Probing sizes and shapes of nobelium isotopes by laser spectroscopy

2	S. Raeder, ^{1,2,*} D. Ackermann, ^{3,2} H. Backe, ⁴ R. Beerwerth, ^{5,6} J. C. Berengut, ⁷ M. Block, ^{1,2,8} A. Borschevsky, ⁹
3	B. Cheal, ¹⁰ P. Chhetri, ^{2,11} Ch.E. Düllmann, ^{1,2,8} V.A. Dzuba, ⁷ E. Eliav, ¹² J. Even, ¹³ R. Ferrer, ¹⁴
4	V.V. Flambaum, ^{1,7} S. Fritzsche, ^{5,6} F. Giacoppo, ^{1,2} S. Götz, ^{1,8} F.P. Heßberger, ^{1,2} M. Huyse, ¹⁴ U. Kaldor, ¹²
5	O. Kaleja, ^{2,15,†} J. Khuyagbaatar, ^{1,2} P. Kunz, ¹⁶ M. Laatiaoui, ^{1,2} F. Lautenschläger, ^{2,11} W. Lauth, ⁴
6	A K Mistry ^{1,2} E Minaya Bamirez ¹⁷ W Nazarewicz ¹⁸ S G Porsey ^{19,20} M S Safronova ^{19,21}
7	U.I. Safronova, ²² B. Schuetrumpf, ^{15, 2} P. Van Duppen, ¹⁴ T. Walther, ¹¹ C. Wraith, ¹⁰ and A. Yakushev ^{1, 2}
8	¹ Helmholtz-Institut Mainz, 55128 Mainz, Germany.
9	² GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany.
10	³ GANIL, CEA/DRF-CNRS/IN2P3, Bd. Becquerel, BP 55027, F-14076 Caen, France
11	⁴ Institut für Kernphysik, Johannes Gutenberg Universität, 55128 Mainz, Germany.
12	⁵ Helmholtz-Institut Jena, 07743 Jena, Germany.
13	⁶ Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany
14	⁷ School of Physics, University of New South Wales, Sydney 2052, Australia
15	⁸ Institut für Kernchemie, Johannes Gutenberg Universität, 55128 Mainz, Germany.
16	⁹ Van Swinderen Institute, University of Groningen, 9747 AG Groningen, The Netherlands
17	¹⁰ Department of Physics, University of Liverpool, L69 7ZE Liverpool, UK.
18	¹¹ Institut für Angewandte Physik, Technische Universität Darmstadt, 64289 Darmstadt, Germany.
19	¹² School of Chemistry, Tel Aviv University, 69978 Tel Aviv, Israel
20	¹³ KVI CART, University of Groningen, 9747 AA Groningen, The Netherlands.
21	¹⁴ KU Leuven, Instituut voor Kern- en Stralingsfysica, 3001 Leuven, Belgium.
22	¹³ Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany.
23	¹⁰ TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada.
24	¹⁴ Institut de Physique Nucléaire Orsay, 91406 Orsay, France.
25	¹⁰ Department of Physics and Astronomy and FRIB Laboratory,
26	Michigan State University, East Lansing, Michigan 48824, USA. ¹⁹ Devents and A transmission of Delevers Neural Delevers 10716, UCA
27	²⁰ Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19710, USA
28	²¹ Leint Quantum Institute Of NRC "Kurchatov Institute", Gatchina, Leningrad District 188300, Russia
29	Joint Quantum Institute, NIST and the Oniversity of Wargana, Contege Park, Margana, OSA
30 31	(Dated: April 7, 2018)
32	Until recently ground state nuclear moments of the heaviest nuclei could only be inferred from
33	nuclear spectroscopy, where model assumptions are required. Laser spectroscopy in combination
34	with modern atomic structure calculations is now able to probe these moments directly, in a com-
35	prehensive and nuclear model-independent way, for the first time. Here we report on unique access
36	to the differential mean-square charge radii of ^{252,253,254} No, and therefore to changes in nuclear size
37	and shape. State-of-the-art nuclear density functional calculations describe well the changes in nu-
38	clear charge radii in the region of the heavy actinides, indicating an appreciable central depression
39	in the deformed proton density distribution in ^{252,254} No isotopes. Finally, the hyperfine splitting of
40	²⁵³ No was evaluated enabling a complementary measure of its (quadrupole) deformation, as well as
41	an insight into the neutron single-particle wave function via the nuclear spin and magnetic moment.

The heaviest elements owe their existence to a sub- 57 42 tle balance between the attractive nuclear force and the $_{58}$ 43 Coulomb repulsion. The attractive force leads to strong 59 44 shell effects that increase the binding energy and thus the $_{60}$ 45 half-life by more than fifteen orders of magnitude com- 61 46 pared to early expectations [1]. Coulomb rearrangement 62 47 plays a key role in superheavy nuclei resulting in a central 63 48 depression in the density distribution and may even re- 64 49 sult in bubble nuclei (see Ref. [2] and references therein). 65 50 Unfortunately, measurements of charge or matter radii 66 51 have stopped short of transfermium nuclei. The nuclei 67 52 between the spherical ²⁰⁸Pb and a predicted island of en- 68 53 hanced stability in the region of the superheavy nuclei [3] 69 54 are expected to be deformed [4]. Evidence for the defor- 70 55 mation is provided by the observation of K-isomers [5, 6] $_{71}$ 56

