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Abstract—Recent advancements in Full Duplex (FD) radio
have built a promising idea for faster channel sensing in cognitive
radio. Full duplex cognitive radio (FDCR) provides an efficient
way to utilize the idle channel without interrupting the ongoing
transmission. Currently, non-parametric sensing techniques like
energy detection and its modified techniques are implemented
for FDCR. In this paper, we introduce a Goodness of Fit
based distribution-free sensing in FDCR. With Monte Carlo
simulations and analytical approximation, we show that the
proposed technique outperforms energy detection and other
goodness-of-fit based sensing algorithms for FDCR.

I. INTRODUCTION

Cognitive Radio (CR) enables the use of idle Primary
User (PU) licensed spectrum by unlicensed users known as
Secondary Users (SU). In order to use the licensed spectrum,
a SU has to detect if the spectrum can be utilized without
causing interference to any PU, which is achieved by means of
spectrum sensing [1]. Half-Duplex Cognitive Radio (HDCR)
follows a Listen-Before-Talk (LBT) protocol [2] in which
the channel needs to be sensed before a transmission can
be performed. The Secondary User (SU) opportunistically
senses the channel and decides whether it is idle or busy.
If the channel is idle, SU can access the channel without
causing interference to Primary User (PU). Hence, to avoid
this interference, SU must sense the channel frequently while
transmitting data. However, in HDCR, the radio has to stop
the transmission for sensing which leads to waste of energy
and transmission opportunity.

Full Duplex (FD) radio, which enables simultaneous trans-
mission and reception in the same channel [4] overcomes the
fundamental limitation of HDCR. To reduce self-interference,
recent developments in RF cancellation, analog and digital
cancellation have made it possible to develop the FD concept
in practice [3]-[6] allowing simultaneous transmission and
reception with one and two antennas. Full-Duplex Cognitive
Radio (FDCR) makes use of Listen-And-Talk (LAT) protocol
instead of the traditional LBT protocol used by HDCR [2].
Effectively, FDCR enables uninterrupted SU transmissions.

The use of Energy Detection (ED) for spectrum sensing in
FDCR has been explored in [7]. The main limitation of ED
is the difficulty to distinguish between received signal energy
and noise energy in a noisy environment (i.e., under low SNR)
which in the context of FDCR becomes more challenging since
self-residual signal components act as a noise.

Recently, Goodness of Fit (GoF) based spectrum sensing
has become popular for spectrum sensing applications. This

approach is derived from GoF based hypothesis testing which
is used to decide whether the received sample follows a par-
ticular statistical distribution. GoF-based sensing compares an
empirical distribution of received samples with the distribution
of noise under the null hypothesis. Non-parametric GoF testing
for spectrum sensing was introduced in [8] with the Anderson-
Darling (AD) test. In the same paper, the authors also provided
an analytical bound on the performance of statistics. The
use of the Kolmogorov-Smirnov (KS) test [9] and the non-
parametric sequential detection scheme [10] has also been
proposed for spectrum sensing. The application of the Zhang
statistic to spectrum sensing was investigated in [11] and
analytical expressions for the Zhang statistic based sensing
scheme were derived in [12].

Although there exists literature on distribution-free sensing
for HDCR, the distribution-free sensing for FDCR remains un-
explored. In this paper, GoF based distribution-free sensing for
FDCR is introduced. In particular, Likelihood Ratio Statistic
G2 (LRS-G2) is used to perform GoF testing [13]. Assuming
perfect knowledge of the noise power, the distribution of
received samples can be compared with the distribution of
the sum of noise and the residual signal. Hence, when the
empirical distribution closely follows the expected distribution
of null hypothesis, it is more likely that the received samples
do not contain any PU signal and it can be decided that channel
is idle. Moreover, because of the higher statistical power of the
Likelihood Ratio Statistic (LRS) test, the proposed technique
provides better detection performance. The proposed scheme
also allows a reduction on the number of samples for the same
detection probability, effectively decreasing the sensing time.

The major contributions of this work are summarized below:
• A distribution-free GoF based LRS-G2 technique for

spectrum sensing in FDCR is proposed and the perfor-
mance is analyzed under AWGN channel based on the
complementary Receiver Operating Characteristic (ROC)
for different values of received SNR at the PU node. The
impact of various PU/SU SNR is also investigated.

