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Introduction

The phenomenon of vertical migration (VM) is known since
the beginning of this century [4], and circumscribes the
rhythmic migration of benthic microorganisms onto the
sediment surface when the water drains off and back with
incoming tide. The dimensions in which VM occurs are
generally low and do not exceed 2 mm in muddy sediments
[12]. VM has been described for several phototrophic
microorganisms, such as cyanobacteria, diatoms, dinophytes
and euglenophytes [2, 5, 8, 10, 11, 18, 19]. Light, tidal
rhythm, geotaxis and probably other, yet undefined external

and/or internal variables seem to induce and/or influence this
migration behaviour [cf. 18]. In most of the experiments
approaching this phenomenon cell enumeration was
conducted by direct cell counting, counting of live cells by
epi-(auto)fluorescence or by the lens tissue technique (LTT)
[1–3]. The LTT documents almost exclusively cells active
in movement, whereas cryo-scanning electron microscopy
(Cryo-SEM), which has proven to be an excellent technique
for in situ studies of natural assemblages, does not
differentiate between moving and immotile cells and thus
reveals a static picture of all cells present on the sediment
surface. Cryo-SEM has already been applied to Wadden Sea
sediments inhabited by cyanobacteria, diatoms or euglenoid
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Vertical migration behaviour of
diatom assemblages of Wadden Sea
sediments (Dangast, Germany): a
study using cryo-scanning electron
microscopy 

Summary The vertical migration behaviour of diatom assemblages inhabiting
Wadden Sea sediments near Dangast (Germany) was investigated using cryo-
scanning electron microscopy. The diatom assemblages were dominated by small
Navicula species. Intertidal sediments which were located at different distances
from the high tide level or stayed submerged even throughout low tides were chosen.
Samples were prepared and cryofixed in the field. Sampling was restricted to three
sets: (i) before the onset of vertical migration, (ii) 3 to 5 h after the onset of vertical
migration, and (iii) before the area became flooded again or just prior to dusk. The
diatom assemblages inhabiting the different types of sediments did not always
show the same response. When the tidal cycle exposed the sediment surfaces during
the night cell densities increased in the early morning hours with the onset of light.
Later on, although the photon flux density was still increasing, cell densities stayed
constant or decreased before the water flooded the areas around noon. In experiments
in which the water drained off around noon and the areas became exposed
throughout the entire afternoon, cell densities increased even up to dusk when the
photon flux density had dropped to values below 20 µM photons m–2 s–1. In an
experiment in which the last sampling occured at 10.15 pm, when the photon flux
density had already declined below 10 µM photons m–2 s–1, cell densities had
decreased to lower values. This was ca. 1 h before the area was flooded again.
Finally, cryo-scanning electron microscopy revealed frequently occuring
micropatches of diatom assemblages which could be differentiated into typical
areas of lower and higher cell densities further complicating the pattern of light or
water cover induced movements.

Key words Diatom assemblages · Vertical migration · Cryo-scanning electron
microscopy · Wadden Sea sediments · Navicules
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algae [16] and to cyanobacteria dominated epilithic biofilms
on tropical rocky shores [9] and has allowed to differentiate
and classify some organisms even down to the species level.
Furthermore, it was demonstrated that measurements of cell
densities (i.e. cell counting) by Cryo-SEM studies were
similar to data sets obtained by the LTT [13]. Cryo-SEM,
finally, has already been used for a time scheduled study on
the VM of a Wadden Sea inhabiting diatom assemblage [12].
However, the latter and most of the other experiments on
VM had been performed on sediment cores or laboratory
tidal micro-ecosystems. 

As no experiments on VM were conducted directly with
samples prepared during fieldtrips, we applied Cryo-SEM on
diatom assemblages inhabiting Wadden Sea sediments near
Dangast (Germany). The experiments were conducted when
low tides occurred either at night or in the afternoon, thus
exposing the sediment surfaces at different daytimes and to
different light regimes.