and from rotational bands in nuclear decay spectroscopy, for example, in ²⁵⁴No [7, 8] or ²⁵⁶Rf [9]. The deformation parameters and other nuclear properties such as the magnetic moment are then derived based on a modeldependent interpretation of such rotational levels built on the nuclear ground state [10]. Laser spectroscopy, on the contrary, enables probing the nuclear ground state directly: the atomic spectra of different isotopes reveal information on the nuclear spin, nuclear moments and differential nuclear mean-charge radii [11]. Atom-at-atime laser spectroscopy of the heavy actinide element nobelium (No, Z = 102), in which the ${}^{1}S_{0} \rightarrow {}^{1}P_{1}$ transition at an excitation energy of $\bar{\nu}_1 = 29,961.457 \,\mathrm{cm}^{-1}$ was identified [12], was a prerequisite for our studies. Here, we report detailed laser spectroscopy on the nobelium isotopes ^{252,253,254}No from which, in combination with
state-of-the-art atomic calculations, information on the
underlying nuclear structure is obtained.

The RAdiation Detected Resonance Ionization Spec-75 troscopy (RADRIS) technique [13, 14] employs a two-76 step photo-ionization process along with an unambigu-77 ous identification via radioactive decay detection. The 78 nobelium isotopes ^{252,253,254}No were produced in the 79 two neutron evaporation channel of the complete-fusion 80 of 48 Ca with ${}^{20\hat{6},207,208}$ Pb with cross-sections of $0.5\,\mu b$ 81 (^{252}No) , 1.3 µb (^{253}No) , and 2 µb (^{254}No) [15]. The ⁴⁸Ca 82 beam was provided by the linear accelerator (UNILAC) 83 of GSI Helmholtzzentrum für Schwerionenforschung in 84 Darmstadt with average beam currents of 0.7 particle 85 μA (about 4.4×10^{12} particles per second). The fusion-86 evaporation products, recoiling from the PbS targets, 87 with a thickness of about $440 \,\mu g/cm^2$, were separated in-88 flight from the primary beam by the Separator for Heavy 89 Ion reaction Products (SHIP)[16]. At the best four ions 90 per second were injected into a buffer-gas stopping cell 91 installed at the focal plane of SHIP. A 3.5 µm thick, alu-92 minized Mylar foil window separated the gas environ-93 ment of the gas cell from the high vacuum of SHIP. The 94 ions were thermalized in 95 mbar ultrahigh-purity argon 95 gas (99.9999%), accumulated, and neutralized on a tan-96 talum catcher filament. For a short time during every 97 measurement the primary beam was chopped out before 98 the filament was heated to temperatures of about 1050°C 99 at which neutral nobelium atoms are efficiently released 100

[17]. For best performance, we varied the collection $time_{128}$ 101 with respect to the half-life of the isotope [18]: 3s for₁₃₉ 252 No $(T_{1/2} = 2.4 \text{ s})$, 37 s for 253 No $(T_{1/2} = 97 \text{ s})$, and 25 s₁₃₁ for 254 No $(T_{1/2} = 51.2 \text{ s})$. The released atoms were probed₁₃₂ 102 103 104 by two laser beams of suitable wavelengths in a two-step₁₃₃ 105 photo-ionization scheme (see inset in Fig. 1). The sec- $_{134}$ 106 ond step was set to a wavelength $\lambda_2 = 351 \text{ nm}$ such that λ_{135} 107 the total excitation energy exceeded the first ionization₁₃₆ 108 potential (IP) for non-resonant ionization, with a $pulse_{137}$ 109 energy density of 2 mJ/cm^2 . This laser efficiently ion-110 ized atoms excited to the ${}^{1}P_{1}$ state but also the fraction 111 of atoms where the population that was transferred to $\mathbf{a}^{^{139}}$ 112 long-lived atomic state by gas collisions [19]. Ions created¹⁴⁰ 113 by resonant laser ionization were guided by electrostatic¹⁴¹ 114 potentials to a silicon detector and identified by their¹⁴² 115 characteristic α -decay energy or additionally by the de-¹⁴³ 116 tection of high energetic fission fragments in the case of¹⁴⁴ 117 ²⁵²No. This method enables a selective and efficient laser₁₄₅ 118 spectroscopy, resulting in a total efficiency of $3.3(1.0)\%_{146}$ 119 for 252 No [12], 8.2(2.5)% for 253 No, and 6.4(1.0)% for 147 120 254 No [12]. To probe nuclear properties of the nobelium₁₄₈ 121 isotopes, we scanned the first excitation step around the149 122 ¹P₁ level with a resolution of about 4 GHz (FWHM) lim-150 123 ited mainly by the laser bandwidth (1.2 GHz) and col-151 124 lisional broadening (4 GHz). For 252 No we operated the₁₅₂ 125 laser with an increased laser bandwidth of 5.5 GHz, which₁₅₃ 126 reduced the final resolution, but also reduced the number₁₅₄ 127

FIG. 1. Measured excitation spectra of the ${}^{1}\mathrm{P}_{1}$ level for the isotopes ${}^{254}\mathrm{No}$, ${}^{253}\mathrm{No}$, and ${}^{252}\mathrm{No}$ with a best fit to the data (solid line). The dashed line represents the center of each resonance while the solid vertical lines in the ${}^{253}\mathrm{No}$ spectrum indicate the position and strength of the individual hyperfine structure components with total angular momentum F = 7/2, 9/2, and 11/2 at $3.99\,\mathrm{GHz}$, $4.10\,\mathrm{GHz}$, and $10.74\,\mathrm{GHz}$, respectively. The inset shows a schematic ionization scheme.

of scan steps for a more efficient beamtime usage. The measured spectra are shown in Fig. 1.

