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Abstract The sulfur cycle of Ebro Delta microbial mats
was studied in order to determine sulfide production and
sulfide consumption. Vertical distribution of two major
functional groups involved in the sulfur cycle, anoxygenic
phototrophic bacteria and dissimilatory sulfate-reducing
bacteria (SRB), was also studied. The former reached
up to 2.2·108 cfu cm–3 sediment in the purple layer, and
the latter reached about 1.8·105 SRB cm–3 sediment in the
black layer. From the changes in sulfide concentrations
under light-dark cycles it can be inferred that the rate of
H2S production was 6.2 lmol H2S cm

–3 day–1 at 2.6 mm,
and 7.6 lmol H2S cm–3 day–1 at 6 mm. Furthermore,
sulfide consumption was also assessed, determining rates
of 0.04, 0.13 and 0.005 mmol l–1 of sulfide oxidized at
depths of 2.6, 3 and 6 mm, respectively.

Keywords Sulfide oxidation Æ Sulfate reduction Æ
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Introduction

Microbial mats are stratified microbial ecosystems char-
acterized by cyclic seasonal fluctuations of flooding and
desiccation and also by diel fluctuations in the concen-
trations of oxygen and sulfide [11, 20, 32]. These ecosys-
tems show a sharp redoxcline less than 1 mm thick due to

oxygenic photosynthesis by cyanobacteria developing
close to the sulfide-rich zone. In microbial mats, 99% of
the photoassimilation of CO2, sulfate reduction, and the
oxidation of sulfide takes place in the upper 5–10 mm of
the sediment. Anoxygenic and oxygenic photosynthesis
play an important role in sulfide oxidation processes
taking place in these sulfidic environments [10].

Microbial mats exhibit very high primary productiv-
ity and rapid recycling of organic matter. In these kinds
of environments, mineralization processes are mediated
by sulfate-reducing bacteria (SRB) [4, 9, 22, 32]. Sulfate
reduction is the key process in generating reduced sulfur
compounds that are used by chemolithotrophic bacteria,
anoxygenic phototrophic bacteria and SRB. Chemo-
lithotrophic bacteria obtain energy by oxidizing reduced
sulfur compounds and anoxygenic phototrophic bacte-
ria use reduced sulfur compounds as electron donors to
fix CO2 in the light. Sulfide oxidation and sulfide pre-
cipitation proceed efficiently at rates high enough to
allow development of diatoms, which are very sensitive
to sulfide toxicity, on the surface of the mat.

Iron-bound sulfides or hydrogen sulfide can be re-
oxidized biologically or chemically to form thiosulfate
[8]. Moreover, SRB may play an important role in the
regulation of the electron flow in the sulfur cycle of
microbial mats due to their metabolic versatility in re-
ducing sulfate and thiosulfate and to disproportionate
sulfur compounds [35].

The aim of the present work was to study changes in
sulfide concentration, and the vertical distribution of
some functional groups of sulfur bacteria (i.e. anoxy-
genic phototrophic bacteria, dissimilatory SRB), in or-
der to understand their role in the sulfur cycle of Ebro
Delta microbial mats.

Materials and methods

Microbial mats and sample collection

The microbial mats studied were located in the Ebro Delta, North-
East Spain (40�40¢N, 0�40¢ E). The general features of the sampling
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area, as well as the dominant phototrophic organisms have been
described earlier [13, 24]. Sediment samples for bacterial counts
were taken with stainless-steel corers (2.5 cm inner diameter) that
were stoppered at both ends immediately after sampling and stored
on ice. Samples were processed in the laboratory 2 h after collec-
tion. The different pigmented layers were sliced. Sediment samples

to study sulfide production and consumption were taken with
Plexiglas corers (4.5 cm inner diameter, 34.5 cm long).

Overlying water analysis

Physicochemical variables (temperature, salinity, conductivity and
pH) of the water covering the mats were determined. Temperature,

Fig. 1. Depth profiles of water content, and protein content of all
sediments used in the experiments. Error bars show 99% confidence
interval of mean values for 18 samples

Fig. 2. Profiles of oxygen, sulfide, sulfide oxidation and sulfate
reduction in a microbial mat from Ebro Delta, after 4.5 h in the
light. The light intensity at the mat surface was 1,000 lE m–2 s–1.
The specific reaction rates of sulfate reduction and sulfide oxidation
were modeled from the measured profiles and are indicated by
boxes

Fig. 3. Time course of hydrogen sulfide concentration at different
depths: A 2.6 mm; B 3 mm; and C 6 mm in the Ebro Delta,
microbial mat during light-dark cycles. The illuminated and dark
periods are indicated at the top of the figures by a white and black
area, respectively. The light intensity at the mat surface was
1,000 lE m–2 s–1
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conductivity and salinity were measured using a Yellow Springs
Instrument S-C-T Meter model 33. pH was measured with a
microPH 2001 Crison pH-meter.

