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Summary. The use of invasive techniques, such as intravascular catheter insertion, and the formation of biofilms in several 
devices by methicillin-resistant Staphylococcus aureus (MRSA) have contributed to the increased number of septic patients, 
morbidity and mortality. This study aimed to evaluate the virulence of strains through catheter colonization and identification of 
microbial biofilm, as well as pathological changes on the colonized skin. An experimental biofilm formation model utilized 
catheter fragments implanted subcutaneously in 25 Swiss mice. The technique consisted of inoculating a catheter fragment on the 
back of each animal, followed by intradermal inoculation of 50 µl of bacterial suspension at 1.0 × 107 colony forming units/ml. 
After 96 h, catheters were removed for macroscopic analysis and evaluated through culture. Local skin fragments were also 
extracted for histopathology analysis. Staphylococcus aureus can adhere to catheters, colonize and form biofilms. The high amount 
of viable bacterial cells colonizing catheters and virulence factors can lead to severe infections of skin and adjacent tissues. [Int 
Microbiol 19(4): 199-207 (2016)]
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Introduction

Staphylococcus aureus is commonly observed colonizing 
several parts of the body in healthy individuals, such as skin, 
nasal cavity, throat and intestine [5,9,10]. Depending on the 
carrier conditions, it can cause severe infections such as men-
ingitis, endocarditis and sepsis. From primary colonization 

sites, it can reach other areas where natural defense barriers 
(skin and mucosa) are compromised by trauma or surgical 
procedures, thus causing infection [36,48].

Considering that these microorganisms belong to normal 
skin microbiota, they can cause a primary infection in the re-
gion where an intravascular catheter is inserted and then gain 
access to the bloodstream, consequently causing bacteremia. 
The infection may aggravate if the S. aureus strain is methicil-
lin-resistant (MRSA) [20].

Different types of toxins produced by S. aureus, such as 
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Panton-Valentine leukocidin (PVL), are responsible for spe-
cific inflammatory responses to infectious processes in differ-
ent degrees of severity and systemic symptoms. PVL is wide-
ly associated with severe skin infections and necrotizing 
pneumonia [22]. This protein is encoded by the LukPV oper-
on, which contains lukF-PV and lukS-PV genes inserted into 
temperate bacteriophages such as PhiSLT [7,15,19,27,44]. 
These phages carrying the genes for the production of PVL 
are more associated with strains containing the chromosomal 
cassette SCCmec type IV and represent a major virulence fac-
tor [50]. Increasingly, PVL-producing strains have been re-
ported in hospital infections associated with intravascular and 
urinary catheters, thus colonizing and forming biofilms on 
these devices [12].

Another major factor in hospital infections is biofilm for-
mation on surgical materials. The pathogenicity of S. aureus 
is defined as an association of microbial cells attached to bi-
otic or abiotic surfaces involved in a complex extracellular 
polymeric matrix [1,43]. When a medical device is implanted, 
it is immediately covered with tissue matrix proteins, laminin, 
fibronectin, fibrinogen and collagen. The presence of S. aureus 
on medical devices prior to implementation may promote in-
teractions with the host tissue, causing local and systemic in-
fections through bacteremia. This is caused by the adhesion 
proteins covalently attached to the peptidoglycan cell wall, as 
well as FnBPA and FnBPB capable of binding to both fibro-
nectin and fibrinogen, thus providing an interaction with the 
host tissue and causing local and systemic infection through 
bacteremia. These binding proteins are named as microbial 
surface components recognizing adhesive matrix molecules 
(MSCRAMMs) [2,14,18,23,34,40].

The expression of icaADBC gene in S. aureus promotes 
the synthesis of polysaccharide intercellular adhesin (PIA) re-

sponsible for the association and adhesion of microbial cells 
and formation of biofilms [33,40]. PIA structure is also re-
sponsible for the formation of a capsule around the bacterial 
colonies, preventing their recognition by the immune system 
[4,31,47]. The union of several species of bacteria in a biofilm 
provides a great advantage over the effectiveness of antibiot-
ics, innate immune defense as antimicrobial peptides (AMPs) 
and phagocytosis by leukocytes [23,35,40].

