
Formal Techniques for the
Procedural Control of Industrial

Processes

by

Nicholas James ALSOP

December 1996

A thesis submitted for the degree of Doctor of Philosophy of the University of
London and for the Diploma of Membership of the Imperial College

Department of Chemical Engineering and Chemical Technology

Imperial College of Science, Technology and Medicine

London SW7

iý ý
ti

UýiýV,

Abstract

This thesis examines the theory and application of procedural control to chemical

processes of industrial scale. Procedural control formally addresses the discrete and
logical aspects of process control as required for batch chemical processes or during

start-ups, shut-downs and changeovers of continuous chemical processes.
Procedural Control Theory encompasses process modelling, specification, con-

troller synthesis and analysis. In particular, techniques within Procedural Control

Theory have been developed for the design of single controllers for chemical systems

modelled as Discrete Event Systems, such that they conform to specifications and

meet a set of desirable properties (Sanchez, 1996). Before now, these techniques

were applicable only to small systems. Here Procedural Control Theory is extended

using modular techniques to deal with process systems of industrial scale. The

main theoretical result is that the same set of desirable controller properties can be

retained by an industrial controller, comprised of a set of modular controllers.
In a modular configuration, the second problem to address is that of controller

inhibiting. A controller inhibit is a mechanism which disables the simultaneous

operation of two noncooperative controllers. A control theoretic criterion is supplied
in this thesis for the purposes of designing inhibit policies.

In order to apply the theory described here, algorithms are presented for the
translation of the controller formalisms into industrial sequential control languages.

Finally, two case studies are presented which demonstrate the theory and tech-

niques. Firstly, controllers are designed for three operations of a Cleaning-In-Place

unit procedure in a multipurpose, multiproduct batch pilot plant. Inhibit design

techniques are then demonstrated for an industrial paste plant, characterised by a
high degree of resource sharing and interlocking.

2

Acknowledgements

I wish to thank firstly my supervisor Professor Sandro Macchietto for his encour-

agement, enthusiastic support and industrial promotion of this project. I am also

profoundly grateful to Dr. Arturo Sanchez for his wealth of input to this research
and his original inspiration of this subject matter.

Secondly I wish to credit my work colleagues including Dr. Guillermo Rotstein
for many stimulating discussions and ideas, Terrence Crombie for his masterly help

in programming, Dr. Zhenhai Liu for his assistance with the batch pilot plant and
Ross Baird for his patient editing of this manuscript.

I wish to acknowledge Professor Murray Wonham, Cedric Delayre and Pok Lee
from the University of Toronto for kindly donating their TCT software which was
used for the calculations reported late in this thesis. Thanks must be also extended
to the daVinci team from the University of Bremen for their network graphing

utility and to John Hunt from ICI for proposing material for the second case study.
Financial support of these studies in the form of a Commonwealth Scholarship

from the British Council and the Association of Commonwealth Universities is

gratefully acknowledged.
Finally, without the persistent encouragement and love from my girlfriend Ca-

rina over the last three years, this thesis would surely not exist.

3 °'

Contents

1 Introduction 14
1.1 The Motivation for Formal Techniques

................
15

1.2 Outline of the Thesis
..........................

16

2 Literature Review 18
2.1 Batch Process Control

...................... ... 18
2.1.1 Supervisory Control

................... ... 19
2.1.2 Sequential Control 20

2.2 Synthesis of Control Logic and Operating Procedures 21
2.2.1 Formal Techniques for Program Development 21
2.2.2 Artificial Intelligence Planning Methods

........ ...
23

2.2.3 Optimal Synthesis Techniques 24
2.3 Verification of Control Logic and Operating Procedures 26
2.4 Control Theory for Discrete Event Systems

........... ... 27
2.4.1 Control Theory Based on Petri Nets 27
2.4.2 Supervisory Control Theory

............... ...
29

2.4.3 Procedural Control Theory 32
2.5 Summary and Conclusions

.................... ... 33

3 Introductory Procedural Control Theory 35
3.1 Discrete Event Systems

....................... .. 35
3.1.1 Operations on FSMs 38

3.1.1.1 Product Operations
............... .. 38

3.1.1.2 The Selfloop Operation
............. .. 38

3.1.2 Language Preliminaries
................... ..

39
3.1.2.1 Closure and Nonblocking

............ .. 39
3.1.2.2 Union, Intersection and Concatenation

..... ..
40

3.1.2.3 Projection and the Synchronous Product
.... .. 41

3.2 Process Modelling 42
3.2.1 Elementary Component Modelling

............. .. 42
3.2.1.1 Example - Waste Neutralisation

....... ... 43
3.2.2 Physical Interaction 43

3.2.2.1 Example - Electrical Heating
......... ... 46

3.3 Process Specification
....................... ... 47

3.3.1 Example - Waste Neutralisation
............. ... 49

3.4 Control Preliminaries
....................... ... 51

3.4.1 The Control Mechanism
................. ... 51

4

Contents 5

3.4.2 Properties of the Controller
..................

53
3.4.2.1 Agreement

......................
53

3.4.2.2 The Procedural Controller
.............. 53

3.5 The Closed Loop Behaviour 54
3.5.1 Properties of the Closed Loop System

............. 55
3.5.1.1 Completeness and Controllability

.......... 55
3.5.1.2 Conformance to Specification

............ 56
3.5.1.3 Nonblocking 57

3.6 Synthesis of Model Based Controllers
................. 58

3.6.1 Example - Waste Neutralisation
................ 60

3.7 Summary
................................ 60

4 Modular Procedural Control Theory 62
4.1 Parallel Decomposition of Class I Systems

........... ... 63
4.1.1 Parallel Decomposition of the Process Model 63

4.1.1.1 Example - Waste Neutralisation
....... ... 64

4.1.2 Parallel Decomposition with Physical Interaction 65
4.1.2.1 Example - Electrical Heating

......... ... 68
4.1.3 Parallel Decomposition of the Specification

....... ... 70
4.1.3.1 Example - Waste Neutralisation 72

4.2 Control of Class Ia Systems
................... ... 73

4.2.1 Properties of Reduced Domain Control
......... ... 73

4.2.1.1 Example - Waste Neutralisation
....... ... 74

4.3 Control of Class Ib Systems
................... ... 74

4.3.1 The Parallel Control Mechanism 75
4.3.2 Properties of Parallel Control

.............. ...
76

4.3.2.1 Example - Electrical Heating
......... ... 77

4.4 Series Decomposition of Class II Systems
............ ... 79

4.4.1 Series Decomposition of the Process Model 79
4.4.1.1 Example - Batch Reaction 80

4.4.2 Series Decomposition of the Specification
........ ... 82

4.4.2.1 Example - Batch Reaction 82
4.5 Control of Class II Systems

................... ... 83
4.5.1 The Series Control Mechanism

.............. ... 84
4.5.2 Properties of Series Control

............... ... 85
4.5.2.1 Example - Batch Reaction

........... ... 86
4.6 Recursive Decomposition of Complex Systems

......... ... 87
4.6.1 Properties of Structured Modular Control

....... ... 88
4.7 Summary 90

5 Procedural Initiation and Inhibition Theory 91
5.1 Controller Initiation

.......................... 92
5.1.1 The Closed Loop Language with Pre-Checks

......... 92
5.1.1.1 Example - Waste Neutralisation

.......... 94
5.2 Controller Inhibiting

.......................... 95
5.2.1 The Closed Loop Language with Pre-Checks for Two Con-

trollers in Parallel
........................ 96

Contents

5.2.2 Properties of Parallel Control with Pre-Checks
....... 97

5.2.3 Formal Design of Controller Inhibits
............. 97

5.2.3.1 Example - Electrical Heating
............ 98

5.2.4 Inhibit Design for Controllers with Shared Controllable Items 100
5.2.4.1 Example - Waste Neutralisation

.......... 101
5.3 Summary

................................ 105

6 Implementation of Procedural Controls 107
6.1 Programming of Sequential Controllers

........... 108
6.2 Translation of Procedural Controllers

............ 109
6.2.1 FSM Topology 109
6.2.2 Transition Mapping

.................. 109
6.2.3 Initiation and Termination

.............. 110
6.2.4 The FSM Translation Algorithm

.......... 110
6.2.4.1 Example - Waste Neutralisation 111

6.3 Generation of Pre-Check Code
............... 113

6.3.1 The Pre-Check Generation Algorithm
....... 115

6.3.1.1 Example - Waste Neutralisation
..... 115

6.4 Generation of Inhibit Code
.................. 117

6.4.1 The Inhibits Generation Algorithm
......... 118

6.4.1.1 Example - Waste Neutralisation
..... 118

6.4.2 Heuristic Design of Controller Inhibits 119
6.5 Implementation of Algorithms

................ 120
6.6 Summary

........................... 122

7 Case Studies 123
7.1 Case Study I- The Batch Pilot Plant 124

7.1.1 Overview of the Batch Pilot Plant
.............. . 124

7.1.1.1 Description of the Computer Control Hardware
. . 126

7.1.2 The CIP-Feed Unit Procedure
................ . 126

7.1.2.1 The Detergent-Station Unit
............ . 128

7.1.2.2 The Feed-Preparation Unit
............ . 129

7.1.3 The Water-Rinse Operation
................. . 129

7.1.3.1 Parallel Decomposition
............... . 132

7.1.3.2 Series Decomposition
................ . 133

7.1.3.3 Synthesis of Procedural Controllers
........ . 135

7.1.3.4 Structured Modular Control
............ . 137

7.1.3.5 Translation of Procedural Controllers
....... . 139

7.1.3.6 Implementation Results
.............. . 140

7.1.4 The Detergent-Service Operation
.............. . 141

7.1.4.1 Parallel Decomposition
............... . 142

7.1.4.2 Synthesis of Procedural Controllers
........ . 142

7.1.4.3 Structured Modular Control
............ . 143

7.1.4.4 Translation of Procedural Controllers
....... . 144

7.1.4.5 Implementation Results
.............. .

145
7.1.5 The Detergent-Clean Operation

............... . 147
7.1.6 Summary of Case Study I..................

. 147

tents 7

7.2 Case Study II - The Melinar Paste Plant 151
7.2.1 Overview of the Melinar Paste Plant

............. 151
7.2.2 The Make-Paste Procedure

.................. 151
7.2.3 Controllers for Operations

................... 153
7.2.4 Controller Inhibits

....................... 155
7.2.5 Operation Inhibits

....................... 162
7.2.6 Summary of Case Study II

................... 164
7.3 Further Applications

.......................... 165

8 Conclusions and Future Work 167
8.1 Significance of Formal Techniques

................... 168
8.2 Future Research

............................. 169

A The Water -Rinse Operation 172
A. 1 Synthesis of Selected Controllers

.............. 172
A. 1.1 Controller Cw fti 172
A. 1.2 Controller Cw fr2 174
A. 1.3 Controller Cwdr

................... 179
A. 2 PARACODE for Selected Sequences 182

A. 2.1 Sequence Derived from Controller Cu, fi 182
A. 2.2 Sequence Derived from Controller Cw f r2 182
A. 2.3 Sequence Derived from Controller Cwdr

...... 184

B The Detergent-Service Operation 186
B. 1 Synthesis of Selected Controllers

.............. 186
B. 1.1 Controller Cd.

.................... 186
B. 1.2 Controller Chu

.................... 189
B. 1.3 Controller Crc

.................... 192
B. 2 PARACODE for Selected Sequences

............ 194
B. 2.1 Sequence Derived from Controller Cd.

....... 194
B. 2.2 Sequence Derived from Controller Ch 195
B. 2.3 Sequence Derived from Controller Crc

....... 197

C PARACODE Transition Lookup Table 198

References 200

List of Figures

3.1 Discrete Model of a Continuous Temperature
............. 38

3.2 The Waste Neutralisation System
................... 43

3.3 Elementary Components for the Waste Neutralisation System
... 44

3.4 FSM Model for the Waste Neutralisation System
.......... 45

3.5 The Electric Water Heater
....................... 46

3.6 Elementary Components for the Electric Water Heater 47
3.7 FSM Model for the Electric Water Heater 48
3.8 Acid Dosing Specification

....................... 50
3.9 The Feedback Control Mechanism 52
3.10 Inputs and Outputs of the Synthesis Procedure

........... 59
3.11 Acid Dosing Controller

......................... 60

4.1 The Extended Waste Neutralisation System
............. 64

4.2 Additional Elementary Components for the Waste Neutralisation
System

.................................. 65
4.3 Reduced Model Gb for the Waste Neutralisation System

....... 66
4.4 The Modified Electric Water Heater

.................. 69
4.5 FSM Model for V_10 and Gb for the Electric Water Heater 70
4.6 Overall FSM Model for the Modified Electric Water Heater 71
4.7 The Parallel Control Mechanism

.................... 76
4.8 Modular Controllers for the Electric Water Heater 78
4.9 The Batch Reactor 80
4.10 Elementary Components for the Batch Reactor 81
4.11 Modular Specifications for the Batch Reactor

............ 83
4.12 The Series Control Mechanism

..................... 84
4.13 Modular Controllers for the Batch Reactor

.............. 87
4.14 Networks of Models

........................... 89

5.1 FSM Generating the First Term of Equation 5.2 95
5.2 FSMs Generating the Terms of Equation 5.6 99
5.3 Base Dosing Controller

......................... 102
5.4 Elementary Component FSMs with Duplicated Transitions for the

Waste Neutralisation System
...................... 103

5.5 FSM Generating the Regulator Language
............... 103

5.6 The Modified Acid Dosing Specification
................ 106

6.1 Translation of the Acid Dosing Controller
.......... 114

6.2 Pre-Check Code for the Acid Dosing Controller
...... 117

8

List of Figures 9

6.3 Inhibits Code for the Acid Dosing Controller
............. 119

6.4 Inhibits PARACODE for the Acid Dosing Controller
........ 119

7.1 The Batch Pilot Plant 125
7.2 The Detergent-Station Unit

...................... 128
7.3 The Feed-Preparation Unit 129
7.4 Network of Models for the Water-Rinse Operation

......... 136
7.5 Network of Controllers for the Water-Rinse Operation

....... 139
7.6 Level Profile and Lid Position for the Water-Rinse Operation

... 141
7.7 Temperatures and Pump Status for the Detergent-Service Operation 146
7.8 Level Profile for the Detergent-Clean Operation

........... 148
7.9 Control Hierarchy for the CIP-Feed Unit Procedure 149
7.10 Temperature and Level Profile for the CIP-Feed Unit Procedure

.. 150
7.11 The Melinar Paste Plant 152
7.12 Network of Controllers for the Mix-G&C A Operation

....... 155
7.13 Network of Controllers for the React-TA4E-26 A Operation

.... 155
7.14 Control Hierarchy for the Make-Paste Procedure

.......... 157
7.15 FSM Model for Valve V2

........................ 160
7.16 PLANT X................................ 166

List of Tables

2.1 Sample of Sequential Programming Languages
............

20
2.2 Summary of Petri Net Control Literature

29
2.3 Summary of SCT Literature

......................
32

3.1 Summary of Controller Properties 61
3.2 Summary of Closed Loop Properties 61

4.1 Subgoals in the Batch Reactor Model
.................

82
4.2 User Requirements for Batch Reactor Phases

.............
83

4.3 Summary of Theorems
.........................

88

5.1 Controllable Transitions in Elementary Component FSMs for the
Waste Neutralisation System

......................
104

6.1 Sequence Structure
...........................

108
6.2 Transition Lookup Table for the Waste Neutralisation System

... 115
6.3 Elementary Component State Variable Lookup Table for the Waste

Neutralisation System
.........................

116
6.4 Data Files for the Translation Program

................
121

6.5 FSM Analysis Programs
........................

122

7.1 Summary of Techniques Demonstrated in the Case Studies
..... 124

7.2 Operations in the CIP-Feed Unit Procedure
.............

127
7.3 Interaction Matrix for the Detergent-Station Unit

..........
130

7.4 Interaction Matrix for the Feed-Preparation Unit 131
7.5 Partition Table for the Water-Rinse Operation

........... 134
7.6 Subgoals in G21 f,.

135
7.7 Controller Synthesis Statistics for the Water-Rinse Operation

... 137
7.8 PARACODE Statistics for the Water-Rinse Operation

....... 140
7.9 Partition Table for the Detergent-Service Operation

......... 143
7.10 Controller Synthesis Statistics for the Detergent-Service Operation

. 144
7.11 PARACODE Statistics for the Detergent-Service Operation

.... 145
7.12 Phases in the CIP-Feed Unit Procedure

................ 148
7.13 Unit Procedures and Operations in the Make-Paste Procedure

... 153
7.14 Elementary Components in Melinar Paste Plant Units

........ 154
7.15 Phases for 7 Operations in the Make-Paste Procedure

........ 154
7.16 Phases for 4 Operations in the Make-Paste Procedure

........ 156
7.17 Controller Synthesis Statistics for the Make-Paste Procedure

.... 156
7.18 Intertrain Controller Inhibit Calculations

............... 159

10

List of Tables 11

7.19 Intratrain Controller Inhibit Calculations
............... 159

7.20 Intertrain Controller Inhibits
...................... 163

7.21 Intratrain Controller Inhibits
...................... 163

7.22 Inhibited Operations in the Make-Paste Procedure
......... 164

A. 1 Elementary Component FSMs in Ew f2 172
A. 2 Elementary Component FSMs in Ew fr 174
A. 3 FSM Generating L(Cwfr2) -C ontinued on page 178

...... ... 177
A. 4 FSM Generating L(Cwfr2) -C ontinued from page 177 178
A. 5 Elementary Component FSMs in Ewdr 179
A. 6 FSM Generating L(Cwdr)

... 181

B. 1 Elementary Component FSMs in Ed.
.............. ... 186

B. 2 FSM Generating L(Cdc)
... 188

B. 3 Elementary Component FSMs in Eh.
.............. ... 189

B. 4 FSM Generating L(Chu)
... 191

B. 5 Elementary Component FSMs in Erc
.............. ... 192

B. 6 FSM Generating L(Crc)
... 193

Nomenclature

c
ci

E
EZ
e2
Gi
HZ
K1
L(M)
L, -�(M)
L (CIM)
L(CZtCj/M)
L(CZ --> Cj /M)
M
nc
ni

Controller FSM
Controller FSM for subsystem i
Set of elementary components
Set of elementary components for subsystem i
The ith elementary component FSM
Reduced process model FSM for subsystem i
The ith series process model
Supremal controllable sublanguage
Language generated by FSM M
Marked language generated by FSM M
Closed loop language generated by controller C and process M
Closed loop language generated by parallel controllers C2 and Cj
Closed loop language generated by series controllers CZ and Cj
Process model FSM
Number of controllers
Number of interaction terms

ns Number of specification terms
nv Number of elementary components
p2 Physical interaction FSM translated from the ith logic formula
Q Set of states
qo Nominal initial state
QCr Set of coreachable states
Qm Set of marked states
qj The ith subgoal
Qi Set of potential starting states for controller i
Q,. Set of reachable states
R The regulator FSM
ri Specification FSM translated from the ith logic formula
S Specification FSM
Si Specification for subsystem i
Vnv Set of state variables
(vj)q State variable j in state q
X Set of controller states
xo Initial controller state
Xm Set of marked controller states
Xw Set of controller wait states

12

Nomenclat

Greek Symbols

-y State variable transition partial function, ry :Ex V'' Vnv
b State transition partial function, S: ExQQ
E The null event

Controller state transition partial function, :ExX -+ X
E Set of transitions or alphabet of process events
E* The string set
Ej The alphabet of subsystem i
Ejj Set of controllable events in Ej equivalent to events in Ej
T The next transition

13

Chapter 1

Introduction

The chemical processing industry has witnessed a revolution in automation and con-
trol with the advent of programmable electronic systems. Programmable electronic

systems increase profits by increasing productivity, improving product quality and

consistency and increasing production flexibility with which to respond to mar-
ket forces (Reeve, 1995). The potential now exists for networking process data to

business computer systems for improving also production management and docu-

mentation, and for meeting the increasing regulatory requirements for validation in

the pharmaceuticals industry (White, 1996). For all these reasons, the increasing

trend in automation is only to continue towards what Gidwani et al. (1989) calls
the "totally automated plant".

Typically, chemical processes are automated using either Programmable Logic

Controllers (PLCs) or Distributed Control Systems (DCSs) and the argument over
the best automation solution is longstanding (Lange, 1994; Skontos, 1991). Tradi-

tional industrially hardened PLCs now offer analogue functionality for PID control

and real number arithmetic, improved operator interfaces and networking capa-
bilities. The more costly DCSs, evolved from the continuous processing domain,

provide a superior operator interface and come equipped with additional function-

ality for easing the programming burden. Whatever the system, it is nowadays
designed, installed and commissioned in conjunction with the process hardware

and definitely not as an optional extra.
Despite these obvious advantages, programmable electronic systems have a pro-

found impact on safety as they introduce many new opportunities for errors, omis-

sions and failures. Dangerous incidents can arise randomly from failure of computer
hardware, or systematically from software errors or omissions. For example, one
buried software fault could result in loss or damage to material and processing hard-

ware or at worst personal injury or fatality. Kletz et al. (1995) cites an incident
in which the opening of the wrong relief valve due to a software error caused the

14

Chapter 1. Introduction 15

escape of 14 tonnes of carbon dioxide.

In a survey conducted by the U. K. 's Health and Safety Executive (HSE) it

was found that 17% of all dangerous incidents in computer controlled systems were
attributable to software error (Nimmo, 1994). A further 20% were due to inadequate

specification in the first place. Only 17% were attributable to instrument and
computer hardware failure. In the same survey, 60% of companies reported that
their standard procedure for hazard analysis (i. e. HAZOP) treats the programmable
electronic system as a black box. In this case, there exists no systematic mechanism
for the capture of software errors. Qualitative guidelines forwarded by the HSE for
development and HAZOP of computer controlled plants (i. e. CHAZOP) go some

way towards addressing the issue of safety critical software in chemical processes
(Brazendale and Lloyd, 1989).

With the falling costs of computer hardware, the development costs for control
software emerge as a significant fraction of the total expenditure on automation. In

a recent study it was reported that 25% of the costs of an automation project were
in software coding alone (Presto Project P4,1996). This total does not include

profit loss from late or faulty software, or the expenditure on specialist training

needed to build and maintain complex programmed systems. One author describes

the current environment in which more than half the software projects in the U. S.

take twice the amount of anticipated time as "Software's Chronic Crisis" (Gibbs,

1994).

1.1 The Motivation for Formal Techniques

Formal techniques are emerging from academia to support the conceptual design of
automation software for chemical processes. These techniques are grounded in logic

and discrete systems theory and represent a major departure from the traditional

chemical engineering domain of continuous process control.
The primary goal of formal techniques in the design of automation systems is the

improvement in process safety by the elimination of errors in the control software.
Most researchers strive for the ideal of "provably correct systems", that is systems
which can be shown mathematically to meet all specifications and to generate no
undesired behaviours. However, the benefits of provable correctness are degraded
in the presence of modelling, specification and implementation errors.

Formal techniques have numerous spin off benefits throughout the life cycle of
the automation software. Maintenance, documentation, portability, retrofit and
code reuse are promoted by improvements in the traceability of the design afforded
by formal techniques. With the support of formal techniques by Computer Aided

Chapter 1. Introduction 16

Design (CAD) tools, up front software development times could be reduced signif-
icantly below that presently required for hand coding. It is certain however that

software commissioning hours and expense will diminish by use of these techniques,

especially for multiproduct plants in which changeovers to new products requiring

retrofitted controls occur often. In summary, the use of formal techniques can be

justified not only on the grounds of safety but also by economic considerations.
Formal methods for the design of automation software have yet to be seen in the

chemical processing industry for two reasons. Firstly, they are considered mathe-

matically abstract and the creation of a formal model and specification more de-

manding than writing and testing PLC code. Secondly, formal methods have only
been demonstrated on examples significantly less complex than those of practical
industrial interest.

1.2 Outline of the Thesis

This thesis employs the formal techniques within the discrete control theory known

as Procedural Control Theory (PCT) (Sanchez, 1996). PCT is a recently advanced
theory for modelling chemical processes as Discrete Event Systems (DESs), and the

specification, synthesis and analysis of controllers for such systems. This theory is

exploited here for the design of control logic for automated chemical processes.
At present, PCT techniques are limited to small examples and suffer combina-

torial problems when applied to large scale processes. The theory only considers
the case of a process under control from a single controller. This simple mechanism
is inconsistent with industrial multitasking architectures employing multiple con-
trol sequences operating in parallel and series. In such an architecture, a sequence
inhibit mechanism is necessary to safeguard against the simultaneous operation

of noncooperative or interlocked sequences. No formal consideration has yet been

given to the design of inhibits and interlocks.
The objectives of the thesis are therefore as follows:

1. To extend the powerful analytical techniques of PCT to handle complex, re-
alistically sized systems by the introduction of modular control concepts.

2. To utilise control theoretic concepts to develop a criterion for the design of
inhibits for multitasking control architectures.

3. To develop automated techniques for the generation of sequential control code
from the formal PCT representation of controllers.

Chapter 1. Introduction 17

The thesis is organised as follows. The following chapter reviews the literature

in the field of formal techniques for the procedural control of industrial processes.
Methods based on Artificial Intelligence (AI) and optimisation for the synthesis

and verification of control logic are considered as are DES control theories includ-

ing those based on Petri Nets, Supervisory Control Theory and finally Procedural

Control Theory.

The concepts, theory and techniques within PCT for process modelling, con-
troller specification, synthesis and analysis are reviewed in chapter 3. The result of
this chapter is that a formal method for the synthesis of procedural controllers for

small systems is firmly established. Two important system properties are clearly
identified as nonblocking, the ability to guarantee that a system reaches its defined

goal state, and conformance to specification.
Chapter 4 extends PCT to more complex chemical systems using modular de-

composition strategies. In particular, it is shown that for three special classes of
DESs, nonblocking and conformance to specification for a decomposed system can
be proved with little or no computational effort. Structured modular controllers

are thereby proposed for complex systems not amenable to traditional techniques

within PCT.

Theoretic aspects of controller initiation are considered in chapter 5 with the

aim of deriving a generalised expression for the behaviour of a process under parallel

control from multiple controllers. The principles of nonblocking and conformance
to specification are then utilised in the formulation of a design criterion to identify

controller inhibits.
Chapter 6 presents several algorithms with which to translate the mathematical

control structures of the previous chapters into sequential programming language

for implementation on industrial control hardware. Control sequences include in-
hibits, pre-checks, processing (i. e. normal, emergency, alarm and restart) logic and
termination logic.

Two simple working examples are progressively developed in chapters 3,4,5

and 6 in order to illustrate the techniques. The first is a simple continuous waste

neutralisation system and the second a semi continuous electric water heater. Re-

alistically sized case studies are presented in chapter 7. The first is a Cleaning-

In-Place (CIP) unit procedure in a multipurpose, multiproduct batch pilot plant.
The second is the ICI Melinar paste process, characterised by resource sharing and

multiple interlocking.

Finally, chapter 8 concludes the thesis and indicates some directions for future

research.

Chapter 2

Literature Review

This chapter reviews the literature in the field of formal techniques for the proce-
dural control of industrial processes. The subject is introduced with a discussion of
batch process control in section 2.1. Methods for the synthesis of control logic and

operating procedures for general chemical processes are then reviewed in section
2.2. Synthesis techniques are broadly divided into formal methods from computer

science for program and control logic development and methods based on Artificial

Intelligence (AI) and optimisation for synthesis of operating procedures for chemi-
cal processes. Verification of logic controllers and operating procedures is treated in

section 2.3. Control theories for discrete event systems are considered in section 2.4,

categorised into those based on Petri Nets, Supervisory Control Theory and finally

Procedural Control Theory. The chapter concludes with clearly defined research
objectives for the current thesis in section 2.5.

2.1 Batch Process Control

It has long been recognised that the control of batch processes spans a hierarchy
from low level sequential control through to supervisory control, batch management
and production planning (Cott, 1989; Sawyer, 1993). Vendors of DCS batch control
systems have tailored hardware and on and off line software products accordingly.
For example, off line tools for the configuration of modular and hierarchical controls
for batch processes permit quick turnarounds in multipurpose, multiproduct batch

plants. Such techniques are based on the concept of unit modules, reusable precoded
general purpose control modules and equipment independent batch recipes. For

example, Fujii et al. (1991) use Sequential Function Charts for configuring recipes of
unit sequences instantiated to equipment items. Wilkins (1992) employs a four level
batch control hierarchy in which a matrix format is adopted for product and unit

18

Chapter 2. Literature Review 19

recipes. Despite the similarities between these systems, they differ in terminology,
hierarchical structure and methods of documentation.

The new ISA-588.01 (1995) standard on batch process control overcomes dis-

crepancies in terminology and hierarchical structure by formalising the concepts and
language of batch process control. The standard "provides definitions for many of
the common elements of batch process equipment and recipe steps (and) in ad-
dition ... provides a methodology for logically arranging batch process control"
(Haxthausen, 1995).

The batch process control hierarchy proposed in ISA-S88.01 comprises proce-
dures, unit procedures, operations and phases. High level procedures carry out

major processing actions such as making a batch. Procedures are comprised of or-
dered sets of unit procedures which may run concurrently in different units. Units

are equipment groupings, usually centred about a major piece of processing equip-

ment such as a tank or reactor, which operate in isolation from each other. Unit

procedures are comprised of major processing sequences or operations which change
the chemical or physical state of material. Only one operation can occur in a unit

at any one time, and is carried out to completion in that unit. Normal processing

can be safely suspended at operation boundaries. Finally, operations are comprised

of phases, the smallest element that can accomplish a process oriented task.

ISA-S88.01 compliant tools now exist for building batch control software using
basic function elements stored in object libraries (Uebler, 1995). In particular,
such tools exploit the ISA-588.01 concept of recipes, which define the order of unit
procedures, operations and phases in a procedure.

2.1.1 Supervisory Control

Supervisory control is concerned with the on line management and scheduling of

operations and unit procedures. SUPERBATCH (Crombie, 1996) is an on line su-

pervisory control and rescheduling system for batch processes. Equipment is mod-

elled as connected resources and units (equivalent to ISA-588.01 units). Resources

are either storage, batch or common (i. e. utilities) and have associated availabili-
ties. Resource phases (i. e. ISA-588.01 unit procedures) are either of the process or
transfer type. Unit phases (i. e ISA-588.01 operations) are instantiations of resource

phases to particular units. Recipes are called master procedures, and comprise or-
dered sets of resource phases. SUPERBATCH employs a projection algorithm with

mass balancing to allocate unit phases to units over time in order to produce a

production plan (i. e. an ordered set of recipe instances or batches). Crooks (1992)

presents algorithms for automatically generating and translating batch operating

Chapter 2. Literature Review 20

procedures into SUPERBATCH models (see section 2.2.3).

2.1.2 Sequential Control

Sequential control is the low level of batch process control concerned with the logical

operation of valves, pumps, timers, switches etc. and is the means by which phases

are implemented. This level of control is typically performed by PLCs or DCSs.

Traditionally PLCs were programmed in ladder logic, a formalism originating from

relay logic circuits (Clements-Jewery and Jeffcoat, 1996). Control system vendors

now offer a suite of graphical and text based industrial programming languages for

a wider range of processing tasks. Table 2.1 shows a sample of industrial program-
ming languages. Jones (1991) calls for a standardisation of industrial codes, having

realised the functional similarities between these languages.

Platform Language & Description
Siemens LAD - Ladder diagrams
PLCs CSF - Control System Flowcharts

STL - Low level text based Statement Lists
SCL - Pascal based Structured Control Language
S7-GRAPH & Hi-Graph - Petri Net based graphics

Moore Products Ladder logic
APACS DCS Function blocks

Sequential Function Charts
Pascal based text

APV PARACODE - High level process based text
ACCOS DCS
Jetter SYMPASle - High level process based text
PASE-J PLCs

Table 2.1: Sample of Sequential Programming Languages

Love (1991) proposed the design of CLARE, a computerised tool for the auto-

mated generation of control code for batch processes. CLARE is comprised of a
declarer, translator and generator. In the declarer, user defined specifications are

written in a keyword structured language from which the translator generates a set

of rules and procedural requirements in a generic format using skeletal sequences

and objects (with attributes, relations and connectivity) stored in its knowledge

base (Love et al., 1992a; Love et al., 1992b). The generator is the syntax specific

module which parses generic code from the translator. Although the translator for

CLARE was never built, the benefits of such a tool are obvious with respect to ef-
ficacy and continuity of the software writing process and life cycle issues including

Chapter 2. Literature Review 21

maintenance, management, portability and documentation.

Computer Aided Software Engineering (CASE) tools are now becoming avail-

able specifically for the development of sequential control programs. For example,
OBJECT 5 from Siemens (Schulz, 1995; White, 1996) is an object oriented environ-

ment for PLC programming which boasts consistency and communication checking

and verification by off line simulation. Code reuse is promoted by means of li-

brary functions. Similar tools are available for the generation and maintenance of
operating procedures. For example, PROSEG (Naka, 1994) is an academic oper-

ating procedure design tool which combines an intelligent drawing system with a
linker (for instantiating skeletal operating procedures) and simulation tool. Simi-

larly COPMA II (Teigen and Ness, 1994) is a computerised environment boasting

syntax and control flow checking for the preparation and maintenance of oper-

ating procedures as a structured list of keywords. These tools are beneficial for

housekeeping procedures, but neither aid the synthesis of procedures nor provide a
formal verification of correctness. Formal techniques for synthesis and verification
of procedures address these issues and are discussed in the next section.

2.2 Synthesis of Control Logic and Operating Pro-

cedures

2.2.1 Formal Techniques for Program Development

Formal techniques in software engineering have emerged to combat the complexity

of programmed systems and to ensure strict conformance to requirements in safety

critical software applications. Formal techniques are a mathematical discipline for

producing a clear, complete, unambiguous specification of a computer application

which can be readily verified mathematically (Groll and Nixon, 1991). A specifica-
tion is a formal description of the user requirements of a system and is written in a

variety of languages (e. g. Z, RTL) based on temporal logic or Finite State Machines

(FSMs).

Morris (1990) defines refinement as the transformation of a specification (i. e.

a non algorithmic declaration of the user requirements) into a program (i. e. an

algorithmic or procedural implementation of the user requirements) by a series of

correctness preserving mathematical transitions. In this way, programs are correct
by construction. However, refinement cannot be automated as it requires a proof of

correctness at each development step. Linsey (1988) comprehensively reviews me-

chanical proof assistants and formal reasoning tools for this task. Techniques em-

Chapter 2. Literature Review 22

ploying refinement are called development methods, the most well known of which
is VDM (Austwick and Norris, 1986). However, such techniques are mathemati-
cally demanding and do not scale easily beyond academic examples. Development

methods have also struggled to satisfactorily incorporate real time.
A less rigorous yet more promising formal technique is offered by systems which

do not attempt to generate programs that are correct by construction, but rather

mathematically verify a posteriori whether a program conforms to specification.
Such a technique is proposed by Ravn et al. (1993), in which specifications, pro-

grams (i. e. control laws) and physical systems (including sensors, actuators and
timers) are modelled in a duration calculus. The program is correct if it can be

proved in the calculus that the system plus control law meet the specification. Du-

ration calculus is supported by the ProCoS II system (Bowen et al., 1993) which also
includes a tool for the inductive compilation of duration calculus into a program-

ming language using a syntax directed transformation. Gabrielen (1994) describes

a similar technique employing Hierarchical Multi State machines (HMSs) for mod-

elling systems and specifications. HMSs are an hierarchical extension of FSMs to
include concurrency and temporal constraints. Verification is performed by a non

automated tableau based theorem proving method. FOREST (Lynch, 1991) is a
technique for eliciting formal specifications from user requirements in Modal Ac-

tion Logic (MAL), and for validating the results using animation and automated
deduction by the tableau method (Quirk, 1990).

Less rigorous again is the VALID system based on hierarchical rewriting logic
(Attoui and Schneider, 1994). VALID tests programs for the absence of deadlock

and infinite cycling and boasts a program animator and prototype code generator.
Finally, a number of general purpose CASE tools are available for assisting pro-
grammers in the writing of code. For example Statemate/C by iLogix Inc. offers
a graphical method for system specification. Statemate/C also performs syntactic
and semantic verification of the specification, tests for consistency, completeness and

reachability, specification animation and automatic C code generation. Systems are
modelled using the statecharts formalism (Harel, 1987), which is an extension of
FSMs to include hierarchy, concurrency, timing and communication. The problem
however with tools of this type is that they check only the program for correctness
with no proper consideration of process dynamics. What is preferable is a model
based technique for the synthesis of control logic, as considered in the following two

sections.

Chapter 2. Literature Review 23

2.2.2 Artificial Intelligence Planning Methods

Pioneering research in the field of computer aided operating procedure synthesis
for chemical processes began in the 1970s with techniques for the synthesis of valve

sequences (Rivas and Rudd, 1974). In these techniques, pipes, pumps and vessels

are modelled as connectors joined at nodes and material states in the network are

either flowing, trapped or blocked. Process operations (i. e. switching valves) are

modelled in sequential logic and safety constraints define species incompatibilities.

High level operating goals (e. g. start-up) are decomposed manually into low level

goals in terms of material states and locality. A brute force search strategy finds

a flow route through the network and orders operations to achieve the processing

goals while satisfying the safety constraints. Similar techniques for sequencing valve

operations are offered by O'Shima (1983) and Foulkes et al. (1988). In particular,
Foulkes et al. formulate interlocks between operating flow paths. Pövoa (1994) also

considers flow path interlocking in her scheduling formulation for flows through

complex valve manifolds.
Fusillo and Powers (1987) extend Al synthesis techniques in chemical process-

ing to a level of abstraction beyond valve and pump switching. Their technique is

especially suited to continuous chemical plants with recycle streams. The key con-

cept of modularity was introduced to handle large systems by decomposition into

subsystems, defined as sections of the plant which can be started-up in isolation

and later combined into an overall running plant. Process resources within subsec-
tions are modelled by lumped variables. Functional operators (e. g. introduce feed)

are defined by their qualitative effect on process resources. Mixing rules and unit

preconditions define the set of constraints. AI planning techniques (i. e. means ends

analysis) order the functional operators to achieve the planning goal while satisfy-
ing the constraints. The goal state is either the final plant state (e. g. a continuous

steady state) or an intermediate stationary state defined by the user. Stationary

states provide safe, stable intermediate point which can be employed in complex

changeovers or start-ups or in the event of an emergency. To exhibit a stationary

state, a plant must posses capacitance or a simultaneous inverse operation.
In a three part series, Lakshmanan and Stephanopoulos (1988a; 1988b; 1990)

detail an operating procedure synthesis methodology exploiting an hierarchical ob-
ject oriented modelling framework. Operating goals are automatically propagated
down the hierarchy and an efficient nonlinear planner partially orders primitive op-

erations (defined as object oriented pre and post condition operators) with respect
to temporal constraints on the system. A linear generate and test strategy then
finalises the order of operations based on the non temporal constraints.

Chapter 2. Literature Review 24

AI techniques have only proved successful for niche problems. Qualitative and

operational models employed by such techniques are difficult to generalise. Crooks
(1992) reports a successful application of Al techniques (implemented in PROLOG)

for the niche problem of searching networks of valves and pumps for flow routes. The

route finder is implemented as part of a tool for automatically generating sequences

of control actions for batch transfers. Sequences are constructed mechanically in

a generic language using simple operational rules and comprise (in order) : pre-

checks, inhibits, setting of routeing valves, flow generators, integrators and flow

controllers, termination conditions and shut-down activities. An example of one

rule for constructing sequences is that all valves in the transfer route are interlocked

while those adjacent to the route are interlocked to closed (see algorithms 7.3 and
7.5).

A simple algorithm (7.6) is proposed for generating sequence inhibits. Inhibited

sequences are those with interlocked or interlocked to closed items in common with
the interlocked items of the active sequence. Simultaneous operation of two or

more sequences which interlock to closed the same item is permitted (i. e no check
for overlap of interlocked to closed items is made). Crook's technique is applicable

only to nonhierarchical transfer phases and generates sequences in an ad hoc fashion.

2.2.3 Optimal Synthesis Techniques

Mathematical optimisation offers an alternative synthesis engine to Al and rule
based planners. The earliest attempts for synthesising operating procedures for

chemical processes using optimisation were reported by Ivanov et al. (1981a; 1981b).
Chemical processes were modelled as transition graph networks in which arcs rep-

resent control actions and nodes represent plant states. Associated with each arc
is a weighting and DAE model. The start-up procedure is the sequence of control

actions along the optimal route through the transition network which originates at
the initial state and terminates at the desired operating steady state.

A similar modelling approach is adopted by Kinoshita (1981). To address size

complexity, Kinoshita decomposes the plant into a set of subsystems (e. g. reactors,
dryers, distillation columns) and quantifies the states of individual subsystems in

a unit state vector. Control actions occur locally on the subsystem and affect the

elements only of the corresponding unit state vector. Procedures are synthesised
individually for each subsystem and the combined procedure for the whole plant is

synthesised unit by unit considering a set of constraints defined at the subsystem
boundaries.

J

Chapter 2. Literature Review 25

Due to computational complexity, neither Ivanov nor Kinoshita were able to
demonstrate their techniques at the time. Since then, Yamalidou and Kantor
(1991) have successfully applied optimisation to the valve/pump sequencing prob-
lem. Valve/pump networks are modelled by coloured control Petri Nets with in-
hibitor arcs in which coloured tokens correspond to chemical species. Transitions

model either internal events, disturbances or exogenous inputs. A mapping exists
between the Petri Net representation and a matrix of equalities and constraints

which form the basis of a Mixed Integer Linear Program (MILP). The order of

valve operations is optimised with respect to a cost objective.
Optimal control is employed by Papageorgiou (1994), for the synthesis of specific

optimal operating policies for a pair of thermally coupled batch operations, and
Macchietto and Mujtaba (1994) for the synthesis of optimal take off and reflux

policies for the production of a set of distillate cuts of prespecified quality in a batch

distillation. Computational complexity limits the number of discrete switchings
in control strategies generated by optimal control techniques. These techniques

generate a specific deterministic control trajectory and not a control procedure

which adapts to feedback from disturbances entering the system. Dimitriadi's et al.
(1995b) formulates an optimisation problem for the design of feedback controllers
for generalised processing systems modelled as a discrete/continuous hybrid. In

this context, "design" is the calculation of optimal values for the parameters in the

control structure model, given a bdci't& set of disturbance scenarios.
Crooks (1992) utilises optimisation for the synthesis of hierarchical operating

procedures for batch processes. In this context, an operating procedure is a set

of master procedures which are ordered sets of control phases (see section 2.1.1).
Operating procedures are automatically derived from a detailed optimal sched-

ule of the batch operation required to achieve a specified goal. The scheduling

problem is formulated by modelling equipment independent recipes as State Task

Networks (STNs), originally from Kondili (1993). The plant hardware is modelled

as a network of connected batch and storage resources. Functionally similar units

are grouped into equipment resources. Constraints in the formulation include unit

allocation, capacity, connectivity, pre and post conditions, material balance, task

precedence and utility capacity. The scheduling problem (i. e. the optimal assign-

ment of tasks to resources) is formulated as a MILP for which a variety of objectives

are forwarded. Groups of related tasks within the detailed schedule are identified

as phases. Master procedure boundaries (i. e. subgoals) are identified as places in

the schedule where stable material is stored.
The approach of Crooks offers significant conceptual insight into the design of

batch control hierarchies from a purely high level description of the recipe and equip-

J

Chapter 2. Literature Review 26

ment down to the operation level. As described in section 2.2.2, Crooks extends
the design approach to the phase level using Al and rule based techniques.

2.3 Verification of Control Logic and Operating

Procedures

In contrast to the methods of the previous section, which strive to synthesise prov-

ably correct controllers from a specification, verification techniques aim to prove
correctness of manually or otherwise synthesised control logic against a given spec-
ification.