• Given that the distribution of sampled values of Zhang
statistic can not be analytically expressed, a large set of
samples of the statistic is created using Monte Carlo sim-
ulations and distribution-fitting is then used to estimate
the distribution which gives the analytical expression of
the probability of missed detection.

• The proposed scheme is also analyzed under a more
realistic non-Gaussian noise environment (based on the
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Middleton’s Class A interference model [14]) to con-
sider the effect of impulsive noise. Note that although
the AWGN model accurately models the white gaussian
noise, it does not model the behavior of commonly
occurring interference signals including impulsive noise.

The rest of the paper is structured as follows. Section II
presents the system model and assumptions for performance
analysis of the proposed scheme. The proposed technique is
described in Section III along with its mathematical analysis
in Section IV. The performance of the proposed scheme is
assessed and compared with energy detection in Section V.
Finally, Section VI summarizes and concludes the paper.

II. SYSTEM MODEL

Let x = [x0 x1 ... xN−1]
T be N samples of the transmitted

PU signal and d = [d0 d1 ... dN−1]
T be N samples of the

signal transmitted by SU. The corresponding N samples of
the received signal, y = [y0 y1 ... yN−1]

T , can be expressed as

y =
√

ρp hp x+
√

ρs hs d+n (1)

where ρp is the Signal-to-Noise ratio (SNR) of the PU signal
at the SU sensing antenna, hp is the channel coefficient
between the PU and the SU sensing antenna, ρs is SNR of the
self-residual signal at the SU sensing antenna, hs is channel
coefficient between transmitting and sensing antennas at the
receiving node, and n = [n0 n1 ... nN−1]

T is the noise.
Let xi and di, i = 0,1, ...N− 1, be i.i.d. complex gaussian

random variables distributed as C N (0,1). Similarly, for
AWGN channel, let ni be i.i.d. complex gaussian random
variable from distribution C N (0,1).

As already pointed out in Section I, the AWGN channel
model can not synthesize a major section of interferences from
external and internal sources. Hence, the performance of the
proposed scheme will also be analyzed under a non-Gaussian
noise model. Under non-Gaussian noise distribution, the CDF
of the signal at null hypothesis is different. When Middleton
class A noise and Gaussian residual signal are considered,
then the resulting distribution under simultaneous transmission
and sensing will be the distribution of the summation of a
Middleton class A random variable and a complex Gaussian
random variable, i.e., the distribution of:

Y =
√

ρs hs D+W (2)

where D∼ C N (0,1) and the real and imaginary parts of the
random variable W , denoted by ℜ(W ) and ℑ(W ) respectively,
follow the distribution:

fX (x) = e−A
∞

∑
m=0

Am

m!
√

2πσ2
m

e
− x2

2σ2m (3)

where

σ
2
m =

m/A+Γ

1+Γ

with A being the impulse index and Γ being the ratio of powers
of Gaussian to non-Gaussian components of noise [15].

III. LRS-G2 BASED SENSING FOR FULL DUPLEX RADIO

When the FDCR is inactive (because the PU is still or has
recently been active), the problem of spectrum sensing can be
formulated as the well-known binary hypothesis testing prob-
lem traditionally considered for HDCR where transmission
cannot be performed at the same time as sensing. However,
when the FDCR is active (i.e., transmitting) then the problem
of spectrum sensing is formulated in terms of the following
hypothesis testing problem, where the SU signal is also present
as the FDCR does not need to stop transmission in order to
sense the channel:

H0 : y =
√

ρs hs d+n; PU is absent
H1 : y =

√
ρp hp x+√ρs hs d+n; PU is present

The proposed LRS-G2 based sensing technique for FDCR
compares the distribution of received samples with the distri-
bution of null hypothesis H0. Hence, if the empirical distri-
bution is close enough to the theoretical distribution at null
hypothesis, the test infers that null hypothesis should not be
rejected. Hence, PU signal is absent from the channel.

To test the hypotheses using the LRS-G2 test, a vector v is
defined as the concatenation of real and imaginary parts of the
received vector y:

v = [ℜ(y0) ... ℜ(yN−1), ℑ(y0) ... ℑ(yN−1)]
T (4)

where ℜ(·) and ℑ(·) represent real and imaginary parts,
respectively. Note that vi follows the same distribution as ℜ(vi)
and ℑ(vi) because ℜ(vi) and ℑ(vi) are identically distributed.
Vector v is used to test the hypotheses using the LRS-G2 test
under both Gaussian and non-Gaussian noise models.

