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Abstract We have analyzed the intracellular behavior of
the human transferrin receptor (TfR) in Saccharomyces
cerevisiae. The major part of the heterologously
expressed TfR, which has previously been used as a
model for heterologous expression of membrane pro-
teins in yeast, is localized in the endoplasmic reticulum
(ER) membranes; a minor fraction is present in the
plasma membrane (PM). The stability of the TfR de-
pends on vacuolar proteases, implying that it is degraded
in the vacuolar compartment. Degradation is further
dependent on favorable transport conditions to this
compartment. The main bottleneck of transport seems
to be the transition from the ER to the PM. The chap-
erone Cne1p, which is involved in quality control in the
ER, plays a role in regulating the amount of heterolo-
gous TfR, as deletion of CNE1 leads to significant ac-
cumulation of the protein. This is the first demonstration
of the involvement of CNE1 in regulating the level of
heterologous membrane proteins.

Keywords Intracellular transport Æ Heterologous
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Introduction

The production of mammalian membrane proteins in a
foreign host cell is not as efficient as that of soluble
proteins [26]. Both the translocation to the endoplasmic
reticulum (ER) membrane and the transport to their
final destination are more complex than the synthesis

of soluble proteins in the cytosol. Heterologous ex-
pression of membrane proteins is highly desired to
obtain sufficient material for structural and functional
analyses [14, 23, 28]. Our group has expressed the hu-
man transferrin receptor (TfR), a type II membrane
protein that mediates the uptake of cellular iron in
human cells [4, 30], in the yeast Saccharomyces cerevi-
siae. The protein is functional in yeast and binds its
natural ligand transferrin (Tf) in vitro [29]. Yeast cells
expressing human TfR are used as a model for studies
regarding the behavior of a heterologous membrane
protein. Our group showed [29] that the TfR is seen in
the plasma membrane (PM), but binding studies with
its ligand Tf have shown that only 70 binding sites per
cell are detectable on the surface of protoplasts, while
230 binding sites per cell are found in isolated mem-
branes. Here we have used this model protein to
establish its steady-state localization, to clarify the
pathway of the TfR in yeast and to answer the ques-
tion of how TfR is transported through the host cell.
Furthermore, we describe ways to influence the trans-
port and the amount of a heterologous membrane
protein, by adapting cultivation conditions and deleting
the chaperone Cne1p, a protein involved in quality
control in the ER.

Materials and methods

Strains and culture conditions

S. cerevisiae strains GRF18 (MAT a, leu2–3, 112, his3–11, 15, can1)
and YHH32 (MAT a, pra1::URA3, prb1DA5, leu2–3, 112, his3–11,
15, ura3D5) were used throughout this study. Cells were grown
overnight at 28�C in minimal medium WMIX supplemented with
glucose, then harvested and transferred to WMIX with galactose
as sole carbon source for induction of TfR expression. Incubation
was performed at 24�C. WMIX medium is WMVIII [13] with the
following modifications: 0.02 M potassium phosphate buffer,
pH 6.5, was used instead of NH4H2PO4 and KH2PO4, and NH4Cl
was omitted. Glucose or galactose (both at 2%) and appropriate
supplements (100 mg/l histidine) were added as required. TfR
transcription was repressed by shifting cells from galactose- to
glucose-containing medium.
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Plasmids and construction of CNE1-deletion strain

The plasmids used were the expression plasmid YEpGTfR
(kindly provided by H.-J. Terng), a shuttle plasmid based on the
2 lm DNA origin, the yeast LEU2 gene as selection marker and
the cDNA encoding the human TfR [29] under the control of the
yeast GAL1/10-promoter and the FLP1-terminator, and the
control plasmid YEpGal without the TfR-cDNA. The CNE1
deletion strain was constructed according to the method de-
scribed by Güldner and colleagues [7]. The fragment used to
generate the deletion was amplified by PCR from the template
pUG6. The upstream oligonucleotide primer was 5¢-ACG CAT
TTC TAA TAT AGA TAA CGG CCA CAC AAA GTA GTA
CCA GCT GAA GCT TCG TAC GC-3¢ and the downstream
oligonucleotide primer was 5¢-AAT ACT ACA CAA CAA AGA
ACC GAC GTC GTC AAG AGC ACG AGC ATA GGC CAC
TAG TGG ATC TG-3¢. The fragment, comprising the kana-
mycin resistance gene as selectable marker, was used to trans-
form strain GRF18 and disruption by homologous
recombination was confirmed in strain GRF18cne (MAT a,
cne1::kanr, leu2–3, 112, his3–11, 15, can1) by Southern blot
analysis (data not shown).