When a biofilm reaches a boundary density the displace-
ment of bacterial cells or small cell aggregates occurs [17] 
mediated by the agr gene (accessory gene regulator), which 
activates an intercellular communication system called quo-
rum-sensing [6,40,41,47]. The agr gene expresses the produc-
tion of peptides to break the cell junctions, allowing bacterial 
cells from the biofilm to remain suspended in the medium 
[8,24,42], and thus causing local infections [17], bacteremia, 
colonization of other tissues and organs, and consequently the 
production of more biofilms [8,24,42]. For these reasons, in-
fections caused by bacteria forming biofilms are extremely 
difficult to eliminate and a great challenge for treatment [33].

The goal of this study was to evaluate the colonization and 
formation of biofilms in clinically isolated MRSA and PVL-
producing MRSA clones through in vitro and in vivo studies. 
In addition, it aimed to quantify viable bacterial cells adhered 
to the catheter and perform anatomicopathological and histo-
pathological analysis of the colonized skin.

Material and methods

Animals used in the study. This study was approved by the Ethics 
Committee on Animal Research from Federal Fluminense University under 
the registration number 439/2013. A total of 25 Swiss inbred mice, males 
and six-week-old were used in this study. They weighed approximately 34 g 

Table 1. Distribution and source of bacterial samples in different experimental groups

Genes

Groups Inoculum 1.0 × 107 CFU/ml mecA lukF-PV; lukS-PV N

pvl (–) MSSA Sample isolated from nasal colonization (−) (−) 5

pvl (+) MSSA Sample isolated from nasal colonization (−) (+) 5

pvl (+) MRSA Sample isolated from venous blood of patient with severe pulmonary infection (+) (+) 5

pvl (+) MRSA USA300 WT Sample isolated from venous blood of septic patient (+) (+) 5

Control Physiological saline (0.9% NaCl) Absence of microorganisms 5

Note: pvl (+) MRSA USA300 WT samples were donate by Prof. BinhAn Diep, University of California, San Francisco, CA, USA.
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each, were specific-pathogens-free (SPF) and divided in five animals per 
group (Table 1). The animals were kept in individual cages and received 
standard chow diet and filtered water ad libitum, maintained in light-dark 
cycles at 21°C (± 2).

All procedures that could result in anxiety and/or pain were conducted 
under anesthesia by isoflurane FORANE (2-chlorine-2-[difluorometoxy]-
1.1.1-trifluor-ethane) [24,26].

Identification of Staphylococcus aureus and the genes of 
virulence and resistance. Bacterial samples belonged to the Labo-
ratory of Molecular Epidemiology and Biotechnology, Rodolpho Albino 
University Laboratory from the Federal Fluminense University. Samples 
were conserved in brain heart infusion (BHI) plus 10% glycerol and frozen 
at −80°C. 

Staphylococcus aureus was identified by standard microbiological pro-
cedures: Gram staining, colonial morphology, fermentation of mannitol-
salt [16], catalase production [30] and coagulase production [29]. Sepa-
rately, the species was confirmed by polymerase chain reaction (PCR) for 
442-bp chromosomal DNA fragment, according to Martineau et al. [28]. 

Methicillin resistance was identified using PCR for mecA gene accord-
ing to the protocol of Oliveira and Lencastre [32], and the virulence genes 
lukF-PV and lukS-PV, responsible for the production of PVL, were identi-
fied according to the protocol established by Lina et al. [27].

Bacterial samples selected for this study had the following characteris-
tics: methicillin-susceptible and non-PVL-producing strains isolated from 
nasal colonization, pvl (−) MSSA; methicillin-susceptible and PVL-pro-
ducing strains isolated from nasal colonization, pvl (+) MSSA; methicillin-
resistant and PVL-producing strains isolated from peripheral blood of a 
patient with severe pulmonary infection, pvl (+) MRSA; methicillin-resis-
tant and PVL-producing strains isolated from peripheral blood of patient 
with bacteremia, pvl (+) MRSA USA300 WT.

Biofilm formation and in vitro cell viability assay. Bacterial 
suspensions of each sample were prepared at 0.5 McFarland turbidity scale 
108 colony forming units/ml (CFU/ml) in tryptic soy broth (TSB) with 1% 
glucose using mild stirring (1800 rpm) at 37 °C for 24 h. Subsequently, 200 
μl of each inoculum was deposited in a 96-well polystyrene plate with flat 
bottom and incubated at 37°C for 24 h along with the negative control, 
sterile TSB. The resulted biofilm was stained with 3% crystal violet for 15 
minutes. The optical density of biofilm (DOB) was performed using Opti-
ma fluorimeter Elisa Fluostart BMG Labtech at 590 nm and Optima start 
software, as described by Hassan et al. [21]. 