A. Gaussian Noise

Let F0(x) be the CDF of signal at null hypothesis. For a
given set of received samples, hs and ρs are constants and
di and ni are i.i.d. complex random variables distributed as

C N ∼ (0,1). Hence, vi ∼ C N (0,
√

ρs+1
2 ). The CDF of vi

can be defined as follows:

F0(x) =
1√

π(ρs +1)

∫ x

−∞

exp
(
− u2

ρs +1

)
du (5)

As suggested in [11], let the Zhang statistic for GoF based
non-parametric sensing be calculated as:

Z =
2N

∑
i=1

[
log

{
F0(vi)

−1−1
(2N− 1

2 )/(i−
3
4 )−1

}]2

(6)

Decisions are made by comparing Z with a decision thresh-
old λ , which is typically calculated so as to meet a required
false alarm probability Pf , defined as Pf = Pr(Z > λ |H0). If
Z > λ , then the null hypothesis must be rejected and hence
the PU signal is assumed to be present. On the other hand, if
Z ≤ λ , then the null hypothesis must not be rejected and the
PU signal can be assumed to be absent from the channel.



B. Non-Gaussian Noise
To analyze the performance in environments where the

behaviour of interference cannot be modeled as AWGN, we
consider the Middleton’s class A noise model in (3).

Let F0(x) be the CDF of a sample vi in (4). The distribution
is given by f0(x) = fX (x)∗ fW (x) [16] for X ∼ C N (0,ρs):

f0(x) = e−A
∞

∑
m=0

Am

m!
[
N (0,σ2

m)∗N (0,ρs/2)
]

(7)

= e−A
∞

∑
m=0

Am

m!

[
1√

π(2σ2
m +ρs)

e
− x2

2σ2m+ρs

]
(8)

Let FN(v) be the empirical CDF of the elements of v:

FN(v) =
|{vi : vi ≤ v, i = 0,1, ...N−1}|

N
The hypothesis testing problem can then be re-written as:

H0 : F2N(v) = F0(v); PU is absent
H1 : otherwise; PU is present

Note that F2N(v) is here used because the length of v is 2N
when the received sample size is N.

The new statistic for GoF based non-parametric sensing is:

Z =
2N

∑
i=1

[
log

{
F2N(vi)

−1−1
(2N− 1

2 )/(i−
3
4 )−1

}]2

(9)

which is compared to the threshold λ to select an hypothesis.

IV. ANALYTICAL PERFORMANCE

For a fixed false alarm probability Pf , the performance of
spectrum sensing can be assessed in terms of the probability of
detection of a signal (Pd), which for the proposed method can
be expressed as Pd = Pr(Z > λ |H1). In this section, we estimate
the analytical expression of Pd for the proposed scheme.

As mentioned in [13], the distribution of the Zhang statistic
Z can not be determined analytically for the whole range of
parameters. In this work, a model for the distribution of the
statistic Z is derived by means of Monte Carlo simulations
(with 100,000 iterations) where a large sample set of the
statistic Z was generated under hypothesis H1 (considering
an appropriate range of parameters) and then fitted to various
distribution models. The analysis carried out indicated that the
statistic Z can be modeled as a log-normal distribution:

fZ(z) =
1

zσ
√

2π
exp

(
− (lnz−µ)2

2σ2

)
The parameters of the log-normal distribution vary with

ρp, ρs and N. The parameters and corresponding negative
log likelihood ratio of the log-normal distribution for various
values of the PU signal SNR (ρp), with N = 5 and ρs = 6dB,
are shown in Table I (simultaneous sensing and transmission)
and Table II (sensing-only). The negative log likelihood ratio
shown in table is averaged over number of samples. Once the
parameters are estimated for the given ρp, ρs and N using
distribution fitting, threshold can be estimated for a given Pf .

From the tables it can be observed that with the increase in
ρp the mean of the distribution increases as well. Hence, with
the increase in ρp, the distance between the distribution at

TABLE I: Distribution parameters for log-normal distribution
for simultaneous transmission and sensing (N = 5, ρs = 6 dB).

ρp (dB) µ σ NLogL/105

-5 1.9334±0.0044 0.7412±0.0032 3.0528
1 2.1358±0.0050 0.8172±0.0036 3.3529
5 2.5798±0.0060 0.9676±0.0043 3.9658
9 3.5263±0.0072 1.1688±0.0051 5.1006

TABLE II: Distribution parameters for log-normal distribution
for sensing-only case (N = 5).

