenerate skew bilinear form ρ on

R2, compatible with the usual orientation. Given a complex structure J ∈
J +(R2) we may construct a complex pairing on R2:

X,Y 7→ ρ(X, JY )− iρ(X,Y ).
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This extends complex linearly to R2 ⊗ C and induces a hermitian inner

product on V 1,0
J , for u, v ∈ V 1,0

J ,

h(u, v) = −2iρ(u, v).

This extends to give us a hermitian inner product which we shall also denote

by h on V ∗1,0J ⊗V ∗1,0J . In addition, the hermitian inner product allows us to

identify V 0,1
J with V ∗1,0J so we may map a tangent vector H ∈ TJJ +(R2) to a

quadratic form ξH , that is an element of V ∗1,0J ⊗V ∗1,0J . Let σ ∈ V ∗1,0J ⊗V ∗1,0J ,

and H ∈ TJJ +(R2), then we define a pairing 〈σ,H〉 := h(σ, ξH). This then

identifies the cotangent bundle T ∗JJ (R2) with the space V ∗1,0J ⊗ V ∗1,0J .

Lemma 2.2.2. The hermitian inner product h defined above induces an

SL2R invariant metric on J +(R2).

Proof. It is clear that h induces a metric, because we have defined an in-

ner product on the cotangent vectors, we only need to check the asserted

equivariance. Fix X ∈ R2, let v = 1
2(X − iJX) be a generator for V 1,0

J , and

ν ∈ V ∗1,0J dual to v. Suppose that the tangent vectors Hη,Hξ ∈ TJJ +(R2)

correspond to the quadratic forms η, ξ ∈ V ∗1,0J ⊗ V ∗1,0J . Chasing the chain

of identifications through we see that:

η = −2iρ(v,Hηv)ν ⊗ ν,

ξ = −2iρ(v,Hξv)ν ⊗ ν.

This means that with respect to this basis,

〈η, ξ〉 = −
ρ(v,Hηv)ρ(v,Hξv)

ρ2(v, v)
.

Now let g ∈ SL2R, so that g(J) = gJg−1 and

g∗(Hη) = gHηg
−1, g∗(Hξ) = gHξg

−1.

Consider the vector g−1X ∈ R2, this leads to the vector ṽ = 1
2(gX − igJX)

generating the vector space V 1,0
g(J). With respect to this basis we have from

above that

〈g∗η, g∗ξ〉 = −
ρ(ṽ, gHηg

−1ṽ)ρ(ṽ, gHξg−1ṽ)
ρ2(ṽ, ṽ)

.
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Observe that ṽ = gv so that this reduces to,

〈g∗η, g∗ξ〉 = −
ρ(gv, gHηv)ρ(gv, gHξv)

ρ2(gv, gv)
.

Since ρ is invariant under the SL2R action we have that the group acts by

isometries as desired.

Lemma 2.2.3. The real part of the hermitian metric defined above is the

natural metric from the trace form defined earlier.

Proof. We only need to verify this at J0 because both metrics are SL2R
equivariant. Let H1,H2 ∈ TJ0J +(R2),

H1 :=

(
u1 v1

v1 −u1

)
, H2 =

(
u2 v2

v2 −u2

)
.

Then

Tr(H1,H2) = 2(u1u2 + v1v2).

On the other hand as in the proof of the previous proposition,

h(ξH1 , ξH2) = −ρ(∂z,H1∂z)ρ(∂z,H2∂z)
ρ2(∂z, ∂z)

= (iu1 + v1)(−iu2 + v2).

The real part of this is

u1u2 + v1v2,

which completes the proof.

2.2.2 The hyperbolic plane

In this section we introduce the hyperbolic plane and its relationship with

the linear complex structures on R2. We take as a model of the hyperbolic

plane the upper half plane:

H2 = {x+ iy ∈ C | y > 0},

equipped with the hyperbolic metric:

ds2 =
1
y2

(dx2 + dy2),
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and the obvious complex structure inherited from C: multiplication by i.

The group of conformal isometries of H2 is the set MöbR of real Möbius

transformations. This is the set of maps

MöbR :=
{
z 7→ az + b

cz + d
| a, b, c, d ∈ R, ad− bc > 0

}
.

There is a natural map

SL2R → MöbR,

defined by (
a b

c d

)
7→ az − b

−cz + d
.

This map is a group homomorphism and allows us to define an action of

SL2R on H2. This action is transitive and the stabiliser of i ∈ H2 is SO2R.

Therefore we identify H2 with the coset space SL2R/SO2R. This allows us

to identify H2 with the space J +(R2) of the previous section. Under the

action of SL2R on H2, the element√y −x√
y

0 1√
y

 ∈ SL2R,

maps i ∈ H2 to x + iy ∈ H2. On the other hand the action of SL2R on

J +(R2) takes the complex structure J0 to the complex structure

J =

√y −x√
y

0 1√
y

(0 −1

1 0

) 1√
y

x√
y

0
√
y

 =

−x
y −y

(
1− x2

y2

)
1
y

x
y

 .

We therefore identify a point x+ iy ∈ H2 with the complex structure J , this

map is equivariant by construction.

Lemma 2.2.4. The natural equivariant map ι : H2 → J +(R2) is a biholo-

morphic isometry with respect to the natural metrics and complex structures.

Proof. Firstly observe that the equivariance and transitivity of the action

mean that we only have to verify these properties hold at i ∈ H2 7→ J0 ∈
J +(R2). Now the tangent map, ι∗, at i ∈ H2 takes the tangent vector (u, v)

to the matrix (
−u −v
−v u

)
∈ TJ0J +(R2).
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Therefore

ι∗ ◦ i(u, v) = ι∗(−v, u) =

(
v −u
−u −v

)
,

and

Φ ◦ ι∗ =

(
0 −1

1 0

)(
−u −v
−v u

)
=

(
v −u
−u v

)
.

So that the map is a biholomorphism. To see it is an isometry suppose we

have the two tangent vectors (u1, v1) and (u2, v2) at i ∈ H2. With respect

to the standard basis for V 1,0
J0

given by

v =
1
2

(
∂

∂x
− i

∂

∂y

)
,

we can calculate as in lemma (2.2.2) 〈ι∗(u1, v1), ι∗(u2, v2)〉 to be

−ρ(v,H1v)ρ(v,H2v)
ρ2(v, v)

.

Since

H1v =

(
−u1 −v1
−v1 u1

)
1
2

(
∂

∂x
− i

∂

∂y

)
= −(u1 − iv1)v,

we see that ρ(v,H1v) = −(u1− iv1)ρ(v, v) and similarly for the term in H2,

hence

〈ι∗(u1, v1), ι∗(u2, v2)〉 = (u1 − iv1)(u2 + iv2) = u1u2 + v1v2 − i(v1u2 − u1v2).

But the real part of this is exactly the evaluation of the hyperbolic metric

on the two tangent vectors, as desired.

Observe that it follows from this lemma that the complex structure Φ

on J +(R2) is the one induced by the SL2R equivariant metric, a fact we

had not elicited in the previous section.

2.2.3 Complex structures on surfaces

Let Σ be a fixed oriented smooth surface of genus 2 or more. We shall always

take Σ to be closed, that is compact and without boundary though this is

not essential in this current section. Since the genus is greater than one we

have that χ(Σ), the Euler characteristic of Σ, is strictly negative.
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Definition 2.2.5. An almost complex structure on Σ is a smooth assignment

for each p ∈ Σ of an automorphism J : TpΣ → TpΣ such that J2 = −1.

Given an almost complex structure J , the existence of isothermal coordi-

nates guarantees the existence of an atlas for Σ consisting of complex valued

charts with biholomorphic transition maps, so that (Σ, J) may be thought of

as a complex curve. For this reason we shall not draw the usual distinction

between almost complex structures on the tangent bundle of Σ and complex

structures on Σ in the sense of giving Σ the structure of a complex curve,

referring to both notions as complex structures.

A complex structure on Σ induces an orientation by taking {∂x, J∂x} as

an ordered basis on each tangent plane. We shall only be concerned with

those complex structures J that induce the orientation on Σ that we fixed

earlier. We denote the set of all complex structures on Σ compatible with

the fixed orientation J (Σ). It is immediate from the definitions that J (Σ) is

a subset of the space of smooth sections of T ∗Σ⊗TΣ. We shall write (Σ, J)

to denote the pair consisting of the surface Σ together with the complex

structure J . When there is no danger of confusion we shall leave the surface

implicit.

The results of the previous section imply that the formal tangent space

at J to the space of complex structures may be identified as:

TJJ (Σ) = {H ∈ End(TΣ) : HJ = −JH},

and that there is a canonical metric on J (Σ) induced by the trace form and

a canonical complex structure Φ on J (Σ) given on the tangent space at J

by multiplication by J .

Now fix a volume form ρ on Σ and let P be the principal SL2R bundle

of volume one frames for TΣ. Since we have an SL2R action on J +(R2) we

can construct the associated fibre bundle over Σ with fibre J +(R2). It is

immediate from the work of the previous section that we have the following

identification:

P ×
SL2R J

+(R2) ∼= P ×
SL2R H

2.

We denote the latter bundle by H2. Letting Γ(H2) denote the vector space

of smooth sections of the fibre bundle H2, it follows that J (Σ) = Γ(H2).
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Further, using ρ, we may construct as in the previous sections an iden-

tification

T ∗JJ (Σ) ∼= Γ(T ∗1,0J Σ⊗ T ∗1,0J Σ),

where Γ(T ∗1,0J Σ⊗T ∗1,0J Σ) is the vector space of smooth quadratic differentials,

smooth sections of the bundle T ∗1,0J Σ ⊗ T ∗1,0J Σ. This allows us to define a

hermitian metric on J (Σ), given σ, η two smooth quadratic differentials in

T ∗JJ (Σ) we define

hρ(σ, η) =
∫

Σ
h(σ, η)ρ.

where h is the metric on Σ induced by ρ and J .

2.2.4 Splitting the tangent space of J (Σ)

In this section we show that there is a canonical decomposition of the tangent

space of J (Σ); a result we shall require in the section on Teichmüller space.

This material is adapted from the presentation in Tromba [27].

Fix a complex structure J ∈ J (Σ). We know that the volume form ρ

and complex structure J induce a Riemannian metric g on Σ defined by:

g(X,Y ) = ρ(X, JY ).

In turn this induces a natural L2 metric on vector fields on Σ:

〈X,Y 〉 =
∫

Σ
g(X,Y )ρ.

We can extend this metric in a natural way to 1, 1 tensors, we find that for

H1,H2 ∈ Γ(T ∗Σ⊗ TΣ),

〈H1,H2〉 =
1
2

∫
Σ

Tr(H1H2)ρ.

When H1 and H2 are in TJJ (Σ) this is just the real part of the hermitian

metric hρ defined in the previous paragraph .

Now we define an operator:

∇ : Γ(TΣ) → Γ(T ∗Σ⊗ TΣ),

X 7→ LXJ.

It is immediate that in fact ∇ : Γ(TΣ) → TJJ (Σ).
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Lemma 2.2.6. The L2 adjoint of ∇ is the vector field given in standard

index notation by:

(∇∗H)n = − 1
√
g

∂

∂xj
(√
gH i

jJ
i
n

)
gmn +

1
2
Hj
i

(
∂

∂xn
J ij

)
gmn.

Proof. Let X be any vector field on Σ,

〈H,∇X〉 =
1
2

∫
Σ

Tr(HLXJ)ρ

=
1
2

∫
Σ

(
Hj
i

(
∂

∂xk
J ij

)
Xk +Hj

i J
i
k

∂

∂xj
Xk −Hj

i J
k
j

∂

∂xk
Xi

)
ρ

=
1
2

∫
Σ

(
Hj
i

(
∂

∂xk
J ij

)
Xk + 2Hj

i J
i
k

∂

∂xj
Xk

)
ρ

=
1
2

∫
Σ

(
Hj
i

(
∂

∂xn
J ij

)
gmn − 2

√
g

∂

∂xj

(√
gHj

i J
i
n

)
gmn

)
gmkX

kρ

=: 〈(∇∗H), X〉.

We would like to use standard material about elliptic operators, applied

to the operator

∇∗∇ : Γ(TΣ) → Γ(TΣ),

to conclude that we can decompose TJJ (Σ) as

TJJ (Σ) = range(∇)⊕ range(∇)⊥

= range(∇)⊕ ker(∇∗).

We sketch this material now. Firstly we require that∇∗∇ is elliptic, that is it

has invertible symbol, but this is clear from the expression in coordinates (see

[27]). Secondly we have that TJJ (Σ) is not a Hilbert space, however we can

work with the space of sections with any amount of weak differentiability and

use elliptic regularity to conclude the result in the limit of smooth sections.

In conclusion we obtain the following theorem.

Theorem 2.2.7. We may decompose any H ∈ TJJ (Σ) as

H = LXJ +H0,

where X is a vector field on Σ and H0 satisfies ∇∗H0 = 0.
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We call a smooth quadratic differential on (Σ, J) holomorphic if it is a

holomorphic section of T ∗1,0Σ ⊗ T ∗1,0Σ. In local holomorphic coordinates,

a quadratic differential may be written

σ = σ′dz ⊗ dz,

for some function σ′. Then σ is holomorphic if ∂σ′ = 0. We denote the

vector space of all holomorphic differentials for a given complex structure J

by Q(J).

Lemma 2.2.8. Let H ∈ TJJ (Σ) and suppose

H ∈ ker(∇∗),

then the corresponding quadratic differential σH is holomorphic.

Proof. Let H ∈ ker(∇∗) we have immediately that

− 1
√
g

∂

∂xj
(√
gH i

jJ
i
n

)
gmn +

1
2
Hj
i

(
∂

∂xn
J ij

)
gmn = 0.

Choosing local conformal coordinates in which g = e2φδij and using the fact

that H is trace free, this simplifies to

∂

∂xj

(
e2φHj

i

)
= 0.

However, in these coordinates, the tangent vector H ∈ TJJ (Σ) given by

H =

(
u v

v −u

)
,

corresponds to the quadratic differential

σH = −2iρ
(
∂

∂z
,H

∂

∂z

)
dz ⊗ dz

= e2φ(u− iv)dz ⊗ dz.

So the above equation reduces to

∂

∂x
(e2φu) +

∂

∂y
(e2φv) =0

∂

∂x
(e2φv)− ∂

∂y
(e2φv) =0.
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But these are just the cauchy Riemann equations for the local function

σ′ = e2φ(u− iv),

so that σH is a holomorphic quadratic differential as required.

Since we may pair quadratic differentials with tangent vectors using the

hermitian metric, we identify the dual of the space ker(∇∗) as the space

Q(J) of holomorphic quadratic differentials.