Besides a shift of the resonance centroid of the individual isotopes, the spectrum of the odd-mass isotope ²⁵³No additionally features a splitting. This originates from the hyperfine interaction that leads to a coupling of the electron angular momentum J with the nuclear spin I. The resulting splitting $\Delta E_{\rm HFS}$ depends on the total angular momentum F and the hyperfine coupling constants $A_{\text{HFS}} = \mu \frac{B_e}{IJ}$ and $B_{\text{HFS}} = eQ_s \left\langle \frac{\partial^2 V}{\partial z^2} \right\rangle$, where μ and Q_s are the magnetic dipole moment and the spectroscopic quadrupole moment of the nucleus, respectively. The magnetic dipole moment μ couples to the magnetic field created by the electron orbital at the nucleus B_e while Q_s links to the electric field gradient at the nucleus $\left\langle \frac{\partial^2 V}{\partial z^2} \right\rangle$ with the elementary charge e. These atomic parameters, which are isotope-independent and connect atomic observables to nuclear properties, were obtained from state-of-the-art atomic calculations. Different theoretical approaches were applied to calculate these parameters for nobelium: configuration interaction (CI) with the single-double coupled cluster method (CI+All orders) [20], CI combined with many-body perturbation theory (MBPT) [21–23], and relativistic Fock space coupled cluster (FSCC) [24] as well as multi configuration Dirac-Fock (MCDF) calculations [25, 26]. The

TABLE I. Summary of the atomic calculations, the experimental results, and the extracted nuclear parameters for 252,253,254 No. The values of the calculated HFS coupling parameters B_e/J and $e \langle \partial^2 V/\partial z^2 \rangle$, the field shift constant F_s and the mass shift constant M have been calculated with different techniques in this work and are presented together with the spectroscopic results obtained in the experiment. From these values the nuclear magnetic moment μ , the spectroscopic quadrupole moment Q_s and the changes in mean square charge radii $\delta \langle r^2 \rangle$ between the nuclei are extracted. μ_N denotes the nuclear magneton.

	Hyperfine splitting for 253 No		Isotope shift			
Atomic calculations	B_e/J	$e\left<\partial^2 V/\partial z^2\right>$	$F_{ m s}$	M		
	$(\mathrm{GHz} \cdot I/\mu_{\mathrm{N}})$	(GHz/eb)	$(\mathrm{GHz}/\mathrm{fm}^2)$	$(GHz \cdot amu)$		
CI+All orders	$-6.3(0.9)^{\dagger}$	$0.486(70)^{\dagger}$	$-95.8(7.0)^{\dagger}$			
CI+MBPT	-7.1(1.0)	0.503(75)	-104(10)			
CIPT	-7.4(1.2)	0.624(90)	-94(25)			
FSCC		$0.465(70)^{\dagger}$	-99(15)			
MCDF	-4.1(1.8)	0.444(75)	-113(25)	$1044(400)^{\dagger}$		
[†] values used to deduce nuclear ground-state parameters.						
			054.050	054.050		
Spectroscopic results	$A_{\rm HFS} ({\rm GHz})$	$B_{\rm HFS} ({\rm GHz})$	$\delta \nu^{254,253}$ (GHz)	$\delta \nu^{254,253}$ (GHz)		
	0.734(46)	2.82(69)	6.72(18)	10.08(69)		
Nuclear properties	$\mu(\mu_{ m N})$	$Q_{\rm s}~({\rm eb})$	$\delta \langle r^2 \rangle^{254,253} (\text{fm}^2)$	$\delta \langle r^2 \rangle^{254,252} (\text{fm}^2)$		
	-0.527(33)(75)	+5.9(1.4)(0.9)	-0.070(2)(5)	-0.105(7)(7)		

results of these calculations are summarized in Table I.189 155 In general, the different methods agree with one another¹⁹⁰ 156 to within about 20%. By applying a newly developed₁₉₁ 157 method which is based on the CI technique but treats₁₉₂ 158 high-energy states perturbatively (CIPT method) [27],193 159 the influence of configuration mixing on the investigated₁₉₄ 160 ${}^{1}P_{1}$ level was evaluated at the cost of an increased un-195 161 certainty. This allowed to verify and exclude a possible₁₉₆ 162 scenario of a strong mixing with core excitations. From 197 163 systematic investigations of chemical elements with simi-198 164 lar electronic configurations, the most accurate values for 199 165 the hyperfine coupling parameter B_e/J and the isotope 166 field shift constant $F_{\rm s}$ are expected for CI(+All orders)₂₀₀ 167 calculations. Thus, these results were taken for extract-168

¹⁶⁹ ing the nuclear properties. CI(+All orders) calculations²⁰¹ and FSCC calculations provide the same uncertainty for²⁰² ¹⁷¹ the parameter $e \langle \partial^2 V / \partial z^2 \rangle$ for which an average value of²⁰³ ¹⁷² 0.476(70) GHz/eb was used in the evaluation. ²⁰⁴