Materials and methods

Field site and sampling conditions Field samples were
withdrawn from muddy intertidal sediments (IS) located on
the North Sea shore near the harbour of Dangast (Germany).
During the study diatoms were almost the only phototrophic
algal group inhabiting the muddy sediments. The dominant
diatoms were small Navicula species. This was ascertained by
light microscopy and Cryo-SEM of sediment samples. Samples
were taken in May and June 1997. The sampling dates and
some physical variables are compiled in Table 1. Patches, at
least 15 to 20 cm in diameter and homogeneously brownish,
were chosen. 

Table 1 Dates and onsets of sunrise, sunset and high-tides of the three
sampling days

May 7 1997 May 20 1997 June 18 1997

Sunrise 5.37 am 5.15 am 4.53 am

Sunset 9.07 pm 9.29 pm 10.00 pm

High tides 2.05 am/2.34 pm 0.16 am/12.46 pm 11.29 am/12.04 pm

Photon flux* 1/730 21/550 4.5/2100
(max/min)

*Photon flux is expressed in µM photons m–2 s–1.

Cryo-SEM preparation Sampling was performed by cutting
sediment samples in squares of approximately 8 x 8 mm and
transfering them onto U-shaped self-made copper support foils
(1 mm thick). The samples were 4 to 8 mm thick. The dark
zones below were almost completely devoid of diatoms. This
was confirmed by Cryo-SEM on freeze fractured sediment
samples and by light microscopical examinations of slides of
parahistological thin sectioned and resin-embedded sediment
cores (data not shown). Cryofixation was achieved by plunging

the copper foils into liquid propane (–184°C), and then cooling
them by liquid N2 (–196°C). Afterwards the samples were stored
in dewars filled with liquid N2. They were transferred to the
laboratory and kept in liquid N2 until Cryo-SEM examination.

For examining the VM of diatom assemblages during low-
tide, samples from the same local patches were removed in
regular intervals and prepared in the same way. Three samples
were taken in parallel, each patch at each time. Furthermore
three types of intertidal sediments (IS) were compared: (i) 
IS-1: intertidal sediments with diatom assemblages that stayed
submerged even during low-tide (water filled holes, cavities,
foot steps in the muddy sediments). These assemblages
exhibited a dark brown colour throughout the entire time of
observation. (ii) IS-2: intertidal sediments adjacent to IS-1 with
diatom assemblages which were completely air-exposed when
the water drained off and became reflooded with incoming tide.
(iii) IS-3: sediments close to the high water border line. They
became submerged like those of IS-2 but only during a short
period of time due to their location near the high-tide level.

Three samples were taken in parallel each time and the
three types of IS were investigated simultaneously. The
procedure was limited to only three sampling days: on May 7
the first sampling was performed immediately before sunrise
(before photon flux exceeded 10 µM photons m–2 s–1

[or: µEinstein m–2 s–1]), then approximately 2 to 3 h later and
finally before tidal immersion. On May 20 and June 18 the
samples were taken immediately after the water had drained
off, approx. 3 h later and finally when photon fluxes had
reached values below 20 or 10 µM photons m–2 s–1, respectively.

Cryo-SEM All manipulations with the cryofixed samples were
performed either under liquid nitrogen, in a vacuum or in a dry
argon atmosphere at temperatures below –95°C. The copper
foils with the samples were mounted onto specimen holders
and transferred into an Oxford CT1500C cryochamber (Oxford,
Wiesbaden, Germany) attached to a Hitachi S3200N scanning
electron microscope. Samples were etched on the cryostage at
–95°C to remove surface water. After etching, the samples were
Sputter-coated with approximately 10–20 nm Au and finally
examined at –180°C in the scanning electron microscope
operating at 20 kV. 

The diatoms were counted on photographic prints of pictures
taken at magnifications of 150–500x . The prints were enlarged
to final magnifications of 300–1000x . As three samples were
taken each time, a minimum of 10 pictures photographed from
each sampled surface could be used for cell density counting.
A transparent foil with a 4 x 4 cm counting area was positioned
arbitrarily onto the prints thus allowing to calculate cell densities
per cm2.