The reduction of tetrazolium salt XTT (2.3-bis [2-methyloxy-4-nitro-
5-sulfophenyl]-2H-tetrazolium-5 carboxyanilide) was performed in order 
to determine the metabolic activity of cells composing biofilm. The analy-
sis, performed in triplicate, was conducted at 492 nm, as described by 
Chaieb et al. [11].

Preparation of the bacterial inoculum. Bacterial samples were 
obtained from infected tissues asymptomatic or nasal colonization, pre-
served in brain heart infusion (BHI) containing 10% glycerol, frozen at 
−80°C and thawed 2 h prior to inoculum preparation. 

Twenty-four hours before the study, bacterial samples were cultivated 
in tryptic soy agar (TSA). Colonies were suspended in sterile test tube con-
taining 1000 µl of sterile saline (0.9% NaCl) and then serial dilutions were 
made up to the density of 1.0 × 107 CFU/ml.

Catheter insertion procedure. Animals were anesthetized and had 
the dorsolateral region of their neck shaved and decontaminated with 70% 

ethanol. A subcutaneous air pouch measuring about 1.5 cm was made 
through an incision. Thereafter, a peripheral intravenous catheter (Becton 
Dickinson, Argentina S.R.L) measuring 5.0 mm and 2.5 mm of diameter 
was introduced into the pouch under aseptic conditions [3,4,26]. The inci-
sion was closed with synthetic surgical glue Glubran2 (GEM S.r.I, Italy). 

After 24 h of observation and confirmation that catheters were neither 
infected nor rejected, the animals were manually restrained and intrader-
mally inoculated with bacterial suspension. The procedure kept a limit dis-
tance of 1 cm from the insertion of the catheter fragment and used dispos-
able insulin syringe BD Ultra-FineTM (0.3 ml/30UI, needle 8 mm (5/16”) 
× 0.3 mm (30 G). Each animal was inoculated with 50 µl of bacterial sus-
pension with a density of 1.0 × 107 CFU/ml in sterile saline [26], except the 
control group, which received only sterile saline.

Macroscopic examination of the backs of mice. After 96 h, 
the estimated time for consolidation of the infection and colonization of the 
catheter, animals were euthanized with Isoflurane FORANE through inha-
lation in closed campanula. Death was confirmed by cardiac and respiratory 
arrest, absence of corneal reflex and fall of body temperature < 25°C [26]. 
The backs were comparatively analyzed using the control group as stan-
dard, seeking for any morphological alteration, as well as the presence of 
infection and edema.

Macroscopic examination of catheter. Catheter fragments were 
removed from the backs of mice through incision and the adhered material 
was preserved. It was observed if the material adhered to the inner or outer 
surface of the catheter and its aspect, if viscous or liquid, with vitreous 
luster or opaque and the color.

Colonization and biofilm formation on catheter. The ex-
planted catheters were separately placed in test tubes containing 1 ml of 
sterile saline solution (0.9% NaCl) for quantitative culture and subse-
quently vortexed during one minute (1800 rpm), an aliquot of 100 µl was 
cultivated in blood agar 5% Merckoplate (pH 6.5–7.5) using aerobic con-
ditions at 37°C and daily examined up to 48 h. The calculation of the 
number of CFU was correlated with the initial dilution. The quantitative 
culture was reported as CFU/ml and growth ≥ 103  CFU/ml (≥ 1000 colo-
nies) confirmed the catheter colonization [4,38]. Five bacterial colonies 
obtained from blood agar culture were isolated to confirm the presence 
of S. aureus using the methods: Gram staining, fermentation of mannitol-
salt agar, catalase production and coagulase production, as reported pre-
viously.

Histological analysis of dorsal tissue. One dorsal skin fragment 
measuring about 1 cm wide and 1 cm long was extracted for the preparation 
of histological slides. Tissue samples were stored in 10% formaldehyde 
with pH between 0.6 and 0.7 during 48 h and then submitted to dehydration, 
diafanization and inclusion in paraffin. Fragments were 3 µm thick and 
stained with hematoxylin and eosin (H&E). The slides were observed in 
optical microscope (LX 500 model) and photographed using IVM 5000 
camera and ProgRes Capture Pro 2.7 software for the description of the 
histopathology inflammatory processes.