From a total of three HFS transitions to the ¹P₁ state₂₀₅ 173 in ²⁵³No only two were resolved. The splitting of the₂₀₆ 174 hyperfine structure (HFS) levels depends on the nuclear²⁰⁷ 175 spin. Under the assumption of a prolate shape of the₂₀₈ 176 ²⁵³No nucleus, and by considering the sign of the ex-209 177 tracted magnetic moment and the χ^2 of the fit, a nu-210 178 clear spin of $I(^{253}No) = 9/2$, which was used later on₂₁₁ 179 in the evaluation, is favoured over $I(^{253}No) = 7/2$. This²¹² 180 result independently substantiates conclusions from nu-213 181 clear spectroscopy [28, 29]. The hyperfine coupling con-214 182 stants $A_{\rm HFS} = 0.734(46) \,\text{GHz}$ and $B_{\rm HFS} = 2.82(67) \,\text{GHz}_{^{215}}$ 183 for 253 No were derived from a χ^2 -minimization of a rate₂₁₆ 184 equation model to the experimental data which includes₂₁₇ 185 saturation effects from the pulsed laser excitation on₂₁₈ 186 the individual intensities [30]. For ²⁵³No, which fea-₂₁₉ 187 tures an even proton number, Z = 102, and an odd neu-220 188

tron number, N = 151, the nuclear magnetic properties arise mainly from the unpaired neutron. Our experimental determination of the magnetic dipole moment to $\mu(^{253}\text{No}) = -0.527(33)(75)\,\mu_{\text{N}}$ therefore enables probing nuclear shell model predictions of the underlying nuclear single neutron wave function. The first parenthesis refers to the statistical uncertainty (1σ) and the second parenthesis refers to the uncertainty from atomic calculations. The nuclear magnetic moment of the band-head of a rotational band in a well-deformed nucleus, such as expected in the case of 253 No, can be written as

$$\mu/\mu_{\rm N} = g_K \frac{I^2}{I+1} + g_R \frac{I}{I+1} \quad . \tag{1}$$

It depends on the rotational g-factor $0.7 \cdot Z/A \leq g_R \leq Z/A$ [31] and the single-particle intrinsic g-factor g_K , which so far was calculated from nuclear models. From our data on the magnetic moment, an average value of $g_K^{\text{exp}} = -0.22(5)$ is extracted which considers the stated range of g_R . This result is consistent with a calculated value of $g_K = -0.25$ reported in [29, 32] for the $I(^{253}\text{No}) = 9/2^{-}[734]$ ground state configuration while it disagrees with a different calculated value $g_K = -0.12$, reported in [33].

From the $B_{\rm HFS}$ -value of the HFS splita spectroscopic quadrupole ting, moment of $Q_{\rm s}(^{253}{\rm No}) = +5.9(1.4)(0.9)\,{\rm eb}$ is deduced indicating a strong prolate deformation of the ²⁵³No nucleus, in agreement with the observation of K-isomers in nobelium isotopes [5]. From our result an intrinsic quadrupole moment of $Q_0(^{253}\text{No}) = +10.8(2.6)(1.7) \text{ eb}$ is extracted. This value is comparable with the shell model-dependent value of $Q_{s}(^{254}No) = +13.1 \text{ eb} [32, 33],$ obtained from the moment of inertia in the rotational

FIG. 2. The change in the nuclear mean square charge radii $\delta\langle r^2\rangle$, for $^{252-254}$ No and even Z actinide nuclei starting from thorium, is plotted as a function of the neutron number with arbitrary offset. For each element the DFT calculations with two Skyrme energy density functionals, UNEDF1 [34] (dashed line) and SV-min [35] (solid line), are shown. The gray area indicates the slope according to the iso-beta using a schematic droplet model when assuming constant deformation for the actinide elements referenced to N = 138. 253

275

277

band built on the ground state of 254 No [7, 8]. These²⁵⁵ 221 values indicate a constant deformation in the isotope²⁵⁶ 222 chain of nobelium around the neutron shell closure²⁵⁷ 223 N = 152.224

Information on the deformation of the even $mass^{259}$ 225 nuclei ^{252,254}No with zero nuclear spin can be ob-²⁶⁰ 226 tained from laser spectroscopic measurements through²⁶¹ 227 a complementary route. The change in deformation²⁶² 228 is manifested in the isotope shift (IS) of an atomic²⁶³ transition $\delta \nu^{A,A'} = \nu^{A'} - \nu^{A}$ between two isotopes A^{264} 229 230 and A' with masses m_A and $m_{A'}$. IS values of $\delta \nu^{254,253} = 6.72(18) \text{ GHz}$ and $\delta \nu^{254,252} = 10.08(69) \text{ GHz}^{266}$ 231 232 were measured in this work. The IS arises from a mass²⁶⁷ 233 shift, with a mass shift constant M, and a field shift, with²⁶⁸ 234 a field shift constant F_s . The latter is the dominant factor²⁶⁹ 235 for heavy elements and is characterized by the density of 270 236 the electron wave function inside the nucleus. The IS is 271 237 272 related to the change in the nuclear mean square charge 238 273 radius $\delta \langle r^2 \rangle^{A,A'}$ by 239 274

$$\delta\nu^{A,A'} = \frac{m^A - m^{A'}}{m^A \cdot m^{A'}} M + F_{\rm s} \cdot \delta \langle r^2 \rangle^{A,A'} \quad . \tag{2}^{275}$$