2.2.5 Teichmüller space

Fix a closed oriented surface Σ and as in the previous section let J (Σ) be

the set of complex structures compatible with this orientation. Let Diff0(Σ)

be the identity component of the diffeomorphism group of Σ. This acts on

J (Σ) by pullback:

J 7→ φ∗J = φ−1
∗ ◦ J ◦ φ∗.

The resulting quotient J (Σ)/Diff0(Σ) is called the Teichmüller space of Σ

and we denote it T (Σ). The following is well known, see for example [27]:

Theorem 2.2.9. The Teichmüller space T (Σ) is a smooth manifold of di-

mension −3χ(Σ).

We would like to do differential geometry on the Teichmüller space. If

we let π : J (Σ) → T (Σ) denote the canonical projection map, then we can

identify the tangent space at an equivalence class [J ] ∈ T (Σ),

T[J ]T (Σ) ∼=
TJJ (Σ)
ker(π∗)

.

Proposition 2.2.10. The cotangent space [J ] to T (Σ) may be identified

with the space of holomorphic quadratic differentials Q(J).

Proof. From the previous section we know we can write any H ∈ TJJ (Σ)

as

H = LXJ +H0,

where∇∗H0 = 0. We also know that we can identify the dual of the subspace

ker(∇∗) with the space of holomorphic quadratic differentials. Since it is
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obvious that the elements of ker(π∗) are precisely those that can be written

as LXJ for some vector field X it follows that

T ∗[J ]T (Σ) ∼= Q(J).

The canonical complex structure on J (Σ) induces one on Teichmüller

space.

Theorem 2.2.11 ([27]). The almost complex structure Φ on J (Σ) descends

to Teichmüller space T (Σ). The resulting almost complex structure is inte-

grable, thus Teichmüller space is a complex manifold.

There is a canonical hermitian metric, the Weil-Petersson metric, on

T (Σ). We shall detail the definition of the Weil-Petersson metric. We need

the following result.

Theorem 2.2.12 (Poincaré). Given a complex structure J there exists a

unique metric g of constant Gauss curvature −1 in the conformal class of

J .

Let [J ] be a point of T (Σ), we know that T ∗[J ]T (Σ) can be identified with

the vector space of holomorphic quadratic differentials Q(J). Let g be the

unique metric of Gauss curvature −1 in the conformal class of J provided

by theorem 2.2.12. This metric induces a volume form ρ, and in conjunction

with J we may then construct the hermitian inner product hρ as in section

2.2.3.

Suppose that we had chosen a different representative J ′ for [J ], then

J ′ = φ∗J for some φ ∈ Diff0(Σ). The unique metric g′ of Gauss curvature

−1 in J ′ is just φ∗g so that∫
Σ
h′(φ∗σ, φ∗τ)ρ′ =

∫
Σ
h(σ, τ)ρ,

and hence the pairing descends to Teichmüller space to give us a hermitian

metric hWP.

The Weil-Petersson metric hWP is the natural one on Teichmüller space

with its canonical complex structure.

Theorem 2.2.13 ([27]). The Weil-Petersson metric is Kähler with respect

to the canonical complex structure on Teichmüller space.
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Chapter 3

In this chapter we discuss the existence of hyperkähler extensions of Kähler

manifolds following Feix-Kaledin. We examine in detail the hyperkähler

extension of the hyperbolic plane as well as presenting an identification of

this with the product of two copies of the hyperbolic plane. We then move

on to consider the hyperkähler extension of Teichmüller space and present

its construction by Donaldson.

3.1 Hyperkähler extensions

Let N be a Kähler manifold. In this section we will present results that show

there exists a canonical hyperkähler extension of N . In addition we exhibit a

particular example, the extension of the hyperbolic plane. A construction of

the author then identifies this hyperkähler extension of the hyperbolic plane

with the hyperbolic plane crossed with the hyperbolic plane with reversed

orientation.

3.1.1 Results of Feix and Kaledin

In the papers [16], [8] of Feix and Kaledin hyperkähler metrics are con-

structed on neighbourhoods of the zero section in the cotangent bundles of

real analytic Kähler manifolds. We have the following theorem:

Theorem 3.1.1 (Feix). Let N be a real analytic Kähler manifold. Then

there exists a neighbourhood, N c, of the zero section of the cotangent bundle

on which there is a hyperkähler metric (g, I, J,K). This metric is compatible

with the canonical holomorphic-symplectic structure ωC on T ∗1,0N in the
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sense that

ωC = ω2 + iω3.

Furthermore, the S1-action given by scalar multiplication in the fibres is

isometric and the restriction of the hyperkähler metric to the zero section

induces the original Kähler metric. This hyperkähler metric is unique.

3.1.2 The circle action

Let N be a Kähler manifold, and N c the hyperkähler thickening inside its

cotangent bundle provided by the Feix theorem. We know we have a circle

action on N c induced by scalar multiplication in the fibres of the cotangent

bundle. This action is isometric on the fibres and N c contains N as the

fixed submanifold of this action. Let X be a vector field generated by this

action.

Lemma 3.1.2 ([13]). The circle action fixes ω1 and rotates the ω2, ω3 plane.

Therefore

LXω1 = 0, LXω2 = ω3, LXω3 = −ω2.

Suppose H1(N ; R) = 0, since LXω1 = 0 we have a Hamiltonian function

H : N c → R vanishing along the fixed set N ⊂ N c.

Proposition 3.1.3 ([13]). The Hamiltonian function for the circle action

with respect to the symplectic form ω1 provides a Kähler potential for ω2,

ω2 = −2i∂J∂JH.

Proof. Let Y be a tangent vector to N c then,

(ι(X)ω1)(JY ) = dH(JY ) = (∂JH + ∂JH)(JY ) = i(∂JH − ∂JH)(Y ).

On the other hand

(ι(X)ω1)(JY ) = ω1(X, JY )

= g(IX, JY )

= g(KX,Y )

= ω3(X,Y ) = (ι(X)ω3)(Y ).
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Therefore

i(∂JH − ∂JH) = ι(X)ω3,

and so by taking the exterior derivative of both sides:

LXω3 = d(ι(X)ω3) = −2i∂J∂JH.

But by the previous lemma this is just −ω2 implying the desired result.

3.1.3 Hyperkähler extension of Hyperbolic space

A basic example of this idea is provided by the Hyperkähler extension of H2,

with its metric of constant curvature −1, inside T ∗H2. Explicitly, following

Feix [8], we take coordinates z = x+iy on the upper half plane model of H2.

We then have natural coordinates (u, v) on T ∗(x,y)H
2 for the 1-form udx+vdy.

We consider the unit disc sub-bundle (with respect to the hyperbolic metric)

D inside T ∗H2 given in these coordinates by

{(x, y, u, v)|z = x+ iy ∈ H2, y(u2 + v2)
1
2 < 1}.

We set γ := (1− y2(u2 + v2))
1
2 , then the Hyperkähler metric is given by:

g =
γ

y2
(dx2 + dy2) +

1
γy2

((yvdx− uydy − y2du)2 + (yudx+ yvdy + y2dv)2).

We have one obvious complex structure, I, induced by the standard complex

structure on H2, that acts on D:

I :=


0 −1 0 0

1 0 0 0

0 0 0 1

0 0 −1 0

 .

The other two, which we shall denote by J and K, come from taking as

symplectic forms the real and imaginary parts of the canonical holomorphic

symplectic structure on T ∗H2. In these coordinates this symplectic form is

ωC = ω2 + iω3 = (dx+ idy) ∧ (du− idv).
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Which leads to

J :=


yv
γ −yu

γ −y2

γ 0

−yu
γ −yv

γ 0 −y2

γ
1
y2γ

0 −yv
γ

yu
γ

0 1
y2γ

yu
γ

yv
γ

 .

One can verify by direct calculation that the K = IJ and the quaternionic

identities are satisfied. The complex structures are SL2R equivariant by

construction.

We now construct the Kähler potential for the symplectic form ω2 by

finding the hamiltonian with respect to ω1 for the circle action given by

multiplication by i on T ∗H2. Consider the action of eiθ on D.

eiθ : (x, y, u, v) 7→ (x, y, ucosθ + vsinθ,−usinθ + vcosθ).

This therefore generates the vector field:

Xθ =
d

dt

∣∣∣∣
t=0

eitθ(x, y, u, v)

= θ(0, 0, v,−u)

= θ

(
v
∂

∂u
− u

∂

∂v

)
.

Then the exterior derivative of the Hamiltonian function Hθ is by definition

the contraction of Xθ into the symplectic form ω1 so,

dHθ = ι(Xθ)ω1

= ι(IXθ)g

= −θι
(
v
∂

∂v
− u

∂

∂u

)
= − θ

γ
(yu2dy + yv2dy + y2udu+ y2vdv)

= θdγ,

using the above expressions for the metric g and the definition of γ. There,

and with the constraint that Hθ vanishes on the fixed set of the circle action,

we have that

Hθ = θ(γ − 1).

Observe from the definition of γ that this is just a function of the norm in

the T ∗H2 fibres.
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3.1.4 A holomorphic map from D to H2 ×H2

We construct a map from D to the product H2 × H2, where H2 is the

hyperbolic plane with the complex structure −J . It turns out that this map

is holomorphic with respect to the complex structure J on D and the natural

complex structure Ĩ := J ⊕ (−J) on H2 ×H2.

Lemma 3.1.4. There exists a map α : D → H2 × H2 which is an SL2R
equivariant holomorphic bijection with respect to the complex structure J on

D and the natural complex structure Ĩ on H2 ×H2.

Proof. Consider the map α : D → H2 ×H2 defined by

α : (z, w) 7→ (expz(Ifw)[, expz(−Ifw)[),

here expz : TpH2 → H2 is the exponential map at z, I is the natural complex

structure on the cotangent space,

f = f(‖w‖) =
1
‖w‖

arc tanh(−‖w‖),

is a real function of ‖w‖, the length of w in the hyperbolic metric, and

we represent by [ the natural identification T ∗H2 → TH2 induced by the

metric. The SL2R equivariance then follows immediately since the geodesic

through z ∈ H2 with initial tangent vector (Ifw)[ is clearly mapped by any

g ∈ SL2R to the geodesic through g(z) ∈ H2 with initial tangent vector

g∗((Ifw)[) since g is an isometry for the hyperbolic metric.

With respect to the coordinates (x, y, u, v) on D considered above the

map α is given by

α(x, y, u, v) =
(
x− y2v

1− yu
,

γy

1− yu
, x+

y2v

1 + yu
,

γy

1 + yu

)
,

where as before γ2 = 1− y2u2 − y2v2 = 1− ‖w‖2.

For α to be J-holomorphic we must have

dα ◦ J = Ĩ ◦ dα.

We verify this by direct calculation, which we simplify using the equivariance

of α and the fact that SL2R acts transitively on cotangent vectors of fixed
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length to reduce to checking it is true at (0, 1, u, 0). Here we see that dα, J

and Ĩ are given as follows:

J :=


0 −u

γ − 1
γ 0

−u
γ 0 0 − 1

γ
1
γ 0 0 u

γ

0 1
γ

u
γ 0

 ,

dα :=


1 0 0 1

0 1+u−u2

γ(1−u)
1

γ(1−u) 0

1 0 0 1
1+u

0 1−u−u2

γ(1+u)
1

γ(1+u) 0

 ,

Ĩ :=


0 −1 0 0

1 0 0 0

0 0 0 1

0 0 −1 0

 ,

The result follows.

We would like to show that α is injective. Since the map is SL2R
equivariant we may assume α(0, 1, u1, 0) = α(x, y, u2, v2) for some points

(0, 1, u1, 0), (x, y, u2, v2) ∈ D. Let γ2
2 = 1− y2u2

2 − y2v2
2, then we must have

that:(
0,
√

1 + u1

1− u1
, 0,
√

1− u1

1 + u1

)
=
(
x− y2v2

1− yu2
,

γ2y

1− yu2
, x+

y2v2
1 + yu2

,
γ2y

1 + yu2

)
.

It follows that (x, y, u2, v2) = (0, 1, u1, 0) and the map is injective as desired.

To prove the surjectivity it is enough, due to the SL2R equivariance, to

show that the map surjects onto {i}×H2 ⊂ H2×H2. One may check that

the point (i, x̃+ iỹ) ∈ {i} ×H2 is the image under α of (x, y, u, v) for:

x = x̃(ỹ + 1)−1,

y = (1 + ỹ)−1ỹ
1
2 (x̃2 + (1 + ỹ)2)

1
2 ,

u = (1− ỹ)ỹ−
1
2 (x̃2 + (1 + ỹ)2)−

1
2 ,

v = 2x̃(x̃2 + (1 + ỹ)2)−1.
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3.2 Hyperkähler extension of Teichmüller space

In this section we present Donaldson’s construction of the Feix-Kaledin hy-

perkähler extension of Teichmüller space. This material appears in the paper

[5].

We fix a closed surface Σ with a volume form ρ. Let P be the principal

SL2R bundle of volume one frames over Σ. Since SL2R acts naturally on

H2 it acts naturally on T ∗H2 and hence on D. Therefore we may form

the associated bundle D over Σ with fibres D. Let Γ(D) denote the set of

smooth sections of D. Let s ∈ Γ(D). At each point p ∈ Σ we get a point

s(p) in the fibre Dp
∼= D ⊂ T ∗H2. By the results of chapter two we may

therefore identify a section s with the pair (J, σ) where J ∈ J (Σ) and σ is

a smooth quadratic differential for the complex structure J .

Let TVD be the vertical subbundle of the tangent bundle TD, that is,

the kernel of the canonical projection π : TD → Σ.

Definition 3.2.1. We define the tangent space at a section s to Γ(D) to be

the space of sections of s∗TVD.

To see that this is reasonable let st : Σ → D for t ∈ (a, b) some interval

in R, be a family of sections of D. For each point p ∈ Σ we obtain a map

st(p) : (a, b) → D and moreover the image of this map lies entirely in the

fibre over the point p. Therefore st(p) defines a tangent vector v(p) at s0(p)

to D that lies in TVD at s0(p), i.e. is tangent to the fibre of the bundle

over p. In addition we have that the projection of v(p) to D is s0(p) and so

(p, v(p)) lies in the pullback bundle s∗TVD. Since we obtain such a tangent

vector for each p ∈ Σ we see that tangent vectors at s ∈ Γ(D) may certainly

be identified as sections of this bundle.