Light measurements Photon flux rates were measured with a
Li-Cor LI-185B Quantum/Radiometer/Photometer equipped
with a LI-192SB Underwater Quantum Sensor. Measured values
are given in µM photons m–2 s–1. 
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Results

General observations Cryo-preparations were conducted using
propane as freezing agent. The procedure of cryofixation was
not time-consuming and could be easily done in the field. Cryo-
SEM evidenced the general conservation of the sediment
structure and the preservation of the diatom cells (see Fig. 1C).
Although sediment areas which appeared to be homogeneously
brownish were chosen, this turned out to be not the case. Thus,
Cryo-SEM revealed that the intertidal diatom patches exhibited

areas which often differed significantly in cell densities (up to
150-fold). This cannot be judged on the field site without
microscopic control. A photograph showing the two areas
simultaneously is given in Fig. 1B. This phenomenon was more
pronounced on May 7 and less on the two other sampling dates.
These areas most probably represent local “micropatches” of
diatom assemblages. We therefore differentiated the patches
sampled in those of higher cell density (hcd-areas) and lower
cell density (lcd-areas) and calculated the cell densities for lcd-
and hcd-areas of each sampling site during the study separately.
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Fig. 1 Photographs obtained from Cryo-
SEM examinations. Figures A to D are
representative pictures of samples from the
same sampling site (IS-2) which were
withdrawn on June 18 at 2.00 pm (A), 
5.15 pm (B), 8.15 pm (C), and 10.00 pm (D),
respectively. Vertical Migration had
occurred. The differences in cell densities
are obvious. In B the different areas of low
cell density (lcd) and high cell density (hcd)
can be seen simultaneously. Bar = 100 µm
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Fig. 2Results of the Cryo-SEM examination on May 7 1997. Different types
of intertidal sediments were sampled. IS-1: intertidal sediments adjacent to
IS-2 with diatom assemblages that stayed submerged even during low tide;
IS-2: intertidal sediments with diatom assemblages which were completely
air-exposed when the water drained off and became reflooded with incoming
tide; IS-3: sediments which became submerged only during a short period of
time due to their location near the high water border line. IS-2 sediments were
not as close to the high water border line as IS-3. Cell densities are expressed
as cells/cm2 and given for IS-1 (A), IS-2 (B) and IS-3 (C) and herein for areas
of low cell densities (lcd-areas, white bars) and high cell densities (hcd-areas,
stripped bars) separately. The tides are indicated below
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Fig. 3 Results obtained by Cryo-SEM on May 20 1997. Cell densities are
expressed as cells/cm2. For details for A, B and C see Fig. 2



However, VM was obvious from Cryo-SEM investigation as
the cell densities varied significantly (see Figs. 2, 3 and 4).
Representative photographs of an IS2-area sampled on June
18, 1997 at 02.00 pm, 05.15 pm, 08.15 pm and 10.00 pm are
shown in Fig. 1A, B, C and D, respectively.

Cryo-SEM investigations on May 7, 1997 On this day high
tide occurred in the night so that the water had already drained
off from the sediments prior to sunrise (Table 1). The mud flats
became flooded around noon. The photon flux rates increased
from 5.30 pm continuously up to 730 µM photons m–2 s–1

measured at 10.30 am. Minor variations were caused by clouds
passing by (data not shown).

The results of our Cryo-SEM investigations are compiled
in Fig. 3. The overall cell densities ranged from 1000 to 34,000
cells per cm2 in lcd-areas and from 140,000 to 660,000 cells
per cm2 in hcd-areas. In the sediments which stayed submerged
even at low tide (IS-1) cell densities increased approx. 
2-fold from 6.45 am to 8.30 am and decreased to values of 
approx. 20,000 (lcd) and 240,000 (hcd) cells per cm2 at 10.40 am. 
This was found for both, lcd- and hcd- areas of IS-1, they
being more pronounced in the hcd-area (Fig. 2A). IS-2, which
became exposed to air during low-tide, exhibited the same
result for the hcd-areas, whereas we registered a continuous
decrease in cell density for its lcd-areas (Fig. 2B). In the
sampling area which became covered by water only during
a short period of time due to its location near the high water
border line (IS-3) cell densities increased slightly throughout
the entire morning in the hcd-area whereas the lcd-areas
showed similar results as obtained for IS-1 (Fig. 2C). 