240

The constants M and $F_{\rm s}$ were determined by atomic cal-278 242 culations as summarized in Table I. The obtained changes₂₇₉ 243 in mean square charge radii for the nobelium isotopes₂₈₀ 245 in comparison to experimental values for other actinides₂₈₁ 246 [36, 37] are shown in Fig. 2. The experimental results²⁸² 247 for different actinide isotopes agree well with calculated₂₈₃ 248 values from self-consistent nuclear density functional the-284 249 ory (DFT) without any symmetry restrictions [38] for₂₈₅ 250 even-even nuclides obtained with two Skyrme function-286 251 als. An alternative to the Skyrme functionals are the287 252

FIG. 3. Upper panel: deformation parameter β_2 for different even-even isotopes of Th. U. Pu, Cm, and No obtained from the DFT calculations with the UNEDF1 functional. The inset figure shows the calculated proton distribution of ²⁵⁴No from highest density (red) to low density (blue). Lower panel: relative depth of the central depression.

Fayans functionals, which recently have been optimized with a focus on charge radii [39]. However, those functionals overestimate the pairing correlations particularly in the actinide region, which could have a significant influence on the results. The proton density distribution for ²⁵⁴No predicted by UNEDF1 is shown in Fig. 3. The calculated distribution clearly indicates the deformation as well as a central depression, which originates from the strong Coulomb repulsion (see, e.g., [2, 40, 41]). The maximum in quadrupole deformation, defined by the deformation parameter β_2 , is predicted by the DFT calculations to be around N = 148 as shown in the upper panel in Fig. 3. For the nobelium isotopes this results in a deformation parameter which only changes slightly for the investigated isotopes. This is in line with other calculations [4, 42, 43], experimental results from in-beam gamma spectroscopy of 252,254 No [7, 44] and the spectroscopic quadrupole moment from our HFS measurements in 253 No. The effect of the deformation with respect to on the central depression is illustrated in the lower panel in Fig. 3. The relative depth of the central depression, defined as $(\rho_{\rm max} - \rho_{\rm c})/\rho_{\rm max}$ with the maximum proton density $\rho_{\rm max}$ and the proton density in the center $\rho_{\rm c}$, increases with an increasing deformation parameter which leads to an additional contribution to the charge radii. In general our experimental results are in good agreement with DFT calculations. For comparison the results of $\delta \langle r^2 \rangle$ from a parameterization of a droplet model (DM) [45, 46] for stable deformation, as typically done in laser spectroscopic investigations up to the lead region [11], is shown for Z = 90-102 in Fig. 2 as a gray area. Typically, a deviation from this slope is attributed to changes in deformation, but the experimental values for nuclei around the maximum in deformation continue to deviate. This indicates that the increase in charge radii, potentially

from the central depression of the charge redistribution,344 288 is underestimated by the DM in this region of high Z and 345 289 strongly deformed nuclei. It is also worth noting that₃₄₆ 290 a parametrization of a droplet model (DM) [45, 46], as₃₄₇ 291 typically done in laser spectroscopic investigations up to 292 the lead region [11], is not suitable for the investigated 293 isotopes. The lines for a stable deformation from the 294 DM for Z = 90 - 102 are shown in Fig. 2 as a gray area. A 295 steady deviation from this slope for all nuclei around a³⁴⁸ 296 maximum in deformation indicates that the increase in³⁴⁹ 297 charge radii, potentially from the central depression of 351 298 the charge redistribution is underestimated by the DM₃₅₂ 200 in this region of high Z and strongly deformed nuclei. 353 300 In summary, nuclear ground-state properties were ob-354 301 tained from laser spectroscopy for the nobelium isotopes³⁵⁵ 302 252,253,254 No. The results are the first of their kind in³⁵⁶ 303 the transfermium region, where elements are available in_{358}^{357} 304 single atom-at-a-time quantities only. Besides the first $\frac{1}{359}$ 305 experimental determination of the magnetic dipole and₃₆₀ 306 spectroscopic quadrupole moment of ²⁵³No, the results of₃₆₁ 307 the isotope shift match well with changes in mean square³⁶² 308 charge radii calculated by nuclear DFT, which predict a³⁶³ 309 strong central depression in the charge density of more³⁶⁴ 310 than 12%. Laser spectroscopy, in combination with state-311 of-the art atomic calculations, can now also be employed $\frac{3}{367}$ 312 to study the structure of K-isomers and the properties of_{368} 313 deformed nuclei in the heavy element region around no-369 314 belium, which forms the basis for a better understanding³⁷⁰ 315 of the nuclear structure of the heaviest elements. 316