Statistical analysis. Statistical analysis evaluated the quantification 
of solutions obtained from the colonization of catheters 96 h after explana-
tion. Multiple comparison test used graphic column. The SPSS software 
version 10.0 was utilized with statistical significance level α ≤ 0.05.
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Results

Biofilm formation and in vitro cell viability as-
say. All the bacterial samples had high potential to adhere to 
the surface of the plates, as confirmed by biofilm formation 
through staining with violet crystal and Elisa Fluostar Opti-
ma-BMG Labtech fluorimeter. A large amount of metaboli-
cally active bacterial cells in biofilms were also observed by 
the XTT reduction in all groups in comparison with the con-
trol group (Fig. 1).
 
Macroscopic examination of the backs of 
mice.  None of the animals died or presented signs of an-
orexia, diarrhea and behavioral changes 96 h prior to the 
study. 

In the control groups, pvl (−) MSSA and pvl (+) MRSA 
USA300 WT, no evidence of infection were observed and the 
skin remained with normal appearance (Fig. 2A, B and E). 
Swelling and redness were observed at the site of catheter in-
sertion in the group pvl (+) MSSA (Fig. 2C), as well as ery-
thematous lesions where the bacterial suspension was inject-
ed. The pvl (+) MRSA group presented severe edema causing 
suture detachment (Fig. 2D). 
 
Macroscopic observations of catheters. After 96 
hour, a yellowish film was observed adhered to both the inner 
and outer surfaces of catheters in the groups pvl (+) MSSA 
and pvl (+) MRSA, confirming biofilm formation (Fig. 2H 
and 2K). Adhered materials were not observed in the control 
groups and pvl (+) MRSA USA300 WT (Fig. 2F and 2J), but 

Fig. 1. (A) All bacterial samples were able to colonize and form biofilms through crystal violet staining method, pvl (−) MRSA with similar concentration 
values of pvl (+) MRSA, and pvl (+) MRSA with similar values of pvl (+) MRSA USA300 WT. (B) All bacterial samples presented similar amount of 
metabolically active cells in the biofilm: values were expressed by XTT reduction method.
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the group pvl (−) MSSA had a reddish material adhered to the 
inner surface (Fig. 2E).

Colonization and biofilm formation on cathe-
ters. Quantitative culture revealed the absence of bacterial 
colonies in control and pvl (+) MRSA USA300 WT groups 
(Fig. 2K, O and Fig. 3). The pvl (−) MSSA group showed only 
one catheter with 523 CFU/cm2 (Fig. 2L and Fig. 3). Colonies 
counting were higher than 1000 CFU/cm2 in all catheters 
from the groups pvl (+) MSSA and pvl (+) MRSA (Fig. 2M, N 
and Fig. 3). All colonies isolated from blood agar culture were 
S. aureus.

Histopathological analysis of dorsal tissue. 
Histopathological analysis of catheter fragments in the con-

trol group revealed an intact epidermis with corneal layer. 
Dermis had normal cellularity and conjunctive tissues with its 
attachments (Fig. 4A). The pvl (–) MSSA group preserved the 
epidermis and dermis. However, adipocytes in hypodermis 
showed increased cellularity in the inflammatory infiltrate 
composed of polynuclear/mononuclear leukocytes (Fig. 4B 
and C). The pvl (+) MSSA group showed intact dermis and 
epidermis. The hypodermis presented reduced adipocytes and 
intense inflammatory infiltrate composed of polynuclear/
mononuclear leukocytes, fibrin and red blood cells (Fig. 4D 
and E). The pvl (+) MRSA group had normal dermis and epi-
dermis, but the hypodermis presented edema and capillary 
congestion amongst adipocytes. A necrotic area was observed 
below the hypodermis with mixed inflammatory cell infiltrate 
containing polynuclear/mononuclear leukocytes and fibrin 
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Fig. 2. The mice dorsal region, the site of insertion of the catheter. (A) control group; (B) pvl (−) MSSA and (E) pvl (+) MRSA USA300 WT: absence 
of local infection and morphological changes in skin; (C) pvl (+) MSSA: infection with edema and hyperemia in the skin (arrow), erythematosus lesion at 
inoculation site (dotted arrow); (D) pvl (+) MRSA: intense edema and hyperemia (arrow). Catheter fragments extracted after 96 h: (H) pvl (+) MSSA and 
(I) pvl (+) MRSA: yellowish material adhered to inner and outer surface of the catheter; (G) pvl (−) MSSA: reddish material adhered to inner surface of the 
catheter; (F) control group and (J) pvl (+) MRSA USA300 WT: absence of material adhered to catheter surfaces. Bacterial culture obtained from material 
adhered to catheter: (M) pvl (+) MSSA and (N) pvl (+) MRSA: cell cultures showing bacterial colonization higher than 1000 CFU/cm2; (L) pvl (–) MSSA: 
523 CFU/cm2 colonizing the catheter; (K) control group and (O) pvl (+) MRSA USA300 WT: absence of bacterial colonies.
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(Fig. 4F and G). Finally, the histopathological examination of 
skins from the pvl (+) MRSA USA300 WT group showed pre-
served epidermis and dermis. A lower number of adipocytes 
in hypodermis was also observed, as well as mixed inflamma-
tory cell infiltrate evolving to the dermis and capillary conges-
tion (Fig. 4H and I).