Cryo-SEM investigations on May 20, 1997 On that day
water drained off around noon thus exposing the sediment
surfaces immediately to photon flux densities of approx. 400
to 600 µM photons m–2 s–1. The curve of the photon flux
density showed some minor variations due to cloudiness
within the first three hours (data not shown). Photon flux
density dropped from values of 500 µM photons m–2 s–1

around 6.00 pm to values below 20 µM photons m–2 s–1 at
8.30 pm. The cell densities measured by Cryo-SEM and
compiled in Fig. 3 increased in IS-1 and IS-2 in hcd- and
lcd-areas until the last sampling at 8.30 pm (Fig. 3A and 3B).
The values calculated for IS-1 increased from approx. 2,000
cells per cm2 to approx. 50,000 cells per cm2. The cell
densities calculated for IS-2 were much higher than those
for IS-1 and increased 3-fold, from approx. 400,000 cells per
cm2 to ca. 1,000,000–1,200,000 cells per cm2. For IS-3 we
registered an approx. 4-fold increase in cell density between
the samples taken at 3.45 pm and 6.30 pm. The values in the
last sample taken at 8.30 pm dropped down to those of the
first sampling. (Fig. 3C). At 8.30 pm the photon flux density
had already decreased to values of 20 µM photons m–2 s–1.
Both, IS-3 and IS-2 could hardly be differentiated into lcd-
and hcd-areas on that day.

Cryo-SEM investigations on June 18, 1997 Like on May 20,
water drained off around noon so that the sediment surfaces
became immediately exposed to light. The photon flux densities
were much higher on this day and decreased from approx. 
2000 µM photons m–2 s–1 measured at 2.30 pm to values below
10 µM photons m–2 s–1 at 10.00 pm (data not shown). We observed
the VM without using any optical instrument as the sediment
surfaces turned from a pale brown to a greyish dark brown. This
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change in colour occurred within 1 h. Our measurements
confirmed this observation in part. The cell densities measured
by Cryo-SEM are compiled in Fig. 4. Cell densities in 
IS-2 and IS-3 increased until 8.15 pm but dropped in the 
10.00 pm samples (Fig. 4B and 4C). The increase was more
pronounced in IS-3 (approx. 40-fold), whereas the decrease at
10.00 pm was more dramatic for IS-2 (approx. 3-fold). Sampling
at 2.00 pm for IS-1 was missed for technical reasons. IS-1 deviated
from the two others sampling sites in that it showed a faint
decrease in cell density on its hcd-areas and a more pronounced
reduction in its lcd-areas (Fig. 4C). The latter results matched
those found for the lcd-area of IS-3. 

Discussion

Cryo-SEM has shown to be an excellent technique for in situ
studies of biofilms and complex communities such as the diatom
assemblages of the Wadden Sea sediments. Sediment samples
are quickly cryofixed, stored in liquid N2 and finally, transferred
to the cryostage of a scanning electron microscope where free
water is sublimated from the sediment. After Au-sputtering the
surfaces, fractured planes can be examined at low temperatures
[9, 12–14]. To achieve good preservation of structures by
cryofixation, the samples have to be plunged into melting N2

cooled to approx. –200°C. The N2 slush is usually obtained
after the liquid N2 has been frozen in a vacuum chamber. Thus,
major prerequisites for the cryo-preparation in N2 slush are a
slush chamber and a vacuum pump. This might cause problems
during field trips and outdoor sampling. As a consequence,
propane was used as freezing agent for cryo-preparations in
the field. Cryo-fixation with propane is unexpensive, not time-
consuming and can be easily performed in the field. The only
devices needed are a propane flask, a dewar filled with liquid
N2 and a metal stick with a small cavity on one end functioning
as a reservoir for liquefied propane. Examinations in the Cryo-
SEM evidenced that both, sediment structure and cells, had
been well preserved. In the course of this study, a new device,
the cryolander, was constructed that improves cryo-fixation
and reduces artifacts which can occur during the freezing
process, thus allowing fine scale in situ sampling of surface
sediments [20]. 