Pioneering work in the field of formal verification was reported by Clarke et al.
(1986) who proposed the model checker as a mechanical means of determining if a
finite state concurrent system meets a specification expressed in Computation Tree

Logic (CTL). CTL is a propositional branching time temporal logic developed for

real time process specification. The model checker avoids manual proof construction
by mechanically searching the state space of the system for states in which the

asserted formula is true. The algorithm is applicable to finite state systems of 1020

states (Burch et al., 1990). System specifications are proposed or asserted one at a
time and for each a truth value is returned by the model checker. When an assertion
fails, the path yielding the contradiction is also returned. With this prompt, the

user may modify the system and retest the same set of assertions.
Moon et al. (1992) applies the model checking algorithm to verify operability,

safety and robustness specifications in chemical systems. The verification method
has been applied to check the safety and operability of a closed loop system (i. e.

process plus controller) incorporating a PLC programmed in Relay Ladder Logic
(RLL). It has also been applied to verify the operating procedure for a simple com-
bustion system. An identical approach is adopted by Probst and Powers (1994)

who model larger process systems using hierarchical and modular FSMs. Com-

putational efficiency is achieved using Ordered Binary Decision Diagrams for the

representation and manipulation of logic formulas.

Hiranaka and Nishitani (1994) develop a systematic approach for constructing

global state transition graphs for modelling systems and controllers for subsequent

verification using the model checking algorithm. The approach separates the states

and models of the controlled object, controller mechanism and operator input. Con-

straints on the system prune the global state transition graph. This formalism in-

corporates the value "unconcerned" for states of a node (c f. Sanchez (1996)) which

necessitates semantic modifications of CTL.

J

Chapter 2. Literature Review 27

An alternative technique for the verification of batch control software as Se-

quential Function Charts is proposed by Kowalewski et al. (1994). Plant primitives

and controllers are modelled as linked Binary Condition Event systems. Controllers

are verified by establishing reachability of forbidden states in the underlying Petri

Net structure. This approach is tedious as the primitives have a large number of
input signals and the reachability calculation must be rerun for each possible initial

state. Gerzon et al. (1994; 1995) also propose a verification procedure for operating

procedures based on Petri Net analysis. In this work, coloured and timed high level

Petri Nets are used, in which colour corresponds to qualitative values of the state

variables. Petri Net analysis permits the procedure to be checked for deadlock,

boundness, reachability and liveness, but not forbidden states.
Hunt (1995) proposes a novel method for testing control software using ge-

netic algorithms. The genetic algorithm performs an evolutionary search of the
input/output space for a failure scenario. In this way, software can be tested to

some unspecified degree of confidence without enumerating and testing every pos-

sible input/output combination. However the same degree of confidence afforded
by provable correctness can never be achieved by such a technique.

A quantitative model based approach to the safety verification problem for gen-

eral processing systems is proposed by Dimitriad; s et al. (1995a). A hybrid mod-

elling framework is employed over a discrete time domain. The system is deemed

safe if, given a set of possible disturbances, no path is available from an initial

state to an unsafe state. The existence of such a path is found by formulating the

process model as an MILP with an objective which drives the optimisation towards

an unsafe state. This technique is useful for validating simple discrete controllers,
but encounters serious computational problems for large systems.

The whole issue of verification can be bypassed if the synthesis technique gen-

erates controllers that are correct by construction. Such techniques are considered
in the following section.

2.4 Control Theory for Discrete Event Systems

2.4.1 Control Theory Based on Petri Nets

The Petri Net (PN) formalism is of considerable appeal to researchers in the field

of DESs owing to the ease of modelling concurrency, synchronisation and resource

sharing. David and Alla (1994) describe numerous extensions to the basic Petri Net

for modelling quantitative, timed and stochastic behaviours, some of which have

been mentioned already. Petri Nets in the form of Grafcets have long been used

Chapter 2. Literature Review 28

for the purpose of sequential control specification. Arzen (1994) extends Grafcet

even further to Grafcharts for structuring supervisory control in knowledge based

systems.
Yamalidou et al. (1990) consider the applications and analytical properties of

Petri Nets in the domain of discrete process control. In particular, the net property

of boundness is used to assess resource limitations, liveness for detecting deadlocks

and reachability for assessing the potential of a system to achieve undesirable (i. e
forbidden) and desirable (i. e. goal) states.

The problem posed by researchers in this area is the synthesis of maximally
permissive controls which avoid forbidden states. Maximally permissive controls

permit a maximal number of states to be reached. Several solutions are proposed,
differing only in the type of Petri Nets, synthesis engines and control mechanisms

used. Efficient techniques for the synthesis of supervisory controls for DESs mod-

elled as Controlled Marked Graphs (CMGs), a special class of Controlled Petri

Nets (CPNs), are reported by Holloway and Krogh (1990) and Krogh and Holloway
(1991). Forbidden states are indicated by place markings and control is enabled by

exogenous control inputs. Boel (1995) proposes an alternative algorithm for the syn-
thesis of maximally permissive controllers for systems modelled as Controlled State

Machines (Ct1SMs), a special class of CPNs, based on the concept of influencing

zones. Forbidden states and other control requirements are specified by constraints

on token counts. Control is exerted on the system by defining the set of control-
lable transitions as those which can be disabled by an external mechanism. To

address state explosion, Boel proposes model reduction techniques in which strings

of transitions are compressed into one.
Boissel and Kantor (1995) employ simulated annealing for the synthesis of max-

imally permissive controls for systems modelled as timed Petri Nets. It is shown
that resource conflicts and deadlocks may be expressed as forbidden states. Control

is exerted on the system by defining additional transitions from controller places.
Finally, Yamalidou et al. (1996) propose a computationally efficient synthesis based

on linear algebra for the forbidden state problem. The controller is an additional set

of places in the Petri Net model of the process. It is shown that logical constraints

and, for certain classes of Petri Nets, numerical constraints can be mapped into

place invariants and thereby satisfied by the synthesised controller.
The cited literature in Petri Net control theory is summarised in table 2.2. These

techniques do not consider specifications of a type other than forbidden state spec-
ifications. The controls are maximally permissive and, as indicated by Krogh and
Holloway (1991), additional input is necessary for making optimal operating deci-

sions. As yet, no work has been reported on the application of such techniques to

Chapter 2. Literature Review 29

large industrial processes. Andreu et al. (1994) recognise that the local, coordina-
tion and supervision levels of the batch control hierarchy may each be modelled as
Petri Nets (Grafcet, coloured and mixed continuous Petri Nets respectively). How-

ever it is not clear how Petri Net control laws can be implemented in practice by a
PLC or DCS without somehow programming the control device with the unwieldy
Petri Net process model.

Reference Process
Model

Forbidden State
Specification

Control
Mechanism

(Holloway and Krogh, 1990) CMG Place markings Exogenous inputs
(Boel, 1995) Ct1SM Token constraints Controllable

transitions
(Boissel and Kantor, 1995) Timed PN Token constraints Control places
(Yamalidou et al., 1996) PN Place invariants Control places

Table 2.2: Summary of Petri Net Control Literature

2.4.2 Supervisory Control Theory

A DES control theory Otracting much attention is the Supervisory Control The-

ory (SCT) inspired by Peter Ramadge and Murray Wonham at the University of
Toronto in the 1980s. In three seminal papers (Ramadge and Wonham, 1987b;
Wonham and Ramadge, 1987; Ramadge and Wonham, 1987a) a novel theoretical
formulation for modelling and control of DESs was proposed on the basis of FSMs

as generators of languages (i. e. sets of strings of events). In the SCT sense, control
is exerted on a process by means of a supervisor which, via a state feedback map,
can disable transitions in the process identified as controllable.

An extremely powerful concept introduced was that of controllability, which is

the ability of a supervisor to maintain a process within a controllable envelope or

predefined subset of trajectories. The concept of the supremal controllable sublan-

guage then follows, which is the maximal subset of a given language which satisfies

controllability with respect to another language. This concept is exploited for the

synthesis of maximally permissive supervisors for a process. Conditions for the exis-
tence of the supremal controllable sublanguage are given by Wonham and Ramadge
(1987). Methods for the calculation of the supremal controllable sublanguage are

provided by Wonham and Ramadge (1987), Kumar et at. (1991) and modified
by Sanchez (1994) and Rotstein et at. (1996). An empty supremal controllable
sublanguage indicates that there is no supervisor which can generate a closed loop

response which is controllable with respect to the process.

Chapter 2. Literature Review 30

Modular techniques in SCT provide a more elegant and computationally effi-

cient synthesis of supervisors. The idea is that modular supervisors are synthesised
for each individual specification and intersected to form a supervisor which simulta-

neously implements each specification. A correctness requirement for modular syn-
thesis is endowed by the property of nonconf licting between supervisor languages,

as described in chapter 3 of this thesis.
A general overview of SCT and modular techniques is provided in (Wonham,

1988) and more recently in (Wonham, 1996). Sanchez (1994) provides an excellent

summary of the literature in SCT.

A wealth of research has spawned from the original work of Ramadge and Won-
ham (abbreviated to RW). Yang et al. (1995) extends SCT for the control of
systems modelled as nondeterministic FSMs. Nondeterministic FSMs result from

the projection of the continuous parts of a hybrid process model onto a discrete

model. Yong and Wonham (1993; 1994) consider the control of Vector Discrete

Event Systems (VDESs). VDESs are systems in which states are represented by

a vector with integer components and state transitions by integer vector addition.
This formalism is ideal for modelling machine networks and automated guided ve-
hicles (AGVs) with buffer inventories. Yong and Wonham give appropriate versions
of controllability and modularity for VDESs and demonstrate efficient solutions to
the equivalent RW controller synthesis problem.

Timing has been appended to SCT by Ostroff and Wonham (1990) in a dual Real

Time Temporal Logic/Extended State Machine (RTTL/ESM) framework. FSMs

were extended to handle continuous variables, local clocks and concurrency by com-

munication channels. In this framework, an iterative technique was developed for

synthesising controllers to satisfy safeness properties. Brandin and Wonham (1994)

generalised the RW concepts of controllability and maximally permissive supervi-

sory controls to timed DESs using Ostroff's semantics. This permits the solution of
RW synthesis problems including logic based, temporal and quantitative optimality

specifications.
Wonham (1996) considers supervisory control of partially observed systems, de-

fined as those for which a supervisor has only a filtered view of the event set. It is

assumed that the supervisor can disable any event in the process. A satisfactory so-
lution of the supervisory control problem is shown to exist when the process model

exhibits a property called normality. A related mechanism of control is by decen-

tralisation (i. e supervision performed by a number of decoupled subsupervisors). A

fully decentralised solution is that which avoids communication among subsupervi-
sors and also among agents designing the subsupervisors. Some guidelines for the

construction of decentralised solutions from centralised ones are proposed in (Kozak

Chapter 2. Literature Review 31

and Wonham, 1995).
Finally, hierarchical aspects have been considered within an RW framework

(Zhong and Wonham, 1990). The concept here is that the process model is split
into two hierarchical layers, with communicating supervisors applied to both. The

top layer (the manager) views an abstracted process model derived from the bottom

layer (i. e. the process) according to a set of vocalised states. High level control
instructions are passed down to a slave supervising the actual process. The concept
of hierarchical consistency is introduced by which the information sent up from the

process is timely and sufficiently detailed for various critical low level situations to
be distinguished.

An application test bed for SCT employing automated toy trains and cranes
is reported by Leduc (1996). The testbed models a manufacturing workcell and
is controlled by an Allan Bradley PLC. Trains, cranes, track switches and sensors

are modelled as FSMs, as are component interactions. Specifications for collision

prevention, switch positioning, routeing and crane operation are modelled as FSMs.

Modular supervisors are constructed manually for implementing each specification.
State explosion necessitates the development of model reduction techniques so that

controllability of the modular supervisors can be established. However, a high de-

gree of interaction between component models means that Leduc is unable to verify
the nonblocking property. Supervisors are mapped into Clocked Moore Synchronous

State Machines (CMSSMs) for ease of translation into PLC code. No automated

means of translation is reported.
Lauzon et al. (1996) report a second application of SCT to a laboratory scale

robotic workcell controlled also by an Allen Bradley PLC and a PC. Importantly,

this work presents an automatic generator of ladder logic code from a FSM. The

translator works by including a set of rungs for each transition of the FSM, which

are enabled when the supervisor is in the source state of the transition. The RLL

program implements a supervisory policy by energising outputs corresponding to

controllable transitions. Feedbacks on both controllable and uncontrollable events

cause a change in state of the supervisor and a corresponding disabling/enabling of

source/ destination rungs. In an attempt to handle size complexity, Lauzon et al.

employ a Hybrid Supervisory Controller (HSC). It is not clear if HSC is a limited

lookahead supervisor (Chung et al., 1992), but it relies somehow on the synthesis of

partial nominal control strategies which are downloaded from the PC to the PLC.

A diagnostic system determines if resynthesis of the control strategy is required.
Table 2.3 summarises the cited literature in supervisory control theory.

Chapter 2. Literature Review 32

Reference Contents
(Ramadge and Wonham, 1987b) Basic framework
(Wonham and Ramadge, 1987) & Supremal controllable sublanguages
(Kumar et al., 1991)
(Ramadge and Wonham, 1987a) Modular synthesis
(Wonham, 1988) & (Sanchez, 1994) Overview of basic framework
(Yang et al., 1995) Hybrid & nondeterministic systems
(Yong and Wonham, 1993) & Vector DESs
(Yong and Wonham, 1994)
(Ostroff and Wonham, 1990) & Timed systems
(Brandin and Wonham, 1994)
(Kozak and Wonham, 1995) Decentralised control
(Zhong and Wonham, 1990) Hierarchical control
(Wonham, 1996) Overview of SCT
(Leduc, 1996) & (Lauzon et al., 1996) Applications of SCT

Table 2.3: Summary of SCT Literature

2.4.3 Procedural Control Theory

The term Procedural Control theory (PCT) was coined by Sanchez (1996) following

his doctoral thesis at Imperial College, London in 1994. PCT is a control theoretic
framework for modelling, specification, synthesis and analysis of sequential con-
trollers for chemical systems. In particular, formalisms for modelling forbidden

state and temporal specifications are provided. Chapter 3 gives a detailed review

of the theory as relevant to this thesis as do Rotstein et al. (1995).

PCT borrows many formalisms from SCT, but is characterised by a forcing

control mechanism as opposed to the passive enable/disable supervisory control

mechanism. This fundamental departure from SCT is necessary to model low level

sequential control of chemical processes as performed by PLCs and DCSs. Maxi-

mally permissive controls are inappropriate at this level as a deterministic control

response is required which selects between alternative controllable inputs so as to

achieve a processing goal.
The need for a forcing mechanism was also recognised by Balemi et al. (1993)

who place an input-output interpretation on process models used in SCT. Heymann

(1990) retains generality by defining transitions as either controllable, uncontrol-
lable or driven (i. e. forced). This necessitates the introduction of a special DES

product, called the prioritised synchronous product, from which closed loop system
behaviours may be calculated using DES models of the plant and controller.

Rotstein and Macchietto (1995) report an alternative approach for controller

Chapter 2. Literature Review 33

synthesis within a PCT framework based on optimality and stability criteria. The

method identifies goal states of the process as attractors and assigns weights to each
transition. Weights are assigned depending on cost, desirability or probability of
transitions. Graph theoretic techniques prune the FSM process model of suboptimal
trajectories and thereby generate the optimal route from the initial state to the

attractors. It is then necessary to trim the result of blocking paths in order to

construct the controller. This approach modifies slightly the interpretation of the

procedural control structure as defined in previous PCT.

2.5 Summary and Conclusions

Following this review of the literature, it is clear that further research is necessary
in the formal and systematic design and implementation of sequential controllers for

large scale systems. The ISA-S88.01 standard gives strong guidelines for the design

of batch control hierarchies, and any future method should be consistent with this

standard.
At present, formal techniques from the software engineering community are not

suitable to sequential control problems as they are mathematically obscure and do

not readily scale up to industrial systems. Useful techniques for process and proce-
dure decomposition have emerged from the AI community, but in general Al tech-

niques generate operating procedures which are deterministic and confined to niche

problems. Optimal control techniques also generate deterministic policies which do

not respond to feedback from disturbances entering the system. Furthermore these

techniques are not readily scalable to industrial problems.
Control theoretic techniques emerge as the most promising for synthesis of se-

quential controllers. The main advantage of these techniques is that controllers

are correct by construction, and no formal verification is required. In particular,
Procedural Control Theory provides a solid theoretical framework for modelling,

specification, synthesis and analysis of controllers for chemical processes. PCT is

grounded in SCT, yet with the important distinction that control action is forced

as opposed to passive. Despite the appeal of Petri Nets (and the myriad of flavours)

for modelling batch processes, only the forbidden state specification problem has

yet been solved with these techniques. Furthermore, it is not easily conceived how

controllers modelled as Petri Nets can be implemented in practice.
There remain several issues to be addressed in PCT before it can be exploited

for the design of sequential controllers for industrial processes. The main prob-
lem is that of combinatorial complexity, which limits the current techniques to

small systems. To address this issue, some of the earlier concepts from SCT can

Chapter 2. Literature Review 34

be revisited, in particular partial observation and decentralised control, as can the
decomposition approaches from AT. The second issue to address is the practical
implementation of formally synthesised controllers. A translation, preferably au-
tomated, is required from the mathematical control structures into the sequential
programming languages used in industrial control systems.

Finally, the theoretical issue not addressed in the literature is that of controller
inhibiting. Controller inhibit safeguard against the parallel operation of noncoop-
erative controllers in a multitasking control architecture. This problem has not
arisen in the literature due to the lack of application of modular discrete control
techniques. Controller inhibits pose a difficult design problem, especially for multi-

purpose batch processes in which controllers interact in a highly complex and subtle
fashion. At best, Crooks (1992) proposes a heuristic for the design of inhibits. This

problem is yet to be addressed formally from a control theoretic standpoint.

Chapter 3

Introductory Procedural Control

Theory

This chapter reiterates and in places reworks some preliminary theory and con-
cepts within Procedural Control Theory (PCT) as proposed by Sanchez (1994) and
Rotstein et al. (1995). PCT supports modelling of chemical processes as Discrete
Event Systems (DESs) and the specification, synthesis and analysis of controllers
for such systems. Discrete event models and some control theoretic aspects of PCT

originate from the Supervisory Control Theory (SCT) pioneered by Ramadge and
Wonham (1987b).

This chapter is organised as follows. Section 3.1 presents the formal framework
for modelling DESs represented as Finite State Machines (FSMs) or equivalently

regular languages. Important results in language theory are presented for later use.
Section 3.2 discusses the modular and incremental fashion in which FSM models of
chemical processes are constructed. An equivalent construction for process specifi-
cations is presented in section 3.3. Section 3.4 then presents the control paradigm

and introduces the concept of procedural control. Important properties of the closed
loop system (i. e process plus controller) are presented in section 3.5 including com-

pleteness and controllability, conformance to specification and nonblocking. Finally

section 3.6 gives a brief treatment of model based controller synthesis, and section
3.7 summarises the important concepts in PCT.

3.1 Discrete Event Systems

Chemical processes are properly modelled as a hybrid of discrete changes in state
(e. g. valve and pump switchings) and continuous state evolution (e. g. temperatures

and pressures). In practice, a purely discrete input-output model of the chemical

35

Chapter 3. Introductory Procedural Control Theory 36

process is usually adequate for the design of sequential controllers (Sanchez, 1996).
In this representation, the evolution of the plant is described by a sequence of states
and events. For example, the continuous temperature signal shown in figure 3.1 is

modelled as a temperature switch with three states low, normal and high. Events

correspond to the crossing, in either direction, of the temperature thresholds defined

at 45 and 60C.
A chemical process modelled as a DES is represented by the FSM M defined by

the 7 tuple:

M= {Q, Vnv, E, b, 'y, qo, Qm}

where

Q is the set of states, qEQ
Vnv is the set of state variables, {(vj)q, j=1,2 nz1}
nv is the number of state variables defining state q
E is the set of transitions, aEE
6 is the state transition partial function, 6: ExQ -+ Q

7 is the state variable transition partial function, 7: EX Vn' Vnv

q0 is the nominal initial state, q0 EQ
Qm is the set of marked states, Qm CQ

(3.1)

A state variable (vj)q, j=1,2 nz1 describes a discrete elementary component
of the process (e. g. the status of an on/off valve or pump) and is defined over a
domain of possible values (e. g. {open, closed}). The discrete system state q is
defined at any given moment by a specific value for each of the n, state variables.
In addition to the domain values, an additional value ooh symbolises all the possible
values that state variable j can take. This symbol facilitates the efficient handling

of inexact information in the process model.
Transitions are instantaneous events leading from a source state to a destination

state for which the state variables differ in only one instance. The set of transitions
E is partitioned into two disjoint subsets, E, U E,, = r, E, l Eu = 0, in which E,

is the set of controllable transitions and Eu is the set of uncontrollable transitions
(Ramadge and Wonham, 1987b) .

Controllable transitions are associated with an
input to the process (e. g. opening a valve) while uncontrollable transitions are
associated with uncontrolled system dynamics (e. g. the triggering of a temperature

switch) or external disturbances (e. g. the triggering of a proximity switch due to

an operator input). Controllable transitions are forced by a controller whereas
uncontrollable transitions occur spontaneously.

Chapter 3. Introductory Procedural Control Theory 37

The string set E* is the set of all strings of transitions in E, including the null
transition E. The partial function b defines the state connectivity, and 6 may be

extended inductively for strings (i. e. 6: E* xQ -+ Q)
.

Since b is a partial function,
M is deterministic which means that each transition has a unique destination state.

In previous versions of the theory, marked states qE Qm,,, were defined as those

of special significance for the DES. Here, this definition is made more precise by

defining marked states as desired termination states or goals of the system.
The set of reachable states Qr is the set of states which can be reached from the

initial state qo via a string of transitions in M. Q, is defined by:

QT= {qEQ/3sEE*' 5(s, go)=q} (3.2)

and M is reachable if all states qcQ can be reached from the initial state qo (i. e.
Q= Qr) . The set of coreachable states Qer is the set of states from which at least

one marked state can be reached. Q, is defined by:

Qcr = {q EQ/ 3s E E*, b(s, q) E Qm} (3.3)

and M is coreachable if a marked state is reachable from all states qEQ (i. e.
Q= Qcr). M is trim if it is reachable and coreachable (i. e Q= Qr Sanchez

(1996) provides enumeration algorithms for trimming FSMs.

For example, consider a simple DES comprised of one elementary component,

a temperature sensor. The state variable vl describing the sensor has a domain
{0,1,2}, where 0 corresponds to normal, 1 to low and 2 to high. The system is

comprised of three states, Q= {1,2,3}. In state 1, the state variable is 2, in state 2
it is 0 and in state 3 it is 1. Four uncontrollable transitions E= {550,552,554,556}

model temperature changes (i. e. ry(550,1) = 0, 'y(552,0) = 1, 'y(554,0) =2 and

'y(556,2) = 0). The initial temperature is high (i. e. qo = 1) and the only marked
state is normal (i. e. Q�L = {2}).

The FSM modelling this DES is depicted by the transition graph shown in figure

3.1. Nodes on the transition graph represent states and edges represent transitions.
By convention, FSMs are drawn with the initial state at the top and marked states

as shaded boxes. State variables are shown within the nodes. Uncontrollable tran-

sitions are shown as dashed arcs, while controllable transitions as solid arcs (e. g.
figure 3.3 (a)).

Chapter 3. Introductory Procedural Control Theory

6!

4

Time

T> 65C
1 HIGH

556()
554

0 40 <T< 65C
2' NORMAL
ý

552(
1"550

3G
LOW

Figure 3.1: Discrete Model of a Continuous Temperature

3.1.1 Operations on FSMs

3.1.1.1 Product Operations

38

Sanchez (1996) defines two product operations on FSMs. The first, called the

asynchronous product operates on FSMs Ml and M2 for which the transition sets

are disjoint (i. e E1 f E2 = 0). The asynchronous product is given by interleaving

the states from each FSM, where the state variables in the product FSM are the
Cartesian product of state variables from each corresponding state (see Sanchez

(1996) page 32).

The asynchronous product operator is used in the construction of FSM models
for systems comprised of multiple components. Concurrent events are modelled by

all possible sequences of interleaved transitions and combinations of state variables.
A second product operation, called the synchronous product of FSMs, intersects

two FSMs so that the product FSM generates strings common to both original
FSMs. By definition, state variables in the product FSM "cover" (see Sanchez
(1996) page 33) state variables in the corresponding states of the original FSMs.

The synchronous product operation is used to model the conjunctive behaviour of
two DESs.

3.1.1.2 The Selfloop Operation

Selfloops are transitions of a FSM for which the source and destination states are
the same. By definition, transition a is a selfloop at state q if S(a, q) = q. Selfloops

are so named because they appear as arrows originating and terminating at the

same state in the transition graph. Selfloops model the occurrence of events which
do not correspond to a change in process state.

Chapter 3. Introductory Procedural Control Theory 39

Selflooping is an operation on FSMs which augments the original structure at

specific states with additional selflooped transitions while preserving determinism.

By definition, the selfloop operation SQs augments M at states QS CQ with self-
looped transitions from Es . The FSM M' = SQ3 M over transition set E' =EU ES is

equivalent to M (equation 3.1) but with a new partial transition function 6' defined

by:

1. Vq E Q, Va EE if 6(a, q)! then 6'(o, q) =6 (a, q)

2. Vq E Qs, ̀ da E >S if 6 (Q, q) is not defined then 5'(a, q) =q

By construction, the selfloop operation preserves determinism since no selflooped
transition aE Es is augmented to the original FSM at states in which a- is already
defined. Reachability, coreachability and trimness are also preserved under the

selfloop operation.

3.1.2 Language Preliminaries

Much of the theory in this thesis is presented in terms of "languages". A language
is a set of strings or combinations of unique symbols taken from an alphabet. In

discrete event systems theory, the language L(M) "generated" by the FSM M is

the set of every possible string of transitions executed by M:

L(M) = Is E >*/b(s, qo)! } (3.4)

L(M) is also called the behaviour of the process and a string in L(M) a process
trajectory. Languages generated by FSMs are regular and the transition set E is

the alphabet of events. The marked language L,,, (M) generated by M is the set of

strings that terminate at a marked state in M. L,, (M) is defined by:

L,,, (M) = {s E L(M)/6(sß qo) E Qm} (3.5)

3.1.2.1 Closure and Nonblocking

The prefix closure set L of any language L defined over alphabet E is the language

comprised of all prefixes of strings in L. L is defined by:

L=Is EF*/3tEE*, st EL} (3.6)

and comprises every partial or incomplete trajectory in L. L is closed if L=L and
all regular languages are closed (i. e. L(M) = L(M)). A machine M is nonblockirig
if:

Chapter 3. Introductory Procedural Control Theory 40

L(M) = Lm(M) (3.7)

Nonblocking asserts that any string or partial trajectory in M can be extended
to a string or full trajectory which terminates at a marked state. Therefore if M is

coreachable it is also nonblocking.

3.1.2.2 Union, Intersection and Concatenation

The union of the two languages L1 and L2 over alphabet E is defined by:

L1UL2={sE>*/seL1VseL2} (3.8)

Similarly the language intersection is given by:

L1nL2=Is EE*/seLi AseL2} (3.9)

By definition, the synchronous product of two FSMs generates a language equiv-
alent to the intersection of the languages generated by the two original FSMs. It is

always the case that:

L1nL2cL1nL2 (3.10)

If the equality in equation 3.10 holds then the languages are said to be non-
conflicting (Ramadge and Wonham, 1987b). That is, L1 and L2 are nonconflicting
if:

L1nL2=L1nL2 (3.11)

The property of nonconflicting asserts that any common prefix of L1 and L2 can
be completed to a common string. In other words, common partial trajectories have

a common completion and the conjunction of the two behaviours has no loose ends.
Numerical algorithms, based on intersection and coreachability, are provided by
Wonham (1996) and Sanchez (1996) for the evaluation of nonconflicting between

marked languages.

The concatenation of the two languages L1 and L2 is defined by:

L1L2 = IS E */s = s1s2, sl E L1, S2 E L2} (3.12)

A useful result for concatenated marked languages Lm, (Mi) and Lm(M2) is:

Lm, (MI)Lm(M2) =Lm, (Ml)ULm, (Ml)Lm(M2) (3.13)

Chapter 3. Introductory Procedural Control Theory 41

which decomposes the prefix closure of a concatenation into the sum of its con-

stituents.

3.1.2.3 Projection and the Synchronous Product

The projection operator Pr, deletes from a string all occurrences of events not in
Ep (Wonham, 1996). The projection of a language over alphabet E is a mapping
to a language over alphabet Ep CE as follows:

Pry : E*
-*

E**

PES (E) =E

Q if or EEP IPE,

EEP or
PEp (sa) _P (s)Prp (or) s E>*, aEE (3.14)

The projection 'PEP of the intersection of two languages L1 and L2 over alphabet
E satisfies:

PE, (L1 n L2) C PE, L1 n1 L2 (3.15)

The operation P-1- on a language Lp over alphabet Ep returns the largest lan-

guage over E which projects to the original:

Pý'Lp={sC *ý7ýýýs c Lp} (3.16)

Lp to synchronise on events not only in >p but In this way, it is possible for P r, P
in E as well. The operation P on the two languages L1 and L2 over alphabet Er

is closed under intersection. That is:

P (L1 n L2) = PýPL1 n PAP L2

Pr,
P and ýýý have the following reflexive properties:

LC TAP Ply L

LP =7 EP rIp Lp

(3.17)

(3.18)

(3.19)

The operation 'P-1 on regular language L(Mp) over alphabet EP is equivalent
to the selfloop operation SE, on FSM Mp provided the alphabet E is divisible into

Chapter 3. Introductory Procedural Control Theory 42

two disjoint sets Es and Ep (i. e. Es U Ep =E and >s n >P = 0). That is:

L(SM) = Pý L(Mp) (3.20)

Wonham (1996) defines the synchronous product of two languages L1 over al-
phabet >1 and L2 over alphabet >2 as the language of interleaved strings from
L1 and L2 in which synchronisation occurs on common events in L1 and L2. The

synchronous product (11,) is defined by:

L1 ýýSL2 =P 11L1nPý2L2 (3.21)

and includes every interleaving of strings from L1 and L2 with synchronisation on
common events. For the case when E1 and E2 are disjoint, Wonham refers to

the synchronous product of languages as the shuffle. The shuffle of two regular
languages L(M1) and L(M2) is equivalent to the language generated by the asyn-

chronous product of FSMs Ml and M2. Wonham (1996) provides algorithms for

the calculation of language projections and synchronous products. To avoid any
confusion in the terminology of the product operators, it will be clearly stated in
future whether the product operation is intended for languages or FSMs.

3.2 Process Modelling

3.2.1 Elementary Component Modelling

Most processes are comprised of a number of primitives or elementary components

as represented on a Process and Instrumentation Diagram (P&ID). Elementary

components are entities which operate in relative isolation, but which physically
interact in such a way as to characterise the process. Typically these include valves,

pumps, sensors and switches which can be modelled as simple FSMs.

Consider the DES comprised of n21 elementary components each modelled as a
FSM e2 over transition set Ei. Let E= {ei, e2 env } be the set of elementary

component models of the DES. The alphabet E of the system is the set of all

elementary events (i. e. E= E1 U E2
... U Env).

Since elementary components are separate entities in the process, it is usually
but not necessarily the case that primitive alphabets EZ are disjoint. The FSM

model of the whole process is the interleaving of all possible elementary component

events. Thus the process model M is the asynchronous product of elementary

component FSMs, and the language generated by M is the synchronous product of
the elementary component languages:

Chapter 3. Introductory Procedural Control Theory 43

L(M) = P1'L(el) n'2'L(e2) ... n P, -. 'L(en�) (3.22)

where the simplified notation P, -1 is adopted for Pß. 1. The synchronous product
generates all possible system trajectories including those which may not be possible
based on physical considerations.

3.2.1.1 Example - Waste Neutralisation

For example, consider the P&ID shown in figure 3.2. A continuous stream of alkaline
industrial waste is neutralised by an injection of acid via pump P_l and on/off valve
V_l. Acidic wastes are neutralised from a source of base via on/off valve V2. The

pH of the stream is measured continuously by pH probe H_1.

WASTE

ACID

BASE

H-1

Figure 3.2: The Waste Neutralisation System

Four elementary component items V_l, V_2, P_i and H_l are identified from the
P&ID. Valves V_1, V2 and pump P_1 are modelled as two state FSMs as shown in

figure 3.3. The pH probe is modelled as a three state device with basic, neutral and

acidic states. Uncontrollable transitions model changes in pH between these three

states.
The complete FSM model M of this process is the asynchronous product of the

FSMs in E= {V
_1,

V-2, P_l, H-11 and comprises 24 states as shown in figure 3.4.

The order of the state variables in figure 3.4 is as shown in figure 3.3. The language

L(M) generated by M is the synchronous product of the languages L(eV_1), L(eV2),

L(eP_1) and L(eH_i).

3.2.2 Physical Interaction

Physical interactions may restrict the elementary components within a system from

behaving in the same way as when they are entirely isolated and independent from

V-2 DISPOSAL

Chapter 3. Introductory Procedural Control Theory 44

pH>8
12 BASIC

10 CLOSED 1D CLOSED 10 DEENERGISED 506(0504

6<pH<8 01357
17)19 2 NEUTRAL

502(

1 500

21 OPEN 21 OPEN
21 ENERGISED 3 (::

D

ACpH<
6

DIC

(a) V_1 (b) V_2 (c) P_1 (d) H_1

Figure 3.3: Elementary Components for the Waste Neutralisation System

each other. Such interactions typically arise from the conservation of mass, energy

and momentum, gravitational and spatial considerations and from the mechanical

union of elementary components. Physical interaction is reflected by the existence

or otherwise of states and transitions in the FSM model. Accounting for physical
interaction within a process results in the deletion of infeasible states and transitions

from the asynchronous product of the elementary component FSMs.

Predicate and temporal logic have been proposed by Sanchez (1994) for mod-

elling physical interaction between elementary components in DESs. A predicate
logic formula assigns the value false to states of the DES corresponding to infeasible

configurations of elementary components (e. g. due to mechanical or gravitational

constraints identified from an engineering analysis of the process). The covering

symbol oc is often employed in predicate logic formulas to indicate elementary

components which do not participate in the modelled interaction. Sanchez provides

an isomorphism for translating predicate logic formulas into the FSM domain.

Dynamic or temporal elementary component interactions (e. g due to mass or en-

ergy conservation) are modelled by formulas in temporal logic. The temporal logic

of Sanchez employs the next (0), eventually (O), and always (D) operators. As

before, the covering symbol oo is assigned to nonparticipatory elementary compo-

nents. A homomorphism translates temporal logic formulas into the FSM domain.

Physical interaction within a system is defined by a set of ni component in-

teractions, given as the translated FSMs PI, P2 ... , pni .
The process model Al is

the synchronous product of pl, p2 .. .1 pni with the asynchronous product of the el-

Chapter 3. Introductory Procedural Control Theory

r" r!

i

_

ý
Ai 0.7,2

1Ofo

s#ýTý Ir 1

!I

01%, 012

1,4,. 0.2

1,1,01,2

o, 1, o, 2

0 , 1,1,2

1.1,1.2

/ýt

11

//
//

II

iii�ii
iiiiu, ý. i, o 11
iýý.. ý'ý

-º

sr-
I-

1. -

_r=1'.
1I
1I
1I

ý

+- 0,0,0,1 17

t ýý

24

` 4.1, I, 1
21

2"

,
ºý '

i
t' tý

_~

I
I
I
I

%1 x

z

ý1`ýI

1

1

1

1

1
1

1I1

1
1

1
I

._

iiýý
i : ý' iý iý

Il 1I,, I"\

L ý, La;; //

II

1I
1I
ýI
1I

,'IIII1

1, t, o. o 1a
i1

ý.

,'ý fýý, i'
týt

IR
t

!

t

ý. \
`1

ý, 1,0, if
f

1,7,1,3=

23

45

Figure 3.4: FSM Model for the Waste Neutralisation System

Chapter 3. Introductory Procedural Control Theory 46

ementary components in E. The language generated by the process M is given
by:

L(M) = L(pi) n L(p2)
... n L(pni) n 'P1'L(ei) nP 'L(e2)

... n P,
zv'L(enti.

) (3.23)

and represents a subset of the language generated by the asynchronous product of
the elementary component FSMs in E.

3.2.2.1 Example - Electrical Heating

For example, consider the P&ID of the electric water heater shown in figure 3.5.

Water is introduced to the tank by a cistern armature as shown. Level switch L_10

indicates when the water level covers the electrical element, which is energised by

contact S_10. The lower temperature switch T_10, set at 70C, indicates the desired

water temperature. The upper switch T_11 is set at 80C to indicate overheating.

L-10

T-11

T-10
S-10

Figure 3.5: The Electric Water Heater

Four elementary components L_10, T_10, T_11 and S_10 are identified from the

P&ID. Each is modelled as a two state FSM as shown in figure 3.6. Physical

interaction exists between temperature switches T_10 and T_11 as it is impossible

for T_11 to register above 80C while T_10 registers below 70C. This condition is

expressed by the predicate:

(oo, 0,1) oc) = FALSE (3.24)

where the order of state variables is as shown in figure 3.6. An energy balance (i. e.

accumulation = input - output) around the tank identifies physical interaction

between the electrical contact S_10 and both temperature switches T_10 and T_11.

Chapter 3. Introductory Procedural Control Theory 47

T< 70C
UNCOVERED 1

LOW

528
t 1ý 520

/ 530 522

2 COVERED 2T>
70C

NORMAL

(a) L_10 (b) T_10

1T< 80C 10 OFF
NORMAL

524 25 27
526

i'
2T>

80C 21 ON HIGH

(c) T_11 (d) S_10

Figure 3.6: Elementary Components for the Electric Water Heater

That is, if S_10 is off and assuming the inlet temperature is less than the tank

temperature, then input <0 and accumulation < 0. Therefore neither T_10 nor
T_11 can detect an increase in temperature. This condition is expressed by the

temporal logic formula:

(oo, oo, oo, 0) -ý 0[T 520 V 524] (3.25)

Predicate logic formula 3.24 and temporal logic formula 3.25 are translated into
FSMs p1 and p2 (not shown). The synchronous product of pi and p2 with the

asynchronous product of the elementary component FSMs yields the process model

shown in figure 3.7. The model represents all physically realisable process states.

3.3 Process Specification

The FSM model M of a system represents every possible combination of feasible

states and process trajectories in the open loop process. In a suitably controlled

system, the behaviour is usually restricted to a set of desirable states and trajectories

reflecting the user requirements. A process specification is the set of allowable

states and process trajectories through which a controlled process may evolve and
is expressed formally by a FSM S. Desirable behaviour of the process is reflected by

the existence or otherwise of states and transitions in S. The specification language

L(S) is the language generated by the FSM S and is the set of allowable strings of
process events.

Process specifications are created in an analogous manner to process models

Chapter 3. Introductory Procedural Control Theory

1 0,0,0, o

r

25 27
i ý

528
r1' 2 0, o, o, 1

528, -' - 530
. -%530 , 522

\
3 1,0, 0,1 `

520

522
1 1

520`"
: 522 :

5

1

27
25 I/

ýV
I, 27 25 528 I

t fi61,1,0,0
530"

. 528 /..
522 -r' / 530'L"

/
/ /

` , 1
`

/ 1

4 1,0,0,0 7 0,1,0,0 1ý

5241 7
25

r.
:80,1,0,1

11

524
526 ;

1526
11.

526
ii90,1,1,1

27
1It

25
1 10 t

i 0,1,1,0
11

.ý /1
1526 528(

1., 530 r
� 5281

1
1,1,1,0

25 27 ý'.
' 530

12

48

Figure 3.7: FSM Model for the Electric Water Heater

Chapter 3. Introductory Procedural Control Theory 49

as discussed in section 3.2.2. The specification reflects the desirable interaction of

elementary components in the same way that the process model reflects physical
interaction. The specification is therefore also constructed by deleting undesirable
states and transitions from the asynchronous product of elementary component
FSMs.

Process specifications are of two types, static and dynamic. Static specifica-
tions identify particular process states as undesirable or forbidden. Predicate logic
formulas, employed earlier for modelling physical interaction, are used here for mod-
elling static specifications by assigning the value false to forbidden or undesirable
states of the DES. The covering symbol oo is assigned to components whose value
is irrelevant to the immediate specification. As before, predicate logic formulas are
translated into the FSM domain.

Dynamic specifications define the desired temporal behaviour of the process
including the required sequences of process events or eventualities from specific

process states. Dynamic specifications are expressed formally using temporal logic,

with oo assigned to nonparticipatory elementary components. A homomorphism

translates temporal logic formulas into the FSM domain.

Complex specifications are constructed from the conjunction of several static and
dynamic specifications. For a system specified by a set of ns formulas translated
into the FSMs rl, r2 ... the overall specification S is given by the synchronous

product of rl, r2 ... , rns with the asynchronous product of elementary component
FSMs in E. The language generated by the specification S for the process defined

by E is therefore given by:

L(S) = L(ri) n L(r2)
... n L(r,,,

s)
n Pl 1L(el) n P2'L(e2) ... n P,

zv
L(en�) (3.26)

Note that for physically interacting systems, the specification language L(S) is

not necessarily a subset of the process language L(M). In other words, allowable

process behaviour is not necessarily physically possible behaviour.

3.3.1 Example - Waste Neutralisation

For the waste neutralisation system described in section 3.2.1.1, a series of static

and dynamic specifications are elicited from the informal statement of the user

requirements. For example, the requirement for the acid source to be isolated

whenever the pH of the stream is acidic is expressed by the predicate:

(1,0,1,1) = FALSE (3.27)

LONUi N.
UTtiY.

Chapter 3. Introductory Procedural Control Theory 50

where the order of state variables is as shown in figure 3.3. This predicate is

translated into FSM r1, similar to that shown in figure 3.4 with the exception that

state 23 is absent.
Predicate logic is very convenient for asserting interlock specifications, which

require an equipment item to maintain a defined state for the duration of the control

sequence. For example, the source of base is isolated by an "interlock to closed" on

valve V_2. This static specification is expressed by the predicate:

(oo) 1, oo, oo) = FALSE (3.28)

and translated into FSM r2. Three additional static specifications r3, r4 and r5 are
identified for this system.

The acid dosing operation begins by opening valve V_1 and energising pump
P_l. This dynamic specification is expressed by the temporal logic formula:

(0,0,0,2)-+o[T=1]-+O[T= 17] (3.29)

which is translated into FSM r6 (not shown). Three additional dynamic specifi-

cations r7i r8 and r9 are identified for this system. The complete specification S

is given by the synchronous product of FSMs rl, r2 ... , r9 with the asynchronous

product of elementary component FSMs in E (figure 3.4). S is shown in figure 3.8.

i(0,0,0,2

504

3 1,0.1,2 i

4 1,0,1,0 i

5 1,0,0,0 /

fiý o, o. go

S2 Tgoo

7 4. ß 0.1

Figure 3.8: Acid Dosing Specification

Chapter 3. Introductory Procedural Control Theory 51

3.4 Control Preliminaries

A sequential controller is a device which monitors discrete responses from the pro-
cess via a set of sensors (e. g. level and temperature switches) and in response
communicates discrete control commands to the process via a set of actuators (e. g.
valves and pumps) in accordance with a programmed control logic. The purpose
of control is to change the state of the process from the initial state to a goal (i. e.
marked) state while restricting its behaviour to a desirable subset of states and
trajectories (i. e. the specification).

A controller is a DES defined by the 5 tuple:

C= {X, Eli'x0, Xm}

where

X is the set of controller states, xEX
E is the set of process transitions, o, EE

is the state transition partial function, e: ExX -4 X

xo is the initial controller state, xo EX
Xm is the set of marked controller states, Xm CX

(3.30)

By definition (equations 3.1 and 3.30), the transition set E is common to both

C and M. The ability for C and M to synchronise on events in E is enabled
by the coupling described in the following section. The partial function ý defines

the controller topology. Since ý is a partial function, the destination state of a
transition is uniquely defined and the controller is deterministic. ý may be extended
inductively to strings (i. e. ý: E* xX -+ X). The marked states xEX, n are those

at which control action may cease, and model termination points in the control
sequence.