Membrane protein isolation

Cells (1·109) were harvested, washed and resuspended in 500 ll
phosphate-buffered saline (PBS) and 1 mM phenylmethylsulfo-
nylfluoride (PMSF); an equal volume of glass beads (0.5 mm di-
ameter) was added and cells were disrupted by vortexing 10 times
for 1 min and incubating for 1 min on ice in between. Membranes
and cell walls were isolated by spinning the lysate for 30 min at
10,000 g. The pellet was resuspended in 400 ll PBS, 1 mM
PMSF, 2% SDS to solubilize membrane proteins. After centrif-
ugation for 5 min at 4,000 g, the supernatant was loaded onto an
SDS-polyacrylamide gel. SDS-PAGE and immunoblotting were
performed as described [29]. Antibodies against human TfR
(monoclonal OKT9 and polyclonal) and human TfR from pla-
centa were kindly provided by R. Geßner (Virchow Klinikum,
Charite, Germany).

Subcellular fractionation

Fractionation was performed as described by Serrano et al. [25].
A total of 5·1010 cells were harvested, washed and resuspended in
7 ml H2O. Glucose (2 ml of a 20% stock) was added for PM
ATPase activation. After 10 min incubation at room temperature,
1 ml 1 mM Tris-HCl pH 8.0; 100 mM EDTA; 10 mM PMSF;
10 lg/ml leupeptin was added and cells were disrupted in a Dis-
integrator-S (Biomatic) with an equal volume of glass beads
(0.5 mm diameter). The lysate was mixed with 20 ml STED10
[STED10, STED20, STED36, STED53: containing 10, 20, 36, or
53% (w/w) sucrose, respectively, in 10 mM Tris-HCl pH 7.6;
1 mM EDTA; 1 mM DTT] and cleared at 700 g. Membranes
were collected by centrifugation of the supernatant at 20,000 g.
The pellet was resuspended in 1 ml STED10, including 1 mM
PMSF and 10 lg/ml leupeptin and loaded onto a continuous
sucrose gradient preformed by laying 4 ml each of STED53,
STED36 and STED20 into a tube, sealing it with Parafilm and
keeping it in a horizontal position at 4�C. After 4 h, a continuous
gradient was formed by setting the tube in an upright position.
Gradients were spun for 16 h at 100,000 g. Fractions of 700 ll
were collected from the top to the bottom. Aliquots were sub-
jected to enzyme assays or to SDS-PAGE. Western blot analysis
was carried out using anti-Pma1p (PM ATPase) antibodies
(kindly provided by R. Serrano, Polytechnic University, Valencia,
Spain), anti-Tf (transferrin) antibodies (DAKO, Glostrup, Den-
mark), anti-Dpm1p (dolicholphosphatemannose-synthetase) and
anti-CPY (carboxypeptidase Y) antibodies (Molecular Probes,
Leiden, The Netherlands).

Enzyme assays

NADPH-cytochrome c oxidoreductase (ER marker) was measured
in a reaction mixture consisting of 1 ml 50 mM KPi (potassium
phosphate) buffer (pH 7.0); 1 mM KCN; 0.1 mM NADPH and
15 ll of the gradient fractions. The reaction was started by adding
10 ll cytochrome c (2.5 mM) and the increase in absorbance at
550 nm was monitored. Vacuolar a-mannosidase was assayed with
p-nitrophenyl mannoside as the substrate and the generation of
p-nitrophenol was followed. Appropriate dilutions of gradient
fractions (100 ll) were added to a 325 ll reaction mixture (50 mM
KPi buffer, pH 7.0; 0.1% Triton X-100; 1 mM p-nitrophenyl
mannoside). The reaction was incubated for 1 h at 37�C and
stopped by adding 650 ll Na2CO3. Absorbance was measured at
400 nm. PM ATPase activity was measured by the formation of
inorganic phosphate (Pi) from ATP. A 100 ll aliquot of a gradient
fraction was added to 325 ll reaction mixture (50 mM MES-Tris
pH 6.5; 5 mM MgSO4; 50 mM KNO3; 5 mM NaN3; 0.2 mM
ammoniummolybdate; 2 mM ATP). The reaction was incubated
for 20 min at 30�C and stopped by adding 650 ll 2% H2SO4; 0.5%
ammoniummolybdate; 0.5% SDS; 0.1% ascorbic acid. Absorbance
was measured at 690 nm after incubation for 5 min and the Pi