3.2.1 The hyperkähler structure on Γ(D)

We claim there is a natural hyperkähler structure on Γ(D) induced by that

on D. For each of the symplectic forms ωi of the hyperkähler structure on

D we define a two-form Ωi on Γ(D) as follows. Let ξ, η ∈ TsΓ(D) be two

37



tangent vectors at s, the symplectic form ωi on D induces a pairing between

these vectors so we may define

Ωi(ξ, η) =
∫

Σ
ωi(ξ, η)ρ.

Lemma 3.2.2. For each i ∈ {1, 2, 3}, Ωi defines a (formal) symplectic

structure on Γ(D).

Proof. We need to show that each Ωi is closed and non-degenerate. We deal

first with closure. Let ξ, η, τ ∈ TsΓ(D), then we have that

dΩi(ξ, η, τ) = ξΩ(η, τ)− ηΩ(ξ, τ)+τΩ(ξ, η)

− Ω([ξ, η], τ) + Ω([ξ, τ ], η)− Ω([η, τ ], ξ).

Therefore

dΩi(ξ, η, τ) =ξ
∫

Σ
ωi(η, τ)ρ+ η

∫
Σ
ωi(ξ, τ)ρ+ τ

∫
Σ
ωi(ξ, η)ρ

−
∫

Σ
ωi([ξ, η], τ)ρ+

∫
Σ
ωi([ξ, τ ], η)ρ−

∫
Σ
ωi([η, τ ], ξ)ρ.

Since

τ

∫
Σ
ωi(ξ, η)ρ =

∫
Σ
τωi(ξ, η)ρ,

we have

dΩi(ξ, η, τ) =
∫

Σ
{ξωi(η, τ) + ηωi(ξ, τ) + τωi(ξ, η)

− ωi([ξ, η], τ) + ωi([ξ, τ ], η)− ωi([η, τ ], ξ)}ρ.

Therefore

dΩi(ξ, η, τ) =
∫

Σ
dωi(ξ, η, τ)ρ = 0,

since the closure of each ωi implies the integrand is zero.

Now let us suppose that for ξ ∈ TsΓ(D) we have Ωi(ξ, η) = 0 for every η.

Recalling that we have a complex structure compatible with the symplectic

structure ωi on each fibre of the bundle D we can see this would imply that∫
Σ
g(ξ, ξ)ρ = 0,

and hence that ξ is zero. We conclude that each Ωi is non-degenerate and

that each defines a symplectic structure on Γ(D).
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The three complex structures I, J,K on D induce three complex struc-

tures on Γ(D), we shall also denote these I, J,K. In conjunction with the

three symplectic forms Ωi we then obtain a formal hyperkähler structure on

Γ(D), the metric being given by

〈ξ, η〉 =
∫

Σ
g(ξ, η)ρ.

3.2.2 The hyperkähler quotient of Γ(D)

We now proceed to describe a certain hyperkähler quotient of Γ(D) as con-

structed by Donaldson in [5].

Lemma 3.2.3. The group Ham(Σ, ρ) of Hamiltonian symplectomorphisms

of (Σ, ρ) acts on Γ(D) preserving the hyperkähler structure.

Proof. Firstly we require that the action of Ham(Σ, ρ) preserves the three

Ωi. Let φ ∈ Ham(Σ, ρ) and ξ, η ∈ TsΓ(D). We have that

(φ∗Ωi)|s (ξ, η) = Ωi|φ(s) (φ∗ξ, φ∗η)

=
∫

Σ
ωi(φ∗ξ, φ∗η)ρ

=
∫

Σ
φ∗(ωi(ξ, η)ρ)

=
∫

Σ
ωi(ξ, η)ρ = Ωi|s (ξ, η).

Here we have used the fact that φ∗ρ = ρ to go from line two to line three.

Therefore the symplectic forms are preserved. Similarly the metric is pre-

served, implying the result.

We might now like to find moment maps for the action of Ham(Σ, ρ) and

hope that the natural quotient inherits a hyperkähler structure from that on

Γ(D). However, the spaces under consideration are not finite dimensional

so the results on hyperkähler reduction from the previous chapter cannot be

applied directly. None the less we have the following result of Donaldson.

Theorem 3.2.4 (Donaldson [5]). There exist three moment maps for the

action of Ham(Σ, ρ) on Γ(D). The quotient

Γ(D)//Ham(Σ, ρ)

exists and has the induced hyperkähler structure.
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We write (g, ω1, ω2, ω3) for the hyperkähler structure induced on the

quotient. Formally it is constructed in exactly the same way as in the finite

dimensional case, we now illustrate this. Assume that the quotient exists as

a manifold. Denote the zero set of the three moment maps by µ−1(0), we

assume that this is a submanifold of Γ(D). The quotient is

µ−1(0)/Ham(Σ, ρ).

To define, for example, any of the symplectic structures ωi let

X,Y ∈ T[p]

(
µ−1(0)/Ham(Σ, ρ)

)
,

we lift these to any tangent vectors to µ−1(0) at p. In view of our definition

of the tangent space to Γ(D) as the sections of the pullback of the vertical

bundle we see that tangent vectors to µ−1(0) must be some subset of this

vector space of sections. We have a symplectic structure Ωi on TpΓ(D) and

we use this to evaluate the symplectic product of the lifted tangent vectors in

Tpµ
−1(0). By the definition of moment map, the tangent vectors to the orbit

of p evaluate to zero against those tangent to µ−1(0), this allows us to define

a closed skew form ωi on the quotient. This form will be non-degenerate

provided the symplectic complement of Tpµ−1(0) and the tangent space to

the orbit coincide, assuming this is the case we have the desired symplectic

structure. The existence of the Kähler structure for each ωi also proceeds

formally as in the finite dimensional case.

In fact Donaldson shows that we may define a hyperkähler structure on

the quotient of a subset A of Γ(D) by the group Symp0(Σ, ρ) which is the

identity component of the group of symplectomorphisms of (Σ, ρ). The set

A is essentially the zero set of the moment map of theorem 3.2.4. This is the

quotient by a larger set of diffeomorphisms of Σ, the hyperkähler structure

is induced by that on the hyperkähler quotient Γ(D)///Ham(Σ, ρ) above.

In order to describe this set we fix conventions. Let us assume that we

have scaled ρ so that

2
∫

Σ
ρ = 2πχ(Σ).

Definition 3.2.5. Let A be the set of pairs (J, σ) such that σ is a holomor-

phic quadratic differential, |σ|g < 1 and

Kg +
1
2
∆ log(1 +

√
1− |σ|2g) = −2.
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Here Kg is the Gaussian curvature of the metric induced by J and ρ,

and |σ|g denotes the norm of σ in this metric.

Theorem 3.2.6 (Donaldson [5]). The quotient N := A/Symp0(Σ) has a

hyperkähler structure.

3.2.3 The moduli space M

In order to interpret the moduli space N described in the previous section,

we follow Donaldson in [5] and recast it in terms more amenable to geometric

analysis.

Definition 3.2.7. Let B be the set of pairs (g, σ) such that g is a metric

on Σ, σ is a holomorphic quadratic differential with |σ|g < 1 and

Kg + |σ|2g = −1.

Define M := B/Diff0(Σ).

Theorem 3.2.8. There is a bijection N →M. This bijection is induced by

the map A → B defined by

(J, σ) 7→
(
(1 +

√
1− |σ|2g)g, σ

)
.

The proof of this falls into two parts, one algebraic in nature and the

other a piece of differential geometry. Firstly, let A′ denote the set of pairs

(g, σ) where g is a metric on Σ and σ is a holomorphic quadratic differential

with respect to the complex structure defined by the conformal class of g

and (g, σ) satisfy the equation

Kg +
1
2
∆ log(1 +

√
(1− |σ|2g)) = −2.

Define the space

N ′ := A′/Diff0(Σ).

We prove that the obvious injection induces a formal diffeomorphism N →
N ′. Secondly we define a diffeomorphism from N ′ to the space M, this is

induced by the map A′ → B defined by

(J, σ) 7→
(
(1 +

√
1− |σ|2g)g, σ

)
.
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We address the first point. We require some preliminary results from

symplectic geometry.

Theorem 3.2.9 (Moser’s stability theorem [20]). Let M be a closed man-

ifold and suppose ωt is a smooth family of cohomologous symplectic forms

on M . Then there is a family of diffeomorphisms ψt of M such that

ψ0 = id, ψ∗t ωt = ω0.

This is the principal tool in the proof of the first part of theorem 3.2.8,

and also in the proof of the following technical result.

Proposition 3.2.10. Suppose we have a symplectomorphism, φ, of (Σ, ω).

Then if φ is isotopic to the identity through diffeomorphisms it is isotopic

to the identity through symplectomorphisms. That is,

Symp0(Σ, ω) = Diff0(Σ) ∩ Symp(Σ, ω).

Proof. Let φ be as in the statement of the theorem. Hence there exists

a family, φt, of diffeomorphisms connecting φ to the identity, say φ0 =

id, φ1 = φ. This generates a loop in the space of symplectic forms on

Σ by the prescription ωt := φ∗tω. On a surface the space of symplectic

forms compatible with a fixed orientation is convex and we can construct

an explicit homopy between the loop ωt and the form ω by

H(s, t) = (1− s)ω + sωt. s, t ∈ [0, 1].

Then for each fixed t, Hs := H(s, t) is a cohomologous family of symplec-

tic forms, and hence by Moser’s theorem there exists some family ψts of

diffeomorphisms such that ψt0 = id and (ψts)
∗Hs = H0. In particular

(ψt1)
∗H1 = (ψt1)

∗ωt = ω.

Now consider the family of diffeomorphisms θt defined by

θt = φt ◦ ψt1.

We see that θ0 = id, θ1 = φ and that

θ∗tω = (φt ◦ ψt1)∗ω = (ψt1)
∗ωt = ω.

Therefore the family θt provides a family of symplectomorphisms connecting

φ to the identity and the result is proved.
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Proposition 3.2.11. Let (ρ̂, J, σ) be a triple where ρ̂ is a volume form on Σ,

J is a complex structure on Σ and σ is a holomorphic quadratic differential

with respect to J . Suppose (ρ̂, J, σ) satisfy:

Kĝ +
1
2
∆ log(1 +

√
1− |σ|2ĝ) = −2,

where the metric ĝ is induced by ρ̂ and J . Then there exists φ ∈ Diff0(Σ)

such that the pair (φ∗J, φ∗σ) satisfies

Kg +
1
2
∆ log(1 +

√
1− |φ∗σ|2g) = −2,

where the metric g is now that induced by φ∗J and our previously fixed

volume form ρ. Further this diffeomorphism is unique up to an element of

Symp0(Σ, ρ).

Proof. Since we are on a surface we know that H2
dR(Σ,R) = R, hence for

some a ∈ R and τ ∈ Ω1(Σ),

ρ− ρ̂ = aρ+ dτ.

Integrating this expression over Σ we see that a = 0. Define:

ρt := ρ̂+ (1− t)dτ

For each t these forms are pointwise non-degenerate because the second

exterior power of the cotangent bundle has rank one. Therefore we have a

smooth family of cohomologous symplectic forms. Using Moser’s theorem

we can conclude that there exists a family of diffeomorphisms φt : Σ → Σ

such that φ0 = id and

φ∗tρt = ρ̂ ∀t ∈ [0, 1].

Moreover it is clear that the pair (φ∗1J, σ) satisfies the desired equation.

For the partial uniqueness suppose there were two diffeomorphisms φ, ψ

such that

(φ−1)∗ρ = ρ̂ = (ψ−1)∗ρ,

then

ψ∗(φ−1)∗ρ = ρ,

which implies the two diffeomorphisms differ by a symplectomorphism of

(Σ, ρ). We see that this is an element of Symp0(Σ, ρ) by appealing to propo-

sition 3.2.10.
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Corollary 3.2.12. The canonical injection A → A′ induces a diffeomor-

phism

N ∼= N ′.

Proof. The map (J, σ) 7→ (gJ , σ), where we write gJ for the metric induced

by ρ and J , descends to a well defined map

A/Symp0(Σ, ρ) → A′/Diff0(Σ).

Now let (g, σ) ∈ A′, proposition 3.2.11 tells us precisely that there exists a

φ ∈ Diff0(Σ) such that the pair (φ∗J, φ∗σ) ∈ A. Hence the canonical map

is a surjection. Since we know that the diffeomorphism φ is unique upto

an element of Symp0(Σ, ρ) we obtain that the map is also injective and the

result is proved.

This completes the necessary work for the first part of the proof of the-

orem 3.2.8. We turn our attention to the second part which is a calculation

contained in [5].

Lemma 3.2.13 ([5]). The map

(g, σ) 7→
(
(1 +

√
1− |σ|2g)g, σ

)
,

is a diffeomorphism A′ → B.

Proof. To see this, let (g, σ) ∈ A′ and define

F := 1 +
√

1− |σ|2g.

Write ĝ = Fg so the map is given by (g, σ) 7→ (ĝ, σ). We can calculate the

Gauss curvature of the metric ĝ to be

Kĝ =
1

2F
∆glogF +

1
F
Kg.

But since (g, σ) ∈ A′ this reduces to

Kĝ = − 2
F
.

We know from its definition that

(F − 1)2 = 1− |σ|2g,
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so that

F 2 = 2F − |σ|2g.

We then have the following

Kĝ + |σ|2ĝ = − 2
F

+ |σ|2ĝ

= − 2
F

+
|σ|2g
F 2

= −1,

so that the pair (ĝ, σ) ∈ B. The map is a bijection because |σ|g < 1 and the

map

x 7→ x

1 +
√

1− x2
,

is a bijection from [0, 1) to itself.

We return to the proof of theorem 3.2.8.

proof of theorem 3.2.8. This is now just a question of fitting the above pieces

together. We know from corollary 3.2.12 that N ∼= N ′, then lemma 3.2.13

induces a diffeomorphism N ′ → M proving the result. The above proofs

exhibit that the map A → B is of the stated form.

We may summarise the various relationships between the spaces in the

following commutative diagram:

A ι−−−−→ A′
∼=−−−−→ B

π1

y π2

y π3

y
N

∼=−−−−→ N ′ ∼=−−−−→ M
We therefore have a hyperkähler structure on the space M induced by

that on N and the identifications above. We write (hHK, I, J,K) for the

hyperkähler quadruple on M.

3.2.4 Teichmüller space and M

Consider the space T ∗J (Σ), it follows from the work of the previous chapter

that there is a canonical map

B → T ∗J (Σ),
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given by taking the pair (g, σ) to the pair (J, σ) where J is the conformal

class generated by J . It will turn out from work of the next chapter that this

map is in fact an injection. However for now we can only say the following:

Proposition 3.2.14. We can identify J (Σ) with the subset of B defined by

{(g, 0) ∈ B}. This descends to the quotient to define a canonical injection:

ι : T (Σ) ↪→M.