Sediment characterization

The water content of the sediment (pore water) was determined
for each slice as the difference between wet weight and dry weight.
For the determination of dry weight, samples were dried for 48 h
at 105�C. Total sediment porosity was calculated from values of
particle and bulk density according to Danielson and Sutherland
[7] applying the formula Pt =[1 – (qb/qp)]. The bulk density (qb)
was calculated by weight (dried sample) and volume (fresh sam-
ple) in g cm–3. The particle density (qp) was assumed to be 2.65 in
g cm–3 for mineral particles (71.8%) [6] and 1.08 g cm–3 for or-
ganic matter (28.2%) [12]. Total porosity was calculated to be
0.947 in the upper part of the mat. Protein content was deter-
mined by the method of Bradford [2] after extraction of zero
valence sulfur and chlorophylls with methanol and subsequent
solubilization of the sediment sample in 1 N NaOH at 100�C for
10 min [14].

Minielectrode measurements

Microprofiles of oxygen and sulfide were measured with needle
mini-electrodes according to the method of van Gemerden et al.
[34]. Profiles were recorded in the sediment cores during the step-
wise lowering of the electrodes using a micromanipulator. The
outputs from the electrodes were read on a picoammeter (Keithley
485) or a millivoltmeter (Bioblock 93313). Changes in sulfide
concentrations in the mat were studied by placing the mini-
electrode at different depths [2.6 mm (green layer), 3 mm (purple
layer), and 6 mm (black layer)] during light-dark cycles.

Sulfate reduction and sulfide oxidation measurements

The total rate of sulfate reduction was determined as the sulfide
flux away from the sulfate reduction zone in the mat. The one-
dimensional diffusion flux was calculated from Fick’s first law of
diffusion as described by Kühl and Jørgensen [21]. We used the

profile of sulfide shown in Fig. 2 (see later) to calculate flux of
sulfide. The apparent diffusion coefficient for sulfide at 25�C was
assumed to be 0.54·10–5 cm2 s–1 [28].

Depth distributions of sulfate reduction and sulfide oxidation
were obtained by manually fitting parabolic functions to curved
sections of the measured sulfide profile as previously described
[21, 26] by use of Fick’s second law of one-dimensional diffusion.
The specific reaction rate in each layer was calculated from the
product of the apparent diffusion coefficient and the coefficient of
v2 for the fitted parabolic function. The integrated specific reac-
tion rate for sulfate reduction was calculated by multiplying the
specific rates with the thickness of the depth interval in the mat
where the process occurred. Total reaction rate based on flux
calculation agreed with the rate calculated from the integrated
specific reaction rate.

Bacterial counting procedures

The deep agar shake method [27] was used to estimate the viable
counts of anoxygenic phototrophic bacteria. The tubes were incu-
bated at 23�C at continuous light intensity of 3 lE m–2 s–1. Each
lamination of the mat had been previously introduced into a screw
cap tube with 5 ml of a saline solution (3% NaCl and 0.1% Na
ascorbate). SRB were counted using the most probable number
(MPN) method with three replicates per dilution. The sediment was
first diluted in saline solution, followed by serial dilution in mod-
ified Baar’s culture medium. The inoculated tubes were incubated
at 23�C in the dark.

Results

Sediment characterization

Prior to the experiments on sulfide production and
consumption, the physical and chemical characteristics
of the mat were determined. The temperature of the
water overlying the mat was 28�C, conductivity was
99 mS cm–1, salinity was 63& and the pH was 8.6.
Sediment cores used to carry out the experiments

Fig. 4. Depth profiles of the
number of bacteria from a
mature Ebro Delta microbial
mat. A Anoxygenic photo-
trophic bacteria viable counts;
B sulfate reducing bacteria most
probable number. The distinct
colored layers of the mat are
designated by different symbols
in the diagram on the left.
Yellow-brown layer: 0–
0.72 mm; green layer: 0.72–
2.67 mm; purple layer: 2.67–
4.31 mm; compact black layer:
4.31–6 mm; and sandy black
layer (sediment): below 6 mm.
Horizontal bars indicate stan-
dard error of mean values for
triplicate samples
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showed two distinctive zones. In the upper part
(0–15 mm) the water content and the protein content
were higher than in the bottom part (15–60 mm)
(Fig. 1A). The maximum protein content was detected
at the mat surface (0–5 mm) (6.3 mg protein g–1 sedi-
ment) and decreased with depth (Fig. 1B).