concentration was calculated using a Pi-standard of 25–250 nmol.
Activity was calculated according to [24].

Results

The heterologously expressed human TfR
is predominantly localized in ER membranes

To investigate the steady-state localization of the het-
erologously expressed human TfR, yeast cell membranes
were fractionated by sucrose gradient centrifugation. The
TfR was mainly localized in intracellular membranes,
presumably in membranes of the secretory pathway, such
as ER or Golgi membranes (Fig. 1) as deduced from co-
fractionation of TfR with the ER-markers NADPH
cytochrome c oxidoreductase (Fig. 1C) and dolichol-
phosphatemannose-synthetase (Dpm1p; Fig. 1D). Only
a small amount of the TfR is localized in the PM, as
shown after concentrating the PM fractions (Fig. 1B).
The protein level of the PM fractions was lower
and therefore the amount of heterologously expressed
TfR had to be concentrated to be above the detection
limit.

Immunostaining was performed to confirm these data
and revealed a dot-like staining in the cell (data not
shown). The staining did not co-localize with the vacu-
olar membrane or with the nucleus, but localization
within ER membranes or Golgi was seen. This is in good
agreement with the fractionation data and suggests that
the TfR is localized predominantly in the ER, although a
small fraction is localized in the PM. This confirms the
data of Terng et al. [29] and shows in addition that only
a minor part of the TfR is present in the PM.

The degradation of the TfR in yeast takes place
in the vacuole

The TfR was expressed under the control of the galac-
tose-inducible GAL1/10 promoter, which is repressed by
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glucose, so the degradation behavior could be assayed
by repressing transcription. TfR synthesis was induced
upon shifting the cells from glucose- to galactose-con-
taining medium. Afterwards, the cells were transferred
to glucose-containing medium to repress transcription of
the TfR gene and to stop TfR synthesis. Thus, the de-
gradation behavior of the expressed TfR could be fol-
lowed. The TfR was extremely stable in yeast and could
still be detected 6 h after repression of transcription
(Fig. 2). The degradation behavior of the TfR was
compared in strains GRF18, which is protease-compe-
tent, and YHH32, a vacuolar proteinase A- and B-de-
ficient strain to test whether the turnover of the TfR
took place in the vacuole. Samples were taken at dif-
ferent time points after repression of transcription and
translation by shifting the cells to glucose in the presence
of cycloheximide. Data revealed that the TfR could be
detected 6 and 8 h after repression of transcription and
translation in the protease-deficient strain, whereas it
could no longer be detected in the protease-competent
strain (Fig. 3). Cycloheximide is known to enhance
protein turnover [33] and therefore the stability of TfR
in the GRF18 strain is lower in the presence of cycloh-
eximide than without cycloheximide. These data show
that the receptor is more stable in the protease-deficient
strain, and imply that the turnover of the receptor takes
place in the vacuole and depends on vacuolar proteases.

Degradation of the TfR depends on favorable
transport conditions

The degradation rate of the TfR was also reduced at low
temperature (4�C) or in the absence of an energy source

Fig. 2 Stability of TfR under diverse conditions. TfR expression
was induced in Saccharomyces cerevisiae strain GRF18/YEpGTfR
by incubating cells for 48 h in galactose. Afterwards, the cells were
transferred to glucose-containing medium and incubated at 28�C
for different times or at 4�C for 9 h (4�C, glc). Two more samples
were taken and either incubated with galactose (gal) or without a
carbon source (w/o C) for 9 h. Cells not expressing TfR (GRF18/
YEpGal) were used as a negative control. Membrane proteins were
isolated and 200 lg protein was loaded on SDS-PAGE. hTfR
(1 lg) from placenta was used as a positive control. * Specific
degradation product of TfR. Detection was performed using
polyclonal anti-TfR antibodies