Proof. Let J ∈ J (Σ), by Poincarés theorem, there exists a unique metric

g in the conformal class of J with Gauss curvature −1. This allows us to

define a map J (Σ) → B by J 7→ (g, 0). This map is surjective since we

may take (g, 0) to the conformal class J defined by g. The descent to the

quotient is obvious.

Next we obtain a result about the restriction of the hyperkähler metric

to the subset defined by the Teichmüller space as above.

Proposition 3.2.15. The restriction of the hyperkähler metric on M to

Teichmüller space is the Weil-Petersson metric hWP:

ι∗hHK = hWP.

Proof. Given a class in M there exists a unique class [(J, 0)] ∈ N such that

the image of [(J, 0)] is our chosen point in M. We know from the above

that we can choose to represent the class as [(g, 0)] ∈ M where the metric

g induces our fixed volume form ρ. Given a pair of (co)tangent vectors

ξ, η ∈ T[J,0]N we know that the metric is given by:

〈ξ, η〉 =
∫

Σ
h̃(ξ, η)ρ,

where now h̃ is the metric on the vertical tangent bundle of the fibre bundle

D induced by the hyperkähler metric h onD ⊂ T ∗H2. But we are restricting

to tangent vectors to T (Σ) ⊂M and since we are in N we must have g has

constant curvature −2 so the metric is just (up to scale) the Weil-Petersson

metric as required.
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Chapter 4

In this chapter we consider the defining equations for the moduli space M
constructed in the previous chapter. This requires analysis of a certain non-

linear partial differential equation. We obtain results about the existence

and uniqueness of solutions to this partial differential equation. This enables

us to conclude that the moduli spaceM is embedded in the cotangent bundle

of Teichmüller space and to determine certain explicit subsets of M in terms

of the cotangent bundle T ∗T (Σ). In addition we can deduce that M is the

Feix-Kaledin extension of Teichmüller space.

4.1 The Gauss equation

Let Σ be our fixed closed surface of genus greater than one. Suppose we have

a complex structure J on Σ. We can think of the complex structure J on Σ

as a conformal equivalence class of metrics. Given a holomorphic quadratic

differential σ on Σ we would like to know when there exists a metric g ∈ J
such that:

Kg + |σ|2g = −1, (4.1)

where Kg is the Gaussian curvature of the metric g, and |σ|g is the norm of

σ in this metric. Furthermore, if such a metric exists under what conditions

we might find it unique. We call solutions g of equation (4.1) solutions of

the Gauss equation.

Analysis of the solutions to the Gauss equation turns out to be related to

previous work by Kazdan and Warner [17]. We shall use standard methods

in the analysis of elliptic partial differential equations as expounded in eg

[9].
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We now recall standard facts from the study of analysis on surfaces.

Given a surface Σ of genus greater than one, with a metric g; we can repre-

sent g in local conformal coordinates:

g = e2φ(dx2 + dy2).

In these coordinates the Laplacian on functions induced by g is,

∆g = e−2φ∆euc,

where ∆euc is the normal Euclidean Laplacian:

∆euc =
∂2

∂x2
+

∂2

∂y2
.

It should be noted that we are therefore using an “analysts’ Laplacian”

which differs from the “geometers” model by a factor of −1. Given a metric

g represented in local conformal coordinates by g = e2φ(dx2 +dy2) its Gauss

curvature is given by:

Kg = −∆gφ.

Recall from chapter one the theorem of Poincaré that given a conformal class

J of metrics on Σ (equivalently a complex structure) there exists a unique

metric in this conformal class whose Gauss curvature is −1. In what follows

we shall always denote by g the metric on Σ of constant Gauss curvature −1.

We let ρ be the volume form of this metric, ∆ the Laplacian with respect

to this metric, and |σ| the norm of σ with respect to this metric. Writing in

local conformal coordinates g := e2φ(dx2 + dy2) we therefore have:

Kg = −∆φ = −1.

4.1.1 The local equation

We shall attempt to find a solution to equation (4.1) by deforming the

hyperbolic metric on Σ inside its conformal class. Explicitly, we would like

to find a u ∈ C∞(Σ) such that the metric g′ := e2ug satisfies (4.1). In local

conformal coordinates we have

Kg′ = −∆g′(u+ φ)

= − 1
e2u

(∆u+ 1).
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Therefore in order to satisfy equation (4.1) we must have

− 1
e2u

(∆u+ 1) +
|σ|2

e4u
= −1,

which leads us to the non linear partial differential equation for u:

e2u(∆u+ 1)− e4u − |σ|2 = 0. (4.2)

Lemma 4.1.1. Given a solution u of (4.2) we have:

• ∆u+ 1 ≥ 2|σ|.

• u ≤ 0, e2u ≤ 1.

•
∫
Σ |σ|ρ ≤ −πχ(Σ),

where we write χ(Σ) for the Euler characteristic of Σ.

Proof. The first assertion follows immediately from re-writing (4.2) as:

∆u+ 1 = (eu − e−u|σ|)2 + 2|σ|.

To prove the second observe that

∆u+ 1− e2u = e−2u|σ| ≥ 0.

At a maximum of u we have ∆u ≤ 0, which implies e2u ≤ 1 at a maximum

of u and hence everywhere.

The third follows from integrating the first over Σ and the fact that since

ρ is the volume form for the metric of constant Gauss curvature −1 we have

by Gauss-Bonnet: ∫
Σ
ρ = −2πχ(Σ).

4.1.2 Solutions with |σ|g < 1

This is the class of solutions we are most interested in. In view of the fact

that g′ = e2ug we see that |σ| < e2u is equivalent to the condition that the

size of the holomorphic quadratic differential σ in the rescaled metric is less

than one pointwise.
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Definition 4.1.2. We define C to be the set of holomorphic quadratic dif-

ferentials σ on Σ that satisfy |σ| < 1.

We define D to be the set of holomorphic quadratic differentials σ on Σ

such that there exists a solution u of

e2u(∆u+ 1)− e4u − |σ|2 = 0

and moreover the solution satisfies the pointwise estimate |σ| < e2u.

Observe that if σ ∈ D then the pair (e2ug, σ) ∈ B where B is as defined

in the last chapter.

Suppose we have a σ ∈ D, in view of lemma (4.1.1) we must have that

|σ| < 1 and hence σ ∈ C. This gives us immediately

D ⊆ C.

Determining exactly what defines the subset D is a question of consider-

able interest. The answer would lead to an explicit description of the moduli

space M as a subset of the cotangent bundle of Teichmüller space, which

we do not currently possess.

Uniqueness of solutions

Proposition 4.1.3. Suppose σ ∈ D, and let u be a solution of

e2u(∆u+ 1)− e4u − |σ|2 = 0

satisfying |σ| ≤ e2u on Σ then this is the unique solution with this property.

Proof. Suppose we have two solutions u1 and u2 satisfying the hypothesis

of the proposition. Then their difference w = u1 − u2 satisfies:

∆w − e2u2(e2w − 1)− e−2u2(e−2w − 1)|σ|2 = 0

⇒ ∆w − e2u2(e2w − 1)(1− e−2we−4u2 |σ|2) = 0.

Since Σ is compact and w is continuous, w attains its bounds on Σ. At

the maximum of w we have that ∆w ≤ 0 so that,

e2u2(e2w − 1)(1− e−2we−4u2 |σ|2) ≤ 0.
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If (e2w − 1) > 0 we must have

(1− e−2we−4u2 |σ|2) ≤ 0

⇒ e2w ≤ e−4u2 |σ|2.

But this is not possible since by hypothesis |σ| < e2u2 . Hence e2w ≤ 1 at the

maximum of w and hence everywhere on Σ. This implies u1 ≤ u2 everywhere

on Σ. By symmetry we must have the same argument for ŵ = u2 − u1,

concluding that u2 ≤ u1 everywhere on Σ. Hence we have the desired

uniqueness.

Existence of solutions

We shall show that there exist solutions to the equation (4.2) under the

additional hypothesis that

supΣ|σ| <
1
2
.

We do this by solving a slightly more general problem and applying the

results to the present case. Firstly we need to establish some a priori esti-

mates:

Lemma 4.1.4. Let ψ ∈ L2
2 be such that ψ ≥ 0. Suppose u ∈ L2

4 solves

e2u(∆u+ 1)− e4u = ψ,

with ‖e−4uψ‖C0 < 1 then
1
2
< e2u < 1.

Proof. The first inequality comes from observing that if ψ ≥ 0 then

∆u+ 1− e2u ≥ 0.

At a maximum of u we have ∆u ≤ 0, which implies e2u ≤ 1 at a maximum

of u and hence everywhere. We obtain the second by using the fact that

‖e−4uψ‖C0 < 1 so that,

∆u+ 1 < 2e2u.

At a minimum of u we have ∆u ≥ 0, which implies

e2u ≥ 1
2

at a minimum of u and hence everywhere.
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Lemma 4.1.5. Let ψ ∈ L2
k with k ≥ 2 and let u ∈ L2

2 solve

e2u(∆u+ 1)− e4u = ψ.

Then u ∈ L2
k+2.

Proof. For l ≥ 2 analytic operations map L2
l → L2

l , hence

∆u = e2u + e−2uψ − 1

is in L2
2. Note that this is true because we are in two dimensions. The

Sobolev inequality

‖u‖L2
4
≤ c

(
‖∆u‖L2

2
+ ‖u‖L2

)
then ensures u ∈ L2

4. Iterating this argument gives the result.

Theorem 4.1.6. Let Σ be a closed oriented surface of genus greater than

one. If ψ ∈ L2
2 satisfies

ψ ≥ 0,

‖ψ‖C0 <
1
4
,

then there exists a solution u ∈ L2
4 to the equation

e2u(∆u+ 1)− e4u = ψ (4.3)

satisfying ‖e−4uψ‖C0 < 1.

Proof. We follow a continuity method. Let S denote the functions ψ ∈ L2
2

satisfying ψ ≥ 0, ‖ψ‖C0 < 0.25. It is immediate that S is convex and hence

connected. Let S′ ⊂ S be the subset of S for which (4.3) has a solution

u ∈ L2
4. We shall show that S′ is both open and closed in S with respect to

the induced L2
2 topology.

S′ is open:

We consider the map F : L2
4 → L2

2 defined by

F (u) = e2u(∆u+ 1)− e4u.

The derivative of F at u is given by

DFu(φ) = e2u(∆φ− 2e2u(1− e−4uψ)φ).
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This linear operator is elliptic and self-adjoint. If ψ ∈ S′ and u is the

associated solution, then hypothesis the operator

φ 7→ ∆φ− 2e2u(1− e−4uψ)φ,

is strictly negative, so we conclude that DFu has no kernel. Hence by

the Fredholm alternative DFu is an isomorphism L2
4 → L2

2. The inverse

function theorem in Banach spaces then ensures that each point ψ ∈ S′ has

a neighbourhood on which F is invertible, thus S′ is open.

S′ is closed:

Take a sequence ψn ∈ S′ converging in L2
2 to some ψ ∈ S. We need to

show that ψ ∈ S′. Let un ∈ L2
4 solve,

e2un(∆un + 1)− e4un = ψn.

Since ψn converges in L2
2 we must have that ‖ψn‖L2 is bounded. The Sobolev

embedding theorem gives L2
k ↪→ C0 for k ≥ 2. Hence un ∈ C0. From (4.1.4)

we have a priori bounds:
1
2
< e2un < 1,

thus ‖e2un‖C0 and hence ‖un‖C0 are bounded. This implies ‖e2un‖L2 and

‖un‖L2 are bounded. Since

∆un = e−2unψn + e2un − 1,

we establish that ∆un is bounded in L2. The Sobolev inequality

‖un‖L2
2
≤ c

(
‖∆un‖L2 + ‖un‖L2

)
for some constant c, then ensures that un ∈ L2

2. Since we know ψn ∈ L2
2

we may essentially repeat the above argument to obtain that ∆un ∈ L2
2 and

hence using the Sobolev inequality

‖un‖L2
4
≤ c′

(
‖∆un‖L2

2
+ ‖un‖L2

)
we conclude that un ∈ L2

4. Using the Rellich lemma we have that L2
4 ↪→ C2

compactly. Hence un has a C2 convergent subsequence, un → u ∈ C2. From
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the Sobolev embedding theorem we know that ψn → ψ in C0. Thus u is a

C2 solution of

e2u(∆u+ 1)− e4u = ψ.

By the regularity lemma (4.1.5) we have that u ∈ L2
4.

We know that

e4u ≥ 1
4
,

and by hypothesis,

‖ψ‖C0 <
1
4
,

hence we have ‖e−4uψ‖C0 < 1 as desired.

It should be observed that the condition

‖ψ‖C0 <
1
4
,

is key to this proof to work with the estimate ‖e−4uψ‖C0 < 1 holding,

otherwise it is certainly possible that at some point e−4uψ = 1.

We now apply this to the situation we have been considering.

Theorem 4.1.7. Let Σ be a closed oriented surface of genus greater than

one. Let σ be a holomorphic quadratic differential satisfying

supΣ|σ| <
1
2
.

Then there exists a unique solution u ∈ C∞ to the equation

e2u(∆u+ 1)− e4u = |σ|2,

satisfying |σ| < e−2u on Σ.

Proof. Since σ is holomorphic we have that |σ| ∈ C∞. Setting ψ = |σ|2 and

using theorem 4.1.6 we obtain a solution u ∈ L2
4. Since |σ| ∈ C∞ we see

|σ|2 ∈ L2
k for every k, applying the regularity lemma 4.1.5 gives u ∈ C∞.

Uniqueness follows from 4.1.3.
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4.2 The map M→ T ∗T (Σ)

Recall from the last chapter that we have a map

B → T ∗J (Σ),

given by mapping the pair (g, σ) to the pair (J, σ) where J is the conformal

class of g. In view of the uniqueness theorem 4.1.3 we see that this map is in

fact injective as suggested earlier. Since for a point (g, σ) ∈ B the quadratic

differential σ is holomorphic we may construct a natural map

B/Diff0(Σ) = M→ T ∗T (Σ),

so we have the following theorem:

Theorem 4.2.1. The moduli space M is embedded in the cotangent bundle

of Teichmüller space.

The existence statement of theorem 4.1.7 allows us to identify a certain

subset of the cotangent bundle of Teichmüller space that must be contained

in the image of the moduli space M.

Proposition 4.2.2. The subset of T ∗T (Σ) defined by those holomorphic

quadratic differentials satisfying the pointwise size estimate

|σ| < 1
2
,

is contained in the moduli space M. Recall that here |σ| is the size of σ in

the metric of constant scalar curvature −1.