ρp (dB) µ σ NLogL/105

-5 2.1487±0.0098 0.7648±0.0033 3.2995
-3 2.278±0.0051 0.8290±0.0036 3.5102
-1 2.5306±0.0057 0.9179±0.0040 3.8639
1 2.9384±0.0063 1.0164±0.0045 4.3736

null hypothesis and the distribution at the alternate hypothesis
increases, thus the decision becomes accurate.

The variation in the performance of the proposed scheme
with variations in PU SNR ρp and SU SNR ρs is related to
the effective SNR defined as:

ρe f f =
ρp

ρs +1
(10)

From both the tables it can be observed that the mean values
of the distributions are approximately shifted by ρs dB. In
other words, the value of µ corresponding to ρp dB in the
simultaneous transmission and sensing case with SU SNR ρs
dB is approximately the same as µ corresponding to ρp−ρs
dB for the sensing-only case.

Based on the obtained distribution model for Z, an expres-
sion for the probability of detection can be obtained as:

Pd = Pr(Z > λ |H1) (11)

=
∫

∞

λ

fZ(z)dz (12)

= 1−
∫

λ

0

1
zσ
√

2π
exp

[
− (lnz−µ)2

2σ2

]
dz (13)

= 1−
[

1
2
+

1
2

erf
(

lnλ −µ√
2σ

)]
(14)

=
1
2
− 1

2
erf
[

lnλ −µ√
2σ

]
(15)

A comparison between simulated and analytical results is
provided in the next section.

V. EXPERIMENTS AND RESULTS

In this section, we illustrate the performance of the proposed
LRS-G2 based sensing technique with Monte Carlo simula-
tions. We consider a system with a PU transceiver and a SU
FDCR transceiver. We focus on the results for the simultaneous
transmission and sensing case as well as sensing-only case.
Note that the sensing-only case is essentially same as the
conventional HDCR. In general, we consider the number of
samples N = 5. The number of iterations for Monte Carlo
simulations is 100,000. The samples of PU signal and self-
residual signal are complex gaussian i.i.d. random variables.
The decision threshold is set to meet the target false alarm
probability.
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Fig. 1: ROC curves for ρs = 6 dB and N = 5.

In the experiments, we compare results with primarily
3 baseline methods: AD test [8], KS test [9], and energy
detection. To compare the detection probablity of the pro-
posed scheme with baseline methods, we first show Receiver
Operating Characteristic (ROC) curves for the simultaneous
transmission and reception case as well as the sensing-only
case. Fig. 1 shows the probability of detection (Pd) as a func-
tion of the false alarm probability (Pf ). For the simultaneous
transmission and sensing case, the considered PU SNR values
are 3, 6, 9 dB. For the sensing-only case, PU signal SNR
values are 0 and 3 dB. We observe that the proposed scheme
outperforms energy detection for all values of PU SNR for the
given ρs and sample size. For example, for the simultaneous
transmission and sensing case, for ρp = 3 dB, ρs = 6 dB
and Pf = 0.1, the probabilities of detection for the proposed
scheme, KS test based sensing, AD test based sensing and
the energy detection are 0.7336, 0.1523, 0.2418 and 0.1391
respectively. Similarly, for the sensing-only case, for ρp = 0
dB and Pf = 0.1, the probabilities of detection for the proposed
scheme, KS test, AD test and energy detection based sensing
are 0.8368, 0.1933, 0.3812 and 0.2048, respectively.

Considering Fig. 1(a) and Fig. 1(b) together, one can ob-
serve that for the sensing-only case the performance is signifi-
cantly higher than for simultaneous transmission and sensing.
Considering the sensing-only case as a special case of the
simultaneous transmission and sensing case with ρs =−∞ dB,
it can be inferred that the performance of the proposed scheme
decreases when ρs increases, and increases with ρp.

Fig. 2 shows Pmd as a function of PU SNR ρp for different
values of SU SNR ρs. In this case, values of ρs are −∞, -
5, and 0 dB (ρs =−∞ denotes the sensing-only case). It can
be observed that with increment in ρp the performance of the
proposed technique increases. On the other hand, an increment
in ρs reduces the performance.