Fig. 1A–E Fractionation of the human transferrin receptor (TfR)-
expressing strain. The strain YHH32/YEpGTfR was induced for
TfR synthesis with galactose for 48 h. Cells were harvested and
treated as described in Materials and methods. Fractions of 700 ll
were collected from top to bottom (lanes 1–18, respectively) and
analyzed as follows. Aliquots (30 ll) were separated on SDS-
PAGE and analyzed by Western blotting with polyclonal anti-TfR
antibodies (A, B), monoclonal anti-Dpm1p antibodies [endoplas-
mic reticulum (ER) marker] and monoclonal anti-CPY antibodies
(vacuolar marker; D). hTfR Human TfR from placenta as positive
control, M aliquot of the membrane before fractionation. Marker
enzyme activity (C) was measured for each fraction and expressed
as percentage of total enzyme activity in all fractions. VAC
Vacuolar marker a-mannosidase, ER ER marker NADPH cyto-
chrome c reductase, PM PM-ATPase as plasma membrane (PM)
marker. Density (% sucrose) and protein concentration (mg) was
also measured for each fraction (E). Aliquots (100 ll) of fractions
12–15 were precipitated with trichloracetic acid to increase the
amount of protein and again subjected to SDS-PAGE analysis.
TfR is unambiguously detectable in PM fractions when protein
concentrations equivalent to concentrations in ER fractions were
used (B)
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(glucose), conditions both known to retard transport
processes. In either case, a specific degradation product
of the TfR, which was always seen in cells treated with
glucose, could not be detected (see Fig. 2). Cells grown
in galactose showed a TfR degradation pattern similar
to that seen in cells grown without an energy source or at
low temperature. Again, the degradation band could not
be detected. This suggested that galactose is not as good
a source of energy as glucose under our cultivation
conditions. The transport of the TfR from the ER to the
vacuole via the PM can thus be enhanced by supplying a
good energy source, and it can be reduced by inhibiting
transport processes, e.g., at low temperature.

The ligand Tf is taken up nonspecifically in yeast

In human cells, the TfR is partly localized in the PM
[27], where it binds its ligand Tf and takes it up by
receptor-mediated endocytosis. TfR heterologously ex-
pressed in yeast is able to bind its natural ligand Tf in
vitro as shown by Terng et al. [29]. Studies on Tf up-
take were performed to investigate if the TfR in yeast
was able to bind Tf in vivo. Yeast cells induced for the
expression of the receptor were incubated with Tf in
glucose-containing medium. Yeast cell extracts were
then fractionated on a sucrose gradient. The ligand Tf
was detected in PM fractions as deduced from
co-fractionation of Tf and PM ATPase (Fig. 4). This
implies that the ligand Tf reaches the yeast PM after
crossing the cell wall and is thus able to bind the TfR
on the PM. However, Tf could also be seen in the PM
fractions of the negative control strain, which does not
express the TfR. This suggests that Tf is trapped in the

periplasmic space after crossing the cell wall and is
enclosed in PM vesicles by fluid phase endocytosis. It
is, however, remarkable that the uptake of the ligand is
energy-dependent and not forced by diffusion, as cells
incubated without a carbon source or at low temper-
ature for 12 h do not show any uptake of Tf into
membrane fractions (data not shown). Thus, Tf might
be internalized by both fluid phase endocytosis and
endocytosis of TfR-Tf complexes. Tf transport is
therefore unspecific and cannot be used to follow the
behavior of the TfR.

Influencing quality control in the ER by deleting
the chaperone Cne1p

As the TfR was predominantly found in the ER mem-
brane, the question arose if modifying quality control in
the ER could influence TfR transport to the PM. The
quality control machinery might identify the TfR as a
foreign protein and retain it in the ER. The yeast
chaperone CNE1 has homology to the mammalian
chaperones calnexin and calreticulin [32]. Deletion of
CNE1 in yeast increases the secretion of heterologously
expressed soluble protein [17]. To investigate whether
the deletion of the CNE1 gene influences the transport of
a heterologous membrane protein, we deleted this gene
in strain GRF18 . A time-course profile showed that
the amount of TfR was higher in the CNE1-deletion
strain compared to the reference strain (Fig. 5). TfR