The spatial microheterogeneity in cell densities, even within
a small area, was surprising. This finding is interpreted as local
micropatches of diatom assemblages. The micropatches with
higher cell densities might deviate from those of lower cell
densities in sediment structure and/or local higher nutrient
concentrations thus offering better adhesion and/or growth
conditions to diatom cells. Similar findings are evident in
micrographs of [21]. Micropatches probably cause high standard
deviations when cell densities are estimated by Cryo-SEM.
The differentiation into lcd- and hcd-areas was less pronounced
on the latter two sampling days, thus confirming the assumption
that patches which are homogeneous in colour exhibit almost

similar cell densities. The spatial microheterogeneity is not
recognized by the LTT, which, however, allows sampling of
larger sampling areas.

The cell densities and responses of the diatom assemblages
of the three types of intertidal sediments differed significantly
from one another. On May 7, IS-1 exhibited higher cell densities
than IS-3 and IS-2, which were both of similar values. On May
20, IS-1 showed the lowest values whereas those of IS-3 and 
IS-2 had increased. On June 18, the three sediments exhibited
almost similar cell densities. The overall values ranged from
approx. 1000 up to 1,200,000 cells per cm2 and were in the
same order of magnitude as those calculated by other authors.
Using Cryo-SEM, maximal cell densities of 40,000 and
1,000,000 cells per cm2 have been reported for laboratory
mesocosms [12, 13]. Field studies revealed values of up to
40,000 [11], 2,000,000 [1] and 200,000 diatom cells per cm2

[15], respectively. For the laboratory tidal micro-ecosystem in
which Paterson [12] investigated the vertical migration of
diatoms, values up to 35,000 (+/– 6,400) cells per cm2 were
calculated. 

VM has been described for several microorganisms, e.g.
Euglena obtusa, Tropidoneis lepidoptera, Hantzschia virgata,
for diatoms and dinoflagellates inhabiting the intertidal sands
of the Visakhapatnam Beach, India, and for diatoms from the
mudflats at Whitstable and from the banks of the river Avon,
England [2, 5, 10, 11, 18, 19]. These time scheduled studies
were done directly in the field or with sediment cores under
laboratory conditions, and they clearly demonstrated the
tidal/diurnal behaviour. Investigations on the tidal/diurnal VM
by Cryo-SEM were restricted to a time scheduled study on a
laboratory tidal micro-ecosystem which confirmed the data of
those older field studies in general [12]. A standing population
of cells in the first sample was taken at 6 am and at a photon
flux density of 0.5 µM photons m–2 s–1 (equivalent to approx.
2.5 µM photons m–2 s–1 in the field). During the next 6 h of
sampling, cell density increased 4-fold and finally, decreased
in the last sample taken immediately before the tidal immersion
of the mesocosm [12]. 