3.4.1 The Control Mechanism

The control mechanism within PCT is fundamentally different from the enable/disable

mechanism of SCT as described in section 2.4.2. Control of process M by controller
C is realised by the feedback control mechanism shown in figure 3.9. Uncontrollable

events au E >u, generated spontaneously by the process M, are communicated as

shown to the controller C currently in state x'. If e(a, x')! (i. e. if transition a,, is
defined at x') then C synchronises on a and changes state to state x" x').
Similarly, controllable events aEE, generated by C, are communicated to M

Chapter 3. Introductory Procedural Control Theory 52

currently in state q'. If 6(o-
, q')! then M synchronises on o and changes state to

q'I = 6(a
, q').

In the control mechanism described, it is assumed that controllable transitions

are generated instantaneously by C and anticipate any uncontrollable transition

also defined at q'. Control action is assumed to always result in the desired change
in state of the process and failure scenarios must be modelled explicitly. The loop

remains closed until either a marked state xc Xm is attained by C (and C termi-

nates) or until a controllable event from C is undefined in M.

Goals II Disturbances

Closed Loop

M Behaviour

Controllable Uncontrollable
Transitions Transitions

Figure 3.9: The Feedback Control Mechanism

For example, a controller for the waste neutralisation process described in sec-
tion 3.2.1.1 is shown in figure 3.11. The closed loop mechanism operates as follows.

Initially, both the controller and process (see figure 3.4) are in their respective initial

states. From state 1 of the controller, controllable transition 1 is generated and the

controller state changes to state 2. Controllable transition 1 is communicated to the

process causing a change in process state from 1 to 2. This corresponds to the open-
ing of valve V_1 (see figure 3.3). Similarly, the process synchronises with the next
controllable transition (transition 17, corresponding to P_l energising) generated
by the controller. The process is now in state 7 from which uncontrollable transi-

tion 506 (corresponding to a decrease in pH) is generated spontaneously, thereby

changing the process state to state 10. From state 3, the controller synchronises on

uncontrollable transition 506 thereby changing its state to state 4. Control in this

manner continues until the marked state of the controller is reached (state 6), at

which point control action terminates.

Chapter 3. Introductory Procedural Control Theory 53

3.4.2 Properties of the Controller

3.4.2.1 Agreement

The property of agreement asserts the ability of the controller and process to syn-
chronise using the mechanism described above. Agreement requires that a command
sent by the controller is physically realisable at the instant it is sent. If this is not
the case then the controller is poorly designed and control action must terminate
due to an error. Agreement also requires that a controller only awaits uncontrol-
lable events that are physically possible from the current process state. Otherwise

the controller is redundant and could wait indefinitely for an event which will never
occur. In summary, agreement states that a controller should neither send nor await
infeasible events. Agreement is satisfied by ensuring that the controller language is

physically realisable:

L(C) C L(M) (3.31)

and that terminating strings in C have an equivalent in M:

Lm(C) 9 Lm(M) (3.32)

Using simple algorithmic procedures for intersection and isomorphism (Won-

ham, 1996), it can be shown that the controller (figure 3.11) and process (figure

3.4) for the waste neutralisation example are in agreement.

3.4.2.2 The Procedural Controller

By definition, controller FSMs are deterministic which means that the destination

state of each transition is unique. For implementation purposes, it is necessary for

a controller to avoid indeterminate states. An indeterminate state is a controller

state at which either:

1. More than one controllable transition is defined.

2. A controllable and an uncontrollable transition are defined.

Indeterminate states are undesirable controller states because they offer un-
specified alternatives. This is acceptable for supervisory control in the SCT sense,
but not for a forcing control mechanism in which case the indeterminacy must be

resolved by some other means, perhaps a random choice.
A procedural controller is a FSM which has no indeterminate states. In formal-

ising the procedural controller, the concept of wait states is introduced. A wait

Chapter 3. Introductory Procedural Control Theory 54

state is a state at which no controllable transitions are defined. The state is so
named because unlike controllable transitions, uncontrollable transitions are not
necessarily executed immediately. The set of wait states Xu, is defined by:

Xw = Ix c X/ 20r, c Z, s. t. e(Q" x)! } (3.33)

A procedural controller is a FSM C in which for each xcX such that e(cr, x)!
one of the following is true:

I. xEXw

2. or E E, and dc' E E, a a', e(or', x) is undefined

In other words, a procedural controller can either be in a wait state, or a state
from which it immediately executes only one controllable transition. An example
of a procedural controller is shown in figure 3.11.

3.5 The Closed Loop Behaviour

The combination of process and controller (figure 3.9) is called a closed loop sys-
tem. The closed loop language L(C/M) is the language generated by process M

when coupled in feedback mode with controller C. L(C/M) is formulated from the

conjunction of the controller behaviour and the process behaviour. However, given
the control mechanism described in section 3.4.1, the intersection is not between

L(C) and the open loop language L(M) because this would exclude nonsynchronous

uncontrollable events. Nor is the intersection between L(%S C) and L(M) since con-
trollable transitions generated by C anticipate uncontrollable transitions in M. The

closed loop language L(C/M) generated by controller C on process M is formulated

as:

L(C/M) = (S. ý- C) n L(M) (3.34)

The first term of equation 3.34 is the language generated by the controller self-
looped at wait states with uncontrollable transitions. The second term represents
the set of physically possible process trajectories. By construction, L(C/M) is the

physically possible behaviour generated by the controller with allowance for uncon-
trollable events at wait states. Similarly, the marked closed loop language Lm (C/M)

is formulated as:

Lm (C/M) = Lm (8u C) n Lrn (M) (3.35)

Chapter 3. Introductory Procedural Control Theory 55

in which the abbreviated notation S,, is adopted for S

3.5.1 Properties of the Closed Loop System

3.5.1.1 Completeness and Controllability

The analogous properties of completeness and controllability assert the ability of a

controller to properly track the process and restrict it to within a desirable oper-

ating envelope. These properties establish whether sufficient means of control are

available to restrict the system behaviour to the desired subset. Both properties
hold if the controller either synchronises on any uncontrollable event generated by

the process or anticipates the same with controllable transitions. The properties

are violated if the uncontrollable event is not recognised by the controller. The only
difference between these two properties is that completeness is a property of FSMs

and controllability a property of languages.

By definition (Rotstein et al., 1995), a controller C is complete with respect to

a process M if for any string sE E* and aE >u, the conditions ý(s, xo)! and
b(sa, qo)! imply that at least one of the following is true:

1. e(so,,, xo)!

2.3a, E E, s. t. 5(so, qo)! A e(sa, xo)!

That is, all uncontrollable transitions that generate behaviours not defined in

the controller can be anticipated by a controllable transition that is defined in the

controller.
By definition, a language K is controllable with respect to a language L if it can

be partitioned into two languages K1, K2, where Kl U K2 =K such that:

1. K1EýnLcK

2. K2E, nLcK

Controllability is closed under union. Therefore a unique supremal controllable

sublanguage K1 of a language K with respect to another language L can be defined

as the largest subset of K which is controllable with respect to L. Klý is defined by:

K1 = U{K' : K' CK and K' is controllable with respect to L} (3.36)

The supremal controllable sublanguage is used in the synthesis of controllers
from a specification and process model. Methods for its calculation are discussed

in (Sanchez, 1996).

Chapter 3. Introductory Procedural Control Theory 56

For a controlled system, it is desirable that both the controller language L(C)

and the closed loop language L(C/M) are controllable with respect to the open
loop language L(M). Completeness and controllability are related by the following

theorem:

Theorem 3.1 L(C) is controllable with respect to L(M) if fC is complete with
respect to M.

Proof See Rotstein et al. (1996

Lemma 3.1 If C is complete with respect to M then L(C/M) C L(C) and
L, ,,

(CIM) 9 Lm (C)
.

Proof In order to prove L(C/M) = L(Su C) f1 L(M) C L(C) and Lm(C/M) =
Lm (s, C) f1 L�z (M) C Lm (C) it need only be shown that all augmented selflooped
transitions in Su

,C are deleted by the intersection. Let s be a string such that

sc L(M), sE L(C) ands E L(S, w C). If s is extended by o such that sau E L(M)

then by completeness either e(sou, xo)! or Ela, E E, s. t. 6(sa, qo)! A e(sac, x0)!.
In the latter case, e(s, x0) ¢ Xw and au is not an augmented selfloop. Thus all

augmented selflooped transitions are deleted by the intersection. Q

This result implies that if the controller is complete, then the closed loop process
behaviour is contained within the subset of desirable process trajectories defined by

the controller. The controller therefore tracks the process within the controllable

envelope.
For example, the controller for the waste neutralisation system (figure 3.11) is

complete with respect the process model (figure 3.4), and generates a closed loop

response on the process which is controllable with respect to the process language.

3.5.1.2 Conformance to Specification

An additional property to completeness and controllability for closed loop systems
is conformance to specification. This property asserts that the closed loop behaviour

is within the desirable subset of states and trajectories as defined by the process

specification (see section 3-3). The following condition formalises this property by

stating that the closed loop language is within the specification language:

L(C/M) C L(S) (3.37)

Theorem 3.2 The closed loop behaviour generated by controller C on process M

conforms to specification S if C is complete with respect to M and L(C) C L(S).

Chapter 3. Introductory Procedural Control Theory 57

Proof L(C/M) C L(C) 9 L(S) by lemma 3.1 and L(C) C L(S), Q

For example, the controller for the waste neutralisation system (figure 3.11) is

complete with respect to the process model (figure 3.4). From figure 3.8 it is clear
that L(C) C L(S). Therefore the closed loop behaviour conforms to specification
S.

3.5.1.3 Nonblocking

The property of nonblocking of the closed loop system asserts the ability of a con-
troller to take the process from its initial state to a goal (i. e. marked) state. This is

an extremely important attribute of closed loop systems and all controllers should
be synthesised to achieve this requirement. In order that the process terminates in

a marked state, it must be possible for any string in the closed loop language to be

completed to a string in the marked closed loop language:

L(C/M) = Lm(C/M) (3.38)

The following two theorems give conditions for nonblocking of the closed loop

system.

Theorem 3.3 If C and M are trim, the closed loop system generated by C on M

is nonblocking if Lm(SC) and Lam,, (M) are nonconflicting.

Proof See Sanchez (1996).

Lemma 3.2 L(C/M) = L(C) and Lm(C/M) = Lm(C) if C agrees with M and is

complete with respect to M.

Proof L(C) C L(S, w C) n L(M) by agreement of C and M

C L(C/M) from equation 3.34

L(C) D L(C/M) by lemma 3.1

Therefore L(C) = L(C/M). Similarly Lm(C) = Lm(C/M), Q

Theorem 3.4 The closed loop system generated by C on M is nonblocking if C is

trim, complete and in agreement with respect to M.

Proof L(C/M) = L(C) by lemma 3.2

= Lm (C) C is trim

= Lm (C/M) by lemma 3.2, Q

Chapter 3. Introductory Procedural Control Theory 58

Theorem 3.4 is highly significant because it proves that completeness, agree-
ment and trimness are sufficient properties to guarantee nonblocking. Therefore

in the waste neutralisation example, nonblocking of the closed loop system holds

automatically since the controller (figure 3.11) is trim, complete and in agreement
with the process (figure 3.4). Nonblocking guarantees that the goal state (0,0,0,0)

is always reachable.

3.6 Synthesis of Model Based Controllers

In summary, the property of nonblocking of the closed loop system guarantees
that a controller will take the process from its initial state to its goal state in the

presence of uncontrollable transitions in the process. The property of conformance
to specification guarantees that the closed loop behaviour is within specification. A

controller is said to be provably correct if it satisfies both properties.
At the heart of PCT is a technique for the synthesis of provably correct controllers

for DESs. The synthesis problem is stated formally as:

Problem 3.1 For a process M and specification S, synthesise a controller C such
that the closed loop behaviour generated by C on M conforms to specification S and
is nonblocking.

Sanchez (1994) proposes a model based technique for the solution of synthesis

problem 3.1 based on the calculation of the supremal controllable sublanguage.
The synthesis technique is model based since it employs the process model M in

the construction of the controller. Provably correct controllers are synthesised using
algorithm 3.1.

Note that algorithm 3.1 can fail at step 7 if L(C) f1 L�z(M) _ 0, which occurs

most commonly when the supremal controllable sublanguage K1 is empty. This

result means that no trim and complete controller exists which satisfies the speci-
fication S, in which case S or the process M must be further modified.

By construction, controllers from algorithm 3.1 are trim, complete and in agree-

ment with the process model. Therefore, by theorem 3.4, the closed loop system

generated by C on M is nonblocking. In addition L(C) C L(S) by construction, and
the closed loop language L(C/M) is within specification S (theorem 3.2). Therefore
C. generated from algorithm 3.1, satisfies synthesis problem 3.1 as required. Figure

3.10 summarises the inputs and outputs of the synthesis procedure.

Chapter 3. Introductory Procedural Control Theory

Algorithm 3.1 (Controller Synthesis)

59

1 Input M
2 Input S
3 L(C) = L(S) n L(M)
4 Calculate the supremal controllable sublanguage Klý of

L(C) with respect to L(M)
5 Assign L(C) = K1
6 Mark C such that Lm (C) =L (C) n Lm (M)
7 Trim C
8 IF C is not complete with respect to M, GOTO 4
9 Output C

Static &

Dynamic

Specifications

Specification

Model

Elementary

Components

Models

Controller

Process

Model

Physical

Interaction

Models

Figure 3.10: Inputs and Outputs of the Synthesis Procedure

Chapter 3. Introductory Procedural Control Theory 60

3.6.1 Example - Waste Neutralisation

In this section, a controller is synthesised for the waste neutralisation system de-

scribed in section 3.2.1.1. The process model M of the system is shown in figure

3.4 and the specification S in figure 3.8. A single pass of algorithm 3.1 yields the
FSM C shown in figure 3.11. By construction C is trim, complete and in agreement

with process M. C generates a closed loop behaviour on M which conforms to

specification S and is nonblocking. This final property was verified numerically by

showing that Lm(SC) and Lm (M) are nonconflicting (theorem 3.3).

2

3

504

50(,

q

sJ

3

6

502 500

7

CD

Figure 3.11: Acid Dosing Controller

3.7 Summary

This chapter has introduced the theory and concepts of Procedural Control Theory

for the modelling of chemical processes as Discrete Event Systems and the specifi-

cation, synthesis and analysis of controllers for such systems. Firstly, it was shown
how FSM models of chemical processes are constructed from elementary component

models and logic formulas modelling physical interactions between components.
Then an analogous technique was presented for the construction of the process
specification as a FSM. Static and dynamic specifications were expressed in terms

of predicate and temporal logic formulas.

Chapter 3. Introductory Procedural Control Theory 61

The formal model of a sequential controller was then presented. Table 3.1 sum-
marises the properties required of this controller.

Property Physical Interpretation
Reachability Nonredundant
Coreachability Ability to terminate without

infinite cycling (livelock) or deadlock
Procedural controller Free from indeterminate choice

of controllable transitions
Agreement Neither sends nor awaits null events

Table 3.1: Summary of Controller Properties

A mechanism for discrete process control was then introduced with a formulation

of the closed loop behaviour. The important properties of the closed loop system
are summarised in table 3.2.

Property Physical Interpretation
Completeness & Controllability Behaviour restricted within

a controllable envelope
Conformance to Specification Behaviour restricted within

the specified region
Nonblocking Termination at a process goal state

Table 3.2: Summary of Closed Loop Properties

Finally, a technique was presented for the synthesis of provably correct con-
trollers. In this context, provable correctness means that the controllers generate

closed loop behaviours which satisfy the properties of table 3.2.

Chapter 4

Modular Procedural Control

Theory

The currently available techniques within PCT for process modelling, specification,
synthesis and analysis of controllers are limited in practice to simple DESs. Two

problems prohibit these techniques from application to DESs of realistic complexity.
The first problem is combinatorial explosion of the process model and specification
FSMs. Secondly, it is difficult for the user to construct a formal specification for a
highly complex process.

The aim of this chapter is to extend PCT to incorporate techniques for process

modelling, specification, synthesis and analysis of controllers for process systems of

realistic complexity. The solution is to decompose the DES into a number of subsys-
tems which are amenable to existing PCT techniques. Mechanisms are proposed by

which the controllers synthesised for each subsystem are recombined for application
to the system as a whole. For three special classes of DESs it is shown that closed
loop properties are reductive, that is they hold for the recombined controller if they
hold for the modular components. Fortunately, most complex process systems fall

into at least one of these three classes.
This chapter is organised as follows. Section 4.1 presents a parallel decom-

position method for handling state explosion of process and specification models.
Systems decomposed in this way are called class I systems. Class la systems are

a subclass of class I systems which can be completely specified considering only a

subset of elementary components. The synthesis of controllers for class la systems
is addressed in section 4.2. Section 4.3 introduces class Ib systems, characterised
by the ability of the process model and specification to be partitioned into reduced

models sharing only uncontrollable events. For class Ib systems a parallel control
mechanism is proposed.

62

Chapter 4. Modular Procedural Control Theo 63

Section 4.4 presents a series decomposition method for handling specification

complexity. Systems decomposed in this way are called class II systems. For this

class of system a series control mechanism is proposed in section 4.5.
It is shown in section 4.6 how the modular techniques of sections 4.1 and 4.4

are applied recursively to design a series/parallel control structure for a process.
Finally a summary of this chapter is presented in section 4.7.

4.1 Parallel Decomposition of Class I Systems

4.1.1 Parallel Decomposition of the Process Model

This section introduces a technique for decomposing a process model M into two (or

more) smaller process models Ga and Gb which together model the complete system.
The problem of state explosion in M is avoided by finding synthesis techniques which

require only Ga, and Gb.

Process model decomposition is the inverse of model construction as described
in section 3.2. There it was shown how a process model M is constructed from a

set of nz1 elementary component models E= {el, e2 ... , eng, } over alphabet E. In

the absence of physical interaction between components, L(M) is the synchronous

product of the languages generated by the elementary component FSMs (equation

3.22). Splitting expression 3.22 at the loth and m�th component (where 1, < mz1)

and using 3.17 gives:

L(M) = Pa-1L(Ga) n P1 1L(Gb) (4.1)

where

L(Ga) _ P1 1L(el) n i'2 1L(e2)
...

n Pi. 1L(el,,)
...

n PmvL(emv)

Ea = E1 UE2... UElv... UEMV

1 L(Gb) _P
'L(ejv) n Pl�+1L(el�+1)

...
n PmvL(emv)

...
n Pnv L(env)

E6
=

Elv U
`lv+l ...

U >mv
...

U >I

L(Ga) over alphabet >a is the synchronous product of the languages generated
by elementary component FSMs in Ea = {el, e2 ... , ei,, ... , em� } and L(Gb) over

alphabet Eb is the synchronous product of the languages generated by the elemen-
tary component FSMs in Eb = {el,,, el�+1... , em� ... , en}. Elementary component
FSMs {ei,,, ei�+1 em� } are common to EQ and Eb, and therefore Ea and Eb are not

necessarily disjoint. As for E, the alphabets Ea and Eb are divisible into controllable

Chapter 4. Modular Procedural Control Theory 64

ESQ C ýc, Ecb C E. and uncontrollable Eua C Eu, Eub C Eu subsets.
Equivalently, the marked process language is given by:

Lm(M) - Pc 1Lm(Ga) (1 P 1Lm(Gb) (4.2)

Ga and Gb model the subsystems defined by Ea and Eb and are called reduced
or partial models of the system. Assuming that J Ga J and Gb I are of the order 210

and >a and Ib are disjoint, then IMI is of the order 220. In this case, Ga and Gb

are both tractable, while M is not.

4.1.1.1 Example - Waste Neutralisation

Consider again the waste neutralisation process shown in figure 3.2 and described in

section 3.2.1.1. Figure 4.1 shows the P&ID for the whole waste treatment process,
for which figure 3.2 showed just one part. The treated waste is directed either to

drain via valve V_3 or to a settling pond via V_4. The temperature in the settling

pond is measured by T_1.

WASTE

ACID

BASE

T-1

DRAIN

Figure 4.1: The Extended Waste Neutralisation System

Seven elementary components V_l, V_2, P_l, H_l, V_3, V_4 and T_1 are iden-

tified from the P&ID. The FSM models for the first four elementary components

were shown in figure 3.3. The remaining three elementary component FSMs are

shown in figure 4.2. All states are marked since any state is a valid termination

state. The complete model for this process comprises 2x2x2x3x2x2x2= 192

states, which is too large to be pictured.

The set of elementary component models E is partitioned into the two disjoint

sets Ea, = {V_1, V_2, P_l, H-11 and Eb = {V
_3,

V_4, T-11. Ga, shown in figure 3.4,

is the reduced process model of the subsystem defined by Ea. Similarly Gb is the

Chapter 4. Modular Procedural Control Theory

10 CLOSED 14 CLOSED 1a
L< 35C
LOW

5081
9 13

11 15 '/ 510

T>35C
21 OPEN 2 1< OPEN 2 HIGH

(a) V_3 (b) VA (c) T_l

65

Figure 4.2: Additional Elementary Components for the Waste Neutralisation Sys-
tem

reduced process model constructed from elementary components in Eb. Gb, shown
in figure 4.3, is the asynchronous product of the elementary component FSMsshown
in figure 4.2. The overall process M generates a language L(M) equivalent to the

synchronous product of L(Ga,) and L(Gb).

4.1.2 Parallel Decomposition with Physical Interaction

An equivalent strategy for decomposing process model M into reduced models Ga

and Gb also exists for physically interacting systems. In this case L(M) is given by

the intersection of interaction terms L(pi), L(p2)
... ,

L(pn,
i) with the synchronous

product of the languages generated by the n, elementary component FSMs (equa-

tion 3.23). Splitting expression 3.23 yields:

L(M) = Pa-'L(Ga) n P6 'L(Gb) (4.3)

where

L(Ga) = L(pl) n L(p2) ... n L(p',.)
... n L(pmi)

nPl-'L(el) n P2-'L(e2)
... n Pj 'L(el�)

... n PmvL(em�)

L(Gb) = L(pli) n L(pli+1)
... n L(pm.)

... n L(pn2)

fP1'L(ely) n PC' L(el, +1) ...
nP 'L(emv)

...
(1 Pývll'(en�)

(4.4)

given the condition that:

Chapter 4. Modular Procedural Control Theory 66

110.0,0

9 -s

11 510

2 1,0,0

15 I!
%I 5I 13 1

13

tý I41,1,0
I

9,

1
510

11 508,
I! I 5081 I r! 3 0,1,0 I!
I1I1

III! I

II 508 ; 1510
1I 510

'
I!

7 0,1,1
IIII

'I 508 ;9
III

13

8 1,1,1 I
\11

\\, 15 ,

13 15 I

6 1,0,1

9
.'

11 I

5 0,0,1

Figure 4.3: Reduced Model Gb for the Waste Neutralisation System

Chapter 4. Modular Procedural Control Theory 67

L(pj) = Pa 1L(pj),
= 17 2 ... ,

li
... , rn2 (4.5)

L(pj) = Pb 1L(pj),
= li, li + 1.... mi.... ni (4.6)

FSMs pj, j=1,2.... i
... , mi correspond to translated temporal and predi-

cate formulas modelling interaction amongst elementary components in Ea. Equa-

tion 4.5 requires that these interaction terms are local to EQ. Similarly ' pý, j=
i, li +1 ... 7 mi ni model local interaction amongst elementary components in
Eb. FSMs Ga and Gb are constructed in a modular and incremental fashion from

elementary components in EQ and Eb and local interaction terms as described in

section 3.2.2.
If conditions 4.5 and 4.6 cannot be satisfied simultaneously, then E cannot be

decomposed and by definition constitutes an elementary component. Even though

additional conditions are given later (equations 4.8,4.11 and 4.12), the choice of

partition is loosely based on an engineering analysis of the P&ID.

A special case of elementary component interaction is defined by the following

condition:

P, 1L(ek) n L(pj)> C L(pj) (4.7)

The physical interpretation of equation 4.7 is that the interaction term pj does

not restrict the behaviour of elementary component ek. In this case, ek is said to
be internally consistent with interaction term pj. The same concept is extended to

process models by defining reduced model Ga as internally consistent with process

model M if:

P 'L(Ga) f1 L(M)Fa C L(M) (4.8)

Internal consistency is therefore closely related to the concept of controllabil-
ity (see section 3.5.1.1) in the sense that the behaviour of reduced process model
L(G,,) is contained within the envelope defined by process model L(M). Numer-

ically, internal consistency can be easily checked using the same algorithm as for

controllability (Wonham, 1996) by defining 1u = Ek.

Theorem 4.1 Reduced process model Ga is internally consistent with process model
M if each elementary component ek, k=1,2

.... l�
..., m, is internally consistent

with each interaction term pj, j= mi + 1, mi +2.... n2.

Proof For the jth interaction term:

Chapter 4. Modular Procedural Control Theory 68

P 1L(ek) n L(pj)> C L(pj)

for all ek, k=1,2.
.. ,

1,
... , m,,. On taking unions:

Pý 1L(el) n P2 1L(e2)
... n Pl 'L(ej�)

... nP L(emv)n
L(pj){EiUE2... UElv... U>mv} C L(pj)

for all pj, j= mi + 1, m2 +2... , n2. On taking intersections:

Pj 1L(el) n P2 1 L(e2) ... n Plv1L(ec�) ... n P; L(eý-
0)n

{L(pmi+1) n L(pmi+2) ... n L(pnz) I ý'a C L(pmi+1) n L(pmi+2) ... n L(pni)

Intersecting both sides with L(pi) n L(p2)
... n L(pli)

... n L(p,,,,) yields:

P, -'L(Ga) n {L(pmi+,) n L(pmi+2) ... n L(pnz)}ý3a C L(pi) n L(p2) ... n L(pn,)

Intersecting both sides with P1-1L(el) n P2 1L(e2)
... n Pnv L(en�) yields:

Pa-lL(Ga) n {P '+iL(emv+1)n Piýl+2L(emv+2)
...

n Pn�'L(en,)n

L(prºzi+l) n L(pmi+2) ... n L(pni)}ý3a C L(M)

from which:

P1 L(Ga) (1 L(M)>a C L(M), Q

Theorem 4.1 is important because it permits internal consistency to be evaluated

without enumerating the overall process model M.

4.1.2.1 Example - Electrical Heating

This example illustrates process model decomposition in the presence of physical
interaction. Consider again the electric water heater (figure 3.5) modified so that

the level is no longer controlled by the cistern armature, but rather fill valve V_10,

as shown in figure 4.4.

Chapter 4. Modular Procedural Control Theory

L-10

T 11

T-10 S-10

Figure 4.4: The Modified Electric Water Heater

69

Five elementary components L_10, T_10, T_11, S_10 and V_10 are now identified

from the P&ID. FSM models for the first four elementary components are shown
in figure 3.6 and V_10 in figure 4.5(a).

In section 3.2.2.1 FSMs pl and p2 were derived to model the physical inter-

action between the two temperature switches T_10 and T_11, and the electrical
contact S_10 and T_10 and T_11 respectively. In addition, a mass balance (i. e.

accumulation = input - output) around the tank indicates physical interaction be-

tween the feed valve V_10 and level switch L_l0. This is because if V_10 is closed
(input = 0) then L_10 cannot detect an increase in level (accumulation < 0). This

mass balance restriction is expressed by the temporal logic formula:

(0,0) -+ Of T 528] (4.9)

where the order of state variables is (L_10, V-10). Equation 4.9 is translated into

FSM p3.
The set of elementary components E is divided into two sets Ea, _ {L_10, T_10,

T_11, S_10} and Eb = {L_10, V_10} sharing elementary component FSM L_10. p1,

p'2 and p3 satisfy conditions 4.5 and 4.6. Ga, shown in figure 3.7, is the reduced

process model constructed in a modular and incremental fashion from elementary

components in Eo, as described in section 3.2.2.1. Similarly Gb, shown in figure

4.5(b), is the reduced process model constructed from elementary components in Eb

and incorporating mass balance p3. The language L(M) generated by the complete
process model M is the synchronous product of L(GQ,) and L(Gb). M is shown in

Chapter 4. Modular Procedural Control Theory

10 CLOSED

21

23

21 OPEN

(a) V_10

1 0,0

21

23

2 Q1 l 530 1

528 ci 530

3

21 /

23

(b) Gb

Figure 4.5: FSM Model for V_10 and Gb for the Electric Water Heater

figure 4.6 with the order of state variables (L_10, T_10, T_11, S_10, V_10).

4.1.3 Parallel Decomposition of the Specification

70

In the previous section it was shown how process models with physical interaction

may be decomposed into two reduced models. Here the same decomposition strategy

is applied to specifications by recognising that the elementary component set E can
be partitioned on the basis of desired interaction in much the same way as for

physical interaction. Thus equation 3.26 is partitioned as:

L(S) = P,, - 1L(Sa,) (1 P 'L(Sb)

where

(4.10)

L(Sa) = L(ri) n L(r2)
... n L(rls)

... n L(rý,.
ls

)

n-p 'L(el) nP 'L(e2)
... n Pj 'L(ely)

... n P;
r

'L(emv)

L(Sb) = L(r'5)nL(ris+l)... nL(r')... nL(rns)

n-plviL(ely) n P+IL(el�+l) ...
n Pm'L(ern�)

...
n Pn�1L(en�)

given the condition that:

apter 4. Modular Procedural Control Theory 71

TT

16

jý rT

ff

t1

<<

`; ',

ýý
,.

r_..
_ýa ;

'ý
v ß, 1,0S, 0

r111
i/ 11

w o, t, t ..) i

1
_-

f11 ýý 1. l[1. tt

1i
ý-

_ý

tt YS

1

ii11
11

i1itt
4

,t11I

ix

1tI

ýt

II1,1,1 f

tItý51

1

1

1

i11

iIl

1

i;

I11
ißtt Lor

117f

1tIi

ýF

t. 1
14ý 1� t. to i

iIt

aI1

f1
iJII1
3111t

if
f1

11L(L

1I

w=
c t, t, ü, Ü, 7 r

1\r .' 1

t~\i; rr

a i: o, o, 1

1f

ýýsf

afý
`S afi

,
ý`

el
ff

tfti

17

11,0,

21

24
------ ---g 0,1,0,0 ,0

.'
ýý

.i

ý'

Figure 4.6: Overall FSM Model for the Modified Electric Water Heater

Chapter 4. Modular Procedural Control Theory 72

L(rj) = 2 'L(ri), j= 1,2..., is..., ms (4.11)

L(rj) = Pb 'L(rý),
= ls, is +1... , ms ... , ns (4.12)

FSMs rj, j=1,2
is

... , ms correspond to translated temporal and pred-
icate formulas modelling desired interaction amongst elementary components in
Ea,. Condition 4.11 states that these specification terms are local to Ea,. Similarly,

L(ri), j= ls, l, s +1.... ms ... , ns model local interaction amongst elementary com-

ponents in Eb. Since specifications are local, the relative behaviour of elementary

components between Ea and Eb is unconstrained.
Specification FSMs Sa, and Sb are constructed in a modular and incremental

fashion from elementary components in Ea and Eb and local specification terms as
described in section 3.3.

As shown later in this thesis, it is advantageous to apply the same partition to E

when decomposing both the specification and the process model. This requires that

conditions 4.5,4.6,4.11 and 4.12 are satisfied simultaneously. A system satisfying
these conditions is called a class I system.

4.1.3.1 Example - Waste Neutralisation

In section 3.3.1, the user requirements for the waste neutralisation system of figure

3.2 were formalised into FSMs ri, r2 ... , r9. The addition of the downstream settling

pond (figure 4.1) neither alters the existing user requirements for the upstream

process nor introduces any new requirements for the downstream process.
For the purposes of specification, E is conveniently partitioned into two sets

Ea = {V
_1,

V-2, P_l, H-11 and Eb = {V
_3,

V-47 T-11. This partition is identical to

that in section 4.1.1.1. Since ri, r2 ... , r9 satisfy condition 4.11, then the extended

waste neutralisation system is a class I system. Reduced specification Sa,, shown in

figure 3.8, is constructed in a modular and incremental fashion as shown in section
3.3.1 and relates the behaviour of elementary component items directly associated

with acid dosing.

As there is no restriction on the behaviour of elementary components in Eb (i. e.

those associated with the downstream process) the specification L(Sb) is equivalent

to L(Gb), where Gb is shown in figure 4.3. The complete specification L(S) is the

synchronous product of the two modular specifications L(Sa) and L(Sb).

Chapter 4. Modular Procedural Control Theory

4.2 Control of Class Ia Systems

Class la systems are a subclass of class I systems with the following properties:

73

P 'L(Ga) (1 L(M)> aC L(M) (4.13)

L(Sb) = L(Gb) (4.14)

Lm(Gb) = L(Gb) (4.15)

Equation 4.13 states that reduced model Ga is internally consistent with the

overall process model M. Equation 4.14 states that the specification Sb is free
in that any physically possibly trajectory is also an allowable trajectory. Finally,

equation 4.15 states that all states of Gb are allowable goal states.
The physical interpretation of class la systems is that they contain a subset Eb

of elementary components which are not specifically employed by the process (e. g.
sensors and actuators not in direct contact with the process fluid). The specification
Sa constrains only those elementary components in direct contact with the process
fluid.

If reduced process model GQ and specification SQ, are sufficiently small, then
the synthesis of a reduced controller Ca for this subsystem is tractable using the
techniques of section 3.6. Ca is proposed as a controller for the whole process
M. In this role, Ca is called the reduced domain controller because it has only a

partial or filtered view of the whole process domain. The following section tests
the proposition that reduced domain controller Ca solves synthesis problem 3.1 for

class Ia DESs. It is noted that in synthesising Ca, the enumeration of M is avoided.

4.2.1 Properties of Reduced Domain Control

Theorem 4.2 For class Ia systems, the closed loop behaviour generated by Ca on
M conforms to specification S if the closed loop response of Ca on Ga conforms to

specification Sa.

Proof L(Ca/M) = L(Sw Ca) (1 L(M)

= L(Sw Ca) (1 Pa-'L (Ga) n Pb 'L(Gb)

C Pa'L(SwaCa) (1 Pa-'L(Ga) (l Pb'L(Sb)

C Pa 1{L(SaCa) (1 L(Ga)} nP 'L(Sb)

CP 'L(Ca/Ga) n Pb 'L(Sb)

CP 'L(Sa) n P6 'L(Sb)

from equation 3.34
from equation 4.3
from equation 4.14
from equation 3.17
from equation 3.34

since Ca conforms
to specification Sa

Chapter 4. Modular Procedural Control Theory 74

C L(S) from equation 4.10, Q

Theorem 4.3 For class la systems, the closed loop behaviour generated by Ca on
M is nonblocking if the closed loop behaviour generated by Ca on Ga is nonblocking.

Proof Let s be a common prefix of Lm(S Ca,) and Lm(M). Therefore sE L(M)

and from equation 4.3, sE Pc 'L(G,,). Let t= Pa, s so that tE L(S QCa) and
tE L(Ga). By theorem 3.3, Lm(S äC) and Lm(Ga) are nonconflicting. Therefore t

can be completed by a string uE E* such that tu E L,,, (s
äCa) and tu E Lm(Ga)-

Therefore su E Lm(S Ca), su E Pa-'Lm(Ga) and su E Pa-'L(Ga). By internal

consistency su E L(M). Therefore su E Pb 1 L(Gb) = Pb 1Lm(Gb) and su E Lm(M)

from which it is concluded that Lm(Su Ca) and Lm(M) are nonconflicting. Therefore

by theorem 3.3, Ca generates nonblocking behaviour on M. O

In summary, theorems 4.2 and 4.3 show that the reduced domain controller
Ca generates a closed loop behaviour on process M which conforms to specification
S and is nonblocking. These two theorems prove that Ca is a valid solution of
synthesis problem 3.1 for class Ia systems. Importantly, a controller satisfying
these closed loop properties can be synthesised without enumerating process model
M.

4.2.1.1 Example - Waste Neutralisation

Consider again the waste neutralisation system shown in figure 4.1. As demon-

strated in section 4.1.1.1, the process model M for this system comprises two re-
duced process models Ga and Gb shown in figures 3.4 and 4.3. As this system is

void of physical interaction, internal consistency of Ga with M holds trivially.
Section 4.1.3.1 showed that the specification S for this process comprises two

reduced specifications Sa and Sb where Sb is free (i. e. L(Sb) = L(Gb) and Lm(Gb) _
L (Gb))

.
Therefore the waste neutralisation system is a class Ia system.

Controller Ca, synthesised from specification Sa, and reduced model Ga, is pro-

posed for process M. Controller CQ was shown in figure 3.11. Theorems 4.2 and
4.3 show that controller Ca generates a closed loop behaviour on M which conforms
to specification S and is nonblocking. For this simple example, the complete pro-

cess model comprising 192 states was enumerated in order to verify numerically the

results of theorems 4.2 and 4.3.

4.3 Control of Class Ib Systems

Class Ib systems are a subclass of class I systems with the following specific property:

Chapter 4. Modular Procedural Control Theory 75

>a(1FbCEu (4.16)

In other words, for this class of DES, the common elements of Ea and Eb gener-

ate only uncontrollable transitions. In chemical systems such components include

proximity, level and temperature switches. Elementary components generating con-
trollable events (e. g. valves and pumps) must not be shared.

As for class la systems, tractable calculations are identified as the synthesis of

controller Ca from reduced specification So, on reduced process GQ and controller Cb

from Sb on Gb. It is proposed that the two controllers Ca and Cb are applied to the

process in parallel as described in section 4.3.1. Section 4.3.2 then verifies that the

closed loop behaviour generated by Ca and Cb on M according to this mechanism

conforms to specification and is nonblocking. Thus a solution to synthesis problem
3.1 for class Ib systems is proposed without enumerating the whole process model
M or specification S.

4.3.1 The Parallel Control Mechanism

Consider a DES M under control from not one but two controllers as shown in

figure 4.7. A higher level of control starts both controllers simultaneously. Each

controller operates in complete ignorance of the other according to the feedback

control mechanism described in section 3.4.1. Uncontrollable transitions, generated

spontaneously and asynchronously by the process, are communicated simultane-

ously to both controllers. Similarly, controllable transitions generated by both

controllers are communicated to the process.
In the parallel control mechanism, it is assumed that two controllable transitions

cannot be generated by both controllers at the same instant. This assumption is

necessary since the DES model is purely sequential and cannot handle concurrency.
This is a valid model for queued or multiplexed control commands from PLCs and
DCSs. Distributed controllable events are modelled by the interleaved product.
Control action can only terminate when both controllers are in a marked state.

The closed loop language generated by M under parallel control by Ca and Cb,

consistent with the mechanism described above, is adapted from equation 3.34 for

the case of a single controller. The difference is that controller Co, must not only

permit uncontrollable transitions from any wait state, but also not restrain events
in Cb. Similarly, Cb must not restrain events in Ca,. The closed loop language

L(Ca T Cb/M) generated by M under parallel control by Ca and Cb is given by:

L(Ca, T Cb/M)
= P,, - 1 L(S Ca,) n Pl 1L(S,

ýbCb) n L(M) (4.17)

Chapter 4. Modular Procedural Control Theory

lca

Controllable I
Transitions cb

Uncontrollable l
ua

Transitions

Iub

Closed Loop
Behaviour

Figure 4.7: The Parallel Control Mechanism

where IQ n rib C Eu.

76

The first term in equation 4.17 is the language generated by controller Ca with
allowance for uncontrollable transitions in E. at its wait states and for any un-
shared event from Cb. Similarly, the second term is the language generated by Cb,

with allowance for transitions in Eub at wait states and any unshared event in Ca.

The closed loop language is the intersection of these terms with the set of physically
possible trajectories (i. e. L(M)). Equivalently, the marked closed loop language is

given by:

Lm(Ca1Cb/M) = Pa'Lm(S Ca) f1 Pb 1 Lm(S
bCb) n Lm(M) ý4.1ö)

4.3.2 Properties of Parallel Control

This section tests the proposition that parallel control via Ca and Cb satisfies syn-
thesis problem 3.1 for class Ib DESs where Ca and Cb are model based controllers

synthesised from reduced process models Ga and Gb and specifications So, and Sb

respectively.

Lemma 4.1 L(CatCb/M) =P 'L(Ca/Ga) flP 1L(Cb/Gb) and Lm(Cat Cb/M) _
P 'Lm(Ca/Ga) (1 PI 'Lm(Cb/Gb).

Proof

L(CaT Cb/M) P 'L(S äCa) (l Pb 1L(S 6Cb) n L(M) from equation 4.17

= Pa-'L (S QCa) (l Pb 1L(S 6Cb) (1 P¢-'L(Ga) (1 P 'L(Gb)

from equation 4.3
= Pa-'f L(S , Ca) n L(Ga)} n Tb'{L(s 6Cb) n L(Gb)}

from equation 3.17

= Pa-1L(Ca/Ga) (l P 'L(Cb/Gb) from equation 3.34

Chapter 4. Modular Procedural Control Theory 77

Similarly L.. (Cal Cb/M) =P 'Lm (Cd/Ga) (1 Tb 'Lm (Cb/Gb), Q

Theorem 4.4 For class Ib systems, the closed loop behaviour generated by M under

parallel control by Ca and Cb conforms to specification S if Ca generates a closed
loop behaviour on Ga which conforms to specification Sa and similarly Cb on Gb and
8b.

Proof
L(CatCb/M) = Pa'L(Ca/Ga) n Pb 'L(Cb/Gb) from lemma

.. 1
C Pa'L(Sa) (1 P 1L(Sb) by conformance to specification
C L(S) from equation 4.10, Q

Theorem 4.5 For class Ib systems, the closed loop behaviour generated by M under

parallel control by Ca and Cb is nonblocking if Ca, generates nonblocking behaviour

on Ga and similarly Cb on Gb and if Pa-'Lm(Ca/Ga) and Pb'Lm(Cb/Gb) are non-

conflicting.

Proof
Lm (Cat CbIM)

_
Pa 1 Ln,, (Ca/Ga) n Pb ' L,

n
(Cb/Gb) from lemma 4.1

= Pa'Lm(Ca/Ga) n'b 1Lm(Cb/Gb) by nonconflicting
_'a'L(Ca/Ga) n Pb 'L(Cb/Gb) by nonblocking

= L(Ca T Cb/M) from lemma 4.1, Q

The nonconflicting property between the two languages P 'L72(C,, /Ga) and
P' L�i (Cb/Gb) holds trivially when E,, and Eb are disjoint. If not, nonconflicting

must be verified numerically. The physical interpretation of nonconflicting is that

the goal states of shared items are equivalent.
In summary, theorems 4.4 and 4.5 show that the closed loop behaviour gener-

ated by M under parallel control by Ca and Cb conforms to specification and is

nonblocking. These properties justify parallel control for class Ib systems. Impor-

tantly, a solution to synthesis problem 3.1 for class Ib systems is available without

enumerating the whole process model.

4.3.2.1 Example - Electrical Heating

In this example, parallel controls are designed for the modified electric water heater

of figure 4.4. The user requirements for the controlled system are as follows. From

the initial state of empty, valve V_10 is opened until L_10 is covered. Only when
L_10 is covered can contact S_10 close. S_10 remains on until T_10 indicates 70C,

but must open before T_11 indicates 80C.

Chapter 4. Modular Procedural Control Theory 78

As demonstrated in section 4.1.2.1, the process model M for this system is

comprised of two reduced models Go, (figure 3.7) and Gb (figure 4.5(b)). Simi-

larly, the specification S may be decomposed into two reduced specifications Sa

and Sb (not shown). SQ relates the behaviour of elementary components directly

associated with temperature control, while Sb relates those associated with level

control. As this partition also satisfies constraints 4.11 and 4.12, the modified
electric water heater constitutes a class I system. Furthermore, the alphabets
Ea = {528,530,520,522,524,526,25,27} and >6 = {528,530,21,23} satisfy the

condition Ea n >6 C Ems, and the modified electric water heater is also a class Ib

system.
Controller Ca, is synthesised from specification Sa, and process model Ga, using

the techniques of section 3.6. Similarly, Cb is synthesised from specification Sb and

process model Gb. Ca, and Cb are shown in figure 4.8.