We now consider some properties of the embedding ofM in the cotangent

bundle of Teichmüller space.

Proposition 4.2.3. The injection M ↪→ T ∗T (Σ) is a holomorphic map

from (M, I) to the cotangent bundle with the complex structure coming from

the canonical complex structure on Teichmüller space.

Proof. The complex structure I on M is that induced by the complex struc-

ture I on the hyperkähler extension on the hyperbolic plane. Since we have

the holomorphic identification

Γ(D) ∼= T ∗J (Σ),
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and the complex structure on the cotangent bundle of Teichmüller space is

that induced by the structure I on T ∗J (Σ) the result follows.

Proposition 4.2.4. The restriction of the canonical holomorphic symplectic

structure on T ∗T (Σ) to the subset defined by M coincides with the holomor-

phic symplectic structure on M defined since M is derived from a symplectic

reduction of a cotangent bundle.

Proof. We need to use the infinite dimensional analogue of the theorem

about the reduction of cotangent bundles from chapter two, proceeding for-

mally at the level of tangent spaces we then have the following commutative

diagram:

A −−−−→ T ∗J (Σ) −−−−→ J (Σ)

π1

y y π2

y
A/Symp0(Σ, ρ)

ι̃−−−−→ T ∗(T (Σ)) −−−−→ J (Σ)/Diff0(Σ) = T (Σ).

,

where the map ι̃ is injective. Applying the earlier theorem in this situation

gives the result.

We can use these propositions together with results of the last chapter

to conclude that the moduli space M with the hyperkähler structure con-

structed in the previous chapter is in fact the Feix-Kaledin extension of the

Weil-Petersson metric on Teichmüller space.

Theorem 4.2.5. The moduli space M is the Feix-Kaledin hyperkähler ex-

tension of the Weil-Petersson metric.

Proof. We need to show that:

• the metric on M restricts to the Weil-Petersson metric on Teichmüller

space T (Σ) ⊂M,

• the canonical holomorphic symplectic structure on T ∗T (Σ) is compat-

ible with the form Ω2 + iΩ3 on M,

• the circle action on T ∗T (Σ) given by multiplication by i preserves the

metric.
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The first point was dealt with in the last chapter, whilst the second is the

result of the previous proposition. The circle action induced from I on M
coincides with that from the complex structure on T (Σ). Since multiplica-

tion by i onD ⊂ T ∗H2 preserves the metric onD, and the complex structure

I on M is the one induced by multiplication by i on D, the circle action on

M from I preserves the metric on M.
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Chapter 5

In this chapter we define the representation variety associated to the surface

Σ and the Lie group PSL2C. This has a canonical holomorphic-symplectic

structure and we present a result about the restriction of this holomor-

phic symplectic structure to the real subspace of PSL2R representations;

Teichmüller space. Next we identify a certain subset of the representation

variety, the quasi-Fuchsian space. We proceed to define a map from the

moduli space M into the quasi-Fuchsian space and discuss its properties.

5.1 Deformation spaces of representations

Let π1(Σ) be the fundamental group of our fixed surface Σ. Denote the set

of all representations θ : π1(Σ) → PSL2C of the fundamental group of Σ

into the Lie group PSL2C, Hom(π1(Σ),PSL2C). There is a natural action

of PSL2C on Hom(π1(Σ),PSL2C) given by conjugating representations, g :

θ 7→ gθg−1.

Definition 5.1.1. The representation variety is defined to be the quotient

Hom(π1(Σ),PSL2C)/PSL2C.

We shall be concerned only with that subset of the representation variety

that is a smooth manifold, we shall denote this subset V(Σ), it is a complex

manifold of dimension −3χ(Σ)[10]. It is a result of Goldman [10] that V(Σ)

has a canonical holomorphic-symplectic structure induced by the standard

trace form Tr on PSL2C.
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5.1.1 Fuchsian and quasi-Fuchsian groups and their defor-

mation spaces

Definition 5.1.2. We now recall some standard facts about discrete groups

of Möbius transformations, see for example [4], [18], [12]. Let G be a dis-

crete group of Möbius transformations acting properly discontinuously on

a non-trivial subset of CP 1. We define the region of discontinuity of G to

be the maximal subset of CP 1 on which the action is properly discontinu-

ous. We define the limit set C of G to be the complement of the region of

discontinuity.

We call a subset of CP 1 a circle if it is a great circle of CP 1 thought of

as a sphere.

Definition 5.1.3. A Fuchsian group is a discrete group of Möbius trans-

formations whose limit set is a circle. A quasi-Fuchsian group is a discrete

group of Möbius transformations whose limit set is a Jordan curve.

If G is Fuchsian, then we may find a Möbius transformation mapping its

limit set to the real line RP 1 ⊂ CP 1, showing that G is conjugate in PSL2C
to a discrete group of Möbius transformations that fix the upper and lower

half planes that is it is conjugate in PSL2C to a subgroup of PSL2R.

Suppose that G is a quasi-Fuchsian group and let C be its limit set. Now

G acts properly discontinuously on the complement of C in CP 1, indeed the

complement of C in CP 1 falls into two G invariant connected components

Γ+ and Γ− and the quotient

(CP 1\C)/G ∼= Γ+/G t Γ−/G,

is the disjoint union of two homeomorphic Riemann surfaces,

Σ1 := Γ+/G, Σ2 := Γ−/G.

We say that the group G represents the pair Σ1,Σ2. If G were Fuchsian

then in fact the quotient

(CP 1\C)/G = ΣJ t ΣJ ,

the disjoint union of the Riemann surface ΣJ and that obtained by taking

the conjugate complex structure ΣJ .
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The quasi-Fuchsian group G acts properly discontinuously on the hy-

perbolic three space H3 and the quotient H3/G is a hyperbolic 3-manifold

M . We call the hyperbolic three manifolds obtained by quotienting H3 by a

quasi-Fuchsian group quasi-Fuchsian manifolds. The two Riemann surfaces

obtained as the quotient of CP 1\C then arise from the action of G on the

sphere at infinity in H3 where we have a conformal but not a metric struc-

ture. It is a result of Marden [19] that the manifold M is topologically Σ×R
so we may think of M as a hyperbolic cobordism between the two Riemann

surfaces.

These two classes of subgroup of PSL2C allows us to consider two subsets

of the representation variety. Let R(Σ) be the subset of Hom(π1(Σ),PSL2C)

consisting of those representations θ whose image θ(π1(Σ)) is Fuchsian, and

Q(Σ) those whose image is quasi-Fuchsian. It is immediate that R(Σ) ⊂
Q(Σ).

Definition 5.1.4. The Fuchsian deformation space F(Σ) is the quotient of

R(Σ) by the conjugation action of PSL2C. The quasi-Fuchsian deformation

space QF(Σ) is the quotient of Q(Σ) by the conjugation action of PSL2C.

It is immediate from these definitions that both the Fuchsian and quasi-

Fuchsian deformation spaces are subsets of the representation variety, and in

addition that F(Σ) ⊂ QF(Σ). In addition we have that the quasi-Fuchsian

deformation space is a −3χ(Σ) complex submanifold of the representation

variety [11].

5.1.2 Uniformisation; the Fuchsian deformation space

The uniformisation theorem for Riemann surfaces tells us that any such can

be expressed as the quotient of the hyperbolic plane by the action of a group

of real Möbius transformations.

Theorem 5.1.5 (Uniformisation). Given a Riemann surface ΣJ there exists

a discrete subgroup G of PSL2R such that:

ΣJ = H2/G.

Using this theorem we shall identify the Teichmüller space of the surface

Σ in our current context of group representations. We fix a realisation of our
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surface Σ as the quotient H2/π1(Σ) where we are not concerned with the

complex structure this induces on Σ in this instance. Given any (discrete,

faithful) representation

θJ : π1(Σ) → PSL2R,

write θ̂J for the image of π1(Σ). We have the following commutative diagram

H2 f̃−−−−→ H2y y
Σ

f−−−−→ H2/θ̂J ,

where f is a homeomorphism from Σ onto the Riemann surface H2/θ̂J given

by the map

[z]π1(Σ) 7→ [z]θ̂J
,

and f̃ is the lift of f to the covering space. In view of this we define a

complex structure on Σ by pulling back the complex structure on H2/θ̂J ,

we write ΣJ to denote the resulting Riemann surface.

Proposition 5.1.6. The Fuchsian deformation space of the surface Σ is

homeomorphic to its Teichmüller space,

F(Σ) ∼= T (Σ).

Proof. Let [θ] ∈ F(Σ) and choose any θR ∈ [θ] consisting of real Möbius

transformations. We define the map F(Σ) → T (Σ) as that induced by tak-

ing the equivalence class [θ] to the equivalence class of the complex structure

on Σ induced by H2/θR(π1(Σ)). We need to see that this map is well defined

and bijective.

To see it is well-defined suppose we have two real representations θ1, θ2 ∈
[θ]. So there exists an h ∈ PSL2C such that θ2 = hθ1h

−1. Since the map

CP 1 → CP 1 given by z → hz must map the limit set of θ̂1 onto that of θ̂2
we see that h ∈ PSL2R. Hence h induces a conformal map H2 → H2 by

mapping z 7→ hz. Since

hθ̂1z = hθ̂1h
−1hz = θ̂2hz,
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this therefore maps orbits of θ̂1 onto those of θ̂2 and hence descends to a

conformal map

h : H2/θ̂1 → H2/θ̂2.

In addition we have the isomorphism

µ : θ̂1 → θ̂2,

g 7→ hgh−1

so µ(θ1(γ)) = θ2(γ) for any γ ∈ π1(Σ).

We have, for i ∈ {1, 2}, homeomorphisms

fi : Σ → H2/θ̂i,

given by the obvious projections. These define a necessarily conformal map

φ : Σ1 → Σ2 by

φ := f2 ◦ h ◦ f−1
1 ,

as in the following commutative diagram:

H2/θ̂1
h−−−−→ H2/θ̂2

f−1
1

y f−1
2

y
Σ

φ−−−−→ Σ.

Now φ induces a map φ∗ on the fundamental group of Σ and

φ∗(γ) = f2∗ ◦ h∗ ◦ f−1
1 ∗

= θ2 ◦ µ ◦ θ−1
1 (γ)

= γ.

But then φ induces the same isomorphism on π1(Σ) as the identity map on

Σ. Since we have Σ = H2/π1(Σ) we can construct a homotopy equivalence

between the two diffeomorphisms of Σ (see for example [18]). Hence φ ∈
Diff0(Σ) and therefore the two complex structures from θ1 and θ2 define the

same point of Teichmüller space.

Let Σ1 and Σ2 be the Riemann surfaces (Σ, J1) and (Σ, J2) for J1, J2 ∈
J (Σ). Suppose Σ1 and Σ2 are uniformised by the Fuchsian groups G1 and

G2 respectively. Further suppose they are conformally equivalent by a map
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φ homotopic to the identity, thus [J1] = [J2] ∈ T (Σ). Since the surfaces

are conformally equivalent we can lift this map to a conformal map on the

covering space H2. This must then be a Möbius transformation represented

by an element h ∈ PSL2R. This induces a map:

µ : G1 → G2

g 7→ hgh−1.

Now φ∗, the induced map on the fundamental group, must be the iden-

tity. Hence using the commutative diagram:

π1(Σ)
φ∗−−−−→ π1(Σ)

θ1

y θ2

y
G1

µ−−−−→ G2

we have,

h−1θ2h = θ1.

So the representations are conjugate and we have injectvity.

That the map is surjective follows immediately from the uniformisation

theorem.

5.1.3 Simultaneous uniformisation; the quasi-Fuchsian de-

formation space

We have identifed the Fuchsian deformation space of representations as an

object we are already familiar with. Results of Bers’ ([1], [2], [3]) enable

us to do the same with the quasi-Fuchsian deformation space using the so

called simultaneous uniformisation theorem.

Theorem 5.1.7 (Bers). Given a pair of Riemann surfaces Σ1,Σ2 and a

homotopy class [f ] of orientation-reversing homeomorphisms between them,

there exists a quasi-Fuchsian group representing these surfaces and this class.

The group is determined uniquely up to conjugation in PSL2C.

As a corollary of this theorem we identify the quasi-Fuchsian deformation

space as a smooth manifold with the product of two copies of Teichmüller

space:

T (Σ)× T (Σ) ∼= QF(Σ).
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Secondly we may identify the complex structure on QF(Σ) with the natural

one on the product of the Teichmüller spaces:

Theorem 5.1.8 (Bers). The natural map induced by simultaneous uniformi-

sation is a biholomorphism

T (Σ)× T (Σ) → QF(Σ).

Now it is clear that there is a canonical embedding of the Teichmüller

space into the quasi-Fuchsian deformation space given by the diagonal map,

T (Σ) ↪→ T (Σ)× T (Σ).

This embeds Teichmüller space as a −3χ(Σ) dimensional real submanifold

of the complex manifold QF(Σ). Consideration of the quotient (CP 1\C)/G

for G a Fuchsian group implies that the following diagram commutes:

F(Σ) ι−−−−→ QF(Σ)

∼=
y ∼=

y
T (Σ) ι−−−−→ T (Σ)× T (Σ),

where we have written ι for the obvious injections.

The canonical holomorphic symplectic structure [10] on the representa-

tion variety restricts to give one on the submanifold QF(Σ), remarkably it

also restricts to give a symplectic structure on the real submanifold given

by the Fuchsian deformation space.

Theorem 5.1.9 (Goldman [11]). The holomorphic symplectic structure on

the PSL2C representation variety restricts to a symplectic structure on the

Fuchsian deformation space. This resulting symplectic form is the Kähler

form for the Weil-Petersson metric under the identification with Teichmüller

space.

Note that the holomorphic symplectic structure on the PSL2C represen-

tation variety is a complex form, its imaginary part restricts to zero on the

Fuchsian deformation space.
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5.2 Embedding M in the quasi-Fuchsian deforma-

tion space

In this section we construct a map from the moduli space constructed in

chapter two to the quasi-Fuchsian space introduced above. We show that

this map embedsM as an open set in QF(Σ). Thus we obtain a hyperkähler

structure on an open subset of the quasi-Fuchsian deformation space. In

addition we show that the map (M, J) → (QF(Σ), I) is holomorphic where

I is the natural complex structure on the quasi-Fuchsian deformation space.

5.2.1 Quasi-Fuchsian three manifolds

Let Σ be a fixed closed surface. In this section we construct a Riemannian

3-manifold M(g,σ) associated to any pair (g, σ) where g is a metric on Σ and

σ is a smooth quadratic differential with |σ|g < 1. We show that there is

a natural embedding Σ ↪→ M(g,σ) that is a minimal isometric immersion.