Fig. 3 Stability of TfR in a protease-deficient strain. TfR expres-
sion was induced in a protease-deficient (YHH32/YEpGTfR: pra1,
prb1) and a protease-competent (GRF18/YEpGTfR: PRA1,
PRB1) strain by incubating cells for 48 h in galactose. Afterwards,
the cells were transferred to glucose-containing medium with
cycloheximide (100 lg/ml) to completely stop synthesis and
samples were taken at different time points to follow the TfR
degradation. Membrane proteins were isolated and 300 lg protein
was loaded in each lane. Membrane proteins from the strain
YHH32/YEpGal after 48 h in galactose were loaded as a negative
control. TfR was detected using monoclonal anti-TfR antibodies
(OKT9)

Fig. 4A–C Transferrin uptake. TfR expression was induced in the
strain YHH32/YEpGTfR as described in Fig. 1. After incubation
in glucose-containing medium with 20 lg/ml ferri-transferrin for
6 h, cells were harvested and membranes were fractionated as
described in the legend to Fig. 1. Aliquots of fractions (60 ll) were
subjected to electrophoresis and analyzed by western blotting with
polyclonal anti-Tf antibodies (A) and polyclonal anti-Pma1p
antibodies (B). The control strain YHH32/YEpGal without the
TfR gene was treated likewise and also analyzed for transferrin
uptake with anti-Tf antibodies (C)
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expression could also be detected earlier (after 8 h) than
in the reference strain (after 22 h). Membrane fraction-
ation of the CNE1 deletion strain revealed that the TfR
was detectable in the ER-containing fractions as well as
in PM fractions (Fig. 6). A large amount of the TfR still
accumulated in the ER, but TfR was localized in the PM
to a higher degree than in the reference strain. This is
seen when comparing the amount of TfR in ER-specific
fractions and PM-specific fractions. The TfR bands on
the blot were measured by density scan for quantifica-
tion. The ratio of the TfR in three ER-containing frac-
tions (fraction 9, 10, 11) to three PM-containing
fractions (fraction 13, 14, 15) is 1.5 in the CNE1 deletion
strain vs 3 in a control strain without the CNE1 deletion.

Discussion

Human TfR heterologously expressed in the yeast
S. cerevisiae is localized predominantly in the ER
membrane; only a small amount is localized in the PM.
The TfR is degraded in the vacuole, as shown by its
enhanced stability in a vacuolar protease-deficient
strain. Our data support the hypothesis that, in yeast,
the heterologously expressed TfR is translocated into the
ER membrane, travels from the ER through the secre-
tory pathway to the PM and is then taken up and de-
graded in the vacuole. The degradation of the TfR
depends on its transport to the degradation compart-
ment and the long half-life implies that the amount of
TfR reaching this compartment is low. The bottleneck in
transport through the cell seems to be the route from ER
to PM, as a large part of the TfR accumulates in the ER.
Its long half-life also indicates that the TfR is not de-
graded by ER-associated degradation (see [3, 34] for
review of ER-associated degradation).

As shown in this paper, favorable transport condi-
tions are necessary to efficiently transport the TfR to the
vacuole. In our studies, galactose does not seem to be as
good a source of energy as glucose. A typical degrada-
tion product of the TfR is seen in cells incubated with
glucose, but not in cells treated with galactose. In
addition, cells with a reduced transport activity due to
low temperature or incubation without carbon source do
not show this degradation band. In these cases, degra-
dation of TfR is slowed. Thus, it seems that the trans-
port to the vacuole is reduced on galactose. Peñalver and
colleagues [20] also described that the protein turnover
of membrane proteins depends on the carbon source.
Although sucrose, mannose and fructose are good
energy sources for turnover, galactose requires a long

Fig. 6A–C Fractionation of the CNE1 deletion strain. The strain
GRF18cne/YEpGTfR was induced for TfR synthesis with galac-
tose for 48 h. Cells were harvested and treated as described in
Materials and methods. Fractions of 700 ll were collected and
analyzed as described in Fig. 1. Aliquots (60 ll) were separated by
SDS-PAGE and analyzed by Western blotting with polyclonal
anti-TfR antibodies (A). hTfR Human placental TfR as positive
control, M aliquot of the membrane before fractionation. Marker
enzyme activity (B) was measured for each fraction and expressed
as percentage of total enzyme activity in all fractions. VAC
Vacuolar marker a-mannosidase, ER ER marker NADPH cyto-
chrome c reductase, PM PM-ATPase as PM marker. Density
(% sucrose) and protein concentration (mg) was also measured for
each fraction (C)