Sulfide production and consumption

In order to determine the position of the O2–H2S inter-
face, vertical profiles of oxygen and sulfide concentra-
tions were established (Fig. 2). Oxygen reached a
maximum concentration of 1.04 mM at 1.6 mm, and
penetrated 2.7 mm into the mat, down to the upper
boundary of the sulfide zone. Oxygen and sulfide over-
lapped over a 0.2 mm layer. Sulfide was oxidized within
a narrow zone (2.6–3.0 mm), where the specific activity
of sulfide oxidation was 12.1 lmol cm–3 h–1. Sulfide was
produced by sulfate reduction 3.0–3.6 mm below the
mat surface at a specific rate of 15 lmol cm–3 h–1.

To study the dynamics of the sulfide production and
consumption at different depths within the microbial

mat, the sulfide mini-electrodes were placed at three
different depths within the mat: (1) at 2.6 mm, in the
aerobic zone (green layer) close to the upper part of
the O2-H2S interface; (2) at 3 mm (purple layer), where
the sulfide concentration profile showed a clinograde
function close to the bottom part of the O2-H2S inter-
face; (3) at 6 mm, in the anaerobic zone (black layer)
(Fig. 3). At a depth of 2.6 mm, sulfide was not detected
when the core was illuminated, but it appeared after
40 min incubation in the dark at an initial rate of
476 lmol l–1 min–1. In the last 20 min of darkness, the
rate decreased to 4.3 lmol l–1 min–1. When the light was
switched on, the initial sulfide oxidation rate was
45 lmol l–1 min–1 increasing to 446 lmol l–1 min–1 after
19 min of incubation in the light (Fig. 3A). The con-
centration of sulfide at 3 mm depth was 0.6 mM. When
the light was switched off, the initial rate of sulfide ap-
pearance was 470 lmol l–1 min–1. After 10 min, when
sulfide reached 3.8 mM, the light was switched on and
the initial sulfide disappearance rate was 130 lmol l–1

min–1, but it increased to 403 lmol l–1 min–1 after 7 min
of illumination (Fig. 3B). At a depth of 6 mm, the initial
rate of sulfide appearance was 54 lmol l–1 min–1 during

Table 1. Sulfate reduction rates (maximum rate and sulfate reduction per unit area) and most probable number (MPN) of sulfate-
reducing bacteria (SRB) in sediments of different microbial mats environments

Location of microbial mat Depth (mm) nmol SO4
2–

cm–3 day–1
mmol H2S m–2

day–1
MPN SRB
cm–3

Reference

Experimental
hypersaline pond,
Red Sea

8–10 10,000 – – [17]

Experimental
hypersaline pond, Red Sea

0–12.5 – 9.5–33a – [10]

Hypersaline pond Salins
de Giraud, France

0–60 200–17,000a 400–450 104–105 [5]

Cai, Bonaire,
Netherlands Antilles

0–10 800 – – [23]

Ebro Delta, Spain 6 7,560b – 1·105 This study
Ebro Delta, Spain 2.9–3.3 – 261c – This study
Great Sippewisselt,
Massachusetts

0–20 7,500 540 – [16]

Guerrero Negro, Baja
California Sur, Mexico

0–5 1,152 to >13,000 5–30a – [3]

Kalo Lagoon, Denmark 0–10 1,200 62 – [33]
Pekelmeer, Bonaire,
Netherlands Antilles

0–10 950 – – [33]

Shark Bay, Australia 0–50 – 10 – [31]
Solar Lake, Sinai Surface 5,400 67 2.5·106 [18]
Spencer Gulf, Australia 0–50 – 103 – [31]
Texel (Frisian Island) 0–5 567 9.66 1.1·106 [35]
Salt marsh sediments
Belle Baruch, South
Carolina

20–40 317 68–94 – [19]

Chapman’s, New
Hampshire

0–200 1,000 75 – [15]

Kenan Field, Sapelo
Island, Georgia

30 2,000 – – [16]

Saltmarsh creek,
United Kingdom

0–100 1.5–315 – – [25]

Saltmarsh pan, United
Kingdom

0–100 1.7–190 – – [25]

aTemporary variations
bSulfide production
cEstimated flux of sulfide
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the first 6 min of incubation in the dark. After this initial
period, the rate of sulfide production was 5.25 lmol l–1

min–1. When the sulfide concentration was 3.7 mM the
core was illuminated again and a small decrease in the
concentration of sulfide could be detected with an initial
rate of 5 lmol l–1 min–1 for 23 min and then a decrease
down to 15.6 lmol l–1 min–1 (Fig. 3C).