I

27

.,
X
530

7

27

{ý

\522

2

25

ýI
3 522

`1I
520 1I
ý, II

4

ti

27

5

5281
530

6ý

(a) Ca

21

2

528
1530
1

3

23

44

(b) Cb

Figure 4.8: Modular Controllers for the Electric Water Heater

A control mechanism comprised of Ca and Cb in parallel is proposed for the

complete process M. By theorem 4.4, the resultant closed loop language L(Ca t

Cb/M) is within the specification language L(S). By calculation, Pa 'L
m

(C,
,
/Ga)

and P6 1 Lm (Cb/Gb) are nonconflicting and it follows from theorem 4.5 that the

Chapter 4. Modular Procedural Control Theory 79

closed loop behaviour of the whole system is also nonblocking. For this example, the

whole process model M was enumerated (figure 4.6) and the assertions of theorems

4.4 and 4.5 verified numerically.

4.4 Series Decomposition of Class II Systems

4.4.1 Series Decomposition of the Process Model

The concept of subgoals in operating procedures for chemical processes was ex-

ploited in valve sequencing methods (Rivas and Rudd, 1974), artificial intelligence

planning techniques (Fusillo and Powers, 1987; Lakshmanan and Stephanopoulos,

1988a) and supervisory control of batch processes (Crooks, 1992) (see chapter 2).

Subgoals are defined as safe, stable, steady state break points in operating proce-
dures for continuous or batch chemical operations. The purpose of defining subgoals
is to split the operating procedure into distinct phases of operation, thereby sim-

plifying the tasks of specification and synthesis.
Formally, a subgoal ql (qi qo, ql ý Qm) is defined as a process state through

which a controlled process must pass as it evolves from initial state qo to a goal

state qE Q�z. Subgoal ql partitions process model M into two process models Hl

and H2 such that:

H1 = {Q, V', E' 6, Y7 qojqli} (4.19)

H2 = {Q, Vn", :% 6, 'y, q1, Qm} (4.20)

That is, Hl is equivalent to M with the exception that the marked state set

comprises only the subgoal. Hl models the behaviour of the DES M up to and

including the subgoal. H2 is realised by the FSM with the same markings as M but

with the subgoal ql as the initial state. H2 models the behaviour of M between the

subgoal and the goal of the process.

Lemma 4.2 Hl is nonblocking if ql is reachable from all qEQ.

Lemma 4.3 H2 is nonblocking if M is trim.

Series decomposition is easily generalised for ri subgoals q1, q2 ... , qnz by parti-

tioning the process model M into n, z +1 processes Hl, H2
... ,

Hnz+l.

Chapter 4. Modular Procedural Control Theo

4.4.1.1 Example - Batch Reaction

80

Consider the jacketed batch reactor shown in figure 4.9. The reactor is equipped
with a feed valve V_20, drain valve V_21, load cell W_20 and a continuous tem-

perature controller C_20. A batch is produced by charging the empty reactor with
100kg (as measured by W_20) of reactant material from valve V_20. Temperature

controller C_20 is then enabled for a period of 30 minutes in which reaction takes
place. Finally, the controller is disabled and the reactor contents a-c drained via
V21.

20

Figure 4.9: The Batch Reactor

Elementary components identified from the P&ID include V_20, V_21, W_20

and C_20, for which FSM models are shown in figure 4.10. In order to implement

the timing requirements for this system, an additional elementary component T_20

is introduced. T_20 is a 30 minute timer with 4 states including idle, released, held

and expired. Countdown from 30 minutes begins when T_20 is switched from idle

to released (transition 43). From there the timer can either expire after 30 min-

utes (uncontrollable transition 532), or be frozen at its current value (controllable

transition 45). From the held state, the timer can either be reset (transition 49), or

rereleased (transition 47) from the value it left off. T_20 can also be reset from the

expired state.
The complete process model M (not pictured) comprises 96 states. The initial

state is qo = (0,0,0,0,0) and the goal state is q,. t = (0,0,0,0,3), where the order of

Chapter 4. Modular Procedural Control Theory 81

10 CLOSED

31 33

2y OPEN

(a) V20

W< 1kg
EMPTY

534 i; 536
1r

r
i

2j1<W< 100kg
PARTIAL

, ,
538 i

tf

1 540

3W> 100kg
FULL

(c) W_20

10 DISABLED

39 41

21 ENABLED

(d) C20

10 CLOSED

35 37

21 OPEN

(b) V_21

(e) T_20

Figure 4.10: Elementary Components for the Batch Reactor

HELD EXPIRED

Chapter 4. Modular Procedural Control Theory 82

state variables is shown in figure 4.10. Two subgoals are identified for this process
as described in table 4.1.

Label I Variables I Description
ql (0,0,2,0,0) End of filling phase, start of reaction phase
q2 (0,0,2,0,3) End of reaction phase, start of draining phase

Table 4.1: Subgoals in the Batch Reactor Model

The complete process model M is partitioned by subgoals ql and q2 into three

series models H1, H2 and H3. Hl is equivalent to M with the exception that ql is

marked and qn is not. Similarly, H2 has initial state ql and marked state q2 and
H3 has initial state q2 and marked state qm. Since ql and q2 are reachable from all
states qEQ then H1, H2 and H3 are nonblocking.

4.4.2 Series Decomposition of the Specification

The purpose of defining subgoals is to modularise and simplify the task of generating
formal specifications from the user requirements. For example, by defining one

subgoal, the specification S may be constructed as two independent specifications
Sl and S2. Si formalises the user requirements that apply before the subgoal

and need not consider user requirements applying after the subgoal. Similarly, S2

specifies the user requirements that apply after the subgoal, and need not consider
those applying before the subgoal. A system which can by specified in this way is

called a class II system.
For the case of one subgoal, the complete specification language L(S) is given

by:

L(S) = L(S1) U L(Sl). a,. L(S2) (4.21)

where a1 ¢E is an event which flags the achievement of the subgoal.
Series decomposition of the specification is extended in the obvious fashion for

the case of n, z subgoals q1, q2 qnx by constructing n, z +1 modular specifications
S1, s2

... 7
Snz+1.

4.4.2.1 Example - Batch Reaction

In section 4.4.1.1, two subgoals ql and q2 were identified in the batch reactor model.
The user requirements applicable between each subgoal (i. e. for each phase of the

operation) are described in table 4.2. These are formalised into three modular

Chapter 4. Modular Procedural Control Theory

1 ßý0,0, üý, 0

31

Z 000.0

534

1 3,0,1ö, 0
C538

4

Cl,
0,2,0,0

3.3

5 0,0,2.0,0

1 0; 0,2,0,0

39

2 Q, o, 2,1,0

43

3 0, Q, 2,1,1

5.32

4 0,0,2,1,3

41'

5 0,0,2,0,3

0,0,2,0,3

3s

2 1,
ý2,3

540

3 0,3

536

4 0$0 3

37

5
CO -10

1

ý01
01 3D

(a) Si (b) S2 (c) S3

Figure 4.11: Modular Specifications for the Batch Reactor

83

specifications SI, S2 and S3 as shown in figure 4.11. The complete specification is

given by L(S) = L(S1) U L(Sl). ai. L(S2) U L(Sl). ai. L(S2). a2. L(S3) where (71 flags

the achievement of ql and 92 flags q2.

Initial Marked User Requirements Spec.

q0 ql Open V_20 until W_20 indicates 100kg Sl

ql q2 Enable C_20 and set T_20 to 30 minute countdown S2

q2 qm Open valve V_21 until W_20 indicates empty S3

Table 4.2: User Requirements for Batch Reactor Phases

4.5 Control of Class II Systems

As for parallel decomposition, series decomposition of the process model and spec-
incation yields a set of subsystems each defined by a modular process model and

specification. For each subsystem a controller is synthesised using the techniques

of section 3.6. For example, series decomposition by a single subgoal yields two

subsystems defined by process models Hl, H2 and specifications Sr, S2. Controller

Chapter 4. Modular Procedural Control Theory 84

Cl is synthesised from process model Hl and specification Sl and C2 is synthesised
from H2 and S2.

A control mechanism comprised of Cl and C2 in series is proposed for class II

systems. In an analogous fashion to section 4.3, this mechanism is first described

and then formulated. It is then shown that Cl and C2 in series is a valid solution

of synthesis problem 3.1 for class II systems.

4.5.1 The Series Control Mechanism

Figure 4.12 depicts the DES M under series control from Cl and C2. Initially, with
the switch at position 'T', the process is controlled by Cl in accordance with the

mechanism described in section 3.4.1. A higher level of control switches between Cl

to C2 when the process achieves the subgoal ql and when Cl is in a marked state.
The process is thereafter controlled by C2 in the manner described in section 3.4.1.

Closed Loop
Behaviour

Controllable
Transitions

IC

1
Uncontrollable
Transitions

Figure 4.12: The Series Control Mechanism

The closed loop language L(C1-* C2/M) generated by controllers Cl and C2 in

series is formulated as:

L(C1-ýC2/M) = {L(S8 Cl) U Lm(Sü Cl). Q1. L(Sü C2)} n L(sg1M) (4.22)

The first term models the control action imposed by the first controller as in

equation 3.34. The second term models control action from the second controller

after the termination of the first at a subgoal. The closed loop language is the

intersection of this union with the set of physically possible trajectories (i. e. L(M)).

The changeover from Cl to C2 synchronises at the subgoal by selflooping M with

event a1 at state Q1. The marked closed loop language is given by:

Chapter 4. Modular Procedural Control Theory 85

Lm(Cl 4C2/M) = L,,, (S,, Ci). Q1. Lm(Sw C2) (1 Lm(SqiM) (4.23)

4.5.2 Properties of Series Control

This section tests the proposition that series control via Cl and C2 satisfies syn-
thesis problem 3.1 for class II DESs where Cl and C2 are model based controllers

synthesised from process models Hl and H2 and specifications Sl and S2 respec-
tively.

Lemma 4.4 Lm(SS Ci). or1. L, »,
(S,, C2) f1 L, n(SQiM) = Lm(Ci/Hl). a1. Lm(C2/H2)

and Lm(S, ', Cl). al. L(S,, C2) (1 L(S M) = Lm(Ci/Hi). u1. L(C2/H2).

Proof Let sE Lm (S,, Cl)
. u1. Lm (S. C2) and sE Lm,,, (8t M)

.
Partition s into

t1. a1. t2 so that tl E Lm(S Cl) and t2 E Lm(S,, C2). By construction of Hi and H2,

tl E Lm(Hi) and t2 E Lm(H2). Therefore ti E Lm,,, (Ci/Hl) and t2 E Lm(C2/H2)

and s= tl. al. t2 E Lm(Ci/Hi). o-1. Lm(C2/H2) from which:

Lm(S, Cl). U1. Lm(S, C2) n Lm(Si M) 9 Lm(C1/H1). Q1. Lm(C2/H2) (4.24)

However,

L,
n(C1/H1). Q1. L,

n(C2/H2) _ {Lm(Su Ci) f1 Lm(Hi)}. a-l. {Lm,,, (Su C2) f1 L,, (H2)1

from equation 3.35

C Lm(S, ü C1). Ql. L,
n(S

C2) n Lm(Hl). Q1. Lm(H2)

C Lm(SwCl). Q1. Lm(Su C2) n Lm(SQ'M)

by construction of Hl and H2

Therefore, from equation 4.24:

Lm(S Ci). Q1. Lm, (Sü C2) n Lm(SqiM) = LmýC1ýH1). Q1. LmýC'2ýH2)

and similarly:

L.. (S, ü C1). a1. L(S,, C2) n L(S M) = Lm, (C1/H1). u1. L(C2/H2)ß Q

Lemma 4.5 L(Cl-ýC2/M) = L(Cl/Hl) U Lm, (Ci/Hl). u1. L(Cl/Hl)

Proof

L(Cl -ýC2/M) _ {L(S. Cl) U L,,, (S,, Cl). ai. L(S, u C2)} n L(SgiM)

Chapter 4. Modular Procedural Control Theory 86

from equation 4.22

_ {L(S,, Ci) n (Sqll M)} U {Lm(S,, Cl). a,. L(S,, C2) n (Sqll M)}

= L(Cl/Hl) U Lm(Ci/Hl). Q1. L(C2/H2) by lemma 4.4, Q

Theorem 4.6 For class II systems, the closed loop behaviour generated by M under

series control from Cl and C2 conforms to specification S if Cl generates a closed
loop behaviour on Hl which conforms to specification Sl and similarly C2 on H2

and S2.

Proof L(C14C2/M) = L(Cl/Hl) U Lm(Ci/Hi). u1. L(C2/H2) by lemma 4.5

C L(S1) U L(Sl). a,. L(S2) by conformance, Q

Theorem 4.7 For class II systems, the closed loop behaviour generated by M under

series control from Cl and C2 is nonblocking if Cl generates nonblocking behaviour

on Hl and similarly C2 on H2.

Proof
Lm(C1 +C2/M) = Lm(S Cl). a1. Lm(S C2) n L,,, (S, ", M)

= Lm(Ci/Hi). a1. Lm(C2/H2)

= Lm(Ci/Hl) U Lm, (Ci/Hl).
Q1. Lm(C2/H2)

= L(Cl/Hl) U Lm(Ci/Hl). Q1. L(C2/H2)

= L(C1-* C2/M)

from equation 4.23

by lemma 4.4

from equation 3.13

by nonblocking of
CZ on HZ

by lemma 4.5, Q

Theorems 4.6 and 4.7 show that controllers Cl and C2 in series solve synthesis

problem 3.1 for class II systems. Both theorems are easily extended for the case

of n, +1 series controllers C1, C2
...,

C,,
z+l synthesised from modular specifications

S1, S2
... ,

SnZ+l and series models Hl, H2
H7zz+l respectively. Therefore the

series control mechanism is guaranteed to bring the process from the initial state

qo via the subgoals q1, q2 qn, to a goal state qE Qm.

4.5.2.1 Example - Batch Reaction

The process model for the batch reactor (figure 4.9) is comprised of three series

process models, H1, H2 and H3 as described in section 4.4.1.1. The specification
for the reaction operation is in three corresponding parts S1, S2 and S3, shown in

figure 4.11. Controllers C1, C2 and C3 (shown in figure 4.13) are synthesised from

process models H1, H2 and H3 and specifications Si, S2 and S3 respectively. The

resultant control mechanism for process M comprises C1, C2 and C3 in series.

Chapter 4. Modular Procedural Control Theory

31

2
,A

534;

3

538_;
_

4

33

5

I

39

2

43

3

532

T

4

41

5

ic

35

2
c-:::)

540 1

3

536 i

4
37

5

(a) C1 (b) C2 (c) C3

Figure 4.13: Modular Controllers for the Batch Reactor

87

By theorems 4.6 and 4.7, C1, C2 and C3 in series yield a closed loop behaviour

on M which is nonblocking and within the specification language L(S) = L(S1) U
L(Sl). o ..

L(S2) U L(S1). QI. L(S2). a2. L(S3). These results were verified numerically.

4.6 Recursive Decomposition of Complex Systems

Three special classes of DES have been identified in sections 4.2,4.3 and 4.4. For

each class, the synthesis problem is modularised by decomposing the process model

and specification. Modular controllers synthesised from the decomposed processes

and specifications are recombined into a controller with equivalent properties on
the whole system.

The important theorems of this chapter are summarised in table 4.3. For each

class of system column 2 shows the sufficient conditions for a closed loop behaviour

which conforms to specification and column 4 shows the sufficient conditions for

nonblocking. For example, for a class la system, theorem 4.3 proves that a controller

which generates a nonblocking closed loop behaviour on the reduced process will

also generate a nonblocking closed loop behaviour on the whole process.
Table 4.3 shows that if conformance to specification holds for the subsystems

of either class, then it holds also for the complete system. Conformance to spec-

Chapter 4. Modular Procedural Control Theory 88

Class Conformance to Specification Nonblocking
Condition Theorem Condition Theorem

la L(Ca/Ga) C L(Sa) 4.2 L(Ca/Ga) = L, (Ca/Ga) 4.3
Ib L(Ca/Ga) C L(Sa) 4.4 L(Ca/Ga) = Lm, (Ca/Ga) 4.5

L(Cb/Gb) C L(Sb) L(Cb/Gb) = Lm(Cb/Gb)

Pa-1Lm(Ca/Ga) öL
'Pb 1Lm(Cb/Gb)

are nonconflicting
II L(C1/H1) C L(S1) 4.6 L(CI/Hl) = Lm(C1/H1) 4.7

L(C2/H2) C L(S2) L(C2/H2) = Lm(C2/H2)

Table 4.3: Summary of Theorems

ification is reductive, which means that it is preserved under the inverse image of
the decomposition operation. Nonblocking is also reductive for classes Ia and II. In

other words, a nonblocking closed loop behaviour for the modular parts of the sys-
tem guarantees nonblocking of the complete system. Nonblocking is true for class
Ib systems given the additional condition that's 1Lm, (CQ/Ga,) and '6 1Lm(Cb/Gb)

are nonconflicting. Nonconflicting is assumed in the remainder of this section.

4.6.1 Properties of Structured Modular Control

The series and parallel decomposition techniques may be applied recursively to the

system, thereby decomposing it into many series/parallel modules as illustrated

in figure 4.14(a). A complete process model M is depicted, decomposed into parallel

reduced models Ga and Gb. Gb is further partitioned into series models Hbl and Hb2

at a subgoal ql in Gb. This model decomposition is invisible to a controller which

views the whole process as an input-output system.
The complete specification S for process M is also decomposed into parallel re-

duced specifications Sa and Sb. Sb is further decomposed into Sbl and Sb2. The com-

plete specification is conceived as three FSMs Sa, Sbl and Sb2 in the series/parallel

network shown in figure 4.14(b).

Controllers Ca, C61 and Cb2 are synthesised from models Ga,, Hbl, Hb2 and

specifications Sa,, Sbl, Sb2 respectively. By theorems 4.6 and 4.7, C61 and Cb2 in

series generate a closed loop response on Gb which conforms to specification Sb and
is nonblocking. It follows from theorems 4.4 and 4.5 that Cbl -+ Cb2 and Ca, in

parallel generate a closed loop response on the whole process M which conforms to

specification S and is nonblocking.
The control structure 0 for this process comprises Ca, Cbl and Cb2 in the se-

Chapter 4. Modular Procedural Control Theory

------------------------- rr

' Hbl b2

Gb
G a

M
(a) Models

' `sbl 11111111111112 Sb

Q
S

S
(b) Specifications

C
bl

c
b2

------------------------- Cb

c
(c) Controllers

89

Figure 4.14: Networks of Models

Chapter 4. Modular Procedural Control Theory 90

ries/parallel network shown in figure 4.14(c). This control structure is guaranteed
to take the process M from initial state qo to a goal state qE Qm within specifi-
cation S. Furthermore, 0 has been synthesised without enumerating the complete
process model M or specification S.

This example may be generalised to a control structure resulting from any num-
ber of decompositions into subsystems of class Ia, Ib or II.

4.7 Summary

This chapter addresses the problem of modelling, specification, synthesis and anal-
ysis of controllers for chemical systems of a size and complexity beyond traditional
PCT techniques. The key to handling size and specification complexity is decom-

position of the process model and specification into modules of a size amenable to

traditional techniques. Controllers for the reduced processes are recombined via a

parallel or series mechanism for application to the whole process. Three special

classes of systems are identified for which modular control offers a valid solution of

synthesis problem 3.1.
The decomposition techniques presented in this chapter may be applied collec-

tively and recursively, thereby generating a solution to the synthesis problem as a

series/parallel structure of modular controllers. The advantages of a modular solu-
tion over the monolithic counterpart are numerous. For example, control modules

are potentially reusable in other control structures. Modular controllers are also

more compact and easier to understand, modify, document and code.

Chapter 5

Procedural Initiation and
Inhibition Theory

Industrial controllers are programmed in a control language organised into sets of

operations. Each operation is started by the operator or supervisory control sys-
tem in the process of making a batch according to a recipe. Control architectures

are multitasking, which means they support concurrent control by multiple opera-
tions. Chapter 4 considered the synthesis of detailed processing logics for complete

operations.
Operations utilise process related hardware resources (e. g. pumps, vessels, pipe

segments). Without adequate safeguards, an operation may be started at a time

when its resources are in an inappropriate state or already in use by a second
operation. In either case a conflict exists and at the very least the proper execution
of the operation cannot be guaranteed. At worst an unsafe state of the process could
be achieved. Therefore, in a multitasking control domain, additional initiation and
inhibit logic is required.

Two safety mechanisms are utilised to disable controllers from being started at
inappropriate times. The first mechanism is the pre-check. Pre-checks ensure that

a process is in an appropriate state before a control activity can begin. Section

5.1 formalises the concept of controller initiation and incorporates the pre-check

mechanism into the closed loop control model.
The second mechanism for disabling controllers is inhibiting. The controller in-

hibit function prevents nominated controllers from starting while a given controller
is active. This function safeguards against the concurrent operation of noncoop-

erative controllers as described in section 5.2. A design criterion for identifying

controller inhibits is formulated in terms of a general expression for the closed loop

language generated by two parallel controllers on a process as derived in section

91

Chapter 5. Procedural Initiation and Inhibition Theory 92

5.2.1. The properties of these systems are analysed in section 5.2.2. The inhibit
design criterion is then given in section 5.2.3 based on the formalised concept of
noncooperation. Section 5.2.4 then demonstrates the same criterion for systems of
shared controllable items.

Finally a summary of the chapter is given in section 5.3.

5.1 Controller Initiation

Unlike their machine counterparts, chemical processes modelled as DESs typically
have no default initial state. For example, level probes may be initially covered
or uncovered depending on the process history. Controllers are synthesised from a
process model for which the initial state is nominal.

For example, consider the open loop process M at time to in initial state qo. At

time to + At, M has evolved to a state q' at which time the DES is modelled by
M'. M' is equivalent to M with the exception of the initial state qo 0 qo.

If C' is a model based controller which satisfies synthesis problem 3.1 for speci-
fication S' and process model M', then it does not follow that C' satisfies the same

problem for process M. Depending on q', the closed loop response of C' on M could

violate S' or block. Thus C' may be started at time to + At but not at time to. In

general, controller performance is sensitive to any departure in the initial state of
the process from the nominal initial state.

Clearly, additional functionality is required to handle variability in the initial

state of the process. The simplest mechanism is a pre-check which ensures that

an operator request for starting C' from process state q is granted only if q is the

nominal initial state qö of the process. A sufficient condition for q= qö is that every

elementary component is in its initial state (i. e. (vj)q = (vj)qö).

5.1.1 The Closed Loop Language with Pre-Checks

This section formulates the closed loop language generated by a controller with a

pre-check mechanism on a process. For generality, the controller C_' is assumed
to be a reduced domain controller, synthesised from reduced model G., of process

model M.

The set Q1 EQ is defined as the set of potential starting states in M of controller
C. Qx is the set of process states for which elementary components in E1 are in a

state consistent with the initial state qox of Gx:

Qx={qEQ/(vj)gox=(vj)q, j =1,2.... 1v...
Imv}

(5.1)

Chapter 5. Procedural Initiation and Inhibition Theory 93

The command which starts controller C,, is modelled by the event a. Strictly,

a is not an elementary process event (i. e. aV E) and therefore does not alter
the process state. For event o to occur (i. e for the controller CC to start) it is

necessary that the process is in state qo and this is the pre-check mechanism. a
is therefore included in the model of the process as a selflooped transition at each
potential starting state qE Qx. The closed loop language generated by CC on M

with pre-checks is formulated as:

L(Cx/M) = *. ax. L(sü c,,) n L(S xM) (5.2)

The interpretation of equation 5.2 is that the closed loop language generated by
Cx on M with pre-checks is the set of physically possible strings made up from the

concatenation of an open loop trajectory, the starting event a1 plus the closed loop
behaviour as defined previously. M is not under control from Cx until the event a1
at a potential starting state qE Q1. Similarly, the marked closed loop response is

given by:

Lm(Cx/M)
-

E*. a, Lm(Sü Cx) n L,,, (S,; M) (5.3)

where S is an abbreviated notation for SQx.

Using this formulation of the closed loop language with pre-checks, it is nec-

essary to modify the equations for conformance to specification (equation 3.37)

and nonblocking (equation 3.38). A closed loop behaviour generated by a reduced
domain controller Cx with pre-checks conforms to specification Sx if:

L(Cx/M) C E*. a P 1L(Sx) (5.4)

This modification is necessary so that the open loop behaviour in L(CC/M)

is excluded from the specification. A closed loop behaviour with pre-checks is

nonblocking if:

L(C/M) C Lm(Cx/M) (5.5)

This modification is necessary because the prefix closure of Lm(Cx/M) includes

strings void of a which by definition cannot exist in L (CX /M)
.

Theorem 5.1 The closed loop behaviour generated by C1 on M is nonblocking if

>*. c x. Lm(Su Cx) and L,,, (81 M) are nonconflicting and C-, and M are trim.

Proof L(C,; /M) = >* . a.. L(Su Cam) n L(SSM) from equation 5.2
C E* . ux. Lm(Su Cx) n L,,,, (SxxM) Cx and M are trim

Chapter 5. Procedural Initiation and Inhibition Theory 94

C >*. ax. L,,,, (S Cn Lm(SxM) by nonconflicting
C Lm (Cx/M) from equation 5.3,11

5.1.1.1 Example - Waste Neutralisation

Consider again the waste neutralisation system described in section 3.2.1.1. The

controller Cx (figure 3.11) for this process was synthesised from process model
G-, (figure 3.4) and specification S,; (figure 3.8). The initial state of G', is qox =
(0,0,0,2), corresponding to valves V_1 and V_2 closed, pump P_1 deenergised and
the pH above 8.

Assume that a disturbance in the upstream process neutralises the normally
alkaline waste stream at time t. If controller CC is started at time t, then the model
of the process M is equivalent to Gx with the exception that the initial state is now
qo = (0,0,0,0) (i. e state 16 in figure 3.4).

Consider now the closed loop behaviour generated by C., on M starting at time
t. As seen from figures 3.11 and 3.4, the closed loop behaviour (L(S. wCx) n L(M))

includes the string 1,17,502... (i. e. valve V_1 opening, pump P_1 energising, pH
decreasing below 6). By tracing this string from state 16 of M state 23 is achieved

corresponding to (1,0,1,1) (i. e. V_1 open, P_1 energised, pH < 6). This is a
forbidden state as defined by predicate logic formula 3.27. Therefore C, does not

generate a closed loop behaviour on M which conforms to Sx when started from

qo = (0,0,0,0)
. The source of the problem is that the controller has been started

from a pH that is too low.

This problem is solved using a pre-check mechanism which disables C, from

starting unless the current state of the process is consistent with the nominal initial

state q0 = (0,0,0,2). The closed loop language L(C,; /M) with pre-check mecha-
nism is calculated from equation 5.2, in which ax = 101 is defined as the starting

event of controller C. The FSM generating the first term of equation 5.2 is shown
in figure 5.1. The second term is constructed by selflooping transition 101 at state
(0,0,0,2) of the process model M.

It is easily shown that *. ýý . Lm (Su Cam) and Lm(SM) are nonconflicting and
that L(Cx/M) is a subset of the language >*. ax. L(Sx). Thus the closed loop be-

haviour generated by Cx on the process is nonblocking and conforms to specification

when a pre-check mechanism is active. The same result is obtained using the model
for the whole waste treatment process as described in section 4.1.1.1. In this case,
the controller has 8 potential starting states Q, ý = (0,0,0,2, oo, oo, oo).

Chapter 5. Procedural Initiation and Inhibition Theory 95

504

500,50

4

,, 51

5
I

19

6%

5a), 506

7

502 500
cc: ý::

)
s

502,504,506

Figure 5.1: FSM Generating the First Term of Equation 5.2

5.2 Controller Inhibiting

The controller inhibit mechanism is similar to the pre-check mechanism in that it

disables a controller from starting if the system does not satisfy a set of conditions.
In particular, this mechanism checks the status of nominated controllers in a multi-
tasking control system. Checks are performed before a controller is started so that

abortive action can be taken to avoid the concurrent operation of controllers which

compete for the same resource. Such controllers are said to be noncooperative. C.

is said to inhibit Cy if Cy is disabled from starting when C, is active.
The design of a controller inhibit policy is a complex, manually intensive and

error prone task especially for multiproduct, multipurpose batch plants in which

controller interaction is highly complex and subtle. However, the inhibit policy is

critical to the safety and operability of such processes. An overly conservative policy

may reduce the flexibility of operation afforded by running particular controllers in

parallel. The design of the policy is thus a difficult problem in which flexibility is

balanced against operability and safety issues.

In this section, a control theoretic design criterion is proposed for controller
inhibit policies. The approach is based on the concept of noncooperation, which is

derived from the closed loop concepts introduced so far. If it can be shown that Cy

1,3

5,7

17,19

5(X), 502
lu 504,506

Chapter 5. Procedural Initiation and Inhibition Theory 96

is noncooperative with Cx then CC must inhibit Cy. If Cy cooperates with CC then

no inhibit is necessary. This analysis requires the closed loop language generated by

the process under parallel control by C., and Cy each with pre-checks, as formulated

in the next section.

5.2.1 The Closed Loop Language with Pre-Checks for Two

Controllers in Parallel

As described in section 4.3.1, the closed loop language L(CC T Cy/M) is the set of

physically possible strings of events generated by process M under parallel control
from C, and Cy. There it was assumed that both controllers start simultaneously
from the nominal initial state qo of the process. Here this assumption is removed

and the closed loop language is formulated with a pre-check mechanism for both

controllers. This guarantees that the process is appropriately initialised when Cx

and Cy start. No assumption is made as to the order in which the controllers are

started.
The formulation is generalised from equations 5.2 (the closed loop language

generated by a single controller with a pre-check mechanism) and 4.17 (the closed
loop language generated by Cx and Cy on M, where Cr and Cy start at qo). As

in section 5.1.1, event a¢E models the start of controller Cx and event oy VE

models the start of controller Cy. The set of potential initial states for controller
C, is Qx and for controller Cy is Q,. The model of the process M is therefore

augmented with the selfloop a at each state qE Qx and cy at each state qE Qy.

The closed loop language generated by two controllers C., and Cy on process M

with a pre-check mechanism is given by:

L(CX fiCy/M) = Px 1{Ex. orx. L(S xCx)}n-Py 1{ýy. ory. L(S
yCy)}nL(sxSyM)

(5.6)

where E_ Ex U E, and Ex f Ey c üu.

The first term of equation 5.6 is equivalent to the first term of equation 5.2 with

the addition of the 'Px-1 operation, as employed in equation 4.17. This operation

permits any event from (E - Ems) U ay, and thereby restricts no events generated by

Cy. Similarly, the second term represents the set of strings generated by controller

Cy which permit any event generated by C. The third term of equation 5.6 is

the set of physically possible strings (i. e. the process model), augmented with self

loops ax at each state qE Qx and ay at each state qc Qy. The augmented self-

looped transitions allow both controllers to start when the process is appropriately

Chapter 5. Procedural Initiation and Inhibition Theory 97

initialised.

The marked closed loop behaviour generated by process M under control from

two controllers CC and Cy with pre-checks is defined equivalently by:

1{S'x. Qx. Lm(cSýxCx)} n -Py 1{E y. Qy. L(s yCy)} n Lm(sxsyM) Lm(CxT Cy/M) =

(5.7)

In equation 5.7, L(S
yCy)

is unmarked and the markings of M refer to the goal
states of Cx only.

5.2.2 Properties of Parallel Control with Pre-Checks

This section analyses the general properties of the closed loop behaviour as formu-
lated above.

Lemma 5.1 1{ýx. ýx. Lm(S xCx)} and P-1{E*. L(S. ' C)} are nonconflict- y y'y yy

ing.

Theorem 5.2 The closed loop behaviour generated by M under parallel control by
Cx and Cy is nonblocking if 1{ýý. ýý. Lm(ýS xCx)} f1 Py 1{Ey. uy. L(S

yCy)}] and
Lam-,, (Sx Sy M) are nonconflicting, and Cx and M are trim.

Proof
L(Cxt Cy/ M) = 'Px'{F x. Ux. L(SýxCC)I n -Py 1{Ey. ay. L(S

yCy)I n L(SxsyM)
from equation 5.6

C Px 1{-x. ax. Lm(S Cx y)} n P-1{E* . L(Sfuy Cy)} n Lm (SxxSyyM) y'y

Cx and M are trim
CP 1{Ex. ox. Lm(Suxcx)I n -ilý'* Q. L(SuwC)} n Lm(Sx8yM)

y y' yyy

from lemma 5.1
C PX 1{FIý. Qý. L,

n('8
° Cam)} n Py 1{ý. y. Qy. L(s

yCy)}
n Lr,, (8 S M)

xyy

by nonconflicting

C Lm(CxfiCy/M) from equation 5.7, Q

Theorem 5.2 is important for the design of controller inhibits as described in

the next section.

5.2.3 Formal Design of Controller Inhibits

A design criterion for controller inhibits is now proposed in terms of the concept

of noncooperation, itself defined in terms of previous PCT concepts. This criterion

Chapter 5. Procedural Initiation and Inhibition Theory 98

yields a numerical calculation, the logical result of which is the requirement or
otherwise of an inhibit of controller Cy by controller C.

By definition, C. cooperates with CC if the closed loop behaviour generated by

the process under parallel control from Cx and Cy with pre-checks is nonblocking
and conforms to specification S. Using the results from equations 5.4 and 5.5, Cy

cooperates with Cx if the following hold:

1. L(CtCy/M) C E*. a Px 1L(Sx)

2. L(CCT Cy IM) C Lm(Cxt Cy IM)

The physical interpretation of this definition is that Cy cooperates with C,, if the

operation of the two is sufficiently decoupled so as to uphold the desirable closed
loop behaviour generated by C,; alone. The second condition is calculated using the

nonconflicting calculation as proposed in theorem 5.2.

C. is noncooperative with Cx if one of the above conditions does not hold.

It follows that C., should inhibit controller Cy if Cy is noncooperative with C.

Conversely, Cy should inhibit Cx if C,, is noncooperative with Cy.

5.2.3.1 Example - Electrical Heating

For the electric water heater described in section 4.1.2.1, modular controllers C., =
Ca and Cy = Cb have been proposed (figure 4.8). Controller Cy maintains the water
level in the vessel while controller Cx carries out the heating phase. The controllers

share the signal from switch L_10.

The model for this process is shown in figure 4.6. The nominal initial state is

(0,0,0,0,0) (i. e. V_10 closed, S_10 off, L_10 uncovered, T_10 < 70C and T_11 <

80C). Transitions a= 105 and ay = 107 model the start of controllers C_, and Cy

respectively. Since Cx was synthesised from model G,; (figure 3.7) with nominal

initial state (0,0,0,0), transition 105 is selflooped at every state (0,0,0,0, oo) in

M. Similarly, since Cy was synthesised from model Gy (figure 4.5) with initial state
(0,0), transition 107 is selflooped at every state (0, oo, oo, oo, 0) of M.

The closed loop language (not shown) is calculated from the intersection of the

synchronous product of x. Qý. L(Su Cam) and E*. ay. L(S
yCy) with the selflooped

process model. FSMs generating the first two terms are shown in figure 5.2.

It can be shown that [P; '{Ex. ax. Lm(S xCx)} fl Py'{>y. uy. L(S
yCy)}] and

Lam,, (Sx sy M) are nonconflicting. This proves that controller CC will always satis-

factorily terminate even in the presence of Cy. This result makes sense since C1

and Cy share only L_10 and thus Cy is unable to block C1 from reaching its marked

state.

Chapter 5. Procedural Initiation and Inhibition Theory

25,27

520,522

524,526

528,530
105

520,522

524,526
)2

530 41-1

528

522 i
27

3
21,23

25 528,530
1

522
524,526 107

i
4

\

522,528 2

520:
530

21

c_ -----
Rt

J/3

530 1

520,528 t 27 5281
524,526 530

6
4

530/
528 23

524,526

520,530 528 5

(a) Eý. Qý. L(S ýcý) (b) EY*. oy. L(s yCy)

Figure 5.2: FSMs Generating the Terms of Equation 5.6

99

It is also shown that L(CC t Cy /M) C E*. a Px'L(Sx) (where S,, = Sa, as derived

in section 4.3.2.1). Therefore, specification Sx is not violated when controllers C.,

and Cy are operated in parallel. From this result, and the nonconflicting property
it is concluded that no inhibit of Cy by C., is necessary.

Similarly it can be shown that [Py1{]y. ýy. Lm(S, "yCy)}nPx , xax. L(S xCx)}]

and Lm, (Sy SS M) are nonconflicting. Thus controller Cx will not block Cy from

reaching its marked state. Also L (Cx T Cy /M) C >*
. uv .

py 'L(Sy) and Cy need not
inhibit C. Therefore both controllers can reach their goal states simultaneously

without violating either specification. This result is expected since the two con-
trollers were originally proposed as a parallel solution for the control of the electric

water heater.

Chapter 5. Procedural Initiation and Inhibition Theory 100

5.2.4 Inhibit Design for Controllers with Shared Control-

lable Items

In the formulation of the combined closed loop language (equation 5.6) it was nec-
essary for the two controller languages to not share controllable transitions (i. e.
E__ n Ey C E, u).

At first this may appear to reject from the inhibit analysis the
interesting case in which Cx and Cy share elementary components generating con-
trollable events (e. g. driving the same valve or pump). Typically inhibits are

necessary between pairs of controllers which drive the same equipment item. How-

ever some interesting situations may arise in which two controllers cooperatively

employ the same equipment item.

A special modelling technique is employed to handle this case. This technique

respects the assumption of sequentiality in the control mechanism, by which it is

assumed that controllable transitions cannot be generated concurrently by both

controllers. In other words, it is not possible for the controllers to synchronise

on a common controllable event, such as opening a valve. Therefore two common

controllable transitions generated by the two controllers are unique, and must be

labelled accordingly. The labels identify an event with the controller from which it

is generated. In the process model M, both events cause the same change in state.
For example, consider two controllers C,, and Cy sharing a valve V_l. The event

open valve is labelled 1 if generated by controller C, and 301 if generated by Cy.

Transitions 1 and 301 are equivalent since they cause identical changes in state
in the process model. Similarly, close valve is modelled by transitions 3 and 303

respectively. The FSM model of V_l is then modified from that shown in figure

3.3(a) to figure 5.4(a). FSM models with duplicate transitions are constructed for

all shared elementary components which generate controllable transitions.

Transitions in C,; and Cy can now be relabelled to respect the condition that E.,

(i. e. the set of events generated by Cam) and Iy share only uncontrollable events.
Wonham (1996) provides a simple mapping procedure called "convert" for rela-
belling transitions. For convenience, the set 1_, y is defined as all those controllable

events in Ey which have an equivalent in E,,:

Exy = {a E E, y
/ Vq E Q, 6(a, q)!, 39' E E, x s. t. 6(a', q)! A 6(a', q) = 6(a, q)} (5.8)

Events in >xy can occur in the open loop process or when generated by Cy, but

not when controller CC is the only active controller. Similarly, events in Eyx are

disallowed when only Cy is active. The regulator is therefore introduced to meet

Chapter 5. Procedural Initiation and Inhibition Theory 101

this requirement by interlocking shared controllable items. The regulator language
is given by:

L(R) = E*ux. [E
-

Exy]*. Uy. E* U E*a[
-

\yXl *. UX. E* (5.9)

The first term of equation 5.9 prohibits events not in [E - Exy] after starting CC

and before starting Cy. The second prohibits events not in [E - Eyx] after starting
Cy and before starting C.

The closed loop language generated by process M under parallel control from CC

and Cy with pre-checks, where C., and Cy share elementary components generating
controllable events is given by:

L(CxtCy/M) = Px 11ZX
OrX. L(Su Cx)1n-Py 1{zy.

Qy. L(s
yCy)}nL(sxsyM)nL(R)

(5.10)

Similarly, the marked closed loop language is given by:

Lm(c,, Tcy/M) =
1{ýx.

Qx. Lm(S
xC,

)I n Py 1{ry.
Qy. L(S

yCy)I
n

L,,, (Sf, syM) n L(R) (5.11)

The following theorem shows that for the case of shared controllable items, a

slightly modified nonconflicting calculation is employed to assert nonblocking of the

combined closed loop behaviour. This theorem is used for evaluating the inhibit

criterion as proposed in section 5.2.3.

Lemma 5.2 [P; 1{>x. ax. Lm(S Cx)} n Py 1{Ey. uy. L(s
yCy)}] and L(R) are non- ,,

conflicting.

Theorem 5.3 The closed loop behaviour generated by M under parallel control by
C,, and Cy is nonblocking if E*. Q,;. Lm(cSuwC,)}npy 1{Ey. Qy. L(S

yCy)}nL(R)]

and L7z (SX S M) are nonconflicting, and CC and M are trim.

Proof This theorem follows immediately from theorem 5.2 and lemma 5.2.

5.2.4.1 Example - Waste Neutralisation

Finally, the waste neutralisation system of section 3.2.1.1 is revisited for which

specification S., was constructed in section 3.3.1. In particular, this specification
interlocks to closed valve V_2, as expressed by predicate logic formula 3.28. Con-

troller Cam, shown in figure 3.11, was synthesised from specification S.

Chapter 5. Procedural Initiation and Inhibition Theory 102

Additional controls Cy are now required for neutralising acidic wastes from the
upstream process. The logic of Cy is similar to C,, with the exception that acidic
wastes are neutralised by an injection of base via pump P_l and on/off valve V_2.
During this operation, the acid dosing valve V_1 must be interlocked to closed. The

nominal initial state for Cy is (0,0,0,1). These user requirements are formalised
into specification Sy used in the synthesis of a second controller Cy (not shown).

2
02

3I
i

500 i

4

5

6

504 506

7

Figure 5.3: Base Dosing Controller

In this example, controllers Cx and Cy share all four elementary components

of which three, V_1, V2 and P_1, generate controllable events. Elementary com-

ponent models are augmented with duplicate controllable transitions as shown in

figure 5.4. For example, energising P_1 by controller C. is modelled as controllable
transition 17, whereas the same event is modelled as transition 317 when gener-

ated by controller Cy. Elementary component FSMs with duplicated controllable
transitions are reported in table 5.2.4.1. Marked states are superscripted with a *.

The process model used for the analysis of the combined closed loop behaviour is

constructed in a modular and incremental fashion from the elementary component
FSMs shown in figure 5.4. The result is a FSM similar to that shown in figure 3.4

with the exception that every controllable event is duplicated and the initial state
is (0,0,0,0).

The FSM R generating the regulator language L(R) is shown in figure 5.5, in

which the starting events a., ay of controllers C. and Cy are labelled 101 and 103

Chapter 5. Procedural Initiation and Inhibition Theory

1 CLOSED

301
13

303

21 OPEN

(a) V_1

6<pH<8

10 CLOSED 10 DEENERGISED I NEUTRAL

305 317 500

57 17 19 504 (ý.
\ ; 506

307 319 ýý 502

Z OPEN 2 ENERGISED 2z 31

pH>8 pH<6
BASIC ACIDIC

(b) V2 (c) P_1 (d) H_1

103

Figure 5.4: Elementary Component FSMs with Duplicated Transitions for the
Waste Neutralisation System

respectively. The status of each controller at each regulator state is indicated in

figure 5.5. For example, since state 2 is reached following event 101 and before

event 103, then C is "ON" while Cy is "OFF". Shared controllable events in Cy

are relabelled accordingly so that E, n >y C Eu.