The reasons for the VM and the factors affecting this
phenomenon are discussed controversely and might differ in
different habitats. Round and Palmer [18] showed that VM was
rhythmic and continued under constant illumination and
temperature and removed from tidal influence. The finding that
two species of Euglenaand several species of diatoms expressed
a diurnal (24 h) rather than tidal (24.8 h) period of the rhythms
under laboratory conditions led [11] to the conclusion that all
tidal VM rhythms actually represent underlying 24 h rhythms
which are entrained and thus transformed by the tides in nature.
The (24.8 h) tidal clock influences/superimposes an endogenous
(24 h) biological clock. The authors postulated that VM could
result from the interaction of a permanent positive geotaxis
with a nonpermanent, rhythmic variation in phototaxis which
can be modulated by the incident light. Thus, the cells generally
perform a downward directed migration towards the sediment
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bed. During the day they reach different physiological states
and behave either photophobically (downward directed VM)
or become attracted to light (upward directed VM). However,
Naviculacf. miniscula, Pleurosigma angulatumand Gyrosigma
sp. maintained a tidal rhythm in conditions of constant
irradiance and temperature in the laboratory irrespective of the
influence of the tides [6]. The VM was endogenous and
remained tidal as the rhythm of vertical movement remained
in phase with the tidal exposure of the field sites. Perkins, on
the contrary, observed that littoral diatoms of the river Eden
near St. Andrew, Scotland, did not show VM throughout the
day, but stayed on the sediment surface with upcoming tide
[17]. They were always submerged in the soil at night. The
author concluded that the littoral diatoms of the river Eden
estuary do not exhibit a tidal rhythm but a diurnal rhythm which
is dependent on the intensity of light incident upon the shore.
The waters of river Eden are clear and allow diatoms to perform
photosynthesis even when being submerged. Paterson [12]
registered that a significant proportion of cells did not show
VM at all but stayed on the sediment surface throughout the
entire time (most probably due to permanent positive geotaxis).
Paterson [12] discusses light as a trigger controlling the onset
of VM; different diatom species sense photon flux so that
species specific thresholds have to be exceeded in order to
induce VM. Thus, in the microtidal ecosystem examined species
of Nitzschiaand Naviculafirst migrated onto the sediment
surface whereas Scoliopleura tumidacame last. The downward
oriented migration started with tidal immersion. The finding
that the times at which the populations reached their maximum
on the sediment surface varied between species has already
been described [6, 7, 18]. Harper [7] registered the daily
migration even in continuous darkness. This finding can be
taken as a direct proof for an endogenous rhythm. The
downward migration prior to tidal emersions was also found
during our study on May 7. On June 18, we registered that the
diatoms in the Wadden Sea sediments of Dangast buried back
into the mud prior to inundation by the incoming tide. This
observation matches the finding that a “decrease in incident
irradiance at dusk during periods of tidal exposure of the
sampling sites alsoresulted in movement of the diatoms back
into the sediment” [6].

In the current study, sampling in each sediment was
restricted to three dates. It was assumed that the cell densities
of the first sampling would reflect the status before the onset
of VM, i.e. increase of illumination on May 7 and the flow-off
of water on May 20 and June 18. By the next sampling VM
should have occurred. The last sampling should indicate whether
upcoming tide (on May 7) or probably reduced photon fluxes
(on May 20 and 18 June) had caused the reversion of VM. Our
study partially confirms the findings of Paterson [12]. Generally,
a large portion of cells seemed to stay on the sediment surface
(see Fig. 2). Furthermore, it was registered that cells performed
upward migration with increased photon flux or when the water
drained off. However, downward migration with incoming tide

was not registered in all sediments examined. Thus, cells that
had performed upward migration stayed on the surface even
with incoming tide or when it grew dusky (IS-3 on May 7, IS-
1 and IS-2 on May 20). This finding is in line with the
observations of Happey-Wood and Jones [6]. In nature, other,
yet undefined parameters might influence the VM behaviour
as well, thus superimposing and manipulating the effects of
tidal water and photon flux. Wadden Sea sediments are inhabited
by a complex community of aerobic, anaerobic, microaerophilic
and aerotolerant chemo- and photoautotrophic microorganisms.
Most of them live within distinct zones of the sediment bed.
Thus, potential candidates which manipulate the VM behaviour
of diatoms in nature are photosynthesis, salinity, transpiration,
evaporation, micronutrient fluxes and waste products of aerobic
and anaerobic processes which take place below the zone in
which VM occurs. According to our findings, additional factors
under natural conditions might be (i) the location of the sampled
area relative to the high tide border line, (ii) sediment
composition and (iii) permanent water coating. All of them
might drastically influence the migration behaviour of diatoms.
Currently, we cannot exclude that diatoms migrate back into
the sediment beds after being submerged or during the night.
Further field experiments with sampling over a period of 24 h
are needed to elucidate this question.
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