We thank the staff of the GSI ion source and accel- $^{372}_{373}$ 317 erator for the preparation of a stable 48 Ca beam and ${}^{73}_{374}$ 318 the staff of the GSI target laboratory for providing₃₇₅ 319 high-quality targets. We acknowledge the technical³⁷⁶ 320 support of J. Maurer, H.-G. Burkhard, D. Racano,377 321 L. Braisz, D. Reemts, B. Schausten and I. Kostvuk.³⁷⁸ 322 This work was supported by the German Federal³⁷⁹ 323 Ministry of Education and Research under contracts 324 06MZ169I, 06LM236I, FAIR NuSTAR 05P09RDFN4,382 325 05P12RDFN8, 05P15SJCIA and 05P15RDFN1; by₃₈₃ 326 the GSI; and by the Helmholtz-Institut Mainz. This₃₈₄ 327 project has also received funding from the European³⁸⁵ 328 Union Horizon 2020 research and innovation programme³⁸⁶ 329 under the grant agreement no. 654002 (ENSAR2).³⁸⁷ 330 This work was supported by USA NSF Grant No. 331 PHY-1620687, by the U.S. Department of Energy₃₉₀ 332 under Award Nos. DOE-DE-NA0002847 (NNSA, the₃₉₁ 333 Stewardship Science Academic Alliances program),392 334 DE-SC0013365, DE-SC0018083 (Office of Science), 393 335 the National Research Council (NRC) of Canada, and³⁹⁴ 336 the Australian Research Council. D.A. acknowledges $^{\rm 395}$ 337 support by the European Commission in the framework $_{397}^{396}$ 338 of the CEA-EUROTALENT program. M.S.S. thanks₃₉₈ 339 the School of Physics at UNSW, Sydney, Australia for₃₉₉ 340 hospitality and acknowledges support from the Gordon⁴⁰⁰ 341 Godfrey Fellowship UNSW program. AB would like⁴⁰¹ 342 to thank the Center for Information Technology of⁴⁰² 343

the University of Groningen for their support and for providing access to the Peregrine high performance computing cluster.

* s.raeder@gsi.de

- [†] present address: Max-Planck-Institut für Kernphysik, 69120 Heidelberg, Germany.
- Z. Patyk, A. Sobiczewski, P. Armbruster, and K.-H. Schmidt, Nucl. Phys. A 491, 267 (1989).
- [2] B. Schuetrumpf, W. Nazarewicz, and P.-G. Reinhard, Phys. Rev. C 96, 024306 (2017).
- [3] M. G. Mayer and J. H. D. Jensen, Elementary theory of nuclear shell structure (Wiley, 1964).
- [4] P.-H. Heenen, J. Skalski, A. Staszczak, and D. Vretenar, Nucl. Phys. A 944, 415 (2015).
- [5] R.-D. Herzberg, P. Greenlees, P. Butler, G. Jones, M. Venhart, I. Darby, S. Eeckhaudt, K. Eskola, T. Grahn, C. Gray-Jones, *et al.*, Nature **442**, 896 (2006).
- [6] S. K. Tandel, T. L. Khoo, D. Seweryniak, G. Mukherjee, I. Ahmad, B. Back, R. Blinstrup, M. P. Carpenter, J. Chapman, P. Chowdhury, C. N. Davids, A. A. Hecht, A. Heinz, P. Ikin, R. V. F. Janssens, F. G. Kondev, T. Lauritsen, C. J. Lister, E. F. Moore, D. Peterson, P. Reiter, U. S. Tandel, X. Wang, and S. Zhu, Phys. Rev. Lett. **97**, 082502 (2006).
- [7] P. Reiter, T. L. Khoo, C. J. Lister, D. Seweryniak, I. Ahmad, M. Alcorta, M. P. Carpenter, J. A. Cizewski, C. N. Davids, G. Gervais, J. P. Greene, W. F. Henning, R. V. F. Janssens, T. Lauritsen, S. Siem, A. A. Sonzogni, D. Sullivan, J. Uusitalo, I. Wiedenhöver, N. Amzal, P. A. Butler, A. J. Chewter, K. Y. Ding, N. Fotiades, J. D. Fox, P. T. Greenlees, R.-D. Herzberg, G. D. Jones, W. Korten, M. Leino, and K. Vetter, Phys. Rev. Lett. 82, 509 (1999).
- [8] M. Leino, H. Kankaanää, R.-D. Herzberg, A. Chewter, F. Heßberger, Y. Le Coz, F. Becker, P. Butler, J. Cocks, O. Dorvaux, K. Eskola, J. Gerl, P. Greenlees, K. Helariutta, M. Houry, G. Jones, P. Jones, R. Julin, S. Juutinen, H. Kettunen, T. Khoo, A. Kleinböhl, W. Korten, P. Kuusiniemi, R. Lucas, M. Muikku, P. Nieminen, R. Page, P. Rahkila, P. Reiter, A. Savelius, C. Schlegel, C. Theisen, W. Trzaska, and H.-J. Wollersheim, Europ. Phys. J. A 6, 63 (1999).
- [9] P. T. Greenlees, J. Rubert, J. Piot, B. J. P. Gall, L. L. Andersson, M. Asai, Z. Asfari, D. M. Cox, F. Dechery, O. Dorvaux, T. Grahn, K. Hauschild, G. Henning, A. Herzan, R.-D. Herzberg, F. P. Heßberger, U. Jakobsson, P. Jones, R. Julin, S. Juutinen, S. Ketelhut, T.-L. Khoo, M. Leino, J. Ljungvall, A. Lopez-Martens, R. Lozeva, P. Nieminen, J. Pakarinen, P. Papadakis, E. Parr, P. Peura, P. Rahkila, S. Rinta-Antila, P. Ruotsalainen, M. Sandzelius, J. Sarén, C. Scholey, D. Seweryniak, J. Sorri, B. Sulignano, C. Theisen, J. Uusitalo, and M. Venhart, Phys. Rev. Lett. **109**, 012501 (2012).
- [10] C. Theisen, P. Greenlees, T.-L. Khoo, P. Chowdhury, and T. Ishii, Nucl. Phys. A 944, 333 (2015).
- [11] P. Campbell, I. Moore, and M. Pearson, Prog. Part. Nucl. Phys. 86, 127 (2016).
- [12] M. Laatiaoui, W. Lauth, H. Backe, M. Block, D. Ack-

