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Abstract 

This thesis examines the theory and application of procedural control to chemical 

processes of industrial scale. Procedural control formally addresses the discrete and 
logical aspects of process control as required for batch chemical processes or during 

start-ups, shut-downs and changeovers of continuous chemical processes. 
Procedural Control Theory encompasses process modelling, specification, con- 

troller synthesis and analysis. In particular, techniques within Procedural Control 

Theory have been developed for the design of single controllers for chemical systems 

modelled as Discrete Event Systems, such that they conform to specifications and 

meet a set of desirable properties (Sanchez, 1996). Before now, these techniques 

were applicable only to small systems. Here Procedural Control Theory is extended 

using modular techniques to deal with process systems of industrial scale. The 

main theoretical result is that the same set of desirable controller properties can be 

retained by an industrial controller, comprised of a set of modular controllers. 
In a modular configuration, the second problem to address is that of controller 

inhibiting. A controller inhibit is a mechanism which disables the simultaneous 

operation of two noncooperative controllers. A control theoretic criterion is supplied 
in this thesis for the purposes of designing inhibit policies. 

In order to apply the theory described here, algorithms are presented for the 
translation of the controller formalisms into industrial sequential control languages. 

Finally, two case studies are presented which demonstrate the theory and tech- 

niques. Firstly, controllers are designed for three operations of a Cleaning-In-Place 

unit procedure in a multipurpose, multiproduct batch pilot plant. Inhibit design 

techniques are then demonstrated for an industrial paste plant, characterised by a 
high degree of resource sharing and interlocking. 
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Chapter 1 

Introduction 

The chemical processing industry has witnessed a revolution in automation and con- 
trol with the advent of programmable electronic systems. Programmable electronic 

systems increase profits by increasing productivity, improving product quality and 

consistency and increasing production flexibility with which to respond to mar- 
ket forces (Reeve, 1995). The potential now exists for networking process data to 

business computer systems for improving also production management and docu- 

mentation, and for meeting the increasing regulatory requirements for validation in 

the pharmaceuticals industry (White, 1996). For all these reasons, the increasing 

trend in automation is only to continue towards what Gidwani et al. (1989) calls 
the "totally automated plant". 

Typically, chemical processes are automated using either Programmable Logic 

Controllers (PLCs) or Distributed Control Systems (DCSs) and the argument over 
the best automation solution is longstanding (Lange, 1994; Skontos, 1991). Tradi- 

tional industrially hardened PLCs now offer analogue functionality for PID control 

and real number arithmetic, improved operator interfaces and networking capa- 
bilities. The more costly DCSs, evolved from the continuous processing domain, 

provide a superior operator interface and come equipped with additional function- 

ality for easing the programming burden. Whatever the system, it is nowadays 
designed, installed and commissioned in conjunction with the process hardware 

and definitely not as an optional extra. 
Despite these obvious advantages, programmable electronic systems have a pro- 

found impact on safety as they introduce many new opportunities for errors, omis- 

sions and failures. Dangerous incidents can arise randomly from failure of computer 
hardware, or systematically from software errors or omissions. For example, one 
buried software fault could result in loss or damage to material and processing hard- 

ware or at worst personal injury or fatality. Kletz et al. (1995) cites an incident 
in which the opening of the wrong relief valve due to a software error caused the 

14 



Chapter 1. Introduction 15 

escape of 14 tonnes of carbon dioxide. 

In a survey conducted by the U. K. 's Health and Safety Executive (HSE) it 

was found that 17% of all dangerous incidents in computer controlled systems were 
attributable to software error (Nimmo, 1994). A further 20% were due to inadequate 

specification in the first place. Only 17% were attributable to instrument and 
computer hardware failure. In the same survey, 60% of companies reported that 
their standard procedure for hazard analysis (i. e. HAZOP) treats the programmable 
electronic system as a black box. In this case, there exists no systematic mechanism 
for the capture of software errors. Qualitative guidelines forwarded by the HSE for 
development and HAZOP of computer controlled plants (i. e. CHAZOP) go some 

way towards addressing the issue of safety critical software in chemical processes 
(Brazendale and Lloyd, 1989). 

With the falling costs of computer hardware, the development costs for control 
software emerge as a significant fraction of the total expenditure on automation. In 

a recent study it was reported that 25% of the costs of an automation project were 
in software coding alone (Presto Project P4,1996). This total does not include 

profit loss from late or faulty software, or the expenditure on specialist training 

needed to build and maintain complex programmed systems. One author describes 

the current environment in which more than half the software projects in the U. S. 

take twice the amount of anticipated time as "Software's Chronic Crisis" (Gibbs, 

1994). 

1.1 The Motivation for Formal Techniques 

Formal techniques are emerging from academia to support the conceptual design of 
automation software for chemical processes. These techniques are grounded in logic 

and discrete systems theory and represent a major departure from the traditional 

chemical engineering domain of continuous process control. 
The primary goal of formal techniques in the design of automation systems is the 

improvement in process safety by the elimination of errors in the control software. 
Most researchers strive for the ideal of "provably correct systems", that is systems 
which can be shown mathematically to meet all specifications and to generate no 
undesired behaviours. However, the benefits of provable correctness are degraded 
in the presence of modelling, specification and implementation errors. 

Formal techniques have numerous spin off benefits throughout the life cycle of 
the automation software. Maintenance, documentation, portability, retrofit and 
code reuse are promoted by improvements in the traceability of the design afforded 
by formal techniques. With the support of formal techniques by Computer Aided 
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Design (CAD) tools, up front software development times could be reduced signif- 
icantly below that presently required for hand coding. It is certain however that 

software commissioning hours and expense will diminish by use of these techniques, 

especially for multiproduct plants in which changeovers to new products requiring 

retrofitted controls occur often. In summary, the use of formal techniques can be 

justified not only on the grounds of safety but also by economic considerations. 
Formal methods for the design of automation software have yet to be seen in the 

chemical processing industry for two reasons. Firstly, they are considered mathe- 

matically abstract and the creation of a formal model and specification more de- 

manding than writing and testing PLC code. Secondly, formal methods have only 
been demonstrated on examples significantly less complex than those of practical 
industrial interest. 

1.2 Outline of the Thesis 

This thesis employs the formal techniques within the discrete control theory known 

as Procedural Control Theory (PCT) (Sanchez, 1996). PCT is a recently advanced 
theory for modelling chemical processes as Discrete Event Systems (DESs), and the 

specification, synthesis and analysis of controllers for such systems. This theory is 

exploited here for the design of control logic for automated chemical processes. 
At present, PCT techniques are limited to small examples and suffer combina- 

torial problems when applied to large scale processes. The theory only considers 
the case of a process under control from a single controller. This simple mechanism 
is inconsistent with industrial multitasking architectures employing multiple con- 
trol sequences operating in parallel and series. In such an architecture, a sequence 
inhibit mechanism is necessary to safeguard against the simultaneous operation 

of noncooperative or interlocked sequences. No formal consideration has yet been 

given to the design of inhibits and interlocks. 
The objectives of the thesis are therefore as follows: 

1. To extend the powerful analytical techniques of PCT to handle complex, re- 
alistically sized systems by the introduction of modular control concepts. 

2. To utilise control theoretic concepts to develop a criterion for the design of 
inhibits for multitasking control architectures. 

3. To develop automated techniques for the generation of sequential control code 
from the formal PCT representation of controllers. 
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The thesis is organised as follows. The following chapter reviews the literature 

in the field of formal techniques for the procedural control of industrial processes. 
Methods based on Artificial Intelligence (AI) and optimisation for the synthesis 

and verification of control logic are considered as are DES control theories includ- 

ing those based on Petri Nets, Supervisory Control Theory and finally Procedural 

Control Theory. 

The concepts, theory and techniques within PCT for process modelling, con- 
troller specification, synthesis and analysis are reviewed in chapter 3. The result of 
this chapter is that a formal method for the synthesis of procedural controllers for 

small systems is firmly established. Two important system properties are clearly 
identified as nonblocking, the ability to guarantee that a system reaches its defined 

goal state, and conformance to specification. 
Chapter 4 extends PCT to more complex chemical systems using modular de- 

composition strategies. In particular, it is shown that for three special classes of 
DESs, nonblocking and conformance to specification for a decomposed system can 
be proved with little or no computational effort. Structured modular controllers 

are thereby proposed for complex systems not amenable to traditional techniques 

within PCT. 

Theoretic aspects of controller initiation are considered in chapter 5 with the 

aim of deriving a generalised expression for the behaviour of a process under parallel 

control from multiple controllers. The principles of nonblocking and conformance 
to specification are then utilised in the formulation of a design criterion to identify 

controller inhibits. 
Chapter 6 presents several algorithms with which to translate the mathematical 

control structures of the previous chapters into sequential programming language 

for implementation on industrial control hardware. Control sequences include in- 
hibits, pre-checks, processing (i. e. normal, emergency, alarm and restart) logic and 
termination logic. 

Two simple working examples are progressively developed in chapters 3,4,5 

and 6 in order to illustrate the techniques. The first is a simple continuous waste 

neutralisation system and the second a semi continuous electric water heater. Re- 

alistically sized case studies are presented in chapter 7. The first is a Cleaning- 

In-Place (CIP) unit procedure in a multipurpose, multiproduct batch pilot plant. 
The second is the ICI Melinar paste process, characterised by resource sharing and 

multiple interlocking. 

Finally, chapter 8 concludes the thesis and indicates some directions for future 

research. 



Chapter 2 

Literature Review 

This chapter reviews the literature in the field of formal techniques for the proce- 
dural control of industrial processes. The subject is introduced with a discussion of 
batch process control in section 2.1. Methods for the synthesis of control logic and 

operating procedures for general chemical processes are then reviewed in section 
2.2. Synthesis techniques are broadly divided into formal methods from computer 

science for program and control logic development and methods based on Artificial 

Intelligence (AI) and optimisation for synthesis of operating procedures for chemi- 
cal processes. Verification of logic controllers and operating procedures is treated in 

section 2.3. Control theories for discrete event systems are considered in section 2.4, 

categorised into those based on Petri Nets, Supervisory Control Theory and finally 

Procedural Control Theory. The chapter concludes with clearly defined research 
objectives for the current thesis in section 2.5. 

2.1 Batch Process Control 

It has long been recognised that the control of batch processes spans a hierarchy 
from low level sequential control through to supervisory control, batch management 
and production planning (Cott, 1989; Sawyer, 1993). Vendors of DCS batch control 
systems have tailored hardware and on and off line software products accordingly. 
For example, off line tools for the configuration of modular and hierarchical controls 
for batch processes permit quick turnarounds in multipurpose, multiproduct batch 

plants. Such techniques are based on the concept of unit modules, reusable precoded 
general purpose control modules and equipment independent batch recipes. For 

example, Fujii et al. (1991) use Sequential Function Charts for configuring recipes of 
unit sequences instantiated to equipment items. Wilkins (1992) employs a four level 
batch control hierarchy in which a matrix format is adopted for product and unit 
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recipes. Despite the similarities between these systems, they differ in terminology, 
hierarchical structure and methods of documentation. 

The new ISA-588.01 (1995) standard on batch process control overcomes dis- 

crepancies in terminology and hierarchical structure by formalising the concepts and 
language of batch process control. The standard "provides definitions for many of 
the common elements of batch process equipment and recipe steps (and) in ad- 
dition ... provides a methodology for logically arranging batch process control" 
(Haxthausen, 1995). 

The batch process control hierarchy proposed in ISA-S88.01 comprises proce- 
dures, unit procedures, operations and phases. High level procedures carry out 

major processing actions such as making a batch. Procedures are comprised of or- 
dered sets of unit procedures which may run concurrently in different units. Units 

are equipment groupings, usually centred about a major piece of processing equip- 

ment such as a tank or reactor, which operate in isolation from each other. Unit 

procedures are comprised of major processing sequences or operations which change 
the chemical or physical state of material. Only one operation can occur in a unit 

at any one time, and is carried out to completion in that unit. Normal processing 

can be safely suspended at operation boundaries. Finally, operations are comprised 

of phases, the smallest element that can accomplish a process oriented task. 

ISA-S88.01 compliant tools now exist for building batch control software using 
basic function elements stored in object libraries (Uebler, 1995). In particular, 
such tools exploit the ISA-588.01 concept of recipes, which define the order of unit 
procedures, operations and phases in a procedure. 

2.1.1 Supervisory Control 

Supervisory control is concerned with the on line management and scheduling of 

operations and unit procedures. SUPERBATCH (Crombie, 1996) is an on line su- 

pervisory control and rescheduling system for batch processes. Equipment is mod- 

elled as connected resources and units (equivalent to ISA-588.01 units). Resources 

are either storage, batch or common (i. e. utilities) and have associated availabili- 
ties. Resource phases (i. e. ISA-588.01 unit procedures) are either of the process or 
transfer type. Unit phases (i. e ISA-588.01 operations) are instantiations of resource 

phases to particular units. Recipes are called master procedures, and comprise or- 
dered sets of resource phases. SUPERBATCH employs a projection algorithm with 

mass balancing to allocate unit phases to units over time in order to produce a 

production plan (i. e. an ordered set of recipe instances or batches). Crooks (1992) 

presents algorithms for automatically generating and translating batch operating 
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procedures into SUPERBATCH models (see section 2.2.3). 

2.1.2 Sequential Control 

Sequential control is the low level of batch process control concerned with the logical 

operation of valves, pumps, timers, switches etc. and is the means by which phases 

are implemented. This level of control is typically performed by PLCs or DCSs. 

Traditionally PLCs were programmed in ladder logic, a formalism originating from 

relay logic circuits (Clements-Jewery and Jeffcoat, 1996). Control system vendors 

now offer a suite of graphical and text based industrial programming languages for 

a wider range of processing tasks. Table 2.1 shows a sample of industrial program- 
ming languages. Jones (1991) calls for a standardisation of industrial codes, having 

realised the functional similarities between these languages. 

Platform Language & Description 
Siemens LAD - Ladder diagrams 
PLCs CSF - Control System Flowcharts 

STL - Low level text based Statement Lists 
SCL - Pascal based Structured Control Language 
S7-GRAPH & Hi-Graph - Petri Net based graphics 

Moore Products Ladder logic 
APACS DCS Function blocks 

Sequential Function Charts 
Pascal based text 

APV PARACODE - High level process based text 
ACCOS DCS 
Jetter SYMPASle - High level process based text 
PASE-J PLCs 

Table 2.1: Sample of Sequential Programming Languages 

Love (1991) proposed the design of CLARE, a computerised tool for the auto- 

mated generation of control code for batch processes. CLARE is comprised of a 
declarer, translator and generator. In the declarer, user defined specifications are 

written in a keyword structured language from which the translator generates a set 

of rules and procedural requirements in a generic format using skeletal sequences 

and objects (with attributes, relations and connectivity) stored in its knowledge 

base (Love et al., 1992a; Love et al., 1992b). The generator is the syntax specific 

module which parses generic code from the translator. Although the translator for 

CLARE was never built, the benefits of such a tool are obvious with respect to ef- 
ficacy and continuity of the software writing process and life cycle issues including 
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maintenance, management, portability and documentation. 

Computer Aided Software Engineering (CASE) tools are now becoming avail- 

able specifically for the development of sequential control programs. For example, 
OBJECT 5 from Siemens (Schulz, 1995; White, 1996) is an object oriented environ- 

ment for PLC programming which boasts consistency and communication checking 

and verification by off line simulation. Code reuse is promoted by means of li- 

brary functions. Similar tools are available for the generation and maintenance of 
operating procedures. For example, PROSEG (Naka, 1994) is an academic oper- 

ating procedure design tool which combines an intelligent drawing system with a 
linker (for instantiating skeletal operating procedures) and simulation tool. Simi- 

larly COPMA II (Teigen and Ness, 1994) is a computerised environment boasting 

syntax and control flow checking for the preparation and maintenance of oper- 

ating procedures as a structured list of keywords. These tools are beneficial for 

housekeeping procedures, but neither aid the synthesis of procedures nor provide a 
formal verification of correctness. Formal techniques for synthesis and verification 
of procedures address these issues and are discussed in the next section. 

2.2 Synthesis of Control Logic and Operating Pro- 

cedures 

2.2.1 Formal Techniques for Program Development 

Formal techniques in software engineering have emerged to combat the complexity 

of programmed systems and to ensure strict conformance to requirements in safety 

critical software applications. Formal techniques are a mathematical discipline for 

producing a clear, complete, unambiguous specification of a computer application 

which can be readily verified mathematically (Groll and Nixon, 1991). A specifica- 
tion is a formal description of the user requirements of a system and is written in a 

variety of languages (e. g. Z, RTL) based on temporal logic or Finite State Machines 

(FSMs). 

Morris (1990) defines refinement as the transformation of a specification (i. e. 

a non algorithmic declaration of the user requirements) into a program (i. e. an 

algorithmic or procedural implementation of the user requirements) by a series of 

correctness preserving mathematical transitions. In this way, programs are correct 
by construction. However, refinement cannot be automated as it requires a proof of 

correctness at each development step. Linsey (1988) comprehensively reviews me- 

chanical proof assistants and formal reasoning tools for this task. Techniques em- 
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ploying refinement are called development methods, the most well known of which 
is VDM (Austwick and Norris, 1986). However, such techniques are mathemati- 
cally demanding and do not scale easily beyond academic examples. Development 

methods have also struggled to satisfactorily incorporate real time. 
A less rigorous yet more promising formal technique is offered by systems which 

do not attempt to generate programs that are correct by construction, but rather 

mathematically verify a posteriori whether a program conforms to specification. 
Such a technique is proposed by Ravn et al. (1993), in which specifications, pro- 

grams (i. e. control laws) and physical systems (including sensors, actuators and 
timers) are modelled in a duration calculus. The program is correct if it can be 

proved in the calculus that the system plus control law meet the specification. Du- 

ration calculus is supported by the ProCoS II system (Bowen et al., 1993) which also 
includes a tool for the inductive compilation of duration calculus into a program- 

ming language using a syntax directed transformation. Gabrielen (1994) describes 

a similar technique employing Hierarchical Multi State machines (HMSs) for mod- 

elling systems and specifications. HMSs are an hierarchical extension of FSMs to 
include concurrency and temporal constraints. Verification is performed by a non 

automated tableau based theorem proving method. FOREST (Lynch, 1991) is a 
technique for eliciting formal specifications from user requirements in Modal Ac- 

tion Logic (MAL), and for validating the results using animation and automated 
deduction by the tableau method (Quirk, 1990). 

Less rigorous again is the VALID system based on hierarchical rewriting logic 
(Attoui and Schneider, 1994). VALID tests programs for the absence of deadlock 

and infinite cycling and boasts a program animator and prototype code generator. 
Finally, a number of general purpose CASE tools are available for assisting pro- 
grammers in the writing of code. For example Statemate/C by iLogix Inc. offers 
a graphical method for system specification. Statemate/C also performs syntactic 
and semantic verification of the specification, tests for consistency, completeness and 

reachability, specification animation and automatic C code generation. Systems are 
modelled using the statecharts formalism (Harel, 1987), which is an extension of 
FSMs to include hierarchy, concurrency, timing and communication. The problem 
however with tools of this type is that they check only the program for correctness 
with no proper consideration of process dynamics. What is preferable is a model 
based technique for the synthesis of control logic, as considered in the following two 

sections. 
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2.2.2 Artificial Intelligence Planning Methods 

Pioneering research in the field of computer aided operating procedure synthesis 
for chemical processes began in the 1970s with techniques for the synthesis of valve 

sequences (Rivas and Rudd, 1974). In these techniques, pipes, pumps and vessels 

are modelled as connectors joined at nodes and material states in the network are 

either flowing, trapped or blocked. Process operations (i. e. switching valves) are 

modelled in sequential logic and safety constraints define species incompatibilities. 

High level operating goals (e. g. start-up) are decomposed manually into low level 

goals in terms of material states and locality. A brute force search strategy finds 

a flow route through the network and orders operations to achieve the processing 

goals while satisfying the safety constraints. Similar techniques for sequencing valve 

operations are offered by O'Shima (1983) and Foulkes et al. (1988). In particular, 
Foulkes et al. formulate interlocks between operating flow paths. Pövoa (1994) also 

considers flow path interlocking in her scheduling formulation for flows through 

complex valve manifolds. 
Fusillo and Powers (1987) extend Al synthesis techniques in chemical process- 

ing to a level of abstraction beyond valve and pump switching. Their technique is 

especially suited to continuous chemical plants with recycle streams. The key con- 

cept of modularity was introduced to handle large systems by decomposition into 

subsystems, defined as sections of the plant which can be started-up in isolation 

and later combined into an overall running plant. Process resources within subsec- 
tions are modelled by lumped variables. Functional operators (e. g. introduce feed) 

are defined by their qualitative effect on process resources. Mixing rules and unit 

preconditions define the set of constraints. AI planning techniques (i. e. means ends 

analysis) order the functional operators to achieve the planning goal while satisfy- 
ing the constraints. The goal state is either the final plant state (e. g. a continuous 

steady state) or an intermediate stationary state defined by the user. Stationary 

states provide safe, stable intermediate point which can be employed in complex 

changeovers or start-ups or in the event of an emergency. To exhibit a stationary 

state, a plant must posses capacitance or a simultaneous inverse operation. 
In a three part series, Lakshmanan and Stephanopoulos (1988a; 1988b; 1990) 

detail an operating procedure synthesis methodology exploiting an hierarchical ob- 
ject oriented modelling framework. Operating goals are automatically propagated 
down the hierarchy and an efficient nonlinear planner partially orders primitive op- 

erations (defined as object oriented pre and post condition operators) with respect 
to temporal constraints on the system. A linear generate and test strategy then 
finalises the order of operations based on the non temporal constraints. 
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AI techniques have only proved successful for niche problems. Qualitative and 

operational models employed by such techniques are difficult to generalise. Crooks 
(1992) reports a successful application of Al techniques (implemented in PROLOG) 

for the niche problem of searching networks of valves and pumps for flow routes. The 

route finder is implemented as part of a tool for automatically generating sequences 

of control actions for batch transfers. Sequences are constructed mechanically in 

a generic language using simple operational rules and comprise (in order) : pre- 

checks, inhibits, setting of routeing valves, flow generators, integrators and flow 

controllers, termination conditions and shut-down activities. An example of one 

rule for constructing sequences is that all valves in the transfer route are interlocked 

while those adjacent to the route are interlocked to closed (see algorithms 7.3 and 
7.5). 

A simple algorithm (7.6) is proposed for generating sequence inhibits. Inhibited 

sequences are those with interlocked or interlocked to closed items in common with 
the interlocked items of the active sequence. Simultaneous operation of two or 

more sequences which interlock to closed the same item is permitted (i. e no check 
for overlap of interlocked to closed items is made). Crook's technique is applicable 

only to nonhierarchical transfer phases and generates sequences in an ad hoc fashion. 

2.2.3 Optimal Synthesis Techniques 

Mathematical optimisation offers an alternative synthesis engine to Al and rule 
based planners. The earliest attempts for synthesising operating procedures for 

chemical processes using optimisation were reported by Ivanov et al. (1981a; 1981b). 
Chemical processes were modelled as transition graph networks in which arcs rep- 

resent control actions and nodes represent plant states. Associated with each arc 
is a weighting and DAE model. The start-up procedure is the sequence of control 

actions along the optimal route through the transition network which originates at 
the initial state and terminates at the desired operating steady state. 

A similar modelling approach is adopted by Kinoshita (1981). To address size 

complexity, Kinoshita decomposes the plant into a set of subsystems (e. g. reactors, 
dryers, distillation columns) and quantifies the states of individual subsystems in 

a unit state vector. Control actions occur locally on the subsystem and affect the 

elements only of the corresponding unit state vector. Procedures are synthesised 
individually for each subsystem and the combined procedure for the whole plant is 

synthesised unit by unit considering a set of constraints defined at the subsystem 
boundaries. 

J 
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Due to computational complexity, neither Ivanov nor Kinoshita were able to 
demonstrate their techniques at the time. Since then, Yamalidou and Kantor 
(1991) have successfully applied optimisation to the valve/pump sequencing prob- 
lem. Valve/pump networks are modelled by coloured control Petri Nets with in- 
hibitor arcs in which coloured tokens correspond to chemical species. Transitions 

model either internal events, disturbances or exogenous inputs. A mapping exists 
between the Petri Net representation and a matrix of equalities and constraints 

which form the basis of a Mixed Integer Linear Program (MILP). The order of 

valve operations is optimised with respect to a cost objective. 
Optimal control is employed by Papageorgiou (1994), for the synthesis of specific 

optimal operating policies for a pair of thermally coupled batch operations, and 
Macchietto and Mujtaba (1994) for the synthesis of optimal take off and reflux 

policies for the production of a set of distillate cuts of prespecified quality in a batch 

distillation. Computational complexity limits the number of discrete switchings 
in control strategies generated by optimal control techniques. These techniques 

generate a specific deterministic control trajectory and not a control procedure 

which adapts to feedback from disturbances entering the system. Dimitriadi's et al. 
(1995b) formulates an optimisation problem for the design of feedback controllers 
for generalised processing systems modelled as a discrete/continuous hybrid. In 

this context, "design" is the calculation of optimal values for the parameters in the 

control structure model, given a bdci't& set of disturbance scenarios. 
Crooks (1992) utilises optimisation for the synthesis of hierarchical operating 

procedures for batch processes. In this context, an operating procedure is a set 

of master procedures which are ordered sets of control phases (see section 2.1.1). 
Operating procedures are automatically derived from a detailed optimal sched- 

ule of the batch operation required to achieve a specified goal. The scheduling 

problem is formulated by modelling equipment independent recipes as State Task 

Networks (STNs), originally from Kondili (1993). The plant hardware is modelled 

as a network of connected batch and storage resources. Functionally similar units 

are grouped into equipment resources. Constraints in the formulation include unit 

allocation, capacity, connectivity, pre and post conditions, material balance, task 

precedence and utility capacity. The scheduling problem (i. e. the optimal assign- 

ment of tasks to resources) is formulated as a MILP for which a variety of objectives 

are forwarded. Groups of related tasks within the detailed schedule are identified 

as phases. Master procedure boundaries (i. e. subgoals) are identified as places in 

the schedule where stable material is stored. 
The approach of Crooks offers significant conceptual insight into the design of 

batch control hierarchies from a purely high level description of the recipe and equip- 
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ment down to the operation level. As described in section 2.2.2, Crooks extends 
the design approach to the phase level using Al and rule based techniques. 

2.3 Verification of Control Logic and Operating 

Procedures 

In contrast to the methods of the previous section, which strive to synthesise prov- 

ably correct controllers from a specification, verification techniques aim to prove 
correctness of manually or otherwise synthesised control logic against a given spec- 
ification. 

Pioneering work in the field of formal verification was reported by Clarke et al. 
(1986) who proposed the model checker as a mechanical means of determining if a 
finite state concurrent system meets a specification expressed in Computation Tree 

Logic (CTL). CTL is a propositional branching time temporal logic developed for 

real time process specification. The model checker avoids manual proof construction 
by mechanically searching the state space of the system for states in which the 

asserted formula is true. The algorithm is applicable to finite state systems of 1020 

states (Burch et al., 1990). System specifications are proposed or asserted one at a 
time and for each a truth value is returned by the model checker. When an assertion 
fails, the path yielding the contradiction is also returned. With this prompt, the 

user may modify the system and retest the same set of assertions. 
Moon et al. (1992) applies the model checking algorithm to verify operability, 

safety and robustness specifications in chemical systems. The verification method 
has been applied to check the safety and operability of a closed loop system (i. e. 

process plus controller) incorporating a PLC programmed in Relay Ladder Logic 
(RLL). It has also been applied to verify the operating procedure for a simple com- 
bustion system. An identical approach is adopted by Probst and Powers (1994) 

who model larger process systems using hierarchical and modular FSMs. Com- 

putational efficiency is achieved using Ordered Binary Decision Diagrams for the 

representation and manipulation of logic formulas. 

Hiranaka and Nishitani (1994) develop a systematic approach for constructing 

global state transition graphs for modelling systems and controllers for subsequent 

verification using the model checking algorithm. The approach separates the states 

and models of the controlled object, controller mechanism and operator input. Con- 

straints on the system prune the global state transition graph. This formalism in- 

corporates the value "unconcerned" for states of a node (c f. Sanchez (1996)) which 

necessitates semantic modifications of CTL. 

J 
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An alternative technique for the verification of batch control software as Se- 

quential Function Charts is proposed by Kowalewski et al. (1994). Plant primitives 

and controllers are modelled as linked Binary Condition Event systems. Controllers 

are verified by establishing reachability of forbidden states in the underlying Petri 

Net structure. This approach is tedious as the primitives have a large number of 
input signals and the reachability calculation must be rerun for each possible initial 

state. Gerzon et al. (1994; 1995) also propose a verification procedure for operating 

procedures based on Petri Net analysis. In this work, coloured and timed high level 

Petri Nets are used, in which colour corresponds to qualitative values of the state 

variables. Petri Net analysis permits the procedure to be checked for deadlock, 

boundness, reachability and liveness, but not forbidden states. 
Hunt (1995) proposes a novel method for testing control software using ge- 

netic algorithms. The genetic algorithm performs an evolutionary search of the 
input/output space for a failure scenario. In this way, software can be tested to 

some unspecified degree of confidence without enumerating and testing every pos- 

sible input/output combination. However the same degree of confidence afforded 
by provable correctness can never be achieved by such a technique. 

A quantitative model based approach to the safety verification problem for gen- 

eral processing systems is proposed by Dimitriad; s et al. (1995a). A hybrid mod- 

elling framework is employed over a discrete time domain. The system is deemed 

safe if, given a set of possible disturbances, no path is available from an initial 

state to an unsafe state. The existence of such a path is found by formulating the 

process model as an MILP with an objective which drives the optimisation towards 

an unsafe state. This technique is useful for validating simple discrete controllers, 
but encounters serious computational problems for large systems. 

The whole issue of verification can be bypassed if the synthesis technique gen- 

erates controllers that are correct by construction. Such techniques are considered 
in the following section. 

2.4 Control Theory for Discrete Event Systems 

2.4.1 Control Theory Based on Petri Nets 

The Petri Net (PN) formalism is of considerable appeal to researchers in the field 

of DESs owing to the ease of modelling concurrency, synchronisation and resource 

sharing. David and Alla (1994) describe numerous extensions to the basic Petri Net 

for modelling quantitative, timed and stochastic behaviours, some of which have 

been mentioned already. Petri Nets in the form of Grafcets have long been used 
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for the purpose of sequential control specification. Arzen (1994) extends Grafcet 

even further to Grafcharts for structuring supervisory control in knowledge based 

systems. 
Yamalidou et al. (1990) consider the applications and analytical properties of 

Petri Nets in the domain of discrete process control. In particular, the net property 

of boundness is used to assess resource limitations, liveness for detecting deadlocks 

and reachability for assessing the potential of a system to achieve undesirable (i. e 
forbidden) and desirable (i. e. goal) states. 

The problem posed by researchers in this area is the synthesis of maximally 
permissive controls which avoid forbidden states. Maximally permissive controls 

permit a maximal number of states to be reached. Several solutions are proposed, 
differing only in the type of Petri Nets, synthesis engines and control mechanisms 

used. Efficient techniques for the synthesis of supervisory controls for DESs mod- 

elled as Controlled Marked Graphs (CMGs), a special class of Controlled Petri 

Nets (CPNs), are reported by Holloway and Krogh (1990) and Krogh and Holloway 
(1991). Forbidden states are indicated by place markings and control is enabled by 

exogenous control inputs. Boel (1995) proposes an alternative algorithm for the syn- 
thesis of maximally permissive controllers for systems modelled as Controlled State 

Machines (Ct1SMs), a special class of CPNs, based on the concept of influencing 

zones. Forbidden states and other control requirements are specified by constraints 

on token counts. Control is exerted on the system by defining the set of control- 
lable transitions as those which can be disabled by an external mechanism. To 

address state explosion, Boel proposes model reduction techniques in which strings 

of transitions are compressed into one. 
Boissel and Kantor (1995) employ simulated annealing for the synthesis of max- 

imally permissive controls for systems modelled as timed Petri Nets. It is shown 
that resource conflicts and deadlocks may be expressed as forbidden states. Control 

is exerted on the system by defining additional transitions from controller places. 
Finally, Yamalidou et al. (1996) propose a computationally efficient synthesis based 

on linear algebra for the forbidden state problem. The controller is an additional set 

of places in the Petri Net model of the process. It is shown that logical constraints 

and, for certain classes of Petri Nets, numerical constraints can be mapped into 

place invariants and thereby satisfied by the synthesised controller. 
The cited literature in Petri Net control theory is summarised in table 2.2. These 

techniques do not consider specifications of a type other than forbidden state spec- 
ifications. The controls are maximally permissive and, as indicated by Krogh and 
Holloway (1991), additional input is necessary for making optimal operating deci- 

sions. As yet, no work has been reported on the application of such techniques to 
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large industrial processes. Andreu et al. (1994) recognise that the local, coordina- 
tion and supervision levels of the batch control hierarchy may each be modelled as 
Petri Nets (Grafcet, coloured and mixed continuous Petri Nets respectively). How- 

ever it is not clear how Petri Net control laws can be implemented in practice by a 
PLC or DCS without somehow programming the control device with the unwieldy 
Petri Net process model. 

Reference Process 
Model 

Forbidden State 
Specification 

Control 
Mechanism 

(Holloway and Krogh, 1990) CMG Place markings Exogenous inputs 
(Boel, 1995) Ct1SM Token constraints Controllable 

transitions 
(Boissel and Kantor, 1995) Timed PN Token constraints Control places 
(Yamalidou et al., 1996) PN Place invariants Control places 

Table 2.2: Summary of Petri Net Control Literature 

2.4.2 Supervisory Control Theory 

A DES control theory Otracting much attention is the Supervisory Control The- 

ory (SCT) inspired by Peter Ramadge and Murray Wonham at the University of 
Toronto in the 1980s. In three seminal papers (Ramadge and Wonham, 1987b; 
Wonham and Ramadge, 1987; Ramadge and Wonham, 1987a) a novel theoretical 
formulation for modelling and control of DESs was proposed on the basis of FSMs 

as generators of languages (i. e. sets of strings of events). In the SCT sense, control 
is exerted on a process by means of a supervisor which, via a state feedback map, 
can disable transitions in the process identified as controllable. 

An extremely powerful concept introduced was that of controllability, which is 

the ability of a supervisor to maintain a process within a controllable envelope or 

predefined subset of trajectories. The concept of the supremal controllable sublan- 

guage then follows, which is the maximal subset of a given language which satisfies 

controllability with respect to another language. This concept is exploited for the 

synthesis of maximally permissive supervisors for a process. Conditions for the exis- 
tence of the supremal controllable sublanguage are given by Wonham and Ramadge 
(1987). Methods for the calculation of the supremal controllable sublanguage are 

provided by Wonham and Ramadge (1987), Kumar et at. (1991) and modified 
by Sanchez (1994) and Rotstein et at. (1996). An empty supremal controllable 
sublanguage indicates that there is no supervisor which can generate a closed loop 

response which is controllable with respect to the process. 
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Modular techniques in SCT provide a more elegant and computationally effi- 

cient synthesis of supervisors. The idea is that modular supervisors are synthesised 
for each individual specification and intersected to form a supervisor which simulta- 

neously implements each specification. A correctness requirement for modular syn- 
thesis is endowed by the property of nonconf licting between supervisor languages, 

as described in chapter 3 of this thesis. 
A general overview of SCT and modular techniques is provided in (Wonham, 

1988) and more recently in (Wonham, 1996). Sanchez (1994) provides an excellent 

summary of the literature in SCT. 

A wealth of research has spawned from the original work of Ramadge and Won- 
ham (abbreviated to RW). Yang et al. (1995) extends SCT for the control of 
systems modelled as nondeterministic FSMs. Nondeterministic FSMs result from 

the projection of the continuous parts of a hybrid process model onto a discrete 

model. Yong and Wonham (1993; 1994) consider the control of Vector Discrete 

Event Systems (VDESs). VDESs are systems in which states are represented by 

a vector with integer components and state transitions by integer vector addition. 
This formalism is ideal for modelling machine networks and automated guided ve- 
hicles (AGVs) with buffer inventories. Yong and Wonham give appropriate versions 
of controllability and modularity for VDESs and demonstrate efficient solutions to 
the equivalent RW controller synthesis problem. 

Timing has been appended to SCT by Ostroff and Wonham (1990) in a dual Real 

Time Temporal Logic/Extended State Machine (RTTL/ESM) framework. FSMs 

were extended to handle continuous variables, local clocks and concurrency by com- 

munication channels. In this framework, an iterative technique was developed for 

synthesising controllers to satisfy safeness properties. Brandin and Wonham (1994) 

generalised the RW concepts of controllability and maximally permissive supervi- 

sory controls to timed DESs using Ostroff's semantics. This permits the solution of 
RW synthesis problems including logic based, temporal and quantitative optimality 

specifications. 
Wonham (1996) considers supervisory control of partially observed systems, de- 

fined as those for which a supervisor has only a filtered view of the event set. It is 

assumed that the supervisor can disable any event in the process. A satisfactory so- 
lution of the supervisory control problem is shown to exist when the process model 

exhibits a property called normality. A related mechanism of control is by decen- 

tralisation (i. e supervision performed by a number of decoupled subsupervisors). A 

fully decentralised solution is that which avoids communication among subsupervi- 
sors and also among agents designing the subsupervisors. Some guidelines for the 

construction of decentralised solutions from centralised ones are proposed in (Kozak 
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and Wonham, 1995). 
Finally, hierarchical aspects have been considered within an RW framework 

(Zhong and Wonham, 1990). The concept here is that the process model is split 
into two hierarchical layers, with communicating supervisors applied to both. The 

top layer (the manager) views an abstracted process model derived from the bottom 

layer (i. e. the process) according to a set of vocalised states. High level control 
instructions are passed down to a slave supervising the actual process. The concept 
of hierarchical consistency is introduced by which the information sent up from the 

process is timely and sufficiently detailed for various critical low level situations to 
be distinguished. 

An application test bed for SCT employing automated toy trains and cranes 
is reported by Leduc (1996). The testbed models a manufacturing workcell and 
is controlled by an Allan Bradley PLC. Trains, cranes, track switches and sensors 

are modelled as FSMs, as are component interactions. Specifications for collision 

prevention, switch positioning, routeing and crane operation are modelled as FSMs. 