Discussion

Approximately 45% of hospital infections are associated with 
contaminated materials or implanted medical devices. MRSA-
related infections in catheters have been a severe complica-
tion in vascular surgery, increasing morbidity and mortality in 
hospitalized patients [46]. Intravascular grafts are usually sus-
ceptible to colonization by microorganisms, causing infection 
through direct contamination during implantation or bactere-
mia after surgical procedures. The diagnosis of catheter-relat-

ed infections is difficult because there is no relationship be-
tween clinical and microbiological laboratory findings. Fur-
thermore, positive cultures may be related to both catheter 
colonization and contamination. Prevention of this type of 
infection is essential because it may result in graft excision, 
morbidity and mortality [26,42].

The contamination of a catheter is confirmed by removing 
it from the site of insertion in the patient and cultivation of its 
distal tips. The isolation of a same microorganism from both 
an intravascular catheter tip and patient’s blood with systemic 
infection suggests that the colonizing microorganism could be 
the cause of the disease [42]. Several methods are used for 
catheter tip culture, the gold standard being quantitative or 
semi-quantitative analysis [42] with 80% of sensitivity [39]. 
In the present study, the quantitative method was chosen 
based on sonication of catheter fragments in order to obtain 
the adhered microorganisms.

The absence of behavioral and physiological changes and 
mortality in our study indicates that the inoculation method 
did not cause systemic infection. The insertion of subcutane-
ous catheter induces local skin infection; however, in a hospi-
tal environment, microorganisms from an intravenous cathe-
ter can reach the bloodstream, causing bacteremia and sys-
temic infection.

In groups inoculated with pvl (+) MSSA and pvl (+) 
MRSA strains, the infection presented severe localized edema 
in early inflammatory processes. Different aspects reported by 
Santana et al, such as the change of red skin color to cyanotic 
and epidermal skin detachment, suggested necrosis. These 
evidences suggest that the production of PVL could be associ-
ated with increased infections of skin and soft tissues [37]. 
Despite the fact that the USA300 strain is commonly associ-
ated with epidemic infections of skin in USA communities 
[25,45], no macroscopic lesions were observed in the groups 
pvl (−) MSSA and pvl (+) MRSA USA300 WT.

A yellowish film adhered to internal and external surfaces 
of explanted catheter fragments in the groups pvl (+) MSSA 
and pvl (+) MRSA suggested biofilm formation. Similar re-
sults were obtained by Santana et al. [37] in S. aureus strains 
susceptible and resistant to methicillin. The cultivation of the 
material adhered to the catheter fragment in pvl (−) MSSA 
group presented only 523 CFU/cm2 and did not confirm the 
formation of biofilm, according to the criteria established by 
Atahan et al. [4] and Schaechter and Marangoni [38]. Never-
theless, it is still a potential site for infection, and biofilm 
might not have been formed in this group because it does not 