500,502,504,506

1,301,3,303 CXOFF
5,305,7,307 CyOFF
17,317 19,319

101 103

500,502 500,502
1,3 504,506
5,7 2 301,303

17,19 305,307
504,506 CXON 317,319

CyOFF 103 101

500,502,504,506

1,301,3,303 4
5,305,7,307
17 ,

317,19,319 CXON

CyON

3
CXOFF
CyON

Figure 5.5: FSM Generating the Regulator Language

The closed loop language (equation 5.10) is calculated from the intersection of

the synchronous product of E*. Qx. L(S Cam) (see figure 5.1) and Ey. ay. L(S
yCy)

with L(R) and L(S1SSM). The process model is selflooped with transition 101 at

state (0,0,0,2) and 103 at state (0,0,0,1).

It can be shown that [Rx'{Y-x. ax. L, (s xCx)} n Ry 1{Ey. ay. L(s
yCy)} n L(R)]

and Lm (sue sy M) are nonconflicting which shows that controller Cx will always

satisfactorily terminate in the presence of Cy. This result makes sense, since the

Chapter 5. Procedural Initiation and Inhibition Theory 104

Elementary State Transition
Component Label Description Var. Label Description To state
V_1 1* Closed 0 1 Opening by CC 2

301 Opening by Cy 2
2 Open 1 3 Closing by CC 1

303 Closing by Cy 1
V_2 1* Closed 0 5 Opening by CC 2

305 Opening by Cy 2
2 Open 1 7 Closing by C, 1

307 Closing by Cy 1
P_1 1* Deenergised 0 17 Energising by Cx 2

317 Energising by Cy 2
2 Energised 1 19 Deenergising by Cx 1

319 Deenergising by Cy 1

Table 5.1: Controllable Transitions in Elementary Component FSMs for the Waste
Neutralisation System

operation of Cy is decoupled from Cx according to the pH level. Similarly it can be

shown that Cx does not block Cy.
However, it can be shown that L(C,, t Cy/M) is not a subset of E*. aX. pes iL(Sx)

(where SS shown in figure 3.8) which means that the combined closed loop response
violates the first specification. This violation comes from the interlock of V_2 to
closed (see predicate logic formula 3.28). Obviously, when controller Cy is active,

valve V_2 will be opened thereby violating the interlock. Similarly, the interlock to

closed of V_1 by Cy is violated by C. Therefore C,, must inhibit Cy and Cy must
inhibit C.

Having identified the source of noncooperation between the two controllers, it
is possible to retrofit the design to permit cooperative operation without inhibits.
This is desirable if it is assumed that the waste stream is of variable composition

and may require both acid and base treatment. To accommodate this requirement,
it is necessary to remove the interlocked to closed specifications on valves V_1 and
V2.

Modified specification S.
, shown in figure 5.6, is constructed from the translated

logic formulas rl, r3, r4 r9 from section 3.3.1. FSM r2 is excluded since this spec-
ifies the redundant interlock on valve V_2. Figure 5.6 depicts a "looser" specification

than shown in figure 3.8 which can accommodate the operation of valve V_2. With

S., so modified, it can be shown that L(C 1 Cy/M) C Similarly by

lifting the interlock of V_1 by Cy it is found that L(CyT CX/M) 9 E*. a P'L(Sy).

Chapter 5. Procedural Initiation and Inhibition Theory 105

Therefore, with the interlock specifications removed, it is permissible for the acid
and base controllers to work cooperatively without the need for inhibits. This result,
in which two cooperative controllers share controllable items, is rare.

5.3 Summary

This chapter has provided a theoretical analysis of controller initiation and con-
troller inhibiting within a PCT framework. These two mechanisms represent addi-
tional safety features of a control system which prohibit the start of control action

at inappropriate times. The pre-check mechanism ensures that the state of the pro-

cess, at the instant control is initiated, is compatible with the nominal initial state

of the controller. Similarly, the inhibit function prevents nominated controllers from

starting while a given control is active.
The closed loop language generated by a controller with a pre-check mechanism

on a process was formulated. This formulation was combined with that for the closed
loop language generated by two parallel controllers to yield a general formulation
for the closed loop behaviour generated by two parallel controllers each with pre-

checks. A further extension to the formulation in the form of a regulator language

was required to handle the special case of shared controllable items.
A design method for controller inhibits was proposed based on the concept

of noncooperative controllers. A controller is noncooperative with a second, and

should therefore be inhibited, if the combined closed loop response generated by

the two each with pre-checks either violates the specification of the second or is

blocking.

Chapter 5. Procedural Initiation and Inhibition Theory

ö, ö. 0,7

% %

,2

:

j: T

5061

504
4 1,0,1,0

319 19

5 1,0,0,0

3

303

6
502. 'ýý

500

7

305 5 307
7 307

8 0,1,0,1
7

317 5
1 19

305
319

+1
ýý

v 0,1,1,1

500;
11502

500; ' 502

10 0,1,1,0
19

319

11 ß, 1,0, ö

106

Figure 5.6: The Modified Acid Dosing Specification

Chapter 6

Implementation of Procedural
Controls

Sequential control of chemical processes is typically implemented using PLCs or
DCSs programmed using a variety of proprietary industrial languages. Tradition-

ally PLCs were programmed in ladder logic. High level text based languages and

graphical languages such as Sequential Function Charts are now available for a

wider range of industrial controllers.
The procedural controller, introduced in section 3.4.2.2, is a formal representa-

tion of sequential control logic. In this chapter it is shown how sequential control

programs in a target language are derived from this mathematical formalism. The

discussion is kept as general as possible so as not to restrict the approach to any

particular language. For the practical implementation of the results, it is inevitable

that one syntax be chosen.
This chapter is organised as follows. The constructs, functionality and struc-

ture of high level text based programming languages are considered in section 6.1.

Section 6.2 introduces a translation algorithm for generating code in the target

language from the FSM formalism and section 6.3 shows how pre-checks are im-

plemented in sequential control code. An equivalent means of coding inhibits is

then presented in section 6.4, in which a heuristic method for designing controller
inhibits is also introduced. The computer implementations used in this thesis are

then discussed in section 6.5. The chapter concludes with a brief summary
in section 6.6.

107

Chapter 6. Implementation of Procedural Controls 108

6.1 Programming of Sequential Controllers

Proprietary text based high level sequential programming languages (e. g. S7-SCL
from Siemens, PARACODE from APV) share numerous constructs, functionality

and structure. Source code for programs written in these languages is a syntactic
list of instructions or command keywords executed in a top down step wise fash-

ion. Code is compiled and downloaded to the control device for implementation.
Architectures are multitasking, thereby permitting multiple programs to be run in

parallel.
Text based languages have the following constructs in common with minor vari-

ations in syntax:

1. Directives for controlling program flow (e. g. START, STOP, GOTO, HALT,

WAIT, CALL).

2. Conditionals, queries and relational operators (e. g. IF, THEN, WHILE, WHEN).

3. Executable commands (e. g. OUT, ENGE).

4. Flag, integer and floating point processing.

5. Communication with peripherals (e. g. messaging, printing, logging, graphics

and operator interfacing).

Sequential control programs are called sequences. For example, standard engi-

neering practice in APV dictates that all sequences have the structure shown in

table 6.1. This structure will be adhered to in this work. It now remains to be

shown how the mathematical representation of sequential controllers presented in

the previous chapters is mapped into sequences consistent with this structure.

1 Sequence inhibits
2 Pre-checks
3 Alarms

Emergency actions
Restart procedures

4 Processing logic
5 Termination procedures

Table 6.1: Sequence Structure

Chapter 6. Implementation of Procedural Controls 109

6.2 Translation of Procedural Controllers

The procedural controller (section 3.4.2.2) is a mathematical model of the alarms,
emergency actions, restart procedures, processing logic and termination procedures

of a sequence. In order to translate procedural controllers into sequential control

code, a means of emulating FSM topology in a top down step wise program is

required. In addition, a mapping function is required between the controllable and

uncontrollable transitions of the FSM and conditional and executable constructs of
the language. Finally a mechanism is required for initiating and terminating the

program in states corresponding to the initial and marked states of the procedural

controller.

6.2.1 FSM Topology

The topology of a FSM is emulated in sequential control code by considering the

states of the FSM as milestones in the program. Milestones are labelled with unique
line labels corresponding to their respective states. Lines of code which implement

the control function defined at the FSM state are appended to the program at the

corresponding line label. Goto directives in the code pass control from one line

label (i. e. milestone or state) to another, thereby emulating a change in state of
the procedural controller (i. e. the transition function ý). For diagnostic purposes,

an arithmetic assignment is made at each line label which updates a register with
the current state number.

6.2.2 Transition Mapping

Controllable and uncontrollable transitions correspond to different structures in the

control program. Controllable transitions are executable instructions sent to the

process. These transitions correspond to programming code of the form ENERGISE

PUMP P_1, RELEASE TIMER T_20 FOR 30 MINUTES and OPEN VALVE V_3. Executable

code in any syntax can be mapped to controllable transitions by use of predefined

lookup tables.
In theory, controllable transitions occur instantaneously (see section 3.4.1). This

is achieved in a program by inserting the corresponding executable instruction im-

mediately following the line label corresponding to the state at which the transition

is defined. On reaching that line, the sequential controller is programmed to execute

immediately the controllable command, after which the program steps, via a GOTO

directive, to the line label corresponding to the destination state of the controllable

transition.

Chapter 6. Implementation of Procedural Controls 110

In reality, controllable transitions (e. g. opening valves) are not instantaneous.
Potential problems caused by delayed responses are avoided by a period of grace
following each controllable transition. Grace times are recommended by instrument

vendors and are typically 5 seconds. Elementary components with longer grace
periods should be modelled using explicit time out transitions.

Uncontrollable transitions in a process occur spontaneously and are detected
by the controller via feedback from plant sensors. A sequential control program
tests for the occurrence of an uncontrollable transition by a logical examination

of the status of registers, flags, items or timers. Logical tests appear in the code

as conditionals, for example IF L_10 UNCOVERED, IF TIMER T_20 EXPIRED and IF

T_1 ABOVE 35. Uncontrollable transition labels map to conditional code also by use

of lookup tables.

Uncontrollable transitions in a procedural controller are associated with wait
states as defined in section 3.4.2.2. A waiting mechanism is programmed in se-

quential control code by creating a loop which scans each uncontrollable transition

defined at the wait state. The loop exits on the occurrence of one uncontrollable
transition. The scanning loop is implemented by means of a GOTO directive following

the list of conditionals which maintains the current state of the controller.

6.2.3 Initiation and Termination

By definition, the initial state of the controller is x0. Correct initiation of the

program is achieved by a GOTO directive at the top which passes control to the line

label corresponding to xo.
Marked states xE Xm of the procedural controller are potential termination

states. Termination is achieved by a STOP command in the program at line labels

corresponding to marked states. However in APV's PARACODE language, the

ABEY command is more suitable as the STOP instruction automatically deenergises

any items driven by the sequence.

6.2.4 The FSM Translation Algorithm

Algorithm 6.1 translates FSMs into sequential programming code in accordance

with the above description. The inputs to the algorithm include the FSM, assumed

to be reachable and coreachable, plus the transition lookup table. If the FSM is

not reachable, then the generated code will contain redundant lines. If it is not

coreachable, then it is not always possible for the controller to terminate. Either

scenario should be recognised by the code compiler.

Chapter 6. Implementation of Procedural Controls 111

The input FSM should also be a procedural controller and algorithm 6.1 checks
if this is the case. The following two rules have been included in the algorithm to
handle FSMs which are not strictly procedural controllers:

1. If two controllable transitions, a' and a" are defined at the same state (i. e. if
3a') all E E, such that e (a', x) !Aý (a", x) !) then one of a' or a" is ignored.

2. If a controllable and uncontrollable transition are defined at the same state
(i. e. if *r' E E, a" E 1,, such that e (or', x) ! Ae (a", x)!), then include a time out
on the uncontrollable transition before the controllable transition is executed.

The first rule is necessary for cases in which the specification from which the

controller was synthesised is incomplete. This rule assumes that since the priority
of a' or a" is unspecified, then either can be safely ignored. The second rule was
specifically utilised for translating FSMs synthesised using the method of Rotstein

and Macchietto (1995), and reflects the modified interpretation of the procedural
controller used there (see section 2.4.3).

6.2.4.1 Example - Waste Neutralisation

In this section, algorithm 6.1 is demonstrated for the acid dosing controller C shown
in figure 3.11. For this example, the output of the algorithm is in PARACODE

syntax, although it could just as easily be SYMPASle or S7-SCL. A lookup table

(shown in table 6.2) defines a PARACODE command for each event in the alphabet

of the process model. The continuation character "+" in column 1

of table 6.2 indicates that the PARACODE command flows over successive lines.

The output from algorithm 6.1 yields the code shown in figure 6.1. Comments

follow a "/" and have been included to aid understanding. The output is described

as follows. Line label LS 1 corresponds to state 1 of C and at this line the diagnostic

register R1.100 is assigned the state value 1. As shown in figure 3.11, control-
lable transition 1 is defined at state I. From lookup table 6.2, this corresponds to

the PARACODE executable ENGE V_1, which is inserted following line label LS1.

A grace time of 5 seconds is then inserted in order for the previous controllable

command to take effect.
Similarly, line label LS2 corresponds to state 2 of C. From state 2 is defined

transition 17 corresponding to the PARACODE ENGE P_ 1. State 3 is wait state,
from which is defined transition 506. From the lookup table, transition 506 cor-

responds to two lines of conditional PARACODE which are inserted at a newly
defined line label LT3. If the conditional is true, the program skips to line label

Chapter 6. Implementation of Procedural Controls

Algorithm 6.1 (FSM Translation)

112

VARIABLES c_flag, t_flag, controllable Aransition,
uncontrollable _transitionlist,

instruction-list
PARAMETERS gracetime =5

1 Input fsm
2 DO For all states in fsm

2.1 Append LINE LABEL S_state to program
2.2 IF state is marked OR there are no transitions from state THEN

Append STOP to program
2.3 Clear cýiag and controllable Aransition
2.4 Clear uflag and uncontrollable Aransition -list
2.5 DO For all transitions from state

2.5.1 IF transition. type is controllable THEN
2.5.1.1 IF c_flag is clear THEN

2.5.1.1.1 Set c_flag
2.5.1.1.2 (i - controllable transition

2.5.1.2 ELSE User-Input controllable_transition
2.5.1.3 ENDIF

2.5.2 ELSE
2.5.2.1 Set u_flag
2.5.2.2 Append transition to uncontrollable Aransition -list

2.5.3 ENDIF
2.6 ENDDO
2.7 IF u. iiag is set THEN

2.7.1 IF c_flag is set THEN
2.7.1.1 User-Input timeout
2.7.1.2 Append RELEASE TIMER FOR timeout to program

2.7.2 ENDIF
2.7.3 Append LINE LABEL T_state to program
2.7.4 DO For all transitions in uncontrollableAransition -list

2.7.4.1 Get instruction list from lookup table (transition)
2.7.4.2 Append instruction_list to program
2.7.4.3 Append GOTO LINE S_transition. tostate to program

2.7.5 ENDDO
2.7.6 IF c_flag is set THEN

Append IF TIMER NOT EXPIRED GOTO LINE T_state to program
2.7.7 ELSE Append GOTO LINE T_state to program
2.7.8 ENDIF

2.8 ENDIF
continued on page 113.. .

Chapter 6. Implementation of Procedural Controls 113

... continued from page 112
2.9 IF c_flag is set THEN

2.9.1 Get instruction list from lookup table (controllable-transition)
2.9.2 Append instruction_list to program
2.9.3 Append WAIT gracetime to program
2.9.4 IF controllable_transition. tostate is not state +1 THEN

Append GOTO LINE S_controllable_transition. tostate to program
2.10 ENDIF

3 ENDDO
4 Output program

LS4, corresponding to the destination state of transition 506. The GOTO LT3 com-

mand rescans the conditional indefinitely until it is true, at which time the loop is

exited.
States 4,5,6 and 7 are translated in an equivalent fashion. The ABEY command

is inserted at the marked state 6, which causes the program to freeze at this point.

6.3 Generation of Pre-Check Code

As discussed in section 5.1, pre-checks establish consistency between the process

state and the nominal initial state of the process model at the instant the controller
is started. Pre-check code appears in the sequence before the translated procedural

control logic so that abortive action can be taken if the current process state and the

nominal initial state are inconsistent. Otherwise the sequence is allowed to proceed

as normal.
The pre-check mechanism works by comparing the state of each of the n, el-

ementary components with its nominal initial state. The state of the process is

consistent with the nominal initial state only if all elementary components are in

their initial states.
Code for implementing pre-checks comprises a set of r conditional statements

which test the current status of each elementary component. This code is gen-

erated automatically by defining a mapping between each elementary component

state variable and a line or lines of conditional code. This mapping is similar to

that described previously for uncontrollable transitions. By convention, the direc-

tionality of the pre-check conditionals is such that false is returned if the current

and nominal initial states are consistent. Thus the sequence is to abort if at least

one pre-check conditional is true.

Chapter 6. Implementation of Procedural Controls 114

LS1 MOVN 1, R1.100 / SET STATE VARIABLE
ENGE V_1 / CONT. TRANSITION 1 TO STATE 2
WAIT 5 / WAIT FOR GRACE TIME

LS2 MOVN 2, R1.100 / SET STATE VARIABLE
ENGE P_1 / CONT. TRANSITION 17 TO STATE 3
WAIT 5 / WAIT FOR GRACE TIME

LS3 MOVN 3, R1.100 / SET STATE VARIABLE
LT3 ADCI H_1, F1.200 / READ H_1 INTO REGISTER F1.200

IF F1.200, LT, 8, LS4 / UNCONT. TRANSITION 506 TO STATE 4
GOTO LT3 / LOOP IN STATE 3

LS4 MOVN 4, R1.100 / SET STATE VARIABLE
DENG P_1 / CONT. TRANSITION 19 TO STATE 5
WAIT 5 / WAIT FOR GRACE TIME

LS5 MOVN 5, R1.100 / SET STATE VARIABLE
DENG V_1 / CONT. TRANSITION 3 TO STATE 6
WAIT 5 / WAIT FOR GRACE TIME

LS6 MOVN 6, R1.100 / SET STATE VARIABLE
ABEY / FREEZE AT MARKED STATE

LT6 ADCI H_1, F1.200 / READ H_1 INTO REGISTER F1.200
IF F1.200, GT, 8, LS1 / UNCONT. TRANSITION 504 TO STATE 1
ADCI H_1, F1.200 / READ H_1 INTO REGISTER F1.200
IF F1.200, LT, 6, LS7 / UNCONT. TRANSITION 502 TO STATE 7
GOTO LT6 / LOOP IN STATE 6

LS7 MOVN 7, R1.100 / SET STATE VARIABLE
LT7 ADCI H_1, F1.200 / READ H_1 INTO REGISTER F1.200

IF F1.200, GT, 6, LS6 / UNCONT. TRANSITION 500 TO STATE 6

GOTO LT7 / LOOP IN STATE 7

Figure 6.1: Translation of the Acid Dosing Controller

Chapter 6. Implementation of Procedural Controls

Transition PARACODE - F-Description

1 ENGE V_1 Open valve V_1
3 DENG V_1 Close valve V_1
5 ENGE V_2 Open valve V_2
7 DENG V_2 Close valve V_2
17 ENGE P_1 Energise pump P_1
19 DENG P_1 Deenergise pump P_1
500 ADCI H_1, Fl. 200 Read H_l into register F1.200
+ IF F1.200, GT, 6 Test for pH above 6
502 ADCI H_1, Fl. 200 Read H_1 into register F1.200
+ IF Fl. 200, LT, 6 Test for pH below 6
504 ADCI H_1, F1.200 Read H_1 into register F1.200
+ IF F1.200, GT, 8 Test for pH above 8
506 ADCI H_1, F1.200 Read H_1 into register F1.200
+ IF F1.200, LT, 8 Test for pH below 8

Table 6.2: Transition Lookup Table for the Waste Neutralisation System

6.3.1 The Pre-Check Generation Algorithm

115

Algorithm 6.2 generates pre-check code in accordance with the mechanism de-

scribed. The input is the set of state variables at the nominal initial state of the

process model. The algorithm works by inserting conditional code from a lookup

table for each elementary component. Elementary component state variables as-
signed the covering value oc are bypassed to allow for a state variable to assume
any value from its domain. If a conditional is true then the elementary component
is not in its initial state and a GOTO STOP directive aborts the sequence. Alterna-

tively, if all conditionals are false, a GOTO directive passes control to the line label

corresponding to the initial state of the FSM.

6.3.1.1 Example - Waste Neutralisation

In this section, algorithm 6.2 is demonstrated for the acid dosing controller shown
in figure 3.11. In this example, the pre-check code is generated in PARACODE

syntax. A lookup table, shown in table 6.3, defines the PARACODE conditionals

corresponding to each elementary component state variable. Table 6.3 also employs

the + symbol to indicate that the PARACODE command flows over successive
lines.

The nominal initial state of process, state 1, is (0,0,0,2) corresponding to both

V_1 and V_2 closed, P_1 deenergised and pH above 8 (see figure 3.4). From the

lookup table, state variable 0 for elementary component V_1 corresponds to the

Chapter 6. Implementation of Procedural Controls

Algorithm 6.2 (Pre-Check Generation)

116

VARIABLES instruction list

1 Input initial-state and initial
-state-list 2 DO For all state-variables in initial

-state -list 2.1 IF state-variable is not oo THEN
2.1.1 Get instruction-list from lookup table (state-variable)
2.1.2 Append instruction_list to program
2.1.3 Append GOTO STOP to program

2.2 ENDIF
3 ENDDO
4 Append GOTO LINE LABEL S_initial_state to program
5 Output program

Elementary State PARACODE Description
Component Variable
V_l 0 IFIE V_1 Test if V_l open

1 IFINE V_1 Test if V_ º closed
V_2 0 IFIE V_2 Test if V_2 open

1 IFINE V_2 Test if V_2 closed
P_1 0 IFIE P_1 Test if P_1 energised

1 IFINE P_1 Test if P_1 deenergised
H_1 0 ADCI H_1, F1.200 Read H_l into register F1.200

+ IF F1.200, GT, 8 Test for pH above 8
+ IF F1.200, LT, 6 Test for pH below 6
1 ADCI H_1, F1.200 Read H_1 into register F1.200
+ IF F1.200, GT, 6 Test for pH above 6
2 ADCI H_1, Fl. 200 Read H_1 into register F1.200
+ IF F1.200, LT, 8 Test for pH below 8

Table 6.3: Elementary Component State Variable Lookup Table for the Waste
Neutralisation System

Chapter 6. Implementation of Procedural Controls 117

/
IFIE V_1, LSP
IFIE V_2, LSP
IFIE P_1, LSP
ADCI H_1, F1.200
IF F1.2 00, LT, 8, LSP
GOTO LS1

/ CHECK THAT PRIMITIVE 1 IS 0
/ CHECK THAT PRIMITIVE 2 IS 0
/ CHECK THAT PRIMITIVE 3 IS 0
/ READ H_1 INTO REGISTER F1.200
/ CHECK THAT PRIMITIVE 4 IS 2
/ STEP TO START STATE 1

LSP STOP

Figure 6.2: Pre-Check Code for the Acid Dosing Controller

PARACODE IFIE V_1. This conditional is inserted directly as a pre-check as
shown in figure 6.2. If this conditional is true then V_l is not in its initial state (i. e.
V_l is open) and the sequence aborts at line LSP.

Conditional code is inserted for the remaining three elementary components as

shown in figure 6.2. If one conditional is true the initial state is not satisfied and the

sequence is aborted. If all conditionals are false, then a GOTO directive passes control
to line label LS1 in figure 6.1 corresponding to the initial state of the procedural

controller.

6.4 Generation of Inhibit Code

As discussed in section 5.2, the controller inhibit function ensures that noncooper-

ative controllers can never operate in parallel. Noncooperation between two con-
trollers is established a priori using the inhibit criterion presented in section 5.2.3.

Inhibits appear in the sequence before the translated procedural control logic so
that abortive action can be taken if an inhibit is violated. Otherwise the sequence
is allowed to proceed as normal.

Code for implementing inhibits comprises a set of conditional statements which

test the current status of nominated controllers. This is similar to the conditional

code which implements the pre-check mechanism. Controllers to be checked in-

clude those inhibited by the current controller and those which inhibit the current

controller. By convention, the directionality of the inhibit conditionals is such that

false is returned if no inhibit is violated by starting the current controller. Thus

the sequence is to abort if at least one conditional is true.

Chapter 6. Implementation of Procedural Controls 118

6.4.1 The Inhibits Generation Algorithm

Algorithm 6.3 generates inhibit code in accordance with the mechanism described.
The input is an array of size n, x n, where n, is the number of controllers defined
for the system. A null entry at (i, j) signifies cooperation between controller CZ

and Cj. This array is constructed using the inhibit design criterion of section
5.2.3. Algorithm 6.3 returns the inhibits code for the controller nominated as the

working-controller only.

Algorithm 6.3 (Inhibits Code Generation)

VARIABLES candidate controller

1 Input noncooperation array
2 Input working-controller
3 DO For all controllers

3.1 Assign candidate-controller to controller
3.2 IF working-controller is noncooperative with candidate-cont roller OR

candidate -controller
is noncooperative with working-controller THEN

Append IF candidate-controller ACTIVE GOTO STOP to program
4 ENDDO
5 Output program

In PARACODE, an alternative means of implementing the inhibit function is

available via the dedicated command:

INSQ sequence-number

which disables the nominated sequence from starting when the current sequence is

active. The INSQ instruction offers a more compact means of coding the inhibit

function than conditional statements.

6.4.1.1 Example - Waste Neutralisation

In section 5.2.4.1 it was demonstrated that the base dosing controller Cy (pro-

grammed as sequence 1.103) is noncooperative with the acid dosing controller C1

(sequence 1.101). Similarly, C., is noncooperative with Cy. Algorithm 6.3 gener-

ates the inhibit code for sequence 1.101 as shown in figure 6.3. The same inhibit

function is achieved in PARACODE using the INSQ command as shown in figure

6.4.

Chapter 6. Implementation of Procedural Controls

/
IFSAC 1.103, LSP

/

LSP STOP

/ CHECK SEQUENCE 1.103

Figure 6.3: Inhibits Code for the Acid Dosing Controller

/
INSQ 1.103, LSP

/
/ CHECK SEQUENCE 1.103

Figure 6.4: Inhibits PARACODE for the Acid Dosing Controller

6.4.2 Heuristic Design of Controller Inhibits

119

The formal method for controller inhibit design proposed in section 5.2.3 relies on
the availability of controllers, specifications and process models as FSMs. For code

retrofits however, the existing sequential controls will not be derived formally and
FSM models will not be immediately available for the inhibits analysis. For such

cases, an alternative inhibit design method based on heuristics is employed.
Crooks (1992) proposes a heuristic for generating sequence inhibits (see page

24). The rule is that sequences which share interlocked items must inhibit each

other. Interlocked items are analogue output items (e. g. control valves, variable

speed motors) or digital output items (e. g. on/off valves, pumps) which are driven
by a sequence under normal or emergency operation.

This rule is implemented by algorithm 6.4. In practice it was found that an

additional rule was necessary to account for subsequences which implement phases

of the same operation. Subsequences are said to belong to the "tree" of the main

sequence. The additional rule states that sequences from the same tree must not
inhibit one another.

Algorithm 6.5 returns the tree of an input sequence for use in algorithm 6.4.

The tree of the input sequence is enumerated starting from the input sequence. All

subsequences are automatically included in the tree. All trees containing sequences

which call the input sequence are recursively enumerated and included in the tree

of the input sequence.
Algorithm 6.4 returns the same result as the formal inhibit criterion for the

example in section 5.2.4.1 because both sequences 1.101 and 1.103 drive pump P_1.

Chapter 6. Implementation of Procedural Controls

Algorithm 6.4 (Heuristic Inhibit Generation)

120

VARIABLES sequence -tree-list, sequence_inhibitlist

1 Input sequence
2 Get sequence -tree -list

from algorithm 6.5
3 DO For all driven or emergency items of sequence

3.1 DO For all sequences which either drive or enable item
3.1.1 IF sequence is not in sequence-tree-list AND

sequence is not in sequence -inhibit -list
THEN

Append sequence to sequence-inhibit -list 3.2 ENDDO
4 ENDDO
5 Output sequence _inhibit _list

6.5 Implementation of Algorithms

Algorithms 6.1,6.2,6.3,6.4 and 6.5 have been coded in C. For convenience, the
C programs generate sequences in PARACODE when input is supplied from the

appropriate PARACODE lookup tables. Alternative lookup tables are required if

a language other than PARACODE is desired (e. g. SYMPASle). Only superficial

modifications to the C programs are necessary to account for any syntactic or

structural differences of other languages.

The five C programs were combined into a tool for automatically generating

complete sequences. The tool makes use of four data files as described in table 6.4.

Additional procedures were written for creating appropriate headings and comments
in the output sequence with which to identify the sequence and to indicate its origin,

purpose and version number and for calculating sequence statistics, including the

number of lines of code in each section of the sequence.
The translation tool complements "platest", the FSM analysis program from

Sanchez (1994) and "TCT" from Wonham (1996). These three programs provide a

suite of utilities for modelling, specification, synthesis, analysis and translation of
FSMs. An additional translation tool was required for converting FSMs between

the platest and TCT format. Table 6.5 summarises the routines from platest and
TCT that were used in this thesis, plus a number of other analysis procedures that

were specifically written for evaluating controller inhibits. Finally, a set of scripts

were developed for automatically executing synthesis algorithm 3.1.

Chapter 6. Implementation of Procedural Controls 121

Algorithm 6.5 (Tree Generation)

VARIABLES working-sequence, candidate-sequence, sequence tree-list

1 Input sequence
2 Assign sequence. ancestry to parent
3 Initialise sequence_treeiist with sequence
4 DO For all sequences in sequence-tree -list

4.1 Assign working-sequence to sequence
4.2 DO For all sequences referenced from working-sequence

4.2.1 Assign candidate -sequence to referenced sequence
4.2.2 IF candidate-sequence is not in sequence -tree -list

THEN
4.2.2.1 IF candidate-sequence is called by working. sequence THEN

Assign candidate-sequence. ancestry to offspring
4.2.2.2 ELSE Assign candidate sequence. ancestry to parent
4.2.2.3 ENDIF
4.2.2.4 IF working-sequence. ancestry is parent THEN

Append candidate-sequence to sequence-tree list
4.2.2.5 ELSEIF candidate-sequence. ancestry is offspring THEN

Append candidate-sequence to sequence -tree -list
4.2.2.6 ENDIF

4.2.3 ENDIF
4.3 ENDDO

5 ENDDO
6 Output sequence_treeiist

File 1 1 Algorithm Description

Transition Lookup Table 6.1 Mapping of transitions into
instructional code

Elementary Component 6.2 Mapping of elementary component
State Variable Lookup Table state variables into conditionals
Item References 6.4 Cross references declaring item

usage in each sequence
Sequence References 6.5 Cross references declaring sequence

inheritance

Table 6.4: Data Files for the Translation Program

Chapter 6. Implementation of Procedural Controls

6.6 Summary

122

In this chapter an algorithm has been proposed for translating control laws defined
by FSMs into high level text based sequential programming languages. Algorithms

were also presented for generating pre-check code from the nominal initial state of
the process model, and code for implementing the inhibit function. Each algorithm
has been coded and a tool thereby developed for automatically generating complete

control sequences in the PARACODE language. In order to handle the retrofit

problem, an additional algorithm has been proposed for generating sequence inhibits
based on simple heuristics.

Source Routines
Platest Reachable substructure of a FSM

Coreachable substructure of a FSM
Asynchronous product of FSMs
Synchronous product of FSMs
Test for controllability of a language
Supremal controllable sublanguage of a language
Translation of a predicate logic formula into a FSM
Translation of a temporal logic formula into a FSM

TCT Selfloop all states of a FSM
Synchronous product of languages
Intersection of languages
Projection of a language
Convert transition labels of a FSM
Test for nonconflicting of languages
Test for isomorphism between FSMs

This Mark all states of a FSM
thesis Duplicating transitions in a FSM

Selfloop wait states of a FSM
Prefixing languages with
Changing the initial state label of a FSM

Table 6.5: FSM Analysis Programs

Chapter 7

Case Studies

This chapter demonstrates the techniques of chapters 4,5 and 6 on complex indus-

trial scale case studies. The first case study is a multipurpose, multiproduct batch

pilot plant suitable for small scale processing of foods, fine chemicals and pharma-
ceuticals. This plant is characterised by complex and flexible connectivity plus a
high degree of instrumentation. It constitutes an ideal testbed for the methods de-

veloped in this thesis for process model reduction and modular controller synthesis.
The plant is fully automated via a DCS, thereby permitting the code generation
techniques of chapter 6 to be tested in practice. Three operations of the batch pilot

plant are considered.
The second plant is a single product, single purpose batch paste plant comprised

of two interactive production trains. The operation of this plant is constrained by

the necessity for resource sharing. The flexibility, operability and safety of this plant

critically depends on the inhibit policy. It therefore constitutes an ideal testbed for

the inhibit design methods of chapter 6.

Table 7.1 summarises the techniques from chapters 4,5 and 6 employed in each

case study. A '/ entry indicates that the corresponding material is presented in this

chapter. A \/* entry indicates that although the case study includes this material

the details are omitted here for the sake of brevity. Further details for the batch

pilot plant case study are reported by Camillocci (1995) and Alsop et al. (1995), and

for the paste plant in Gallo (1996). Of course the fundamental synthesis techniques

from chapter 3 are also demonstrated, but this material is reported mainly in the

appendices.

123

Chapter 7. Case Studies 124

Technique Reference I- Batch Pilot Plant II - Paste
Section Op. 1 Op. 2 FO 3 Plant

Controller Synthesis 3.6
./ . V/* V/* Parallel Decomposition 4.1 V/* . �* Reduced Domain Control 4.2 �*

Parallel Control 4.3 N/
Series Decomposition 4.4 N/ V/* Series Control 4.5 v �* . /* Structured Control 4.6 V _V/ ý''` �*
FSM Translation 6.2 1/
Pre-Check Coding 6.3 v V/ /*
Inhibits Coding 6.4 _V/ _V/ V/*
Heuristic Inhibit Design 6.4.2 V/*
Controller Initiation 5.1
Formal Inhibit Design 5.2

Table 7.1: Summary of Techniques Demonstrated in the Case Studies

7.1 Case Study I- The Batch Pilot Plant

7.1.1 Overview of the Batch Pilot Plant

This case study involves a computer controlled batch pilot plant at Imperial College

shown in figure 7.1 (reproduced from Liu (1995)) and described fully in Macchietto
(1992). This highly instrumented and flexible plant is very representative of a small
scale multipurpose food, fine chemicals or pharmaceuticals plant. The computer
controlled batch pilot plant is centred about a multipurpose batch reactor (tank
T3) with two 100L feed preparation vessels (tanksTl and T2), two 100L product
storage vessels (tanks T4 and T5) and three plate heat exchangers. Highly flexible

connectivity between the five vessels and three heat exchangers is achieved via a
complex network of pipes, pumps and single and double-seat valves. Transfers may
be carried out simultaneously except where they share common pipework. Most of
the 45 automated on/off valves have two feedback position sensors. T3 is equipped

with a jacket for heating or cooling, a stirrer, load cell, viscometer and facilities for

sparging and dosing. In addition to the main process equipment, a Cleaning-In-

Place (CIP) system enables sections of the plant to be individually cleaned with a

hot caustic detergent solution from the detergent station (tank T7).

The batch pilot plant comprises approximately 75 output channels (e. g valves,

pumps, control loops) and 45 input channels (e. g. sensors, switches). If each channel
has two discrete states, the total number of states of the batch pilot plant is of the

Chapter 7. Case Studies

12-1

(V
N

Q

H
.a O\

a.

125

ct

a
0

U

Q)

H

N

aý

b. 0
w

Chapter 7. Case Studies 126

order 1036. Obviously, decomposition techniques from chapter 4 are required for
handling the full batch pilot plant model.

7.1.1.1 Description of the Computer Control Hardware

The batch pilot plant is fully automated and controlled via an ACCOS 30 DCS
(APV Baker, 1994). Control sequences are written in the proprietary PARACODE
language and implemented by the ACCOS 30 sequence controller interacting with
the plant via a number of general purpose intelligent interface cards handling ana-
logue and digital I/O. Digital output can be overridden using manual switches on
the interface cards. Using an engineering terminal, inputs from the plant can be

overridden. In this way, plant I/O can be simulated for the purposes of software
testing.

The ACCOS 30 communicates with peripherals including the engineering ter-
minal and a printer for on line logging of process information. The system is also
networked to the ACCOS 300 Unix based computer and two PCs for supervisory
monitoring, display and managerial functions. PARACODE is compiled on either
the ACCOS 300 or the PCs and downloaded to the ACCOS 30 for implementation.
From the PCs, basic operator actions can be initiated in a user friendly manner. In

addition, the ACCOS 300 communicates with a network of SUN workstations via
the proprietary CONTROLLINK software. A utility called ACCLOG (written in
C++) augments CONTROLLINK so that process variables can be logged into files

on the SUN in a user friendly manner. The entire ACCOS information management
and control system for the batch pilot plant is described in Liu (1995).

7.1.2 The CIP-Feed Unit Procedure

CIP is the process of cleaning processing equipment and associated pipework au-
tomatically and in situ. It is used in the production of foods, fine chemicals and
pharmaceuticals where hygienic processing equipment is required. A CIP process
similar to that described in Liu and Macchietto (1993) has been chosen for this study

on the basis that it utilises many equipment items and instruments and is represen-
tative of other complex sequential operations. In this example, a feed preparation
tank (T1, figure 7.1, bottom left) and its associated pipework are to be cleaned.
The CIP of T1 comprises the following four steps:

1. A prerinse of Ti, in which residual solids are removed from the tank interior

by bursts of water at high pressure for 10 minutes.

Chapter 7. Case Studies 127

Recipe Operation Description Units Used
Step

1 Water-Rinse Rinsing of Ti with water Feed-Preparation
4 Detergent-Station
2 Detergent-Service Preparation of a hot caustic Detergent-Station

detergent solution in T7
3 Detergent-Clean Cleaning of Ti with Feed-Preparation

detergent solution Detergent-Station

Table 7.2: Operations in the CIP-Feed Unit Procedure

2. The preparation of an inventory of hot caustic detergent solution at the CIP

station (T7, figure 7.1, top left).

3. Cleaning of T1 using a high pressure spray of detergent solution for 10 minutes.

4. A post rinse for 10 minutes which dissolves residual detergent and renders Ti

suitable for hygienic processing.

In terms of ISA-S88.01, CIP-feed is a unit procedure which is comprised of the

three operations water-rinse, detergent-service and detergent-clean. The recipe
defines the precedence of operations in the CIP-feed unit procedure as follows:

water-rinse, detergent- service, detergent -clean, water-rinse. The water-rinse op-

eration is employed twice in the recipe. Table 7.2 summarises each operation in the

CIP-feed unit procedure.
Tank T7 and heat exchanger HE3 plus associated valves and pumps comprise

an ISA-S88.01 unit called the detergent-station shown in detail in figure 7.2. A

second unit is the feed preparation, shown in detail in figure 7.3. The detergent-

service operation employs only the detergent-station, while the water-rinse and
detergent-clean operations employ both the detergent-station and feed-preparation

units.
The purpose of the following analysis is to formally synthesise a controller for

each operation described in table 7.2. A structured modular solution comprised

of multiple modular procedural controllers in a series/parallel structure will be

presented for each operation. Modular procedural controllers correspond to ISA-

S88.01 phases. The reader is referred ahead to table 7.12 for a preview of the phases

of each operation and to figure 7.9 for an overview of the ISA-588.01 hierarchy.

Chapter 7. Case Studies

7.1.2.1 The Detergent-Station Unit

128

The detergent-station unit shown in figure 7.2 comprises 19 elementary components
listed in table 7.3. The unit is centred about tank T7, equipped with a high level
switch (IS1-1), a low level switch (IS1-2), temperature probe (IT1-17) and a con-
ductivity switch (IS1-3) which detects the desired concentration of caustic in the
detergent solution. HE3 is equipped with a PI controller (ICI-8) which controls the
outlet temperature (IT1-16) by adjustments in steam rate. Pump P6 is fitted with
a feedback sensor shown in figure 7.2 as P6-FB. The relaxed state of each valve is
closed, with the exception of valves AV1-22 and AVl-16 which are normally open.

CAL

Figure 7.2: The Detergent-Station Unit

By definition, ISA-588.01 units are independent parts of the flowsheet which
can operate in isolation from each other. Therefore physical interaction between

elementary components is local to a unit and does not transcend unit boundaries.

Physical interactions within the detergent-station unit are shown in a matrix in

table 7.3. An "M" entry in the matrix indicates physical interaction between the

component pair by mass conservation. Similarly "E" represents energy conservation

and "G" a gravitational constraint.
From operating experience it is known that the mixing dynamics of T7 are

slow. Therefore an increase in conductivity may be detected by switch IS1-3 long

AV 1-10 P6 ro-r n

Chapter 7. Case Studies 129

after deenergising caustic dose pump P 10. Therefore interaction by caustic mass
conservation between P10 and IS1-3 is ignored in the DES model. No physical
interaction is assumed between pump P6 and its feedback switch P6-FB, thereby
permitting the detection of pump failure states in the DES model.

7.1.2.2 The Feed-Preparation Unit

The feed preparation unit, shown in figure 7.3, comprises 17 elementary compo-
nents listed in table 7.4. Unlike T7, T1 is equipped with a continuous level sensor
(IT1-1) and a proximity switch (PSI-1) which detects the position of the tank lid.
From figure 7.1 it can be seen that the feed preparation unit shares some elemen-
tary components (e. g. SSV1-4, AV1-42) with other units. However, it is assumed
that physical interaction of these 17 elementary components is local to the feed-

preparation unit. Physical interactions are shown in table 7.4.

ss,

AV1

P1

Figure 7.3: The Feed-Preparation Unit

7.1.3 The Water-Rinse Operation

The water-rinse operation is to employ the feed preparation and detergent-station

units as follows. At the start of the operation, each elementary component must
be in its relaxed state, Ti empty and its lid closed. The operation is to proceed
by opening the route from the water mains to Ti (via AV1-10 and AV1-15). and

Chapter 7. Case Studies

ýýý", I ýr WW I

a Cý .WW 1

F--1 r-i I Gý I

Wýý 1

F--i I--I r"ý 10

r--l LO

aý I

CNI LO

-4ý
i--1

-4-
0

CV in 'd4 CD to di IN CO
cam, c , -I ,- r- r--I c"l, cam, 00 II1 rý CIA I11IIM ý--i rl r-i II ri r "I rl r-1 ý--i 1It ýi

rý
r{

A-D

rI'ý

C)
-Ci

0

cd
V

H

c)

Ca

130

Chapter 7. Case Studies 131

> CO

l

a
rl I rl

U) U1 U) U)
QQQ CV

. r,

0 'N

Q)

V

4a

? -d

ce

Qý

i--1

Qý

ý1

Chapter 7. Case Studies 132

from Ti to drain (via AV1-40, DDV1-1, AV1-47, DDV1-3, DDV1-6). Ti is rinsed
by intermittent bursts of water at high pressure from pump P6, and the level is to
be kept between 6 and 20L. The high pressure feed of water is to cease immediately
if the lid of Ti is opened at any time. Water is continuously drained from Ti by

pump P1, which operates when the level in Ti exceeds 3L and stops below 1.5L.
After 10 minutes of cyclical operation, Ti is allowed to completely drain, and all
pumps and valves returned to their relaxed state.

Let E,, � be the set of 36 primitive FSMs modelling each elementary component
of the feed preparation and detergent-station units listed in table 7.5. FSM models
are detailed in Appendix A. Let S,, be the formal specification of the water-rinse

operation which reflects the above user requirements and Gw be the process model
for the two units. Since G, � is of the order 1011 states, parallel decomposition is

necessary for modularising the synthesis into tractable parts.