Modular supervisors are constructed manually for implementing each specification. 
State explosion necessitates the development of model reduction techniques so that 

controllability of the modular supervisors can be established. However, a high de- 

gree of interaction between component models means that Leduc is unable to verify 
the nonblocking property. Supervisors are mapped into Clocked Moore Synchronous 

State Machines (CMSSMs) for ease of translation into PLC code. No automated 

means of translation is reported. 
Lauzon et al. (1996) report a second application of SCT to a laboratory scale 

robotic workcell controlled also by an Allen Bradley PLC and a PC. Importantly, 

this work presents an automatic generator of ladder logic code from a FSM. The 

translator works by including a set of rungs for each transition of the FSM, which 

are enabled when the supervisor is in the source state of the transition. The RLL 

program implements a supervisory policy by energising outputs corresponding to 

controllable transitions. Feedbacks on both controllable and uncontrollable events 

cause a change in state of the supervisor and a corresponding disabling/enabling of 

source/ destination rungs. In an attempt to handle size complexity, Lauzon et al. 

employ a Hybrid Supervisory Controller (HSC). It is not clear if HSC is a limited 

lookahead supervisor (Chung et al., 1992), but it relies somehow on the synthesis of 

partial nominal control strategies which are downloaded from the PC to the PLC. 

A diagnostic system determines if resynthesis of the control strategy is required. 
Table 2.3 summarises the cited literature in supervisory control theory. 
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Reference Contents 
(Ramadge and Wonham, 1987b) Basic framework 
(Wonham and Ramadge, 1987) & Supremal controllable sublanguages 
(Kumar et al., 1991) 
(Ramadge and Wonham, 1987a) Modular synthesis 
(Wonham, 1988) & (Sanchez, 1994) Overview of basic framework 
(Yang et al., 1995) Hybrid & nondeterministic systems 
(Yong and Wonham, 1993) & Vector DESs 
(Yong and Wonham, 1994) 
(Ostroff and Wonham, 1990) & Timed systems 
(Brandin and Wonham, 1994) 
(Kozak and Wonham, 1995) Decentralised control 
(Zhong and Wonham, 1990) Hierarchical control 
(Wonham, 1996) Overview of SCT 
(Leduc, 1996) & (Lauzon et al., 1996) Applications of SCT 

Table 2.3: Summary of SCT Literature 

2.4.3 Procedural Control Theory 

The term Procedural Control theory (PCT) was coined by Sanchez (1996) following 

his doctoral thesis at Imperial College, London in 1994. PCT is a control theoretic 
framework for modelling, specification, synthesis and analysis of sequential con- 
trollers for chemical systems. In particular, formalisms for modelling forbidden 

state and temporal specifications are provided. Chapter 3 gives a detailed review 

of the theory as relevant to this thesis as do Rotstein et al. (1995). 

PCT borrows many formalisms from SCT, but is characterised by a forcing 

control mechanism as opposed to the passive enable/disable supervisory control 

mechanism. This fundamental departure from SCT is necessary to model low level 

sequential control of chemical processes as performed by PLCs and DCSs. Maxi- 

mally permissive controls are inappropriate at this level as a deterministic control 

response is required which selects between alternative controllable inputs so as to 

achieve a processing goal. 
The need for a forcing mechanism was also recognised by Balemi et al. (1993) 

who place an input-output interpretation on process models used in SCT. Heymann 

(1990) retains generality by defining transitions as either controllable, uncontrol- 
lable or driven (i. e. forced). This necessitates the introduction of a special DES 

product, called the prioritised synchronous product, from which closed loop system 
behaviours may be calculated using DES models of the plant and controller. 

Rotstein and Macchietto (1995) report an alternative approach for controller 
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synthesis within a PCT framework based on optimality and stability criteria. The 

method identifies goal states of the process as attractors and assigns weights to each 
transition. Weights are assigned depending on cost, desirability or probability of 
transitions. Graph theoretic techniques prune the FSM process model of suboptimal 
trajectories and thereby generate the optimal route from the initial state to the 

attractors. It is then necessary to trim the result of blocking paths in order to 

construct the controller. This approach modifies slightly the interpretation of the 

procedural control structure as defined in previous PCT. 

2.5 Summary and Conclusions 

Following this review of the literature, it is clear that further research is necessary 
in the formal and systematic design and implementation of sequential controllers for 

large scale systems. The ISA-S88.01 standard gives strong guidelines for the design 

of batch control hierarchies, and any future method should be consistent with this 

standard. 
At present, formal techniques from the software engineering community are not 

suitable to sequential control problems as they are mathematically obscure and do 

not readily scale up to industrial systems. Useful techniques for process and proce- 
dure decomposition have emerged from the AI community, but in general Al tech- 

niques generate operating procedures which are deterministic and confined to niche 

problems. Optimal control techniques also generate deterministic policies which do 

not respond to feedback from disturbances entering the system. Furthermore these 

techniques are not readily scalable to industrial problems. 
Control theoretic techniques emerge as the most promising for synthesis of se- 

quential controllers. The main advantage of these techniques is that controllers 

are correct by construction, and no formal verification is required. In particular, 
Procedural Control Theory provides a solid theoretical framework for modelling, 

specification, synthesis and analysis of controllers for chemical processes. PCT is 

grounded in SCT, yet with the important distinction that control action is forced 

as opposed to passive. Despite the appeal of Petri Nets (and the myriad of flavours) 

for modelling batch processes, only the forbidden state specification problem has 

yet been solved with these techniques. Furthermore, it is not easily conceived how 

controllers modelled as Petri Nets can be implemented in practice. 
There remain several issues to be addressed in PCT before it can be exploited 

for the design of sequential controllers for industrial processes. The main prob- 
lem is that of combinatorial complexity, which limits the current techniques to 

small systems. To address this issue, some of the earlier concepts from SCT can 
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be revisited, in particular partial observation and decentralised control, as can the 
decomposition approaches from AT. The second issue to address is the practical 
implementation of formally synthesised controllers. A translation, preferably au- 
tomated, is required from the mathematical control structures into the sequential 
programming languages used in industrial control systems. 

Finally, the theoretical issue not addressed in the literature is that of controller 
inhibiting. Controller inhibit safeguard against the parallel operation of noncoop- 
erative controllers in a multitasking control architecture. This problem has not 
arisen in the literature due to the lack of application of modular discrete control 
techniques. Controller inhibits pose a difficult design problem, especially for multi- 

purpose batch processes in which controllers interact in a highly complex and subtle 
fashion. At best, Crooks (1992) proposes a heuristic for the design of inhibits. This 

problem is yet to be addressed formally from a control theoretic standpoint. 



Chapter 3 

Introductory Procedural Control 

Theory 

This chapter reiterates and in places reworks some preliminary theory and con- 
cepts within Procedural Control Theory (PCT) as proposed by Sanchez (1994) and 
Rotstein et al. (1995). PCT supports modelling of chemical processes as Discrete 
Event Systems (DESs) and the specification, synthesis and analysis of controllers 
for such systems. Discrete event models and some control theoretic aspects of PCT 

originate from the Supervisory Control Theory (SCT) pioneered by Ramadge and 
Wonham (1987b). 

This chapter is organised as follows. Section 3.1 presents the formal framework 
for modelling DESs represented as Finite State Machines (FSMs) or equivalently 

regular languages. Important results in language theory are presented for later use. 
Section 3.2 discusses the modular and incremental fashion in which FSM models of 
chemical processes are constructed. An equivalent construction for process specifi- 
cations is presented in section 3.3. Section 3.4 then presents the control paradigm 

and introduces the concept of procedural control. Important properties of the closed 
loop system (i. e process plus controller) are presented in section 3.5 including com- 

pleteness and controllability, conformance to specification and nonblocking. Finally 

section 3.6 gives a brief treatment of model based controller synthesis, and section 
3.7 summarises the important concepts in PCT. 

3.1 Discrete Event Systems 

Chemical processes are properly modelled as a hybrid of discrete changes in state 
(e. g. valve and pump switchings) and continuous state evolution (e. g. temperatures 

and pressures). In practice, a purely discrete input-output model of the chemical 

35 
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process is usually adequate for the design of sequential controllers (Sanchez, 1996). 
In this representation, the evolution of the plant is described by a sequence of states 
and events. For example, the continuous temperature signal shown in figure 3.1 is 

modelled as a temperature switch with three states low, normal and high. Events 

correspond to the crossing, in either direction, of the temperature thresholds defined 

at 45 and 60C. 
A chemical process modelled as a DES is represented by the FSM M defined by 

the 7 tuple: 

M= {Q, Vnv, E, b, 'y, qo, Qm} 

where 

Q is the set of states, qEQ 
Vnv is the set of state variables, {(vj)q, j=1,2 .... nz1} 
nv is the number of state variables defining state q 
E is the set of transitions, aEE 
6 is the state transition partial function, 6: ExQ -+ Q 

7 is the state variable transition partial function, 7: EX Vn' Vnv 

q0 is the nominal initial state, q0 EQ 
Qm is the set of marked states, Qm CQ 

(3.1) 

A state variable (vj)q, j=1,2 .... nz1 describes a discrete elementary component 
of the process (e. g. the status of an on/off valve or pump) and is defined over a 
domain of possible values (e. g. {open, closed}). The discrete system state q is 
defined at any given moment by a specific value for each of the n, state variables. 
In addition to the domain values, an additional value ooh symbolises all the possible 
values that state variable j can take. This symbol facilitates the efficient handling 

of inexact information in the process model. 
Transitions are instantaneous events leading from a source state to a destination 

state for which the state variables differ in only one instance. The set of transitions 
E is partitioned into two disjoint subsets, E, U E,, = r, E, l Eu = 0, in which E, 

is the set of controllable transitions and Eu is the set of uncontrollable transitions 
(Ramadge and Wonham, 1987b) . 

Controllable transitions are associated with an 
input to the process (e. g. opening a valve) while uncontrollable transitions are 
associated with uncontrolled system dynamics (e. g. the triggering of a temperature 

switch) or external disturbances (e. g. the triggering of a proximity switch due to 

an operator input). Controllable transitions are forced by a controller whereas 
uncontrollable transitions occur spontaneously. 
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The string set E* is the set of all strings of transitions in E, including the null 
transition E. The partial function b defines the state connectivity, and 6 may be 

extended inductively for strings (i. e. 6: E* xQ -+ Q) 
. 

Since b is a partial function, 
M is deterministic which means that each transition has a unique destination state. 

In previous versions of the theory, marked states qE Qm,,, were defined as those 

of special significance for the DES. Here, this definition is made more precise by 

defining marked states as desired termination states or goals of the system. 
The set of reachable states Qr is the set of states which can be reached from the 

initial state qo via a string of transitions in M. Q, is defined by: 

QT= {qEQ/3sEE*' 5(s, go)=q} (3.2) 

and M is reachable if all states qcQ can be reached from the initial state qo (i. e. 
Q= Qr) . The set of coreachable states Qer is the set of states from which at least 

one marked state can be reached. Q, is defined by: 

Qcr = {q EQ/ 3s E E*, b(s, q) E Qm} (3.3) 

and M is coreachable if a marked state is reachable from all states qEQ (i. e. 
Q= Qcr). M is trim if it is reachable and coreachable (i. e Q= Qr Sanchez 

(1996) provides enumeration algorithms for trimming FSMs. 

For example, consider a simple DES comprised of one elementary component, 

a temperature sensor. The state variable vl describing the sensor has a domain 
{0,1,2}, where 0 corresponds to normal, 1 to low and 2 to high. The system is 

comprised of three states, Q= {1,2,3}. In state 1, the state variable is 2, in state 2 
it is 0 and in state 3 it is 1. Four uncontrollable transitions E= {550,552,554,556} 

model temperature changes (i. e. ry(550,1) = 0, 'y(552,0) = 1, 'y(554,0) =2 and 

'y(556,2) = 0). The initial temperature is high (i. e. qo = 1) and the only marked 
state is normal (i. e. Q�L = {2}). 

The FSM modelling this DES is depicted by the transition graph shown in figure 

3.1. Nodes on the transition graph represent states and edges represent transitions. 
By convention, FSMs are drawn with the initial state at the top and marked states 

as shaded boxes. State variables are shown within the nodes. Uncontrollable tran- 

sitions are shown as dashed arcs, while controllable transitions as solid arcs (e. g. 
figure 3.3 (a)). 
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Figure 3.1: Discrete Model of a Continuous Temperature 

3.1.1 Operations on FSMs 

3.1.1.1 Product Operations 

38 

Sanchez (1996) defines two product operations on FSMs. The first, called the 

asynchronous product operates on FSMs Ml and M2 for which the transition sets 

are disjoint (i. e E1 f E2 = 0). The asynchronous product is given by interleaving 

the states from each FSM, where the state variables in the product FSM are the 
Cartesian product of state variables from each corresponding state (see Sanchez 

(1996) page 32). 

The asynchronous product operator is used in the construction of FSM models 
for systems comprised of multiple components. Concurrent events are modelled by 

all possible sequences of interleaved transitions and combinations of state variables. 
A second product operation, called the synchronous product of FSMs, intersects 

two FSMs so that the product FSM generates strings common to both original 
FSMs. By definition, state variables in the product FSM "cover" (see Sanchez 
(1996) page 33) state variables in the corresponding states of the original FSMs. 

The synchronous product operation is used to model the conjunctive behaviour of 
two DESs. 

3.1.1.2 The Selfloop Operation 

Selfloops are transitions of a FSM for which the source and destination states are 
the same. By definition, transition a is a selfloop at state q if S(a, q) = q. Selfloops 

are so named because they appear as arrows originating and terminating at the 

same state in the transition graph. Selfloops model the occurrence of events which 
do not correspond to a change in process state. 
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Selflooping is an operation on FSMs which augments the original structure at 

specific states with additional selflooped transitions while preserving determinism. 

By definition, the selfloop operation SQs augments M at states QS CQ with self- 
looped transitions from Es . The FSM M' = SQ3 M over transition set E' =EU ES is 

equivalent to M (equation 3.1) but with a new partial transition function 6' defined 

by: 

1. Vq E Q, Va EE if 6(a, q)! then 6'(o, q) =6 (a, q) 

2. Vq E Qs, ̀ da E >S if 6 (Q, q) is not defined then 5'(a, q) =q 

By construction, the selfloop operation preserves determinism since no selflooped 
transition aE Es is augmented to the original FSM at states in which a- is already 
defined. Reachability, coreachability and trimness are also preserved under the 

selfloop operation. 

3.1.2 Language Preliminaries 

Much of the theory in this thesis is presented in terms of "languages". A language 
is a set of strings or combinations of unique symbols taken from an alphabet. In 

discrete event systems theory, the language L(M) "generated" by the FSM M is 

the set of every possible string of transitions executed by M: 

L(M) = Is E >*/b(s, qo)! } (3.4) 

L(M) is also called the behaviour of the process and a string in L(M) a process 
trajectory. Languages generated by FSMs are regular and the transition set E is 

the alphabet of events. The marked language L,,, (M) generated by M is the set of 

strings that terminate at a marked state in M. L,, (M) is defined by: 

L,,, (M) = {s E L(M)/6(sß qo) E Qm} (3.5) 

3.1.2.1 Closure and Nonblocking 

The prefix closure set L of any language L defined over alphabet E is the language 

comprised of all prefixes of strings in L. L is defined by: 

L=Is EF*/3tEE*, st EL} (3.6) 

and comprises every partial or incomplete trajectory in L. L is closed if L=L and 
all regular languages are closed (i. e. L(M) = L(M)). A machine M is nonblockirig 
if: 
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L(M) = Lm(M) (3.7) 

Nonblocking asserts that any string or partial trajectory in M can be extended 
to a string or full trajectory which terminates at a marked state. Therefore if M is 

coreachable it is also nonblocking. 

3.1.2.2 Union, Intersection and Concatenation 

The union of the two languages L1 and L2 over alphabet E is defined by: 

L1UL2={sE>*/seL1VseL2} (3.8) 

Similarly the language intersection is given by: 

L1nL2=Is EE*/seLi AseL2} (3.9) 

By definition, the synchronous product of two FSMs generates a language equiv- 
alent to the intersection of the languages generated by the two original FSMs. It is 

always the case that: 

L1nL2cL1nL2 (3.10) 

If the equality in equation 3.10 holds then the languages are said to be non- 
conflicting (Ramadge and Wonham, 1987b). That is, L1 and L2 are nonconflicting 
if: 

L1nL2=L1nL2 (3.11) 

The property of nonconflicting asserts that any common prefix of L1 and L2 can 
be completed to a common string. In other words, common partial trajectories have 

a common completion and the conjunction of the two behaviours has no loose ends. 
Numerical algorithms, based on intersection and coreachability, are provided by 
Wonham (1996) and Sanchez (1996) for the evaluation of nonconflicting between 

marked languages. 

The concatenation of the two languages L1 and L2 is defined by: 

L1L2 = IS E */s = s1s2, sl E L1, S2 E L2} (3.12) 

A useful result for concatenated marked languages Lm, (Mi) and Lm(M2) is: 

Lm, (MI)Lm(M2) =Lm, (Ml)ULm, (Ml)Lm(M2) (3.13) 
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which decomposes the prefix closure of a concatenation into the sum of its con- 

stituents. 

3.1.2.3 Projection and the Synchronous Product 

The projection operator Pr, deletes from a string all occurrences of events not in 
Ep (Wonham, 1996). The projection of a language over alphabet E is a mapping 
to a language over alphabet Ep CE as follows: 

Pry : E* 
-* 

E** 

PES (E) =E 

Q if or EEP IPE, 

EEP or 
PEp (sa) _P (s)Prp (or) s E>*, aEE (3.14) 

The projection 'PEP of the intersection of two languages L1 and L2 over alphabet 
E satisfies: 

PE, (L1 n L2) C PE, L1 n1 L2 (3.15) 

The operation P-1- on a language Lp over alphabet Ep returns the largest lan- 

guage over E which projects to the original: 

Pý'Lp={sC *ý7ýýýs c Lp} (3.16) 

Lp to synchronise on events not only in >p but In this way, it is possible for P r, P 
in E as well. The operation P on the two languages L1 and L2 over alphabet Er 

is closed under intersection. That is: 

P (L1 n L2) = PýPL1 n PAP L2 

Pr, 
P and ýýý have the following reflexive properties: 

LC TAP Ply L 

LP =7 EP rIp Lp 

(3.17) 

(3.18) 

(3.19) 

The operation 'P-1 on regular language L(Mp) over alphabet EP is equivalent 
to the selfloop operation SE, on FSM Mp provided the alphabet E is divisible into 
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two disjoint sets Es and Ep (i. e. Es U Ep =E and >s n >P = 0). That is: 

L(SM) = Pý L(Mp) (3.20) 

Wonham (1996) defines the synchronous product of two languages L1 over al- 
phabet >1 and L2 over alphabet >2 as the language of interleaved strings from 
L1 and L2 in which synchronisation occurs on common events in L1 and L2. The 

synchronous product (11, ) is defined by: 

L1 ýýSL2 =P 11L1nPý2L2 (3.21) 

and includes every interleaving of strings from L1 and L2 with synchronisation on 
common events. For the case when E1 and E2 are disjoint, Wonham refers to 

the synchronous product of languages as the shuffle. The shuffle of two regular 
languages L(M1) and L(M2) is equivalent to the language generated by the asyn- 

chronous product of FSMs Ml and M2. Wonham (1996) provides algorithms for 

the calculation of language projections and synchronous products. To avoid any 
confusion in the terminology of the product operators, it will be clearly stated in 
future whether the product operation is intended for languages or FSMs. 

3.2 Process Modelling 

3.2.1 Elementary Component Modelling 

Most processes are comprised of a number of primitives or elementary components 

as represented on a Process and Instrumentation Diagram (P&ID). Elementary 

components are entities which operate in relative isolation, but which physically 
interact in such a way as to characterise the process. Typically these include valves, 

pumps, sensors and switches which can be modelled as simple FSMs. 

Consider the DES comprised of n21 elementary components each modelled as a 
FSM e2 over transition set Ei. Let E= {ei, e2 .... env } be the set of elementary 

component models of the DES. The alphabet E of the system is the set of all 

elementary events (i. e. E= E1 U E2 
... U Env). 

Since elementary components are separate entities in the process, it is usually 
but not necessarily the case that primitive alphabets EZ are disjoint. The FSM 

model of the whole process is the interleaving of all possible elementary component 

events. Thus the process model M is the asynchronous product of elementary 

component FSMs, and the language generated by M is the synchronous product of 
the elementary component languages: 
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L(M) = P1'L(el) n'2'L(e2) ... n P, -. 'L(en�) (3.22) 

where the simplified notation P, -1 is adopted for Pß. 1. The synchronous product 
generates all possible system trajectories including those which may not be possible 
based on physical considerations. 

3.2.1.1 Example - Waste Neutralisation 

For example, consider the P&ID shown in figure 3.2. A continuous stream of alkaline 
industrial waste is neutralised by an injection of acid via pump P_l and on/off valve 
V_l. Acidic wastes are neutralised from a source of base via on/off valve V2. The 

pH of the stream is measured continuously by pH probe H_1. 

WASTE 

ACID 

BASE 

H-1 

Figure 3.2: The Waste Neutralisation System 

Four elementary component items V_l, V_2, P_i and H_l are identified from the 
P&ID. Valves V_1, V2 and pump P_1 are modelled as two state FSMs as shown in 

figure 3.3. The pH probe is modelled as a three state device with basic, neutral and 

acidic states. Uncontrollable transitions model changes in pH between these three 

states. 
The complete FSM model M of this process is the asynchronous product of the 

FSMs in E= {V 
_1, 

V-2, P_l, H-11 and comprises 24 states as shown in figure 3.4. 

The order of the state variables in figure 3.4 is as shown in figure 3.3. The language 

L(M) generated by M is the synchronous product of the languages L(eV_1), L(eV2), 

L(eP_1) and L(eH_i). 

3.2.2 Physical Interaction 

Physical interactions may restrict the elementary components within a system from 

behaving in the same way as when they are entirely isolated and independent from 

V-2 DISPOSAL 
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Figure 3.3: Elementary Components for the Waste Neutralisation System 

each other. Such interactions typically arise from the conservation of mass, energy 

and momentum, gravitational and spatial considerations and from the mechanical 

union of elementary components. Physical interaction is reflected by the existence 

or otherwise of states and transitions in the FSM model. Accounting for physical 
interaction within a process results in the deletion of infeasible states and transitions 

from the asynchronous product of the elementary component FSMs. 

Predicate and temporal logic have been proposed by Sanchez (1994) for mod- 

elling physical interaction between elementary components in DESs. A predicate 
logic formula assigns the value false to states of the DES corresponding to infeasible 

configurations of elementary components (e. g. due to mechanical or gravitational 

constraints identified from an engineering analysis of the process). The covering 

symbol oc is often employed in predicate logic formulas to indicate elementary 

components which do not participate in the modelled interaction. Sanchez provides 

an isomorphism for translating predicate logic formulas into the FSM domain. 

Dynamic or temporal elementary component interactions (e. g due to mass or en- 

ergy conservation) are modelled by formulas in temporal logic. The temporal logic 

of Sanchez employs the next (0), eventually (O), and always (D) operators. As 

before, the covering symbol oo is assigned to nonparticipatory elementary compo- 

nents. A homomorphism translates temporal logic formulas into the FSM domain. 

Physical interaction within a system is defined by a set of ni component in- 

teractions, given as the translated FSMs PI, P2 ... , pni . 
The process model Al is 

the synchronous product of pl, p2 .. .1 pni with the asynchronous product of the el- 
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Figure 3.4: FSM Model for the Waste Neutralisation System 
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ementary components in E. The language generated by the process M is given 
by: 

L(M) = L(pi) n L(p2) 
... n L(pni) n 'P1'L(ei) nP 'L(e2) 

... n P, 
zv'L(enti. 

) (3.23) 

and represents a subset of the language generated by the asynchronous product of 
the elementary component FSMs in E. 

3.2.2.1 Example - Electrical Heating 

For example, consider the P&ID of the electric water heater shown in figure 3.5. 

Water is introduced to the tank by a cistern armature as shown. Level switch L_10 

indicates when the water level covers the electrical element, which is energised by 

contact S_10. The lower temperature switch T_10, set at 70C, indicates the desired 

water temperature. The upper switch T_11 is set at 80C to indicate overheating. 

L-10 

T-11 

T-10 
S-10 

Figure 3.5: The Electric Water Heater 

Four elementary components L_10, T_10, T_11 and S_10 are identified from the 

P&ID. Each is modelled as a two state FSM as shown in figure 3.6. Physical 

interaction exists between temperature switches T_10 and T_11 as it is impossible 

for T_11 to register above 80C while T_10 registers below 70C. This condition is 

expressed by the predicate: 

(oo, 0,1) oc) = FALSE (3.24) 

where the order of state variables is as shown in figure 3.6. An energy balance (i. e. 

accumulation = input - output) around the tank identifies physical interaction 

between the electrical contact S_10 and both temperature switches T_10 and T_11. 
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80C 21 ON HIGH 

(c) T_11 (d) S_10 

Figure 3.6: Elementary Components for the Electric Water Heater 

That is, if S_10 is off and assuming the inlet temperature is less than the tank 

temperature, then input <0 and accumulation < 0. Therefore neither T_10 nor 
T_11 can detect an increase in temperature. This condition is expressed by the 

temporal logic formula: 

(oo, oo, oo, 0) -ý 0[T 520 V 524] (3.25) 

Predicate logic formula 3.24 and temporal logic formula 3.25 are translated into 
FSMs p1 and p2 (not shown). The synchronous product of pi and p2 with the 

asynchronous product of the elementary component FSMs yields the process model 

shown in figure 3.7. The model represents all physically realisable process states. 

3.3 Process Specification 

The FSM model M of a system represents every possible combination of feasible 

states and process trajectories in the open loop process. In a suitably controlled 

system, the behaviour is usually restricted to a set of desirable states and trajectories 

reflecting the user requirements. A process specification is the set of allowable 

states and process trajectories through which a controlled process may evolve and 
is expressed formally by a FSM S. Desirable behaviour of the process is reflected by 

the existence or otherwise of states and transitions in S. The specification language 

L(S) is the language generated by the FSM S and is the set of allowable strings of 
process events. 

Process specifications are created in an analogous manner to process models 
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Figure 3.7: FSM Model for the Electric Water Heater 
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as discussed in section 3.2.2. The specification reflects the desirable interaction of 

elementary components in the same way that the process model reflects physical 
interaction. The specification is therefore also constructed by deleting undesirable 
states and transitions from the asynchronous product of elementary component 
FSMs. 

Process specifications are of two types, static and dynamic. Static specifica- 
tions identify particular process states as undesirable or forbidden. Predicate logic 
formulas, employed earlier for modelling physical interaction, are used here for mod- 
elling static specifications by assigning the value false to forbidden or undesirable 
states of the DES. The covering symbol oo is assigned to components whose value 
is irrelevant to the immediate specification. As before, predicate logic formulas are 
translated into the FSM domain. 

Dynamic specifications define the desired temporal behaviour of the process 
including the required sequences of process events or eventualities from specific 

process states. Dynamic specifications are expressed formally using temporal logic, 

with oo assigned to nonparticipatory elementary components. A homomorphism 

translates temporal logic formulas into the FSM domain. 

Complex specifications are constructed from the conjunction of several static and 
dynamic specifications. For a system specified by a set of ns formulas translated 
into the FSMs rl, r2 ... the overall specification S is given by the synchronous 

product of rl, r2 ... , rns with the asynchronous product of elementary component 
FSMs in E. The language generated by the specification S for the process defined 

by E is therefore given by: 

L(S) = L(ri) n L(r2) 
... n L(r,,, 

s) 
n Pl 1L(el) n P2'L(e2) ... n P, 

zv 
L(en�) (3.26) 

Note that for physically interacting systems, the specification language L(S) is 

not necessarily a subset of the process language L(M). In other words, allowable 

process behaviour is not necessarily physically possible behaviour. 

3.3.1 Example - Waste Neutralisation 

For the waste neutralisation system described in section 3.2.1.1, a series of static 

and dynamic specifications are elicited from the informal statement of the user 

requirements. For example, the requirement for the acid source to be isolated 

whenever the pH of the stream is acidic is expressed by the predicate: 

(1,0,1,1) = FALSE (3.27) 

LONUi N. 
UTtiY. 
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where the order of state variables is as shown in figure 3.3. This predicate is 

translated into FSM r1, similar to that shown in figure 3.4 with the exception that 

state 23 is absent. 
Predicate logic is very convenient for asserting interlock specifications, which 

require an equipment item to maintain a defined state for the duration of the control 

sequence. For example, the source of base is isolated by an "interlock to closed" on 

valve V_2. This static specification is expressed by the predicate: 

(oo) 1, oo, oo) = FALSE (3.28) 

and translated into FSM r2. Three additional static specifications r3, r4 and r5 are 
identified for this system. 

The acid dosing operation begins by opening valve V_1 and energising pump 
P_l. This dynamic specification is expressed by the temporal logic formula: 

(0,0,0,2)-+o[T=1]-+O[T= 17] (3.29) 

which is translated into FSM r6 (not shown). Three additional dynamic specifi- 

cations r7i r8 and r9 are identified for this system. The complete specification S 

is given by the synchronous product of FSMs rl, r2 ... , r9 with the asynchronous 

product of elementary component FSMs in E (figure 3.4). S is shown in figure 3.8. 

i( 0,0,0,2 

504 

3 1,0.1,2 i 

4 1,0,1,0 i 

5 1,0,0,0 / 

fiý o, o. go 

S2 Tgoo 

7 4. ß 0.1 

Figure 3.8: Acid Dosing Specification 
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3.4 Control Preliminaries 

A sequential controller is a device which monitors discrete responses from the pro- 
cess via a set of sensors (e. g. level and temperature switches) and in response 
communicates discrete control commands to the process via a set of actuators (e. g. 
valves and pumps) in accordance with a programmed control logic. The purpose 
of control is to change the state of the process from the initial state to a goal (i. e. 
marked) state while restricting its behaviour to a desirable subset of states and 
trajectories (i. e. the specification). 

A controller is a DES defined by the 5 tuple: 

C= {X, Eli'x0, Xm} 

where 

X is the set of controller states, xEX 
E is the set of process transitions, o, EE 

is the state transition partial function, e: ExX -4 X 

xo is the initial controller state, xo EX 
Xm is the set of marked controller states, Xm CX 

(3.30) 

By definition (equations 3.1 and 3.30), the transition set E is common to both 

C and M. The ability for C and M to synchronise on events in E is enabled 
by the coupling described in the following section. The partial function ý defines 

the controller topology. Since ý is a partial function, the destination state of a 
transition is uniquely defined and the controller is deterministic. ý may be extended 
inductively to strings (i. e. ý: E* xX -+ X). The marked states xEX, n are those 

at which control action may cease, and model termination points in the control 
sequence. 

3.4.1 The Control Mechanism 

The control mechanism within PCT is fundamentally different from the enable/disable 

mechanism of SCT as described in section 2.4.2. Control of process M by controller 
C is realised by the feedback control mechanism shown in figure 3.9. Uncontrollable 

events au E >u, generated spontaneously by the process M, are communicated as 

shown to the controller C currently in state x'. If e(a, x')! (i. e. if transition a,, is 
defined at x') then C synchronises on a and changes state to state x" x'). 
Similarly, controllable events aEE, generated by C, are communicated to M 
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currently in state q'. If 6(o- 
, q')! then M synchronises on o and changes state to 

q'I = 6(a 
, q'). 

In the control mechanism described, it is assumed that controllable transitions 

are generated instantaneously by C and anticipate any uncontrollable transition 

also defined at q'. Control action is assumed to always result in the desired change 
in state of the process and failure scenarios must be modelled explicitly. The loop 

remains closed until either a marked state xc Xm is attained by C (and C termi- 

nates) or until a controllable event from C is undefined in M. 

Goals II Disturbances 

Closed Loop 

M Behaviour 

Controllable Uncontrollable 
Transitions Transitions 

Figure 3.9: The Feedback Control Mechanism 

For example, a controller for the waste neutralisation process described in sec- 
tion 3.2.1.1 is shown in figure 3.11. The closed loop mechanism operates as follows. 

Initially, both the controller and process (see figure 3.4) are in their respective initial 

states. From state 1 of the controller, controllable transition 1 is generated and the 

controller state changes to state 2. Controllable transition 1 is communicated to the 

process causing a change in process state from 1 to 2. This corresponds to the open- 
ing of valve V_1 (see figure 3.3). Similarly, the process synchronises with the next 
controllable transition (transition 17, corresponding to P_l energising) generated 
by the controller. The process is now in state 7 from which uncontrollable transi- 

tion 506 (corresponding to a decrease in pH) is generated spontaneously, thereby 

changing the process state to state 10. From state 3, the controller synchronises on 

uncontrollable transition 506 thereby changing its state to state 4. Control in this 

manner continues until the marked state of the controller is reached (state 6), at 

which point control action terminates. 
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3.4.2 Properties of the Controller 

3.4.2.1 Agreement 

The property of agreement asserts the ability of the controller and process to syn- 
chronise using the mechanism described above. Agreement requires that a command 
sent by the controller is physically realisable at the instant it is sent. If this is not 
the case then the controller is poorly designed and control action must terminate 
due to an error. Agreement also requires that a controller only awaits uncontrol- 
lable events that are physically possible from the current process state. Otherwise 

the controller is redundant and could wait indefinitely for an event which will never 
occur. In summary, agreement states that a controller should neither send nor await 
infeasible events. Agreement is satisfied by ensuring that the controller language is 

physically realisable: 

L(C) C L(M) (3.31) 

and that terminating strings in C have an equivalent in M: 

Lm(C) 9 Lm(M) (3.32) 

Using simple algorithmic procedures for intersection and isomorphism (Won- 

ham, 1996), it can be shown that the controller (figure 3.11) and process (figure 

3.4) for the waste neutralisation example are in agreement. 

3.4.2.2 The Procedural Controller 

By definition, controller FSMs are deterministic which means that the destination 

state of each transition is unique. For implementation purposes, it is necessary for 

a controller to avoid indeterminate states. An indeterminate state is a controller 

state at which either: 

1. More than one controllable transition is defined. 

2. A controllable and an uncontrollable transition are defined. 

Indeterminate states are undesirable controller states because they offer un- 
specified alternatives. This is acceptable for supervisory control in the SCT sense, 
but not for a forcing control mechanism in which case the indeterminacy must be 

resolved by some other means, perhaps a random choice. 
A procedural controller is a FSM which has no indeterminate states. In formal- 

ising the procedural controller, the concept of wait states is introduced. A wait 
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state is a state at which no controllable transitions are defined. The state is so 
named because unlike controllable transitions, uncontrollable transitions are not 
necessarily executed immediately. The set of wait states Xu, is defined by: 

Xw = Ix c X/ 20r, c Z, s. t. e(Q" x)! } (3.33) 

A procedural controller is a FSM C in which for each xcX such that e(cr, x)! 
one of the following is true: 

I. xEXw 

2. or E E, and dc' E E, a a', e(or', x) is undefined 

In other words, a procedural controller can either be in a wait state, or a state 
from which it immediately executes only one controllable transition. An example 
of a procedural controller is shown in figure 3.11. 

3.5 The Closed Loop Behaviour 

The combination of process and controller (figure 3.9) is called a closed loop sys- 
tem. The closed loop language L(C/M) is the language generated by process M 

when coupled in feedback mode with controller C. L(C/M) is formulated from the 

conjunction of the controller behaviour and the process behaviour. However, given 
the control mechanism described in section 3.4.1, the intersection is not between 

L(C) and the open loop language L(M) because this would exclude nonsynchronous 

uncontrollable events. Nor is the intersection between L(%S C) and L(M) since con- 
trollable transitions generated by C anticipate uncontrollable transitions in M. The 

closed loop language L(C/M) generated by controller C on process M is formulated 

as: 

L(C/M) = (S. ý- C) n L(M) (3.34) 

The first term of equation 3.34 is the language generated by the controller self- 
looped at wait states with uncontrollable transitions. The second term represents 
the set of physically possible process trajectories. By construction, L(C/M) is the 

physically possible behaviour generated by the controller with allowance for uncon- 
trollable events at wait states. Similarly, the marked closed loop language Lm (C/M) 

is formulated as: 

Lm (C/M) = Lm (8u C) n Lrn (M) (3.35) 
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in which the abbreviated notation S,, is adopted for S 

3.5.1 Properties of the Closed Loop System 

3.5.1.1 Completeness and Controllability 

The analogous properties of completeness and controllability assert the ability of a 

controller to properly track the process and restrict it to within a desirable oper- 

ating envelope. These properties establish whether sufficient means of control are 

available to restrict the system behaviour to the desired subset. Both properties 
hold if the controller either synchronises on any uncontrollable event generated by 

the process or anticipates the same with controllable transitions. The properties 

are violated if the uncontrollable event is not recognised by the controller. The only 
difference between these two properties is that completeness is a property of FSMs 

and controllability a property of languages. 

By definition (Rotstein et al., 1995), a controller C is complete with respect to 

a process M if for any string sE E* and aE >u, the conditions ý(s, xo)! and 
b(sa, qo)! imply that at least one of the following is true: 

1. e(so,,, xo)! 

2.3a, E E, s. t. 5(so, qo)! A e(sa, xo)! 

That is, all uncontrollable transitions that generate behaviours not defined in 

the controller can be anticipated by a controllable transition that is defined in the 

controller. 
By definition, a language K is controllable with respect to a language L if it can 

be partitioned into two languages K1, K2, where Kl U K2 =K such that: 

1. K1EýnLcK 

2. K2E, nLcK 

Controllability is closed under union. Therefore a unique supremal controllable 

sublanguage K1 of a language K with respect to another language L can be defined 

as the largest subset of K which is controllable with respect to L. Klý is defined by: 

K1 = U{K' : K' CK and K' is controllable with respect to L} (3.36) 

The supremal controllable sublanguage is used in the synthesis of controllers 
from a specification and process model. Methods for its calculation are discussed 

in (Sanchez, 1996). 
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For a controlled system, it is desirable that both the controller language L(C) 

and the closed loop language L(C/M) are controllable with respect to the open 
loop language L(M). Completeness and controllability are related by the following 

theorem: 

Theorem 3.1 L(C) is controllable with respect to L(M) if fC is complete with 
respect to M. 

Proof See Rotstein et al. (1996 

Lemma 3.1 If C is complete with respect to M then L(C/M) C L(C) and 
L, ,, 

(CIM) 9 Lm (C) 
. 

Proof In order to prove L(C/M) = L(Su C) f1 L(M) C L(C) and Lm(C/M) = 
Lm (s, C) f1 L�z (M) C Lm (C) it need only be shown that all augmented selflooped 
transitions in Su 

,C are deleted by the intersection. Let s be a string such that 

sc L(M), sE L(C) ands E L(S, w C). If s is extended by o such that sau E L(M) 

then by completeness either e(sou, xo)! or Ela, E E, s. t. 6(sa, qo)! A e(sac, x0)!. 
In the latter case, e(s, x0) ¢ Xw and au is not an augmented selfloop. Thus all 

augmented selflooped transitions are deleted by the intersection. Q 

This result implies that if the controller is complete, then the closed loop process 
behaviour is contained within the subset of desirable process trajectories defined by 

the controller. The controller therefore tracks the process within the controllable 

envelope. 
For example, the controller for the waste neutralisation system (figure 3.11) is 

complete with respect the process model (figure 3.4), and generates a closed loop 

response on the process which is controllable with respect to the process language. 