- 403 ermann, B. Cheal, P. Chhetri, C. E. Düllmann, P. van467
- 404 Duppen, J. Even, R. Ferrer, F. Giacoppo, S. Gtz,468
- 405 F. P. Heßberger, M. Huyse, O. Kaleja, J. Khuyagbaatar, 469
- P. Kunz, F. Lautenschläger, A. K. Mistry, S. Raeder,470
 E. Minaya Ramirez, T. Walther, C. Wraith, and471
 A. Yakushev, Nature 538, 495 (2016). 472
- 409 [13] H. Backe, W. Lauth, M. Block, and M. Laatiaoui, Nucl. 473
 410 Phys. A 944, 492 (2015). 474
- [14] F. Lautenschläger, P. Chhetri, D. Ackermann, H. Backe, 475
 M. Block, B. Cheal, A. Clark, C. Droese, R. Ferrer, F. Gi-476
 acoppo, S. Götz, F. Heßberger, O. Kaleja, J. Khuyag-477
 baatar, P. Kunz, A. Mistry, M. Laatiaoui, W. Lauth, 478
 S. Raeder, T. Walther, and C. Wraith, Nucl. Instrum. 479
 Meth. Phys. Res. B 383, 115 (2016). 430
- 417 [15] Y. T. Oganessian, V. K. Utyonkov, Y. V. Lobanov,481
 F. S. Abdullin, A. N. Polyakov, I. V. Shirokovsky, Y. S.482
 419 Tsyganov, A. N. Mezentsev, S. Iliev, V. G. Subbotin,483
 420 A. M. Sukhov, K. Subotic, O. V. Ivanov, A. N. Voinov,484
 421 V. I. Zagrebaev, K. J. Moody, J. F. Wild, N. J. Stoyer,485
 422 M. A. Stoyer, and R. W. Lougheed, Phys. Rev. C 64,486
- 423 054606 (2001).
 487
 424 [16] G. Münzenberg, W. Faust, S. Hofmann, P. Armbruster, 488
- 425 K. Güttner, and H. Ewald, Nucl. Instrum. Meth. **161**,489 426 65 (1979). 490
- ⁴²⁷ [17] M. Laatiaoui, H. Backe, M. Block, F.-P. Heßberger,⁴⁹¹
 ⁴²⁸ P. Kunz, F. Lautenschläger, W. Lauth, M. Sewtz, and⁴⁹²
 ⁴²⁹ T. Walther, Europ. Phys. J. D 68, 1 (2014).
- [18] M. Laatiaoui, H. Backe, M. Block, P. Chhetri, F. Lauten-494
 schläger, W. Lauth, and T. Walther, Hyperfine Interact.495
 227, 69 (2014).
- [19] P. Chhetri, D. Ackermann, H. Backe, M. Block, B. Cheal,497
 C. E. Düllmann, J. Even, R. Ferrer, F. Giacoppo,498
 S. Götz, F. P. Heßberger, O. Kaleja, J. Khuyagbaatar,499
 P. Kunz, M. Laatiaoui, F. Lautenschläger, W. Lauth,500
 E. M. Ramirez, A. K. Mistry, S. Raeder, C. Wraith,501
 T. Walther, and A. Yakushev, Europ. Phys. J. D **71**,502
 195 (2017).
- 440 [20] M. S. Safronova, M. G. Kozlov, W. R. Johnson, and 504
 441 D. Jiang, Phys. Rev. A 80, 012516 (2009). 505
- ⁴⁴² [21] V. A. Dzuba, Phys. Rev. A **90**, 012517 (2014).
- 443 [22] V. A. Dzuba, V. V. Flambaum, and M. G. Kozlov, Phys. 507
 444 Rev. A 54, 3948 (1996). 508

530

- 445 [23] J. C. Berengut, V. V. Flambaum, and M. G. Kozlov, 509
 446 Phys. Rev. A 73, 012504 (2006). 510
- E. Eliav, S. Fritzsche, and U. Kaldor, Nucl. Phys. A 944,511
 518 (2015), special Issue on Superheavy Elements. 512
- ⁴⁴⁹ [25] P. Jönsson, X. He, C. F. Fischer, and I. Grant, Comput.⁵¹³
 ⁴⁵⁰ Phys. Commun. **177**, 597 (2007). ⁵¹⁴
- [26] I. P. Grant, Relativistic quantum theory of atoms and 515
 molecules: theory and computation, Vol. 40 (Springer Sci-516
 ence & Business Media, 2007). 517
- [27] V. A. Dzuba, J. C. Berengut, C. Harabati, and V. V.⁵¹⁸
 Flambaum, Phys. Rev. A **95**, 012503 (2017).
- 456 [28] F. P. Heßberger, S. Hofmann, D. Ackermann, P. Cagarda, 520
 457 R. D. Herzberg, I. Kojouharov, P. Kuusiniemi, M. Leino, 521
 458 and R. Mann, Europ. Phys. J. A 22, 417 (2004). 522
- A. K. Mistry, R. D. Herzberg, P. Greenlees, P. Papadakis,523
 K. Auranen, P. A. Butler, D. M. Cox, A. B. Garnswor-524
 thy, T. Grahn, K. Hauschild, U. Jakobsson, D. T. Joss,525
 R. Julin, S. Ketelhut, J. Konki, M. Leino, A. Lopez-526
 Martens, R. D. Page, J. Pakarinen, P. Peura, P. Rahk-527
 ila, M. Sandzelius, C. Scholey, J. Simpson, D. Sed-528
 don, J. Sorri, S. Stolze, J. Thornhill, J. Uusitalo, and529
- 466 D. Wells, Europ. Phys. J. A **53**, 24 (2017).