Under the additional constraint that σ is holomorphic and

Kg + |σ|2 = −1,

we find that the M(g,σ) is a quasi-Fuchsian hyperbolic 3-manifold. This is

essentially an elucidation of the work of Uhlenbeck in [28].

Let (g, σ) be a pair consisting of a metric g and a smooth quadratic

differential σ satisfying |σ| < 1.

Lemma 5.2.1. The quadratic differential σ induces a smooth, symmetric,

trace-free bilinear form h on the real tangent bundle to Σ.

Proof. Let X,Y ∈ TRΣ, then since TRΣ ∼= T 1,0Σ we may consider their

images X̃, Ỹ in T 1,0Σ. Clearly σ(X̃, Ỹ ) ∈ C, and we define

h(X,Y ) := Re(σ(X̃, Ỹ )).

The symmetry and smoothness properties follow immediately from the fact

that σ is a smooth quadratic differential on Σ. To see that it is trace free

let X ∈ TRΣ, then {X, JX} span TRΣ, where of course J is the complex
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structure induced by g. Now:

h(JX, JX) = Re(σ(J̃X, J̃X))

= Re(σ(iX̃, iX̃))

= −Re(σ(X̃, X̃))

= −h(X,X).

But then we must have that the symmetric form h is trace free.

Now we define M(g,σ) topologically as the product Σ × R, and equip it

with a symmetric bilinear form

Λ = dt2 + (cosh2t+ |σ|2gsinh2t)g − (2coshtsinht)h,

where we take t as a global coordinate in the R direction.

Lemma 5.2.2. The form Λ gives M(g,σ) a Riemannian structure.

Proof. We need to show that Λ is non-degenerate on M(g,σ). Take local

conformal coordinates on Σ so that g = e2φ(dx2 +dy2). In these coordinates

we write σ = (α+ iβ)dz ⊗ dz, so that h = αdx2 − 2βdxdy − αdy2. We find

that in the coordinates (x, y, t) the metric Λ is represented by the matrix

Λij =

(
1 0

0 e2φA2

)
,

where the 2× 2 matrix A is defined as

A :=

(
cosht+ sinhte−2φα −sinhte−2φβ

−sinhte−2φβ cosht− sinhte−2φα

)
.

We see that Λ is non-degenerate if and only if det(A) > 0 on M(g,σ), since

det(A) > 0 at t = 0. Now

det(A) = cosh2t− e−4φ(α2 + β2)sinh2t,

so we see that det(A) > 0 on M(g,σ) if and only if

e−4φ(α2 + β2)tanh2t < 1, ∀t ∈ R.

Since 0 ≤ tanh2t < 1 we certainly have the desired relation if

e−4φ(α2 + β2) = |σ|2g < 1,

on Σ as we supposed.
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From now on when we refer to the manifold M(g,σ) it will be implicit

that it has the above defined metric.

Lemma 5.2.3. The slice Σ × {0} is a minimal isometric embedding Σ ↪→
M(g,σ). The second fundamental form for this embedding is given by h.

Proof. It is immediate from the definition of Λ that this defines an isometric

embedding. We need to show that it is in fact minimal, that is the mean

curvature is zero. First we calculate the second fundamental form of the

embedding. Let X,Y ∈ TpΣ and write ∂t for the unit normal vector in the

R direction, by definition of the second fundamental form S,

S(X,Y ) := Λ(∇X∂t, Y ),

where ∇ is the Levi-Civita connection on M(g,σ). We have that this is given

as follows:

Λ(∇X∂t, Y ) =
1
2
(XΛ(Y, ∂t)− ∂tΛ(X,Y ) + Y Λ(∂t, X)

− Λ(X, [Y, Z]) + Λ(∂t, [X,Y ])− Λ(Y, [∂t, X]))

= −1
2
∂tΛ(X,Y ).

Here we have used the fact that ∂t is perpendicular to the plane spanned by

X and Y and we may choose X,Y so that all the commutators evaluate to

zero. Then

2S(X,Y ) = − ∂

∂t

∣∣∣∣
t=0

((cosh2t+ |σ|2gsinh2t)g(X,Y )− (2coshtsinht)h(X,Y ))

= 2h(X,Y ).

We have from an earlier lemma that h is trace free, so by definition the

mean curvature of Σ× {0} vanishes and the embedding is minimal.

Under additional conditions on σ and g we can say more about the man-

ifold M(g,σ). We shall make essential use of the following result of Uhlenbeck

from [28].

Proposition 5.2.4 (Uhlenbeck [28]). Suppose that σ is holomorphic with

|σ|g < 1, and

Kg + |σ|2g = −1,
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then M(g,σ) is a quasi-Fuchsian 3-manifold and the embedding Σ ↪→ M(g,σ)

as the slice Σ× {0} is the only minimal surface in M(g,σ).

The conditions on the curvature and the holomorphicity of the quadratic

differential turn out to be equivalent to the Gauss-Codazzi equations for the

surface Σ embedded in M(g,σ) in this way.

5.2.2 The map M→QF(Σ)

Using the theorem of Uhlenbeck from the previous section we can construct

a map M ↪→ QF(Σ) from the one moduli space into the other.

Recall the set B consisting of the set of pairs (g, σ) where g is a metric on

Σ, σ is a holomorphic quadratic differential and the pair staisfies the Gauss

equation:

Kg + |σ|2g = −1.

Clearly we have a map

B ↪→ Q(Σ),

given by taking the pair (g, σ) ∈ B to the quasi-Fuchsian three manifold

M(g,σ). In fact this map descends to give us a bona fide map at the quotient

level.

Proposition 5.2.5. There is an injective map ι from the moduli space M
into the quasi-Fuchsian space QF(Σ).

Proof. We need to show that the map defined above from B → Q(Σ) de-

scends to give us a map between the quotients:

M = B/Diff0(Σ) → Q(Σ)/PSL2C = QF(Σ).

The map is well defined since if we have two equivalent pairs (g1, σ1) and

(g2, σ2) then the corresponding three manifolds M(g1,σ1), M(g2,σ2) are obvi-

ously isometric. Now suppose that we have (g1, σ1), (g2, σ2) ∈ B and we

know that M(g1,σ1) is equivalent to M(g2.σ2) in QF(Σ). Let G1 and G2 be

the quasi-Fuchsian groups corresponding to the three manifolds, these are

therefore conjugate in PSL2C. Suppose G1 = hG2h
−1, then we get an isom-

etry of H3 by mapping w 7→ hw which descends to an isometry h̃ between
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the three manifolds. Since this map h̃ is an isometry, it must map the unique

minimal surface inside M(g1,σ1) to that inside M(g2,σ2). But then the pairs

(g1, σ1), (g2, σ2) are related by h̃ so that our map is injective as desired.

We should observe that the methods of chapter three imply immediately

that the image of M is an open set in quasi-Fuchsian space, therefore we

have a hyperkähler structure on an open subset of QF(Σ).

5.2.3 Holomorphicity of the embedding

In this section we show that the embedding ofM as an open set in the quasi-

Fuchsian deformation space is holomorphic with respect to the complex

structure J on M and the natural complex structure on QF(Σ).

Recall from chapter three the set A is defined to consist of pairs(J, σ)

where J is a complex structure on Σ, σ is a holomorphic quadratic differential

such that |σ|g < 1 and the following equation is satisfied:

Kg +
1
2
∆ log(1 +

√
1− |σ|2g) = −4.

Here g is the metric induced by ρ and J . Suppose we have a point (J, σ) ∈ A,

this corresponds to some section s of the fibre bundle D over Σ. Recalling

from chapter three that we have a map α : D → H2×H2 we see that we have

an induced map, which we shall also denote α, from Γ(D) → Γ(H2 ×H2).

In other words we have a map

α : Γ(D) → J (Σ)× J (Σ).

From the result in lemma 3.1.4 concerning the map α : D → H2 × H2 it

follows immediately that α intertwines the complex structure (induced by)

J on Γ(D) and the canonical complex structure on J (Σ)×J (Σ). Therefore

we have a holomorphic map

α : A ↪→ J (Σ)× J (Σ).

Recall also that we have a map π̃ : A → M given by mapping the pair

(J, σ) to the Diff0(Σ) equivalence class of the pair (g̃, σ), where g̃ = (1 +
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√
1− |σ|2)g. Consider the following diagram:

A α−−−−→ J (Σ)× J (Σ)

π̃

y π

y
M ι−−−−→ T (Σ)× T (Σ)

. (5.1)

From the discussion above we see that the maps α, π̃, and π are holomorphic.

Since the results of chapter three tell us π̃ is a surjection we will have shown

that the injection ι : M ↪→ T (Σ)×T (Σ) is holomorphic if we can show that

the diagram commutes.

Proposition 5.2.6. The diagram 5.1 is commutative, implying that the map

ι : (M, J) ↪→ T (Σ)× T (Σ),

is holomorphic.

Proof. Let (J, σ) ∈ A and choose local conformal coordinates on Σ. In these

coordinates the fixed volume form ρ is represented as ρ = e2φ(dx ∧ dy) and

the induced metric g = e2φ(dx2+dy2). The section s ofD giving rise to (J, σ)

is locally a map to T ∗i H
2, (x, y) 7→ (u(x, y), v(x, y)), and |σ|2 = y2(u2 + v2).

Then under the map α : A → H2 ×H2 we obtain the section:

α(s) =

(
− v

1− u
,

√
1− |σ|2
1− u

,
v

1 + u
,

√
1− |σ|2
1 + u

)
.

This corresponds to the pair of complex structures:

J+ =

 v√
1−|σ|2

− 1+u√
1−|σ|2

1−u√
1−|σ|2

− v√
1−|σ|2

 , J− =

− v√
1−|σ|2

− 1−u√
1−|σ|2

1+u√
1−|σ|2

v√
1−|σ|2

 .

These complex structures are induced by the metrics

g± =
e2φ√

1− |σ|2
((1∓ u)dx2 ∓ 2vdxdy + (1± u)dy2).

Now, as a quadratic differential, we have that σ = −e2φ(u− iv)dz⊗ dz, and

writing h for the real part of σ as discussed earlier in this chapter we find

h = −e2φ(udx2 + 2vdxdy − udy2), and in conclusion:

g± =
1√

1− |σ|2
(g ± h).
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Now consider the image of (J, σ) in B, it consists of the pair (g̃, σ) where

g̃ = (1 +
√

1− |σ|2g)g. Recall from lemma 3.2.13 that we have

|σ|g̃ =
|σ|g

1 +
√

1− |σ|2g
.

Using this point in B we know from the previous section that we may con-

struct the quasi-Fuchsian three-manifold M(g̃,σ) whose metric is given by:

Λ = dt2 + (cosh2t+ |σ|2gsinh2t)g − (2coshtsinht)h,

where the form h is the real part of σ as described earlier. We know that

this three manifold corresponds to the point in the product of Teichmüller

spaces T (Σ)×T (Σ) defined by the conformal structures induced at infinity

by this metric. The conformal structure induced on the slice Σ × {t} of

M(g̃,σ) by Λ is induced by the metric

(1 + |σ|2g̃tanh2t)g̃ − 2tanht h.

Therefore the conformal structures at infinity are induced by the metrics

g±∞ = (1 + |σ|2g̃)g̃ ∓ 2h

=

1 +
|σ|2g

(1 +
√

1− |σ|2g)2

(1 +
√

1− |σ|2g
)
g ± 2h

= 2(g ± h).

These maps therefore give rise to the same conformal structures and we have

that diagram (5.1) commutes.

5.3 Holomorphic symplectic structures on QF(Σ)

In this section we pick a holomorphic symplectic form on the moduli space

M with the complex structure J . Identifying M as an open subset of

QF(Σ) we then compare this form with the restriction of Goldman’s natural

holomorphic symplectic form on the PSL2C representation variety.

71



5.3.1 The holomorphic symplectic structure on M

Recall that Donaldson’s moduli space M is equipped with a hyperkähler

structure (g, I, J,K) and three symplectic structures Ωi, i ∈ {1, 2, 3}.

Lemma 5.3.1. The complex two form

ωC := Ω1 − iΩ3

is a holomorphic-symplectic structure on the complex manifold (M, J).

Proof. It is immediate that ωC defines a non-degenerate skew complex two

form on M. We need to show ωC ∈ Ω2,0
J (M). Since both ω1 and ω3 are

closed we see that dωC = 0 but then by comparing types we see that the

image of ∂ : Ω2,0
J (M) → Ω2,1

J (M) is zero, so that ωC is holomorphic.

Since ι : (M, J) → QF(Σ) is a holomorphic embedding we see that

we can push the form forward to get a form ωC on the subset of QF(Σ)

defined by the image of M, and this form will be a holomorphic symplectic

form with respect to the restriction of the natural complex structure on the

quasi-Fuchsian deformation space.

5.3.2 Comparing holomorphic-symplectic structures

In this section we show that the two holomorphic-symplectic forms coincide

on the image of Donaldson’s moduli space inside the quasi-Fuchsian mod-

uli space. We use the fact that both symplectic structures restrict to the

Weil-Petersson form on Teichmüller space to conclude they must be equal as

holomorphic 2-forms on the diagonal. We then use an analytic continuation

argument to show they are equal on the whole of M. Throughout this sec-

tion we shall denote by T̂ the natural diagonal embedding T (Σ) ↪→ QF(Σ),

and will use the fact that M may be thought of as an open subset of QF(Σ)

without further comment.

First we establish the following piece of linear algebra:

Lemma 5.3.2. Let W be a n dimensional complex vector space, V an n

dimensional real vector space. Suppose that we have an inclusion ι∗ : V →
W and under this identification

W = V ⊕ iV,
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then the natural map π∗ : W → V given by projection induces an isomor-

phism

π∗ : ∧2V ∗ ⊗R C → ∧2W ∗.

Proof. Let {ν1, ν2, ..., νn} be a basis for V ∗ and {v1, v2, ..., vn} be a dual basis

for V . For each i choose wi such that π∗wi = vi. Let∑
i<j

αij ⊗ νi ∧ νj ∈ ∧2V ∗ ⊗R C,

for αij not all zero, be in the kernel of π∗. But then we have for all l < m

0 =

π∗∑
i<j

αij ⊗ νi ∧ νj

 (wl ∧ wm)

=

∑
i<j

αij ⊗ νi ∧ νj

 (vl ∧ vm)

= αlm.

Therefore π∗ has no kernel. Since the complex dimensions of the spaces

under consideration are equal we have the result.

This now allows us to identify the two holomorphic-symplectic forms on

the subset T̂ of quasi-Fuchsian deformation space.

Proposition 5.3.3. The holomorphic symplectic forms ωG and ωC are equal

on T̂ ⊂ QF(Σ).