7.1.3.1 Parallel Decomposition

In this section, process G,, and specification Su, are decomposed into reduced mod-
els. This decomposition is best conceived as partitions of Ew into (not necessarily
disjoint) subsets, which define subsystems within the two units. Modular process

models and specifications are constructed in an incremental fashion for each sub-

system.
There are many ways in which Eu, can be partitioned. The general approach

employed here is to group elementary components which are related by or logically

participate with one another in the user requirements. Of course, any partition

must respect the interaction terms identified in tables 7.3 and 7.4 by maintaining

one pairing of interacting terms in at least one of the partitioned sets. In this way,

each physical interaction term is included at least once in the decomposed models

as required.

Partition of Ez�

The first partition segments Ew into Eß�1 and E,, 2 as shown in table 7.5. E,,, 1 is

the set of elementary components which do not participate explicitly in the user

requirements and E,, 2 the remainder. For example, elementary components IS1-1

and IS1-2 are nonparticipatory and therefore included in E"1, while AV1-25 and
AV1-14 are participatory and therefore included in Eu22. However, from table 7.3,

IS1-1 and IS1-2 interact with AV1-25 and AV1-14. Therefore AV1-25 and AV1-14

are also included in Eu11.

Let Gw1, Sw1, Gw2 and Sw2 be the reduced process models and specifications for

Chapter 7. Case Studies 133

the subsystems defined by E, �1 and Eu2 2 respectively. By construction:

1. Gw2 is internally consistent with Gw.

2. L(Swl) = L(Gwl)

3. Lm(Gw1) = L(G'wl)

Ev, therefore defines a class Ia system. For this class of systems, one synthesis
is posed in terms of process model Gw2 and specification Sw2. However, since Gw2
is still of the order 108, further decomposition (i. e. partitioning) is necessary.

Partition of Eu, 2

The second partition divides Eui2 into a set of components E,, f, which control the

water feed to Ti, and EE�d which control the water drain from Ti. E,, f and Ewd are
shown in figure 7.5. Let Eu, f and >wd be the alphabet of events generated by FSMs
in Eu, f and E21d respectively. Since Eu, f and E.,,, d share only elementary component
IT1-1, then:

>wf n ýwd C ý7juw2

where Euw2 is the subset of uncontrollable transitions in Ewe. Ewe therefore defines

a class Ib system. Two syntheses are necessary for class Ib systems, in this case
involving the reduced model and specification pairing Gwd, Swd and Gw f, Sw f.
These FSMs are still unwieldy (e. g. Gwd is of the order 104) and require further

decomposition.

Partition of Ewd and E,, f

The final partition identifies in Ewd and Ew fa set of component items Ewdi and
E. v fi which are interlocked to their relaxed states. The remaining components are

grouped in Ewdr and Ew fr respectively, and represent the active or noninterlocked

components of the controller. Since >wdi and >wdr are disjoint, Ewd defines a class
Ib system. Ew f is also a class Ib system since Ew fi and Ew fr are disjoint.

7.1.3.2 Series Decomposition

The specification S,, fr for the subsystem defined by Eu, f,. formalises the user re-

quirements for the water fill phase of the operation. This is a reasonably complex

specification involving timing and safety constraints. It is therefore advantageous

Chapter 7. Case Studies

Elementary
Component
SSV1-1
SSV1-2
SSV1-4
SSV1-5
ABV1-3
AV1-14
AV1-10
AVl-15
AV1-16
P6
SSV1-3
Psi-1
IT1-1
AV 1-41
P1
AVl-40
AV1-47
DDV1-8
DDV1-1
DDV1-3
DDV1-6
P2
AV 1-42
AV 1-22
AV 1-25
IS1-1
IS l-2
AV 1-20
AV 1-24
P10
IS 1-3
P6-FB
IT1-17
IT1-16
AV1-4
IC1-8

Partition Ew
E'w1 E'w2

X

X

X

X

x

xx

X

X

X

X

X

X

x

x

x

x

X

X

x

x

x

X

X

X

Xx

x

x

x

X

X

X

X

X

X

X

X

Partition Eu2 2
Ewd Ewf

x

X

X

X

X

X

X

X

x

x

X

X

X x

X

X

X

X

X

x

x

X

X

X

X

X

Partition Ewd
Ewdi Ewdr

X

X

X

X

X

X

X

x

x

X

X

x

x

Partition Ew
Ewfr Ewfi

x

X

X

X

X

X

X

X

X

X

X

X

X

134

Table 7.5: Partition Table for the Water-Rinse Operation

Chapter 7. Case Studies 135

to further simplify Sw fr using series decomposition of the reduced process model
Gw

fr. As shown later, G,,, f, is tractable with only 768 states.
Primitive FSM models for the 8 elementary components in Eu, fr are shown in

Appendix A, table A. 2. A 10 minute timer model (TIMER-600) has been appended
to E,, fr in order to specify the timing requirements for the water-rinse operation.
TIMER-600 comprises 4 states, Idle, Released, Held and Expired.

Two subgoals are easily identified in G,, , f, by considering the water fill phase
as three distinct subphases. The first subphase prepares the feed route, the second
performs the water rinse while the third returns the feed route to its relaxed status.
Table 7.6 shows the initial (qw fro) and goal (gwfrm) states of Gw fr plus the two
identified subgoals (qw fr1 and qw fr2) "

The subgoals partition Gw fr into three series

models Hw f rl, Hw f r2 and Hw fr3. Using Sanchez's algorithm (1996), it was shown
that qwfri and qwfr2 are reachable from all states of G. w fr .

Therefore Hw fri, Hw fr2
and Hw fr3 are nonblocking. Specification Sw fr is partitioned into Sw fri, Sw fr2 and
Sw fr3 where Sw fri specifies the behaviour for opening the valves on the feed route,
Swfr2 for cyclically filling T1 for 10 minutes, and Sw fr3 for closing valves on the
feed route and resetting the timer. Ew fr therefore constitutes a class II system.

Elementary Initial Subgoal1 Subgoal2 Goal
Component gwfro gwfrl qwfr2 qwfrm

AV1-10 Closed Open Open Closed
AV1-15 Closed Open Open Closed
AV1-16 Open Closed Closed Open
P6 Deenergised Deenergised Deenergised Deenergised
SSV1-3 Closed Closed Closed Closed
TIMER-600 Idle Idle Expired Idle
PSI-1 Shut Shut Shut Shut
IT1-1 Level <6 Level <6 Level <6 Level <6

Table 7.6: Subgoals in Gw fr

Figure 7.4 depicts the successive parallel and series decompositions of process

model Gw into 6 parallel and series models Hw f rl,
Hw f r2,

Hw f r3, Gw fi, Gwdi and
Gwdr. Similarly, specification Sw is comprised of 6 modular specifications Sw frl,

Sw f r2,
Sw f r3,

Sw f i,
Swdi and Swdr

-

7.1.3.3 Synthesis of Procedural Controllers

From the above analysis, 6 reduced synthesis problems have been identified. For

each synthesis problem a process model and specification have been constructed.
The models are of a size which are amenable to the synthesis techniques of section

Chapter 7. Case Studies

--
--- -------- ------------ --

w rl 2w r3
--

wfr

G,
--'
G wf

Gwdi
G. - wd

w2

wl

`--
Gw

Figure 7.4: Network of Models for the Water-Rinse Operation

136

3.6. The resulting 6 model based procedural controllers are later recombined to
form a structured modular controller for implementing the water-rinse operation.

For example, consider the synthesis of controller Cw1.2 as detailed in Appendix

section A. 1.2. Primitive FSM models are constructed for the eight elementary

components in Ew fr as shown in table A. 2. The interaction between ITl-1 and
SSVl-3 from table 7.4 is modelled by the temporal logic formula:

(00) 00 100,00,0 , 00)00)00) -+ 0fT 536 V 537]

which is translated into a FSM piw f,. 2 . The synchronous product of Plwfr2 with the

asynchronous products of the FSMs modelling the 8 elementary components yields
the process model Gu, fr2 of 768 states.

This module is formally specified by 4 predicate logic formulas and 12 temporal

logic formulas shown in the appendix. Logic formulas were translated into FSMs

rlw f r2, r2w f r2 ...) r16w f r2 "
The specification FSM Sw fr2 is constructed from the syn-

chronous product of rlw fr2, r2w fr2 r16w fr2 with the asynchronous products of the

FSMs modelling the 8 elementary components.
Controller Cw fr2 is synthesised from process model Gz� fr2 and specification Sw fr2

using algorithm 3.1. By construction, Cw fr2 agrees with process Gw f,. 2 and gener-

ates a closed loop response on Gw fr2 which conforms to specification Sw fr2 and is

nonblocking. The 37 state FSM generating L(Cwfr2), including state variables, is

Chapter 7. Case Studies 137

Cont- Process Model Construction Controller Synthesis
roller No. of No. of No. of No. of No. of No. of No. of

Comp. Predicates Temporals States Statics Dynamics States
Cwfi 6 0 0 64 6 0 1
Cwfrl 8 0 1 768 3 2 5
Cw f r2 8 0 1 768 4 12 37
Cwfr3 8 0 1 768 3 2 6
cwdi 7 0 0 128 7 0 1
Cwdr 6 0 1 160 1 4 16
Total 43 0 4 2656 24 20 6

Table 7.7: Controller Synthesis Statistics for the Water-Rinse Operation

shown in table A. 3.
Synthesis details for controllers Cu, fi and Cwd, are supplied in Appendix sections

A. 1.1 and A. 1.3 respectively. In particular, section A. 1.1 shows how interlocked

to closed requirements for Cu, f2 are formally specified using forbidden states. In
this case the solution of the synthesis problem (not shown) is the trivial one of a
procedural controller with one state and no transitions. Table 7.7 summarises some
important statistics in the solution of each synthesis problem.

7.1.3.4 Structured Modular Control

The six modular controllers synthesised above are now combined in series and par-
allel into the structured modular controller Cu, which implements the water-rinse
operation. The control structure is represented by the network of process models
shown in figure 7.4. In what follows, it is shown how the properties of nonblocking

and conformance to specification propagate through the control hierarchy.

Ew f,. -A Class II System

A control structure comprised of the synthesised controllers Cw f ri ,
Cwfr2 and Cw f,. 3

in series is proposed for the system defined by Ew fr. By lemma 4.4, the marked

closed loop behaviour L7z (Cw frl -4 Cw fr2 -+ C2� fr3/G,, fr) is given by:

Lm(Cwfr1 +Cwfr2 --+Cwfr3/Gwfr) _

Lm(Cwfrl/Hwfrl)"a1"Lm(Cwfr2/Hwfr2)"c12"Lm(Cwfr3/Hwfr3) ý7"1ý

For convenience, Cw frl -+ Cwfr2 + Cwfr3 is written Cw f,.. By the reductive prop-

Chapter 7. Case Studies 138

erty it follows that the closed loop behaviour generated by Cw fr on Gu, f,. conforms
to specification Sw fr and is nonblocking.

Eu, d -A Class Ib System

A control structure comprised of the synthesised controllers Cwd2 and Cwdr in parallel
is proposed for the system defined by Ewd. By lemma 4.1, the marked closed loop
behaviour Lm(CwditCwdr/Gwd) is given by:

Lm(CwditCwdr/Gwd) = PwdiLm(CwdiIGwdi) n PwdrLm(CwdrlGwdr) (7.2)

For convenience, Cwdi T Cwdr is written Cwd. Since alphabets 1 wdi and >wdr are
disjoint, nonconflicting between 'P,, diLm(Cwdi/Gwdi) and PwdrLm(Cwdr/Gwdr) holds

trivially. Therefore the closed loop behaviour generated by GWd under parallel

control from C�d2 and Cwdr conforms to specification Swd and is nonblocking.
Controller Cwd drains tank Ti and thereby constitutes the ISA-588.01 phase

called water-drain.

Eu, f-A Class Ib System

A control structure comprised of Cu, fT and C, � f2 in parallel is proposed for the system
defined by E1. The marked closed loop behaviour Lm(C,, fr t C,, fi/Gu, f) is given
by:

Lm(CwfrtCwfi/Gwf) = PwfrLm(Cwfr/Gwfr) n PwfiLm(Cw. fi/Gwfi) (7.3)

For convenience, Cw fr t C� fti is written Cu, f. Since alphabets Ew fr and Ewfi

are disjoint, nonconflicting between Pw frL�-, (Cw fr/Gwfr) and P,
-

fiLm(Cwfi/Gwfi)

holds trivially. Therefore the closed loop behaviour generated by Gw f under parallel

control from Cw fr and Cw fi conforms to specification Sw f and is nonblocking.
Controller Cw f performs the function of cyclically filling tank Ti and thereby

constitutes the water fill phase.

Ewe -A Class Ib System

A control structure comprised of C,, f and Cwd in parallel is proposed for the system

defined by Ewe. In this case, alphabets Ew f and >wd are not disjoint as they share

uncontrollable transitions generated by IT1 1. With the results from equations

Chapter 7. Case Studies 139

7.1,7.2 and 7.3, nonconflicting between Pw f Lm (Cw f/Gw f) and P. -d' L" (CwdlGwd)

was verified using TCT's nonconflicting algorithm (Wonham, 1996). Therefore the

closed loop behaviour generated by Gw2 under parallel control from Cw f and Cwd

conforms to specification Sw2 and is nonblocking

written as Cw2

Eu, -A Class Ia System

For convenience, Cw ft Cwd is

The system defined by Eu, is controlled by the reduced domain controller Cwt. By
the reductive properties of class la systems, it follows that Cwt generates a closed
loop behaviour on Gu, which is nonblocking and conforms to specification Sw. For

convenience Cu, 2 is written Cu,
.

In summary, a structured modular controller Cu, has been synthesised to im-

plement the water-rinse operation. Cu, is guaranteed to generate a closed loop be-
haviour which terminates at the goal state and is within specification at all times.
A pictorial representation of the structured modular controller is shown in figure
7.5.

-- ---

C
rl r2 w r3 .,,

--

ý' wdi

--
--

7.1.3.5

Figure 7.5: Network of Controllers for the Water-Rinse Operation

Translation of Procedural Controllers

The six procedural controllers synthesised above were translated into PARACODE

for implementation on the ACCOS 30 control system. The PARACODE transition

lookup table employed by translation algorithm 6.1 is shown in Appendix C. Each

sequence was automatically prefixed with pre-checks (algorithm 6.2) and inhibits

(algorithm 6.3). Note that for this case study, inhibits are generated using the

Chapter 7. Case Studies

Controller Inhibits Pre-
Checks

FSM
Logic

Sub-
Total

Comments Total

Cw fi 0 21 5 26 26 52
Cwfrl 8 26 19 53 28 81
Cw f r2 10 26 149 185 64 249
Cw

f r3 8 26 22 56 30 86
Cwdi 0 19 5 24 25 49
Cwdr 20 22 66 108 39 147
Total 46 140 266 1 1 452 212 664

Table 7.8: PARACODE Statistics for the Water-Rinse Operation

140

heuristic presented in section 6.4.2. Formal inhibit design is impractical since it

requires each controller as a FSM. This would demand the manual translation of
about 100 existing batch pilot plant PARACODE sequences into equivalent FSM

controllers.
Table 7.8 presents the statistics for the translation of each controller into PARA-

CODE. The statistics are presented in terms of lines of automatically generated code
for each part of the sequence. The complete PARACODE for sequences derived from

controllers Cw f2, Cw fr2 and Cwdr is presented in Appendix sections A. 2.1, A. 2.2 and
A. 2.3 respectively. For example, the code shown in section A. 2.1 comprises only

pre-checks of interlocked to closed items as required by the specification.

7.1.3.6 Implementation Results

The structured modular controller for the water-rinse operation was implemented

as follows. A small "driver" PARACODE sequence was written (manually) for

starting the sequences for the two parallel phases water fill and water-drain. The

completion of both the water-fill and water-drain phases signals the completion of

the water-rinse operation.
The driver sequence for the water fill phase starts controller Cw fi in parallel with

Cw frl .
When controller Cw f, l reaches a marked state it is abeyed and controller

Cw f r2 is started. Similarly, Cw f r3 is started when Cw fr2 achieves a marked state.
Only when Cw f r3 and Cw fi are simultaneously in a marked state is the water fill

phase complete.
The driver sequence for the water-drain phase starts controller Cwdi in parallel

with Cwdr and awaits the simultaneous achievement of marked states in both before

signalling completion.
Each automatically generated sequence plus the manually written driver se-

Chapter 7. Case Studies 141

quences for the six modular controllers were compiled on the ACCOS 300 and
downloaded for implementation on the ACCOS 30. Experimental data was col-
lected for a run of the water-rinse operation using the ACCLOG data logging
facility.

Figure 7.6 shows the level profile in tank Ti for a typical run. From the initial

state at time 0, the water-rinse operation began by opening the water feed and
drain routes and starting pump P6. Pump P6 deenergises when the level in Ti
(as measured by IT1-1) achieves 20L. As shown in figure 7.6, the level overshoots
20L due to sampling delays. Meanwhile, pump P1 drains Ti so that the level in
Ti cycles between 6L and 20L as specified. At time 290s, the lid of Ti is opened
and the controller responds accordingly by freezing the timer and the water fill

phase. As the level decreases below 1.5L, pump P1 deenergises. When the lid is

closed at time 400s the water fill and water-drain phases restart. Cyclical operation
continues as usual until the 10 minute timer expires. Ti is then drained to 1.5L,

and the fill and drain routes return to their relaxed states.

24.00

22.00

20.00

18.00

16.00

14.00

12.00

10.00

8.00

6.00

4.00

2.00

0.00

IT1-1 (L)

---- -----------

200.00 400.00 600.00 800.00 Time(s)

Figure 7.6: Level Profile and Lid Position for the Water-Rinse Operation

7.1.4 The Detergent-Service Operation

-- --------------------- I -------------------

The detergent-service operation employs only the detergent-station unit (figure 7.2)

and is to proceed as follows. At the start of the operation, each elementary compo-

Chapter 7. Case Studies 142

nent must be in its relaxed state and T7 full of water. Fluid is to be recycled around
T7 by energising pump P6. Steam is admitted to HE3 and PI controller ICI-8 is to

control the outlet temperature to a setpoint of 80C. An outlet temperature above
90C initiates an emergency isolation of steam. Steam is also isolated if there is

no flowing process stream through HE3 (i. e. if tank T7 runs dry or if pump P6

deenergises). The content of T7 is heated to a temperature of 75C.

Concentrated caustic is dosed to tank T7 via pump P10. The caustic is mixed
by fluid recirculation around T7. Due to the slow mixing dynamics, P10 is energised
intermittently (10s on, 30s off) so as to dose small quantities of caustic at a time

until the required detergent concentration is achieved as detected by conductivity

switch IS1-3. An emergency isolation of caustic initiates if tank T7 runs dry or if

mixing by recirculation ceases (i. e. if P6 deenergises).

7.1.4.1 Parallel Decomposition

Table 7.9 shows the partition of Ed, the set of 19 FSMs modelling elementary

components of the detergent-station unit. The first partition identifies Edl as the

elementary components involved in heating and caustic dosing. Ed2 includes compo-

nents for recycling fluid around T7. Edl and Ed2 share only elementary component
IS1-2. Process model Gd and specification Sd are thereby decomposed into reduced

processes Gdl and Gd2 and specifications Shc and Sd2 constructed for systems Edl

and Ed2 respectively. Ed is a class Ib system since > d1 and Ede share only uncon-

trollable transitions generated by ISl-2.

Edl is further decomposed into intersecting sets Ehe and Edc. Ehu comprises

elementary components employed for heating the fluid in tank T7. Edc comprises

elementary components employed for dosing caustic to tank T7. Since Eh and Edc

share elementary components P6-FB and IS1-2, Chu and ý3dc share only uncontrol-
lable events and Edl constitutes a class Ib system.

Ed2 is further decomposed into disjoint sets Ei (i. e. those component valves

which are interlocked to their relaxed state) and the remainder ETA. Ed2 is a class
Ib system since E, i and E, share no controllable events.

Table 7.9 summarises the partitioning of Ed into the four modules Eh, Edc, Erc

and Eni
.

7.1.4.2 Synthesis of Procedural Controllers

A model based procedural controller was synthesised for the four modules identified

in table 7.9. Table 7.10 summarises some important statistics in the solution of each

modular synthesis. Full synthesis details are supplied in Appendix sections B. 1.1,

Chapter 7. Case Studies

Elementary Partition Ed Partition Edl Partition Ed2
Component Edl Ed2 Ehu Edc Erc Eri

AV1-16 x x
AV1-15 x x
AV1-10 x x
AVI-20 x x
AV 1-24 x x
DDV1-8 x x
AV1-22 x x
AV1-25 x x
AV1-14 x x
P6 x x
IS1-1 x x
IS 1-2 x x x x x
P10 x x
IS1-3 x x
P6-FB x x x
ITI-17 x x
ITI-16 x x
AV1-4 x x
ICI-8 x x

Table 7.9: Partition Table for the Detergent-Service Operation

143

B. 1.2 and B. 1.3 for controllers CdC, Ch and Crc respectively. It is noted that two

additional timer models, TIMER-10 and TIMER-30 have been added to Ed in

order to specify the timing requirements for pump P10. FSM models for these
timers comprise two states Idle and Released. These are simpler than TIMER-600

with 4 states since caustic dosing may continue uninterrupted. In TIMER-10 and
TIMER-30, a controllable transition changes the timer state from Idle to Released,

while an uncontrollable transition, corresponding to the expiry of the timer, returns
the state to Idle.

7.1.4.3 Structured Modular Control

Ed2 defines a class Ib system. A control structure comprised of the synthesised

controllers Crc and CTZ in parallel is proposed for this system. The marked closed
loop behaviour Lm (Crc t Cri/Gd2) is given by:

Lm (Crc 1 cri/Gd2) = 2'L (Girc/Grc) n Pri' Lm (Cri/Gri) (7.4)

For convenience, Crc 1 GI is written Cd2. Since alphabets arc and Ijri are dis-

Chapter 7. Case Studies 144

Cont- Process Model Construction Controller Synthesis
roller No. of No. of No. of No. of No. of No. of No. of

Comp. Predicates Temporals States Statics Dynamics States
Cri 6 0 0 64 6 0 1
Crc 6 1 2 48 0 4 9
Cdc 6 0 0 64 1 10 31
Chu 6 0 1 64 1 10 22

Total 24 1 3 240 8 24 63

Table 7.10: Controller Synthesis Statistics for the Detergent-Service Operation

joint, nonconflicting between P,, 'Lm(Crc/Grc) and P,: Z1Lm(Cri/Gri) holds trivially.
Therefore the closed loop behaviour generated by Gd2 under parallel control from

Crc and Cri conforms to specification Sd2 and is nonblocking. Controller Cd2 recycles
fluid around T7 and thereby constitutes the recycle phase.

Similarly, a parallel control structure comprised of Chu and CdC is proposed for

the class Ib system defined by Edl. Controller CdC is called the caustic-dose phase

and Chi is called the heat-up phase. Lm Chu t Cdc/Gdl) is given by:

Lm(ChutCdc/Gdl) = Phi Lm(C'hu/Ghu) nP 'Lm(Cdc/Gdc) (7.5)

For convenience, Ch,, T Cd, is written Cdl
.

In this case, > hu and Fldc share

uncontrollable transitions generated by P6-FB and IS1-2 and the nonconflicting

property between PWu'Lm,,, (Chu/Ghu) and Pd, 1Lm(Cdc/Gdc) was shown using the TCT

algorithm. Therefore the closed loop behaviour generated by Gdl under parallel

control from Chu and Cd, is nonblocking and conforms to specification Sdl.

Finally, Ed also defines a class Ib system, controlled by Cdl and Cd2 in parallel.
The property of nonconflicting between Pdi1 Lm (Cdl /Gd1) and Pd21 Lm (Cd2 /Gd2) was

shown by calculation using the results from equation 7.4 and 7.5. Therefore the

closed loop behaviour generated by Gd under parallel control from Cdl and Cd2 is

nonblocking and conforms to specification Sd.

Thus a structured modular controller comprised of three parallel phases has

been synthesised for the detergent-service operation. This structured controller is

guaranteed to terminate at the process goal state while at all times operating within

specification.

7.1.4.4 Translation of Procedural Controllers

Table 7.11 summarises the statistics for the automatically generated PARACODE

sequences for each synthesised controller. Controllers were translated using the

Chapter 7. Case Studies 145

lookup table supplied in Appendix C. Complete PARACODE listings for controllers
Cdt, Chu and C, are supplied in Appendix sections B. 2.1, B. 2.2 and B. 2.3.

Controller Inhibits Pre-
Checks

FSM
Logic

Sub-
Total

Comments Total

Cri 0 19 5 24 25 49
Crc 10 21 32 63 36 99
Cdc 1 21 163 185 62 247
Chu 0 23 103 126 53 179

Total 11 84 303 1 1 398 176 574

Table 7.11: PARACODE Statistics for the Detergent-Service Operation

7.1.4.5 Implementation Results

The detergent-service operation was implemented on the batch pilot plant as fol-
lows. A small "driver" PARACODE sequence was written (manually) to start the
the three parallel phases recycle, heat-up and caustic-dose. The detergent-service

operation is complete when all three phases signal completion.
The driver sequence for the recycle phase starts controllers Crj and Crc at the

same time. When both controllers are simultaneously in a marked state, the goal
of the phase is achieved and signalled to the operation driver.

Figure 7.7 shows an experimental trace of the temperatures and pump status
for a typical run of the detergent-service operation. In this run, a leak from tank
T7 was simulated by manually overriding the plant feedback from IS1-1 and IS1-2.
At time 1070s, the dry tank was detected and the controller reacted appropriately
by deenergising the caustic dosing pump P l0, isolating the steam and deenergising

the recirculation pump P6.

At time 1190s, the tank is refilled (i. e. the manual overrides on IS1-1 and IS1-2

are removed) and the recycle, heat-up and caustic-dose phases restart as usual.
The temperature profiles in figure 7.7 are not smooth due to the imposed process

upset. The continuous controller ICI-8 overshoots the setpoint temperature of
80C, but never achieves the emergency threshold of 90C. The operation is complete

when both conductivity switch IS1-3 has triggered (time 1360s), indicating that the

required concentration of caustic in the detergent mixture has been achieved, and

when IT1-17 registers 75C (time 1550s).

Chapter 7. Case Studies 146

ON _ _L ---------_....... ------ Wiff

OFF ... "-""--------"--------- I

T1ý Dry C¢ncentration
ý

85.00 Achieved
................ I------------------------. -t. -. --------------------... -J..

80.00
................. ------------"-------------.......................

I't'1-16 (C) 75.00
- - "r

1' ---- -----------------
70.00 r--. -. --""----------------r--------- --...............

ý

65.00
ý

................. _... --------------_-....................

60 00 t IT1-17 (C)
. _________________I- ------___-L------------------------ _/a__-__. _________-------.

55.00 '

50.00 ---... ----------------- 1 1
1r

45.00
ý

----------------- r --f---------------------- 1-----------------------
1r

40.00 - ______----_--------... _-y_------_----____---_---
1

35.00
1-1

1/11
1 11

30.00
/

.....
....... I.................. ý

.. I/1I

25.00
I, I

------ ----------
.
--------------------------- ----------------------- I

/

20.00

15.00
.

------------ r------------------------- r--------------------------- ---------------"-------
11

10.00 r---------------. ---. -----L-. -. --. -.......... --------y-----------------------
I

1.00 1.20 1.40 Time(s) x 1000

Figure 7.7: Temper atures and Pump Status for the Detergent-Service Operation

Chapter 7. Case Studies 147

7.1.5 The Detergent-Clean Operation

The detergent-clean operation employs the feed-preparation and detergent-station

units. It is similar to the water-rinse operation with the exception that the feed

is detergent from T7 which is sprayed into Ti under high pressure from pump P6.
Effluent from T1 is returned to T7. The control logic is also modified slightly in

order to reduce the number of start-ups (and therefore future maintenance costs)
of pump P6. P6 is energised throughout the operation, and flow is to be diverted
back to T7 via AV1-16 when the level in Ti exceeds 20L.

A structured modular controller for the detergent-clean operation was synthe-
sised as for the water-rinse operation. Within the structured controller, two paral-
lel controllers, Cdf and Cd, were identified as ISA-588.01 phases detergent fill and
detergent-return. Where appropriate, the nonconflicting test was applied to ensure
that the structured modular controller generates a closed loop behaviour on the

process which both conforms to specification and is nonblocking.
The modular controllers were translated into PARACODE and implemented via

a driver sequence on the ACCOS 30. The level profile in T1 for a typical run of
the detergent-clean operation is shown in figure 7.8. The status of valve AV1-15 is

also shown to indicate the times at which flow from pump P6 is diverted back to
T7. Although not shown in figure 7.8, the detergent-clean operation responds in

the same way as the water-rinse when the lid of Ti is opened.

7.1.6 Summary of Case Study I

The CIP-feed unit procedure was (manually) decomposed into three operations

summarised in table 7.2. Formal methods were employed for the synthesis of struc-
tured modular controllers for each operation. In each case it was proved that the

structured modular controller generates a closed loop response on the model of the

corresponding unit (s) which was nonblocking and within specification.
Using the ISA-S88.01 axiom that units are physically isolated parts of the plant,

it follows that unit models are internally consistent with respect to the overall

model of the batch pilot plant. Since specifications for operations are local to a

unit, then operations within units constitute class Ia systems. It then follows from

the reductive property of class la systems that the synthesised structured modular

controllers generate a closed loop behaviour on the whole batch pilot plant model

which is nonblocking and within specification. Thus each operation is guaranteed
to reach its goal state while at all times operating within specification.

Within the structured modular controllers, controllers consistent with the ISA-

S88.01 definition of a phase were identified. Operations were implemented by the

Chapter 7. Case Studies 148

28.00
---- ----------------------------"---

26.00 IT1-1 (L)
-------------- ----------- ------------ - -: --------------

24.00
---------------- ---= .

22.00
--"------- ------ ---- --- -""--"... .

20.00
................................

---------- -----------------. ---------- ----- ----------- ------
16.00

14.00 -----------
------------ - ------ --------- - ------------

12.00
------------ ----- ----------- ----- ----------- ----- -- -----------

....... i---. 10.00
........ ---------------- ---

8.00
-------- ----------------- --------------- - -- --------- ------------ ------ -------

6.00
------"-"----------------------------- ------ ------------ ------------------ ----

4.00
----------------------=-----------------------. -----------------------. -------- -----

2.00 AVf-15----------------------------------- -------------.
0.00

1.60 1.80 2.00 2.20 Time(s) x 1000

Figure 7.8: Level Profile for the Detergent-Clean Operation

parallel execution of phases. A summary of the phases is presented in table 7.12

and the complete control structure is shown in figure 7.9.

Operation Phase
Name Description

Water-Rinse Water-Fill Filling Ti with water
Water-Drain Draining Ti of effluent

Detergent-Service Caustic-Dose Dosing of caustic to T7
Heat- Up Heating of fluid in T7
Recycle Recycling fluid around T7

Detergent-Clean Detergent-Fill Filling Ti with detergent
Detergent-Return Return of detergent from Ti to T7

Table 7.12: Phases in the CIP-Feed Unit Procedure

Formally derived controllers for each operation were translated into PARA-

CODE, compiled and downloaded to the ACCOS control system for implementation

on the batch pilot plant. A level and temperature trace for a complete CIP-feed

unit procedure is shown in figure 7.10. The unit procedure was implemented ac-

cording to the order of operations shown on the lower axis of figure 7.10. For this

run, drain pump P1 was slowed relative to previous operation, to introduce an ar-

Chapter 7. Case Studies

Unit procedure Level

Operation Level

I Detergent-Service

Phase Level
1Caustic-Dose

Heat-Up Recycle

CIP-Feed

Water-Rinse Detergent-Clean

Detergent-Fill Detergent-Return

Water-Fill II Water-Drain

Figure 7.9: Control Hierarchy for the CIP-Feed Unit Procedure

149

bitrary process disturbance and to reduce water and detergent usage. As seen from

the figure, no emergency actions were necessary throughout the run.
Together with the results from figure 7.6, showing the response to an uncon-

trolled lid opening, these results show that the CIP-feed unit procedure performs

as specified and is robust to process disturbances.

Chapter 7. Case Studies

80.00 =..... "... .. -- ----"------ -"--------------------------------.

IT1-17 (C) 70.00°_
1_

ITI-16 (C)
60.00 r.

-...
i-

-------------------"-- ---------

50.00

40.00
---- ------ }------......: -------------------------- -----------------

30.00

20.00
.... ----"-------""- "- -------- --------------

10.00
--- --- --- ----------------------------- -

IT1-1 (L)
0.00

0.00 1.00 2.00 Time(s) x 1000

RECIPE: Water- Detergent- Detergent- Water-

Rinse Service Clean Rinse

150

Figure 7.10: Temperature and Level Profile for the CIP-Feed Unit Procedure

Chapter 7. Case Studies 151

7.2 Case Study II - The Melinar Paste Plant

7.2.1 Overview of the Melinar Paste Plant

This case study involves the ICI Melinar paste plant shown in figure 7.11 (repro-
duced from Gallo (1996)). This plant is a single purpose, single product plant
comprised of two interactive production trains A and B. Melinar paste is produced
from four feedstocks including terephthalic acid (TA), caustic, glycol and E-26 (a

proprietary initiator or catalyser) stored in dedicated vessels TSO, CFV, GFV and
ESV, respectively. Melinar paste is stored in product vessel PSV. In addition to the
feed vessels, the glycol volumetric measure vessel GMV is shared by the two pro-
duction trains. Each train has a dedicated TA weigh vessel (TWVA and TWVB), a
volumetric measure vessel for caustic (CMVA and CMVB) and a mix vessel (MIXVA

and MIXVB).
Most material handling in the Melinar paste plant is done by gravity and the

solids handling vessels TSO, TWVA and TWVB are provided with aerators Al,
A2 and A3 for this purpose. Weigh vessels TWVA and TWVB are fitted also with
load cells SW1 and SW2 respectively. Volumetric measure vessels GMV, CMVA

and CMVB are equipped with high and low level switches SF1, SF2, SF3, SEI, SE2

and SE3 respectively. Mix vessels MIXVA and MIXVB are fitted with agitators
Ml and M2, low level switches SL1 and SL2 and paste pumps P1 and P2 for either
transporting product to storage or mixing by recirculation. Quantities of E-26 are

metered with the flow integrator F. Finally, a level probe SL3 detects the presence

or otherwise of sufficient headspace in PSV for an additional batch of product from

either MIXVA or MIXVB.

Production in train A proceeds as follows. Initially, caustic and glycol are dis-

pensed from storage into volumetric measure vessels CMVA and GMV, respectively.
The amounts are transferred simultaneously to MIXVA for mixing by recirculation.
Meanwhile, the required quantity of solid TA from storage is weighed in TWVA. TA

is added to the caustic/glycol solution in parallel with E-26 injection. Polymerisa-

tion occurs in MIXVA under agitation from M1. Finally the batch of Melinar paste
is pumped from MIXVA to PSV. Each transfer takes a nominal time beyond which

an alarm will sound indicating a sticking valve or some other abnormal situation.
Production in train B is identical.

7.2.2 The Make-Paste Procedure

Unlike the multipurpose batch plant of the previous case study, only one proce-
dure, make-paste is defined for the single product Melinar paste plant. Within

Chapter 7. Case Studies 152

Figure 7.11: The Melinar Paste Plant

Chapter 7. Case Studies 153

the male paste procedure, 6 unit procedures and 11 operations were identified.

Unit procedures and operations are summarised in table 7.13. In this case study,

operations correspond directly to unit procedures endowed with unit identity. For

example, the measure-caustic unit procedure yields two operations measure-caustic
A and measure-caustic B. Table 7.13 also shows the order of unit procedures in the
Melinar paste recipe.

Unit Recipe Description Op. Units Used
Procedure Step
Measure- 1 Measure quantity of GFV, GMV
Glycol glycol
Measure- 1 Measure quantity of A CFV, CM VA
Caustic caustic B CFV, CMVB
Weigh- 1/2 Weigh quantity of TA A TSO, TW VA
TA B TSO, TW VB
Mix- 2 Charge and homogenise A GMV, CMVA, MIX VA
G&C glycol and caustic B GMV, CMVB, MIX VB
React- 3 Polymerize by charging A TW VA, ESV, MIX VA
TA&E-26 TA and E-26 B TWVB, ESV, MIXVB
Store- 4 Charge storage vessel A MIX VA, PSV
Paste with Melinar paste B MIX VB, PSV

Table 7.13: Unit Procedures and Operations in the Make-Paste Procedure

Twelve ISA-S88.01 units are identified in the Melinar paste plant corresponding
to vessels plus associated instrumentation and valves. For example, TSO is a unit

comprised of the TA silo, aerator Al and valves V1 and V2. Table 7.14 lists the

elementary components in each unit and table 7.13 shows which units are employed

in each operation.

7.2.3 Controllers for Operations

As for the previous case study, controllers are synthesised formally for each opera-

tion using process models defined within unit boundaries and specifications corre-

sponding to the local user requirements. For this case study, user requirements were

provided by ICI, and synthesis details for the 11 operations are reported by Gallo

(1996). For 7 operations, controllers were synthesised directly using the techniques

of section 3.6. These controllers correspond to the ISA-588.01 phases described in

table 7.15. By virtue of plant symmetry, controllers for train B are isomorphic with

those from train A, as reflected in the controller labels. For example, controller Cl,,

implements the phase which weighs a quantity of TA from TSO in TWVA, while

Chapter 7. Case Studies

Unit Elementary Components
TSO V1, V2, Al
TWVA V1, SW1, A2, V3
TWVB V2, SW2, A3, V4
GFV V6
GMV V6, SF1, SE1, V9, Vlo
CFV V5, V7
CMVA V5, SF2, SE2, V8
CMVB V7, SF3, SE3, V11
MIX VA V8, V3, V9, V12, M1, SL1, V14, P1, V15, V16
MIXVB V11, V4, V10, V13, M2, SL2, V17, P2, V18, V19
ESV F, V12, V13
PSV V16, V19, SL3

Table 7.14: Elementary Components in Melinar Paste Plant Units

Operation Controller Phase Description
Measure- C2 Measure quantity of glycol in GMV
Glycol
Measure- A C3a Measure quantity of caustic in CMVA
Caustic B C3b Measure quantity of caustic in CMVB
Weigh- A Cla Weigh quantity of TA in TWVA
TA B Clb Weigh quantity of TA in TWVB
Store- A Clla Charge PSV with paste from MIXVA
Paste B Cub Charge PSV with paste from MIXVB

Table 7.15: Phases for 7 Operations in the Make-Paste Procedure

Cib implements the equivalent phase in TWVB.

154

Controllers for the other 4 operations are shown in table 7.16. These were syn-

thesised using structured modular techniques. For example, a structured modular

controller was proposed for the mix-G&C A operation comprised of three parallel

controllers C4a, C5a and C6a, shown in figure 7.12. Controller Cod implements the

ISA-588.01 phase which transfers caustic from CMVA to MIXVA, C5,, the phase

which transfers glycol from GMV to MIXVA and C6a the phase which recycles
fluid around MIXVA. Similarly, operation mix-G&C B is performed by the parallel

combination of controllers Cob, C5b and C6b.

Operation react-TA&E-26 A is performed by the series/parallel structure of

modular controllers C7a, C8a, C9a and Cloa shown in figure 7.13. Similarly, operation

react-TA PE-26 B is performed by the series/parallel structure of C7b, C8b, C9b and
ClOb

Chapter 7. Case Studies

II ------------------

Figure 7.12: Network of Controllers for the Mix-GPC A Operation

155

Table 7.16 summarises the phases of the 4 operations not described in table 7.15.
Each procedural controller maps directly to an ISA-588.01 phase. The complete
ISA-588.01 control hierarchy for the make paste procedure is shown in figure 7.14
(reproduced from Gallo (1996)).

I

1 V t/

II

8a l0a
`

I

--

Figure 7.13: Network of Controllers for the React-TA&E-26 A Operation

Synthesis statistics for the complete set of 21 procedural controllers are compiled
in table 7.17. The detailed results are supplied by Gallo (1996).

7.2.4 Controller Inhibits

Unlike the previous case study, the 21 controllers defined for this plant are already in

the form of a FSM. Therefore the formal inhibit design techniques of section 5.2.3

are readily applicable. The inhibit design criterion can identify noncooperation
between two controllers and therein the necessity for controller inhibits. In this

section, a rigorous inhibit analysis is presented for each controller pair, of which
there are 21 x 20 = 420.

For the case of controllers defined over disjoint alphabets, the trivial result of
the inhibit analysis is that the pair cooperate. Of the 420 controller pairs, 360 fall

into this category and need not be analysed further.

Chapter 7. Case Studies 156

Operation Controller Phase Description
Mix- C4a Transfer caustic from CMVA to MIXVA
G&C A C5a Transfer glycol from GMV to MIXVA

C6a Recycle fluid around MIXVA
Mix- CO Transfer caustic from CMVB to MIXVB
GPC B C5b Transfer glycol from GMV to MIXVB

C6b Recycle fluid around MIXVB
React- C7a Agitate contents of MIXVA
TA&E-26 A C8a Transfer TA from TWVA to MIXVA

C9a Transfer E-26 from ESV to MIXVA
Cloa Recycle fluid around MIXVA

React- C7b Agitate contents of MIXVB
TA ¬E-26 B C8b Transfer TA from TWVB to MIXVB

C9b Transfer E-26 from ESV to MIXVB
Clob Recycle fluid around MIXVB

Table 7.16: Phases for 4 Operations in the Make-Paste Procedure

Cont- Process Model Construction Controller Synthesis
roller No. of No. of No. of No. of No. of No. of No. of

Comp. Pred. Temp. States Statics Dyn. States
Cla, Cib 8 0 4 384 3 10 13

C2 7 1 2 144 2 8 17
C3a

,
c3b 6 1 2 72 1 7 17

C4a, CO 6 1 2 72 1 7 17
C5a

i C5b 7 1 2 144 2 7 17
C6a, C6b 6 0 1 64 5 0 2
C7a, C7b 6 0 1 64 1 2 4
Cga, C8b 6 0 2 96 1 7 13
Cga, C9b 6 0 1 144 0 9 12

C10a, Ciob 6 0 1 64 2 2 4
C11a, Cilb 9 0 2 768 1 10 25

Total 73 4 20 2016 19 69 141

Table 7.17: Controller Synthesis Statistics for the Make-Paste Procedure

Chapter 7. Case Studies 157

a)

a) U
O

CLI

4e

U

Cd

C)

O

O

0

bD

W

A
W
U
O
a
a

W

G
W
U

OG
0

W
E,,,

ÜWýv

äiää0ää. ä

Chapter 7. Case Studies 158

The diagonal matrices in tables 7.18 and 7.19 categorise the remaining 60 con-
troller pairs into inter and intratrain matches respectively. A "x" entry at (i, j) of
table 7.18 indicates that the alphabets of controllers Cia and COQ are not disjoint.
Formal inhibit analysis is required for the 18 identified pairs, the result of which
applies equally to Cb and Cab. Similarly, a "x" entry at (i, j) of table 7.19 indi-

cates that the alphabets of controllers Ci,, and Cab are not disjoint. Formal inhibit

analysis is required for the 12 identified pairs, the result of which applies equally to
Cb and Cja.

Samples of the inhibit calculations for three pairs are presented in the following

sections. The complete set of results are reported in tables 7.20 and 7.21. A "0"

entry in table 7.20 indicates that Cja cooperates with Cia and no inhibit of Cja by
Cia, is necessary. A nonzero entry means that Cja is noncooperative with Cia and
Cia must inhibit Cja,. A "1" entry shows that the cooperation test failed due to a
specification violation only. A "2" entry shows a failure due to blocking only. A
"3" entry indicates failure due to both specification violation and blocking. The
inhibits apply equally to Cib versus Cab. Table 7.21 presents the intratrain inhibits
in the same way.

Sample Inhibit Calculation i

This section presents details for the inhibit analysis between controllers Cla, and
C8b. Controller Cl,, implements the phase which weighs a quantity of TA in TWVA

while C8b implements the phase which transfers TA from TWVB to MIXVB.