3.5.1.2 Conformance to Specification 

An additional property to completeness and controllability for closed loop systems 
is conformance to specification. This property asserts that the closed loop behaviour 

is within the desirable subset of states and trajectories as defined by the process 

specification (see section 3-3). The following condition formalises this property by 

stating that the closed loop language is within the specification language: 

L(C/M) C L(S) (3.37) 

Theorem 3.2 The closed loop behaviour generated by controller C on process M 

conforms to specification S if C is complete with respect to M and L(C) C L(S). 
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Proof L(C/M) C L(C) 9 L(S) by lemma 3.1 and L(C) C L(S), Q 

For example, the controller for the waste neutralisation system (figure 3.11) is 

complete with respect to the process model (figure 3.4). From figure 3.8 it is clear 
that L(C) C L(S). Therefore the closed loop behaviour conforms to specification 
S. 

3.5.1.3 Nonblocking 

The property of nonblocking of the closed loop system asserts the ability of a con- 
troller to take the process from its initial state to a goal (i. e. marked) state. This is 

an extremely important attribute of closed loop systems and all controllers should 
be synthesised to achieve this requirement. In order that the process terminates in 

a marked state, it must be possible for any string in the closed loop language to be 

completed to a string in the marked closed loop language: 

L(C/M) = Lm(C/M) (3.38) 

The following two theorems give conditions for nonblocking of the closed loop 

system. 

Theorem 3.3 If C and M are trim, the closed loop system generated by C on M 

is nonblocking if Lm(SC) and Lam,, (M) are nonconflicting. 

Proof See Sanchez (1996). 

Lemma 3.2 L(C/M) = L(C) and Lm(C/M) = Lm(C) if C agrees with M and is 

complete with respect to M. 

Proof L(C) C L(S, w C) n L(M) by agreement of C and M 

C L(C/M) from equation 3.34 

L(C) D L(C/M) by lemma 3.1 

Therefore L(C) = L(C/M). Similarly Lm(C) = Lm(C/M), Q 

Theorem 3.4 The closed loop system generated by C on M is nonblocking if C is 

trim, complete and in agreement with respect to M. 

Proof L(C/M) = L(C) by lemma 3.2 

= Lm (C) C is trim 

= Lm (C/M) by lemma 3.2, Q 
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Theorem 3.4 is highly significant because it proves that completeness, agree- 
ment and trimness are sufficient properties to guarantee nonblocking. Therefore 

in the waste neutralisation example, nonblocking of the closed loop system holds 

automatically since the controller (figure 3.11) is trim, complete and in agreement 
with the process (figure 3.4). Nonblocking guarantees that the goal state (0,0,0,0) 

is always reachable. 

3.6 Synthesis of Model Based Controllers 

In summary, the property of nonblocking of the closed loop system guarantees 
that a controller will take the process from its initial state to its goal state in the 

presence of uncontrollable transitions in the process. The property of conformance 
to specification guarantees that the closed loop behaviour is within specification. A 

controller is said to be provably correct if it satisfies both properties. 
At the heart of PCT is a technique for the synthesis of provably correct controllers 

for DESs. The synthesis problem is stated formally as: 

Problem 3.1 For a process M and specification S, synthesise a controller C such 
that the closed loop behaviour generated by C on M conforms to specification S and 
is nonblocking. 

Sanchez (1994) proposes a model based technique for the solution of synthesis 

problem 3.1 based on the calculation of the supremal controllable sublanguage. 
The synthesis technique is model based since it employs the process model M in 

the construction of the controller. Provably correct controllers are synthesised using 
algorithm 3.1. 

Note that algorithm 3.1 can fail at step 7 if L(C) f1 L�z(M) _ 0, which occurs 

most commonly when the supremal controllable sublanguage K1 is empty. This 

result means that no trim and complete controller exists which satisfies the speci- 
fication S, in which case S or the process M must be further modified. 

By construction, controllers from algorithm 3.1 are trim, complete and in agree- 

ment with the process model. Therefore, by theorem 3.4, the closed loop system 

generated by C on M is nonblocking. In addition L(C) C L(S) by construction, and 
the closed loop language L(C/M) is within specification S (theorem 3.2). Therefore 
C. generated from algorithm 3.1, satisfies synthesis problem 3.1 as required. Figure 

3.10 summarises the inputs and outputs of the synthesis procedure. 
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Algorithm 3.1 (Controller Synthesis) 

59 

1 Input M 
2 Input S 
3 L(C) = L(S) n L(M) 
4 Calculate the supremal controllable sublanguage Klý of 

L(C) with respect to L(M) 
5 Assign L(C) = K1 
6 Mark C such that Lm (C) =L (C) n Lm (M) 
7 Trim C 
8 IF C is not complete with respect to M, GOTO 4 
9 Output C 

Static & 

Dynamic 

Specifications 

Specification 

Model 

Elementary 

Components 

Models 

Controller 

Process 

Model 

Physical 

Interaction 

Models 

Figure 3.10: Inputs and Outputs of the Synthesis Procedure 
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3.6.1 Example - Waste Neutralisation 

In this section, a controller is synthesised for the waste neutralisation system de- 

scribed in section 3.2.1.1. The process model M of the system is shown in figure 

3.4 and the specification S in figure 3.8. A single pass of algorithm 3.1 yields the 
FSM C shown in figure 3.11. By construction C is trim, complete and in agreement 

with process M. C generates a closed loop behaviour on M which conforms to 

specification S and is nonblocking. This final property was verified numerically by 

showing that Lm(SC) and Lm (M) are nonconflicting (theorem 3.3). 
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Figure 3.11: Acid Dosing Controller 

3.7 Summary 

This chapter has introduced the theory and concepts of Procedural Control Theory 

for the modelling of chemical processes as Discrete Event Systems and the specifi- 

cation, synthesis and analysis of controllers for such systems. Firstly, it was shown 
how FSM models of chemical processes are constructed from elementary component 

models and logic formulas modelling physical interactions between components. 
Then an analogous technique was presented for the construction of the process 
specification as a FSM. Static and dynamic specifications were expressed in terms 

of predicate and temporal logic formulas. 
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The formal model of a sequential controller was then presented. Table 3.1 sum- 
marises the properties required of this controller. 

Property Physical Interpretation 
Reachability Nonredundant 
Coreachability Ability to terminate without 

infinite cycling (livelock) or deadlock 
Procedural controller Free from indeterminate choice 

of controllable transitions 
Agreement Neither sends nor awaits null events 

Table 3.1: Summary of Controller Properties 

A mechanism for discrete process control was then introduced with a formulation 

of the closed loop behaviour. The important properties of the closed loop system 
are summarised in table 3.2. 

Property Physical Interpretation 
Completeness & Controllability Behaviour restricted within 

a controllable envelope 
Conformance to Specification Behaviour restricted within 

the specified region 
Nonblocking Termination at a process goal state 

Table 3.2: Summary of Closed Loop Properties 

Finally, a technique was presented for the synthesis of provably correct con- 
trollers. In this context, provable correctness means that the controllers generate 

closed loop behaviours which satisfy the properties of table 3.2. 



Chapter 4 

Modular Procedural Control 

Theory 

The currently available techniques within PCT for process modelling, specification, 
synthesis and analysis of controllers are limited in practice to simple DESs. Two 

problems prohibit these techniques from application to DESs of realistic complexity. 
The first problem is combinatorial explosion of the process model and specification 
FSMs. Secondly, it is difficult for the user to construct a formal specification for a 
highly complex process. 

The aim of this chapter is to extend PCT to incorporate techniques for process 

modelling, specification, synthesis and analysis of controllers for process systems of 

realistic complexity. The solution is to decompose the DES into a number of subsys- 
tems which are amenable to existing PCT techniques. Mechanisms are proposed by 

which the controllers synthesised for each subsystem are recombined for application 
to the system as a whole. For three special classes of DESs it is shown that closed 
loop properties are reductive, that is they hold for the recombined controller if they 
hold for the modular components. Fortunately, most complex process systems fall 

into at least one of these three classes. 
This chapter is organised as follows. Section 4.1 presents a parallel decom- 

position method for handling state explosion of process and specification models. 
Systems decomposed in this way are called class I systems. Class la systems are 

a subclass of class I systems which can be completely specified considering only a 

subset of elementary components. The synthesis of controllers for class la systems 
is addressed in section 4.2. Section 4.3 introduces class Ib systems, characterised 
by the ability of the process model and specification to be partitioned into reduced 

models sharing only uncontrollable events. For class Ib systems a parallel control 
mechanism is proposed. 

62 



Chapter 4. Modular Procedural Control Theo 63 

Section 4.4 presents a series decomposition method for handling specification 

complexity. Systems decomposed in this way are called class II systems. For this 

class of system a series control mechanism is proposed in section 4.5. 
It is shown in section 4.6 how the modular techniques of sections 4.1 and 4.4 

are applied recursively to design a series/parallel control structure for a process. 
Finally a summary of this chapter is presented in section 4.7. 

4.1 Parallel Decomposition of Class I Systems 

4.1.1 Parallel Decomposition of the Process Model 

This section introduces a technique for decomposing a process model M into two (or 

more) smaller process models Ga and Gb which together model the complete system. 
The problem of state explosion in M is avoided by finding synthesis techniques which 

require only Ga, and Gb. 

Process model decomposition is the inverse of model construction as described 
in section 3.2. There it was shown how a process model M is constructed from a 

set of nz1 elementary component models E= {el, e2 ... , eng, } over alphabet E. In 

the absence of physical interaction between components, L(M) is the synchronous 

product of the languages generated by the elementary component FSMs (equation 

3.22). Splitting expression 3.22 at the loth and m�th component (where 1, < mz1) 

and using 3.17 gives: 

L(M) = Pa-1L(Ga) n P1 1L(Gb) (4.1) 

where 

L(Ga) _ P1 1L(el) n i'2 1L(e2) 
... 

n Pi. 1L(el,, ) 
... 

n PmvL(emv) 

Ea = E1 UE2... UElv... UEMV 

1 L(Gb) _P 
'L(ejv) n Pl�+1L(el�+1) 

... 
n PmvL(emv) 

... 
n Pnv L(env) 

E6 
= 

Elv U 
`lv+l ... 

U >mv 
... 

U >I 

L(Ga) over alphabet >a is the synchronous product of the languages generated 
by elementary component FSMs in Ea = {el, e2 ... , ei,, ... , em� } and L(Gb) over 

alphabet Eb is the synchronous product of the languages generated by the elemen- 
tary component FSMs in Eb = {el,,, el�+1... , em� ... , en}. Elementary component 
FSMs {ei,,, ei�+1 .... em� } are common to EQ and Eb, and therefore Ea and Eb are not 

necessarily disjoint. As for E, the alphabets Ea and Eb are divisible into controllable 
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ESQ C ýc, Ecb C E. and uncontrollable Eua C Eu, Eub C Eu subsets. 
Equivalently, the marked process language is given by: 

Lm(M) - Pc 1Lm(Ga) (1 P 1Lm(Gb) (4.2) 

Ga and Gb model the subsystems defined by Ea and Eb and are called reduced 
or partial models of the system. Assuming that J Ga J and Gb I are of the order 210 

and >a and Ib are disjoint, then IMI is of the order 220. In this case, Ga and Gb 

are both tractable, while M is not. 

4.1.1.1 Example - Waste Neutralisation 

Consider again the waste neutralisation process shown in figure 3.2 and described in 

section 3.2.1.1. Figure 4.1 shows the P&ID for the whole waste treatment process, 
for which figure 3.2 showed just one part. The treated waste is directed either to 

drain via valve V_3 or to a settling pond via V_4. The temperature in the settling 

pond is measured by T_1. 

WASTE 

ACID 

BASE 

T-1 

DRAIN 

Figure 4.1: The Extended Waste Neutralisation System 

Seven elementary components V_l, V_2, P_l, H_l, V_3, V_4 and T_1 are iden- 

tified from the P&ID. The FSM models for the first four elementary components 

were shown in figure 3.3. The remaining three elementary component FSMs are 

shown in figure 4.2. All states are marked since any state is a valid termination 

state. The complete model for this process comprises 2x2x2x3x2x2x2= 192 

states, which is too large to be pictured. 

The set of elementary component models E is partitioned into the two disjoint 

sets Ea, = {V_1, V_2, P_l, H-11 and Eb = {V 
_3, 

V_4, T-11. Ga, shown in figure 3.4, 

is the reduced process model of the subsystem defined by Ea. Similarly Gb is the 
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Figure 4.2: Additional Elementary Components for the Waste Neutralisation Sys- 
tem 

reduced process model constructed from elementary components in Eb. Gb, shown 
in figure 4.3, is the asynchronous product of the elementary component FSMsshown 
in figure 4.2. The overall process M generates a language L(M) equivalent to the 

synchronous product of L(Ga, ) and L(Gb). 

4.1.2 Parallel Decomposition with Physical Interaction 

An equivalent strategy for decomposing process model M into reduced models Ga 

and Gb also exists for physically interacting systems. In this case L(M) is given by 

the intersection of interaction terms L(pi), L(p2) 
... , 

L(pn, 
i) with the synchronous 

product of the languages generated by the n, elementary component FSMs (equa- 

tion 3.23). Splitting expression 3.23 yields: 

L(M) = Pa-'L(Ga) n P6 'L(Gb) (4.3) 

where 

L(Ga) = L(pl) n L(p2) ... n L(p',. ) 
... n L(pmi) 

nPl-'L(el) n P2-'L(e2) 
... n Pj 'L(el�) 

... n PmvL(em�) 

L(Gb) = L(pli) n L(pli+1) 
... n L(pm. ) 

... n L(pn2) 

fP1'L(ely) n PC' L(el, +1) ... 
nP 'L(emv) 

... 
(1 Pývll'(en�) 

(4.4) 

given the condition that: 
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Figure 4.3: Reduced Model Gb for the Waste Neutralisation System 
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L(pj) = Pa 1L(pj), 
= 17 2 ... , 

li 
... , rn2 (4.5) 

L(pj) = Pb 1L(pj), 
= li, li + 1.... mi.... ni (4.6) 

FSMs pj, j=1,2.... i 
... , mi correspond to translated temporal and predi- 

cate formulas modelling interaction amongst elementary components in Ea. Equa- 

tion 4.5 requires that these interaction terms are local to EQ. Similarly ' pý, j= 
i, li +1 ... 7 mi .. .. ni model local interaction amongst elementary components in 
Eb. FSMs Ga and Gb are constructed in a modular and incremental fashion from 

elementary components in EQ and Eb and local interaction terms as described in 

section 3.2.2. 
If conditions 4.5 and 4.6 cannot be satisfied simultaneously, then E cannot be 

decomposed and by definition constitutes an elementary component. Even though 

additional conditions are given later (equations 4.8,4.11 and 4.12), the choice of 

partition is loosely based on an engineering analysis of the P&ID. 

A special case of elementary component interaction is defined by the following 

condition: 

P, 1L(ek) n L(pj)> C L(pj) (4.7) 

The physical interpretation of equation 4.7 is that the interaction term pj does 

not restrict the behaviour of elementary component ek. In this case, ek is said to 
be internally consistent with interaction term pj. The same concept is extended to 

process models by defining reduced model Ga as internally consistent with process 

model M if: 

P 'L(Ga) f1 L(M)Fa C L(M) (4.8) 

Internal consistency is therefore closely related to the concept of controllabil- 
ity (see section 3.5.1.1) in the sense that the behaviour of reduced process model 
L(G,, ) is contained within the envelope defined by process model L(M). Numer- 

ically, internal consistency can be easily checked using the same algorithm as for 

controllability (Wonham, 1996) by defining 1u = Ek. 

Theorem 4.1 Reduced process model Ga is internally consistent with process model 
M if each elementary component ek, k=1,2 

.... l� 
..., m, is internally consistent 

with each interaction term pj, j= mi + 1, mi +2.... n2. 

Proof For the jth interaction term: 
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P 1L(ek) n L(pj)> C L(pj) 

for all ek, k=1,2. 
.. , 

1, 
... , m,,. On taking unions: 

Pý 1L(el) n P2 1L(e2) 
... n Pl 'L(ej�) 

... nP L(emv)n 
L(pj){EiUE2... UElv... U>mv} C L(pj) 

for all pj, j= mi + 1, m2 +2... , n2. On taking intersections: 

Pj 1L(el) n P2 1 L(e2) ... n Plv1L(ec�) ... n P; L(eý- 
0)n 

{L(pmi+1) n L(pmi+2) ... n L(pnz) I ý'a C L(pmi+1) n L(pmi+2) ... n L(pni) 

Intersecting both sides with L(pi) n L(p2) 
... n L(pli) 

... n L(p,,,, ) yields: 

P, -'L(Ga) n {L(pmi+, ) n L(pmi+2) ... n L(pnz)}ý3a C L(pi) n L(p2) ... n L(pn, ) 

Intersecting both sides with P1-1L(el) n P2 1L(e2) 
... n Pnv L(en�) yields: 

Pa-lL(Ga) n {P '+iL(emv+1)n Piýl+2L(emv+2) 
... 

n Pn�'L(en, )n 

L(prºzi+l) n L(pmi+2) ... n L(pni)}ý3a C L(M) 

from which: 

P1 L(Ga) (1 L(M)>a C L(M), Q 

Theorem 4.1 is important because it permits internal consistency to be evaluated 

without enumerating the overall process model M. 

4.1.2.1 Example - Electrical Heating 

This example illustrates process model decomposition in the presence of physical 
interaction. Consider again the electric water heater (figure 3.5) modified so that 

the level is no longer controlled by the cistern armature, but rather fill valve V_10, 

as shown in figure 4.4. 
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Figure 4.4: The Modified Electric Water Heater 
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Five elementary components L_10, T_10, T_11, S_10 and V_10 are now identified 

from the P&ID. FSM models for the first four elementary components are shown 
in figure 3.6 and V_10 in figure 4.5(a). 

In section 3.2.2.1 FSMs pl and p2 were derived to model the physical inter- 

action between the two temperature switches T_10 and T_11, and the electrical 
contact S_10 and T_10 and T_11 respectively. In addition, a mass balance (i. e. 

accumulation = input - output) around the tank indicates physical interaction be- 

tween the feed valve V_10 and level switch L_l0. This is because if V_10 is closed 
(input = 0) then L_10 cannot detect an increase in level (accumulation < 0). This 

mass balance restriction is expressed by the temporal logic formula: 

(0,0) -+ Of T 528] (4.9) 

where the order of state variables is (L_10, V-10). Equation 4.9 is translated into 

FSM p3. 
The set of elementary components E is divided into two sets Ea, _ {L_10, T_10, 

T_11, S_10} and Eb = {L_10, V_10} sharing elementary component FSM L_10. p1, 

p'2 and p3 satisfy conditions 4.5 and 4.6. Ga, shown in figure 3.7, is the reduced 

process model constructed in a modular and incremental fashion from elementary 

components in Eo, as described in section 3.2.2.1. Similarly Gb, shown in figure 

4.5(b), is the reduced process model constructed from elementary components in Eb 

and incorporating mass balance p3. The language L(M) generated by the complete 
process model M is the synchronous product of L(GQ, ) and L(Gb). M is shown in 
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Figure 4.5: FSM Model for V_10 and Gb for the Electric Water Heater 

figure 4.6 with the order of state variables (L_10, T_10, T_11, S_10, V_10). 

4.1.3 Parallel Decomposition of the Specification 
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In the previous section it was shown how process models with physical interaction 

may be decomposed into two reduced models. Here the same decomposition strategy 

is applied to specifications by recognising that the elementary component set E can 
be partitioned on the basis of desired interaction in much the same way as for 

physical interaction. Thus equation 3.26 is partitioned as: 

L(S) = P,, - 1L(Sa, ) (1 P 'L(Sb) 

where 

(4.10) 

L(Sa) = L(ri) n L(r2) 
... n L(rls) 

... n L(rý,. 
ls 

) 

n-p 'L(el) nP 'L(e2) 
... n Pj 'L(ely) 

... n P; 
r 

'L(emv) 

L(Sb) = L(r'5)nL(ris+l)... nL(r' )... nL(rns) 

n-plviL(ely) n P+IL(el�+l) ... 
n Pm'L(ern�) 

... 
n Pn�1L(en�) 

given the condition that: 
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L(rj) = 2 'L(ri), j= 1,2..., is..., ms (4.11) 

L(rj) = Pb 'L(rý), 
= ls, is +1... , ms ... , ns (4.12) 

FSMs rj, j=1,2 .... 
is 

... , ms correspond to translated temporal and pred- 
icate formulas modelling desired interaction amongst elementary components in 
Ea,. Condition 4.11 states that these specification terms are local to Ea,. Similarly, 

L(ri), j= ls, l, s +1.... ms ... , ns model local interaction amongst elementary com- 

ponents in Eb. Since specifications are local, the relative behaviour of elementary 

components between Ea and Eb is unconstrained. 
Specification FSMs Sa, and Sb are constructed in a modular and incremental 

fashion from elementary components in Ea and Eb and local specification terms as 
described in section 3.3. 

As shown later in this thesis, it is advantageous to apply the same partition to E 

when decomposing both the specification and the process model. This requires that 

conditions 4.5,4.6,4.11 and 4.12 are satisfied simultaneously. A system satisfying 
these conditions is called a class I system. 

4.1.3.1 Example - Waste Neutralisation 

In section 3.3.1, the user requirements for the waste neutralisation system of figure 

3.2 were formalised into FSMs ri, r2 ... , r9. The addition of the downstream settling 

pond (figure 4.1) neither alters the existing user requirements for the upstream 

process nor introduces any new requirements for the downstream process. 
For the purposes of specification, E is conveniently partitioned into two sets 

Ea = {V 
_1, 

V-2, P_l, H-11 and Eb = {V 
_3, 

V-47 T-11. This partition is identical to 

that in section 4.1.1.1. Since ri, r2 ... , r9 satisfy condition 4.11, then the extended 

waste neutralisation system is a class I system. Reduced specification Sa,, shown in 

figure 3.8, is constructed in a modular and incremental fashion as shown in section 
3.3.1 and relates the behaviour of elementary component items directly associated 

with acid dosing. 

As there is no restriction on the behaviour of elementary components in Eb (i. e. 

those associated with the downstream process) the specification L(Sb) is equivalent 

to L(Gb), where Gb is shown in figure 4.3. The complete specification L(S) is the 

synchronous product of the two modular specifications L(Sa) and L(Sb). 
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4.2 Control of Class Ia Systems 

Class la systems are a subclass of class I systems with the following properties: 
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P 'L(Ga) (1 L(M)> aC L(M) (4.13) 

L(Sb) = L(Gb) (4.14) 

Lm(Gb) = L(Gb) (4.15) 

Equation 4.13 states that reduced model Ga is internally consistent with the 

overall process model M. Equation 4.14 states that the specification Sb is free 
in that any physically possibly trajectory is also an allowable trajectory. Finally, 

equation 4.15 states that all states of Gb are allowable goal states. 
The physical interpretation of class la systems is that they contain a subset Eb 

of elementary components which are not specifically employed by the process (e. g. 
sensors and actuators not in direct contact with the process fluid). The specification 
Sa constrains only those elementary components in direct contact with the process 
fluid. 

If reduced process model GQ and specification SQ, are sufficiently small, then 
the synthesis of a reduced controller Ca for this subsystem is tractable using the 
techniques of section 3.6. Ca is proposed as a controller for the whole process 
M. In this role, Ca is called the reduced domain controller because it has only a 

partial or filtered view of the whole process domain. The following section tests 
the proposition that reduced domain controller Ca solves synthesis problem 3.1 for 

class Ia DESs. It is noted that in synthesising Ca, the enumeration of M is avoided. 

4.2.1 Properties of Reduced Domain Control 

Theorem 4.2 For class Ia systems, the closed loop behaviour generated by Ca on 
M conforms to specification S if the closed loop response of Ca on Ga conforms to 

specification Sa. 

Proof L(Ca/M) = L(Sw Ca) (1 L(M) 

= L(Sw Ca) (1 Pa-'L (Ga) n Pb 'L(Gb) 

C Pa'L(SwaCa) (1 Pa-'L(Ga) (l Pb'L(Sb) 

C Pa 1{L(SaCa) (1 L(Ga)} nP 'L(Sb) 

CP 'L(Ca/Ga) n Pb 'L(Sb) 

CP 'L(Sa) n P6 'L(Sb) 

from equation 3.34 
from equation 4.3 
from equation 4.14 
from equation 3.17 
from equation 3.34 

since Ca conforms 
to specification Sa 



Chapter 4. Modular Procedural Control Theory 74 

C L(S) from equation 4.10, Q 

Theorem 4.3 For class la systems, the closed loop behaviour generated by Ca on 
M is nonblocking if the closed loop behaviour generated by Ca on Ga is nonblocking. 

Proof Let s be a common prefix of Lm(S Ca, ) and Lm(M). Therefore sE L(M) 

and from equation 4.3, sE Pc 'L(G,, ). Let t= Pa, s so that tE L(S QCa) and 
tE L(Ga). By theorem 3.3, Lm(S äC) and Lm(Ga) are nonconflicting. Therefore t 

can be completed by a string uE E* such that tu E L,,, (s 
äCa) and tu E Lm(Ga)- 

Therefore su E Lm(S Ca), su E Pa-'Lm(Ga) and su E Pa-'L(Ga). By internal 

consistency su E L(M). Therefore su E Pb 1 L(Gb) = Pb 1Lm(Gb) and su E Lm(M) 

from which it is concluded that Lm(Su Ca) and Lm(M) are nonconflicting. Therefore 

by theorem 3.3, Ca generates nonblocking behaviour on M. O 

In summary, theorems 4.2 and 4.3 show that the reduced domain controller 
Ca generates a closed loop behaviour on process M which conforms to specification 
S and is nonblocking. These two theorems prove that Ca is a valid solution of 
synthesis problem 3.1 for class Ia systems. Importantly, a controller satisfying 
these closed loop properties can be synthesised without enumerating process model 
M. 

4.2.1.1 Example - Waste Neutralisation 

Consider again the waste neutralisation system shown in figure 4.1. As demon- 

strated in section 4.1.1.1, the process model M for this system comprises two re- 
duced process models Ga and Gb shown in figures 3.4 and 4.3. As this system is 

void of physical interaction, internal consistency of Ga with M holds trivially. 
Section 4.1.3.1 showed that the specification S for this process comprises two 

reduced specifications Sa and Sb where Sb is free (i. e. L(Sb) = L(Gb) and Lm(Gb) _ 
L (Gb)) 

. 
Therefore the waste neutralisation system is a class Ia system. 

Controller Ca, synthesised from specification Sa, and reduced model Ga, is pro- 

posed for process M. Controller CQ was shown in figure 3.11. Theorems 4.2 and 
4.3 show that controller Ca generates a closed loop behaviour on M which conforms 
to specification S and is nonblocking. For this simple example, the complete pro- 

cess model comprising 192 states was enumerated in order to verify numerically the 

results of theorems 4.2 and 4.3. 

4.3 Control of Class Ib Systems 

Class Ib systems are a subclass of class I systems with the following specific property: 
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>a(1FbCEu (4.16) 

In other words, for this class of DES, the common elements of Ea and Eb gener- 

ate only uncontrollable transitions. In chemical systems such components include 

proximity, level and temperature switches. Elementary components generating con- 
trollable events (e. g. valves and pumps) must not be shared. 

As for class la systems, tractable calculations are identified as the synthesis of 

controller Ca from reduced specification So, on reduced process GQ and controller Cb 

from Sb on Gb. It is proposed that the two controllers Ca and Cb are applied to the 

process in parallel as described in section 4.3.1. Section 4.3.2 then verifies that the 

closed loop behaviour generated by Ca and Cb on M according to this mechanism 

conforms to specification and is nonblocking. Thus a solution to synthesis problem 
3.1 for class Ib systems is proposed without enumerating the whole process model 
M or specification S. 

4.3.1 The Parallel Control Mechanism 

Consider a DES M under control from not one but two controllers as shown in 

figure 4.7. A higher level of control starts both controllers simultaneously. Each 

controller operates in complete ignorance of the other according to the feedback 

control mechanism described in section 3.4.1. Uncontrollable transitions, generated 

spontaneously and asynchronously by the process, are communicated simultane- 

ously to both controllers. Similarly, controllable transitions generated by both 

controllers are communicated to the process. 
In the parallel control mechanism, it is assumed that two controllable transitions 

cannot be generated by both controllers at the same instant. This assumption is 

necessary since the DES model is purely sequential and cannot handle concurrency. 
This is a valid model for queued or multiplexed control commands from PLCs and 
DCSs. Distributed controllable events are modelled by the interleaved product. 
Control action can only terminate when both controllers are in a marked state. 

The closed loop language generated by M under parallel control by Ca and Cb, 

consistent with the mechanism described above, is adapted from equation 3.34 for 

the case of a single controller. The difference is that controller Co, must not only 

permit uncontrollable transitions from any wait state, but also not restrain events 
in Cb. Similarly, Cb must not restrain events in Ca,. The closed loop language 

L(Ca T Cb/M) generated by M under parallel control by Ca and Cb is given by: 

L(Ca, T Cb/M) 
= P,, - 1 L(S Ca, ) n Pl 1L(S, 

ýbCb) n L(M) (4.17) 



Chapter 4. Modular Procedural Control Theory 

lca 

Controllable I 
Transitions cb 

Uncontrollable l 
ua 

Transitions 

Iub 

Closed Loop 
Behaviour 

Figure 4.7: The Parallel Control Mechanism 

where IQ n rib C Eu. 
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The first term in equation 4.17 is the language generated by controller Ca with 
allowance for uncontrollable transitions in E. at its wait states and for any un- 
shared event from Cb. Similarly, the second term is the language generated by Cb, 

with allowance for transitions in Eub at wait states and any unshared event in Ca. 

The closed loop language is the intersection of these terms with the set of physically 
possible trajectories (i. e. L(M)). Equivalently, the marked closed loop language is 

given by: 

Lm(Ca1Cb/M) = Pa'Lm(S Ca) f1 Pb 1 Lm(S 
bCb) n Lm(M) ý4.1ö) 

4.3.2 Properties of Parallel Control 

This section tests the proposition that parallel control via Ca and Cb satisfies syn- 
thesis problem 3.1 for class Ib DESs where Ca and Cb are model based controllers 

synthesised from reduced process models Ga and Gb and specifications So, and Sb 

respectively. 

Lemma 4.1 L(CatCb/M) =P 'L(Ca/Ga) flP 1L(Cb/Gb) and Lm(Cat Cb/M) _ 
P 'Lm(Ca/Ga) (1 PI 'Lm(Cb/Gb). 

Proof 

L(CaT Cb/M) P 'L(S äCa) (l Pb 1L(S 6Cb) n L(M) from equation 4.17 

= Pa-'L (S QCa) (l Pb 1L(S 6Cb) (1 P¢-'L(Ga) (1 P 'L(Gb) 

from equation 4.3 
= Pa-'f L(S , Ca) n L(Ga)} n Tb'{L(s 6Cb) n L(Gb)} 

from equation 3.17 

= Pa-1L(Ca/Ga) (l P 'L(Cb/Gb) from equation 3.34 
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Similarly L.. (Cal Cb/M) =P 'Lm (Cd/Ga) (1 Tb 'Lm (Cb/Gb), Q 

Theorem 4.4 For class Ib systems, the closed loop behaviour generated by M under 

parallel control by Ca and Cb conforms to specification S if Ca generates a closed 
loop behaviour on Ga which conforms to specification Sa and similarly Cb on Gb and 
8b. 

Proof 
L(CatCb/M) = Pa'L(Ca/Ga) n Pb 'L(Cb/Gb) from lemma 

.. 1 
C Pa'L(Sa) (1 P 1L(Sb) by conformance to specification 
C L(S) from equation 4.10, Q 

Theorem 4.5 For class Ib systems, the closed loop behaviour generated by M under 

parallel control by Ca and Cb is nonblocking if Ca, generates nonblocking behaviour 

on Ga and similarly Cb on Gb and if Pa-'Lm(Ca/Ga) and Pb'Lm(Cb/Gb) are non- 

conflicting. 

Proof 
Lm (Cat CbIM) 

_ 
Pa 1 Ln,, (Ca/Ga) n Pb ' L, 

n 
(Cb/Gb) from lemma 4.1 

= Pa'Lm(Ca/Ga) n'b 1Lm(Cb/Gb) by nonconflicting 
_'a'L(Ca/Ga) n Pb 'L(Cb/Gb) by nonblocking 

= L(Ca T Cb/M) from lemma 4.1, Q 

The nonconflicting property between the two languages P 'L72(C,, /Ga) and 
P' L�i (Cb/Gb) holds trivially when E,, and Eb are disjoint. If not, nonconflicting 

must be verified numerically. The physical interpretation of nonconflicting is that 

the goal states of shared items are equivalent. 
In summary, theorems 4.4 and 4.5 show that the closed loop behaviour gener- 

ated by M under parallel control by Ca and Cb conforms to specification and is 

nonblocking. These properties justify parallel control for class Ib systems. Impor- 

tantly, a solution to synthesis problem 3.1 for class Ib systems is available without 

enumerating the whole process model. 

4.3.2.1 Example - Electrical Heating 

In this example, parallel controls are designed for the modified electric water heater 

of figure 4.4. The user requirements for the controlled system are as follows. From 

the initial state of empty, valve V_10 is opened until L_10 is covered. Only when 
L_10 is covered can contact S_10 close. S_10 remains on until T_10 indicates 70C, 

but must open before T_11 indicates 80C. 
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As demonstrated in section 4.1.2.1, the process model M for this system is 

comprised of two reduced models Go, (figure 3.7) and Gb (figure 4.5(b)). Simi- 

larly, the specification S may be decomposed into two reduced specifications Sa 

and Sb (not shown). SQ relates the behaviour of elementary components directly 

associated with temperature control, while Sb relates those associated with level 

control. As this partition also satisfies constraints 4.11 and 4.12, the modified 
electric water heater constitutes a class I system. Furthermore, the alphabets 
Ea = {528,530,520,522,524,526,25,27} and >6 = {528,530,21,23} satisfy the 

condition Ea n >6 C Ems, and the modified electric water heater is also a class Ib 

system. 
Controller Ca, is synthesised from specification Sa, and process model Ga, using 

the techniques of section 3.6. Similarly, Cb is synthesised from specification Sb and 

process model Gb. Ca, and Cb are shown in figure 4.8. 
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Figure 4.8: Modular Controllers for the Electric Water Heater 

A control mechanism comprised of Ca and Cb in parallel is proposed for the 

complete process M. By theorem 4.4, the resultant closed loop language L(Ca t 

Cb/M) is within the specification language L(S). By calculation, Pa 'L 
m 

(C, 
, 
/Ga) 

and P6 1 Lm (Cb/Gb) are nonconflicting and it follows from theorem 4.5 that the 
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closed loop behaviour of the whole system is also nonblocking. For this example, the 

whole process model M was enumerated (figure 4.6) and the assertions of theorems 

4.4 and 4.5 verified numerically. 

4.4 Series Decomposition of Class II Systems 

4.4.1 Series Decomposition of the Process Model 

The concept of subgoals in operating procedures for chemical processes was ex- 

ploited in valve sequencing methods (Rivas and Rudd, 1974), artificial intelligence 

planning techniques (Fusillo and Powers, 1987; Lakshmanan and Stephanopoulos, 

1988a) and supervisory control of batch processes (Crooks, 1992) (see chapter 2). 

Subgoals are defined as safe, stable, steady state break points in operating proce- 
dures for continuous or batch chemical operations. The purpose of defining subgoals 
is to split the operating procedure into distinct phases of operation, thereby sim- 

plifying the tasks of specification and synthesis. 
Formally, a subgoal ql (qi qo, ql ý Qm) is defined as a process state through 

which a controlled process must pass as it evolves from initial state qo to a goal 

state qE Q�z. Subgoal ql partitions process model M into two process models Hl 

and H2 such that: 

H1 = {Q, V', E' 6, Y7 qojqli} (4.19) 

H2 = {Q, Vn", :% 6, 'y, q1, Qm} (4.20) 

That is, Hl is equivalent to M with the exception that the marked state set 

comprises only the subgoal. Hl models the behaviour of the DES M up to and 

including the subgoal. H2 is realised by the FSM with the same markings as M but 

with the subgoal ql as the initial state. H2 models the behaviour of M between the 

subgoal and the goal of the process. 

Lemma 4.2 Hl is nonblocking if ql is reachable from all qEQ. 

Lemma 4.3 H2 is nonblocking if M is trim. 

Series decomposition is easily generalised for ri subgoals q1, q2 ... , qnz by parti- 

tioning the process model M into n, z +1 processes Hl, H2 
... , 

Hnz+l. 
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Consider the jacketed batch reactor shown in figure 4.9. The reactor is equipped 
with a feed valve V_20, drain valve V_21, load cell W_20 and a continuous tem- 

perature controller C_20. A batch is produced by charging the empty reactor with 
100kg (as measured by W_20) of reactant material from valve V_20. Temperature 

controller C_20 is then enabled for a period of 30 minutes in which reaction takes 
place. Finally, the controller is disabled and the reactor contents a-c drained via 
V21. 

20 

Figure 4.9: The Batch Reactor 

Elementary components identified from the P&ID include V_20, V_21, W_20 

and C_20, for which FSM models are shown in figure 4.10. In order to implement 

the timing requirements for this system, an additional elementary component T_20 

is introduced. T_20 is a 30 minute timer with 4 states including idle, released, held 

and expired. Countdown from 30 minutes begins when T_20 is switched from idle 

to released (transition 43). From there the timer can either expire after 30 min- 

utes (uncontrollable transition 532), or be frozen at its current value (controllable 

transition 45). From the held state, the timer can either be reset (transition 49), or 

rereleased (transition 47) from the value it left off. T_20 can also be reset from the 

expired state. 
The complete process model M (not pictured) comprises 96 states. The initial 

state is qo = (0,0,0,0,0) and the goal state is q,. t = (0,0,0,0,3), where the order of 
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state variables is shown in figure 4.10. Two subgoals are identified for this process 
as described in table 4.1. 

Label I Variables I Description 
ql (0,0,2,0,0) End of filling phase, start of reaction phase 
q2 (0,0,2,0,3) End of reaction phase, start of draining phase 

Table 4.1: Subgoals in the Batch Reactor Model 

The complete process model M is partitioned by subgoals ql and q2 into three 

series models H1, H2 and H3. Hl is equivalent to M with the exception that ql is 

marked and qn is not. Similarly, H2 has initial state ql and marked state q2 and 
H3 has initial state q2 and marked state qm. Since ql and q2 are reachable from all 
states qEQ then H1, H2 and H3 are nonblocking. 