Fig. 3. The comparative colonization of catheter fragments. None of the 
catheters in the control group and pvl (+) MRSA USA300 WT showed 
bacterial colonies. The pvl (−) MSSA group showed only 523 CFU/cm2 while 
the pvl (+) MSSA and pvl (+) MRSA groups presented more than 1000 CFU/
cm2 in all catheters.
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Fig. 4. Microscopy of back skin. Control group (stained with H&E): (A) intact epidermis (asterisk) and corneal layer (arrow), dermis with attachments (tip 
arrow). The pvl (−) MSSA group: (B) increased cellularity in the subcutaneous adipocytes with inflammatory infiltrate (asterisk), necrotic area (tip arrow); 
(C) large number of red blood cells (arrow), mixed inflammatory infiltrate composed of mononuclear/polynuclear cells (asterisk). The pvl (+) MSSA group: 
(D) inflammatory afflux (asterisk); (E) reduced number of adipocytes in hypodermis (arrow), mixed inflammatory influx (asterisk) and fibrin (tip arrow). The 
pvl (+) MRSA group: (F) subcutaneous necrotic area (asterisk); (G) capillary congestion (arrow), edema (tip of hollow arrow), fibrin (tip arrow), necrotic area 
with inflammatory infiltrate (asterisk). The pvl (+) MRSA USA300 WT group: (H) low number of adipocytes in hypodermis (tip arrow), capillary congestion 
(arrow), edema with inflammatory influx (asterisk); (I) low number of adipocytes with inflammatory influx and perfusion in the dermis (arrow).

express specific genes responsible for the production of sur-
face proteins that recognize adhesins. pvl (+) MSSA and pvl 
(+) MRSA groups had a yellowish film. The culture of 100 µl 
solution confirmed catheter colonization in a concentration 
exceeding 1000 CFU/cm2 and the formation of biofilms. The 
colonies isolated from bacterial cultures were confirmed as S. 
aureus, which may migrate to other sites, adhere to medical 
devices, and thus form biofilm and cause infections. Similar 
results were observed by Atahan et al. in groups without anti-
microbial prophylaxis. Another study by Santana et al. using 
a method of scrolling also found that a film around a catheter 
in MSSA and MRSA groups was constituted by microorgan-
isms at a density higher than 1000 CFU/cm2 [37].

PVL-producing strains have caused severe skin infections 
associated with colonization and biofilm production, thus 
suggesting the expression of icaC gene. The association of 
biofilm production in catheter fragments and production of 
PVL through in vivo studies of S. aureus has not been de-
scribed in the literature. There was no association of resis-
tance to β-lactams and higher or lower production of biofilm 
in our study. The examination of the dorsal skin of animals in 
the control group revealed intact and preserved structures, 
thus we considered them as standard for comparison with 
other groups. The origin of inflammatory processes in the in-

fected groups was below the hypodermis, where the catheter 
fragment was introduced. Although non-PVL-producing 
strains did not form biofilm with the same intensity as PVL-
producing strains, the inflammatory processes presented simi-
lar intensities. These results corroborate that pvl (+) S. aureus 
tend to be more virulent than pvl (−) S. aureus and therefore 
associated with infections of skin and soft tissues [13]. War-
denburg et al. have utilized subcutaneous injections in the 
right flank of mice using bacterial suspensions of S. aureus at 
a density of 1.0 × 107 CFU/ml. The LAC and LACΔpvl strains 
demonstrated skin abscess with dermonecrotics after 96 h of 
infection [49]. Similar aspects were also observed in all 
groups of our study.

Storti et al. [42] analyzed 118 tips of central venous cath-
eters in adult patients by quantitative culture and correlated 
colony counting with initial dilution. They observed growth ≥ 
103 CFU/ml and confirmed that 50% of catheter-related infec-
tions were caused by S. aureus, including four cases of bacte-
remia, and that the most frequently isolated microorganisms 
were MRSA [42]. Staphylococcus spp. proved to be most fre-
quently isolated microorganism in catheter tips. The source of 
infection may be the patient’s skin because through material 
handling by medical staff during surgical procedures. There-
fore, data demonstrate the high level of virulence of these mi-
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croorganisms and the importance of prevention and treat-
ment [42].

Staphylococcus aureus can adhere to catheters, colonize 
and form biofilms. The amount of bacterial cells (colony 
forming units) is deeply related to higher or lower degrees of 
infection, including adjacent tissues. Intravascular catheter 
colonization by S. aureus can gain access to the bloodstream 
and cause bacteremia.

PVL-producing strains had higher performance in biofilm 
production. However, the group pvl (+) MRSA USA300 WT, 
the most virulent, did not present in vivo colonization in this 
study, even having in vitro potential to form biofilms. 
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