Fig. 5 Expression profile of the TfR in a CNE1 deletion strain. The
strains GRF18/YEpGTfR and GRF18cne/YEpGTfR were
induced with galactose for TfR expression. After 4, 8, 22 and
49 h of induction, aliquots of CNE1 competent cells (CNE1) and
CNE1 deleted cells (Dcne1) were harvested, membranes were
isolated and proteins (100 lg) were separated by SDS-PAGE. *
Specific TfR degradation product, ¥ putative dimer. The receptor
was detected using polyclonal anti-TfR antibodies
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adaptation time and does not achieve the protein turn-
over rates of the other carbon sources.

It has previously been reported that some overex-
pressed membrane proteins accumulate in the ER and
do not reach their destination, the PM [2, 8, 9, 10, 11, 12,
18, 31]. Limitations of either the transport machinery
from ER to PM or the capacity of the PM surface for the
uptake of membrane proteins might cause this accu-
mulation. The bottleneck in transportation of homolo-
gous overexpressed proteins is the amount of protein to
be transported. Heterologous overexpressed proteins
encounter an additional bottleneck, as they have to use a
transport system that is not designed for them (see [6, 19]
for discussion of transport machinery).

The ER is also the site of quality control [5]; a
foreign protein has to traverse this quality control. The
Cne1 protein has been described as a homologue of the
mammalian chaperones calnexin and calreticulin [32].
Deleting the chaperone Cne1p does not have any
influence on the transport of homologous soluble pro-
teins such as the a-factor and acid phosphatase, but it
increases the secretion of heterologous soluble proteins
such as a1-antitrypsin [17] and a fusion protein com-
posed of a hydrophobic peptide and lysozyme [1].
Parlati and colleagues [17] suggested that the deletion
of CNE1 might also affect homologous membrane
proteins. These data suggest that the chaperone Cne1p
is involved in quality control in yeast, especially in
influencing the transport of heterologous or mutated
proteins by retaining them in the ER and diminishing
their transport to the PM. To date, no data have been
reported on the influence of the CNE1 deletion on a
heterologous membrane protein in yeast. Our data
show that TfR accumulation is significantly increased
in a Dcne1-strain, implying that the chaperone Cne1p
acting in the quality control machinery reduces the
production or the accumulation of the heterologous
membrane protein. Cne1p seems to be involved in ER-
associated degradation [15]. Cne1p might recognize the
heterologous protein and direct it to the ER degrada-
tion machinery. Overexpression might lead to a mixture
of correctly and incorrectly folded TfR. While the in-
correctly folded TfR is delivered to ER degradation in
the reference strain, both the correctly and the incor-
rectly folded TfR accumulate in the ER of the Dcne1-
strain. The high amount of overexpressed membrane
protein might also give a feedback signal in the refer-
ence strain and thus result in decreased synthesis or
translocation of the heterologous protein. Cne1p might
be involved in such regulation by sensing the amount
of protein in the ER. This regulation would be turned
off in the deletion strain, so that synthesis is not de-
creased following the accumulation of proteins in the
ER. Furthermore, protein import into, and export
from, the ER share some translocation proteins [21,
22], and both these processes, translocation and ER-
associated degradation, compete for limiting compo-
nents [16]. Cne1p, which is involved in quality control
and is therefore coupled to the ER degradation

machinery, might recruit such components so that the
translocation process is limited and accumulation in the
ER is reduced. The deletion strain, however, would not
be limited in translocation and thus would allow high
accumulation of the heterologous protein.

Our report describes the intracellular transport of a
heterologous membrane protein and highlights the bot-
tleneck of transport from ER to PM. Influencing quality
control by genetic modification seems to be a promising
tool to enhance transport and yield of heterologous
membrane proteins in yeast. The TfR accumulating in
the ER can be used as a model in the further improve-
ment of transport, by genetic engineering of components
of the transport machinery.
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