4.4.2 Series Decomposition of the Specification 

The purpose of defining subgoals is to modularise and simplify the task of generating 
formal specifications from the user requirements. For example, by defining one 

subgoal, the specification S may be constructed as two independent specifications 
Sl and S2. Si formalises the user requirements that apply before the subgoal 

and need not consider user requirements applying after the subgoal. Similarly, S2 

specifies the user requirements that apply after the subgoal, and need not consider 
those applying before the subgoal. A system which can by specified in this way is 

called a class II system. 
For the case of one subgoal, the complete specification language L(S) is given 

by: 

L(S) = L(S1) U L(Sl). a,. L(S2) (4.21) 

where a1 ¢E is an event which flags the achievement of the subgoal. 
Series decomposition of the specification is extended in the obvious fashion for 

the case of n, z subgoals q1, q2 .... qnx by constructing n, z +1 modular specifications 
S1, s2 

... 7 
Snz+1. 

4.4.2.1 Example - Batch Reaction 

In section 4.4.1.1, two subgoals ql and q2 were identified in the batch reactor model. 
The user requirements applicable between each subgoal (i. e. for each phase of the 

operation) are described in table 4.2. These are formalised into three modular 
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specifications SI, S2 and S3 as shown in figure 4.11. The complete specification is 

given by L(S) = L(S1) U L(Sl). ai. L(S2) U L(Sl). ai. L(S2). a2. L(S3) where (71 flags 

the achievement of ql and 92 flags q2. 

Initial Marked User Requirements Spec. 

q0 ql Open V_20 until W_20 indicates 100kg Sl 

ql q2 Enable C_20 and set T_20 to 30 minute countdown S2 

q2 qm Open valve V_21 until W_20 indicates empty S3 

Table 4.2: User Requirements for Batch Reactor Phases 

4.5 Control of Class II Systems 

As for parallel decomposition, series decomposition of the process model and spec- 
incation yields a set of subsystems each defined by a modular process model and 

specification. For each subsystem a controller is synthesised using the techniques 

of section 3.6. For example, series decomposition by a single subgoal yields two 

subsystems defined by process models Hl, H2 and specifications Sr, S2. Controller 
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Cl is synthesised from process model Hl and specification Sl and C2 is synthesised 
from H2 and S2. 

A control mechanism comprised of Cl and C2 in series is proposed for class II 

systems. In an analogous fashion to section 4.3, this mechanism is first described 

and then formulated. It is then shown that Cl and C2 in series is a valid solution 

of synthesis problem 3.1 for class II systems. 

4.5.1 The Series Control Mechanism 

Figure 4.12 depicts the DES M under series control from Cl and C2. Initially, with 
the switch at position 'T', the process is controlled by Cl in accordance with the 

mechanism described in section 3.4.1. A higher level of control switches between Cl 

to C2 when the process achieves the subgoal ql and when Cl is in a marked state. 
The process is thereafter controlled by C2 in the manner described in section 3.4.1. 

Closed Loop 
Behaviour 

Controllable 
Transitions 

IC 

1 
Uncontrollable 
Transitions 

Figure 4.12: The Series Control Mechanism 

The closed loop language L(C1-* C2/M) generated by controllers Cl and C2 in 

series is formulated as: 

L(C1-ýC2/M) = {L(S8 Cl) U Lm(Sü Cl). Q1. L(Sü C2)} n L(sg1M) (4.22) 

The first term models the control action imposed by the first controller as in 

equation 3.34. The second term models control action from the second controller 

after the termination of the first at a subgoal. The closed loop language is the 

intersection of this union with the set of physically possible trajectories (i. e. L(M)). 

The changeover from Cl to C2 synchronises at the subgoal by selflooping M with 

event a1 at state Q1. The marked closed loop language is given by: 
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Lm(Cl 4C2/M) = L,,, (S,, Ci). Q1. Lm(Sw C2) (1 Lm(SqiM) (4.23) 

4.5.2 Properties of Series Control 

This section tests the proposition that series control via Cl and C2 satisfies syn- 
thesis problem 3.1 for class II DESs where Cl and C2 are model based controllers 

synthesised from process models Hl and H2 and specifications Sl and S2 respec- 
tively. 

Lemma 4.4 Lm(SS Ci). or1. L, », 
(S,, C2) f1 L, n(SQiM) = Lm(Ci/Hl). a1. Lm(C2/H2) 

and Lm(S, ', Cl). al. L(S,, C2) (1 L(S M) = Lm(Ci/Hi). u1. L(C2/H2). 

Proof Let sE Lm (S,, Cl) 
. u1. Lm (S. C2) and sE Lm,,, (8t M) 

. 
Partition s into 

t1. a1. t2 so that tl E Lm(S Cl) and t2 E Lm(S,, C2). By construction of Hi and H2, 

tl E Lm(Hi) and t2 E Lm(H2). Therefore ti E Lm,,, (Ci/Hl) and t2 E Lm(C2/H2) 

and s= tl. al. t2 E Lm(Ci/Hi). o-1. Lm(C2/H2) from which: 

Lm(S, Cl). U1. Lm(S, C2) n Lm(Si M) 9 Lm(C1/H1). Q1. Lm(C2/H2) (4.24) 

However, 

L, 
n(C1/H1). Q1. L, 

n(C2/H2) _ {Lm(Su Ci) f1 Lm(Hi)}. a-l. {Lm,,, (Su C2) f1 L,, (H2)1 

from equation 3.35 

C Lm(S, ü C1). Ql. L, 
n(S 

C2) n Lm(Hl). Q1. Lm(H2) 

C Lm(SwCl). Q1. Lm(Su C2) n Lm(SQ'M) 

by construction of Hl and H2 

Therefore, from equation 4.24: 

Lm(S Ci). Q1. Lm, (Sü C2) n Lm(SqiM) = LmýC1ýH1). Q1. LmýC'2ýH2) 

and similarly: 

L.. (S, ü C1). a1. L(S,, C2) n L(S M) = Lm, (C1/H1). u1. L(C2/H2)ß Q 

Lemma 4.5 L(Cl-ýC2/M) = L(Cl/Hl) U Lm, (Ci/Hl). u1. L(Cl/Hl) 

Proof 

L(Cl -ýC2/M) _ {L(S. Cl) U L,,, (S,, Cl). ai. L(S, u C2)} n L(SgiM) 
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from equation 4.22 

_ {L(S,, Ci) n (Sqll M)} U {Lm(S,, Cl). a,. L(S,, C2) n (Sqll M)} 

= L(Cl/Hl) U Lm(Ci/Hl). Q1. L(C2/H2) by lemma 4.4, Q 

Theorem 4.6 For class II systems, the closed loop behaviour generated by M under 

series control from Cl and C2 conforms to specification S if Cl generates a closed 
loop behaviour on Hl which conforms to specification Sl and similarly C2 on H2 

and S2. 

Proof L(C14C2/M) = L(Cl/Hl) U Lm(Ci/Hi). u1. L(C2/H2) by lemma 4.5 

C L(S1) U L(Sl). a,. L(S2) by conformance, Q 

Theorem 4.7 For class II systems, the closed loop behaviour generated by M under 

series control from Cl and C2 is nonblocking if Cl generates nonblocking behaviour 

on Hl and similarly C2 on H2. 

Proof 
Lm(C1 +C2/M) = Lm(S Cl). a1. Lm(S C2) n L,,, (S, ", M) 

= Lm(Ci/Hi). a1. Lm(C2/H2) 

= Lm(Ci/Hl) U Lm, (Ci/Hl). 
Q1. Lm(C2/H2) 

= L(Cl/Hl) U Lm(Ci/Hl). Q1. L(C2/H2) 

= L(C1-* C2/M) 

from equation 4.23 

by lemma 4.4 

from equation 3.13 

by nonblocking of 
CZ on HZ 

by lemma 4.5, Q 

Theorems 4.6 and 4.7 show that controllers Cl and C2 in series solve synthesis 

problem 3.1 for class II systems. Both theorems are easily extended for the case 

of n, +1 series controllers C1, C2 
..., 

C,, 
z+l synthesised from modular specifications 

S1, S2 
... , 

SnZ+l and series models Hl, H2 .... 
H7zz+l respectively. Therefore the 

series control mechanism is guaranteed to bring the process from the initial state 

qo via the subgoals q1, q2 .... qn, to a goal state qE Qm. 

4.5.2.1 Example - Batch Reaction 

The process model for the batch reactor (figure 4.9) is comprised of three series 

process models, H1, H2 and H3 as described in section 4.4.1.1. The specification 
for the reaction operation is in three corresponding parts S1, S2 and S3, shown in 

figure 4.11. Controllers C1, C2 and C3 (shown in figure 4.13) are synthesised from 

process models H1, H2 and H3 and specifications Si, S2 and S3 respectively. The 

resultant control mechanism for process M comprises C1, C2 and C3 in series. 
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Figure 4.13: Modular Controllers for the Batch Reactor 
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By theorems 4.6 and 4.7, C1, C2 and C3 in series yield a closed loop behaviour 

on M which is nonblocking and within the specification language L(S) = L(S1) U 
L(Sl). o .. 

L(S2) U L(S1). QI. L(S2). a2. L(S3). These results were verified numerically. 

4.6 Recursive Decomposition of Complex Systems 

Three special classes of DES have been identified in sections 4.2,4.3 and 4.4. For 

each class, the synthesis problem is modularised by decomposing the process model 

and specification. Modular controllers synthesised from the decomposed processes 

and specifications are recombined into a controller with equivalent properties on 
the whole system. 

The important theorems of this chapter are summarised in table 4.3. For each 

class of system column 2 shows the sufficient conditions for a closed loop behaviour 

which conforms to specification and column 4 shows the sufficient conditions for 

nonblocking. For example, for a class la system, theorem 4.3 proves that a controller 

which generates a nonblocking closed loop behaviour on the reduced process will 

also generate a nonblocking closed loop behaviour on the whole process. 
Table 4.3 shows that if conformance to specification holds for the subsystems 

of either class, then it holds also for the complete system. Conformance to spec- 
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Class Conformance to Specification Nonblocking 
Condition Theorem Condition Theorem 

la L(Ca/Ga) C L(Sa) 4.2 L(Ca/Ga) = L, (Ca/Ga) 4.3 
Ib L(Ca/Ga) C L(Sa) 4.4 L(Ca/Ga) = Lm, (Ca/Ga) 4.5 

L(Cb/Gb) C L(Sb) L(Cb/Gb) = Lm(Cb/Gb) 

Pa-1Lm(Ca/Ga) öL 
'Pb 1Lm(Cb/Gb) 

are nonconflicting 
II L(C1/H1) C L(S1) 4.6 L(CI/Hl) = Lm(C1/H1) 4.7 

L(C2/H2) C L(S2) L(C2/H2) = Lm(C2/H2) 

Table 4.3: Summary of Theorems 

ification is reductive, which means that it is preserved under the inverse image of 
the decomposition operation. Nonblocking is also reductive for classes Ia and II. In 

other words, a nonblocking closed loop behaviour for the modular parts of the sys- 
tem guarantees nonblocking of the complete system. Nonblocking is true for class 
Ib systems given the additional condition that's 1Lm, (CQ/Ga, ) and '6 1Lm(Cb/Gb) 

are nonconflicting. Nonconflicting is assumed in the remainder of this section. 

4.6.1 Properties of Structured Modular Control 

The series and parallel decomposition techniques may be applied recursively to the 

system, thereby decomposing it into many series/parallel modules as illustrated 

in figure 4.14(a). A complete process model M is depicted, decomposed into parallel 

reduced models Ga and Gb. Gb is further partitioned into series models Hbl and Hb2 

at a subgoal ql in Gb. This model decomposition is invisible to a controller which 

views the whole process as an input-output system. 
The complete specification S for process M is also decomposed into parallel re- 

duced specifications Sa and Sb. Sb is further decomposed into Sbl and Sb2. The com- 

plete specification is conceived as three FSMs Sa, Sbl and Sb2 in the series/parallel 

network shown in figure 4.14(b). 

Controllers Ca, C61 and Cb2 are synthesised from models Ga,, Hbl, Hb2 and 

specifications Sa,, Sbl, Sb2 respectively. By theorems 4.6 and 4.7, C61 and Cb2 in 

series generate a closed loop response on Gb which conforms to specification Sb and 
is nonblocking. It follows from theorems 4.4 and 4.5 that Cbl -+ Cb2 and Ca, in 

parallel generate a closed loop response on the whole process M which conforms to 

specification S and is nonblocking. 
The control structure 0 for this process comprises Ca, Cbl and Cb2 in the se- 
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Figure 4.14: Networks of Models 
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ries/parallel network shown in figure 4.14(c). This control structure is guaranteed 
to take the process M from initial state qo to a goal state qE Qm within specifi- 
cation S. Furthermore, 0 has been synthesised without enumerating the complete 
process model M or specification S. 

This example may be generalised to a control structure resulting from any num- 
ber of decompositions into subsystems of class Ia, Ib or II. 

4.7 Summary 

This chapter addresses the problem of modelling, specification, synthesis and anal- 
ysis of controllers for chemical systems of a size and complexity beyond traditional 
PCT techniques. The key to handling size and specification complexity is decom- 

position of the process model and specification into modules of a size amenable to 

traditional techniques. Controllers for the reduced processes are recombined via a 

parallel or series mechanism for application to the whole process. Three special 

classes of systems are identified for which modular control offers a valid solution of 

synthesis problem 3.1. 
The decomposition techniques presented in this chapter may be applied collec- 

tively and recursively, thereby generating a solution to the synthesis problem as a 

series/parallel structure of modular controllers. The advantages of a modular solu- 
tion over the monolithic counterpart are numerous. For example, control modules 

are potentially reusable in other control structures. Modular controllers are also 

more compact and easier to understand, modify, document and code. 



Chapter 5 

Procedural Initiation and 
Inhibition Theory 

Industrial controllers are programmed in a control language organised into sets of 

operations. Each operation is started by the operator or supervisory control sys- 
tem in the process of making a batch according to a recipe. Control architectures 

are multitasking, which means they support concurrent control by multiple opera- 
tions. Chapter 4 considered the synthesis of detailed processing logics for complete 

operations. 
Operations utilise process related hardware resources (e. g. pumps, vessels, pipe 

segments). Without adequate safeguards, an operation may be started at a time 

when its resources are in an inappropriate state or already in use by a second 
operation. In either case a conflict exists and at the very least the proper execution 
of the operation cannot be guaranteed. At worst an unsafe state of the process could 
be achieved. Therefore, in a multitasking control domain, additional initiation and 
inhibit logic is required. 

Two safety mechanisms are utilised to disable controllers from being started at 
inappropriate times. The first mechanism is the pre-check. Pre-checks ensure that 

a process is in an appropriate state before a control activity can begin. Section 

5.1 formalises the concept of controller initiation and incorporates the pre-check 

mechanism into the closed loop control model. 
The second mechanism for disabling controllers is inhibiting. The controller in- 

hibit function prevents nominated controllers from starting while a given controller 
is active. This function safeguards against the concurrent operation of noncoop- 

erative controllers as described in section 5.2. A design criterion for identifying 

controller inhibits is formulated in terms of a general expression for the closed loop 

language generated by two parallel controllers on a process as derived in section 

91 
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5.2.1. The properties of these systems are analysed in section 5.2.2. The inhibit 
design criterion is then given in section 5.2.3 based on the formalised concept of 
noncooperation. Section 5.2.4 then demonstrates the same criterion for systems of 
shared controllable items. 

Finally a summary of the chapter is given in section 5.3. 

5.1 Controller Initiation 

Unlike their machine counterparts, chemical processes modelled as DESs typically 
have no default initial state. For example, level probes may be initially covered 
or uncovered depending on the process history. Controllers are synthesised from a 
process model for which the initial state is nominal. 

For example, consider the open loop process M at time to in initial state qo. At 

time to + At, M has evolved to a state q' at which time the DES is modelled by 
M'. M' is equivalent to M with the exception of the initial state qo 0 qo. 

If C' is a model based controller which satisfies synthesis problem 3.1 for speci- 
fication S' and process model M', then it does not follow that C' satisfies the same 

problem for process M. Depending on q', the closed loop response of C' on M could 

violate S' or block. Thus C' may be started at time to + At but not at time to. In 

general, controller performance is sensitive to any departure in the initial state of 
the process from the nominal initial state. 

Clearly, additional functionality is required to handle variability in the initial 

state of the process. The simplest mechanism is a pre-check which ensures that 

an operator request for starting C' from process state q is granted only if q is the 

nominal initial state qö of the process. A sufficient condition for q= qö is that every 

elementary component is in its initial state (i. e. (vj)q = (vj)qö). 

5.1.1 The Closed Loop Language with Pre-Checks 

This section formulates the closed loop language generated by a controller with a 

pre-check mechanism on a process. For generality, the controller C_' is assumed 
to be a reduced domain controller, synthesised from reduced model G., of process 

model M. 

The set Q1 EQ is defined as the set of potential starting states in M of controller 
C. Qx is the set of process states for which elementary components in E1 are in a 

state consistent with the initial state qox of Gx: 

Qx={qEQ/(vj)gox=(vj)q, j =1,2.... 1v... 
Imv} 

(5.1) 
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The command which starts controller C,, is modelled by the event a. Strictly, 

a is not an elementary process event (i. e. aV E) and therefore does not alter 
the process state. For event o to occur (i. e for the controller CC to start) it is 

necessary that the process is in state qo and this is the pre-check mechanism. a 
is therefore included in the model of the process as a selflooped transition at each 
potential starting state qE Qx. The closed loop language generated by CC on M 

with pre-checks is formulated as: 

L(Cx/M) = *. ax. L(sü c,, ) n L(S xM) (5.2) 

The interpretation of equation 5.2 is that the closed loop language generated by 
Cx on M with pre-checks is the set of physically possible strings made up from the 

concatenation of an open loop trajectory, the starting event a1 plus the closed loop 
behaviour as defined previously. M is not under control from Cx until the event a1 
at a potential starting state qE Q1. Similarly, the marked closed loop response is 

given by: 

Lm(Cx/M) 
- 

E*. a, Lm(Sü Cx) n L,,, (S,; M) (5.3) 

where S is an abbreviated notation for SQx. 

Using this formulation of the closed loop language with pre-checks, it is nec- 

essary to modify the equations for conformance to specification (equation 3.37) 

and nonblocking (equation 3.38). A closed loop behaviour generated by a reduced 
domain controller Cx with pre-checks conforms to specification Sx if: 

L(Cx/M) C E*. a P 1L(Sx) (5.4) 

This modification is necessary so that the open loop behaviour in L(CC/M) 

is excluded from the specification. A closed loop behaviour with pre-checks is 

nonblocking if: 

L(C/M) C Lm(Cx/M) (5.5) 

This modification is necessary because the prefix closure of Lm(Cx/M) includes 

strings void of a which by definition cannot exist in L (CX /M) 
. 

Theorem 5.1 The closed loop behaviour generated by C1 on M is nonblocking if 

>*. c x. Lm(Su Cx) and L,,, (81 M) are nonconflicting and C-, and M are trim. 

Proof L(C,; /M) = >* . a.. L(Su Cam) n L(SSM) from equation 5.2 
C E* . ux. Lm(Su Cx) n L,,,, (SxxM) Cx and M are trim 
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C >*. ax. L,,,, (S Cn Lm(SxM) by nonconflicting 
C Lm (Cx/M) from equation 5.3,11 

5.1.1.1 Example - Waste Neutralisation 

Consider again the waste neutralisation system described in section 3.2.1.1. The 

controller Cx (figure 3.11) for this process was synthesised from process model 
G-, (figure 3.4) and specification S,; (figure 3.8). The initial state of G', is qox = 
(0,0,0,2), corresponding to valves V_1 and V_2 closed, pump P_1 deenergised and 
the pH above 8. 

Assume that a disturbance in the upstream process neutralises the normally 
alkaline waste stream at time t. If controller CC is started at time t, then the model 
of the process M is equivalent to Gx with the exception that the initial state is now 
qo = (0,0,0,0) (i. e state 16 in figure 3.4). 

Consider now the closed loop behaviour generated by C., on M starting at time 
t. As seen from figures 3.11 and 3.4, the closed loop behaviour (L(S. wCx) n L(M)) 

includes the string 1,17,502... (i. e. valve V_1 opening, pump P_1 energising, pH 
decreasing below 6). By tracing this string from state 16 of M state 23 is achieved 

corresponding to (1,0,1,1) (i. e. V_1 open, P_1 energised, pH < 6). This is a 
forbidden state as defined by predicate logic formula 3.27. Therefore C, does not 

generate a closed loop behaviour on M which conforms to Sx when started from 

qo = (0,0,0,0) 
. The source of the problem is that the controller has been started 

from a pH that is too low. 

This problem is solved using a pre-check mechanism which disables C, from 

starting unless the current state of the process is consistent with the nominal initial 

state q0 = (0,0,0,2). The closed loop language L(C,; /M) with pre-check mecha- 
nism is calculated from equation 5.2, in which ax = 101 is defined as the starting 

event of controller C. The FSM generating the first term of equation 5.2 is shown 
in figure 5.1. The second term is constructed by selflooping transition 101 at state 
(0,0,0,2) of the process model M. 

It is easily shown that *. ýý . Lm (Su Cam) and Lm(SM) are nonconflicting and 
that L(Cx/M) is a subset of the language >*. ax. L(Sx). Thus the closed loop be- 

haviour generated by Cx on the process is nonblocking and conforms to specification 

when a pre-check mechanism is active. The same result is obtained using the model 
for the whole waste treatment process as described in section 4.1.1.1. In this case, 
the controller has 8 potential starting states Q, ý = (0,0,0,2, oo, oo, oo). 
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Figure 5.1: FSM Generating the First Term of Equation 5.2 

5.2 Controller Inhibiting 

The controller inhibit mechanism is similar to the pre-check mechanism in that it 

disables a controller from starting if the system does not satisfy a set of conditions. 
In particular, this mechanism checks the status of nominated controllers in a multi- 
tasking control system. Checks are performed before a controller is started so that 

abortive action can be taken to avoid the concurrent operation of controllers which 

compete for the same resource. Such controllers are said to be noncooperative. C. 

is said to inhibit Cy if Cy is disabled from starting when C, is active. 
The design of a controller inhibit policy is a complex, manually intensive and 

error prone task especially for multiproduct, multipurpose batch plants in which 

controller interaction is highly complex and subtle. However, the inhibit policy is 

critical to the safety and operability of such processes. An overly conservative policy 

may reduce the flexibility of operation afforded by running particular controllers in 

parallel. The design of the policy is thus a difficult problem in which flexibility is 

balanced against operability and safety issues. 

In this section, a control theoretic design criterion is proposed for controller 
inhibit policies. The approach is based on the concept of noncooperation, which is 

derived from the closed loop concepts introduced so far. If it can be shown that Cy 

1,3 

5,7 

17,19 

5(X), 502 
lu 504,506 
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is noncooperative with Cx then CC must inhibit Cy. If Cy cooperates with CC then 

no inhibit is necessary. This analysis requires the closed loop language generated by 

the process under parallel control by C., and Cy each with pre-checks, as formulated 

in the next section. 

5.2.1 The Closed Loop Language with Pre-Checks for Two 

Controllers in Parallel 

As described in section 4.3.1, the closed loop language L(CC T Cy/M) is the set of 

physically possible strings of events generated by process M under parallel control 
from C, and Cy. There it was assumed that both controllers start simultaneously 
from the nominal initial state qo of the process. Here this assumption is removed 

and the closed loop language is formulated with a pre-check mechanism for both 

controllers. This guarantees that the process is appropriately initialised when Cx 

and Cy start. No assumption is made as to the order in which the controllers are 

started. 
The formulation is generalised from equations 5.2 (the closed loop language 

generated by a single controller with a pre-check mechanism) and 4.17 (the closed 
loop language generated by Cx and Cy on M, where Cr and Cy start at qo). As 

in section 5.1.1, event a¢E models the start of controller Cx and event oy VE 

models the start of controller Cy. The set of potential initial states for controller 
C, is Qx and for controller Cy is Q,. The model of the process M is therefore 

augmented with the selfloop a at each state qE Qx and cy at each state qE Qy. 

The closed loop language generated by two controllers C., and Cy on process M 

with a pre-check mechanism is given by: 

L(CX fiCy/M) = Px 1{Ex. orx. L(S xCx)}n-Py 1{ýy. ory. L(S 
yCy)}nL(sxSyM) 

(5.6) 

where E_ Ex U E, and Ex f Ey c üu. 

The first term of equation 5.6 is equivalent to the first term of equation 5.2 with 

the addition of the 'Px-1 operation, as employed in equation 4.17. This operation 

permits any event from (E - Ems) U ay, and thereby restricts no events generated by 

Cy. Similarly, the second term represents the set of strings generated by controller 

Cy which permit any event generated by C. The third term of equation 5.6 is 

the set of physically possible strings (i. e. the process model), augmented with self 

loops ax at each state qE Qx and ay at each state qc Qy. The augmented self- 

looped transitions allow both controllers to start when the process is appropriately 
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initialised. 

The marked closed loop behaviour generated by process M under control from 

two controllers CC and Cy with pre-checks is defined equivalently by: 

1{S'x. Qx. Lm(cSýxCx)} n -Py 1{E y. Qy. L(s yCy)} n Lm(sxsyM) Lm(CxT Cy/M) = 

(5.7) 

In equation 5.7, L(S 
yCy) 

is unmarked and the markings of M refer to the goal 
states of Cx only. 

5.2.2 Properties of Parallel Control with Pre-Checks 

This section analyses the general properties of the closed loop behaviour as formu- 
lated above. 

Lemma 5.1 1{ýx. ýx. Lm(S xCx)} and P-1{E*. L(S. ' C )} are nonconflict- y y'y yy 

ing. 

Theorem 5.2 The closed loop behaviour generated by M under parallel control by 
Cx and Cy is nonblocking if 1{ýý. ýý. Lm(ýS xCx)} f1 Py 1{Ey. uy. L(S 

yCy)}] and 
Lam-,, (Sx Sy M) are nonconflicting, and Cx and M are trim. 

Proof 
L(Cxt Cy/ M) = 'Px'{F x. Ux. L(SýxCC)I n -Py 1{Ey. ay. L(S 

yCy)I n L(SxsyM) 
from equation 5.6 

C Px 1{-x. ax. Lm(S Cx y )} n P-1{E* . L(Sfuy Cy)} n Lm (SxxSyyM) y'y 

Cx and M are trim 
CP 1{Ex. ox. Lm(Suxcx)I n -ilý'* Q. L(SuwC )} n Lm(Sx8yM) 

y y' yyy 

from lemma 5.1 
C PX 1{FIý. Qý. L, 

n('8 
° Cam)} n Py 1{ý. y. Qy. L(s 

yCy)} 
n Lr,, (8 S M) 

xyy 

by nonconflicting 

C Lm(CxfiCy/M) from equation 5.7, Q 

Theorem 5.2 is important for the design of controller inhibits as described in 

the next section. 

5.2.3 Formal Design of Controller Inhibits 

A design criterion for controller inhibits is now proposed in terms of the concept 

of noncooperation, itself defined in terms of previous PCT concepts. This criterion 
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yields a numerical calculation, the logical result of which is the requirement or 
otherwise of an inhibit of controller Cy by controller C. 

By definition, C. cooperates with CC if the closed loop behaviour generated by 

the process under parallel control from Cx and Cy with pre-checks is nonblocking 
and conforms to specification S. Using the results from equations 5.4 and 5.5, Cy 

cooperates with Cx if the following hold: 

1. L(CtCy/M) C E*. a Px 1L(Sx) 

2. L(CCT Cy IM) C Lm(Cxt Cy IM) 

The physical interpretation of this definition is that Cy cooperates with C,, if the 

operation of the two is sufficiently decoupled so as to uphold the desirable closed 
loop behaviour generated by C,; alone. The second condition is calculated using the 

nonconflicting calculation as proposed in theorem 5.2. 

C. is noncooperative with Cx if one of the above conditions does not hold. 

It follows that C., should inhibit controller Cy if Cy is noncooperative with C. 

Conversely, Cy should inhibit Cx if C,, is noncooperative with Cy. 

5.2.3.1 Example - Electrical Heating 

For the electric water heater described in section 4.1.2.1, modular controllers C., = 
Ca and Cy = Cb have been proposed (figure 4.8). Controller Cy maintains the water 
level in the vessel while controller Cx carries out the heating phase. The controllers 

share the signal from switch L_10. 

The model for this process is shown in figure 4.6. The nominal initial state is 

(0,0,0,0,0) (i. e. V_10 closed, S_10 off, L_10 uncovered, T_10 < 70C and T_11 < 

80C). Transitions a= 105 and ay = 107 model the start of controllers C_, and Cy 

respectively. Since Cx was synthesised from model G,; (figure 3.7) with nominal 

initial state (0,0,0,0), transition 105 is selflooped at every state (0,0,0,0, oo) in 

M. Similarly, since Cy was synthesised from model Gy (figure 4.5) with initial state 
(0,0), transition 107 is selflooped at every state (0, oo, oo, oo, 0) of M. 

The closed loop language (not shown) is calculated from the intersection of the 

synchronous product of x. Qý. L(Su Cam) and E*. ay. L(S 
yCy) with the selflooped 

process model. FSMs generating the first two terms are shown in figure 5.2. 

It can be shown that [P; '{Ex. ax. Lm(S xCx)} fl Py'{>y. uy. L(S 
yCy)}] and 

Lam,, (Sx sy M) are nonconflicting. This proves that controller CC will always satis- 

factorily terminate even in the presence of Cy. This result makes sense since C1 

and Cy share only L_10 and thus Cy is unable to block C1 from reaching its marked 

state. 
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Figure 5.2: FSMs Generating the Terms of Equation 5.6 
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It is also shown that L(CC t Cy /M) C E*. a Px'L(Sx) (where S,, = Sa, as derived 

in section 4.3.2.1). Therefore, specification Sx is not violated when controllers C., 

and Cy are operated in parallel. From this result, and the nonconflicting property 
it is concluded that no inhibit of Cy by C., is necessary. 

Similarly it can be shown that [Py1{]y. ýy. Lm(S, "yCy)}nPx , xax. L(S xCx)}] 

and Lm, (Sy SS M) are nonconflicting. Thus controller Cx will not block Cy from 

reaching its marked state. Also L (Cx T Cy /M) C >* 
. uv . 

py 'L(Sy) and Cy need not 
inhibit C. Therefore both controllers can reach their goal states simultaneously 

without violating either specification. This result is expected since the two con- 
trollers were originally proposed as a parallel solution for the control of the electric 

water heater. 
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5.2.4 Inhibit Design for Controllers with Shared Control- 

lable Items 

In the formulation of the combined closed loop language (equation 5.6) it was nec- 
essary for the two controller languages to not share controllable transitions (i. e. 
E__ n Ey C E, u). 

At first this may appear to reject from the inhibit analysis the 
interesting case in which Cx and Cy share elementary components generating con- 
trollable events (e. g. driving the same valve or pump). Typically inhibits are 

necessary between pairs of controllers which drive the same equipment item. How- 

ever some interesting situations may arise in which two controllers cooperatively 

employ the same equipment item. 

A special modelling technique is employed to handle this case. This technique 

respects the assumption of sequentiality in the control mechanism, by which it is 

assumed that controllable transitions cannot be generated concurrently by both 

controllers. In other words, it is not possible for the controllers to synchronise 

on a common controllable event, such as opening a valve. Therefore two common 

controllable transitions generated by the two controllers are unique, and must be 

labelled accordingly. The labels identify an event with the controller from which it 

is generated. In the process model M, both events cause the same change in state. 
For example, consider two controllers C,, and Cy sharing a valve V_l. The event 

open valve is labelled 1 if generated by controller C, and 301 if generated by Cy. 

Transitions 1 and 301 are equivalent since they cause identical changes in state 
in the process model. Similarly, close valve is modelled by transitions 3 and 303 

respectively. The FSM model of V_l is then modified from that shown in figure 

3.3(a) to figure 5.4(a). FSM models with duplicate transitions are constructed for 

all shared elementary components which generate controllable transitions. 

Transitions in C,; and Cy can now be relabelled to respect the condition that E., 

(i. e. the set of events generated by Cam) and Iy share only uncontrollable events. 
Wonham (1996) provides a simple mapping procedure called "convert" for rela- 
belling transitions. For convenience, the set 1_, y is defined as all those controllable 

events in Ey which have an equivalent in E,,: 

Exy = {a E E, y 
/ Vq E Q, 6(a, q)!, 39' E E, x s. t. 6(a', q)! A 6(a', q) = 6(a, q)} (5.8) 

Events in >xy can occur in the open loop process or when generated by Cy, but 

not when controller CC is the only active controller. Similarly, events in Eyx are 

disallowed when only Cy is active. The regulator is therefore introduced to meet 
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this requirement by interlocking shared controllable items. The regulator language 
is given by: 

L(R) = E*ux. [E 
- 

Exy]*. Uy. E* U E*a[ 
- 

\yXl *. UX. E* (5.9) 

The first term of equation 5.9 prohibits events not in [E - Exy] after starting CC 

and before starting Cy. The second prohibits events not in [E - Eyx] after starting 
Cy and before starting C. 

The closed loop language generated by process M under parallel control from CC 

and Cy with pre-checks, where C., and Cy share elementary components generating 
controllable events is given by: 

L(CxtCy/M) = Px 11ZX 
OrX. L(Su Cx)1n-Py 1{zy. 

Qy. L(s 
yCy)}nL(sxsyM)nL(R) 

(5.10) 

Similarly, the marked closed loop language is given by: 

Lm(c,, Tcy/M) = 
1{ýx. 

Qx. Lm(S 
xC, 

)I n Py 1{ry. 
Qy. L(S 

yCy)I 
n 

L,,, (Sf, syM) n L(R) (5.11) 

The following theorem shows that for the case of shared controllable items, a 

slightly modified nonconflicting calculation is employed to assert nonblocking of the 

combined closed loop behaviour. This theorem is used for evaluating the inhibit 

criterion as proposed in section 5.2.3. 

Lemma 5.2 [P; 1{>x. ax. Lm(S Cx)} n Py 1{Ey. uy. L(s 
yCy)}] and L(R) are non- ,, 

conflicting. 

Theorem 5.3 The closed loop behaviour generated by M under parallel control by 
C,, and Cy is nonblocking if E*. Q,;. Lm(cSuwC, )}npy 1{Ey. Qy. L(S 

yCy)}nL(R)] 

and L7z (SX S M) are nonconflicting, and CC and M are trim. 

Proof This theorem follows immediately from theorem 5.2 and lemma 5.2. 

5.2.4.1 Example - Waste Neutralisation 

Finally, the waste neutralisation system of section 3.2.1.1 is revisited for which 

specification S., was constructed in section 3.3.1. In particular, this specification 
interlocks to closed valve V_2, as expressed by predicate logic formula 3.28. Con- 

troller Cam, shown in figure 3.11, was synthesised from specification S. 
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Additional controls Cy are now required for neutralising acidic wastes from the 
upstream process. The logic of Cy is similar to C,, with the exception that acidic 
wastes are neutralised by an injection of base via pump P_l and on/off valve V_2. 
During this operation, the acid dosing valve V_1 must be interlocked to closed. The 

nominal initial state for Cy is (0,0,0,1). These user requirements are formalised 
into specification Sy used in the synthesis of a second controller Cy (not shown). 
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Figure 5.3: Base Dosing Controller 

In this example, controllers Cx and Cy share all four elementary components 

of which three, V_1, V2 and P_1, generate controllable events. Elementary com- 

ponent models are augmented with duplicate controllable transitions as shown in 

figure 5.4. For example, energising P_1 by controller C. is modelled as controllable 
transition 17, whereas the same event is modelled as transition 317 when gener- 

ated by controller Cy. Elementary component FSMs with duplicated controllable 
transitions are reported in table 5.2.4.1. Marked states are superscripted with a *. 

The process model used for the analysis of the combined closed loop behaviour is 

constructed in a modular and incremental fashion from the elementary component 
FSMs shown in figure 5.4. The result is a FSM similar to that shown in figure 3.4 

with the exception that every controllable event is duplicated and the initial state 
is (0,0,0,0). 

The FSM R generating the regulator language L(R) is shown in figure 5.5, in 

which the starting events a., ay of controllers C. and Cy are labelled 101 and 103 
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Figure 5.4: Elementary Component FSMs with Duplicated Transitions for the 
Waste Neutralisation System 

respectively. The status of each controller at each regulator state is indicated in 

figure 5.5. For example, since state 2 is reached following event 101 and before 

event 103, then C is "ON" while Cy is "OFF". Shared controllable events in Cy 

are relabelled accordingly so that E, n >y C Eu. 
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17,317 19,319 
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1,3 504,506 
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CyON 

3 
CXOFF 
CyON 

Figure 5.5: FSM Generating the Regulator Language 

The closed loop language (equation 5.10) is calculated from the intersection of 

the synchronous product of E*. Qx. L(S Cam) (see figure 5.1) and Ey. ay. L(S 
yCy) 

with L(R) and L(S1SSM). The process model is selflooped with transition 101 at 

state (0,0,0,2) and 103 at state (0,0,0,1). 

It can be shown that [Rx'{Y-x. ax. L, (s xCx)} n Ry 1{Ey. ay. L(s 
yCy)} n L(R)] 

and Lm (sue sy M) are nonconflicting which shows that controller Cx will always 

satisfactorily terminate in the presence of Cy. This result makes sense, since the 
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Elementary State Transition 
Component Label Description Var. Label Description To state 
V_1 1* Closed 0 1 Opening by CC 2 

301 Opening by Cy 2 
2 Open 1 3 Closing by CC 1 

303 Closing by Cy 1 
V_2 1* Closed 0 5 Opening by CC 2 

305 Opening by Cy 2 
2 Open 1 7 Closing by C, 1 

307 Closing by Cy 1 
P_1 1* Deenergised 0 17 Energising by Cx 2 

317 Energising by Cy 2 
2 Energised 1 19 Deenergising by Cx 1 

319 Deenergising by Cy 1 

Table 5.1: Controllable Transitions in Elementary Component FSMs for the Waste 
Neutralisation System 

operation of Cy is decoupled from Cx according to the pH level. Similarly it can be 

shown that Cx does not block Cy. 
However, it can be shown that L(C,, t Cy/M) is not a subset of E*. aX. pes iL(Sx) 

(where SS shown in figure 3.8) which means that the combined closed loop response 
violates the first specification. This violation comes from the interlock of V_2 to 
closed (see predicate logic formula 3.28). Obviously, when controller Cy is active, 

valve V_2 will be opened thereby violating the interlock. Similarly, the interlock to 

closed of V_1 by Cy is violated by C. Therefore C,, must inhibit Cy and Cy must 
inhibit C. 