Another interesting observation can be made from Figs.
1 and 2: although FDCR can reduce the sensing time, it
should be noted that in the presence of a self-residual signal
the performance of sensing scheme degrades. Interestingly, a
similar observation was also made in [7].

Fig. 3 shows the accuracy of the expression in (15) obtained
to analyse the effect of the probability of false alarm (Pf ),
PU SNR (ρp) and SU SNR (ρs) on the probability of missed
detection (Pmd). For the simultaneous transmission and sensing
case, the considered PU SNR values are -5, 5 and 9 dB and
the SU SNR is 6 dB. For the sensing-only case, the PU signal
SNR values are -5, -1, 1 and the SU SNR is 6 dB. As observed,
the analytical approximation provides an accurate fit.

Due to certain limitations of the AWGN channel model, we
also consider a non-Gaussian noise environment based on the
Middleton class A noise model. Fig. 4 shows the probability of
detection (Pd) of the proposed scheme under such model (with
impulsive index A = 0.2 and number of samples N = 25) as a
function of the ratio of powers of Gaussian components to non-
Gaussian components (Γ) for Pf = 0.05. For the simultaneous
transmission and sensing case, we consider PU SNR values of
2, 6 and 10 dB and SU SNR value of 6 dB. For the sensing-
only case, the considered PU SNR (ρp) is -5, -2 and 2 dB.
From Fig. 4(b) it can be concluded that the performance of the
proposed scheme degrades with the value of Γ in the sensing-
only case. However, Fig. 4(a) indicates that the performance
is almost constant with the value of Γ in the simultaneous
transmission and sensing case. This can be explained by
considering the self-residual interference as Gaussian noise.
Since the self-residual signal power is much greater than the
noise power, the ratio of Gaussian to the non-Gaussian part in
the total noise does not have a significant effect on the ratio
Γ.

VI. CONCLUSION

This paper has proposed a distribution-free Goodness of Fit-
based likelihood ratio statistic (G2) test for spectrum sensing
in FDCR. Monte Carlo simulations and distribution fitting
have been employed to obtain an analytical estimation of

-15 -10 -5 0 5 10 15

PU Signal SNR (dB)

10
-2

10
-1

10
0

P
ro

b
a

b
ili

ty
 o

f 
M

is
s
e

d
 D

e
te

c
ti
o

n
 P

m
d

Probability of Missed Detection P
md

 vs. SNR with P
f
 = 0.01

LRS-G
2
 based sensing (Only Sensing)

Energy Detection (Only Sensing)

KS test based sensing (Only Sensing)

AD test based sensing (Only Sensing)

LRS-G
2
 based sensing (-5 dB)

Energy Detection (-5 dB)

KS test based sensing (-5 dB)

AD test based sensing (-5 dB)

LRS-G
2
 based sensing (0 dB)

Energy Detection (0 dB)

KS test based sensing (0 dB)

AD test based sensing (0 dB)

Fig. 2: Pmd vs. ρp for ρs = {−∞,−5,0} dB, N = 5, Pf = 1%.



10
-3

10
-2

10
-1

10
0

Probability of False Alarm P
f

10
-3

10
-2

10
-1

10
0

P
ro

b
a

b
ili

ty
 o

f 
M

is
s
e

d
 D

e
te

c
ti
o

n
 P

m
d

Comparison of analytical results with simulated results

Simulation Results

Analytical Approximation

p
 = {-5, 5, 9} dB

(a) Simultaneous sensing and transmission.

10
-3

10
-2

10
-1

10
0

Probability of False Alarm P
f

10
-2

10
-1

10
0

P
ro

b
a

b
ili

ty
 o

f 
M

is
s
e

d
 D

e
te

c
ti
o

n
 P

m
d

Comparison of analytical results with simulated results

Simulation Results

Analytical Approximation

p
 = {-5, -1, 1} dB

(b) Sensing only.

Fig. 3: Simulation results vs. analytical approximation.

the performance for the proposed scheme, which is otherwise
mathematically untractable. Acknowledging the limits of the
AWGN channel model, a non-Gaussian noise environment
has also been considered for performance evaluation. The
proposed method not only allows CR to perform spectrum
sensing without having to stop SU transmissions (which allows
a much more efficient exploitation of spectrum opportunities)
but also, as demonstrated by the obtained simulation results,
outperforms the well-known energy detection method when
sensing the PU channel during SU transmissions.
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