FSM models for the controllers Cl,, and C8b, specifications Sla and S8b and

reduced process models Gla and G8b are provided by Gallo (1996). For brevity the

FSMs are not reproduced here, but it is noted that the two process models share

elementary component V2. In both specifications, V2 is interlocked to closed.
By construction, Ej,, and E8b share controllable events 41 and 42 generated by

V2. The elementary component FSM V2 is therefore augmented with duplicate

transitions 17 and 18 as shown in figure 7.15. This modification is propagated

through process models Gla and G8b and specifications Slo, and S8b. In C8b, tran-

sitions 41 and 42 are relabelled 17 and 18 respectively. Therefore, the requirement
Ala f Ebb C Eu is now satisfied.

The language calculations for the inhibit design procedure are as follows. Firstly

the combined closed loop language L(C1at C8b/Mla, 8b) is calculated as:

L(C1atC8b/Mla, 8b) _ p1a'
a"ýla"L(S

lacla)I n P8blly'8b"a8b. L(S 8bC8b)I

fL(Rla, 8b) (1 L(S S Mla, 8b) (7.6) la 8b

Chapter 7. Case Studies

1 2 3 4 5 6 7 8 9 10 11
1 - x
2 - x
3 - x
4 x -
5 x -
6 - x x x
7 x - x x
8 x -
9 -
10 x x - x
11 x x x -

Table 7.18: Intertrain Controller Inhibit Calculations

1 3 4 5 6 7 8 9 10 11
1 x x
3
4
5 x
6 x
7 x
8 x
9 x
10 x
11 x x x x

159

Table 7.19: Intratrain Controller Inhibit Calculations

Chapter 7. Case Studies

10 CLOSED

17
41 42

18

2ý OPEN

Figure 7.15: FSM Model for Valve V2

where the regulator language L(Rla, 8b) is constructed from:

L(Rla, 8b) _ rl*"O'1a"[Iý
-

Iý1a, 8b]*"08b"E* UE *"°8b"[E -
E8b,

lal*"Oýla"E*

160

and the marked process model Mla, 8b from the synchronous product of the reduced
process models:

L(Mla, 8b) = Pa1L(Gla) n P8b1L(G8b)

Lm(Mla, 8b) = P1a1Lm(Gla) n P8b1L(G8b)

Using these languages, the following results were obtained:

1. L(ClaT C8b/Mla, 8b) C E*. Q1a. P1a1L(Sla)

2.
lallý'la"ýla"Lm(S lacla)} n ý8b1{ý'Sb"78b"L(S gbý! 8b)} (1 L(Rla, 8b)] and

L (SlaS M1) are nonconflicting m la 8b a, 86

The first result shows that the closed loop language generated by both controllers
on the process is within the specification of the first. The second result shows that

the goal state of Cl,, is always achievable. Therefore, C8b cooperates with Cia and

no inhibit of C8b is required from Cl,,. This result is reported as a0 at (1,8) of

table 7.21.

Similarly it was shown by calculation that:

1. L(Cla tC8b/Mla, 8b) 9 Yj*. 986. P
blL(Sgb)

2. [P8bilý8b'78b'Lm(S
8bC8b)}

n ýlal{ýlaQ1a. L(s la('la)} (1 L(Rla, 8b)] and
Lm (cS8b

cSiä M8b, 1a) are nonconflicting

Chapter 7. Case Studies 161

Therefore Cl,, cooperates with C8b and there is no requirement for C8b to inhibit
Cia.

In summary, despite the shared controllable elementary component V2, no in-
hibit is required between Cl,, and C8b. This is because both controllers interlock to
closed valve V2, and can therefore operate independently as expected.

Sample Inhibit Calculation ii

In this section, the inhibit analysis for the pair C2 and C5a is presented. Controller
C2 implements the phase which measures a quantity of glycol in GMV, while C5a,
implements the phase which transfers glycol from GMV to MIXVA. These two con-
trollers share elementary components SEI and SF1 which generate uncontrollable
events and V6, V9 and V10 which generate controllable events. As before, dupli-

cate transitions are augmented to FSM models of the shared elementary components
which generate controllable transitions.

The language calculations for this example yields the following:

1. L(C2T C5a/M2,5a) *. 0'2. P2-1L(S2)

2. [P2 1{>2.
Q2. L (S 2C2)} n -P5a11F, 5a. U5a. L(S 5aC5a)} n L(R2,5a)] and

Lm, (S2 SSa M2,5 a) are nonconflicting.

The second result means that the goal state of controller C2 is achievable even

when C5Q is active. This means that it is always possible for GMV to fill after the
draining phase begins. However, the first result shows that the combined closed
loop response violates the specification S2. This violation arises from C5a opening

valve V9, which is interlocked to closed by C2. Therefore C2 must inhibit C5a. This

is reported as a1 at (2,5) of table 7.20.

Similarly, the inhibit calculation for controller C5a, versus C2 yields the results:

1. L(C2T C5a/M2,5a) E*"Q5a"P5a1 L(s5a)

2. ýP5a11ý5a. Q5a. Lm(s
5ac5a)}

n p2 1{E2.
Q2. L(S

2C2)} n L(R2,5a)] and
Lm (s5ä S2 M5a, 2) are nonconflicting.

Therefore C5a, must also inhibit C2.

Sample Inhibit Calculation iii

Finally, the inhibit analysis is presented for the pair C7a and Clla. Controller C7a

implements the phase which agitates the contents of MIXVA, and disables mixing
by recycle. Controller Clla implements the phase which transfers a batch of paste
from MIXVA to PSV. For this pair the language calculations yield:

Chapter 7. Case Studies 162

1. L(C7atC11a/M7a,
lla)

>*"U7a"P7a1L(S7a)

2. CP7allE7a. Oý7a. -m(8 7aý'7aýI n Pllalrlla"alla"L(SilaCllaýI n LýR7a,
lla)] and

Lm (S7as11' M are conflicting. l 7a lla 7a, lla

3. L(C7atC11a/M7a,
lla)

9 E*"9lla"P11aL('Slla)

4. [1
ifý7'lla"Ulla"Lm(S

11aClla)} n P7a1{ý'7a"Q7a"L(Sw7aC7a)} n L(R7a,
lla)] and

Lm (S11aS7aa
Ila 7a

Mlla,
7a) conflicting. l

The physical interpretation of the conflicting languages result is that both con-
trollers deadlock or block the other from reaching its goal state. This occurs because
the goal states of C7a and Clio, are inconsistent. For example, at the goal state of
C7a, pump PI is deenergised and SL1 is covered, whereas the opposite is true for
Ciia. In addition, interlock specifications on P1 and V16 are violated. The final

result is that C7a, and Clla must inhibit each other. This is reported as a3 at (7,11)

and (11,7) of table 7.20.
The results for each inhibit calculation are compiled in tables 7.20 and 7.21.

"0" entries in both tables indicated the common situation in which shared valves
were interlocked to closed. This was the case for all nondiagonal pairs from table
7.21, which reflects the decoupled operation of trains A and B. Conversely, "1"

entries indicated a violation of interlocked to closed specifications. Both tables are

symmetrical, except for the (6,7) and (7,6) entry of table 7.20. This indicates a

special case in which C6a must inhibit C7a, while C7a need not inhibit C6,,.

7.2.5 Operation Inhibits

The procedure make paste is implemented by the set of unit procedures and oper-
ations in table 7.13 ordered according to the process recipe. The scheduling and
initiation of operations over time may be done either manually or automatically us-
ing the batch management system SUPERBATCH as described in section 2.1.1. In

either case it is necessary to define inhibits at the operation level so two operations

which compete for the same unit resource can never be executed at the same time.
For example, operations measure-glycol and mix-G4C A utilise the unit GMV and
therefore must not run together.

From the tables of controller inhibits (table 7.20,7.21), the operation inhibit pol-
icy is constructed. For example, operation weigh-TA A (implemented by controller
Cl,,) must inhibit operation react-TABE-26 A (see figure 7.13) since controller Cla

inhibits controller C8a.

Chapter 7. Case Studies

1 2 3 4 5 6 7 8 9 10 11
1 - 1
2 - 1
3 - 1
4 1 -
5 1 -
6 - 3 2 3
7 0 - 3 3
8 1 -
9 -
10 2 3 - 1
11 3 3 1 -

Table 7.20: Intertrain Controller Inhibits

1 3 4 5 6 7 8 9 10 11
1 1 0
3
4
5 1
6 0
7 0
8 0
9 1
10 0
11 0 0 0 3

163

Table 7.21: Intratrain Controller Inhibits

Chapter 7. Case Studies 164

The resultant operation inhibit policy is shown in table 7.22. This table clearly
indicates which operations can and cannot be operated simultaneously. For example
the react-TA 4E-26 A operation must inhibit weigh-TA A, mix-G& C A, react-
TA&E-26 B and store-paste A but not measure-glycol or measure-caustic A. In
general, table 7.22 predicts that operations which share the same unit resource
must inhibit each other. An exception to this rule is that measure-caustic A and
measure-caustic B, which share unit CFV, need not inhibit one another.

Operation No. 12 3456 7 8 9 10 111
Measure-Glycol 1 - x x
Measure- A 2 - x
Caustic B 3 - x
Weigh- A 4 -x x
TA B 5 x- x
Mix- A 6 xx - x x x
G1C B 7 x xx xx
React- A 8 xx - xx
TA &E-26 B 9 x x x -x
Store- A 10 x x -x
Paste B 11 x xx-

Table 7.22: Inhibited Operations in the Make-Paste Procedure

7.2.6 Summary of Case Study II

The Melinar paste plant is a single purpose single product plant comprised of two
interactive production trains which compete for numerous resources. For the single

procedure make-paste, 6 unit procedures, 11 operations and 21 phases were iden-

tified. The inhibits policy at both the phase and operation level is critical to the

operability, flexibility and safety of this plant.
Each phase was implemented by a procedural controller. Pairs of controllers

were analysed using the control theoretic criterion for the identification of controller
inhibits as proposed in section 5.2.3. By virtue of plant symmetry in this special

case, the result of the inhibit analysis for 18 intertrain and 12 intratrain controller

pairs from train B could be inferred directly from the equivalent controller pairs
from train A. Normally an inhibit analysis is required for all pairs of controllers.

In general, the inhibit analysis showed that controllers which interlock to closed
the same valves need not inhibit one another. In other cases, an inhibit was neces-

sary either because an interlock to closed specification was violated or the combined

closed loop response was blocked from reaching the goal state. For each pair, the

Chapter 7. Case Studies 165

generated inhibits were consistent with engineering intuition.
Inhibits between operations were easily inferred from the controller inhibits. Op-

eration inhibits arm the operator or supervisory control system with the necessary
information with which to properly interlock and schedule the batch operations.
In this way, flexibility of the process is maximised with respect to the safety and
operational constraints of the plant. An a posteriori analysis of the formally derived
operation inhibits showed they were consistent with ICI's own inhibit policy, which
was generated manually following a detailed analysis procedure.

7.3 Further Applications

A design technique identical to that presented in these case studies has also been

applied to a small milk pasteurization plant. This plant, called PLANT X, is a
hypothetical plant used internally within APV for standardising its engineering
procedures for the design and implementation of control systems. A detailed flow-

sheet for PLANT X is shown in figure 7.16 (reproduced from Presto Project P4
(1996)).

PLANT X comprises three units including the raw milk tank, pasteurizer and
holding milk tank, and is operated as follows. Raw milk from delivery tankers is
loaded into the raw milk tank in preparation for pasteurization. The pasteurization

unit is then sterilised and brought to an equilibrated temperature by recirculation

of hot water. Milk is then pumped through the pasteurizer under strict temperature

control to the holding tank for eventual collection by product tankers.
For this single product plant, the ISA-S88.01 procedure pasteurize-milk was de-

composed into 3 unit procedures and 6 operations. Structured modular controllers

were synthesised for each complex operation using parallel and series decomposition

techniques. A total of 23 phases were identified for PLANT X. The controllers were
then translated into PARACODE using the algorithms from chapter 6. A detailed

description of the control hierarchy and the generated code is reported in Presto

Project P4 (1996). In particular, the results were compared with APV's code for

the same plant, which was found to contain a number of implementation and engi-

neering errors. However the provably correct, automatically generated code was up

to five times longer than the manually written equivalent.

In the PLANT X case study, the formally synthesised controllers were demon-

strated by simulation. This required a discrete/continuous hybrid dynamic model of

the equipment and a discrete model of the controllers. Simulations were performed
in gPROMS, the dynamic simulator from Imperial College. The results showed that

the controllers performed to specification for the set of scenarios tested.

c

Iz

V1

U

U--ý
N

cd

ý. c

X INVZd : 91-L aifl J

U

Chapter 8

Conclusions and Future Work

This thesis has extended Procedural Control Theory as a formal framework for the
design of sequential controls for process automation systems. Following a review of
the literature (chapter 2) in the field of formal techniques for the control of industrial

processes, PCT emerged as a solid framework for modelling chemical processes as
Discrete Event Systems and the specification, synthesis and analysis of sequential
controllers for such systems. PCT is grounded in Supervisory Control Theory, yet
with the important distinction that control action is forced as opposed to passive.

Following the introductory PCT chapter (chapter 3) it was clear that the ex-
isting techniques in PCT were limited to academic examples in which a process is

controlled by a single small controller. PCT was then expanded (chapter 4) to ad-
dress modelling, specification, synthesis and analysis of realistically sized systems.
A decomposition strategy was proposed in which process models and specifications

were reduced into modules amenable to treatment by the existing PCT techniques.

Processes and specifications were reduced using parallel and series decomposition.

Controllers from each modular synthesis were recombined to create a structured

modular controller for the whole process. Three special classes of system were iden-

tified for which it has been demonstrated that the properties of nonblocking and

conformance to specification are reductive (i. e. if the property holds within each

module then it holds for the whole system). A formal technique for the synthe-

sis of structured hierarchical modular controllers for complex systems was thereby

proposed.
The main advantage of this approach is that it overcomes the state explosion

which has so far limited the application of formal techniques, while retaining the

ability to guarantee by design a set of critical controller properties.
The second major theoretical advance addressed the design of inhibit policies for

controllers operating in a multitasking environment. The inhibit function safeguards

against the parallel operation of two potentially noncooperative controllers. An

167

Chapter 8. Conclusions and Future Work 168

inhibit design criterion was proposed based on the concepts of nonblocking and
conformance to specification (chapter 5). This necessitated a formal consideration
of controller initiation.

To implement these techniques on industrial automation hardware, a set of algo-
rithms was presented (chapter 6) for the automated generation of sequential control
code directly from the formal PCT control structures. Control sequences comprise
inhibits, pre-checks, processing (i. e. normal, emergency, alarm and restart) logic

and termination logic.

Finally the techniques of chapters 4,5 and 6 were demonstrated on two in-
dustrially sized case studies (chapter 7). The first was a complex CIP unit pro-
cedure comprised of three operations for a multipurpose, multiproduct batch pilot
plant. The controllers for each operation were translated into an industrial control
language, compiled and implemented directly on the batch pilot plant and tested

extensively in practice. In summary, the controllers were found to operate within
specification even when process disturbances were deliberately introduced. The

second case study involved ICI's Melinar paste plant. For this case study an op-

eration inhibit policy, consistent with ICI's operating policy, was derived using the

proposed control theoretic criterion.
In summary, this thesis has achieved the objectives set out on page 16 by:

1. Extending the powerful analytical techniques of PCT to handle complex, re-

alistically sized systems by the introduction of modular control concepts.

2. Utilising the same control theoretic concepts to develop a criterion for the

design of inhibits for multitasking control architectures.

3. Developing automated techniques for the generation of sequential control code
from the formal PCT representation of controllers.

8.1 Significance of Formal Techniques

Within a wider context, this thesis has forwarded a systematic technique for the

development of provably correct software for the automation of chemical processes.
In this context, provable correctness is equivalent to the properties of nonblocking

and conformance to specification. By translating the formal PCT structures directly

into sequential control code, almost all sources of error in hand generated code are

eliminated. This is a significant achievement as it increases the confidence one can

place in the control software before the commissioning stage.

Chapter 8. Conclusions and Future Work 169

As described in the introduction, there is a definite need for formal techniques
in industry due to the increasing use of programmable electronic systems in safety
critical applications. Any improvements in software quality which circumvent po-
tential hazards are obviously beneficial. Besides the issue of safety, such techniques

can also be justified on economic grounds considering the high cost of software de-

velopment and production loss or equipment damage incurred by faulty software.
Finally, formal techniques have numerous spin off benefits throughout the life cycle
of the automation software. Improvements in the traceability of the design afforded
by formal techniques aids code maintenance, documentation, portability, retrofit
and reuse.

It should be noted however that formal techniques are only as good as the math-
ematical representation of the process and specification. The guarantee of safety

afforded by formal techniques is degraded if the models are a poor representation

of the actual process or if the process specification is flawed. Sound engineering

practice coupled with powerful CAD tools can avoid or minimise modelling and

specification errors. Additional confidence in the proposed software can be gained
by testing against a rigorous dynamic model of the process prior to commissioning.

8.2 Future Research

On the basis of the proceeding material, five areas for future research are identified

as follows:

Observability Theory

In this thesis it has been assumed that sensors and actuators are available for

detecting any uncontrollable event or driving any controllable event in the process.
In reality, a process event may have no corresponding sensor, or the sensor or

actuator that normally detects or drives the event in question has failed. In this

case, a means of assessing the process for controllability is necessary. This jSSkj2
is called observability and is closely related to the concepts introduced in parallel
decomposition, and in particular internal consistency.

Observability theory would resolve two issues. Firstly it could be used to identify

the consequences of sensor or actuator failure. If the analysis shows that dangerous

states are reachable in the event of failure, then the control logic could be modified

accordingly or safety critical instruments duplicated. Secondly, observability anal-

ysis would lead to the development of novel inferential control techniques in the

discrete domain.

Chapter 8. Conclusions and Future Work 170

Specification Modelling

Present techniques for specification in PCT are somewhat unwieldy as shown in

appendices A and B. A more industrially palatable formalism for specification is

either structured text, Sequential Function Charts or Grafcet. An obvious exten-
sion to this work is the development of translation tools which convert structured
text, SFCs or Grafcets into FSMs in the same way that predicate and temporal
logic is currently translated into the FSM domain. The result would be a specifica-
tion technique which retains the mathematical rigour of PCT but with a far more
intuitive and less theoretical means of input.

Parallel Control with Shared Controllable Events

Techniques proposed in this thesis for the synthesis of parallel controllers disallow

sharing of controllable events. However, as shown later in section 5.2.4, it is possible
to formulate the closed loop response from two controllers sharing items which

generate controllable events. Therefore, future research could identify a class of

systems (e. g. class Ic) which exploits this formulation to permit the synthesis of

parallel controllers sharing items which generate controllable events.

Continuous Checking

The existing procedural control formalism excludes a mechanism of control called
the continuous-check. The ACCOS 30 offers this functionality as could any PLC.

The continuous-check works in conjunction with sequential logic by continuously

monitoring the state of the process and taking predefined actions at the instant a

given condition is met. Meanwhile, normal sequential control action is suspended.
This mechanism of control is ideal for implementing a default set of emergency

procedures if an abnormal process state is detected. In the existing procedural

controller formalism, this mechanism can at best be modelled by repetitions of the

same string of events from each wait state. Considerable reductions in the size of

procedural controllers (and the corresponding sequential control code) would result
from the incorporation of the continuous-check function into the formalism.

CAD Implementation

Finally the potential exists for exploiting the concepts introduced in this thesis in

a computer aided tool for the design of sequential controls for chemical processes.
The input and output of the CAD tool are conceived as follows. A P&ID is entered

as a set of elementary components each selected from a standard library of discrete

Chapter 8. Conclusions and Future Work 171

models. Modular specifications are entered using a structured text language or
Grafcet and automatically checked for consistency and conflict. The rigorous FSM

calculations in building the process model from the elementary component models
and synthesising the controller from this process model and specification would be
hidden from the user. Tracebacks would aid the user in finding the specification or

model fault in the event of an empty supremal controllable sublanguage. The tool

could also automatically check that a system is of class Ia, Ib or II and thereby assist
the user in designing complex control structures. Controller inhibit calculations

could be entirely automated with no additional input. Finally, the C routines
developed in this thesis could be directly incorporated into the CAD tool for the

automated generation of PARACODE. Libraries of alternative lookup tables could

also be supplied for translation into any other sequential control language.

Appendix A

The Water-Rinse Operation

A. 1 Synthesis of Selected Controllers

A. 1.1 Controller Cu, fi
Elementary Component Modelling

Elementary State Transition
Component Label Description Var. Label [_Description To state
SSV1-1 1* Closed 0 110 Opening 2

2 Open 1 111 Closing 1
SSV1-2 1* Closed 0 112 Opening 2

2 Open 1 113 Closing 1
SSVl-4 1* Closed 0 114 Opening 2

2 Open 1 115 Closing 1
SSVl-5 1* Closed 0 116 Opening 2

2 Open 1 117 Closing 1
ABV1-3 1* Closed 0 118 Opening 2

2 Open 1 119 Closing 1
AV1-14 1* Closed 0 11 Opening 2

2 Open 1 12 Closing 1

Table A. 1: Elementary Component FSMs in Ewfi

Key to Tables

1. A state label superscripted with * is marked.

2. An underlined transition label is controllable.

3. The order of state variables in the state variable vector is given in the table

of elementary components.

172

Appendix A. The Water-Rinse Operation

Process Specification

1. Interlock to closed SSV1-1

(l, oo, oo, oo, oo, oo) = FALSE

2. Interlock to closed SSV1-2

(o0) 1, o0, oo, oo, oo) = FALSE

3. Interlock to closed SSVl-4

(oo, oo, 1) oo, oo, oo) = FALSE

4. Interlock to closed SSVl-5

(oo, oo, oo, l, oo, oo) = FALSE

5. Interlock to closed ABV 1-3

(oo, oo, oo, oo, 1, oo) = FALSE

6. Interlock to closed AV1-14

173

(oo, oo, oo, oo, oo, 1) = FALSE

Appendix A. The Water-Rinse Operation

A. 1.2 Controller Cw f r2

Elementary Component Modelling

174

Elementary State Transition
Component Label Description Var. Label Description To state
AV1-10 1* Open 1 4 Closing 2

2 Closed 0 3 Opening 1
AVl-15 1* Open 1 6 Closing 2

2 Closed 0 5 Opening 1
AV1-16 1* Closed 1 32 Opening 2

2 Open 0 31 Closing 1
P6 1* Deenergised 0 17 Energising 2

2 Energised 1 18 Deenergising 1
SSV1-3 1* Closed 0 1 Opening 2

2 Open 1 2 Closing 1
TIMER-600 1 Idle 0 84 Releasing 2

2 Released 1 550 Expiring 4
82 Cancelling 1
85 Holding 3

3 Held 2 86 Rereleasing 2
4* Expired 3 67 Reseting 1

PS1-1 1* Shut 0 531 Opening 2
2 Open 1 532 Shutting 1

IT1-1 1* Level <6 0 536 Increasing 2
2 6< Level < 20 1 537 Increasing 3

539 Decreasing 1
3 Level > 20 2 538 Decreasing 2

Table A. 2: Elementary Component FSMs in Ewfr

Physical Interaction Modelling

1. Level cannot increase unless feed valve open

(00100100,00,6,00100300) -> 0[T 536 V 537]

Process Specification

1. Interlock to open AV1-10

(0, o0, o0,00,00,00,00) o0) = FALSE

2. Interlock to open AV1-15

(00)07o0, o0, oc, Do, oo, oo) = FALSE

Appendix A. The Water-Rinse Operation 175

3. Interlock to closed AV1-16

(o0, oo, 0, oo, 00,00,00, oo) = FALSE

4. Never energise pump when feed valve is closed

(oo) oc, o0,1,0, oo, oo, oo) = FALSE

5. From the initial state, open feed valve, energise pump and release timer

(1,1,1,0,0,0,0,0) -+ 0 [T = 1] -ý 0 [T = 17] -> 0[7- = 84]

6. If the lid opens then deenergise pump, close feed valve and hold timer

(1,1,1,1,1,1, O, oo)A[T=531]-*Q[T=18]-3Q[T=2]-+ 0['r=85]

7. When the lid shuts, restart by opening feed valve, energising pump and rere-
leasing timer

(1,1) 1,0,0,2,1, oo2) A ft = 532] -+ O[T = 1] --ý Q[tr = 17] -+ 0[-F= 86]

8. When the timer expires, deenergise the pump and close the feed valve

(1,1,1,1,1,1, oo) oo)A[T=550] -+Q[T= 18] -+O['r=2]

9. Before the level increases, interlock the pump and timer

(1,1,1,1,1,1,0,002) -ýO[T 18V82V85]

10. If the level increases, deenergise the pump and close the feed valve

(1,1) 1,1,1, oo, oo, 1)A[-r=537] -40[T=18] -Q[T=2]

11. At the goal state, interlock the timer and feed valve

(1,1,1,0,0,3, o0, o0) -+ O[T 67V 1]

12. When the lid is open and the timer is held, interlock the timer and feed valve

(1,1,1,0,0,2,1, o0) -+ O[T 86 V 1]

13. When the lid is shut and the timer is held, interlock the timer and feed valve

(1,1,1,0,0,2,0,00°) -+ 0 [T 86V 1]

14. When draining, interlock the timer and feed valve

(1,1,1,0, O, 1, oo, oo°)-+O[T 82V85V1]

Appendix A. The Water-Rinse Operation 176

15. If the lid opens, hold the timer

(1,1,1,0,0,1,0, oo) A [-r = 531] -+0[-r=85]

16. When the lid shuts, restart by opening feed valve and energising the pump

(1,1,1,0,0,1,0,0) 0 [T = 1] -+ 0 [T = 17]

Synthesis Results

Appendix A. The Water-Rinse Operation

0

00 co

CeD
LO

C) CV
cad

M
cd 1-0

O '-A

O

ob

Cd LoI
00

00
001

cql

rI
Cl)

cd

N

cd

00
N-

bA
cd

O

. r.

O
0

co

, -Q

177

Appendix A. The Water-Rinse Operation

0
LO

co
LO 00 0n

00
co

N-

CY)
LO

,1 Lo cq
° cý o

LO
1

00

°O

-tlI 00

001 co

cqi
di
CV

dý l`
cý Cv

m ll: t
cl-1 , --q ý--ý

º0
cl-I

Q0 00
CIO CV Cv

0
Cýll

ort- oo CV CV N Cpl

CYD It
CV co m

Gil in
cYID ceD

N

N-
co

N-

. --+ . --ý GV GV CV r-1 , --a ý--ý ý--ý O CV Cl-] CV CV CV rl r-1

ý--ý O O O O O r-+ O ý--ý O -ý r-1 O O 1 O O
Cl7 Gl7 --ý ý--i , --i ý--i . -+ CYJ cli ý--i ý--i r--i Cpl Cpl cri, e7 M eeJ

-b O O -i -ý 0 0 0 0 0 0 -+ O O O O CT r-ý r-i - - - - - - - - - - - - - - - - - - ' O O O O O O , O O O O O O O O O T+ O

- - - - - - - - - - - - - - - - - -

O r-+ CV CD d' LO co L` 00 CO r+ GV m ": t ºr'J CO
Cl)

L-
Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl m Cy') C') Cn mmmm

N-

bA
cd

E O

. r,

O

(ý0

cd
(2)

E

178

Appendix A. The Water-Rinse Operation

A. 1.3 Controller Cwdr

Elementary Component Modelling

179

Elementary State Transition
Component Label Description Var. Label Description To state
AV1-41 1* Closed 0 33 Opening 2

2 Open 1 34 Closing 1
P1 1* Deenergised 0 7 Energising 2

2 Energised 1 8 Denergising 1
IT1-1 1* Level < 1.5 0 543 Increasing 2

2 1.5 < Level <3 1 544 Decreasing 1
535 Increasing 3

3 3< Level <6 2 540 Decreasing 2
536 Increasing 4

4 6< Level < 20 3 539 Decreasing 3
537 Increasing 5

5 Level > 20 4 538 Decreasing 4
AV1-40 1* Closed 0 35 Opening 2

2 Open 1 36 Closing 1
AV1-47 1* Closed 0 37 Opening 2

2 Open 1 38 Closing 1
DDV1-8 1* Closed 0 27 Opening 2

2 Open 1 28 Closing 1

Table A. 5: Elementary Component FSMs in Ewdr

Physical Interaction

1. Level cannot decrease if drain valve is closed

(0, oo, oo, oo, oo, oo) -> O[-r 544 V 540 V 539 V 538]

Process Specification

1. Never energise pump when drain valve closed

(01 1, o0, oo, oo, oo) = FALSE

2. When level exceeds 3L, open all valves and energise pump

(0,0,2,0,0) -+ Q[7- = 33] O[T = 35] -+ Q[T = 37]

-> 0[-r = 27] -} 0[-r = 7]

Appendix A. The Water-Rinse Operation 180

3. When level is below 1.5L, deenergise pump and close all valves

(1,1,1,1,1,1)A[T=544] -+ Q[T=8] -Q[T=28] -*Q[T=38}

-+Q[, r=36] Q[r=34]

4. When level is below 3L, interlock valves to closed and pump to deenergised

(030,00 2,3,4
3 0,0,0) - 0[T 33 V 35 V 37 V 27 V 7]

5. When level is above 1.5L, interlock valves to open and pump to energised

(1,1,00°) 1,1,1) -*Q[T 8V28V38V36V34]

Synthesis Results

Appendix A. The Water-Rinse Operation

bj0

. r,
cý

N

N

181

Appendix A. The Water-Rinse Operation

A-2 PA RA CODE for / THIS CONTROLLER SPRAYS WATER

Selected Sequences
/
/

AT HIGH PRESSURE VIA PUMP P6
INTO TANK T1 TO A LEVEL OF 20L.

/ FILLING STARTS WHEN THE LEVEL
/ IS BELOW 6L. THE CONTROLLER

A. 2.1 Sequence Derived from / TERMINATES AFTER 10 MINS.

Controller C i / u, f / ------------- ----------------------- . SEQ 2.209 /
/ ------------------------------------ / INHIBITED SEQUENCES
/ /
/ INSQ 1.65
/ THIS CONTROLLER INTERLOCKS VALVES INSQ 1.66
/ SSV1-1, SSV1-2, SSV1-4, SSV1-5, INSQ 1.151
/ ABV1-3, AV1-14 DURING THE WATER INSQ 1.156
/ FILL PHASE. INSQ 1.157
/ INSQ 1.162
/ INSQ 1.163
/ ------------------------------------ INSQ 2.202
/ INSQ 2.219
/ INHIBITED SEQUENCES INSQ 2.221
/ /
/ / EMERGENCY ITEMS
/ EMERGENCY ITEMS /
/ /
/ / PRE CHECKS
/ PRE CHECKS /
/ S205A1 MOVN -1, R2.205
S209A1 MOVN -1, R2.209 MOVN 1, R2.200

MOVN 1, R2.200 IFOD AV1-10, S205A2
IFOE SSV1-1, S209A2 MOVN 2, R2.200
MOVN 2, R2.200 IFOD AV1-15, S205A2
IFOE SSV1-2, S209A2 MOVN 3, R2.200
MOVN 3, R2.200 IFOD AV1-16, S205A2
IFOE SSV1-4, S209A2 MOVN 4, R2.200
MOVN 4, R2.200 IFOE P6, S205A2
IFOE SSV1-5, S209A2 MOVN 5, R2.200
MOVN 5, R2.200 IFOE SSV1-3, S205A2
IFOE ABV1-3, S209A2 MOVN 6, R2.200
MOVN 6, R2.200 IFTR 1.201, S205A2
IFOE AV1-14, S209A2 MOVN 7, R2.200
GOTO S209S1 IFINE PS1-1, S205A2

/ MOVN 8, R2.200
S209A2 MESS 1.200,1.1 ADCI IT1-1, F2.200

VARN 2 IF F2.200, GE, 6, S205A2
VARN 209 GOTO S205S1
VARR R2.200 /

VARR R2.209 S205A2 MESS 1.200,1.1
ALSQ 2.209 VARN 2
GOTO S209A1 VARN 205

/ VARR R2.200
/ BEGIN OPERATION VARR R2.205
/ ALSQ 2.205

S209S1 MOVN 1, R2.209 GOTO S205A1
GOTO S209Z /

/ / BEGIN OPERAT ION
/ CEASE OPERATION /

/ S205S1 MOVN 1, R2.205

S209Z ABEY ENGE SSV1-3

STOP WAIT 5

S205S2 MOVN 2, R2.205

2 2 A Sequence Derived from ENGE 6

. . WAIT 5

Controller C
f 2

/
w r S205S3 MOVN 3, R2.205

STMN 1.201,600
.
SEQ 2.205

RLTM 1.201
WAIT 5

/
/

182

Appendix A. The Water-Rinse Operation

S205S4 MOVN 4, R2.205 WAIT 5
S205T4 IFINE PS1-1, S205S5 /

IFTZ 1.201, S205S12 S205S20 MOVN 20, R2.205
ADCI IT1-1, F2.200 S205T20 IFIE PS1-1, S205S21
IF F2.200, GE, 6, S205S16 ADCI IT1-1, F2.200
GOTO S205T4 IF F2.200, LT, 6, S205S8

/ GOTO S205T20
S205S5 MOVN 5, R2.205 /

DENG P6 S205S21 MOVN 21, R2.205
WAIT 5 S205T21 IFINE PSI-1, S205S20

/ ADCI IT1-1, F2.200
S205S6 MOVN 6, R2.205 IF F2.200, LT, 6, S205S9

DENG SSV1-3 GOTO S205T21
WAIT 5 /

/ S205S22 MOVN 22, R2.205
S205S7 MOVN 7, R2.205 DENG P6

FZTM 1.201 WAIT 5
WAIT 5 /

/ S205S23 MOVN 23, R2.205
S205S8 MOVN 8, R2.205 DENG SSV1-3
S205T8 IFIE PSI-1, S205S9 WAIT 5

GOTO S205T8 /
/ S205S24 MOVN 24, R2.205
S205S9 MOVN 9, R2.205 S205T24 ADCI IT1-1, F2.200

ENGE SSV1-3 IF F2.200, LT, 20, S205S25
WAIT 5 IFINE PS1-1, S205S31

/ IFTZ 1.201, S205S34
S205S10 MOVN 10, R2.205 GOTO S205T24

ENGE P6 /
WAIT 5 S205S25 MOVN 25, R2.205

/ S205T25 IFINE PSI-1, S205S26
S205S11 MOVN 11, R2.205 IFTZ 1.201, S205S27

RLTM 1.201 ADCI IT1-1, F2.200
WAIT 5 IF F2.200, LT, 6, S205S29
GOTO S205S4 GOTO S205T25

/ /

S205S12 MOVN 12, R2.205 S205S26 MOVN 26, R2.205
DENG P6 FZTM 1.201
WAIT 5 WAIT 5

/ GOTO S205S20

S205S13 MOVN 13, R2.205 /

DENG SSV1-3 S205S27 MOVN 27, R2.205

WAIT 5 S205T27 IFINE PS1-1, S205S28

/ ADCI IT1-1, F2.200

S205S14 MOVN 14, R2.205 IF F2.200, LT, 6, S205S14

S205T14 IFINE PS1-1, S205S15 GOTO S205T27

GOTO S205T14 /

/ S205S28 MOVN 28, R2.205

S205S15 MOVN 15, R2.205 S205T28 IFIE PS1-1, S205S27

S205T15 IFIE PS1-1, S205S14 ADCI IT1-1, F2.200

GOTO S205T15 IF F2.200, LT, 6, S205S15

/ GOTO S205T28

S205S16 MOVN 16, R2.205 /

S205T16 IFINE PS1-1, S205S17 S205S29 MOVN 29, R2.205

ADCI IT1-1, F2.200 ENGE SSV1-3

IF F2.200, GE, 20, S205S22 WAIT 5

IFTZ 1.201, S205S36 /

ADCI IT1-1, F2.200 S205S30 MOVN 30, R2.205

IF F2.200, LT, 6, S205S4 ENGE P6

GOTO S205T16 WAIT 5

/ GOTO S205S4
S205S17 MOVN 17, R2.205 /

DENG P6 S205S31 MOVN 31, R2.205

WAIT 5 FZTM 1.201

/ WAIT 5

S205S18 MOVN 18, R2.205 /

DENG SSV1-3 S205S32 MOVN 32, R2.205

WAIT 5 S205T32 ADCI IT1-1, F2.200

/ IF F2.200, LT, 20 , S205S20

S205S19 MOVN 19, R2.205 IFIE PS1-1, S205S33

FZTM 1.201 GOTO S205T32

183

Appendix A. The Water-Rinse Operation

S205S33 MOVN 33, R2.205
S205T33 ADCI IT1-1, F2.200

IF F2.200, LT, 20, S205S21
IFINE PS1-1, S205S32
GOTO S205T33

S205S34 MOVN 34, R2.205
S205T34 ADCI IT1-1, F2.200

IF F2.200, LT, 20, S205S27
IFINE PS1-1, S205S35
GOTO S205T34

S205S35 MOVN 35, R2.205
S205T35 ADCI IT1-1, F2.200

IF F2.200, LT, 20, S205S28
IFIE PSI-1, S205S34
GOTO S205T35

S205S36 MOVN 36, R2.205
DENG P6
WAIT 5

S205S37 MOVN 37, R2.205
DENG SSV1-3
WAIT 5
GOTO S205S27

/ CEASE OPERATION

S205Z ABEY
STOP

A. 2.3 Sequence Derived from
Controller Cwdr

. SEQ 2.210
/ ----------------------------

/ THIS CONTROLLER PUMPS THE
/ CONTENTS OF TANK 1 TO DRAIN.