Proof. Let ι : T (Σ) → T̂ ⊂ QF(Σ) be the diagonal embedding. Since by

theorem 5.1.9 and proposition 3.2.15 the restriction of both the forms ωG
and ωC to T̂ is the Weil-Petersson form we have by definition that:

ι∗ωG = ωWP = ι∗ωC.

Let V be the tangent space to T (Σ) at [J ], and W the tangent space to

QF(Σ) at ι([J ]). Considering V as a subset of W and recalling that the

complex structure on QF(Σ) is the natural one on T (Σ) × T (Σ) we see

that V ⊕ iV = W so that we may apply lemma 5.3.2. We conclude that

holomorphic two-forms ωG = ωC are equal on the subset T̂ .
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We now seek to use analytic continuation to conclude the forms are

equal on the whole of M. We remark that this is very similar to the method

employed by Platis in [21]. To begin we prove a lemma about analytic

continuation in Cn. A small piece of notation is required here, if U ⊂ Cn

we denote by R(U) the set of real points of U , that is Rn ∩ U where the

embedding of Rn in Cn is the standard one.

Lemma 5.3.4. Let U ⊂ Cn be an open connected region with a non-empty

set of real points R(U). Suppose we have a holomorphic function ψ : U → C
such that ψ(z1, z2, ..., zn) = 0 if zi ∈ R ∀i ∈ {1...n}. Then ψ is identically

zero in U .

Proof. Let (α1, α2, ..., αn) ∈ R(U), since U is open we can certainly find

r ∈ R such that r > 0 and the open polydisc Pr(α1, α2, ...αn) =
⊗i=n

i=1 Dr(αi)

is a subset of U . Here of course Dr(αi) is the disc of radius r in C. Now

consider the function ψ̃1 : D(α1, r1) → C defined by

ψ̃1(z) = ψ(z, α2, ..., αn).

Now ψ̃1 = 0 on (R ∩ D(α1) which is a non-empty subset of C and by the

identity theorem for one complex variable we conclude that ψ̃1 is identically

zero on D(α1). Now let β1 ∈ Dr(α1) and consider the map ψ̃2 : C → C
defined by

ψ̃2(z) = ψ(β1, z, ..., αn).

As above we can conclude ψ̃2 is identically zero on Dr(α2), and since β1 was

arbitrary we find we have that the map ψ is identically zero on the set

(z1, z2, α3, ..., αn),

for (z1, z2) ∈ Dr(α1)×Dr(α2). It is clear that we can continue in this fashion

to obtain that ψ is zero on the polydisc Pr(α1, α2, ...αn). Repeating for the

other points in R(U) we see that ψ is zero on an open neighbourhood of

R(U) in U . The identity theorem for several complex variables allows us to

conclude that ψ is zero in U .

This is the final ingredient we need to show that the two holomorphic-

symplectic forms on M are the same.
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Proposition 5.3.5. The restriction of Goldman’s holomorphic-symplectic

form ωG to Donaldson’s moduli space M coincides with the holomorphic-

symplectic form ωC.

Proof. Let U be an open neighbourhood of a point in T̂ , and take local

complex coordinates for QF(Σ), (z1, ...zn) on U . In these coordinates we

have that the difference η := ωG − ωC can be written,

η = Σi,jψijdzi ∧ dzj ,

for some holomorphic functions ψij . Since by proposition 5.3.3 we must

have that ψij = 0 on U ∩ T̂ we may apply 5.3.4 to conclude that ψij = 0 on

U . It follows that η is identically zero on an open neighbourhood of T̂ , and

from the identity theorem for complex manifolds hence identically zero on

the connected set M.

We note that Platis in [21] constructs a holomorphic symplectic form

on QF(Σ) coinciding with Goldman’s form and hence by the preceding

theorem, ours.
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Chapter 6

In this chapter we consider the image of the hyperkähler moduli space M
inside the quasi-Fuchsian deformation space. We start by discussing the

existence of a family of minimal surfaces inside a family of quasi-Fuchsian

manifolds. This being established we discuss sufficient conditions for the

map M → QF(Σ) to be a surjection. We then show how, under certain

assumptions, we may extend the hyperkähler structure on M to a strictly

larger open neighbourhood M̃ of M. Lastly we introduce Taubes’ moduli

space of minimal hyperbolic germs. Our moduli space sits inside his in

a canonical fashion, we examine whether we might induce a hyperkähler

structure off the image of our moduli space inside Taubes’.

6.1 Families of minimal surfaces

Fix M = Σ×R as a smooth manifold, and write Mλ to denote M with the

Riemannian metric λ. The purpose of this section is to deduce results about

the existence of families of minimal surfaces associated to families of quasi-

Fuchsian manifolds. We follow the program for finding harmonic maps laid

out in [7] and [24]. It is immediate from results of Sacks and Uhlenbeck [28],

that given any hyperbolic three manifold we can find a minimal immersion

of Σ in it, therefore given any open set in the space of quasi-Fuchsian metrics

on M we can define a map to the space of maps from Σ to M . However,

this is not enough for our eventual purposes; we would like to deduce, at the

least, continuity of the resulting family of minimal surfaces. We proceed to

discuss these matters.

Let ΛQF be the set of all quasi-Fuchsian metrics on M , and let Φ denote
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the set of all smooth embeddings φ : Σ ↪→ M . Let λ ∈ ΛQF, by definition,

a minimal embedding φ : Σ →Mλ is a critical point of the area functional:

A(φ) :=
∫

Σ
ρφ,

where ρφ is the area form on Σ induced by the embedding φ. It is well

known, see for example [6], that critical points of this functional are those

embeddings whose mean curvature vanishes, the mean curvature being the

trace of the second fundamental form of the embedding. We shall denote

the second fundamental form of the embedding φ : Σ → Mλ by Sλ(φ) and

the mean curvature of the embedding by Sλ(φ).

Fix now a metric λ on M and suppose we have a smooth family φs of

embeddings of Σ in Mλ. We have the following formula for the derivative of

mean curvature.

Lemma 6.1.1 ([25]). Let Sλ : Φ → C∞(Σ) denote the mean curvature

operator, and φs a smooth family of embeddings φs : Σ →M , then

d

ds

∣∣∣∣
s=0

Sλ(φs) = ∆ψ − (1− |Sλ(φ0)|2)ψ.

Where,

ψ :=
(
d

ds

∣∣∣∣
t=0

φs

)N
,

is the normal component of the derivative of φs, and |Sλ(φ0)| is the pointwise

norm of the second fundamental form of the embedding in the induced metric

on Σ.

We call the resulting operator on derivatives to the space of smooth

embeddings of Σ the Jacobi operator and denote it Jφ.

Corollary 6.1.2. Suppose that φs is a family of embeddings such that the

norm of the second fundamental form is not constant and satisfies

|Sλ(φ0)|2 ≤ 1,

pointwise on Σ, then the Jacobi operator is invertible.
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Proof. Suppose ψ ∈ ker(Jφ), then

0 =
∫

Σ
Jφ(ψ)ψρ

=
∫

Σ

(
∆ψ − (1− |Sλ(φ0)|2)ψ

)
ψρ

=
∫

Σ
−|∇ψ|2ρ−

∫
Σ
(1− |Sλ(φ0)|2)ψ2ρ.

But, for ψ not identically zero, the hypothesis ensure this last is strictly

negative. Hence Jφ has trivial kernel.

The remainder of this section is a discussion of the ideas needed to

establish the following result.

Theorem 6.1.3. Let λ0 ∈ Λ, and suppose φ0 : Σ → Mλ0 is a minimal

embedding, with the Jacobi operator invertible. Then there exists an open

set U ⊂ Λ containing λ0 and such that given any λ ∈ U there exists a

minimal embedding φλ : Σ →Mλ. The association λ 7→ φλ is continuous.

Denote by Λ the space of metrics on M . Let (λ0, φ0) ∈ Λ × Φ be such

that Sλ0(φ0) = 0 and Jφ0 is invertible. We aim to use the implicit function

theorem to find a neighbourhood U ⊂ Λ of any λ0 for which there exists a

φ0 satisfying Sλ0(φ0) = 0, such that for all λ ∈ U we may find a φλ, varying

continuously with λ, such that Sλ(φλ) = 0.

proof of theorem 6.1.3. Let Λk be the space of metrics onM that are k times

weakly differentiable, that is sections of T ∗M⊗T ∗M that are k times weakly

differentiable and are metrics. It is immediate that Λk is an open set in the

Sobolev space Γk(T ∗M ⊗ T ∗M) consisting of k times weakly differentiable

square integrable sections of T ∗M ⊗ T ∗M . Here we use the metric λ0 to

define the notion of square integrable.

Consider a tubular neighbourhood of φ0(Σ) in Mλ0 , since M ∼= Σ × R
we know the tubular neighbourhood is of the form Σ × I for some interval

I ⊂ R. Let Φk be the set maps φ : Σ → Σ× I given by

p 7→ (p, f(p)),

where f ∈ L2
k(Σ) is k times weakly differentiable.
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Since calculating the mean curvature involves taking derivatives of both

the function and the components of the metric tensor metric, the mean

curvature map S maps Λk × Φk to L2
k−2(Σ), for k > 2 as we can see from

working in coordinates, see [6].

The hypothesis that the Jacobi operator associated to (λ0, φ0) is in-

vertible, implies precisely that the derivative of the mean curvature map

in the direction of the embeddings is invertible at (λ0, φ0). Therefore, by

the implicit function theorem in Banach spaces we obtain a neighbourhood

Uk ⊂ Λk of λ0 and a continuous map Uk → Φk, λ 7→ φλ such that

S(λ, φλ) = 0.

Now by restriction we obtain a neighbourhood U ′ ⊂ Λ of the smooth metrics

and an associated map φλ : Σ →Mλ that is a minimal embedding. Results

on Harmonic maps [6] ensure that φλ is itself in fact smooth allowing the

conclusion of the theorem.

Given the results on families of harmonic maps associated to varying

metrics in [24] and [7], we expect that we can actually take the map λ 7→ φλ

to be smooth. We have not examined this.

6.2 The image of M in quasi-Fuchsian space

In the previous chapter we defined an embedding of the hyperkähler ex-

tension of Teichmüller space M into the quasi-Fuchsian defomation space

QF(Σ). A natural question is whether this map is in fact a surjection or

not. This appears to be a delicate matter to which we do not know the

answer at present. In this section we discuss the work of Uhlenbeck [28]

which enables a partial answer to be given.

Suppose we have a point [θ] in the quasi-Fuchsian deformation space.

Here θ is a representation of the fundamental group of Σ into PSL2C whose

image is quasi-Fuchsian. We recall that given such a representation, then the

quotient of the hyperbolic three space H3 by θ̂ := θ(π1(Σ)) is a hyperbolic

three manifold Mθ; by definition this is what we mean by a quasi-Fuchsian

three manifold. Equivalently we get a pair (J1, J2) ∈ J (Σ) × J (Σ), which
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we may think of as the conformal structures induced by the action of θ̂ on

the H2 at infinity in H3. Further recall that the latter identification extends

to give us an identification

QF(Σ) ∼= T (Σ)× T (Σ),

associating to [θ] ∈ QF(Σ) the point ([J1], [J2]) in the product of the Te-

ichmüller spaces.

We have the following proposition due to Uhlenbeck,

Theorem 6.2.1 (Uhlenbeck [28]). Suppose for some metric g on Σ we have

a minimal isometric embedding of Σ into a quasi-Fuchsian three manifold

M ∼= Σ × R, then the second fundamental form of the embedding defines

a holomorphic quadratic differential σ on Σ and the pair (g, σ) satisfy the

Gauss equation

Kg + |σ|2g = −1.

If in addition the holomorphic quadratic differential satisfies |σ|g < 1 then

the minimal surface is unique.

We arrive at the following characterisation of the moduli space M in

terms of its image in the quasi-Fuchsian moduli space.

Proposition 6.2.2. The hyperkähler moduli space M is identified with that

subset of QF(Σ) defined by the set of points q ∈ QF(Σ) such that for any

representation θ with [θ] = q the hyperbolic manifold Mθ contains a minimal

Σ whose second fundamental form induces a holomorphic quadratic differ-

ential σ with |σ|g < 1.

Proof. Denote by M′ the set of points q ∈ QF(Σ) satisfying the hypothesis

of the statement of the theorem. Suppose we have a pair (g, σ) ∈ B, the

work of the previous chapter tells us precisely that the map

Σ ↪→M(g,σ),

is a minimal isometric immersion of (Σ, g) into the quasi-Fuchsian three

manifold M(g,σ). The second fundamental form is given by the real part of

σ and by hypothesis |σ|g < 1. The deck transformations on the universal
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cover H3 associated to this manifold give a representation of π1(Σ) into

PSL2C that is quasi-Fuchsian by construction. It follows immediately that

M is identified with some subset of M′.

Now suppose we have a q ∈M′, pick a representative representation

θ : π1(Σ) → PSL2C,

so that q = [θ]. Consider the quasi-Fuchsian manifold H3/θ̂. By hypothesis

there exists a metric g on Σ and a minimal isometric embedding

Σ ↪→Mθ,

so that the associated holomorphic quadratic differential satisfies |σ|g < 1.

In view of the proposition above we see that the pair (g, σ) satisfies the

equation

Kg + |σ|2g = −1,

and hence lies in B. The uniqueness part of theorem 6.2.1 ensures that this is

a well defined assignment of a point in B to a quasi-Fuchsian representation

θ. It follows that this is the inverse of the map that constructs a quasi-

Fuchsian manifold from a point in B. Since the map from B descends to the

quotient as a map M→QF(Σ) we must have that the map from M′ to M
is well defined, which completes the proof.

In summary we see that we have a hyperkähler structure on some open

subset M⊂ QF(Σ).

6.2.1 Extending the hyperkähler metric off M

In this section we suppose that in fact the map from the moduli space M to

the quasi-Fuchsian deformation space is not onto and attempt to extend the

hyperkähler structure off M to some strictly larger open set in QF(Σ). We

know the moduli space M is hyperkähler with complex structures I, J,K,

and corresponding symplectic structures ω1, ω2, ω3. Recall from chapter

three that the action of multiplication by I has a Hamiltonian A which

provides a Kähler potential for the symplectic form ω2, that is:

ω2 = 2i∂J∂JA.
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On D, the hyperkähler extension of H2, this potential function was just

given by √
1− |σ|2 − 1,

therefore on the moduli space N it is just given by the function

A =
∫

Σ

(√
1− |σ|2g − 1

)
ρ,

where g is the metric induced by ρ and J . But the point (J, σ) ∈ A corre-

sponds to the point (
(1 +

√
1− |σ|2g)g, σ

)
∈ B,

thus up to a constant A is just the area of the metric in B, which corresponds

to the area of the minimal surface in the quasi-Fuchsian manifold M(g,σ).