- [30] H. Backe, A. Dretzke, S. Fritzsche, R. G. Haire, P. Kunz, W. Lauth, M. Sewtz, and N. Trautmann, Hyperfine Interact. 162, 3 (2005).
- [31] A. Bohr and B. R. Mottelson, Nuclear Structure, Volume I: Single-Particle Motion; Volume II: Nuclear Deformations (World Scientific, 1998).
- [32]R. D. Herzberg, S. Moon, S. Eeckhaudt, P. T. Greenlees, P. A. Butler, T. Page, A. V. Afanasjev, N. Amzal, J. E. Bastin, F. Becker, M. Bender, B. Bruyneel, J. F. C. Cocks, I. G. Darby, O. Dorvaux, K. Eskola, J. Gerl, T. Grahn, C. Gray-Jones, N. J. Hammond, K. Hauschild, P. H. Heenen, K. Helariutta, A. Herzberg, F. Hessberger, M. Houry, A. Hürstel, R. D. Humphreys, G. D. Jones, P. M. Jones, R. Julin, S. Juutinen, H. Kankaanpää, H. Kettunen, T. L. Khoo, W. Korten, P. Kuusiniemi, Y. LeCoz, M. Leino, A. P. Leppänen, C. J. Lister, R. Lucas, M. Muikku, P. Nieminen, M. Nyman, R. D. Page, T. Page, J. Pakarinen, A. Pritchard, P. Rahkila, P. Reiter, M. Sandzelius, J. Saren, C. Schlegel, C. Scholey, C. Theisen, W. H. Trzaska, J. Uusitalo, A. Wiens, and H. J. Wollersheim, Europ. Phys. J. A 42, 333 (2009).
- [33] P. Reiter, T. L. Khoo, I. Ahmad, A. V. Afanasjev, A. Heinz, T. Lauritsen, C. J. Lister, D. Seweryniak, P. Bhattacharyya, P. A. Butler, M. P. Carpenter, A. J. Chewter, J. A. Cizewski, C. N. Davids, J. P. Greene, P. T. Greenlees, K. Helariutta, R.-D. Herzberg, R. V. F. Janssens, G. D. Jones, R. Julin, H. Kankaanpää, H. Kettunen, F. G. Kondev, P. Kuusiniemi, M. Leino, S. Siem, A. A. Sonzogni, J. Uusitalo, and I. Wiedenhöver, Phys. Rev. Lett. **95**, 032501 (2005).
- [34] M. Kortelainen, J. McDonnell, W. Nazarewicz, P.-G. Reinhard, J. Sarich, N. Schunck, M. V. Stoitsov, and S. M. Wild, Phys. Rev. C 85, 024304 (2012).
- [35] P. Klüpfel, P. G. Reinhard, T. J. Bürvenich, and J. A. Maruhn, Phys. Rev. C 79, 034310 (2009).
- [36] I. Angeli and K. Marinova, Atom. Data Nucl. Data Tab. 99, 69 (2013).
- [37] A. Voss, V. Sonnenschein, P. Campbell, B. Cheal, T. Kron, I. D. Moore, I. Pohjalainen, S. Raeder, N. Trautmann, and K. Wendt, Phys. Rev. A 95, 032506 (2017).
- [38] J. A. Maruhn, P.-G. Reinhard, P. D. Stevenson, and A. S. Umar, Comput. Phys. Commun. 185, 2195 (2014).
- [39] P.-G. Reinhard and W. Nazarewicz, Phys. Rev. C 95, 064328 (2017).
- [40] W. D. Myers and W. J. Swiatecki, Ann. Phys. 55, 395 (1969).
- [41] P. Möller, J. Nix, W. D. Myers, and W. J. Swiatecki, Nucl. Phys. A 536, 61 (1992).
- [42] P. Möller, J. Nix, W. Myers, and W. Swiatecki, Atom. Data Nucl. Data Tab. 59, 185 (1995).
- [43] A. Sobiczewski, I. Muntian, and Z. Patyk, Phys. Rev. C 63, 034306 (2001).
- [44] R.-D. Herzberg, N. Amzal, F. Becker, P. A. Butler, A. J. C. Chewter, J. F. C. Cocks, O. Dorvaux, K. Eskola, J. Gerl, P. T. Greenlees, N. J. Hammond, K. Hauschild, K. Helariutta, F. Heßberger, M. Houry, G. D. Jones, P. M. Jones, R. Julin, S. Juutinen, H. Kankaanpää, H. Kettunen, T. L. Khoo, W. Korten, P. Kuusiniemi, Y. LeCoz, M. Leino, C. J. Lister, R. Lucas, M. Muikku, P. Nieminen, R. D. Page, P. Rahkila, P. Reiter, C. Schlegel, C. Scholey, O. Stezowski, C. Theisen, W. H. Trzaska, J. Uusitalo, and H. J. Wollersheim, Phys. Rev. C 65, 014303 (2001).

534

- (1983).532
- [45] W. D. Myers and K.-H. Schmidt, Nucl. Phys. A 410, 61533 [46] D. Berdichevsky and F. Tondeur, Z. Phys. A 322, 141 (1985).