Having identified the source of noncooperation between the two controllers, it 
is possible to retrofit the design to permit cooperative operation without inhibits. 
This is desirable if it is assumed that the waste stream is of variable composition 

and may require both acid and base treatment. To accommodate this requirement, 
it is necessary to remove the interlocked to closed specifications on valves V_1 and 
V2. 

Modified specification S. 
, shown in figure 5.6, is constructed from the translated 

logic formulas rl, r3, r4 .... r9 from section 3.3.1. FSM r2 is excluded since this spec- 
ifies the redundant interlock on valve V_2. Figure 5.6 depicts a "looser" specification 

than shown in figure 3.8 which can accommodate the operation of valve V_2. With 

S., so modified, it can be shown that L(C 1 Cy/M) C Similarly by 

lifting the interlock of V_1 by Cy it is found that L(CyT CX/M) 9 E*. a P'L(Sy). 
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Therefore, with the interlock specifications removed, it is permissible for the acid 
and base controllers to work cooperatively without the need for inhibits. This result, 
in which two cooperative controllers share controllable items, is rare. 

5.3 Summary 

This chapter has provided a theoretical analysis of controller initiation and con- 
troller inhibiting within a PCT framework. These two mechanisms represent addi- 
tional safety features of a control system which prohibit the start of control action 

at inappropriate times. The pre-check mechanism ensures that the state of the pro- 

cess, at the instant control is initiated, is compatible with the nominal initial state 

of the controller. Similarly, the inhibit function prevents nominated controllers from 

starting while a given control is active. 
The closed loop language generated by a controller with a pre-check mechanism 

on a process was formulated. This formulation was combined with that for the closed 
loop language generated by two parallel controllers to yield a general formulation 
for the closed loop behaviour generated by two parallel controllers each with pre- 

checks. A further extension to the formulation in the form of a regulator language 

was required to handle the special case of shared controllable items. 
A design method for controller inhibits was proposed based on the concept 

of noncooperative controllers. A controller is noncooperative with a second, and 

should therefore be inhibited, if the combined closed loop response generated by 

the two each with pre-checks either violates the specification of the second or is 

blocking. 
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Figure 5.6: The Modified Acid Dosing Specification 



Chapter 6 

Implementation of Procedural 
Controls 

Sequential control of chemical processes is typically implemented using PLCs or 
DCSs programmed using a variety of proprietary industrial languages. Tradition- 

ally PLCs were programmed in ladder logic. High level text based languages and 

graphical languages such as Sequential Function Charts are now available for a 

wider range of industrial controllers. 
The procedural controller, introduced in section 3.4.2.2, is a formal representa- 

tion of sequential control logic. In this chapter it is shown how sequential control 

programs in a target language are derived from this mathematical formalism. The 

discussion is kept as general as possible so as not to restrict the approach to any 

particular language. For the practical implementation of the results, it is inevitable 

that one syntax be chosen. 
This chapter is organised as follows. The constructs, functionality and struc- 

ture of high level text based programming languages are considered in section 6.1. 

Section 6.2 introduces a translation algorithm for generating code in the target 

language from the FSM formalism and section 6.3 shows how pre-checks are im- 

plemented in sequential control code. An equivalent means of coding inhibits is 

then presented in section 6.4, in which a heuristic method for designing controller 
inhibits is also introduced. The computer implementations used in this thesis are 

then discussed in section 6.5. The chapter concludes with a brief summary 
in section 6.6. 

107 
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6.1 Programming of Sequential Controllers 

Proprietary text based high level sequential programming languages (e. g. S7-SCL 
from Siemens, PARACODE from APV) share numerous constructs, functionality 

and structure. Source code for programs written in these languages is a syntactic 
list of instructions or command keywords executed in a top down step wise fash- 

ion. Code is compiled and downloaded to the control device for implementation. 
Architectures are multitasking, thereby permitting multiple programs to be run in 

parallel. 
Text based languages have the following constructs in common with minor vari- 

ations in syntax: 

1. Directives for controlling program flow (e. g. START, STOP, GOTO, HALT, 

WAIT, CALL). 

2. Conditionals, queries and relational operators (e. g. IF, THEN, WHILE, WHEN). 

3. Executable commands (e. g. OUT, ENGE). 

4. Flag, integer and floating point processing. 

5. Communication with peripherals (e. g. messaging, printing, logging, graphics 

and operator interfacing). 

Sequential control programs are called sequences. For example, standard engi- 

neering practice in APV dictates that all sequences have the structure shown in 

table 6.1. This structure will be adhered to in this work. It now remains to be 

shown how the mathematical representation of sequential controllers presented in 

the previous chapters is mapped into sequences consistent with this structure. 

1 Sequence inhibits 
2 Pre-checks 
3 Alarms 

Emergency actions 
Restart procedures 

4 Processing logic 
5 Termination procedures 

Table 6.1: Sequence Structure 
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6.2 Translation of Procedural Controllers 

The procedural controller (section 3.4.2.2) is a mathematical model of the alarms, 
emergency actions, restart procedures, processing logic and termination procedures 

of a sequence. In order to translate procedural controllers into sequential control 

code, a means of emulating FSM topology in a top down step wise program is 

required. In addition, a mapping function is required between the controllable and 

uncontrollable transitions of the FSM and conditional and executable constructs of 
the language. Finally a mechanism is required for initiating and terminating the 

program in states corresponding to the initial and marked states of the procedural 

controller. 

6.2.1 FSM Topology 

The topology of a FSM is emulated in sequential control code by considering the 

states of the FSM as milestones in the program. Milestones are labelled with unique 
line labels corresponding to their respective states. Lines of code which implement 

the control function defined at the FSM state are appended to the program at the 

corresponding line label. Goto directives in the code pass control from one line 

label (i. e. milestone or state) to another, thereby emulating a change in state of 
the procedural controller (i. e. the transition function ý). For diagnostic purposes, 

an arithmetic assignment is made at each line label which updates a register with 
the current state number. 

6.2.2 Transition Mapping 

Controllable and uncontrollable transitions correspond to different structures in the 

control program. Controllable transitions are executable instructions sent to the 

process. These transitions correspond to programming code of the form ENERGISE 

PUMP P_1, RELEASE TIMER T_20 FOR 30 MINUTES and OPEN VALVE V_3. Executable 

code in any syntax can be mapped to controllable transitions by use of predefined 

lookup tables. 
In theory, controllable transitions occur instantaneously (see section 3.4.1). This 

is achieved in a program by inserting the corresponding executable instruction im- 

mediately following the line label corresponding to the state at which the transition 

is defined. On reaching that line, the sequential controller is programmed to execute 

immediately the controllable command, after which the program steps, via a GOTO 

directive, to the line label corresponding to the destination state of the controllable 

transition. 
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In reality, controllable transitions (e. g. opening valves) are not instantaneous. 
Potential problems caused by delayed responses are avoided by a period of grace 
following each controllable transition. Grace times are recommended by instrument 

vendors and are typically 5 seconds. Elementary components with longer grace 
periods should be modelled using explicit time out transitions. 

Uncontrollable transitions in a process occur spontaneously and are detected 
by the controller via feedback from plant sensors. A sequential control program 
tests for the occurrence of an uncontrollable transition by a logical examination 

of the status of registers, flags, items or timers. Logical tests appear in the code 

as conditionals, for example IF L_10 UNCOVERED, IF TIMER T_20 EXPIRED and IF 

T_1 ABOVE 35. Uncontrollable transition labels map to conditional code also by use 

of lookup tables. 

Uncontrollable transitions in a procedural controller are associated with wait 
states as defined in section 3.4.2.2. A waiting mechanism is programmed in se- 

quential control code by creating a loop which scans each uncontrollable transition 

defined at the wait state. The loop exits on the occurrence of one uncontrollable 
transition. The scanning loop is implemented by means of a GOTO directive following 

the list of conditionals which maintains the current state of the controller. 

6.2.3 Initiation and Termination 

By definition, the initial state of the controller is x0. Correct initiation of the 

program is achieved by a GOTO directive at the top which passes control to the line 

label corresponding to xo. 
Marked states xE Xm of the procedural controller are potential termination 

states. Termination is achieved by a STOP command in the program at line labels 

corresponding to marked states. However in APV's PARACODE language, the 

ABEY command is more suitable as the STOP instruction automatically deenergises 

any items driven by the sequence. 

6.2.4 The FSM Translation Algorithm 

Algorithm 6.1 translates FSMs into sequential programming code in accordance 

with the above description. The inputs to the algorithm include the FSM, assumed 

to be reachable and coreachable, plus the transition lookup table. If the FSM is 

not reachable, then the generated code will contain redundant lines. If it is not 

coreachable, then it is not always possible for the controller to terminate. Either 

scenario should be recognised by the code compiler. 
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The input FSM should also be a procedural controller and algorithm 6.1 checks 
if this is the case. The following two rules have been included in the algorithm to 
handle FSMs which are not strictly procedural controllers: 

1. If two controllable transitions, a' and a" are defined at the same state (i. e. if 
3a') all E E, such that e (a', x) !Aý (a", x) !) then one of a' or a" is ignored. 

2. If a controllable and uncontrollable transition are defined at the same state 
(i. e. if *r' E E, a" E 1,, such that e (or', x) ! Ae (a", x)! ), then include a time out 
on the uncontrollable transition before the controllable transition is executed. 

The first rule is necessary for cases in which the specification from which the 

controller was synthesised is incomplete. This rule assumes that since the priority 
of a' or a" is unspecified, then either can be safely ignored. The second rule was 
specifically utilised for translating FSMs synthesised using the method of Rotstein 

and Macchietto (1995), and reflects the modified interpretation of the procedural 
controller used there (see section 2.4.3). 

6.2.4.1 Example - Waste Neutralisation 

In this section, algorithm 6.1 is demonstrated for the acid dosing controller C shown 
in figure 3.11. For this example, the output of the algorithm is in PARACODE 

syntax, although it could just as easily be SYMPASle or S7-SCL. A lookup table 

(shown in table 6.2) defines a PARACODE command for each event in the alphabet 

of the process model. The continuation character "+" in column 1 

of table 6.2 indicates that the PARACODE command flows over successive lines. 

The output from algorithm 6.1 yields the code shown in figure 6.1. Comments 

follow a "/" and have been included to aid understanding. The output is described 

as follows. Line label LS 1 corresponds to state 1 of C and at this line the diagnostic 

register R1.100 is assigned the state value 1. As shown in figure 3.11, control- 
lable transition 1 is defined at state I. From lookup table 6.2, this corresponds to 

the PARACODE executable ENGE V_1, which is inserted following line label LS1. 

A grace time of 5 seconds is then inserted in order for the previous controllable 

command to take effect. 
Similarly, line label LS2 corresponds to state 2 of C. From state 2 is defined 

transition 17 corresponding to the PARACODE ENGE P_ 1. State 3 is wait state, 
from which is defined transition 506. From the lookup table, transition 506 cor- 

responds to two lines of conditional PARACODE which are inserted at a newly 
defined line label LT3. If the conditional is true, the program skips to line label 
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Algorithm 6.1 (FSM Translation) 
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VARIABLES c_flag, t_flag, controllable Aransition, 
uncontrollable _transitionlist, 

instruction-list 
PARAMETERS gracetime =5 

1 Input fsm 
2 DO For all states in fsm 

2.1 Append LINE LABEL S_state to program 
2.2 IF state is marked OR there are no transitions from state THEN 

Append STOP to program 
2.3 Clear cýiag and controllable Aransition 
2.4 Clear uflag and uncontrollable Aransition -list 
2.5 DO For all transitions from state 

2.5.1 IF transition. type is controllable THEN 
2.5.1.1 IF c_flag is clear THEN 

2.5.1.1.1 Set c_flag 
2.5.1.1.2 (i - controllable transition 

2.5.1.2 ELSE User-Input controllable_transition 
2.5.1.3 ENDIF 

2.5.2 ELSE 
2.5.2.1 Set u_flag 
2.5.2.2 Append transition to uncontrollable Aransition -list 

2.5.3 ENDIF 
2.6 ENDDO 
2.7 IF u. iiag is set THEN 

2.7.1 IF c_flag is set THEN 
2.7.1.1 User-Input timeout 
2.7.1.2 Append RELEASE TIMER FOR timeout to program 

2.7.2 ENDIF 
2.7.3 Append LINE LABEL T_state to program 
2.7.4 DO For all transitions in uncontrollableAransition -list 

2.7.4.1 Get instruction list from lookup table (transition) 
2.7.4.2 Append instruction_list to program 
2.7.4.3 Append GOTO LINE S_transition. tostate to program 

2.7.5 ENDDO 
2.7.6 IF c_flag is set THEN 

Append IF TIMER NOT EXPIRED GOTO LINE T_state to program 
2.7.7 ELSE Append GOTO LINE T_state to program 
2.7.8 ENDIF 

2.8 ENDIF 
continued on page 113.. . 
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... continued from page 112 
2.9 IF c_flag is set THEN 

2.9.1 Get instruction list from lookup table (controllable-transition) 
2.9.2 Append instruction_list to program 
2.9.3 Append WAIT gracetime to program 
2.9.4 IF controllable_transition. tostate is not state +1 THEN 

Append GOTO LINE S_controllable_transition. tostate to program 
2.10 ENDIF 

3 ENDDO 
4 Output program 

LS4, corresponding to the destination state of transition 506. The GOTO LT3 com- 

mand rescans the conditional indefinitely until it is true, at which time the loop is 

exited. 
States 4,5,6 and 7 are translated in an equivalent fashion. The ABEY command 

is inserted at the marked state 6, which causes the program to freeze at this point. 

6.3 Generation of Pre-Check Code 

As discussed in section 5.1, pre-checks establish consistency between the process 

state and the nominal initial state of the process model at the instant the controller 
is started. Pre-check code appears in the sequence before the translated procedural 

control logic so that abortive action can be taken if the current process state and the 

nominal initial state are inconsistent. Otherwise the sequence is allowed to proceed 

as normal. 
The pre-check mechanism works by comparing the state of each of the n, el- 

ementary components with its nominal initial state. The state of the process is 

consistent with the nominal initial state only if all elementary components are in 

their initial states. 
Code for implementing pre-checks comprises a set of r conditional statements 

which test the current status of each elementary component. This code is gen- 

erated automatically by defining a mapping between each elementary component 

state variable and a line or lines of conditional code. This mapping is similar to 

that described previously for uncontrollable transitions. By convention, the direc- 

tionality of the pre-check conditionals is such that false is returned if the current 

and nominal initial states are consistent. Thus the sequence is to abort if at least 

one pre-check conditional is true. 
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LS1 MOVN 1, R1.100 / SET STATE VARIABLE 
ENGE V_1 / CONT. TRANSITION 1 TO STATE 2 
WAIT 5 / WAIT FOR GRACE TIME 

LS2 MOVN 2, R1.100 / SET STATE VARIABLE 
ENGE P_1 / CONT. TRANSITION 17 TO STATE 3 
WAIT 5 / WAIT FOR GRACE TIME 

LS3 MOVN 3, R1.100 / SET STATE VARIABLE 
LT3 ADCI H_1, F1.200 / READ H_1 INTO REGISTER F1.200 

IF F1.200, LT, 8, LS4 / UNCONT. TRANSITION 506 TO STATE 4 
GOTO LT3 / LOOP IN STATE 3 

LS4 MOVN 4, R1.100 / SET STATE VARIABLE 
DENG P_1 / CONT. TRANSITION 19 TO STATE 5 
WAIT 5 / WAIT FOR GRACE TIME 

LS5 MOVN 5, R1.100 / SET STATE VARIABLE 
DENG V_1 / CONT. TRANSITION 3 TO STATE 6 
WAIT 5 / WAIT FOR GRACE TIME 

LS6 MOVN 6, R1.100 / SET STATE VARIABLE 
ABEY / FREEZE AT MARKED STATE 

LT6 ADCI H_1, F1.200 / READ H_1 INTO REGISTER F1.200 
IF F1.200, GT, 8, LS1 / UNCONT. TRANSITION 504 TO STATE 1 
ADCI H_1, F1.200 / READ H_1 INTO REGISTER F1.200 
IF F1.200, LT, 6, LS7 / UNCONT. TRANSITION 502 TO STATE 7 
GOTO LT6 / LOOP IN STATE 6 

LS7 MOVN 7, R1.100 / SET STATE VARIABLE 
LT7 ADCI H_1, F1.200 / READ H_1 INTO REGISTER F1.200 

IF F1.200, GT, 6, LS6 / UNCONT. TRANSITION 500 TO STATE 6 

GOTO LT7 / LOOP IN STATE 7 

Figure 6.1: Translation of the Acid Dosing Controller 
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Transition PARACODE - F-Description 

1 ENGE V_1 Open valve V_1 
3 DENG V_1 Close valve V_1 
5 ENGE V_2 Open valve V_2 
7 DENG V_2 Close valve V_2 
17 ENGE P_1 Energise pump P_1 
19 DENG P_1 Deenergise pump P_1 
500 ADCI H_1, Fl. 200 Read H_l into register F1.200 
+ IF F1.200, GT, 6 Test for pH above 6 
502 ADCI H_1, Fl. 200 Read H_1 into register F1.200 
+ IF Fl. 200, LT, 6 Test for pH below 6 
504 ADCI H_1, F1.200 Read H_1 into register F1.200 
+ IF F1.200, GT, 8 Test for pH above 8 
506 ADCI H_1, F1.200 Read H_1 into register F1.200 
+ IF F1.200, LT, 8 Test for pH below 8 

Table 6.2: Transition Lookup Table for the Waste Neutralisation System 

6.3.1 The Pre-Check Generation Algorithm 
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Algorithm 6.2 generates pre-check code in accordance with the mechanism de- 

scribed. The input is the set of state variables at the nominal initial state of the 

process model. The algorithm works by inserting conditional code from a lookup 

table for each elementary component. Elementary component state variables as- 
signed the covering value oc are bypassed to allow for a state variable to assume 
any value from its domain. If a conditional is true then the elementary component 
is not in its initial state and a GOTO STOP directive aborts the sequence. Alterna- 

tively, if all conditionals are false, a GOTO directive passes control to the line label 

corresponding to the initial state of the FSM. 

6.3.1.1 Example - Waste Neutralisation 

In this section, algorithm 6.2 is demonstrated for the acid dosing controller shown 
in figure 3.11. In this example, the pre-check code is generated in PARACODE 

syntax. A lookup table, shown in table 6.3, defines the PARACODE conditionals 

corresponding to each elementary component state variable. Table 6.3 also employs 

the + symbol to indicate that the PARACODE command flows over successive 
lines. 

The nominal initial state of process, state 1, is (0,0,0,2) corresponding to both 

V_1 and V_2 closed, P_1 deenergised and pH above 8 (see figure 3.4). From the 

lookup table, state variable 0 for elementary component V_1 corresponds to the 
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Algorithm 6.2 (Pre-Check Generation) 
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VARIABLES instruction list 

1 Input initial-state and initial 
-state-list 2 DO For all state-variables in initial 

-state -list 2.1 IF state-variable is not oo THEN 
2.1.1 Get instruction-list from lookup table (state-variable) 
2.1.2 Append instruction_list to program 
2.1.3 Append GOTO STOP to program 

2.2 ENDIF 
3 ENDDO 
4 Append GOTO LINE LABEL S_initial_state to program 
5 Output program 

Elementary State PARACODE Description 
Component Variable 
V_l 0 IFIE V_1 Test if V_l open 

1 IFINE V_1 Test if V_ º closed 
V_2 0 IFIE V_2 Test if V_2 open 

1 IFINE V_2 Test if V_2 closed 
P_1 0 IFIE P_1 Test if P_1 energised 

1 IFINE P_1 Test if P_1 deenergised 
H_1 0 ADCI H_1, F1.200 Read H_l into register F1.200 

+ IF F1.200, GT, 8 Test for pH above 8 
+ IF F1.200, LT, 6 Test for pH below 6 
1 ADCI H_1, F1.200 Read H_1 into register F1.200 
+ IF F1.200, GT, 6 Test for pH above 6 
2 ADCI H_1, Fl. 200 Read H_1 into register F1.200 
+ IF F1.200, LT, 8 Test for pH below 8 

Table 6.3: Elementary Component State Variable Lookup Table for the Waste 
Neutralisation System 



Chapter 6. Implementation of Procedural Controls 117 

/ 
IFIE V_1, LSP 
IFIE V_2, LSP 
IFIE P_1, LSP 
ADCI H_1, F1.200 
IF F1.2 00, LT, 8, LSP 
GOTO LS1 

/ CHECK THAT PRIMITIVE 1 IS 0 
/ CHECK THAT PRIMITIVE 2 IS 0 
/ CHECK THAT PRIMITIVE 3 IS 0 
/ READ H_1 INTO REGISTER F1.200 
/ CHECK THAT PRIMITIVE 4 IS 2 
/ STEP TO START STATE 1 

LSP STOP 

Figure 6.2: Pre-Check Code for the Acid Dosing Controller 

PARACODE IFIE V_1. This conditional is inserted directly as a pre-check as 
shown in figure 6.2. If this conditional is true then V_l is not in its initial state (i. e. 
V_l is open) and the sequence aborts at line LSP. 

Conditional code is inserted for the remaining three elementary components as 

shown in figure 6.2. If one conditional is true the initial state is not satisfied and the 

sequence is aborted. If all conditionals are false, then a GOTO directive passes control 
to line label LS1 in figure 6.1 corresponding to the initial state of the procedural 

controller. 

6.4 Generation of Inhibit Code 

As discussed in section 5.2, the controller inhibit function ensures that noncooper- 

ative controllers can never operate in parallel. Noncooperation between two con- 
trollers is established a priori using the inhibit criterion presented in section 5.2.3. 

Inhibits appear in the sequence before the translated procedural control logic so 
that abortive action can be taken if an inhibit is violated. Otherwise the sequence 
is allowed to proceed as normal. 

Code for implementing inhibits comprises a set of conditional statements which 

test the current status of nominated controllers. This is similar to the conditional 

code which implements the pre-check mechanism. Controllers to be checked in- 

clude those inhibited by the current controller and those which inhibit the current 

controller. By convention, the directionality of the inhibit conditionals is such that 

false is returned if no inhibit is violated by starting the current controller. Thus 

the sequence is to abort if at least one conditional is true. 
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6.4.1 The Inhibits Generation Algorithm 

Algorithm 6.3 generates inhibit code in accordance with the mechanism described. 
The input is an array of size n, x n, where n, is the number of controllers defined 
for the system. A null entry at (i, j) signifies cooperation between controller CZ 

and Cj. This array is constructed using the inhibit design criterion of section 
5.2.3. Algorithm 6.3 returns the inhibits code for the controller nominated as the 

working-controller only. 

Algorithm 6.3 (Inhibits Code Generation) 

VARIABLES candidate controller 

1 Input noncooperation array 
2 Input working-controller 
3 DO For all controllers 

3.1 Assign candidate-controller to controller 
3.2 IF working-controller is noncooperative with candidate-cont roller OR 

candidate -controller 
is noncooperative with working-controller THEN 

Append IF candidate-controller ACTIVE GOTO STOP to program 
4 ENDDO 
5 Output program 

In PARACODE, an alternative means of implementing the inhibit function is 

available via the dedicated command: 

INSQ sequence-number 

which disables the nominated sequence from starting when the current sequence is 

active. The INSQ instruction offers a more compact means of coding the inhibit 

function than conditional statements. 

6.4.1.1 Example - Waste Neutralisation 

In section 5.2.4.1 it was demonstrated that the base dosing controller Cy (pro- 

grammed as sequence 1.103) is noncooperative with the acid dosing controller C1 

(sequence 1.101). Similarly, C., is noncooperative with Cy. Algorithm 6.3 gener- 

ates the inhibit code for sequence 1.101 as shown in figure 6.3. The same inhibit 

function is achieved in PARACODE using the INSQ command as shown in figure 

6.4. 
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/ 
IFSAC 1.103, LSP 

/ 

LSP STOP 

/ CHECK SEQUENCE 1.103 

Figure 6.3: Inhibits Code for the Acid Dosing Controller 

/ 
INSQ 1.103, LSP 

/ 
/ CHECK SEQUENCE 1.103 

Figure 6.4: Inhibits PARACODE for the Acid Dosing Controller 

6.4.2 Heuristic Design of Controller Inhibits 
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The formal method for controller inhibit design proposed in section 5.2.3 relies on 
the availability of controllers, specifications and process models as FSMs. For code 

retrofits however, the existing sequential controls will not be derived formally and 
FSM models will not be immediately available for the inhibits analysis. For such 

cases, an alternative inhibit design method based on heuristics is employed. 
Crooks (1992) proposes a heuristic for generating sequence inhibits (see page 

24). The rule is that sequences which share interlocked items must inhibit each 

other. Interlocked items are analogue output items (e. g. control valves, variable 

speed motors) or digital output items (e. g. on/off valves, pumps) which are driven 
by a sequence under normal or emergency operation. 

This rule is implemented by algorithm 6.4. In practice it was found that an 

additional rule was necessary to account for subsequences which implement phases 

of the same operation. Subsequences are said to belong to the "tree" of the main 

sequence. The additional rule states that sequences from the same tree must not 
inhibit one another. 

Algorithm 6.5 returns the tree of an input sequence for use in algorithm 6.4. 

The tree of the input sequence is enumerated starting from the input sequence. All 

subsequences are automatically included in the tree. All trees containing sequences 

which call the input sequence are recursively enumerated and included in the tree 

of the input sequence. 
Algorithm 6.4 returns the same result as the formal inhibit criterion for the 

example in section 5.2.4.1 because both sequences 1.101 and 1.103 drive pump P_1. 
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Algorithm 6.4 (Heuristic Inhibit Generation) 
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VARIABLES sequence -tree-list, sequence_inhibitlist 

1 Input sequence 
2 Get sequence -tree -list 

from algorithm 6.5 
3 DO For all driven or emergency items of sequence 

3.1 DO For all sequences which either drive or enable item 
3.1.1 IF sequence is not in sequence-tree-list AND 

sequence is not in sequence -inhibit -list 
THEN 

Append sequence to sequence-inhibit -list 3.2 ENDDO 
4 ENDDO 
5 Output sequence _inhibit _list 

6.5 Implementation of Algorithms 

Algorithms 6.1,6.2,6.3,6.4 and 6.5 have been coded in C. For convenience, the 
C programs generate sequences in PARACODE when input is supplied from the 

appropriate PARACODE lookup tables. Alternative lookup tables are required if 

a language other than PARACODE is desired (e. g. SYMPASle). Only superficial 

modifications to the C programs are necessary to account for any syntactic or 

structural differences of other languages. 

The five C programs were combined into a tool for automatically generating 

complete sequences. The tool makes use of four data files as described in table 6.4. 

Additional procedures were written for creating appropriate headings and comments 
in the output sequence with which to identify the sequence and to indicate its origin, 

purpose and version number and for calculating sequence statistics, including the 

number of lines of code in each section of the sequence. 
The translation tool complements "platest", the FSM analysis program from 

Sanchez (1994) and "TCT" from Wonham (1996). These three programs provide a 

suite of utilities for modelling, specification, synthesis, analysis and translation of 
FSMs. An additional translation tool was required for converting FSMs between 

the platest and TCT format. Table 6.5 summarises the routines from platest and 
TCT that were used in this thesis, plus a number of other analysis procedures that 

were specifically written for evaluating controller inhibits. Finally, a set of scripts 

were developed for automatically executing synthesis algorithm 3.1. 
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Algorithm 6.5 (Tree Generation) 

VARIABLES working-sequence, candidate-sequence, sequence tree-list 

1 Input sequence 
2 Assign sequence. ancestry to parent 
3 Initialise sequence_treeiist with sequence 
4 DO For all sequences in sequence-tree -list 

4.1 Assign working-sequence to sequence 
4.2 DO For all sequences referenced from working-sequence 

4.2.1 Assign candidate -sequence to referenced sequence 
4.2.2 IF candidate-sequence is not in sequence -tree -list 

THEN 
4.2.2.1 IF candidate-sequence is called by working. sequence THEN 

Assign candidate-sequence. ancestry to offspring 
4.2.2.2 ELSE Assign candidate sequence. ancestry to parent 
4.2.2.3 ENDIF 
4.2.2.4 IF working-sequence. ancestry is parent THEN 

Append candidate-sequence to sequence-tree list 
4.2.2.5 ELSEIF candidate-sequence. ancestry is offspring THEN 

Append candidate-sequence to sequence -tree -list 
4.2.2.6 ENDIF 

4.2.3 ENDIF 
4.3 ENDDO 

5 ENDDO 
6 Output sequence_treeiist 

File 1 1 Algorithm Description 

Transition Lookup Table 6.1 Mapping of transitions into 
instructional code 

Elementary Component 6.2 Mapping of elementary component 
State Variable Lookup Table state variables into conditionals 
Item References 6.4 Cross references declaring item 

usage in each sequence 
Sequence References 6.5 Cross references declaring sequence 

inheritance 

Table 6.4: Data Files for the Translation Program 
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6.6 Summary 
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In this chapter an algorithm has been proposed for translating control laws defined 
by FSMs into high level text based sequential programming languages. Algorithms 

were also presented for generating pre-check code from the nominal initial state of 
the process model, and code for implementing the inhibit function. Each algorithm 
has been coded and a tool thereby developed for automatically generating complete 

control sequences in the PARACODE language. In order to handle the retrofit 

problem, an additional algorithm has been proposed for generating sequence inhibits 
based on simple heuristics. 

Source Routines 
Platest Reachable substructure of a FSM 

Coreachable substructure of a FSM 
Asynchronous product of FSMs 
Synchronous product of FSMs 
Test for controllability of a language 
Supremal controllable sublanguage of a language 
Translation of a predicate logic formula into a FSM 
Translation of a temporal logic formula into a FSM 

TCT Selfloop all states of a FSM 
Synchronous product of languages 
Intersection of languages 
Projection of a language 
Convert transition labels of a FSM 
Test for nonconflicting of languages 
Test for isomorphism between FSMs 

This Mark all states of a FSM 
thesis Duplicating transitions in a FSM 

Selfloop wait states of a FSM 
Prefixing languages with 
Changing the initial state label of a FSM 

Table 6.5: FSM Analysis Programs 
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Case Studies 

This chapter demonstrates the techniques of chapters 4,5 and 6 on complex indus- 

trial scale case studies. The first case study is a multipurpose, multiproduct batch 

pilot plant suitable for small scale processing of foods, fine chemicals and pharma- 
ceuticals. This plant is characterised by complex and flexible connectivity plus a 
high degree of instrumentation. It constitutes an ideal testbed for the methods de- 

veloped in this thesis for process model reduction and modular controller synthesis. 
The plant is fully automated via a DCS, thereby permitting the code generation 
techniques of chapter 6 to be tested in practice. Three operations of the batch pilot 

plant are considered. 
The second plant is a single product, single purpose batch paste plant comprised 

of two interactive production trains. The operation of this plant is constrained by 

the necessity for resource sharing. The flexibility, operability and safety of this plant 

critically depends on the inhibit policy. It therefore constitutes an ideal testbed for 

the inhibit design methods of chapter 6. 

Table 7.1 summarises the techniques from chapters 4,5 and 6 employed in each 

case study. A '/ entry indicates that the corresponding material is presented in this 

chapter. A \/* entry indicates that although the case study includes this material 

the details are omitted here for the sake of brevity. Further details for the batch 

pilot plant case study are reported by Camillocci (1995) and Alsop et al. (1995), and 

for the paste plant in Gallo (1996). Of course the fundamental synthesis techniques 

from chapter 3 are also demonstrated, but this material is reported mainly in the 

appendices. 

123 
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Technique Reference I- Batch Pilot Plant II - Paste 
Section Op. 1 Op. 2 FO 3 Plant 

Controller Synthesis 3.6 
./ . V/* V/* Parallel Decomposition 4.1 V/* . �* Reduced Domain Control 4.2 �* 

Parallel Control 4.3 N/ 
Series Decomposition 4.4 N/ V/* Series Control 4.5 v �* . /* Structured Control 4.6 V _V/ ý''` �* 
FSM Translation 6.2 1/ 
Pre-Check Coding 6.3 v V/ /* 
Inhibits Coding 6.4 _V/ _V/ V/* 
Heuristic Inhibit Design 6.4.2 V/* 
Controller Initiation 5.1 
Formal Inhibit Design 5.2 

Table 7.1: Summary of Techniques Demonstrated in the Case Studies 

7.1 Case Study I- The Batch Pilot Plant 

7.1.1 Overview of the Batch Pilot Plant 

This case study involves a computer controlled batch pilot plant at Imperial College 

shown in figure 7.1 (reproduced from Liu (1995)) and described fully in Macchietto 
(1992). This highly instrumented and flexible plant is very representative of a small 
scale multipurpose food, fine chemicals or pharmaceuticals plant. The computer 
controlled batch pilot plant is centred about a multipurpose batch reactor (tank 
T3) with two 100L feed preparation vessels (tanksTl and T2), two 100L product 
storage vessels (tanks T4 and T5) and three plate heat exchangers. Highly flexible 

connectivity between the five vessels and three heat exchangers is achieved via a 
complex network of pipes, pumps and single and double-seat valves. Transfers may 
be carried out simultaneously except where they share common pipework. Most of 
the 45 automated on/off valves have two feedback position sensors. T3 is equipped 

with a jacket for heating or cooling, a stirrer, load cell, viscometer and facilities for 

sparging and dosing. In addition to the main process equipment, a Cleaning-In- 

Place (CIP) system enables sections of the plant to be individually cleaned with a 

hot caustic detergent solution from the detergent station (tank T7). 

The batch pilot plant comprises approximately 75 output channels (e. g valves, 

pumps, control loops) and 45 input channels (e. g. sensors, switches). If each channel 
has two discrete states, the total number of states of the batch pilot plant is of the 
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order 1036. Obviously, decomposition techniques from chapter 4 are required for 
handling the full batch pilot plant model. 

7.1.1.1 Description of the Computer Control Hardware 

The batch pilot plant is fully automated and controlled via an ACCOS 30 DCS 
(APV Baker, 1994). Control sequences are written in the proprietary PARACODE 
language and implemented by the ACCOS 30 sequence controller interacting with 
the plant via a number of general purpose intelligent interface cards handling ana- 
logue and digital I/O. Digital output can be overridden using manual switches on 
the interface cards. Using an engineering terminal, inputs from the plant can be 

overridden. In this way, plant I/O can be simulated for the purposes of software 
testing. 

The ACCOS 30 communicates with peripherals including the engineering ter- 
minal and a printer for on line logging of process information. The system is also 
networked to the ACCOS 300 Unix based computer and two PCs for supervisory 
monitoring, display and managerial functions. PARACODE is compiled on either 
the ACCOS 300 or the PCs and downloaded to the ACCOS 30 for implementation. 
From the PCs, basic operator actions can be initiated in a user friendly manner. In 

addition, the ACCOS 300 communicates with a network of SUN workstations via 
the proprietary CONTROLLINK software. A utility called ACCLOG (written in 
C++) augments CONTROLLINK so that process variables can be logged into files 

on the SUN in a user friendly manner. The entire ACCOS information management 
and control system for the batch pilot plant is described in Liu (1995). 

7.1.2 The CIP-Feed Unit Procedure 

CIP is the process of cleaning processing equipment and associated pipework au- 
tomatically and in situ. It is used in the production of foods, fine chemicals and 
pharmaceuticals where hygienic processing equipment is required. A CIP process 
similar to that described in Liu and Macchietto (1993) has been chosen for this study 

on the basis that it utilises many equipment items and instruments and is represen- 
tative of other complex sequential operations. In this example, a feed preparation 
tank (T1, figure 7.1, bottom left) and its associated pipework are to be cleaned. 
The CIP of T1 comprises the following four steps: 

1. A prerinse of Ti, in which residual solids are removed from the tank interior 

by bursts of water at high pressure for 10 minutes. 
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Recipe Operation Description Units Used 
Step 

1 Water-Rinse Rinsing of Ti with water Feed-Preparation 
4 Detergent-Station 
2 Detergent-Service Preparation of a hot caustic Detergent-Station 

detergent solution in T7 
3 Detergent-Clean Cleaning of Ti with Feed-Preparation 

detergent solution Detergent-Station 

Table 7.2: Operations in the CIP-Feed Unit Procedure 

2. The preparation of an inventory of hot caustic detergent solution at the CIP 

station (T7, figure 7.1, top left). 

3. Cleaning of T1 using a high pressure spray of detergent solution for 10 minutes. 

4. A post rinse for 10 minutes which dissolves residual detergent and renders Ti 

suitable for hygienic processing. 

In terms of ISA-S88.01, CIP-feed is a unit procedure which is comprised of the 

three operations water-rinse, detergent-service and detergent-clean. The recipe 
defines the precedence of operations in the CIP-feed unit procedure as follows: 

water-rinse, detergent- service, detergent -clean, water-rinse. The water-rinse op- 

eration is employed twice in the recipe. Table 7.2 summarises each operation in the 

CIP-feed unit procedure. 
Tank T7 and heat exchanger HE3 plus associated valves and pumps comprise 

an ISA-S88.01 unit called the detergent-station shown in detail in figure 7.2. A 

second unit is the feed preparation, shown in detail in figure 7.3. The detergent- 

service operation employs only the detergent-station, while the water-rinse and 
detergent-clean operations employ both the detergent-station and feed-preparation 

units. 
The purpose of the following analysis is to formally synthesise a controller for 

each operation described in table 7.2. A structured modular solution comprised 

of multiple modular procedural controllers in a series/parallel structure will be 

presented for each operation. Modular procedural controllers correspond to ISA- 

S88.01 phases. The reader is referred ahead to table 7.12 for a preview of the phases 

of each operation and to figure 7.9 for an overview of the ISA-588.01 hierarchy. 
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7.1.2.1 The Detergent-Station Unit 
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The detergent-station unit shown in figure 7.2 comprises 19 elementary components 
listed in table 7.3. The unit is centred about tank T7, equipped with a high level 
switch (IS1-1), a low level switch (IS1-2), temperature probe (IT1-17) and a con- 
ductivity switch (IS1-3) which detects the desired concentration of caustic in the 
detergent solution. HE3 is equipped with a PI controller (ICI-8) which controls the 
outlet temperature (IT1-16) by adjustments in steam rate. Pump P6 is fitted with 
a feedback sensor shown in figure 7.2 as P6-FB. The relaxed state of each valve is 
closed, with the exception of valves AV1-22 and AVl-16 which are normally open. 