/ ----------------------------

/ INHIBITED SEQUENCES

INSQ 1.50
INSQ 1.51
INSQ 1.52
INSQ 1.53
INSQ 1.54
INSQ 1.57
INSQ 1.58
INSQ 1.61
INSQ 1.62
INSQ 1.63
INSQ 1.64
INSQ 1.94
INSQ 1.95
INSQ 1.115
INSQ 1.125
INSQ 1.151
INSQ 1.152
INSQ 2.207
INSQ 2.216
INSQ 2.218

/ EMERGENCY ITEMS

/ PRE CHECKS

S210A1 MOVN -1, R2.210
MOVN 1, R2.200
IFOE AV1-41, S210A2
MOVN 2, R2.200
IFOE P1, S210A2
MOVN 3, R2.200
ADCI IT1-1, F2.200
IF F2.200, GE, 1.5, S210A2
MOVN 4, R2.200
IFOE AV1-40, S210A2
MOVN 5, R2.200
IFOE AV1-47, S210A2
MOVN 6, R2.200
IFOE DDV1-8, S210A2
GOTO S21OS1

S210A2 MESS 1.200,1.1
VARN 2
VARN 210
VARR R2.200
VARR R2.210
ALSQ 2.210
GOTO S210A1

/ BEGIN OPERATION

S21OS1 MOVN 1, R2.210
S21OT1 ADCI IT1-1, F2.200

IF F2.200, GE, 1.5, S210S2
GOTO S21OT1

S210S2 MOVN 2, R2.210
S210T2 ADCI IT1-1, F2.200

IF F2.200, GE, 3, S210S3
GOTO S210T2

S210S3 MOVN 3, R2.210
ENGE AV1-41
WAIT 5

S210S4 MOVN 4, R2.210
ENGE AV1-40
WAIT 5

S210S5 MOVN 5, R2.210
ENGE AV1-47
WAIT 5

S210S6 MOVN 6, R2.210
ENGE DDV1-8
WAIT 5

S210S7 MOVN 7, R2.210
MOVN 400, F1.92
DACO IF1-1, F1.92
ENGE P1
WAIT 5

S210S8 MOVN 8, R2.210
S210T8 ADCI IT1-1, F2.200

IF F2.200, LT, 3, S210S9
ADCI IT1-1, F2.200
IF F2.200, GE, 6, S210S15
GOTO S210T8

S210S9 MOVN 9, R2.210

184

Appendix A. The Water-Rinse Operation

S210T9 ADCI IT1-1, F2.200
IF F2.200, GE, 3, S210S8
ADCI IT1-1, F2.200
IF F2.200, LT, 1.5, S210S1O
GOTO S210T9

S21OS10 MOVN 10, R2.210
DENG P1
WAIT 5

S21OS11 MOVN 11, R2.210
DENG DDV1-8
WAIT 5

S21OS12 MOVN 12, R2.210
DENG AV1-47
WAIT 5

S210S13 MOVN 13, R2.210
DENG AV1-40
WAIT 5

S21OS14 MOVN 14, R2.210
DENG AV1-41
WAIT 5
GOTO S21OS1

S210S15 MOVN 15, R2.210
S21OT15 ADCI IT1-1, F2.200

IF F2.200, GE, 20, S210S16
ADCI IT1-1, F2.200
IF F2.200, LT, 6, S210S8
GOTO S21OT15

S21OS16 MOVN 16, R2.210
S21OT16 ADCI IT1-1, F2.200

IF F2.200, LT, 20, S210S15
GOTO S21OT16

/ CEASE OPERAT ION

S21OZ ABEY
STOP

185

Appendix B

The Detergent-Service Operation

B. 1 Synthesis of Selected Controllers

B. 1.1 Controller Cdc

Elementary Component Modelling

Elementary State Transition
Component Label Description Var. Label Description To state
P10 1* Deenergised 0 94 Energising 2

2 Energised 1 95 Deenergising 1

TIMER-30 1* Idle 0 96 Releasing 2
2 Released 1 549 Expiring 1

TIMER-10 1* Idle 0 97 Releasing 2
2 Released 1 548 Expiring 1

IS1-2 1* Covered 0 527 Decreasing 2
2 Uncovered 1 528 Increasing 1

IS1-3 1 Nonconductive 0 572 Conducting 2
2* Conductive 1 571 Nonconducting 1

P6-FB 1* Deenergised 1 546 Energising 2
2 Energised 0 547 Deenergising 1

Table B. 1: Elementary Component FSMs in Ed,

Process Specification

1. Never release both timers simultaneously

(oo, 1,1, oo, oc, oo) = FALSE

2. When the pump is energised, release the 10s timer and energise the dose pump

(0,0,0,0,0,0) -0 [T = 97] - 0[-F= 94]

186

Appendix B. The Detergent-Service Operation

3. When the 10s timer is released, interlock the dose pump to energised

(1,0,1,0,0,0) -+ 0 ['r 95]

187

4. When the 10s timer expires, release the 30s timer and deenergise the dose
pump

(1,0,1,0,0,0) A [-r = 548] -+ 0[T = 96] - 0[-r = 95]

5. When the 30s timer is released, interlock the dose pump to deenergised

(0,1,0,0,0,0) ---f 0 [T 94]

6. When the fluid reaches the desired conductivity, deenergise the dose pump

(1, oo, oo, oo) 1, o0) -* Oft = 95]

7. When the fluid has reached the desired conductivity, interlock the dose pump
to deenergised

(0, oo, oo) oo, 1, oo) ---+ O[T 94]

8. If the circulation pump deenergises, deenergise the dose pump

(1,00,00,00,00,1) -+ Oft = 95]

9. When the circulation pump is deenergised, interlock the dose pump to deen-
ergised

(0, oo, 00,00, oo, 1) -+ 0[-F 0 94]

10. If T7 runs dry, deenergise the dose pump

(1, oo, oo, 1) oo, oo) -+ O[T = 95]

11. When T7 is dry, interlock the dose pump to deenergised

(07oc, oo, 1)oc, oo) -+ 0[T 94]

Appendix B. The Detergent-Service Operation 188

Synthesis Results

State Variables 94 95
Transitions to state

96 97 527 528 546 547 548 549 571 572
1 0,0,0,0,0,1 4 8 2
2* 0,0,0,0,1,1 3 7 1
3 0,0,0,1,1,1 2 6 4
4 0,0,0,1,0,1 1 5 3
5 0,0,0,1,0,0 8 4 6
6 0,0,0117 17 0 7 3 5
7 0,0,0,07 17 0 6 2 8
8 0,0,0,0,0,0 9
9 0,0,1,0,0,0 10
10 1,07 11 0,0,0 30 31 20 11
11 1,0,1,0,1,0 12
12 0,0,1,0,1,0 14 18 7 13
13 0,0,1,0,0,0 10
14 0,0,1,1,1,0 12 17 6 15
15 0,0,1,1,0,0 13 16 5 14
16 0,0, ill, 0,1 19 15 4 17
17 0,0,1,1,1,1 18 14 3 16
18 0,0,1,0,1,1 17 12 2 19
19 0,0,1,0,0,1 16 13 1 18
20 1,0,0,0,0,0 21
21 1,1,0,0,0,0 22
22 0,1,0,0,0,0 25 29 8 23
23 0,1,0,0,1,0 24 28 7 22
24 0,1,0,1,1,0 23 27 6 25
25 011,011,010 22 26 5 24
26 0,1,0,1,0,1 29 25 4 27
27 07 11 0,1,1,1 28 24 3 26
28 0,1,0,0,1,1 27 23 2 29
29 0,1,0,0,0,1 26 22 1 28
30 1,0) 1111 0,0 15
31 1,0,1,0,0,1 19

Table B. 2: FSM Generating L(Cd,)

Appendix B. The Detergent-Service Operation 189

B. 1.2 Controller Chu
Elementary Component Modelling

Elementary State Transition
Component Label Description Var. Label Description To state
IT1-17 1 Temp < 75 0 570 Increasing 2

2* Temp > 75 1 569 Decreasing 1
IS1-2 1* Covered 0 527 Decreasing 2

2 Uncovered 1 528 Increasing 1
P6-FB 1* Deenergised 1 546 Energising 2

2 Energised 0 547 Deenergising 1
IT1-16 1* Temp < 90 0 568 Increasing 2

2 Temp > 90 1 567 Decreasing 1
AV1-4 1* Closed 0 9 Opening 2

2 Open 1 10 Closing 1
IC1-8 1* Disabled 0 19 Enabling 2

2 Enabled 1 20 Disabling 1

Table B. 3: Elementary Component FSMs in Ehu

Process Modelling

1. If steam valve is closed, temperature cannot increase

(oo, oo, oo, oo, 0, oo) -> Q['r 568 V 570]

Process Specification

1. Do not enable the temperature controller if the steam valve is closed

(oo, oo, oo, oo) 0) 1) = FALSE

2. When the circulation pump is energised, open steam valve and enable tem-
perature controller

(0,0,0,0,0,0) -+ Oft = 9] -> Q[T = 19]

3. Once the steam valve is opened and temperature controller is enabled, inter-
lock the steam valve and temperature controller

(0,0,0,0,1,1) -+ O [T 10 V 20]

4. When the setpoint temperature in T7 is reached, disable temperature con-
troller and close steam valve

(1
7 00,00) 00) 17 1) 0 [T = 20] -+ 0 [T = 10]

Appendix B. The Detergent-Service Operation 190

5. When setpoint temperature in T7 is reached, interlock the steam valve and
temperature controller

(1, oo, 007oo, 010) -+O[T 9V 19]

6. If low level is detected in tank T7, disable temperature controller and close
steam valve

(00,1100700)1,1)-+O[T=20]-+0[T=10]

7. When level in T7 is low, interlock the steam valve and temperature controller

(00,1, oo, oo, O, 0) -+Q[T 9V 19]

8. If the circulation pump is deenergised, disable temperature controller and
close steam valve

(00,00,1,00) 1,1 -*O[r=20]-+ 0[T=10]

9. When the circulation pump is deenergised, interlock the steam valve and
temperature controller

(oo, 003 11oo, 9,9) -ý O[T 9V 19]

10. If high temperature is detected at heat exchanger outlet, disable temperature
controller and close steam valve

(00) 00 7 00 7 17 17 1)-*0[T=20] -+O[t= 10]

11. When temperature at heat exchanger outlet is high, interlock the steam valve
and temperature controller

(oo, o01o0,13030) -- O[T 97 19]

Appendix B. The Detergent-Service Operation 191

Synthesis Results

State Variables 9 10 19 20
Transitions to state
527 528 546 547 567 568 569 570

1 0101110,010 2 4
2 01151707010 1 3
3 0,1,0,0,0,0 4 2
4 0,0,0,0,0,0 5
5 0,0,0,0,1,0 6
6 0,0,0,0,1,1 7 15 17 9
7 0,1,0,0,1,1 8
8 0,1,0,0,1,0 3
9 1,0,0,0,1,1 10
10 1,0,0,0,1,0 11
11 1,0,0,0,0,0 12 14 4
12 1,1,0,0,0,0 11 13 3
13 1117 17 0,0,0 14 12 2
14* 1,0,1,0,0,0 13 11 1
15 0,0,1,0,1,1 16
16 0)011701170 1
17 0,0,0,1,1,1 18
18 0,0,0,1,1,0 19
19 07070,17010 20 22 4
20 07 11 0,1,0,0 19 21 3
21 011,1717070 22 20 2
22 070,1117070 21 19 1

Table B. 4: FSM Generating L(Chu)

Appendix B. The Detergent-Service Operation

B. 1.3 Controller Crc

Elementary Component Modelling

Elementary State Transition
Component Label Description Var. Label Description To state
AV1-22 1 Open 0 13 Closing 2

2* Closed 1 14 Opening 1
AVl-25 1 Closed 0 15 Opening 2

2* Open 1 16 Closing 1
AV1-14 1 Closed 0 11 Opening 2

2* Open 1 12 Closing 1
P6 1 Deenergised 0 17 Energising 2

2* Energised 1 18 Denergising 1
IS1-1 1* Covered 0 525 Decreasing 2

2* Uncovered 1 526 Increasing 1
IS1-2 1* Covered 0 527 Decreasing 2

2 Uncovered 1 528 Increasing 1

Table B. 5: Elementary Component FSMs in Erc

Process Modelling

1. IS1-1 cannot be covered if ISl-2 is uncovered

(oo, oo, oo, o0,0) 1) = FALSE

2. When the drain valve is closed, the level cannot decrease

(oo, o0,0, o0, oc, oc) -+ 0 [T 525 V 527]

3. When the feed valve is closed, the level cannot increase

(oo, 0, oo) oo, oo, oo) -4 O[T 526 V 528]

Process Specification

192

1. From the initial state, close AV1-22, open AVl-25 and AV1-14 and energise
pump

(0,0,0,0,0,0) --> 0[7- = 13] --> 0[, r = 15] -+ 0[-r = 11] -> 0[, F = 17]

2. When IS1-2 is covered, interlock valves and pump

(1,1,1,1, oo, 0)-0[-r 14V16V12V18]

Appendix B. The Detergent-Service Operation

3. If tank T7 is empty, then deenergise the pump

(oo, oo, oo, 1,1,1) -+ Oft = 18]

4. When tank T7 is refilling, interlock valves and pump

(1,1,1,0,1, oo) -+ O[T 14V 16V 12V 17]

Synthesis Results

193

Table B. 6: FSM Generating L(Crc)

Transitions to state
State Variables

J
11 13 15 17 18 525 526 527 528

Appendix B. The Detergent-Service Operation 194

B. 2 PARACODE for
Selected Sequences

B. 2.1 Sequence Derived from
Controller Cd,

SEQ 2.201
/ ------------------------------------

/ THIS CONTROLLER PERFORMS THE
/ CAUSTIC DOSE PHASE TO PREPARE
/ THE DETERGENT FLUID IN TANK T7.
/ CAUSTIC IS DOSED VIA INTERMITTENT
/ OPERATION OF P10 (10s ON, 30s OFF).
/ FLUID IS CONTINUOUSLY RECIRCULATED
/ BY P6. THE LEVEL IN TANK T7 IS
/ CONTINUOUSLY CHECKED. THE
/ PHASE TERMINATES WHEN CONDUCTIVITY
/ SWITCH IS1-3 IS TRIGGERED.

/ ------------------------------------

/ INHIBITED SEQUENCES

INSQ 1.161

/ EMERGENCY ITEMS

/ PRE CHECKS

S201A1 MOVN
MOVN
IFOE
MOVN
IFTR
MOVN
IFTR
MOVN
IFIE
MOVN
IFIE
MOVN
IFIE
GOTO

-1, R2.201
1, R2.200
P10, S201A2
2, R2.200
1.202, S201A2
3, R2.200
1.203, S201A2
4, R2.200
IS1-2, S201A2
5, R2.200
IS1-3, S201A2
6, R2.200
P6, S201A2
S201S1

S201A2 MESS 1.200,1.1
VARN 2
VARN 201
VARR R2.200
VARR R2.201
ALSQ 2.201

GOTO S201A1

/ BEGIN OPERA TION

S201S1 MOVN
S201T1 IFIE

IFIE
IFIE
GOTO

S201S2 MOVN

S201T2 IFINE
IFIE
IFIE

1, R2.201
IS1-3, S201S2
IS1-2, S201S4
P6, S201S8
S201T1

2, R2.201
IS1-3, S201S1
IS1-2, S201S3
P6, S201S7

GOTO

S201S3 MOVN
S201T3 IFINE

IFINE
IFIE
GOTO

S201S4 MOVN
S201T4 IFIE

IFINE
IFIE
GOTO

S201S5 MOVN
S201T5 IFIE

IFINE
IFINE
GOTO

S201S6 MOVN
S201T6 IFINE

IFINE
IFINE
GOTO

S201S7 MOVN
S201T7 IFINE

IFIE
IFINE
GOTO

S201S8 MOVN
STMN
RLTM
WAIT

S201S9 MOVN
ENGE
WAIT

S201S10 MOVN
S201T10 IFIE

IFTZ
IFIE
IFINE
GOTO

S201S11 MOVN
DENG
WAIT

S201S12 MOVN
S201T12 IFINE

IFTZ
IFIE
IFINE
GOTO

S201S13 MOVN
ENGE
WAIT
GOTO

S201S14 MOVN
S201T14 IFINE

IFTZ
IFINE
IFINE
GOTO

S201T2

3, R2.201
IS1-3, S201S4
IS1-2, S201S2
P6, S201S6
S201T3

4, R2.201
IS1-3, S201S3
IS1-2, S201S1
P6, S201S5
S201T4

5, R2.201
IS1-3, S201S6
IS1-2, S201S8
P6, S201S4
S201T5

6, R2.201
IS1-3, S201S5
IS1-2, S201S7
P6, S201S3
S201T6

7, R2.201
IS1-3, S201S8
IS1-2, S201S6
P6, S201S2
S201T7

8, R2.201
1.203,10
1.203
5

9, R2.201
P10
5

10, R2.201
IS1-3, S201S11
1.203, S201S20
IS1-2, S201S30
P6, S201S31
S201T10

11, R2.201
P10
5

12, R2.201
IS1-3, S201S13
1.203, S201S7
IS1-2, S201S14
P6, S201S18
S201T12

13, R2.201
P10
5
S201S10

14, R2.201
IS1-3, S201S15
1.203, S201S6
IS1-2, S201S12
P6, S201S17
S201T14

Appendix B. The Detergent-Service Operation 195

S201S15 MOVN
S201T15 IFIE

IFTZ
IFINE
IFINE
GOTO

S201S16 MOVN
S201T16 IFIE

IFTZ
IFINE
IFIE
GOTO

S201S17 MOVN
S201T17 IFINE

IFTZ
IFINE
IFIE
GOTO

S201S18 MOVN
S201T18 IFINE

IFTZ
IFIE
IFIE
GOTO

S201S19 MOVN
S201T19 IFIE

IFTZ
IFIE
IFIE
GOTO

S201S20 MOVN
STMN
RLTM
WAIT

S201S21 MOVN
DENG
WAIT

S201S22 MOVN
S201T22 IFIE

IFTZ
IFIE
IFINE
GOTO

S201S23 MOVN
S201T23 IFINE

IFTZ
IFIE
IFINE
GOTO

S201S24 MOVN
S201T24 IFINE

IFTZ
IFINE
IFINE
GOTO

S201S25 MOVN
S201T25 IFIE

IFTZ
IFINE
IFINE
GOTO

15, R2.201
IS1-3, S201S14
1.203, S201S5
IS1-2, S201S13
P6, S201S16
S201T15

S201S26 MOVN
S201T26 IFIE

IFTZ
IFINE
IFIE
GOTO

S201S27 MOVN
S201T27 IFINE

IFTZ
IFINE
IFIE
GOTO

S201S28 MOVN
S201T28 IFINE

IFTZ
IFIE
IFIE
GOTO

S201S29 MOVN
S201T29 IFIE

IFTZ
IFIE
IFIE
GOTO

S201S30 MOVN
DENG
WAIT
GOTO

S201S31 MOVN
DENG
WAIT
GOTO

26, R2.201
IS1-3, S201S27
1.202, S201S4
IS1-2, S201S29
P6, S201S25
S201T26

16, R2.201
IS1-3, S201S17
1.203, S201S4
IS1-2, S201S19
P6, S201S15
S201T16

17, R2.201
IS1-3, S201S16
1.203, S201S3
IS1-2, S201S18
P6, S201S14
S201T17

18, R2.201
IS1-3, S201S19
1.203, S201S2
IS1-2, S201S17
P6, S201S12
S201T18

19, R2.201
IS1-3, S201S18
1.203, S201S1
IS1-2, S201S16
P6, S201S13
S201T19

20, R2.201
1.202,30
1.202
5

21, R2.201
P10
5

22, R2.201
IS1-3, S201S23
1.202, S201S8
IS1-2, S201S25
P6, S201S29
S201T22

23, R2.201
IS1-3, S201S22
1.202, S201S7
IS1-2, S201S24
P6, S201S28
S201T23

24, R2.201
IS1-3, S201S25
1.202, S201S6
IS1-2, S201S23
P6, S201S27
S201T24

25, R2.201
IS1-3, S201S24
1.202, S201S5
IS1-2, S201S22
P6, S201S26
S201T25

27, R2.201
IS1-3, S201S26
1.202, S201S3
IS1-2, S201S28
P6, S201S24
S201T27

28, R2.201
IS1-3, S201S29
1.202, S201S2
IS1-2, S201S27
P6, S201S23
S201T28

29, R2.201
IS1-3, S201S28
1.202, S201S1
IS1-2, S201S26
P6, S201S22
S201T29

30, R2.201
P10
5
S201S15

31, R2.201
P10
5
S201S19

/ CEASE OPERATION

S201Z ABEY
STOP

B. 2.2 Sequence Derived from
Controller Chi

. SEQ 2.204
/ ------------------------------------

/ THIS CONTROLLER PERFORMS THE
/ HEAT UP PHASE. DETERGENT FLUID
/ IN TANK T7 IS HEATED BY HE3.
/ FLUID IS CONTINUOUSLY RECIRCULATED
/ BY P6. THE LEVEL IN TANK T7 IS
/ CONTINUOUSLY CHECKED.
/ AN EMERGENCY OCCURS IF A
/ TEMPERATURE ABOVE 90C IS DETECTED
/ AT IT1-16. THE FLUID IS HEATED TO 75C
/ AS INDICATED BY IT1-17.

/ ------------------------------------

/ INHIBITED SEQUENCES

/ EMERGENCY ITEMS

Appendix B. The Detergent-Service Operation 196

/ PRE CHECKS

S204A1 MOVN -1, R2.204
MOVN 1, R2.200
ADCI IT1-17, F2.200
IF F2.200, GE, 75, S204A2
MOVN 2, R2.200
IFIE IS1-2, S204A2
MOVN 3, R2.200
IFIE P6, S204A2
MOVN 4, R2.200
ADCI IT1-16, F2.200
IF F2.200, GE, 90, S204A2
MOVN 5, R2.200
IFOE AV1-4, S204A2
MOVN 6, R2.200
IFSAC 1.106, S204A2
GOTO S204S1

S204A2 MESS 1.200,1.1
VARN 2
VARN 204
VARR R2.200
VARR R2.204
ALSQ 2.204
GOTO S204A1

/ BEG IN OPERATION

S204S1 MOVN 1, R2.204
S204T1 IFIE IS1-2, S204S2

IFIE P6, S204S4
GOTO S204T1

S204S2 MOVN 2, R2.204
S204T2 IFINE IS1-2, S204S1

IFIE P6, S204S3
GOTO S204T2

S204S3 MOVN 3, R2.204
S204T3 IFINE IS1-2, S204S4

IFINE P6, S204S2
GOTO S204T3

S204S4 MOVN 4, R2.204
ENGE AV1-4
WAIT 5

S204S5 MOVN 5, R2.204
STSQ 1.106
WAIT 5

S204S6 MOVN 6, R2.204
S204T6 IFIE IS1-2, S204S7

ADCI IT1-17, F2.200
IF F2.200, GE, 75, S204S9

IFINE P6, S204S15
ADCI IT1-16, F2.200
IF F2.200, GE, 90, S204S17

GOTO S204T6

S204S7 MOVN 7, R2.204
SPSQ 1.106
WAIT 5

S204S8 MOVN 8, R2.204
DENG AV1-4
WAIT 5
GOTO S204S3

S204S9 MOVN 9, R2.204
SPSQ 1.106
WAIT 5

S204S10 MOVN 10, R2.204
DENG AV1-4
WAIT 5

S204S11 MOVN 11, R2.204
S204T11 IFIE IS1-2, S204S12

ADCI IT1-17, F2.200
IF F2.200, LT, 75, S204S4
IFINE P6, S204S14
GOTO S204T11

S204S12 MOVN 12, R2.204
S204T12 IFINE IS1-2, S204S11

ADCI IT1-17, F2.200
IF F2.200, LT, 75, S204S3
IFINE P6, S204S13
GOTO S204T12

S204S13 MOVN 13, R2.204
S204T13 IFINE IS1-2, S204S14

ADCI IT1-17, F2.200
IF F2.200, LT, 75, S204S2
IFIE P6, S204S12
GOTO S204T13

S204S14 MOVN 14, R2.204
S204T14 IFIE IS1-2, S204S13

ADCI ITI-17, F2.200
IF F2.200, LT, 75, S204S1
IFIE P6, S204S11
GOTO S204T14

S204S15 MOVN 15, R2.204
SPSQ 1.106
WAIT 5

S204S16 MOVN 16, R2.204
DENG AV1-4
WAIT 5
GOTO S204S1

S204S17 MOVN 17, R2.204
SPSQ 1.106
WAIT 5

S204S18 MOVN 18, R2.204
DENG AV1-4
WAIT 5

S204S19 MOVN 19, R2.204
S204T19 IFIE IS1-2, S204S20

IFINE P6, S204S22
ADCI IT1-16, F2.200
IF F2.200, LT, 90, S204S4
GOTO S204T19

S204S20 MOVN 20, R2.204
S204T20 IFINE IS1-2, S204S19

IFINE P6, S204S21
ADCI IT1-16, F2.200
IF F2.200, LT, 90, S204S3
GOTO S204T20

S204S21 MOVN 21, R2.204
S204T21 IFINE IS1-2, S204S22

IFIE P6, S204S20

Appendix B. The Detergent-Service Operation

ADCI IT1-16, F2.200
IF F2.200, LT, 90, S204S2
GOTO S204T21

S204S22 MOVN 22, R2. 204
S204T22 IFIE IS1-2, S204S21

IFIE P6, S20 4S19
ADCI IT1-16, F2.200
IF F2.200, LT, 90, S204S1
GOTO S204T22

/ CEASE OPERAT ION
/
S204Z ABEY

STOP

B. 2.3 Sequence Derived from
Controller Crc

. SEQ 2.202
/ ------------------------------------

/ THIS CONTROLLER PERFORMS THE RECYCLE
/ PHASE.
/ DETERGENT FLUID IS CIRCULATED
/ AROUND TANK T7 BY PUMP P6.
/ IF LOW LEVEL IS DETECTED AT
/ IS1-2, P6 IS STOPPED.

/ ------------------------------------
t
/ INHIBITED SEQUENCES

INSQ 1.65
INSQ 1.66
INSQ 1.156
INSQ 1.157
INSQ 1.159
INSQ 1.162
INSQ 1.163
INSQ 2.205
INSQ 2.218
INSQ 2.221

/ EMERGENCY ITEMS

/ PRE CHECKS

S202A1 MOVN -1, R2.202
MOVN 1, R2.200
IFOE AV1-22, S202A2

MOVN 2, R2.200
IFOE AV1-25, S202A2

MOVN 3, R2.200
IFOE AV1-14, S202A2

MOVN 4, R2.200

IFOE P6, S202A2

MOVN 5, R2.200

IFINE IS1-1, S202A2

MOVN 6, R2.200

IFIE IS1-2, S202A2

GOTO S202S1

S202A2 MESS 1.200,1.1
VARN 2
VARN 202

VARR R2.200
VARR R2.202
ALSQ 2.202
GOTO S202A1

/ BEGIN OPERATION

S202S1 MOVN 1, R2.202
ENGE AV1-22
WAIT 5

S202S2 MOVN 2, R2.202
ENGE AV1-25
WAIT 5

S202S3 MOVN 3, R2.202
ENGE AV1-14
WAIT 5

S202S4 MOVN 4, R2.202
ENGE P6
WAIT 5

S202S5 MOVN 5, R2.202
S202T5 IFINE IS1-1, S202S6

GOTO S202T5

S202S6 MOVN 6, R2.202
S202T6 IFIE IS1-1, S202S5

IFIE IS1-2, S202S7
GOTO S202T6

S202S7 MOVN 7, R2.202
DENG P6
WAIT 5

S202S8 MOVN 8, R2.202
S202T8 IFINE IS1-2, S202S9

GOTO S202T8

S202S9 MOVN 9, R2.202
S202T9 IFIE IS1-1, S202S4

IFIE IS1-2, S202S8
GOTO S202T9

/ CEASE OPERATION

S202Z ABEY
STOP

197

Appendix C

PARACODE Transition Lookup
Table

PART 1- CONTROLLABLE TRANSITIONS

COLUMN 1- FSM TRANSITION LABEL.
It COLUMN 2- PARACODE INSTRUCTION.
It COLUMN 3- PLANT ITEM REFERENCE.

COMMENTS BEGIN ON A FRESH LINE
BEGINNING WITH A #.

OVERFLOW LINES BEGIN WITH A+

It ------------------------------------

1 ENGE SSV1-3
2 DENG SSV1-3
3 ENGE AV1-10
4 DENG AV1-10
5 ENGE AV1-15
6 DENG AV1-15
7 MOVN 400, F1.92
+ DACO IF1-1. F1.92
+ ENGE P1
8 DENG P1
9 ENGE AV1-4
10 DENG AV1-4
11 ENGE AV1-14
12 DENG AV1-14
13 ENGE AV1-22
14 DENG AV1-22
15 ENGE AV1-25
16 DENG AV1-25
17 ENGE P6
18 DENG P6

* Temperature control loop (IC1-8) sequence

19 STSQ 1.106

20 SPSQ 1.106

Rou teing valves

21 ENGE DDV1-1

22 DENG DDV1-1

23 ENGE DDV1-3

24 DENG DDV1-3

25 ENGE DDV1-6

26 DENG DDV1-6
27 ENGE DDV1-8
28 DENG DDV1-8
31 ENGE AV1-16
32 DENG AV1-16
33 ENGE AV1-41
34 DENG AV1-41
35 ENGE AV1-40
36 DENG AV1-40
37 ENGE AV1-47
38 DENG AV1-47
49 ENGE AV1-24
50 DENG AV1-24
53 ENGE AV1-20
54 DENG AV1-20

Timer for water rinse phase

67 STMN 1.201, 0
82 FZTM 1.201
+ STMN 1.201, 0
84 STMN 1.201, 600
+ RLTM 1.201
85 FZTM 1.201
86 RLTM 1.201

94 ENGE P10
95 DENG P10

Timers for caustic dose phase

96 STMN 1.202, 30
+ RLTM 1.202
97 STMN 1.203, 10
+ RLTM 1.203

CIP feed valves

110 ENGE
111 DENG
112 ENGE
113 DENG
114 ENGE
115 DENG
116 ENGE
117 DENG
118 ENGE
119 DENG

Tank T2 drain

SSV1-1
SSV1-1
SSV1-2
SSV1-2
SSV1-4
SSV1-4
SSV1-5
SSV1-5
ABV1-3
ABV1-3

198

Appendix C. PARACODE Transition Lookup Table

128 ENGE P2
129 DENG P2
130 ENGE AV1-42
131 DENG AV1-42

PART 2- UNCONTROLLABLE TRANSITIONS

COLUMN 1- FSM TRANSITION LABEL.
COLUMN 2- PARACODE CONDITIONAL.
COLUMN 3- RELATIONAL EXPRESSION
OR PLANT ITEM REFERENCE.

WHERE PARACODE LINE IS PRECEDED BY:

ADCI ITEM-REF, F2.200

(AS IS USED IN NUMERICAL CALCULATIONS
AND REASONING), USE THE ABBREVIATED
SYNTAX *(ITEM-REF).

Level switches in tank T7
IS1-1 is energised when covered
IS1-2 is deenergised when covered

525 IFINE IS1-1
526 IFIE IS1-1
527 IFIE IS1-2
528 IFINE IS1-2

Proximity switches on tank T1 lid
PS1-1 is energised when closed.

531 IFINE PS1-1
532 IFIE PS1-1

Levels in tank T1

535 IF *(IT1-1), GE, 3
536 IF *(IT1-1), GE, 6
537 IF *(IT1-1), GE, 20
538 IF *(IT1-1), LT, 20

539 IF *(IT1-1), LT, 6
540 IF *(IT1-1), LT, 3

543 IF *(IT1-1), GE, 1.5

544 IF *(IT1-1), LT, 1.5

Pump P6 feedbacks

546 IFIE P6

547 IFINE P6

Timer expiries

548 IFTZ 1.203

549 IFTZ 1.202

550 IFTZ 1.201

High temperature threshold for CIP fluid

567 IF *(IT1-16), LT, 90

568 IF *(IT1-16), GE, 90

Setpoint temperature for CIP fluid

*

199

569 IF *(IT1-17), LT, 75
570 IF *(IT1-17), GE, 75

Concentration switch for CIP fluid
IS1-3 is energised when at concentration

571 IFINE IS1-3
572 IFIE IS1-3

References

Nicholas Alsop, Luca Solfaroli Camillocci, and Sandro Macchietto. Automated syn-
thesis of procedural control code. In Advances in Process Control IV. IChemE,
27-28 September 1995. York, U. K.

APV Baker, Crawley, U. K. ACCOS 30 Training Manual, 1994. Issue 1.

Karl-Erik Arzen. Grafcet for intelligent supervisory control applications. Automat-
ica, 30(10): 1513-1525,1994.

A. Attoui and M. Schneider. VALID: An environment based on the rewriting logic
for the formal modelling of manufacturing systems. In Computer Integrated
Manufacturing in the Process Industries, New Jersey, U. S. A., April 25-26 1994.

M. Austwick and M. Norris. Software tools for application to large real time systems,
VDM. Technical Report ISBN 0-85012-574-X, BT, 1986.

S. Balemi, G. J. Hoffman, P. Gyugyi, H. Wong-Toi, and G. F. Franklin. Supervisory

control of a rapid thermal multiprocessor. IEEE Transactions on Automatic
Control, 38(7): 1040-1059, July 1993.

Rene K. Boel. On forbidden state problems for a class of controlled Petri nets.
IEEE Transactions on Automatic Control, 40(10): 1717-1731, October 1995.

O. R. Boissel and J. C. Kantor. Optimal feedback control design for discrete-event

systems using simulated annealing. Computers chem. Engrng., 19(3): 253-266,

1995.

Jonathan Bowen, Martin Fränzle, Ernst-Rüdiger Olderog, and Anders P. Ravn.
Developing correct systems. In 5th EUROMICRO Workshop on Real-Time
Systems, pages 176-187, Oulu, Finland, June 22-24 1993.

B. A. Brandin and W. M. Wonham. Supervisory control of timed discrete event

systems. IEEE Transactions on Automatic Control, 39(2): 329-341, February

1994.

J. Brazendale and I. Lloyd. The design and validation of software used in control

systems. In HAZARDS X: Process Safety in Fine & Speciality Chemicals Plants

Including Developments in Computer Control of Plants, number 115 in IChemE

Symposium Series. 1989.

200

References 201

J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and J. Hwang. Symbolic model
checking: 1020 and beyond. In Symposium on Logics and Computation Sciences,
1990.

Luca Solfaroli Camillocci. Synthesis of procedural controllers for chemical processes.
Master's thesis, Centre for Process Systems Engineering, Imperial College, Lon-
don SW7 2BY, June 1995.

S. Chung, S. Lafortune, and F. Lin. Limited lookahead policies in supervisory
control of discrete event systems. IEEE Transactions on Automatic Control,
December 1992.

E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite state
concurrent systems using temporal logic specifications. ACM Trans. on Pro-

gramming Lang. and Sys., 8(2): 244, April 1986.

K. Clements-Jewery and W. Jeffcoat. The PLC Workbook. Prentice Hall, 1996.
ISBN 0-13-489840-0.

Barry John Cott. An Integrated Computer-Aided Production Management System

for Batch Chemical Processes. PhD thesis, University of London, June 1989.

Peter Croll and Patrick Nixon. Developing safety-critical software within a CASE

environment. In Computer Aided Software Engineering Tools for Real-Time
Control, pages 2/1-2/4. IEEE Computing and Control Division, April 1991.

Terrence Crombie. SUPERBATCH 2 users guide. Technical Report 0.3, Centre for
Process Systems Engineering, Imperial College, London SW7 2BY, September
3 1996.

Colin A. Crooks. Synthesis of Operating Procedures for Chemical Plants. PhD

thesis, University of London, June 1992.

D. Andreu, J. C. Pascal, H. Pingaud, and R. Valette. Batch process modelling using
Petri nets. In IEEE International Conference on Systems, Man & Cybernetics,

San Antonio, Texas, October 2-5 1994.

Rene David and Hassane Alla. Petri nets for modelling of dynamic systems: A

survey. Automatica, 30(2): 175-202,1994.

V. D. Dimitriadis, N. Shah, and C. C. Pantelides. Modelling and safety verification

of discrete /continuous processing systems using discrete time domain models.

In Analysis and Design of Event-Driven Operations in Process Systems, 10-11

April 1995. London, U. K.

V. D. Dimitriadis, N. Shah, and C. C. Pantelides. Optimal design of hybrid con-

trollers for hybrid process systems. In DIMACS Workshop on Verification and
Control of Hybrid Systems, New Brunswick, 1995.

References 202

N. R. Foulkes, M. J. Walton, P. K. Andow, and M. Galluzzo. Computer-aided synthe-
sis of complex pump and valve operations. Cornput. Chem. Engng., 12: 1035-
1044,1988.

Yoshitaka Fujii, Masatoshi Nakahara, and Art Adams. Simplifying batch control &
recipe management. Intech, pages 41-42, January 1991.

R. H. Fusillo and G. J. Powers. A synthesis method for chemical plant operating
procedures. Comput. Chem. Engng., 11(4): 369-382,1987.

Armen Gabrielian. Formal specification and verification of real-time sequential con-
trol systems. In Computer Integrated Manufacturing in the Process Industries,
New Jersey, U. S. A., April 25-26 1994.

Erica Gallo. Synthesis of procedural controllers for industrial processes :A case
study. Master's thesis, Centre for Process Systems Engineering, Imperial Col-
lege, London SW7 2BY, September 1996.

M. Gerzson and K. M. Hangos. Analysis of controlled technological systems using
high level Petri nets. Computers chem. Engng., 19, Suppl.: S531-S536,1995.

M. Gerzson, Zs. Csaki, and K. M. Hangos. Qualitative model based verification of
operating procedures by high level Petri nets. Comput. Chem. Engng., 18: S565-
S569,1994.

W. Wayt Gibbs. Software's chronic crisis. Scientific American, pages 72-81,
September 1994.

K. Kumar Gidwani, Paul A. Boyette, and B. J. Gamble. Engineering contractor's
perspective on batch plant of the future. In Advances in Instrumentation,

volume 44, pages 213-222. ISA Services Inc., 1989.

David Harel. Statecharts: A visual formalism for complex systems. Science of
Computer Programming, 8: 231-274,1987.

Neils Haxthausen. The painkiller for batch control headaches. Chemical Engineer-
ing, pages 118-124, October 1995.

Michael Heymann. Concurrency and discrete event control. IEEE Control Systems

Magazine, pages 103-112, June 1990.

Daisuke Hiranaka and Hirokazu Nishitani. Sequential control issues in the plant-

wide control system. In Preprints of IFAC symposium "ADCHEM'94", Ad-

vanced Control of Chemical Processes, pages 361-366, Kyoto, Japan, 1994.

Lawrence E. Holloway and Bruce H. Krogh. Efficient synthesis of control logic for

a class of discrete event systems. IEEE Transactions on Automatic Control,

pages 2672-2677,1990.

John Hunt. Testing control software using a genetic algorithm. Engng. Applic.

Artif. Intell., 8(6): 671-680,1995.

References 203

ISA-588.01-1995 Batch Control, Part 1: Models and Terminology, February 28
1995.

V. A. Ivanov, V. V. Kafarov, V. L. Perov, and A. A. Reznichenko. Design principles for
chemical production start-up algorithms. Antomn. Remote Control., 41: 1023-
1032,1981.

V. A. Ivanov, V. V. Kafarov, V. L. Perov, and A. A. Reznichenko. On algorithmization
of the start-up of chemical productions. Engng. Cybernet., 18: 104-110,1981.

P. G. Jones. Computers in chemical plants -a need for safety awareness. Trans.
IChemE, 69(B), August 1991.

A. Kinoshita, T. Umeda, and E. O'Shima. An algorithm for synthesis of oper-
ational sequences of chemical plants. In Proc. 14th European Symposium
on Computerised Control and Operation of Chemical Plants, pages 363-368.
Osterreichisher Chemiker, 1981. Vienna, Austria.

Trevor Kletz, Paul Chung, Eamon Broomfield, and Chaim Shen-Orr. Computer
Control and Human Error. IChemE, 1995.

E. Kondili, C. C. Pantelides, and R. W. H. Sargent. A general algorithm for short-
term scheduling of batch operations - i. MILP formulation. Compact. Chem.
Engng., 17(2): 211-227,1993.

Stefan Kowalewski, Ralf Gesthuisen, and Volker Roßmann. Model based verifica-
tion of batch process control software. In IEEE International Conference on
Systems, Man ¬ Cybernetics, San Antonio, Texas, October 2-5 1994.

P. Kozak and W. M. Wonham. Fully decentralised solutions of supervisory con-
trol problems. IEEE Transactions on Automatic Control, 40(12): 2094-2097,
December 1995.

Bruce H. Krogh and Lawrence E. Holloway. Synthesis of feedback control logic for
discrete manufacturing systems. Automatica, 27(4): 641-651,1991.

R. Kumar, V. Garg, and S. Marcus. Using predicate transformers for supervisory
control. pages 98-103, December 1991. Brighton, U. K.

R. Lakshmanan and G. Stephanopoulos. Synthesis of operating procedures for

complete chemical plants - i. Hierarchical structured modelling for nonlinear
planning. Comput. Chem. Engng., 12(9): 985-1002,1988.

R. Lakshmanan and G. Stephanopoulos. Synthesis of operating procedures for

complete chemical plants - ii. A nonlinear planning methodology. Comput.
Chem. Engng., 12(9): 1003-1021,1988.

R. Lakshmanan and G. Stephanopoulos. Synthesis of operating procedures for

complete chemical plants - iii. Planning in the presence of qualitative, mixing

constraints. Compact. Chem. Engng., 14(3): 301-317,1990.

References 204

S. T. Lange. Considerations for batch process control. Hydrocarbon Processing,
pages 61-62, September 1994.

S. C. Lauzon, A. K. L. Ma, L. K. Mills, and B. Benhabib. Application of discrete-
event-system theory to flexible manufacturing. IEEE Control Systems,
16(1): 41-48, February 1996.

Ryan Leduc. PLC implementation of a DES supervisor for a manufacturing testbed:
An implementation perspective. Master's thesis, Department of Electrical and Computer Engineering, University of Toronto, 1996.

Peter A. Linsey. A survey of mechanical support for formal reasoning. Software
Engineering, pages 2-27, January 1988.

Zhenhai Liu and Sandro Macchietto. Cleaning In Place policies for a food processing
batch pilot plant. Food and Bioproducts Processing, 71(C3), September 1993.

Zhenhai Liu. An Advanced Process Manufacturing System - Design and Application
to a Food Processing Pilot Plant. PhD thesis, University of London, July 1995.

Jonathan Love, Barry Sheil, and Nikos Drakos. A declarative approach to applica-
tions software for batch process control. In The 1992 IChemE Research Event,
pages 680-682, January 9-10 1992. Manchester, U. K.

Jonathan Love, Barry Sheil, and Nikos Drakos. Sequence synthesis for batch pro-
cess control. Journal A, Benelux Quarterly Journal on Automatic Control,
33(l): 42-51,1992.

Jonathan Love. Automatic generation of application software. In PSE '1991, pages
I. 15.1-I. 15.8,1991. Montebello, Canada.

J. A. Lynch. Industrial exemplars in FOREST research: Requirements specifi-
cation of an aircraft hydraulics isolation valve controller. Technical Report
NFR/WP4.1/BAe/RP/008, British Aerospace Ltd., 24 October 1991.

S. Macchietto and I. M. Mujtaba. Design of operation policies for batch distillation.
In G. V. Reklaitis et. al., editor, Batch Processing Systems Engineering: Current
Status and Future Directions. Springer-Verlag, Berlin, 1994.

Sandro Macchietto. Automation research on a food processing pilot plant. In Food
Engineering in a Computer Climate, 126, pages 179-189. IChemE Symposium
Series, 30 March -1 April 1992.

Il Moon, Gary J. Powers, Jerry R. Burch, and Edmund M. Clarke. Automatic verifi-
cation of sequential control systems using temporal logic. AIChE, 38(1): 67-75,
1992.

Joseph M. Morris. Formal developments of programs and proofs. pages 81-115.
1990.

References 205

Yugi Naka. Operational design for chemical processes. Technical report, Research
Laboratory of Resources Utilization, Tokyo Institute of Technology, Nagatsuta,
Midori-ku, Yokohama 226, Japan, December 1994.

Ian Nimmo. Extend hazop to computer controlled systems. Chemical Engineering
Progress, pages 32-44, October 1994.

Eiji O'Shima. Computer aided plant operation. Computers and Chemical Engi-
neering, 7(4): 311-329,1983.

Jonathan S. Ostroff and W. Murray Wonham. A framework for real-time discrete-
event control. IEEE Transactions on Automatic Control, 35(4): 386-397, April
1990.

L. Papageorgiou. Optimal Scheduling of Multipurpose Batch/Semi-Continuous
Plants. PhD thesis, University of London, July 1994.

Ana Barbosa Pövoa. Detailed Design and Retrofit of Multipurpose Batch Plants.
PhD thesis, University of London, March 1994.

Presto Project P4. Final report - Integrated design of control and automation
systems for flexible batch plants. Technical report, Centre for Process Systems
Engineering, September 1996.

Scott T. Probst and Gary J. Powers. Automatic verification of control logic in the
presence of process faults. In AIChE Annual Meeting on Process Operations

and Fault Tolerant Control, November 13-18 1994.

W. J. Quirk. Automated support for marrying requirements to programs. In R. J.
Mitchell, editor, Managing Complexity in Software Engineering, chapter 14,

pages 239-246. Peter Peregrins Ltd., 1990.

P. J. Ramadge and W. M. Wonham. Modular feedback logic for discrete event sys-
tems. SIAM Journal of Control and Optimization, 25(5): 1202-1218,1987.

P. J. Ramadge and W. M. Wonham. Supervisory control of a class of discrete-event

processes. SIAM Journal of Control and Optimization, 25(l): 206-230,1987.

Anders P. Ravn, Hans Rischel, and Kirsten Mark Hansen. Specifying and verifying

requirements of real-time systems. IEEE Transactions on Software Engineer-

ing, 19(1), January 1993.

Alan Reeve. Batch processing a recipe for success ? Process Engineering, pages
49-52, April 1995.

J. Roberto Rivas and Dale F. Rudd. Synthesis of failure safe operations. AIChE,

20(2): 320-325, March 1974.

References 206

Guillermo E. Rotstein and Sandro Macchietto. Stability and optimality of procedu-
ral controllers. In Analysis and Design of Event-Driven Operations in Process
Systems, 10-11 April 1995. London, U. K.

Guillermo E. Rotstein, Arturo Sanchez, Nicholas Alsop, Luca Solfaroli Camillocci,
and Sandro Macchietto. Synthesis of procedural controllers and the automatic
generation of sequential control code. In Analysis and Design of Event-Driven
Operations in Process Systems, 10-11 April 1995. London, U. K.

G. E. Rotstein, A. Sanchez, and S. Macchietto. Procedural control of discrete event
systems. 1996. In preparation.

Arturo Sanchez. Synthesis of Sequential Logic Controllers for Process Systems. PhD
thesis, University of London, August 1994.

Arturo Sanchez. Formal Specification and Synthesis of Procedural Controllers for
Process Systems. Lecture Notes in Control and Information Sciences 212.
Springer, 1996.

Paul Sawyer. Computer Controlled Batch Processing. IChemE, 1993.

Rita Schulz. OBJECT 5- Object-oriented programming for SIMATIC S5. Engi-

neering 4 Automation, XVII(3-4 95): 15-17, May-August 1995.

Sam Skontos. PLCs challenge DCS in batch control. In Process and Control Engi-

neering, volume 44, pages 48-50. PACE, 1991.

J. Teigen and E. Ness. Computerised support in the preparation, implementation

and maintenance of operating procedures. In IFAC Symposium Series. Lund,

Sweden, 1994.

Steffen Uebler. SIGRID - The foundation for successful process automation. Engi-

neering 4 Automation, XVII(3-4/95): 20-21, May-August 1995.

Philippa White. Automate to validate.
September 1996.

The Chemical Engineer, (619) : 17-18,26

Maurice J. Wilkins. Simplify batch automation projects. Chemical Engineering

Progress, pages 61-66, April 1992.

W. M. Wonham and P. J. Ramadge. On the supremal controllable sublanguage of

a given language. SIAM Journal of Control and Optimization, 25(3): 637-659,

1987.

W. M. Wonham. A control theory for discrete-event systems. In M. J. Denham and
A. J. Laub, editors, Advanced Computing Concepts and Techniques in Control

Engineering, pages 129-169. Springer Verlag, 1988.

W. M. Wonham. Notes on Control of Discrete-Event Systems. Systems Control

Group, Dept. of Electrical & Computer Engineering, University of Toronto,

1996. ECE 1636F/1637S.

References 207

E. C. Yamalidou and J. C. Kantor. Modelling and optimal control of discrete event
chemical processes using Petri nets. Compact. Chem. Engng., 15(7): 503-519,
1991.

E. C. Yamalidou, E. P. Patsidou, and J. C. Kantor. Modelling discrete-event dynam-
ical systems for chemical process control -a survey of several new techniques.
Computers chem. Engng., 14(3): 281-299,1990.

Katerina Yamalidou, John Moody, Michael Lemmon, and Panos Antsaklis. Feed-
back control of Petri nets based on place invariants. Automatica, 32(1): 15-28,
1996.

Xiaojun Yang, Michael D. Lemmon, and Panos J. Antsaklis. On the supremal con-
trollable sublanguage in the discrete-event model of nondeterministic hybrid
control systems. IEEE Transactions on Automatic Control, 40(12): 2098-2103,
December 1995.

Li Yong and W. M. Wonham. Control of vector discrete-event systems I- The base
model. IEEE Transactions on Automatic Control, 38(8): 1214-1227, August
1993.

Li Yong and W. M. Wonham. Control of vector discrete-event systems II - Controller
synthesis. IEEE Transactions on Automatic Control, 39(3): 512-531, March
1994.

Hao Zhong and W. Murray Wonham. On the consistency of hierarchical super-
vision in discrete-event systems. IEEE Transactions on Automatic Control,
35(10): 1125-1134, October 1990.

BIý(ý

t 10'ý Ol K.