Bacterial counts

Depth distribution of viable anoxygenic phototrophic
bacteria showed a peak of 2.2·108 cfu cm–3 in the purple
layer of the mat, and decreased with increasing depth
(Fig. 4A). SRB were not detected in the upper lamina-
tion of the mat, but their numbers increased with depth,
reaching 1.8·105 SRB cm–3 in the black layer (Fig. 4B).

Discussion

When sulfide is measured in the light, rates of sulfide
oxidation can be considered a measure of anoxygenic

photosynthesis. Thus, the anoxygenic photosynthetic
activity at 3 mm depth was measured at 130 lmol sul-
fide l–1 min–1. This value found in the purple layer of
Ebro Delta microbial mats is similar to rates reported in
other microbial mats. For example, Caumette et al. [5]
determined rates of 200–300 lmol sulfide l–1 min–1 in
microbial mats from Salins-de-Giraud (France).

Respiration, in which sulfate is reduced to hydrogen
sulfide, is a very important process in microbial mats
[5, 9, 30]. Usually, sulfate reduction rates are quantified
by using radioactively labeled sulfate [1, 8, 17]. This
method is very sensitive, but it has limitations when
oxidized layers are found close to the zones where sulfate
reduction take place, because a significant proportion of
the radiolabeled sulfide formed during incubation may
then be reoxidized during the same period thus resulting
in an underestimation of sulfate-reducing activity [18].
Also, this method overestimates the rate of sulfate re-
duction, as pointed out by Revsbech et al. [29], because,
using microelectrodes, they detected only 15% of the
flux of sulfide that would be expected from measure-
ments of the sulfate reduction in the same mat using
radiolabeled sulfate.

Sulfate reduction may be studied using micro- or
mini-electrodes [21]. Sulfide diffuses upward from deeper
layers and it is oxidized at the oxic-anoxic interface.
Assuming a steady-state situation, the flux of sulfide just
below the oxic-anoxic interface must equal the inte-
grated rate of sulfate reduction in the layers below. In
Ebro Delta mats, the flux was estimated to be 261 mmol
H2S m–2 day–1. This value is similar to those calculated
in other microbial mats. It is higher than the rate found
in microbial mats of Solar Lake (Sinai) or Shark Bay
(Australia) and it is lower than those determined in
microbial mats of hypersaline ponds in Salins-de-Giraud
(France) or Great Sippewissett (Mass., USA) (Table 1).

The simplified flow diagram of sulfide in Fig. 5 shows
the sulfate reduction rates, measured as sulfide produc-
tion, sulfide oxidation rate and sulfide fluxes from dif-
fusion and chemical oxidation. From 2 to 3 mm depth,
the biological sulfide oxidation rates were 10-fold higher
than sulfate reduction rates; however, from 6 to 7 mm
depth the sulfate reduction rates were slightly higher
than the biological sulfide oxidation rates. In the green
layer higher values of the sulfide oxidation flux
(24 mmol m–2 h–1) were detected, probably corre-
sponding to chemical oxidation. On the other hand, the
diagram shows a flux of sulfide production, probably
due to molecular diffusion, mainly in the upper layers
where the light-dark shift produces a sharp gradient.
This observation can be explained either because sulfide
is not oxidized by anoxygenic phototrophic bacteria in
the dark, or because the O2–H2S interface extends to the
surface. However, from 6 to 7 mm depth, the sulfide
gradient is negligible, and the outflux of sulfide cannot
be explained by molecular diffusion alone; additional
transport mechanisms must be involved, as pointed out
by Jørgensen and Cohen [18] for the outflux of sulfide in
Solar Lake mats.

Fig. 5. Flow diagram of sulfide in Ebro Delta, microbial mats.
Numbers indicate transfer rates in mmol m–2 h–1. nd Not
determined, +hm illuminated conditions, –hm dark conditions
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27. Pfennig N, Trüper HG (1981) Isolation of members of the
Families Chromatiaceae and Chlorobiaceae. In: Starr MP,
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