CAL 

Figure 7.2: The Detergent-Station Unit 

By definition, ISA-588.01 units are independent parts of the flowsheet which 
can operate in isolation from each other. Therefore physical interaction between 

elementary components is local to a unit and does not transcend unit boundaries. 

Physical interactions within the detergent-station unit are shown in a matrix in 

table 7.3. An "M" entry in the matrix indicates physical interaction between the 

component pair by mass conservation. Similarly "E" represents energy conservation 

and "G" a gravitational constraint. 
From operating experience it is known that the mixing dynamics of T7 are 

slow. Therefore an increase in conductivity may be detected by switch IS1-3 long 

AV 1-10 P6 ro-r n 
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after deenergising caustic dose pump P 10. Therefore interaction by caustic mass 
conservation between P10 and IS1-3 is ignored in the DES model. No physical 
interaction is assumed between pump P6 and its feedback switch P6-FB, thereby 
permitting the detection of pump failure states in the DES model. 

7.1.2.2 The Feed-Preparation Unit 

The feed preparation unit, shown in figure 7.3, comprises 17 elementary compo- 
nents listed in table 7.4. Unlike T7, T1 is equipped with a continuous level sensor 
(IT1-1) and a proximity switch (PSI-1) which detects the position of the tank lid. 
From figure 7.1 it can be seen that the feed preparation unit shares some elemen- 
tary components (e. g. SSV1-4, AV1-42) with other units. However, it is assumed 
that physical interaction of these 17 elementary components is local to the feed- 

preparation unit. Physical interactions are shown in table 7.4. 

ss, 

AV1 

P1 

Figure 7.3: The Feed-Preparation Unit 

7.1.3 The Water-Rinse Operation 

The water-rinse operation is to employ the feed preparation and detergent-station 

units as follows. At the start of the operation, each elementary component must 
be in its relaxed state, Ti empty and its lid closed. The operation is to proceed 
by opening the route from the water mains to Ti (via AV1-10 and AV1-15). and 



Chapter 7. Case Studies 

ýýý", I ýr WW I 

a Cý .WW 1 

F--1 r-i I Gý I 

Wýý 1 

F--i I--I r"ý 10 

r--l LO 

aý I 

CNI LO 

-4ý 
i--1 

-4- 
0 

CV in 'd4 CD to di IN CO 
cam, c , -I ,- r- r--I c"l, cam, 00 II1 rý CIA I11IIM ý--i rl r-i II ri r "I rl r-1 ý--i 1It ýi 

rý 
r{ 

A-D 

rI'ý 

C) 
-Ci 

0 

cd 
V 

H 

c) 

Ca 

130 



Chapter 7. Case Studies 131 

> CO 

l 

a 
rl I rl 

U) U1 U) U) 
QQQ CV 

. r, 

0 'N 

Q) 

V 

4a 

? -d 

ce 

Qý 

i--1 

Qý 

ý1 



Chapter 7. Case Studies 132 

from Ti to drain (via AV1-40, DDV1-1, AV1-47, DDV1-3, DDV1-6). Ti is rinsed 
by intermittent bursts of water at high pressure from pump P6, and the level is to 
be kept between 6 and 20L. The high pressure feed of water is to cease immediately 
if the lid of Ti is opened at any time. Water is continuously drained from Ti by 

pump P1, which operates when the level in Ti exceeds 3L and stops below 1.5L. 
After 10 minutes of cyclical operation, Ti is allowed to completely drain, and all 
pumps and valves returned to their relaxed state. 

Let E,, � be the set of 36 primitive FSMs modelling each elementary component 
of the feed preparation and detergent-station units listed in table 7.5. FSM models 
are detailed in Appendix A. Let S,, be the formal specification of the water-rinse 

operation which reflects the above user requirements and Gw be the process model 
for the two units. Since G, � is of the order 1011 states, parallel decomposition is 

necessary for modularising the synthesis into tractable parts. 

7.1.3.1 Parallel Decomposition 

In this section, process G,, and specification Su, are decomposed into reduced mod- 
els. This decomposition is best conceived as partitions of Ew into (not necessarily 
disjoint) subsets, which define subsystems within the two units. Modular process 

models and specifications are constructed in an incremental fashion for each sub- 

system. 
There are many ways in which Eu, can be partitioned. The general approach 

employed here is to group elementary components which are related by or logically 

participate with one another in the user requirements. Of course, any partition 

must respect the interaction terms identified in tables 7.3 and 7.4 by maintaining 

one pairing of interacting terms in at least one of the partitioned sets. In this way, 

each physical interaction term is included at least once in the decomposed models 

as required. 

Partition of Ez� 

The first partition segments Ew into Eß�1 and E,, 2 as shown in table 7.5. E,,, 1 is 

the set of elementary components which do not participate explicitly in the user 

requirements and E,, 2 the remainder. For example, elementary components IS1-1 

and IS1-2 are nonparticipatory and therefore included in E"1, while AV1-25 and 
AV1-14 are participatory and therefore included in Eu22. However, from table 7.3, 

IS1-1 and IS1-2 interact with AV1-25 and AV1-14. Therefore AV1-25 and AV1-14 

are also included in Eu11. 

Let Gw1, Sw1, Gw2 and Sw2 be the reduced process models and specifications for 
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the subsystems defined by E, �1 and Eu2 2 respectively. By construction: 

1. Gw2 is internally consistent with Gw. 

2. L(Swl) = L(Gwl) 

3. Lm(Gw1) = L(G'wl) 

Ev, therefore defines a class Ia system. For this class of systems, one synthesis 
is posed in terms of process model Gw2 and specification Sw2. However, since Gw2 
is still of the order 108, further decomposition (i. e. partitioning) is necessary. 

Partition of Eu, 2 

The second partition divides Eui2 into a set of components E,, f, which control the 

water feed to Ti, and EE�d which control the water drain from Ti. E,, f and Ewd are 
shown in figure 7.5. Let Eu, f and >wd be the alphabet of events generated by FSMs 
in Eu, f and E21d respectively. Since Eu, f and E.,,, d share only elementary component 
IT1-1, then: 

>wf n ýwd C ý7juw2 

where Euw2 is the subset of uncontrollable transitions in Ewe. Ewe therefore defines 

a class Ib system. Two syntheses are necessary for class Ib systems, in this case 
involving the reduced model and specification pairing Gwd, Swd and Gw f, Sw f. 
These FSMs are still unwieldy (e. g. Gwd is of the order 104) and require further 

decomposition. 

Partition of Ewd and E,, f 

The final partition identifies in Ewd and Ew fa set of component items Ewdi and 
E. v fi which are interlocked to their relaxed states. The remaining components are 

grouped in Ewdr and Ew fr respectively, and represent the active or noninterlocked 

components of the controller. Since >wdi and >wdr are disjoint, Ewd defines a class 
Ib system. Ew f is also a class Ib system since Ew fi and Ew fr are disjoint. 

7.1.3.2 Series Decomposition 

The specification S,, fr for the subsystem defined by Eu, f,. formalises the user re- 

quirements for the water fill phase of the operation. This is a reasonably complex 

specification involving timing and safety constraints. It is therefore advantageous 
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Elementary 
Component 
SSV1-1 
SSV1-2 
SSV1-4 
SSV1-5 
ABV1-3 
AV1-14 
AV1-10 
AVl-15 
AV1-16 
P6 
SSV1-3 
Psi-1 
IT1-1 
AV 1-41 
P1 
AVl-40 
AV1-47 
DDV1-8 
DDV1-1 
DDV1-3 
DDV1-6 
P2 
AV 1-42 
AV 1-22 
AV 1-25 
IS1-1 
IS l-2 
AV 1-20 
AV 1-24 
P10 
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IT1-17 
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AV1-4 
IC1-8 
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Table 7.5: Partition Table for the Water-Rinse Operation 
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to further simplify Sw fr using series decomposition of the reduced process model 
Gw 

fr. As shown later, G,,, f, is tractable with only 768 states. 
Primitive FSM models for the 8 elementary components in Eu, fr are shown in 

Appendix A, table A. 2. A 10 minute timer model (TIMER-600) has been appended 
to E,, fr in order to specify the timing requirements for the water-rinse operation. 
TIMER-600 comprises 4 states, Idle, Released, Held and Expired. 

Two subgoals are easily identified in G,, , f, by considering the water fill phase 
as three distinct subphases. The first subphase prepares the feed route, the second 
performs the water rinse while the third returns the feed route to its relaxed status. 
Table 7.6 shows the initial (qw fro) and goal (gwfrm) states of Gw fr plus the two 
identified subgoals (qw fr1 and qw fr2) " 

The subgoals partition Gw fr into three series 

models Hw f rl, Hw f r2 and Hw fr3. Using Sanchez's algorithm (1996), it was shown 
that qwfri and qwfr2 are reachable from all states of G. w fr . 

Therefore Hw fri, Hw fr2 
and Hw fr3 are nonblocking. Specification Sw fr is partitioned into Sw fri, Sw fr2 and 
Sw fr3 where Sw fri specifies the behaviour for opening the valves on the feed route, 
Swfr2 for cyclically filling T1 for 10 minutes, and Sw fr3 for closing valves on the 
feed route and resetting the timer. Ew fr therefore constitutes a class II system. 

Elementary Initial Subgoal1 Subgoal2 Goal 
Component gwfro gwfrl qwfr2 qwfrm 

AV1-10 Closed Open Open Closed 
AV1-15 Closed Open Open Closed 
AV1-16 Open Closed Closed Open 
P6 Deenergised Deenergised Deenergised Deenergised 
SSV1-3 Closed Closed Closed Closed 
TIMER-600 Idle Idle Expired Idle 
PSI-1 Shut Shut Shut Shut 
IT1-1 Level <6 Level <6 Level <6 Level <6 

Table 7.6: Subgoals in Gw fr 

Figure 7.4 depicts the successive parallel and series decompositions of process 

model Gw into 6 parallel and series models Hw f rl, 
Hw f r2, 

Hw f r3, Gw fi, Gwdi and 
Gwdr. Similarly, specification Sw is comprised of 6 modular specifications Sw frl, 

Sw f r2, 
Sw f r3, 

Sw f i, 
Swdi and Swdr 

- 

7.1.3.3 Synthesis of Procedural Controllers 

From the above analysis, 6 reduced synthesis problems have been identified. For 

each synthesis problem a process model and specification have been constructed. 
The models are of a size which are amenable to the synthesis techniques of section 
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Figure 7.4: Network of Models for the Water-Rinse Operation 
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3.6. The resulting 6 model based procedural controllers are later recombined to 
form a structured modular controller for implementing the water-rinse operation. 

For example, consider the synthesis of controller Cw1.2 as detailed in Appendix 

section A. 1.2. Primitive FSM models are constructed for the eight elementary 

components in Ew fr as shown in table A. 2. The interaction between ITl-1 and 
SSVl-3 from table 7.4 is modelled by the temporal logic formula: 

(00) 00 100,00,0 , 00)00)00) -+ 0fT 536 V 537] 

which is translated into a FSM piw f,. 2 . The synchronous product of Plwfr2 with the 

asynchronous products of the FSMs modelling the 8 elementary components yields 
the process model Gu, fr2 of 768 states. 

This module is formally specified by 4 predicate logic formulas and 12 temporal 

logic formulas shown in the appendix. Logic formulas were translated into FSMs 

rlw f r2, r2w f r2 ... ) r16w f r2 " 
The specification FSM Sw fr2 is constructed from the syn- 

chronous product of rlw fr2, r2w fr2 .... r16w fr2 with the asynchronous products of the 

FSMs modelling the 8 elementary components. 
Controller Cw fr2 is synthesised from process model Gz� fr2 and specification Sw fr2 

using algorithm 3.1. By construction, Cw fr2 agrees with process Gw f,. 2 and gener- 

ates a closed loop response on Gw fr2 which conforms to specification Sw fr2 and is 

nonblocking. The 37 state FSM generating L(Cwfr2), including state variables, is 
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Cont- Process Model Construction Controller Synthesis 
roller No. of No. of No. of No. of No. of No. of No. of 

Comp. Predicates Temporals States Statics Dynamics States 
Cwfi 6 0 0 64 6 0 1 
Cwfrl 8 0 1 768 3 2 5 
Cw f r2 8 0 1 768 4 12 37 
Cwfr3 8 0 1 768 3 2 6 
cwdi 7 0 0 128 7 0 1 
Cwdr 6 0 1 160 1 4 16 
Total 43 0 4 2656 24 20 6 

Table 7.7: Controller Synthesis Statistics for the Water-Rinse Operation 

shown in table A. 3. 
Synthesis details for controllers Cu, fi and Cwd, are supplied in Appendix sections 

A. 1.1 and A. 1.3 respectively. In particular, section A. 1.1 shows how interlocked 

to closed requirements for Cu, f2 are formally specified using forbidden states. In 
this case the solution of the synthesis problem (not shown) is the trivial one of a 
procedural controller with one state and no transitions. Table 7.7 summarises some 
important statistics in the solution of each synthesis problem. 

7.1.3.4 Structured Modular Control 

The six modular controllers synthesised above are now combined in series and par- 
allel into the structured modular controller Cu, which implements the water-rinse 
operation. The control structure is represented by the network of process models 
shown in figure 7.4. In what follows, it is shown how the properties of nonblocking 

and conformance to specification propagate through the control hierarchy. 

Ew f,. -A Class II System 

A control structure comprised of the synthesised controllers Cw f ri , 
Cwfr2 and Cw f,. 3 

in series is proposed for the system defined by Ew fr. By lemma 4.4, the marked 

closed loop behaviour L7z (Cw frl -4 Cw fr2 -+ C2� fr3/G,, fr) is given by: 

Lm(Cwfr1 +Cwfr2 --+Cwfr3/Gwfr) _ 

Lm(Cwfrl/Hwfrl)"a1"Lm(Cwfr2/Hwfr2)"c12"Lm(Cwfr3/Hwfr3) ý7"1ý 

For convenience, Cw frl -+ Cwfr2 + Cwfr3 is written Cw f,.. By the reductive prop- 
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erty it follows that the closed loop behaviour generated by Cw fr on Gu, f,. conforms 
to specification Sw fr and is nonblocking. 

Eu, d -A Class Ib System 

A control structure comprised of the synthesised controllers Cwd2 and Cwdr in parallel 
is proposed for the system defined by Ewd. By lemma 4.1, the marked closed loop 
behaviour Lm(CwditCwdr/Gwd) is given by: 

Lm(CwditCwdr/Gwd) = PwdiLm(CwdiIGwdi) n PwdrLm(CwdrlGwdr) (7.2) 

For convenience, Cwdi T Cwdr is written Cwd. Since alphabets 1 wdi and >wdr are 
disjoint, nonconflicting between 'P,, diLm(Cwdi/Gwdi) and PwdrLm(Cwdr/Gwdr) holds 

trivially. Therefore the closed loop behaviour generated by GWd under parallel 

control from C�d2 and Cwdr conforms to specification Swd and is nonblocking. 
Controller Cwd drains tank Ti and thereby constitutes the ISA-588.01 phase 

called water-drain. 

Eu, f-A Class Ib System 

A control structure comprised of Cu, fT and C, � f2 in parallel is proposed for the system 
defined by E1. The marked closed loop behaviour Lm(C,, fr t C,, fi/Gu, f) is given 
by: 

Lm(CwfrtCwfi/Gwf) = PwfrLm(Cwfr/Gwfr) n PwfiLm(Cw. fi/Gwfi) (7.3) 

For convenience, Cw fr t C� fti is written Cu, f. Since alphabets Ew fr and Ewfi 

are disjoint, nonconflicting between Pw frL�-, (Cw fr/Gwfr) and P, 
- 

fiLm(Cwfi/Gwfi) 

holds trivially. Therefore the closed loop behaviour generated by Gw f under parallel 

control from Cw fr and Cw fi conforms to specification Sw f and is nonblocking. 
Controller Cw f performs the function of cyclically filling tank Ti and thereby 

constitutes the water fill phase. 

Ewe -A Class Ib System 

A control structure comprised of C,, f and Cwd in parallel is proposed for the system 

defined by Ewe. In this case, alphabets Ew f and >wd are not disjoint as they share 

uncontrollable transitions generated by IT1 1. With the results from equations 
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7.1,7.2 and 7.3, nonconflicting between Pw f Lm (Cw f/Gw f) and P. -d' L" (CwdlGwd) 

was verified using TCT's nonconflicting algorithm (Wonham, 1996). Therefore the 

closed loop behaviour generated by Gw2 under parallel control from Cw f and Cwd 

conforms to specification Sw2 and is nonblocking 

written as Cw2 

Eu, -A Class Ia System 

For convenience, Cw ft Cwd is 

The system defined by Eu, is controlled by the reduced domain controller Cwt. By 
the reductive properties of class la systems, it follows that Cwt generates a closed 
loop behaviour on Gu, which is nonblocking and conforms to specification Sw. For 

convenience Cu, 2 is written Cu, 
. 

In summary, a structured modular controller Cu, has been synthesised to im- 

plement the water-rinse operation. Cu, is guaranteed to generate a closed loop be- 
haviour which terminates at the goal state and is within specification at all times. 
A pictorial representation of the structured modular controller is shown in figure 
7.5. 

-------------------------------------------------- ----------------------------------------------- 
------------------------------------ 

C 
rl r2 w r3 .,, 

------------------------------------------ 

ý' wdi 

-------------------------------------------- 
-------------------------------------------------------- 

7.1.3.5 

Figure 7.5: Network of Controllers for the Water-Rinse Operation 

Translation of Procedural Controllers 

The six procedural controllers synthesised above were translated into PARACODE 

for implementation on the ACCOS 30 control system. The PARACODE transition 

lookup table employed by translation algorithm 6.1 is shown in Appendix C. Each 

sequence was automatically prefixed with pre-checks (algorithm 6.2) and inhibits 

(algorithm 6.3). Note that for this case study, inhibits are generated using the 
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Controller Inhibits Pre- 
Checks 

FSM 
Logic 

Sub- 
Total 

Comments Total 

Cw fi 0 21 5 26 26 52 
Cwfrl 8 26 19 53 28 81 
Cw f r2 10 26 149 185 64 249 
Cw 

f r3 8 26 22 56 30 86 
Cwdi 0 19 5 24 25 49 
Cwdr 20 22 66 108 39 147 
Total 46 140 266 1 1 452 212 664 

Table 7.8: PARACODE Statistics for the Water-Rinse Operation 
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heuristic presented in section 6.4.2. Formal inhibit design is impractical since it 

requires each controller as a FSM. This would demand the manual translation of 
about 100 existing batch pilot plant PARACODE sequences into equivalent FSM 

controllers. 
Table 7.8 presents the statistics for the translation of each controller into PARA- 

CODE. The statistics are presented in terms of lines of automatically generated code 
for each part of the sequence. The complete PARACODE for sequences derived from 

controllers Cw f2, Cw fr2 and Cwdr is presented in Appendix sections A. 2.1, A. 2.2 and 
A. 2.3 respectively. For example, the code shown in section A. 2.1 comprises only 

pre-checks of interlocked to closed items as required by the specification. 

7.1.3.6 Implementation Results 

The structured modular controller for the water-rinse operation was implemented 

as follows. A small "driver" PARACODE sequence was written (manually) for 

starting the sequences for the two parallel phases water fill and water-drain. The 

completion of both the water-fill and water-drain phases signals the completion of 

the water-rinse operation. 
The driver sequence for the water fill phase starts controller Cw fi in parallel with 

Cw frl . 
When controller Cw f, l reaches a marked state it is abeyed and controller 

Cw f r2 is started. Similarly, Cw f r3 is started when Cw fr2 achieves a marked state. 
Only when Cw f r3 and Cw fi are simultaneously in a marked state is the water fill 

phase complete. 
The driver sequence for the water-drain phase starts controller Cwdi in parallel 

with Cwdr and awaits the simultaneous achievement of marked states in both before 

signalling completion. 
Each automatically generated sequence plus the manually written driver se- 
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quences for the six modular controllers were compiled on the ACCOS 300 and 
downloaded for implementation on the ACCOS 30. Experimental data was col- 
lected for a run of the water-rinse operation using the ACCLOG data logging 
facility. 

Figure 7.6 shows the level profile in tank Ti for a typical run. From the initial 

state at time 0, the water-rinse operation began by opening the water feed and 
drain routes and starting pump P6. Pump P6 deenergises when the level in Ti 
(as measured by IT1-1) achieves 20L. As shown in figure 7.6, the level overshoots 
20L due to sampling delays. Meanwhile, pump P1 drains Ti so that the level in 
Ti cycles between 6L and 20L as specified. At time 290s, the lid of Ti is opened 
and the controller responds accordingly by freezing the timer and the water fill 

phase. As the level decreases below 1.5L, pump P1 deenergises. When the lid is 

closed at time 400s the water fill and water-drain phases restart. Cyclical operation 
continues as usual until the 10 minute timer expires. Ti is then drained to 1.5L, 

and the fill and drain routes return to their relaxed states. 
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Figure 7.6: Level Profile and Lid Position for the Water-Rinse Operation 

7.1.4 The Detergent-Service Operation 

---------------------------------------- --------------------- I ------------------- 

The detergent-service operation employs only the detergent-station unit (figure 7.2) 

and is to proceed as follows. At the start of the operation, each elementary compo- 
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nent must be in its relaxed state and T7 full of water. Fluid is to be recycled around 
T7 by energising pump P6. Steam is admitted to HE3 and PI controller ICI-8 is to 

control the outlet temperature to a setpoint of 80C. An outlet temperature above 
90C initiates an emergency isolation of steam. Steam is also isolated if there is 

no flowing process stream through HE3 (i. e. if tank T7 runs dry or if pump P6 

deenergises). The content of T7 is heated to a temperature of 75C. 

Concentrated caustic is dosed to tank T7 via pump P10. The caustic is mixed 
by fluid recirculation around T7. Due to the slow mixing dynamics, P10 is energised 
intermittently (10s on, 30s off) so as to dose small quantities of caustic at a time 

until the required detergent concentration is achieved as detected by conductivity 

switch IS1-3. An emergency isolation of caustic initiates if tank T7 runs dry or if 

mixing by recirculation ceases (i. e. if P6 deenergises). 

7.1.4.1 Parallel Decomposition 

Table 7.9 shows the partition of Ed, the set of 19 FSMs modelling elementary 

components of the detergent-station unit. The first partition identifies Edl as the 

elementary components involved in heating and caustic dosing. Ed2 includes compo- 

nents for recycling fluid around T7. Edl and Ed2 share only elementary component 
IS1-2. Process model Gd and specification Sd are thereby decomposed into reduced 

processes Gdl and Gd2 and specifications Shc and Sd2 constructed for systems Edl 

and Ed2 respectively. Ed is a class Ib system since > d1 and Ede share only uncon- 

trollable transitions generated by ISl-2. 

Edl is further decomposed into intersecting sets Ehe and Edc. Ehu comprises 

elementary components employed for heating the fluid in tank T7. Edc comprises 

elementary components employed for dosing caustic to tank T7. Since Eh and Edc 

share elementary components P6-FB and IS1-2, Chu and ý3dc share only uncontrol- 
lable events and Edl constitutes a class Ib system. 

Ed2 is further decomposed into disjoint sets Ei (i. e. those component valves 

which are interlocked to their relaxed state) and the remainder ETA. Ed2 is a class 
Ib system since E, i and E, share no controllable events. 

Table 7.9 summarises the partitioning of Ed into the four modules Eh, Edc, Erc 

and Eni 
. 

7.1.4.2 Synthesis of Procedural Controllers 

A model based procedural controller was synthesised for the four modules identified 

in table 7.9. Table 7.10 summarises some important statistics in the solution of each 

modular synthesis. Full synthesis details are supplied in Appendix sections B. 1.1, 
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Elementary Partition Ed Partition Edl Partition Ed2 
Component Edl Ed2 Ehu Edc Erc Eri 

AV1-16 x x 
AV1-15 x x 
AV1-10 x x 
AVI-20 x x 
AV 1-24 x x 
DDV1-8 x x 
AV1-22 x x 
AV1-25 x x 
AV1-14 x x 
P6 x x 
IS1-1 x x 
IS 1-2 x x x x x 
P10 x x 
IS1-3 x x 
P6-FB x x x 
ITI-17 x x 
ITI-16 x x 
AV1-4 x x 
ICI-8 x x 

Table 7.9: Partition Table for the Detergent-Service Operation 
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B. 1.2 and B. 1.3 for controllers CdC, Ch and Crc respectively. It is noted that two 

additional timer models, TIMER-10 and TIMER-30 have been added to Ed in 

order to specify the timing requirements for pump P10. FSM models for these 
timers comprise two states Idle and Released. These are simpler than TIMER-600 

with 4 states since caustic dosing may continue uninterrupted. In TIMER-10 and 
TIMER-30, a controllable transition changes the timer state from Idle to Released, 

while an uncontrollable transition, corresponding to the expiry of the timer, returns 
the state to Idle. 

7.1.4.3 Structured Modular Control 

Ed2 defines a class Ib system. A control structure comprised of the synthesised 

controllers Crc and CTZ in parallel is proposed for this system. The marked closed 
loop behaviour Lm (Crc t Cri/Gd2) is given by: 

Lm (Crc 1 cri/Gd2) = 2'L (Girc/Grc) n Pri' Lm (Cri/Gri) (7.4) 

For convenience, Crc 1 GI is written Cd2. Since alphabets arc and Ijri are dis- 
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Cont- Process Model Construction Controller Synthesis 
roller No. of No. of No. of No. of No. of No. of No. of 

Comp. Predicates Temporals States Statics Dynamics States 
Cri 6 0 0 64 6 0 1 
Crc 6 1 2 48 0 4 9 
Cdc 6 0 0 64 1 10 31 
Chu 6 0 1 64 1 10 22 

Total 24 1 3 240 8 24 63 

Table 7.10: Controller Synthesis Statistics for the Detergent-Service Operation 

joint, nonconflicting between P,, 'Lm(Crc/Grc) and P,: Z1Lm(Cri/Gri) holds trivially. 
Therefore the closed loop behaviour generated by Gd2 under parallel control from 

Crc and Cri conforms to specification Sd2 and is nonblocking. Controller Cd2 recycles 
fluid around T7 and thereby constitutes the recycle phase. 

Similarly, a parallel control structure comprised of Chu and CdC is proposed for 

the class Ib system defined by Edl. Controller CdC is called the caustic-dose phase 

and Chi is called the heat-up phase. Lm Chu t Cdc/Gdl) is given by: 

Lm(ChutCdc/Gdl) = Phi Lm(C'hu/Ghu) nP 'Lm(Cdc/Gdc) (7.5) 

For convenience, Ch,, T Cd, is written Cdl 
. 

In this case, > hu and Fldc share 

uncontrollable transitions generated by P6-FB and IS1-2 and the nonconflicting 

property between PWu'Lm,,, (Chu/Ghu) and Pd, 1Lm(Cdc/Gdc) was shown using the TCT 

algorithm. Therefore the closed loop behaviour generated by Gdl under parallel 

control from Chu and Cd, is nonblocking and conforms to specification Sdl. 

Finally, Ed also defines a class Ib system, controlled by Cdl and Cd2 in parallel. 
The property of nonconflicting between Pdi1 Lm (Cdl /Gd1) and Pd21 Lm (Cd2 /Gd2) was 

shown by calculation using the results from equation 7.4 and 7.5. Therefore the 

closed loop behaviour generated by Gd under parallel control from Cdl and Cd2 is 

nonblocking and conforms to specification Sd. 

Thus a structured modular controller comprised of three parallel phases has 

been synthesised for the detergent-service operation. This structured controller is 

guaranteed to terminate at the process goal state while at all times operating within 

specification. 

7.1.4.4 Translation of Procedural Controllers 

Table 7.11 summarises the statistics for the automatically generated PARACODE 

sequences for each synthesised controller. Controllers were translated using the 
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lookup table supplied in Appendix C. Complete PARACODE listings for controllers 
Cdt, Chu and C, are supplied in Appendix sections B. 2.1, B. 2.2 and B. 2.3. 

Controller Inhibits Pre- 
Checks 

FSM 
Logic 

Sub- 
Total 

Comments Total 

Cri 0 19 5 24 25 49 
Crc 10 21 32 63 36 99 
Cdc 1 21 163 185 62 247 
Chu 0 23 103 126 53 179 

Total 11 84 303 1 1 398 176 574 

Table 7.11: PARACODE Statistics for the Detergent-Service Operation 

7.1.4.5 Implementation Results 

The detergent-service operation was implemented on the batch pilot plant as fol- 
lows. A small "driver" PARACODE sequence was written (manually) to start the 
the three parallel phases recycle, heat-up and caustic-dose. The detergent-service 

operation is complete when all three phases signal completion. 
The driver sequence for the recycle phase starts controllers Crj and Crc at the 

same time. When both controllers are simultaneously in a marked state, the goal 
of the phase is achieved and signalled to the operation driver. 

Figure 7.7 shows an experimental trace of the temperatures and pump status 
for a typical run of the detergent-service operation. In this run, a leak from tank 
T7 was simulated by manually overriding the plant feedback from IS1-1 and IS1-2. 
At time 1070s, the dry tank was detected and the controller reacted appropriately 
by deenergising the caustic dosing pump P l0, isolating the steam and deenergising 

the recirculation pump P6. 

At time 1190s, the tank is refilled (i. e. the manual overrides on IS1-1 and IS1-2 

are removed) and the recycle, heat-up and caustic-dose phases restart as usual. 
The temperature profiles in figure 7.7 are not smooth due to the imposed process 

upset. The continuous controller ICI-8 overshoots the setpoint temperature of 
80C, but never achieves the emergency threshold of 90C. The operation is complete 

when both conductivity switch IS1-3 has triggered (time 1360s), indicating that the 

required concentration of caustic in the detergent mixture has been achieved, and 

when IT1-17 registers 75C (time 1550s). 
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7.1.5 The Detergent-Clean Operation 

The detergent-clean operation employs the feed-preparation and detergent-station 

units. It is similar to the water-rinse operation with the exception that the feed 

is detergent from T7 which is sprayed into Ti under high pressure from pump P6. 
Effluent from T1 is returned to T7. The control logic is also modified slightly in 

order to reduce the number of start-ups (and therefore future maintenance costs) 
of pump P6. P6 is energised throughout the operation, and flow is to be diverted 
back to T7 via AV1-16 when the level in Ti exceeds 20L. 

A structured modular controller for the detergent-clean operation was synthe- 
sised as for the water-rinse operation. Within the structured controller, two paral- 
lel controllers, Cdf and Cd, were identified as ISA-588.01 phases detergent fill and 
detergent-return. Where appropriate, the nonconflicting test was applied to ensure 
that the structured modular controller generates a closed loop behaviour on the 

process which both conforms to specification and is nonblocking. 
The modular controllers were translated into PARACODE and implemented via 

a driver sequence on the ACCOS 30. The level profile in T1 for a typical run of 
the detergent-clean operation is shown in figure 7.8. The status of valve AV1-15 is 

also shown to indicate the times at which flow from pump P6 is diverted back to 
T7. Although not shown in figure 7.8, the detergent-clean operation responds in 

the same way as the water-rinse when the lid of Ti is opened. 

7.1.6 Summary of Case Study I 

The CIP-feed unit procedure was (manually) decomposed into three operations 

summarised in table 7.2. Formal methods were employed for the synthesis of struc- 
tured modular controllers for each operation. In each case it was proved that the 

structured modular controller generates a closed loop response on the model of the 

corresponding unit (s) which was nonblocking and within specification. 
Using the ISA-S88.01 axiom that units are physically isolated parts of the plant, 

it follows that unit models are internally consistent with respect to the overall 

model of the batch pilot plant. Since specifications for operations are local to a 

unit, then operations within units constitute class Ia systems. It then follows from 

the reductive property of class la systems that the synthesised structured modular 

controllers generate a closed loop behaviour on the whole batch pilot plant model 

which is nonblocking and within specification. Thus each operation is guaranteed 
to reach its goal state while at all times operating within specification. 

Within the structured modular controllers, controllers consistent with the ISA- 

S88.01 definition of a phase were identified. Operations were implemented by the 
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Figure 7.8: Level Profile for the Detergent-Clean Operation 

parallel execution of phases. A summary of the phases is presented in table 7.12 

and the complete control structure is shown in figure 7.9. 

Operation Phase 
Name Description 

Water-Rinse Water-Fill Filling Ti with water 
Water-Drain Draining Ti of effluent 

Detergent-Service Caustic-Dose Dosing of caustic to T7 
Heat- Up Heating of fluid in T7 
Recycle Recycling fluid around T7 

Detergent-Clean Detergent-Fill Filling Ti with detergent 
Detergent-Return Return of detergent from Ti to T7 

Table 7.12: Phases in the CIP-Feed Unit Procedure 

Formally derived controllers for each operation were translated into PARA- 

CODE, compiled and downloaded to the ACCOS control system for implementation 

on the batch pilot plant. A level and temperature trace for a complete CIP-feed 

unit procedure is shown in figure 7.10. The unit procedure was implemented ac- 

cording to the order of operations shown on the lower axis of figure 7.10. For this 

run, drain pump P1 was slowed relative to previous operation, to introduce an ar- 
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Figure 7.9: Control Hierarchy for the CIP-Feed Unit Procedure 
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bitrary process disturbance and to reduce water and detergent usage. As seen from 

the figure, no emergency actions were necessary throughout the run. 
Together with the results from figure 7.6, showing the response to an uncon- 

trolled lid opening, these results show that the CIP-feed unit procedure performs 

as specified and is robust to process disturbances. 
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Figure 7.10: Temperature and Level Profile for the CIP-Feed Unit Procedure 
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7.2 Case Study II - The Melinar Paste Plant 

7.2.1 Overview of the Melinar Paste Plant 

This case study involves the ICI Melinar paste plant shown in figure 7.11 (repro- 
duced from Gallo (1996)). This plant is a single purpose, single product plant 
comprised of two interactive production trains A and B. Melinar paste is produced 
from four feedstocks including terephthalic acid (TA), caustic, glycol and E-26 (a 

proprietary initiator or catalyser) stored in dedicated vessels TSO, CFV, GFV and 
ESV, respectively. Melinar paste is stored in product vessel PSV. In addition to the 
feed vessels, the glycol volumetric measure vessel GMV is shared by the two pro- 
duction trains. Each train has a dedicated TA weigh vessel (TWVA and TWVB), a 
volumetric measure vessel for caustic (CMVA and CMVB) and a mix vessel (MIXVA 

and MIXVB). 
Most material handling in the Melinar paste plant is done by gravity and the 

solids handling vessels TSO, TWVA and TWVB are provided with aerators Al, 
A2 and A3 for this purpose. Weigh vessels TWVA and TWVB are fitted also with 
load cells SW1 and SW2 respectively. Volumetric measure vessels GMV, CMVA 

and CMVB are equipped with high and low level switches SF1, SF2, SF3, SEI, SE2 

and SE3 respectively. Mix vessels MIXVA and MIXVB are fitted with agitators 
Ml and M2, low level switches SL1 and SL2 and paste pumps P1 and P2 for either 
transporting product to storage or mixing by recirculation. Quantities of E-26 are 

metered with the flow integrator F. Finally, a level probe SL3 detects the presence 

or otherwise of sufficient headspace in PSV for an additional batch of product from 

either MIXVA or MIXVB. 

Production in train A proceeds as follows. Initially, caustic and glycol are dis- 

pensed from storage into volumetric measure vessels CMVA and GMV, respectively. 
The amounts are transferred simultaneously to MIXVA for mixing by recirculation. 
Meanwhile, the required quantity of solid TA from storage is weighed in TWVA. TA 

is added to the caustic/glycol solution in parallel with E-26 injection. Polymerisa- 

tion occurs in MIXVA under agitation from M1. Finally the batch of Melinar paste 
is pumped from MIXVA to PSV. Each transfer takes a nominal time beyond which 

an alarm will sound indicating a sticking valve or some other abnormal situation. 
Production in train B is identical. 

7.2.2 The Make-Paste Procedure 

Unlike the multipurpose batch plant of the previous case study, only one proce- 
dure, make-paste is defined for the single product Melinar paste plant. Within 
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Figure 7.11: The Melinar Paste Plant 
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the male paste procedure, 6 unit procedures and 11 operations were identified. 

Unit procedures and operations are summarised in table 7.13. In this case study, 

operations correspond directly to unit procedures endowed with unit identity. For 

example, the measure-caustic unit procedure yields two operations measure-caustic 
A and measure-caustic B. Table 7.13 also shows the order of unit procedures in the 
Melinar paste recipe. 

Unit Recipe Description Op. Units Used 
Procedure Step 
Measure- 1 Measure quantity of GFV, GMV 
Glycol glycol 
Measure- 1 Measure quantity of A CFV, CM VA 
Caustic caustic B CFV, CMVB 
Weigh- 1/2 Weigh quantity of TA A TSO, TW VA 
TA B TSO, TW VB 
Mix- 2 Charge and homogenise A GMV, CMVA, MIX VA 
G&C glycol and caustic B GMV, CMVB, MIX VB 
React- 3 Polymerize by charging A TW VA, ESV, MIX VA 
TA&E-26 TA and E-26 B TWVB, ESV, MIXVB 
Store- 4 Charge storage vessel A MIX VA, PSV 
Paste with Melinar paste B MIX VB, PSV 

Table 7.13: Unit Procedures and Operations in the Make-Paste Procedure 

Twelve ISA-S88.01 units are identified in the Melinar paste plant corresponding 
to vessels plus associated instrumentation and valves. For example, TSO is a unit 

comprised of the TA silo, aerator Al and valves V1 and V2. Table 7.14 lists the 

elementary components in each unit and table 7.13 shows which units are employed 

in each operation. 