Consider the structures we have on the complex manifold QF(Σ). We

have the complex structure, which we know restricts to the complex struc-

ture J on M, and we have the canonical holomorphic symplectic form of

Goldman, which we know from the last chapter restricts to the holomorphic

symplectic form ω1 − iω3 on M. We are therefore missing one symplectic

form on QF(Σ) that would turn it into a hyperkähler manifold. However, if

we have a well defined area functional A, the preceding paragraph suggests

we might attempt to define the third symplectic structure as

ω2 := 2i∂J∂JA.

We pursue this idea now.

Recall from chapter three the definition of the set B as the set of pairs

(g, σ) with σ holomorphic, |σ|g < 1 and

Kg + |σ|2g = −1.

Define the area function A on B that associates to a pair (g, σ) the area of

Σ with the volume form ρg induced by g:

A[(g, σ)] =
∫

Σ
ρg.

It is clear that this is well defined on B and also clear, since diffeomorphisms

preserve area, that it is well defined on the quotient M.
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Proposition 6.2.3. Let q ∈ QF(Σ) and suppose that there exists quasi-

Fuchsian manifold representing q containing a minimal surface with invert-

ible Jacobi operator. Then there exists a neighbourhood U of q and a function

Ã : U → R induced by the area of a family of minimal surfaces in the neigh-

bourhood of any quasi-Fuchsian manifold representing q . We call Ã a local

area function at q.

Proof. Suppose λ0 is the quasi-Fuchsian metric on M = Σ×R representing

the point q ∈ QF(Σ) guaranteed by the hypotheses. ThenMλ0 must contain

a minimal surface φ0 : Σ →Mλ0 with invertible Jacobi operator. Therefore

we may apply theorem 6.1.3 to obtain a neighbourhood of λ0 in the space of

quasi-Fuchsian metrics and an associated family of minimal embeddings of

Σ. We define the area function to be the area of these minimal embeddings.

Note that a priori this construction depends on the lift of q to a quasi-

Fuchsian manifold and on the choice of stable minimal surface in this mani-

fold, that is there may be several different local area functions at q. However,

if we chose q ∈ M then it follows from the uniqueness of minimal surfaces

in quasi-Fuchsian manifolds representing classes in M that there is a unique

local area function at q and indeed it is the area function A defined earlier.

Theorem 6.2.4. Let q ∈ QF(Σ) be in M, the closure of M. Suppose that

there exists quasi-Fuchsian manifold representing q containing a minimal

surface with invertible Jacobi operator and that the resulting local area func-

tional Ã is analytic. Then we may extend the hyperkähler metric on M to

an open neighbourhood containing M
⋃
{q}.

Proof. Let the analytic local area functional Ã be defined on the neighbour-

hood U of q ∈ QF(Σ). Since by hypothesis q ∈ M we have that U
⋂
M

is open in QF(Σ) and non-empty. Since the area functional A is uniquely

defined on M we must have that on U
⋂
M, Ã = A. This allows us to take

Ã as an analytic extension of A to U
⋂
M. We write A for the extended

function and define a holomorphic two form on U
⋂
M as

ω̃2 = 2i∂J∂JA.
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Clearly this agrees with ω2 onM and is analytic on U
⋂
M. We are therefore

free to write the resulting two form as ω2.

Now write ω1 and ω3 for the symplectic structures on U
⋂
M coming

from setting ω1 − iω3 to be Goldman’s canonical holomorphic symplectic

form on QF(Σ). We know these restrict to the suggested symplectic forms

on M. Let n be the dimension of QF(Σ), on M we have

ωn1 = ωn2 = ωn3 .

Now ω1 and ω3 are analytic and non-degenerate on the whole of QF(Σ),

since we have that ω2 is analytic on U
⋂
M this identity must hold on

U
⋂
M so that ω2 is non-degenerate on U

⋂
M. Thus ω2 is a symplectic

form on U
⋂
M. We require the three forms ω1, ω2, ω3 satisfy the correct

algebraic identities for a hyperkähler structure. But since the algebraic

identities hold on the open set M they must hold on the extension U
⋂
M.

A theorem of Hitchin [13] then ensures that since the symplectic forms are

closed the complex structures they induce are integrable so that we indeed

have a hyperkähler structure extending that on M.

Now define M̃ to be the set of points in the closure of M for which we

can find an analytic local area function. Using the above theorem we can

obtain the following:

Corollary 6.2.5. There is a hyperkähler structure on M̃ extending that on

M.

Proof. This follows immediately from the methods of the previous theorem

once we observe that given any two q1, q2 ∈ M̃, the local area functionals

Ã1, Ã2 defined on the respective open neighbourhoods U1 and U2 of QF(Σ)

are analytic. Their respective analytic extensions to M
⋃
Ui agree on the

open setM and so we have a well defined analytic function onM
⋃
U1
⋃
U2.

To conclude this section we note that in his thesis [22] Platis constructs

a hyperkähler structure on the quasi-Fuchsian space. His structure has the

complex structure J and the holomorphic symplectic form ω1 − iω3 and

therefore must agree with ours on its domain of definition.
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6.3 Taubes’ moduli space of hyperbolic germs

In this section we shall describe a recent construction of Taubes [26]. There

is an obvious injection of the moduli space M into Taubes’ space, we discuss

whether or not the resulting hyperkähler structure can be extended from this

subset. Note, that in what follows we use a slightly different normalisation

to that employed in Taubes’ paper, this is to facilitate comparison with the

rest of the work presented in this thesis.

As usual Σ denotes a closed compact smooth surface of genus at least 2.

Let χ(Σ) be the Euler characteristic of Σ, so that χ(Σ) < 0.

Definition 6.3.1. A pair (g, σ) consisting of a metric g and a holomorphic

quadratic differential σ is called a minimal hyperbolic germ on Σ if

Kg + |σ|2g = −1.

This clearly contains the space B described earlier, indeed the only differ-

ence is that we have removed the restriction on the pairs (g, σ) that |σ|g < 1.

In view of this, we denote the space of minimal hyperbolic germs B̃.

The identity component of the diffeomorphism group of Σ, Diff0(Σ), acts

on the set of minimal hyperbolic germs on Σ. Taubes defines his moduli space

of minimal hyperbolic germs H to be the resulting quotient . That is,

H = B̃/Diff0(Σ).

We have the following result about the analytic structure of this space.

Theorem 6.3.2 (Taubes). The moduli space H has the structure of a

smooth, orientable manifold of dimension −6χ(Σ).

It is immediate from the definition of the space H that we have an

embedding

M ↪→ H,

induced by the embedding of B into B̃. Thus the hyperkähler moduli space

M sits inside Taubes’ moduli space of minimal hyperbolic germs H in a

natural way.

Given a minimal hyperbolic germ (g, σ) we now construct in exactly the

same fashion as in the last chapter a three manifold M(g,σ).
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Proposition 6.3.3. Let (g, σ) ∈ B̃ be a minimal hyperbolic germ. Then

there exists a hyperbolic three manifold M(g,σ), that is topologically Σ× I for

some subinterval I of R and contains the manifold Σ with the metric g as a

minimal embedding.

Proof. The idea here is to define as in the last chapter a symmetric bilinear

form

Λ = dt2 + (cosh2t+ |σ|2gsinh2t)g − (2coshtsinht)h,

with h the real part of σ. This metric is non degenerate on Σ×R provided

cosh2t− |σ|2gsinh2t > 0.

So that we get a metric Λ on the subset of Σ× R where

|σ|g <
cosht
|sinht|

.

We define the interval I to be the maximal one for which this inequality

holds ∀t ∈ I, and define M(g,σ) to be the manifold Σ × I with the metric

Λ. The results of the last chapter tell us that Σ is minimally isometrically

embedded as the zero slice, and the result of Uhlenbeck tells us that the

metric is hyperbolic.

So we have constructed a hyperbolic thickening of the surface Σ to a

three manifold, this explains the nomenclature minimal hyperbolic germ for

the pair (g, σ) ∈ B̃.

The definition ofH allows us to define a canonical map into the cotangent

bundle of Teichmüller space,

H → T ∗T (Σ),

extending the map from the hyperkähler moduli space M. We have no

uniqueness result for solutions of the equation

Kg + |σ|2g = −1,

if |σ|g > 1 at any point of Σ, therefore in contrast to the situation with M
we do not have an embedding of H in T ∗T (Σ). However, recall from section
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6.1 that given an embedding φ of Σ into Σ×R with metric λ we obtain the

Jacobi operator

Jφ(ψ) = ∆ψ − (1− |Sλ(φ0)|2)ψ,

for ψ a normal deformation of φ. This carries over to our current situa-

tion where we thing of Σ as embedded as the zero slice in the hyperbolic

thickening associated to (g, σ). We can therefore associate a Jacobi operator

to a minimal hyperbolic germ (g, σ). If this is invertible then the operator

associated to any pair (g′, σ′) in the orbit of (g, σ) under the diffeomorphism

group of Σ is also invertible, so that invertibility of the Jacobi operator is a

well defined concept on H. We denote by H̃ the subset of H on which the

Jacobi operator is invertible. We have the following:

Proposition 6.3.4 (Taubes [26]). The subset of H on which the canoni-

cal map to the coatngent bundle of Teichmüller space is an immersion is

precisely H̃.

We note that the above proposition also follows from our analysis of the

Gauss equation in chapter three.

Proposition 6.3.5. The subset H̃ is a complex manifold with a holomorphic

symplectic structure.

Proof. We just pull back the complex structure I ′ and the canonical holo-

morphic symplectic form ω′2 + iω′3 from T ∗T (Σ) using the map from Taubes’

moduli space to the cotangent bundle of Teichmüller space. On H̃ this map

is locally injective so that the pulled back structures define what we require.

We note that on the subset M the complex structure and holomorphic sym-

plectic form coincide with the relevant ones from the hyperkähler structure.

6.3.1 The map from H to the PSL2C representation variety

Let (g, σ) be a minimal hyperbolic germ. Denote by h the hermitian metric

on Σ induced by g and the complex structure Jg induced by g. In this

section we follow Donaldson [5] and show how to associate to a such an

h a representation of the fundamental group of Σ into PSL2C, this allows
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us to define a map from Taubes’ moduli space to the PSL2C representation

variety. This is all motivated by the work of Hitchin on self-duality equations

[13] though here we keep this rather in the background.

The Chern connection induced by h is a U(1) connection on the holomor-

phic tangent, and hence cotangent, bundles of Σ with the complex structure

Jg. Let K
1
2 be a square root of the holomorphic cotangent bundle of Σ, so

that

T ∗1,0Σ = K
1
2 ⊗K

1
2 .

Consider the vector bundle

E := K− 1
2 ⊕K

1
2 .

The Chern connection induces a U(1) connection which we denote a on K− 1
2

and a connection −a on K
1
2 . Further we have,

σ ∈ Ω1,0(T ∗1,0Σ) ∼= Ω1,0(K
1
2 ⊗K

1
2 ) ∼= Ω1,0(Hom(K− 1

2 ,K
1
2 ),

and, using the hermitian metric h and conjugation:

σ ∈ Ω0,1(Hom(K
1
2 ,K− 1

2 )).

These identifications allow us to write down the following connection matrix

on E = K− 1
2 ⊕K

1
2 :

A :=

(
a σ

σ −a

)
.

Now let P be the principal SU(2) bundle associated to E and define a so

called Higgs field Φ ∈ Ω1,0(adP ⊗ C) by

Φ =

(
0 1

0 0

)
.

We are working with respect to the decomposition E = K− 1
2 ⊕ K

1
2 and

we think of 1 as identified with an element of Ω1,0(EndE) as the canonical

section of

T ∗1,0Σ⊗Hom(K
1
2 ,K− 1

2 ) ∼= T ∗1,0Σ⊗ T 1,0Σ ∼= C.

Observe that Φ is thus holomorphic.
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Consider the PSL2C connection defined by

B := A+ Φ + Φ∗,

this is a connection on the principal bundle P ⊗ C. The curvature of this

connection is given by:

FB =

(
Kg + |σ|2g + 1 0

0 −(Kg + |σ|2g + 1)

)
iρg
2
.

Thus the connection is flat since by hypothesis the pair (g, σ) is a minimal

hyperbolic germ. Since B is flat it corresponds to a representation of the

fundamental group of Σ in PSL2C. Thus we obtain a map associating to a

minimal hyperbolic germ a representation of π1(Σ) in PSL2C. It is a result

of Donaldson [5] that this map agrees on M with the explicit construction

of the quasi-Fuchsian three manifold.

Theorem 6.3.6 (Taubes [26]). The subset of H on which the map into the

PSL2C representation variety is an immersion is precisely the set H̃ defined

earlier.

This theorem allows us to put further structures on H̃.

Proposition 6.3.7. H̃ is a complex manifold with a complex structure J ′′

and a holomorphic symplectic structure ω′′1 − iω′′3 , this complex structure

extends the complex structure J and the holomorphic symplectic structure

ω1 − iω3 on M⊆ H̃.

Proof. We define of J ′′ and ω′′1 − iω′′3 by pulling back the complex structure

and Goldmans holomorphic symplectic structure from the representation

variety. It is immediate, since we have an immersion into the represen-

tation variety by hypothesis, that this defines a complex structure and a

holomorphic symplectic structure on H̃. That the structures extend those

on M follows from properties of the map from M into the quasi-Fuchsian

deformation space which is a submanifold of the representation variety.
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6.3.2 The hyperkähler structure on H̃

It is immediate that the moduli space M is a subset of H̃. In addition we

have two pairs

I ′, ω′2 + iω′3

J ′, ω′′1 − iω′′3 ,

on H̃ consisting of a complex structure and a holomorphic symplectic form.

Restricted to the moduli space M these structures agree with the equivalent

ones of the hyperkähler structure on M. Explicitly writing I, J,K for the

complex structures onM and ω1, ω2, ω3 for the symplectic structures coming

from the hyperkähler metric, we have the following identities:

I = I ′, J = J ′′,

ω1 = ω′1,

ω2 = ω′2,

ω3 = ω′3 = ω′′3 .

Proposition 6.3.8. Suppose the real analytic structures induced on H̃ by

I ′ and J ′′ coincide, then there is a hyperkähler structure on the space H̃
extending the structure on the moduli space M.

Proof. Since the real analytic structures coincide, and the identities above

hold onM, they must hold on the whole of H̃. In addition algebraic relations

between the identities must also hold, so that the quaternion identities are

satisfied and the structure is hyperkähler.
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