7.2.3 Controllers for Operations 

As for the previous case study, controllers are synthesised formally for each opera- 

tion using process models defined within unit boundaries and specifications corre- 

sponding to the local user requirements. For this case study, user requirements were 

provided by ICI, and synthesis details for the 11 operations are reported by Gallo 

(1996). For 7 operations, controllers were synthesised directly using the techniques 

of section 3.6. These controllers correspond to the ISA-588.01 phases described in 

table 7.15. By virtue of plant symmetry, controllers for train B are isomorphic with 

those from train A, as reflected in the controller labels. For example, controller Cl,, 

implements the phase which weighs a quantity of TA from TSO in TWVA, while 
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Unit Elementary Components 
TSO V1, V2, Al 
TWVA V1, SW1, A2, V3 
TWVB V2, SW2, A3, V4 
GFV V6 
GMV V6, SF1, SE1, V9, Vlo 
CFV V5, V7 
CMVA V5, SF2, SE2, V8 
CMVB V7, SF3, SE3, V11 
MIX VA V8, V3, V9, V12, M1, SL1, V14, P1, V15, V16 
MIXVB V11, V4, V10, V13, M2, SL2, V17, P2, V18, V19 
ESV F, V12, V13 
PSV V16, V19, SL3 

Table 7.14: Elementary Components in Melinar Paste Plant Units 

Operation Controller Phase Description 
Measure- C2 Measure quantity of glycol in GMV 
Glycol 
Measure- A C3a Measure quantity of caustic in CMVA 
Caustic B C3b Measure quantity of caustic in CMVB 
Weigh- A Cla Weigh quantity of TA in TWVA 
TA B Clb Weigh quantity of TA in TWVB 
Store- A Clla Charge PSV with paste from MIXVA 
Paste B Cub Charge PSV with paste from MIXVB 

Table 7.15: Phases for 7 Operations in the Make-Paste Procedure 

Cib implements the equivalent phase in TWVB. 
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Controllers for the other 4 operations are shown in table 7.16. These were syn- 

thesised using structured modular techniques. For example, a structured modular 

controller was proposed for the mix-G&C A operation comprised of three parallel 

controllers C4a, C5a and C6a, shown in figure 7.12. Controller Cod implements the 

ISA-588.01 phase which transfers caustic from CMVA to MIXVA, C5,, the phase 

which transfers glycol from GMV to MIXVA and C6a the phase which recycles 
fluid around MIXVA. Similarly, operation mix-G&C B is performed by the parallel 

combination of controllers Cob, C5b and C6b. 

Operation react-TA&E-26 A is performed by the series/parallel structure of 

modular controllers C7a, C8a, C9a and Cloa shown in figure 7.13. Similarly, operation 

react-TA PE-26 B is performed by the series/parallel structure of C7b, C8b, C9b and 
ClOb 
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II ------------------ 

Figure 7.12: Network of Controllers for the Mix-GPC A Operation 
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Table 7.16 summarises the phases of the 4 operations not described in table 7.15. 
Each procedural controller maps directly to an ISA-588.01 phase. The complete 
ISA-588.01 control hierarchy for the make paste procedure is shown in figure 7.14 
(reproduced from Gallo (1996)). 

I 
------------------------- 

1 V t/ 

II 

8a l0a 
` 

I 

--------------------------------- 
---------------------------------------------- 

Figure 7.13: Network of Controllers for the React-TA&E-26 A Operation 

Synthesis statistics for the complete set of 21 procedural controllers are compiled 
in table 7.17. The detailed results are supplied by Gallo (1996). 

7.2.4 Controller Inhibits 

Unlike the previous case study, the 21 controllers defined for this plant are already in 

the form of a FSM. Therefore the formal inhibit design techniques of section 5.2.3 

are readily applicable. The inhibit design criterion can identify noncooperation 
between two controllers and therein the necessity for controller inhibits. In this 

section, a rigorous inhibit analysis is presented for each controller pair, of which 
there are 21 x 20 = 420. 

For the case of controllers defined over disjoint alphabets, the trivial result of 
the inhibit analysis is that the pair cooperate. Of the 420 controller pairs, 360 fall 

into this category and need not be analysed further. 
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Operation Controller Phase Description 
Mix- C4a Transfer caustic from CMVA to MIXVA 
G&C A C5a Transfer glycol from GMV to MIXVA 

C6a Recycle fluid around MIXVA 
Mix- CO Transfer caustic from CMVB to MIXVB 
GPC B C5b Transfer glycol from GMV to MIXVB 

C6b Recycle fluid around MIXVB 
React- C7a Agitate contents of MIXVA 
TA&E-26 A C8a Transfer TA from TWVA to MIXVA 

C9a Transfer E-26 from ESV to MIXVA 
Cloa Recycle fluid around MIXVA 

React- C7b Agitate contents of MIXVB 
TA ¬E-26 B C8b Transfer TA from TWVB to MIXVB 

C9b Transfer E-26 from ESV to MIXVB 
Clob Recycle fluid around MIXVB 

Table 7.16: Phases for 4 Operations in the Make-Paste Procedure 

Cont- Process Model Construction Controller Synthesis 
roller No. of No. of No. of No. of No. of No. of No. of 

Comp. Pred. Temp. States Statics Dyn. States 
Cla, Cib 8 0 4 384 3 10 13 

C2 7 1 2 144 2 8 17 
C3a 

, 
c3b 6 1 2 72 1 7 17 

C4a, CO 6 1 2 72 1 7 17 
C5a 

i C5b 7 1 2 144 2 7 17 
C6a, C6b 6 0 1 64 5 0 2 
C7a, C7b 6 0 1 64 1 2 4 
Cga, C8b 6 0 2 96 1 7 13 
Cga, C9b 6 0 1 144 0 9 12 

C10a, Ciob 6 0 1 64 2 2 4 
C11a, Cilb 9 0 2 768 1 10 25 

Total 73 4 20 2016 19 69 141 

Table 7.17: Controller Synthesis Statistics for the Make-Paste Procedure 
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The diagonal matrices in tables 7.18 and 7.19 categorise the remaining 60 con- 
troller pairs into inter and intratrain matches respectively. A "x" entry at (i, j) of 
table 7.18 indicates that the alphabets of controllers Cia and COQ are not disjoint. 
Formal inhibit analysis is required for the 18 identified pairs, the result of which 
applies equally to Cb and Cab. Similarly, a "x" entry at (i, j) of table 7.19 indi- 

cates that the alphabets of controllers Ci,, and Cab are not disjoint. Formal inhibit 

analysis is required for the 12 identified pairs, the result of which applies equally to 
Cb and Cja. 

Samples of the inhibit calculations for three pairs are presented in the following 

sections. The complete set of results are reported in tables 7.20 and 7.21. A "0" 

entry in table 7.20 indicates that Cja cooperates with Cia and no inhibit of Cja by 
Cia, is necessary. A nonzero entry means that Cja is noncooperative with Cia and 
Cia must inhibit Cja,. A "1" entry shows that the cooperation test failed due to a 
specification violation only. A "2" entry shows a failure due to blocking only. A 
"3" entry indicates failure due to both specification violation and blocking. The 
inhibits apply equally to Cib versus Cab. Table 7.21 presents the intratrain inhibits 
in the same way. 

Sample Inhibit Calculation i 

This section presents details for the inhibit analysis between controllers Cla, and 
C8b. Controller Cl,, implements the phase which weighs a quantity of TA in TWVA 

while C8b implements the phase which transfers TA from TWVB to MIXVB. 

FSM models for the controllers Cl,, and C8b, specifications Sla and S8b and 

reduced process models Gla and G8b are provided by Gallo (1996). For brevity the 

FSMs are not reproduced here, but it is noted that the two process models share 

elementary component V2. In both specifications, V2 is interlocked to closed. 
By construction, Ej,, and E8b share controllable events 41 and 42 generated by 

V2. The elementary component FSM V2 is therefore augmented with duplicate 

transitions 17 and 18 as shown in figure 7.15. This modification is propagated 

through process models Gla and G8b and specifications Slo, and S8b. In C8b, tran- 

sitions 41 and 42 are relabelled 17 and 18 respectively. Therefore, the requirement 
Ala f Ebb C Eu is now satisfied. 

The language calculations for the inhibit design procedure are as follows. Firstly 

the combined closed loop language L(C1at C8b/Mla, 8b) is calculated as: 

L(C1atC8b/Mla, 8b) _ p1a' 
a"ýla"L(S 

lacla)I n P8blly'8b"a8b. L(S 8bC8b)I 

fL(Rla, 8b) (1 L(S S Mla, 8b) (7.6) la 8b 
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1 2 3 4 5 6 7 8 9 10 11 
1 - x 
2 - x 
3 - x 
4 x - 
5 x - 
6 - x x x 
7 x - x x 
8 x - 
9 - 
10 x x - x 
11 x x x - 

Table 7.18: Intertrain Controller Inhibit Calculations 

1 3 4 5 6 7 8 9 10 11 
1 x x 
3 
4 
5 x 
6 x 
7 x 
8 x 
9 x 
10 x 
11 x x x x 
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Table 7.19: Intratrain Controller Inhibit Calculations 
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Figure 7.15: FSM Model for Valve V2 

where the regulator language L(Rla, 8b) is constructed from: 

L(Rla, 8b) _ rl*"O'1a"[Iý 
- 

Iý1a, 8b]*"08b"E* UE *"°8b"[E - 
E8b, 

lal*"Oýla"E* 

160 

and the marked process model Mla, 8b from the synchronous product of the reduced 
process models: 

L(Mla, 8b) = Pa1L(Gla) n P8b1L(G8b) 

Lm(Mla, 8b) = P1a1Lm(Gla) n P8b1L(G8b) 

Using these languages, the following results were obtained: 

1. L(ClaT C8b/Mla, 8b) C E*. Q1a. P1a1L(Sla) 

2. 
lallý'la"ýla"Lm(S lacla)} n ý8b1{ý'Sb"78b"L(S gbý! 8b)} (1 L(Rla, 8b)] and 

L (SlaS M1) are nonconflicting m la 8b a, 86 

The first result shows that the closed loop language generated by both controllers 
on the process is within the specification of the first. The second result shows that 

the goal state of Cl,, is always achievable. Therefore, C8b cooperates with Cia and 

no inhibit of C8b is required from Cl,,. This result is reported as a0 at (1,8) of 

table 7.21. 

Similarly it was shown by calculation that: 

1. L(Cla tC8b/Mla, 8b) 9 Yj*. 986. P 
blL(Sgb) 

2. [P8bilý8b'78b'Lm(S 
8bC8b)} 

n ýlal{ýlaQ1a. L(s la('la)} (1 L(Rla, 8b)] and 
Lm (cS8b 

cSiä M8b, 1a) are nonconflicting 
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Therefore Cl,, cooperates with C8b and there is no requirement for C8b to inhibit 
Cia. 

In summary, despite the shared controllable elementary component V2, no in- 
hibit is required between Cl,, and C8b. This is because both controllers interlock to 
closed valve V2, and can therefore operate independently as expected. 

Sample Inhibit Calculation ii 

In this section, the inhibit analysis for the pair C2 and C5a is presented. Controller 
C2 implements the phase which measures a quantity of glycol in GMV, while C5a, 
implements the phase which transfers glycol from GMV to MIXVA. These two con- 
trollers share elementary components SEI and SF1 which generate uncontrollable 
events and V6, V9 and V10 which generate controllable events. As before, dupli- 

cate transitions are augmented to FSM models of the shared elementary components 
which generate controllable transitions. 

The language calculations for this example yields the following: 

1. L(C2T C5a/M2,5a) *. 0'2. P2-1L(S2) 

2. [P2 1{>2. 
Q2. L (S 2C2)} n -P5a11F, 5a. U5a. L(S 5aC5a)} n L(R2,5a)] and 

Lm, (S2 SSa M2,5 a) are nonconflicting. 

The second result means that the goal state of controller C2 is achievable even 

when C5Q is active. This means that it is always possible for GMV to fill after the 
draining phase begins. However, the first result shows that the combined closed 
loop response violates the specification S2. This violation arises from C5a opening 

valve V9, which is interlocked to closed by C2. Therefore C2 must inhibit C5a. This 

is reported as a1 at (2,5) of table 7.20. 

Similarly, the inhibit calculation for controller C5a, versus C2 yields the results: 

1. L(C2T C5a/M2,5a) E*"Q5a"P5a1 L(s5a) 

2. ýP5a11ý5a. Q5a. Lm(s 
5ac5a)} 

n p2 1{E2. 
Q2. L(S 

2C2)} n L(R2,5a)] and 
Lm (s5ä S2 M5a, 2) are nonconflicting. 

Therefore C5a, must also inhibit C2. 

Sample Inhibit Calculation iii 

Finally, the inhibit analysis is presented for the pair C7a and Clla. Controller C7a 

implements the phase which agitates the contents of MIXVA, and disables mixing 
by recycle. Controller Clla implements the phase which transfers a batch of paste 
from MIXVA to PSV. For this pair the language calculations yield: 
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1. L(C7atC11a/M7a, 
lla) 

>*"U7a"P7a1L(S7a) 

2. CP7allE7a. Oý7a. -m(8 7aý'7aýI n Pllalrlla"alla"L(SilaCllaýI n LýR7a, 
lla)] and 

Lm (S7as11' M are conflicting. l 7a lla 7a, lla 

3. L(C7atC11a/M7a, 
lla) 

9 E*"9lla"P11aL('Slla) 

4. [1 
ifý7'lla"Ulla"Lm(S 

11aClla)} n P7a1{ý'7a"Q7a"L(Sw7aC7a)} n L(R7a, 
lla)] and 

Lm (S11aS7aa 
Ila 7a 

Mlla, 
7a) conflicting. l 

The physical interpretation of the conflicting languages result is that both con- 
trollers deadlock or block the other from reaching its goal state. This occurs because 
the goal states of C7a and Clio, are inconsistent. For example, at the goal state of 
C7a, pump PI is deenergised and SL1 is covered, whereas the opposite is true for 
Ciia. In addition, interlock specifications on P1 and V16 are violated. The final 

result is that C7a, and Clla must inhibit each other. This is reported as a3 at (7,11) 

and (11,7) of table 7.20. 
The results for each inhibit calculation are compiled in tables 7.20 and 7.21. 

"0" entries in both tables indicated the common situation in which shared valves 
were interlocked to closed. This was the case for all nondiagonal pairs from table 
7.21, which reflects the decoupled operation of trains A and B. Conversely, "1" 

entries indicated a violation of interlocked to closed specifications. Both tables are 

symmetrical, except for the (6,7) and (7,6) entry of table 7.20. This indicates a 

special case in which C6a must inhibit C7a, while C7a need not inhibit C6,,. 

7.2.5 Operation Inhibits 

The procedure make paste is implemented by the set of unit procedures and oper- 
ations in table 7.13 ordered according to the process recipe. The scheduling and 
initiation of operations over time may be done either manually or automatically us- 
ing the batch management system SUPERBATCH as described in section 2.1.1. In 

either case it is necessary to define inhibits at the operation level so two operations 

which compete for the same unit resource can never be executed at the same time. 
For example, operations measure-glycol and mix-G4C A utilise the unit GMV and 
therefore must not run together. 

From the tables of controller inhibits (table 7.20,7.21), the operation inhibit pol- 
icy is constructed. For example, operation weigh-TA A (implemented by controller 
Cl,, ) must inhibit operation react-TABE-26 A (see figure 7.13) since controller Cla 

inhibits controller C8a. 
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1 2 3 4 5 6 7 8 9 10 11 
1 - 1 
2 - 1 
3 - 1 
4 1 - 
5 1 - 
6 - 3 2 3 
7 0 - 3 3 
8 1 - 
9 - 
10 2 3 - 1 
11 3 3 1 - 

Table 7.20: Intertrain Controller Inhibits 

1 3 4 5 6 7 8 9 10 11 
1 1 0 
3 
4 
5 1 
6 0 
7 0 
8 0 
9 1 
10 0 
11 0 0 0 3 
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Table 7.21: Intratrain Controller Inhibits 
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The resultant operation inhibit policy is shown in table 7.22. This table clearly 
indicates which operations can and cannot be operated simultaneously. For example 
the react-TA 4E-26 A operation must inhibit weigh-TA A, mix-G& C A, react- 
TA&E-26 B and store-paste A but not measure-glycol or measure-caustic A. In 
general, table 7.22 predicts that operations which share the same unit resource 
must inhibit each other. An exception to this rule is that measure-caustic A and 
measure-caustic B, which share unit CFV, need not inhibit one another. 

Operation No. 12 3456 7 8 9 10 111 
Measure-Glycol 1 - x x 
Measure- A 2 - x 
Caustic B 3 - x 
Weigh- A 4 -x x 
TA B 5 x- x 
Mix- A 6 xx - x x x 
G1C B 7 x xx xx 
React- A 8 xx - xx 
TA &E-26 B 9 x x x -x 
Store- A 10 x x -x 
Paste B 11 x xx- 

Table 7.22: Inhibited Operations in the Make-Paste Procedure 

7.2.6 Summary of Case Study II 

The Melinar paste plant is a single purpose single product plant comprised of two 
interactive production trains which compete for numerous resources. For the single 

procedure make-paste, 6 unit procedures, 11 operations and 21 phases were iden- 

tified. The inhibits policy at both the phase and operation level is critical to the 

operability, flexibility and safety of this plant. 
Each phase was implemented by a procedural controller. Pairs of controllers 

were analysed using the control theoretic criterion for the identification of controller 
inhibits as proposed in section 5.2.3. By virtue of plant symmetry in this special 

case, the result of the inhibit analysis for 18 intertrain and 12 intratrain controller 

pairs from train B could be inferred directly from the equivalent controller pairs 
from train A. Normally an inhibit analysis is required for all pairs of controllers. 

In general, the inhibit analysis showed that controllers which interlock to closed 
the same valves need not inhibit one another. In other cases, an inhibit was neces- 

sary either because an interlock to closed specification was violated or the combined 

closed loop response was blocked from reaching the goal state. For each pair, the 
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generated inhibits were consistent with engineering intuition. 
Inhibits between operations were easily inferred from the controller inhibits. Op- 

eration inhibits arm the operator or supervisory control system with the necessary 
information with which to properly interlock and schedule the batch operations. 
In this way, flexibility of the process is maximised with respect to the safety and 
operational constraints of the plant. An a posteriori analysis of the formally derived 
operation inhibits showed they were consistent with ICI's own inhibit policy, which 
was generated manually following a detailed analysis procedure. 

7.3 Further Applications 

A design technique identical to that presented in these case studies has also been 

applied to a small milk pasteurization plant. This plant, called PLANT X, is a 
hypothetical plant used internally within APV for standardising its engineering 
procedures for the design and implementation of control systems. A detailed flow- 

sheet for PLANT X is shown in figure 7.16 (reproduced from Presto Project P4 
(1996)). 

PLANT X comprises three units including the raw milk tank, pasteurizer and 
holding milk tank, and is operated as follows. Raw milk from delivery tankers is 
loaded into the raw milk tank in preparation for pasteurization. The pasteurization 

unit is then sterilised and brought to an equilibrated temperature by recirculation 

of hot water. Milk is then pumped through the pasteurizer under strict temperature 

control to the holding tank for eventual collection by product tankers. 
For this single product plant, the ISA-S88.01 procedure pasteurize-milk was de- 

composed into 3 unit procedures and 6 operations. Structured modular controllers 

were synthesised for each complex operation using parallel and series decomposition 

techniques. A total of 23 phases were identified for PLANT X. The controllers were 
then translated into PARACODE using the algorithms from chapter 6. A detailed 

description of the control hierarchy and the generated code is reported in Presto 

Project P4 (1996). In particular, the results were compared with APV's code for 

the same plant, which was found to contain a number of implementation and engi- 

neering errors. However the provably correct, automatically generated code was up 

to five times longer than the manually written equivalent. 

In the PLANT X case study, the formally synthesised controllers were demon- 

strated by simulation. This required a discrete/continuous hybrid dynamic model of 

the equipment and a discrete model of the controllers. Simulations were performed 
in gPROMS, the dynamic simulator from Imperial College. The results showed that 

the controllers performed to specification for the set of scenarios tested. 
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Chapter 8 

Conclusions and Future Work 

This thesis has extended Procedural Control Theory as a formal framework for the 
design of sequential controls for process automation systems. Following a review of 
the literature (chapter 2) in the field of formal techniques for the control of industrial 

processes, PCT emerged as a solid framework for modelling chemical processes as 
Discrete Event Systems and the specification, synthesis and analysis of sequential 
controllers for such systems. PCT is grounded in Supervisory Control Theory, yet 
with the important distinction that control action is forced as opposed to passive. 

Following the introductory PCT chapter (chapter 3) it was clear that the ex- 
isting techniques in PCT were limited to academic examples in which a process is 

controlled by a single small controller. PCT was then expanded (chapter 4) to ad- 
dress modelling, specification, synthesis and analysis of realistically sized systems. 
A decomposition strategy was proposed in which process models and specifications 

were reduced into modules amenable to treatment by the existing PCT techniques. 

Processes and specifications were reduced using parallel and series decomposition. 

Controllers from each modular synthesis were recombined to create a structured 

modular controller for the whole process. Three special classes of system were iden- 

tified for which it has been demonstrated that the properties of nonblocking and 

conformance to specification are reductive (i. e. if the property holds within each 

module then it holds for the whole system). A formal technique for the synthe- 

sis of structured hierarchical modular controllers for complex systems was thereby 

proposed. 
The main advantage of this approach is that it overcomes the state explosion 

which has so far limited the application of formal techniques, while retaining the 

ability to guarantee by design a set of critical controller properties. 
The second major theoretical advance addressed the design of inhibit policies for 

controllers operating in a multitasking environment. The inhibit function safeguards 

against the parallel operation of two potentially noncooperative controllers. An 
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inhibit design criterion was proposed based on the concepts of nonblocking and 
conformance to specification (chapter 5). This necessitated a formal consideration 
of controller initiation. 

To implement these techniques on industrial automation hardware, a set of algo- 
rithms was presented (chapter 6) for the automated generation of sequential control 
code directly from the formal PCT control structures. Control sequences comprise 
inhibits, pre-checks, processing (i. e. normal, emergency, alarm and restart) logic 

and termination logic. 

Finally the techniques of chapters 4,5 and 6 were demonstrated on two in- 
dustrially sized case studies (chapter 7). The first was a complex CIP unit pro- 
cedure comprised of three operations for a multipurpose, multiproduct batch pilot 
plant. The controllers for each operation were translated into an industrial control 
language, compiled and implemented directly on the batch pilot plant and tested 

extensively in practice. In summary, the controllers were found to operate within 
specification even when process disturbances were deliberately introduced. The 

second case study involved ICI's Melinar paste plant. For this case study an op- 

eration inhibit policy, consistent with ICI's operating policy, was derived using the 

proposed control theoretic criterion. 
In summary, this thesis has achieved the objectives set out on page 16 by: 

1. Extending the powerful analytical techniques of PCT to handle complex, re- 

alistically sized systems by the introduction of modular control concepts. 

2. Utilising the same control theoretic concepts to develop a criterion for the 

design of inhibits for multitasking control architectures. 

3. Developing automated techniques for the generation of sequential control code 
from the formal PCT representation of controllers. 

8.1 Significance of Formal Techniques 

Within a wider context, this thesis has forwarded a systematic technique for the 

development of provably correct software for the automation of chemical processes. 
In this context, provable correctness is equivalent to the properties of nonblocking 

and conformance to specification. By translating the formal PCT structures directly 

into sequential control code, almost all sources of error in hand generated code are 

eliminated. This is a significant achievement as it increases the confidence one can 

place in the control software before the commissioning stage. 
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As described in the introduction, there is a definite need for formal techniques 
in industry due to the increasing use of programmable electronic systems in safety 
critical applications. Any improvements in software quality which circumvent po- 
tential hazards are obviously beneficial. Besides the issue of safety, such techniques 

can also be justified on economic grounds considering the high cost of software de- 

velopment and production loss or equipment damage incurred by faulty software. 
Finally, formal techniques have numerous spin off benefits throughout the life cycle 
of the automation software. Improvements in the traceability of the design afforded 
by formal techniques aids code maintenance, documentation, portability, retrofit 
and reuse. 

It should be noted however that formal techniques are only as good as the math- 
ematical representation of the process and specification. The guarantee of safety 

afforded by formal techniques is degraded if the models are a poor representation 

of the actual process or if the process specification is flawed. Sound engineering 

practice coupled with powerful CAD tools can avoid or minimise modelling and 

specification errors. Additional confidence in the proposed software can be gained 
by testing against a rigorous dynamic model of the process prior to commissioning. 

8.2 Future Research 

On the basis of the proceeding material, five areas for future research are identified 

as follows: 

Observability Theory 

In this thesis it has been assumed that sensors and actuators are available for 

detecting any uncontrollable event or driving any controllable event in the process. 
In reality, a process event may have no corresponding sensor, or the sensor or 

actuator that normally detects or drives the event in question has failed. In this 

case, a means of assessing the process for controllability is necessary. This jSSkj2 
is called observability and is closely related to the concepts introduced in parallel 
decomposition, and in particular internal consistency. 

Observability theory would resolve two issues. Firstly it could be used to identify 

the consequences of sensor or actuator failure. If the analysis shows that dangerous 

states are reachable in the event of failure, then the control logic could be modified 

accordingly or safety critical instruments duplicated. Secondly, observability anal- 

ysis would lead to the development of novel inferential control techniques in the 

discrete domain. 
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Specification Modelling 

Present techniques for specification in PCT are somewhat unwieldy as shown in 

appendices A and B. A more industrially palatable formalism for specification is 

either structured text, Sequential Function Charts or Grafcet. An obvious exten- 
sion to this work is the development of translation tools which convert structured 
text, SFCs or Grafcets into FSMs in the same way that predicate and temporal 
logic is currently translated into the FSM domain. The result would be a specifica- 
tion technique which retains the mathematical rigour of PCT but with a far more 
intuitive and less theoretical means of input. 

Parallel Control with Shared Controllable Events 

Techniques proposed in this thesis for the synthesis of parallel controllers disallow 

sharing of controllable events. However, as shown later in section 5.2.4, it is possible 
to formulate the closed loop response from two controllers sharing items which 

generate controllable events. Therefore, future research could identify a class of 

systems (e. g. class Ic) which exploits this formulation to permit the synthesis of 

parallel controllers sharing items which generate controllable events. 

Continuous Checking 

The existing procedural control formalism excludes a mechanism of control called 
the continuous-check. The ACCOS 30 offers this functionality as could any PLC. 

The continuous-check works in conjunction with sequential logic by continuously 

monitoring the state of the process and taking predefined actions at the instant a 

given condition is met. Meanwhile, normal sequential control action is suspended. 
This mechanism of control is ideal for implementing a default set of emergency 

procedures if an abnormal process state is detected. In the existing procedural 

controller formalism, this mechanism can at best be modelled by repetitions of the 

same string of events from each wait state. Considerable reductions in the size of 

procedural controllers (and the corresponding sequential control code) would result 
from the incorporation of the continuous-check function into the formalism. 

CAD Implementation 

Finally the potential exists for exploiting the concepts introduced in this thesis in 

a computer aided tool for the design of sequential controls for chemical processes. 
The input and output of the CAD tool are conceived as follows. A P&ID is entered 

as a set of elementary components each selected from a standard library of discrete 
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models. Modular specifications are entered using a structured text language or 
Grafcet and automatically checked for consistency and conflict. The rigorous FSM 

calculations in building the process model from the elementary component models 
and synthesising the controller from this process model and specification would be 
hidden from the user. Tracebacks would aid the user in finding the specification or 

model fault in the event of an empty supremal controllable sublanguage. The tool 

could also automatically check that a system is of class Ia, Ib or II and thereby assist 
the user in designing complex control structures. Controller inhibit calculations 

could be entirely automated with no additional input. Finally, the C routines 
developed in this thesis could be directly incorporated into the CAD tool for the 

automated generation of PARACODE. Libraries of alternative lookup tables could 

also be supplied for translation into any other sequential control language. 



Appendix A 

The Water-Rinse Operation 

A. 1 Synthesis of Selected Controllers 

A. 1.1 Controller Cu, fi 
Elementary Component Modelling 

Elementary State Transition 
Component Label Description Var. Label [_Description To state 
SSV1-1 1* Closed 0 110 Opening 2 

2 Open 1 111 Closing 1 
SSV1-2 1* Closed 0 112 Opening 2 

2 Open 1 113 Closing 1 
SSVl-4 1* Closed 0 114 Opening 2 

2 Open 1 115 Closing 1 
SSVl-5 1* Closed 0 116 Opening 2 

2 Open 1 117 Closing 1 
ABV1-3 1* Closed 0 118 Opening 2 

2 Open 1 119 Closing 1 
AV1-14 1* Closed 0 11 Opening 2 

2 Open 1 12 Closing 1 

Table A. 1: Elementary Component FSMs in Ewfi 

Key to Tables 

1. A state label superscripted with * is marked. 

2. An underlined transition label is controllable. 

3. The order of state variables in the state variable vector is given in the table 

of elementary components. 
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Process Specification 

1. Interlock to closed SSV1-1 

(l, oo, oo, oo, oo, oo) = FALSE 

2. Interlock to closed SSV1-2 

(o0) 1, o0, oo, oo, oo) = FALSE 

3. Interlock to closed SSVl-4 

(oo, oo, 1) oo, oo, oo) = FALSE 

4. Interlock to closed SSVl-5 

(oo, oo, oo, l, oo, oo) = FALSE 

5. Interlock to closed ABV 1-3 

(oo, oo, oo, oo, 1, oo) = FALSE 

6. Interlock to closed AV1-14 

173 
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A. 1.2 Controller Cw f r2 

Elementary Component Modelling 
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Elementary State Transition 
Component Label Description Var. Label Description To state 
AV1-10 1* Open 1 4 Closing 2 

2 Closed 0 3 Opening 1 
AVl-15 1* Open 1 6 Closing 2 

2 Closed 0 5 Opening 1 
AV1-16 1* Closed 1 32 Opening 2 

2 Open 0 31 Closing 1 
P6 1* Deenergised 0 17 Energising 2 

2 Energised 1 18 Deenergising 1 
SSV1-3 1* Closed 0 1 Opening 2 

2 Open 1 2 Closing 1 
TIMER-600 1 Idle 0 84 Releasing 2 

2 Released 1 550 Expiring 4 
82 Cancelling 1 
85 Holding 3 

3 Held 2 86 Rereleasing 2 
4* Expired 3 67 Reseting 1 

PS1-1 1* Shut 0 531 Opening 2 
2 Open 1 532 Shutting 1 

IT1-1 1* Level <6 0 536 Increasing 2 
2 6< Level < 20 1 537 Increasing 3 

539 Decreasing 1 
3 Level > 20 2 538 Decreasing 2 

Table A. 2: Elementary Component FSMs in Ewfr 

Physical Interaction Modelling 

1. Level cannot increase unless feed valve open 

(00100100,00,6,00100300) -> 0[T 536 V 537] 

Process Specification 

1. Interlock to open AV1-10 

(0, o0, o0,00,00,00,00) o0) = FALSE 

2. Interlock to open AV1-15 

(00)07o0, o0, oc, Do, oo, oo) = FALSE 
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3. Interlock to closed AV1-16 

(o0, oo, 0, oo, 00,00,00, oo) = FALSE 

4. Never energise pump when feed valve is closed 

(oo) oc, o0,1,0, oo, oo, oo) = FALSE 

5. From the initial state, open feed valve, energise pump and release timer 

(1,1,1,0,0,0,0,0) -+ 0 [T = 1] -ý 0 [T = 17] -> 0[7- = 84] 

6. If the lid opens then deenergise pump, close feed valve and hold timer 

(1,1,1,1,1,1, O, oo)A[T=531]-*Q[T=18]-3Q[T=2]-+ 0['r=85] 

7. When the lid shuts, restart by opening feed valve, energising pump and rere- 
leasing timer 

(1,1) 1,0,0,2,1, oo2) A ft = 532] -+ O[T = 1] --ý Q[tr = 17] -+ 0[-F= 86] 

8. When the timer expires, deenergise the pump and close the feed valve 

(1,1,1,1,1,1, oo) oo)A[T=550] -+Q[T= 18] -+O['r=2] 

9. Before the level increases, interlock the pump and timer 

(1,1,1,1,1,1,0,002) -ýO[T 18V82V85] 

10. If the level increases, deenergise the pump and close the feed valve 

(1,1) 1,1,1, oo, oo, 1)A[-r=537] -40[T=18] -Q[T=2] 

11. At the goal state, interlock the timer and feed valve 

(1,1,1,0,0,3, o0, o0) -+ O[T 67V 1] 

12. When the lid is open and the timer is held, interlock the timer and feed valve 

(1,1,1,0,0,2,1, o0) -+ O[T 86 V 1] 

13. When the lid is shut and the timer is held, interlock the timer and feed valve 

(1,1,1,0,0,2,0,00°) -+ 0 [T 86V 1] 

14. When draining, interlock the timer and feed valve 

(1,1,1,0, O, 1, oo, oo°)-+O[T 82V85V1] 
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15. If the lid opens, hold the timer 

(1,1,1,0,0,1,0, oo) A [-r = 531] -+0[-r=85] 

16. When the lid shuts, restart by opening feed valve and energising the pump 

(1,1,1,0,0,1,0,0) 0 [T = 1] -+ 0 [T = 17] 

Synthesis Results 
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A. 1.3 Controller Cwdr 

Elementary Component Modelling 
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Elementary State Transition 
Component Label Description Var. Label Description To state 
AV1-41 1* Closed 0 33 Opening 2 

2 Open 1 34 Closing 1 
P1 1* Deenergised 0 7 Energising 2 

2 Energised 1 8 Denergising 1 
IT1-1 1* Level < 1.5 0 543 Increasing 2 

2 1.5 < Level <3 1 544 Decreasing 1 
535 Increasing 3 

3 3< Level <6 2 540 Decreasing 2 
536 Increasing 4 

4 6< Level < 20 3 539 Decreasing 3 
537 Increasing 5 

5 Level > 20 4 538 Decreasing 4 
AV1-40 1* Closed 0 35 Opening 2 

2 Open 1 36 Closing 1 
AV1-47 1* Closed 0 37 Opening 2 

2 Open 1 38 Closing 1 
DDV1-8 1* Closed 0 27 Opening 2 

2 Open 1 28 Closing 1 

Table A. 5: Elementary Component FSMs in Ewdr 

Physical Interaction 

1. Level cannot decrease if drain valve is closed 

(0, oo, oo, oo, oo, oo) -> O[-r 544 V 540 V 539 V 538] 

Process Specification 

1. Never energise pump when drain valve closed 

(01 1, o0, oo, oo, oo) = FALSE 

2. When level exceeds 3L, open all valves and energise pump 

(0,0,2,0,0) -+ Q[7- = 33] O[T = 35] -+ Q[T = 37] 

-> 0[-r = 27] -} 0[-r = 7] 
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3. When level is below 1.5L, deenergise pump and close all valves 

(1,1,1,1,1,1)A[T=544] -+ Q[T=8] -Q[T=28] -*Q[T=38} 

-+Q[, r=36] Q[r=34] 

4. When level is below 3L, interlock valves to closed and pump to deenergised 

(030,00 2,3,4 
3 0,0,0) - 0[T 33 V 35 V 37 V 27 V 7] 

5. When level is above 1.5L, interlock valves to open and pump to energised 

(1,1,00°) 1,1,1) -*Q[T 8V28V38V36V34] 

Synthesis Results 
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A-2 PA RA CODE for / THIS CONTROLLER SPRAYS WATER 

Selected Sequences 
/ 
/ 

AT HIGH PRESSURE VIA PUMP P6 
INTO TANK T1 TO A LEVEL OF 20L. 

/ FILLING STARTS WHEN THE LEVEL 
/ IS BELOW 6L. THE CONTROLLER 

A. 2.1 Sequence Derived from / TERMINATES AFTER 10 MINS. 

Controller C i / u, f / ------------- ----------------------- . SEQ 2.209 / 
/ ------------------------------------ / INHIBITED SEQUENCES 
/ / 
/ INSQ 1.65 
/ THIS CONTROLLER INTERLOCKS VALVES INSQ 1.66 
/ SSV1-1, SSV1-2, SSV1-4, SSV1-5, INSQ 1.151 
/ ABV1-3, AV1-14 DURING THE WATER INSQ 1.156 
/ FILL PHASE. INSQ 1.157 
/ INSQ 1.162 
/ INSQ 1.163 
/ ------------------------------------ INSQ 2.202 
/ INSQ 2.219 
/ INHIBITED SEQUENCES INSQ 2.221 
/ / 
/ / EMERGENCY ITEMS 
/ EMERGENCY ITEMS / 
/ / 
/ / PRE CHECKS 
/ PRE CHECKS / 
/ S205A1 MOVN -1, R2.205 
S209A1 MOVN -1, R2.209 MOVN 1, R2.200 

MOVN 1, R2.200 IFOD AV1-10, S205A2 
IFOE SSV1-1, S209A2 MOVN 2, R2.200 
MOVN 2, R2.200 IFOD AV1-15, S205A2 
IFOE SSV1-2, S209A2 MOVN 3, R2.200 
MOVN 3, R2.200 IFOD AV1-16, S205A2 
IFOE SSV1-4, S209A2 MOVN 4, R2.200 
MOVN 4, R2.200 IFOE P6, S205A2 
IFOE SSV1-5, S209A2 MOVN 5, R2.200 
MOVN 5, R2.200 IFOE SSV1-3, S205A2 
IFOE ABV1-3, S209A2 MOVN 6, R2.200 
MOVN 6, R2.200 IFTR 1.201, S205A2 
IFOE AV1-14, S209A2 MOVN 7, R2.200 
GOTO S209S1 IFINE PS1-1, S205A2 

/ MOVN 8, R2.200 
S209A2 MESS 1.200,1.1 ADCI IT1-1, F2.200 

VARN 2 IF F2.200, GE, 6, S205A2 
VARN 209 GOTO S205S1 
VARR R2.200 / 

VARR R2.209 S205A2 MESS 1.200,1.1 
ALSQ 2.209 VARN 2 
GOTO S209A1 VARN 205 

/ VARR R2.200 
/ BEGIN OPERATION VARR R2.205 
/ ALSQ 2.205 

S209S1 MOVN 1, R2.209 GOTO S205A1 
GOTO S209Z / 

/ / BEGIN OPERAT ION 
/ CEASE OPERATION / 

/ S205S1 MOVN 1, R2.205 

S209Z ABEY ENGE SSV1-3 

STOP WAIT 5 

S205S2 MOVN 2, R2.205 

2 2 A Sequence Derived from ENGE 6 

. . WAIT 5 

Controller C 
f 2 

/ 
w r S205S3 MOVN 3, R2.205 

STMN 1.201,600 
. 
SEQ 2.205 

RLTM 1.201 
WAIT 5 

/ 
/ 
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S205S4 MOVN 4, R2.205 WAIT 5 
S205T4 IFINE PS1-1, S205S5 / 

IFTZ 1.201, S205S12 S205S20 MOVN 20, R2.205 
ADCI IT1-1, F2.200 S205T20 IFIE PS1-1, S205S21 
IF F2.200, GE, 6, S205S16 ADCI IT1-1, F2.200 
GOTO S205T4 IF F2.200, LT, 6, S205S8 

/ GOTO S205T20 
S205S5 MOVN 5, R2.205 / 

DENG P6 S205S21 MOVN 21, R2.205 
WAIT 5 S205T21 IFINE PSI-1, S205S20 

/ ADCI IT1-1, F2.200 
S205S6 MOVN 6, R2.205 IF F2.200, LT, 6, S205S9 

DENG SSV1-3 GOTO S205T21 
WAIT 5 / 

/ S205S22 MOVN 22, R2.205 
S205S7 MOVN 7, R2.205 DENG P6 

FZTM 1.201 WAIT 5 
WAIT 5 / 

/ S205S23 MOVN 23, R2.205 
S205S8 MOVN 8, R2.205 DENG SSV1-3 
S205T8 IFIE PSI-1, S205S9 WAIT 5 

GOTO S205T8 / 
/ S205S24 MOVN 24, R2.205 
S205S9 MOVN 9, R2.205 S205T24 ADCI IT1-1, F2.200 

ENGE SSV1-3 IF F2.200, LT, 20, S205S25 
WAIT 5 IFINE PS1-1, S205S31 

/ IFTZ 1.201, S205S34 
S205S10 MOVN 10, R2.205 GOTO S205T24 

ENGE P6 / 
WAIT 5 S205S25 MOVN 25, R2.205 

/ S205T25 IFINE PSI-1, S205S26 
S205S11 MOVN 11, R2.205 IFTZ 1.201, S205S27 

RLTM 1.201 ADCI IT1-1, F2.200 
WAIT 5 IF F2.200, LT, 6, S205S29 
GOTO S205S4 GOTO S205T25 

/ / 

S205S12 MOVN 12, R2.205 S205S26 MOVN 26, R2.205 
DENG P6 FZTM 1.201 
WAIT 5 WAIT 5 

/ GOTO S205S20 

S205S13 MOVN 13, R2.205 / 

DENG SSV1-3 S205S27 MOVN 27, R2.205 

WAIT 5 S205T27 IFINE PS1-1, S205S28 

/ ADCI IT1-1, F2.200 

S205S14 MOVN 14, R2.205 IF F2.200, LT, 6, S205S14 

S205T14 IFINE PS1-1, S205S15 GOTO S205T27 

GOTO S205T14 / 

/ S205S28 MOVN 28, R2.205 

S205S15 MOVN 15, R2.205 S205T28 IFIE PS1-1, S205S27 

S205T15 IFIE PS1-1, S205S14 ADCI IT1-1, F2.200 

GOTO S205T15 IF F2.200, LT, 6, S205S15 

/ GOTO S205T28 

S205S16 MOVN 16, R2.205 / 

S205T16 IFINE PS1-1, S205S17 S205S29 MOVN 29, R2.205 

ADCI IT1-1, F2.200 ENGE SSV1-3 

IF F2.200, GE, 20, S205S22 WAIT 5 

IFTZ 1.201, S205S36 / 

ADCI IT1-1, F2.200 S205S30 MOVN 30, R2.205 

IF F2.200, LT, 6, S205S4 ENGE P6 

GOTO S205T16 WAIT 5 

/ GOTO S205S4 
S205S17 MOVN 17, R2.205 / 

DENG P6 S205S31 MOVN 31, R2.205 

WAIT 5 FZTM 1.201 

/ WAIT 5 

S205S18 MOVN 18, R2.205 / 

DENG SSV1-3 S205S32 MOVN 32, R2.205 

WAIT 5 S205T32 ADCI IT1-1, F2.200 

/ IF F2.200, LT, 20 , S205S20 

S205S19 MOVN 19, R2.205 IFIE PS1-1, S205S33 

FZTM 1.201 GOTO S205T32 
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S205S33 MOVN 33, R2.205 
S205T33 ADCI IT1-1, F2.200 

IF F2.200, LT, 20, S205S21 
IFINE PS1-1, S205S32 
GOTO S205T33 

S205S34 MOVN 34, R2.205 
S205T34 ADCI IT1-1, F2.200 

IF F2.200, LT, 20, S205S27 
IFINE PS1-1, S205S35 
GOTO S205T34 

S205S35 MOVN 35, R2.205 
S205T35 ADCI IT1-1, F2.200 

IF F2.200, LT, 20, S205S28 
IFIE PSI-1, S205S34 
GOTO S205T35 

S205S36 MOVN 36, R2.205 
DENG P6 
WAIT 5 

S205S37 MOVN 37, R2.205 
DENG SSV1-3 
WAIT 5 
GOTO S205S27 

/ CEASE OPERATION 

S205Z ABEY 
STOP 

A. 2.3 Sequence Derived from 
Controller Cwdr 

. SEQ 2.210 
/ ---------------------------- 

/ THIS CONTROLLER PUMPS THE 
/ CONTENTS OF TANK 1 TO DRAIN. 

/ ---------------------------- 

/ INHIBITED SEQUENCES 

INSQ 1.50 
INSQ 1.51 
INSQ 1.52 
INSQ 1.53 
INSQ 1.54 
INSQ 1.57 
INSQ 1.58 
INSQ 1.61 
INSQ 1.62 
INSQ 1.63 
INSQ 1.64 
INSQ 1.94 
INSQ 1.95 
INSQ 1.115 
INSQ 1.125 
INSQ 1.151 
INSQ 1.152 
INSQ 2.207 
INSQ 2.216 
INSQ 2.218 

/ EMERGENCY ITEMS 

/ PRE CHECKS 

S210A1 MOVN -1, R2.210 
MOVN 1, R2.200 
IFOE AV1-41, S210A2 
MOVN 2, R2.200 
IFOE P1, S210A2 
MOVN 3, R2.200 
ADCI IT1-1, F2.200 
IF F2.200, GE, 1.5, S210A2 
MOVN 4, R2.200 
IFOE AV1-40, S210A2 
MOVN 5, R2.200 
IFOE AV1-47, S210A2 
MOVN 6, R2.200 
IFOE DDV1-8, S210A2 
GOTO S21OS1 

S210A2 MESS 1.200,1.1 
VARN 2 
VARN 210 
VARR R2.200 
VARR R2.210 
ALSQ 2.210 
GOTO S210A1 

/ BEGIN OPERATION 

S21OS1 MOVN 1, R2.210 
S21OT1 ADCI IT1-1, F2.200 

IF F2.200, GE, 1.5, S210S2 
GOTO S21OT1 

S210S2 MOVN 2, R2.210 
S210T2 ADCI IT1-1, F2.200 

IF F2.200, GE, 3, S210S3 
GOTO S210T2 

S210S3 MOVN 3, R2.210 
ENGE AV1-41 
WAIT 5 

S210S4 MOVN 4, R2.210 
ENGE AV1-40 
WAIT 5 

S210S5 MOVN 5, R2.210 
ENGE AV1-47 
WAIT 5 

S210S6 MOVN 6, R2.210 
ENGE DDV1-8 
WAIT 5 

S210S7 MOVN 7, R2.210 
MOVN 400, F1.92 
DACO IF1-1, F1.92 
ENGE P1 
WAIT 5 

S210S8 MOVN 8, R2.210 
S210T8 ADCI IT1-1, F2.200 

IF F2.200, LT, 3, S210S9 
ADCI IT1-1, F2.200 
IF F2.200, GE, 6, S210S15 
GOTO S210T8 

S210S9 MOVN 9, R2.210 
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S210T9 ADCI IT1-1, F2.200 
IF F2.200, GE, 3, S210S8 
ADCI IT1-1, F2.200 
IF F2.200, LT, 1.5, S210S1O 
GOTO S210T9 

S21OS10 MOVN 10, R2.210 
DENG P1 
WAIT 5 

S21OS11 MOVN 11, R2.210 
DENG DDV1-8 
WAIT 5 

S21OS12 MOVN 12, R2.210 
DENG AV1-47 
WAIT 5 

S210S13 MOVN 13, R2.210 
DENG AV1-40 
WAIT 5 

S21OS14 MOVN 14, R2.210 
DENG AV1-41 
WAIT 5 
GOTO S21OS1 

S210S15 MOVN 15, R2.210 
S21OT15 ADCI IT1-1, F2.200 

IF F2.200, GE, 20, S210S16 
ADCI IT1-1, F2.200 
IF F2.200, LT, 6, S210S8 
GOTO S21OT15 

S21OS16 MOVN 16, R2.210 
S21OT16 ADCI IT1-1, F2.200 

IF F2.200, LT, 20, S210S15 
GOTO S21OT16 

/ CEASE OPERAT ION 

S21OZ ABEY 
STOP 
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The Detergent-Service Operation 

B. 1 Synthesis of Selected Controllers 

B. 1.1 Controller Cdc 

Elementary Component Modelling 

Elementary State Transition 
Component Label Description Var. Label Description To state 
P10 1* Deenergised 0 94 Energising 2 

2 Energised 1 95 Deenergising 1 

TIMER-30 1* Idle 0 96 Releasing 2 
2 Released 1 549 Expiring 1 

TIMER-10 1* Idle 0 97 Releasing 2 
2 Released 1 548 Expiring 1 

IS1-2 1* Covered 0 527 Decreasing 2 
2 Uncovered 1 528 Increasing 1 

IS1-3 1 Nonconductive 0 572 Conducting 2 
2* Conductive 1 571 Nonconducting 1 

P6-FB 1* Deenergised 1 546 Energising 2 
2 Energised 0 547 Deenergising 1 

Table B. 1: Elementary Component FSMs in Ed, 

Process Specification 

1. Never release both timers simultaneously 

(oo, 1,1, oo, oc, oo) = FALSE 

2. When the pump is energised, release the 10s timer and energise the dose pump 

(0,0,0,0,0,0) -0 [T = 97] - 0[-F= 94] 
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3. When the 10s timer is released, interlock the dose pump to energised 

(1,0,1,0,0,0) -+ 0 ['r 95] 

187 

4. When the 10s timer expires, release the 30s timer and deenergise the dose 
pump 

(1,0,1,0,0,0) A [-r = 548] -+ 0[T = 96] - 0[-r = 95] 

5. When the 30s timer is released, interlock the dose pump to deenergised 

(0,1,0,0,0,0) ---f 0 [T 94] 

6. When the fluid reaches the desired conductivity, deenergise the dose pump 

(1, oo, oo, oo) 1, o0) -* Oft = 95] 

7. When the fluid has reached the desired conductivity, interlock the dose pump 
to deenergised 

(0, oo, oo) oo, 1, oo) ---+ O[T 94] 

8. If the circulation pump deenergises, deenergise the dose pump 

(1,00,00,00,00,1) -+ Oft = 95] 

9. When the circulation pump is deenergised, interlock the dose pump to deen- 
ergised 

(0, oo, 00,00, oo, 1) -+ 0[-F 0 94] 

10. If T7 runs dry, deenergise the dose pump 

(1, oo, oo, 1) oo, oo) -+ O[T = 95] 

11. When T7 is dry, interlock the dose pump to deenergised 

(07oc, oo, 1)oc, oo) -+ 0[T 94] 
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Synthesis Results 

State Variables 94 95 
Transitions to state 

96 97 527 528 546 547 548 549 571 572 
1 0,0,0,0,0,1 4 8 2 
2* 0,0,0,0,1,1 3 7 1 
3 0,0,0,1,1,1 2 6 4 
4 0,0,0,1,0,1 1 5 3 
5 0,0,0,1,0,0 8 4 6 
6 0,0,0117 17 0 7 3 5 
7 0,0,0,07 17 0 6 2 8 
8 0,0,0,0,0,0 9 
9 0,0,1,0,0,0 10 
10 1,07 11 0,0,0 30 31 20 11 
11 1,0,1,0,1,0 12 
12 0,0,1,0,1,0 14 18 7 13 
13 0,0,1,0,0,0 10 
14 0,0,1,1,1,0 12 17 6 15 
15 0,0,1,1,0,0 13 16 5 14 
16 0,0, ill, 0,1 19 15 4 17 
17 0,0,1,1,1,1 18 14 3 16 
18 0,0,1,0,1,1 17 12 2 19 
19 0,0,1,0,0,1 16 13 1 18 
20 1,0,0,0,0,0 21 
21 1,1,0,0,0,0 22 
22 0,1,0,0,0,0 25 29 8 23 
23 0,1,0,0,1,0 24 28 7 22 
24 0,1,0,1,1,0 23 27 6 25 
25 011,011,010 22 26 5 24 
26 0,1,0,1,0,1 29 25 4 27 
27 07 11 0,1,1,1 28 24 3 26 
28 0,1,0,0,1,1 27 23 2 29 
29 0,1,0,0,0,1 26 22 1 28 
30 1,0) 1111 0,0 15 
31 1,0,1,0,0,1 19 

Table B. 2: FSM Generating L(Cd, ) 
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B. 1.2 Controller Chu 
Elementary Component Modelling 

Elementary State Transition 
Component Label Description Var. Label Description To state 
IT1-17 1 Temp < 75 0 570 Increasing 2 

2* Temp > 75 1 569 Decreasing 1 
IS1-2 1* Covered 0 527 Decreasing 2 

2 Uncovered 1 528 Increasing 1 
P6-FB 1* Deenergised 1 546 Energising 2 

2 Energised 0 547 Deenergising 1 
IT1-16 1* Temp < 90 0 568 Increasing 2 

2 Temp > 90 1 567 Decreasing 1 
AV1-4 1* Closed 0 9 Opening 2 

2 Open 1 10 Closing 1 
IC1-8 1* Disabled 0 19 Enabling 2 

2 Enabled 1 20 Disabling 1 

Table B. 3: Elementary Component FSMs in Ehu 

Process Modelling 

1. If steam valve is closed, temperature cannot increase 

(oo, oo, oo, oo, 0, oo) -> Q['r 568 V 570] 

Process Specification 

1. Do not enable the temperature controller if the steam valve is closed 

(oo, oo, oo, oo) 0) 1) = FALSE 

2. When the circulation pump is energised, open steam valve and enable tem- 
perature controller 

(0,0,0,0,0,0) -+ Oft = 9] -> Q[T = 19] 

3. Once the steam valve is opened and temperature controller is enabled, inter- 
lock the steam valve and temperature controller 

(0,0,0,0,1,1) -+ O [T 10 V 20] 

4. When the setpoint temperature in T7 is reached, disable temperature con- 
troller and close steam valve 

(1 
7 00,00) 00) 17 1) 0 [T = 20] -+ 0 [T = 10] 
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5. When setpoint temperature in T7 is reached, interlock the steam valve and 
temperature controller 

(1, oo, 007oo, 010) -+O[T 9V 19] 

6. If low level is detected in tank T7, disable temperature controller and close 
steam valve 

(00,1100700)1,1)-+O[T=20]-+0[T=10] 

7. When level in T7 is low, interlock the steam valve and temperature controller 

(00,1, oo, oo, O, 0) -+Q[T 9V 19] 

8. If the circulation pump is deenergised, disable temperature controller and 
close steam valve 

(00,00,1,00) 1,1 -*O[r=20]-+ 0[T=10] 

9. When the circulation pump is deenergised, interlock the steam valve and 
temperature controller 

(oo, 003 11oo, 9,9) -ý O[T 9V 19] 

10. If high temperature is detected at heat exchanger outlet, disable temperature 
controller and close steam valve 

(00) 00 7 00 7 17 17 1)-*0[T=20] -+O[t= 10] 

11. When temperature at heat exchanger outlet is high, interlock the steam valve 
and temperature controller 

(oo, o01o0,13030) -- O[T 97 19] 
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Synthesis Results 

State Variables 9 10 19 20 
Transitions to state 
527 528 546 547 567 568 569 570 

1 0101110,010 2 4 
2 01151707010 1 3 
3 0,1,0,0,0,0 4 2 
4 0,0,0,0,0,0 5 
5 0,0,0,0,1,0 6 
6 0,0,0,0,1,1 7 15 17 9 
7 0,1,0,0,1,1 8 
8 0,1,0,0,1,0 3 
9 1,0,0,0,1,1 10 
10 1,0,0,0,1,0 11 
11 1,0,0,0,0,0 12 14 4 
12 1,1,0,0,0,0 11 13 3 
13 1117 17 0,0,0 14 12 2 
14* 1,0,1,0,0,0 13 11 1 
15 0,0,1,0,1,1 16 
16 0)011701170 1 
17 0,0,0,1,1,1 18 
18 0,0,0,1,1,0 19 
19 07070,17010 20 22 4 
20 07 11 0,1,0,0 19 21 3 
21 011,1717070 22 20 2 
22 070,1117070 21 19 1 

Table B. 4: FSM Generating L(Chu) 
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B. 1.3 Controller Crc 

Elementary Component Modelling 

Elementary State Transition 
Component Label Description Var. Label Description To state 
AV1-22 1 Open 0 13 Closing 2 

2* Closed 1 14 Opening 1 
AVl-25 1 Closed 0 15 Opening 2 

2* Open 1 16 Closing 1 
AV1-14 1 Closed 0 11 Opening 2 

2* Open 1 12 Closing 1 
P6 1 Deenergised 0 17 Energising 2 

2* Energised 1 18 Denergising 1 
IS1-1 1* Covered 0 525 Decreasing 2 

2* Uncovered 1 526 Increasing 1 
IS1-2 1* Covered 0 527 Decreasing 2 

2 Uncovered 1 528 Increasing 1 

Table B. 5: Elementary Component FSMs in Erc 

Process Modelling 

1. IS1-1 cannot be covered if ISl-2 is uncovered 

(oo, oo, oo, o0,0) 1) = FALSE 

2. When the drain valve is closed, the level cannot decrease 

(oo, o0,0, o0, oc, oc) -+ 0 [T 525 V 527] 

3. When the feed valve is closed, the level cannot increase 

(oo, 0, oo) oo, oo, oo) -4 O[T 526 V 528] 

Process Specification 

192 

1. From the initial state, close AV1-22, open AVl-25 and AV1-14 and energise 
pump 

(0,0,0,0,0,0) --> 0[7- = 13] --> 0[, r = 15] -+ 0[-r = 11 ] -> 0[, F = 17] 

2. When IS1-2 is covered, interlock valves and pump 

(1,1,1,1, oo, 0)-0[-r 14V16V12V18] 
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3. If tank T7 is empty, then deenergise the pump 

(oo, oo, oo, 1,1,1) -+ Oft = 18] 

4. When tank T7 is refilling, interlock valves and pump 

(1,1,1,0,1, oo) -+ O[T 14V 16V 12V 17] 

Synthesis Results 

193 

Table B. 6: FSM Generating L(Crc) 

Transitions to state 
State Variables 

J 
11 13 15 17 18 525 526 527 528 
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B. 2 PARACODE for 
Selected Sequences 

B. 2.1 Sequence Derived from 
Controller Cd, 

SEQ 2.201 
/ ------------------------------------ 

/ THIS CONTROLLER PERFORMS THE 
/ CAUSTIC DOSE PHASE TO PREPARE 
/ THE DETERGENT FLUID IN TANK T7. 
/ CAUSTIC IS DOSED VIA INTERMITTENT 
/ OPERATION OF P10 (10s ON, 30s OFF). 
/ FLUID IS CONTINUOUSLY RECIRCULATED 
/ BY P6. THE LEVEL IN TANK T7 IS 
/ CONTINUOUSLY CHECKED. THE 
/ PHASE TERMINATES WHEN CONDUCTIVITY 
/ SWITCH IS1-3 IS TRIGGERED. 

/ ------------------------------------ 

/ INHIBITED SEQUENCES 

INSQ 1.161 

/ EMERGENCY ITEMS 

/ PRE CHECKS 

S201A1 MOVN 
MOVN 
IFOE 
MOVN 
IFTR 
MOVN 
IFTR 
MOVN 
IFIE 
MOVN 
IFIE 
MOVN 
IFIE 
GOTO 

-1, R2.201 
1, R2.200 
P10, S201A2 
2, R2.200 
1.202, S201A2 
3, R2.200 
1.203, S201A2 
4, R2.200 
IS1-2, S201A2 
5, R2.200 
IS1-3, S201A2 
6, R2.200 
P6, S201A2 
S201S1 

S201A2 MESS 1.200,1.1 
VARN 2 
VARN 201 
VARR R2.200 
VARR R2.201 
ALSQ 2.201 

GOTO S201A1 

/ BEGIN OPERA TION 

S201S1 MOVN 
S201T1 IFIE 

IFIE 
IFIE 
GOTO 

S201S2 MOVN 

S201T2 IFINE 
IFIE 
IFIE 

1, R2.201 
IS1-3, S201S2 
IS1-2, S201S4 
P6, S201S8 
S201T1 

2, R2.201 
IS1-3, S201S1 
IS1-2, S201S3 
P6, S201S7 

GOTO 

S201S3 MOVN 
S201T3 IFINE 

IFINE 
IFIE 
GOTO 

S201S4 MOVN 
S201T4 IFIE 

IFINE 
IFIE 
GOTO 

S201S5 MOVN 
S201T5 IFIE 

IFINE 
IFINE 
GOTO 

S201S6 MOVN 
S201T6 IFINE 

IFINE 
IFINE 
GOTO 

S201S7 MOVN 
S201T7 IFINE 

IFIE 
IFINE 
GOTO 

S201S8 MOVN 
STMN 
RLTM 
WAIT 

S201S9 MOVN 
ENGE 
WAIT 

S201S10 MOVN 
S201T10 IFIE 

IFTZ 
IFIE 
IFINE 
GOTO 

S201S11 MOVN 
DENG 
WAIT 

S201S12 MOVN 
S201T12 IFINE 

IFTZ 
IFIE 
IFINE 
GOTO 

S201S13 MOVN 
ENGE 
WAIT 
GOTO 

S201S14 MOVN 
S201T14 IFINE 

IFTZ 
IFINE 
IFINE 
GOTO 

S201T2 

3, R2.201 
IS1-3, S201S4 
IS1-2, S201S2 
P6, S201S6 
S201T3 

4, R2.201 
IS1-3, S201S3 
IS1-2, S201S1 
P6, S201S5 
S201T4 

5, R2.201 
IS1-3, S201S6 
IS1-2, S201S8 
P6, S201S4 
S201T5 

6, R2.201 
IS1-3, S201S5 
IS1-2, S201S7 
P6, S201S3 
S201T6 

7, R2.201 
IS1-3, S201S8 
IS1-2, S201S6 
P6, S201S2 
S201T7 

8, R2.201 
1.203,10 
1.203 
5 

9, R2.201 
P10 
5 

10, R2.201 
IS1-3, S201S11 
1.203, S201S20 
IS1-2, S201S30 
P6, S201S31 
S201T10 

11, R2.201 
P10 
5 

12, R2.201 
IS1-3, S201S13 
1.203, S201S7 
IS1-2, S201S14 
P6, S201S18 
S201T12 

13, R2.201 
P10 
5 
S201S10 

14, R2.201 
IS1-3, S201S15 
1.203, S201S6 
IS1-2, S201S12 
P6, S201S17 
S201T14 
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S201S15 MOVN 
S201T15 IFIE 

IFTZ 
IFINE 
IFINE 
GOTO 

S201S16 MOVN 
S201T16 IFIE 

IFTZ 
IFINE 
IFIE 
GOTO 

S201S17 MOVN 
S201T17 IFINE 

IFTZ 
IFINE 
IFIE 
GOTO 

S201S18 MOVN 
S201T18 IFINE 

IFTZ 
IFIE 
IFIE 
GOTO 

S201S19 MOVN 
S201T19 IFIE 

IFTZ 
IFIE 
IFIE 
GOTO 

S201S20 MOVN 
STMN 
RLTM 
WAIT 

S201S21 MOVN 
DENG 
WAIT 

S201S22 MOVN 
S201T22 IFIE 

IFTZ 
IFIE 
IFINE 
GOTO 

S201S23 MOVN 
S201T23 IFINE 

IFTZ 
IFIE 
IFINE 
GOTO 

S201S24 MOVN 
S201T24 IFINE 

IFTZ 
IFINE 
IFINE 
GOTO 

S201S25 MOVN 
S201T25 IFIE 

IFTZ 
IFINE 
IFINE 
GOTO 

15, R2.201 
IS1-3, S201S14 
1.203, S201S5 
IS1-2, S201S13 
P6, S201S16 
S201T15 

S201S26 MOVN 
S201T26 IFIE 

IFTZ 
IFINE 
IFIE 
GOTO 

S201S27 MOVN 
S201T27 IFINE 

IFTZ 
IFINE 
IFIE 
GOTO 

S201S28 MOVN 
S201T28 IFINE 

IFTZ 
IFIE 
IFIE 
GOTO 

S201S29 MOVN 
S201T29 IFIE 

IFTZ 
IFIE 
IFIE 
GOTO 

S201S30 MOVN 
DENG 
WAIT 
GOTO 

S201S31 MOVN 
DENG 
WAIT 
GOTO 

26, R2.201 
IS1-3, S201S27 
1.202, S201S4 
IS1-2, S201S29 
P6, S201S25 
S201T26 

16, R2.201 
IS1-3, S201S17 
1.203, S201S4 
IS1-2, S201S19 
P6, S201S15 
S201T16 

17, R2.201 
IS1-3, S201S16 
1.203, S201S3 
IS1-2, S201S18 
P6, S201S14 
S201T17 

18, R2.201 
IS1-3, S201S19 
1.203, S201S2 
IS1-2, S201S17 
P6, S201S12 
S201T18 

19, R2.201 
IS1-3, S201S18 
1.203, S201S1 
IS1-2, S201S16 
P6, S201S13 
S201T19 

20, R2.201 
1.202,30 
1.202 
5 

21, R2.201 
P10 
5 

22, R2.201 
IS1-3, S201S23 
1.202, S201S8 
IS1-2, S201S25 
P6, S201S29 
S201T22 

23, R2.201 
IS1-3, S201S22 
1.202, S201S7 
IS1-2, S201S24 
P6, S201S28 
S201T23 

24, R2.201 
IS1-3, S201S25 
1.202, S201S6 
IS1-2, S201S23 
P6, S201S27 
S201T24 

25, R2.201 
IS1-3, S201S24 
1.202, S201S5 
IS1-2, S201S22 
P6, S201S26 
S201T25 

27, R2.201 
IS1-3, S201S26 
1.202, S201S3 
IS1-2, S201S28 
P6, S201S24 
S201T27 

28, R2.201 
IS1-3, S201S29 
1.202, S201S2 
IS1-2, S201S27 
P6, S201S23 
S201T28 

29, R2.201 
IS1-3, S201S28 
1.202, S201S1 
IS1-2, S201S26 
P6, S201S22 
S201T29 

30, R2.201 
P10 
5 
S201S15 

31, R2.201 
P10 
5 
S201S19 

/ CEASE OPERATION 

S201Z ABEY 
STOP 

B. 2.2 Sequence Derived from 
Controller Chi 

. SEQ 2.204 
/ ------------------------------------ 

/ THIS CONTROLLER PERFORMS THE 
/ HEAT UP PHASE. DETERGENT FLUID 
/ IN TANK T7 IS HEATED BY HE3. 
/ FLUID IS CONTINUOUSLY RECIRCULATED 
/ BY P6. THE LEVEL IN TANK T7 IS 
/ CONTINUOUSLY CHECKED. 
/ AN EMERGENCY OCCURS IF A 
/ TEMPERATURE ABOVE 90C IS DETECTED 
/ AT IT1-16. THE FLUID IS HEATED TO 75C 
/ AS INDICATED BY IT1-17. 

/ ------------------------------------ 

/ INHIBITED SEQUENCES 

/ EMERGENCY ITEMS 
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/ PRE CHECKS 

S204A1 MOVN -1, R2.204 
MOVN 1, R2.200 
ADCI IT1-17, F2.200 
IF F2.200, GE, 75, S204A2 
MOVN 2, R2.200 
IFIE IS1-2, S204A2 
MOVN 3, R2.200 
IFIE P6, S204A2 
MOVN 4, R2.200 
ADCI IT1-16, F2.200 
IF F2.200, GE, 90, S204A2 
MOVN 5, R2.200 
IFOE AV1-4, S204A2 
MOVN 6, R2.200 
IFSAC 1.106, S204A2 
GOTO S204S1 

S204A2 MESS 1.200,1.1 
VARN 2 
VARN 204 
VARR R2.200 
VARR R2.204 
ALSQ 2.204 
GOTO S204A1 

/ BEG IN OPERATION 

S204S1 MOVN 1, R2.204 
S204T1 IFIE IS1-2, S204S2 

IFIE P6, S204S4 
GOTO S204T1 

S204S2 MOVN 2, R2.204 
S204T2 IFINE IS1-2, S204S1 

IFIE P6, S204S3 
GOTO S204T2 

S204S3 MOVN 3, R2.204 
S204T3 IFINE IS1-2, S204S4 

IFINE P6, S204S2 
GOTO S204T3 

S204S4 MOVN 4, R2.204 
ENGE AV1-4 
WAIT 5 

S204S5 MOVN 5, R2.204 
STSQ 1.106 
WAIT 5 

S204S6 MOVN 6, R2.204 
S204T6 IFIE IS1-2, S204S7 

ADCI IT1-17, F2.200 
IF F2.200, GE, 75, S204S9 

IFINE P6, S204S15 
ADCI IT1-16, F2.200 
IF F2.200, GE, 90, S204S17 

GOTO S204T6 

S204S7 MOVN 7, R2.204 
SPSQ 1.106 
WAIT 5 

S204S8 MOVN 8, R2.204 
DENG AV1-4 
WAIT 5 
GOTO S204S3 

S204S9 MOVN 9, R2.204 
SPSQ 1.106 
WAIT 5 

S204S10 MOVN 10, R2.204 
DENG AV1-4 
WAIT 5 

S204S11 MOVN 11, R2.204 
S204T11 IFIE IS1-2, S204S12 

ADCI IT1-17, F2.200 
IF F2.200, LT, 75, S204S4 
IFINE P6, S204S14 
GOTO S204T11 

S204S12 MOVN 12, R2.204 
S204T12 IFINE IS1-2, S204S11 

ADCI IT1-17, F2.200 
IF F2.200, LT, 75, S204S3 
IFINE P6, S204S13 
GOTO S204T12 

S204S13 MOVN 13, R2.204 
S204T13 IFINE IS1-2, S204S14 

ADCI IT1-17, F2.200 
IF F2.200, LT, 75, S204S2 
IFIE P6, S204S12 
GOTO S204T13 

S204S14 MOVN 14, R2.204 
S204T14 IFIE IS1-2, S204S13 

ADCI ITI-17, F2.200 
IF F2.200, LT, 75, S204S1 
IFIE P6, S204S11 
GOTO S204T14 

S204S15 MOVN 15, R2.204 
SPSQ 1.106 
WAIT 5 

S204S16 MOVN 16, R2.204 
DENG AV1-4 
WAIT 5 
GOTO S204S1 

S204S17 MOVN 17, R2.204 
SPSQ 1.106 
WAIT 5 

S204S18 MOVN 18, R2.204 
DENG AV1-4 
WAIT 5 

S204S19 MOVN 19, R2.204 
S204T19 IFIE IS1-2, S204S20 

IFINE P6, S204S22 
ADCI IT1-16, F2.200 
IF F2.200, LT, 90, S204S4 
GOTO S204T19 

S204S20 MOVN 20, R2.204 
S204T20 IFINE IS1-2, S204S19 

IFINE P6, S204S21 
ADCI IT1-16, F2.200 
IF F2.200, LT, 90, S204S3 
GOTO S204T20 

S204S21 MOVN 21, R2.204 
S204T21 IFINE IS1-2, S204S22 

IFIE P6, S204S20 
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ADCI IT1-16, F2.200 
IF F2.200, LT, 90, S204S2 
GOTO S204T21 

S204S22 MOVN 22, R2. 204 
S204T22 IFIE IS1-2, S204S21 

IFIE P6, S20 4S19 
ADCI IT1-16, F2.200 
IF F2.200, LT, 90, S204S1 
GOTO S204T22 

/ CEASE OPERAT ION 
/ 
S204Z ABEY 

STOP 

B. 2.3 Sequence Derived from 
Controller Crc 

. SEQ 2.202 
/ ------------------------------------ 

/ THIS CONTROLLER PERFORMS THE RECYCLE 
/ PHASE. 
/ DETERGENT FLUID IS CIRCULATED 
/ AROUND TANK T7 BY PUMP P6. 
/ IF LOW LEVEL IS DETECTED AT 
/ IS1-2, P6 IS STOPPED. 

/ ------------------------------------ 
t 
/ INHIBITED SEQUENCES 

INSQ 1.65 
INSQ 1.66 
INSQ 1.156 
INSQ 1.157 
INSQ 1.159 
INSQ 1.162 
INSQ 1.163 
INSQ 2.205 
INSQ 2.218 
INSQ 2.221 

/ EMERGENCY ITEMS 

/ PRE CHECKS 

S202A1 MOVN -1, R2.202 
MOVN 1, R2.200 
IFOE AV1-22, S202A2 

MOVN 2, R2.200 
IFOE AV1-25, S202A2 

MOVN 3, R2.200 
IFOE AV1-14, S202A2 

MOVN 4, R2.200 

IFOE P6, S202A2 

MOVN 5, R2.200 

IFINE IS1-1, S202A2 

MOVN 6, R2.200 

IFIE IS1-2, S202A2 

GOTO S202S1 

S202A2 MESS 1.200,1.1 
VARN 2 
VARN 202 

VARR R2.200 
VARR R2.202 
ALSQ 2.202 
GOTO S202A1 

/ BEGIN OPERATION 

S202S1 MOVN 1, R2.202 
ENGE AV1-22 
WAIT 5 

S202S2 MOVN 2, R2.202 
ENGE AV1-25 
WAIT 5 

S202S3 MOVN 3, R2.202 
ENGE AV1-14 
WAIT 5 

S202S4 MOVN 4, R2.202 
ENGE P6 
WAIT 5 

S202S5 MOVN 5, R2.202 
S202T5 IFINE IS1-1, S202S6 

GOTO S202T5 

S202S6 MOVN 6, R2.202 
S202T6 IFIE IS1-1, S202S5 

IFIE IS1-2, S202S7 
GOTO S202T6 

S202S7 MOVN 7, R2.202 
DENG P6 
WAIT 5 

S202S8 MOVN 8, R2.202 
S202T8 IFINE IS1-2, S202S9 

GOTO S202T8 

S202S9 MOVN 9, R2.202 
S202T9 IFIE IS1-1, S202S4 

IFIE IS1-2, S202S8 
GOTO S202T9 

/ CEASE OPERATION 

S202Z ABEY 
STOP 

197 
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PARACODE Transition Lookup 
Table 

# ------------------------------------ 
# 

# PART 1- CONTROLLABLE TRANSITIONS 
# ********************************* 

# COLUMN 1- FSM TRANSITION LABEL. 
It COLUMN 2- PARACODE INSTRUCTION. 
It COLUMN 3- PLANT ITEM REFERENCE. 

# COMMENTS BEGIN ON A FRESH LINE 
# BEGINNING WITH A #. 

# OVERFLOW LINES BEGIN WITH A+ 

It ------------------------------------ 

1 ENGE SSV1-3 
2 DENG SSV1-3 
3 ENGE AV1-10 
4 DENG AV1-10 
5 ENGE AV1-15 
6 DENG AV1-15 
7 MOVN 400, F1.92 
+ DACO IF1-1. F1.92 
+ ENGE P1 
8 DENG P1 
9 ENGE AV1-4 
10 DENG AV1-4 
11 ENGE AV1-14 
12 DENG AV1-14 
13 ENGE AV1-22 
14 DENG AV1-22 
15 ENGE AV1-25 
16 DENG AV1-25 
17 ENGE P6 
18 DENG P6 

* Temperature control loop (IC1-8) sequence 

19 STSQ 1.106 

20 SPSQ 1.106 

# Rou teing valves 

21 ENGE DDV1-1 

22 DENG DDV1-1 

23 ENGE DDV1-3 

24 DENG DDV1-3 

25 ENGE DDV1-6 

26 DENG DDV1-6 
27 ENGE DDV1-8 
28 DENG DDV1-8 
31 ENGE AV1-16 
32 DENG AV1-16 
33 ENGE AV1-41 
34 DENG AV1-41 
35 ENGE AV1-40 
36 DENG AV1-40 
37 ENGE AV1-47 
38 DENG AV1-47 
49 ENGE AV1-24 
50 DENG AV1-24 
53 ENGE AV1-20 
54 DENG AV1-20 

# Timer for water rinse phase 

67 STMN 1.201, 0 
82 FZTM 1.201 
+ STMN 1.201, 0 
84 STMN 1.201, 600 
+ RLTM 1.201 
85 FZTM 1.201 
86 RLTM 1.201 

94 ENGE P10 
95 DENG P10 

# Timers for caustic dose phase 

96 STMN 1.202, 30 
+ RLTM 1.202 
97 STMN 1.203, 10 
+ RLTM 1.203 

# CIP feed valves 

110 ENGE 
111 DENG 
112 ENGE 
113 DENG 
114 ENGE 
115 DENG 
116 ENGE 
117 DENG 
118 ENGE 
119 DENG 

# Tank T2 drain 

SSV1-1 
SSV1-1 
SSV1-2 
SSV1-2 
SSV1-4 
SSV1-4 
SSV1-5 
SSV1-5 
ABV1-3 
ABV1-3 
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128 ENGE P2 
129 DENG P2 
130 ENGE AV1-42 
131 DENG AV1-42 

# ------------------------------------ 

# PART 2- UNCONTROLLABLE TRANSITIONS 
# *********************************** 

# COLUMN 1- FSM TRANSITION LABEL. 
# COLUMN 2- PARACODE CONDITIONAL. 
# COLUMN 3- RELATIONAL EXPRESSION 
# OR PLANT ITEM REFERENCE. 

# WHERE PARACODE LINE IS PRECEDED BY: 

# ADCI ITEM-REF, F2.200 

# (AS IS USED IN NUMERICAL CALCULATIONS 
# AND REASONING), USE THE ABBREVIATED 
# SYNTAX *(ITEM-REF). 

# ------------------------------------ 

# Level switches in tank T7 
# IS1-1 is energised when covered 
# IS1-2 is deenergised when covered 

525 IFINE IS1-1 
526 IFIE IS1-1 
527 IFIE IS1-2 
528 IFINE IS1-2 

# Proximity switches on tank T1 lid 
# PS1-1 is energised when closed. 

531 IFINE PS1-1 
532 IFIE PS1-1 

# Levels in tank T1 

535 IF *(IT1-1), GE, 3 
536 IF *(IT1-1), GE, 6 
537 IF *(IT1-1), GE, 20 
538 IF *(IT1-1), LT, 20 

539 IF *(IT1-1), LT, 6 
540 IF *(IT1-1), LT, 3 

543 IF *(IT1-1), GE, 1.5 

544 IF *(IT1-1), LT, 1.5 

# Pump P6 feedbacks 

546 IFIE P6 

547 IFINE P6 

# Timer expiries 

548 IFTZ 1.203 

549 IFTZ 1.202 

550 IFTZ 1.201 

# High temperature threshold for CIP fluid 

567 IF *(IT1-16), LT, 90 

568 IF *(IT1-16), GE, 90 

# Setpoint temperature for CIP fluid 

* 
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569 IF *(IT1-17), LT, 75 
570 IF *(IT1-17), GE, 75 

# Concentration switch for CIP fluid 
# IS1-3 is energised when at concentration 

571 IFINE IS1-3 
572 IFIE IS1-3 
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