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We discuss a general method of model selection from experimentally recorded time-trace data.
This method can be used to distinguish between quantum and classical dynamical models. It can
be used in post-selection as well as for real-time analysis, and offers an alternative to statistical
tests based on state-reconstruction methods. We examine the conditions that optimize quantum
hypothesis testing, maximizing one’s ability to discriminate between classical and quantum models.
We set upper limits on the temperature and lower limits on the measurement efficiencies required
to explore these differences, using a novel experiment in levitated optomechanical systems as an
example.

Introduction.— There are a number of ways in which
a system can be determined to be quantum mechanical.
Typically, the system must be isolated from extraneous
noise and operated at very low temperatures, so that the
system is in a ground state or another low lying energy
state. The system can be subjected to a series of indi-
vidual or joint measurements to build up a picture of the
state (as in interference experiments and state tomog-
raphy [1–6]) or manipulated using an external field to
demonstrate superposition states (such as avoided cross-
ings in the observed energy spectra [7–10]). These ex-
periments provide direct evidence of quantum behavior
but they can be difficult to perform when the system has
several degrees of freedom and large numbers of measure-
ments are required.

More efficient alternatives have been devised with the
growth of quantum information as a subject area. Spe-
cific sequences of measurements can be applied to ascer-
tain whether the system contains non-classical correla-
tions (entanglement) associated with quantum behavior
[11–13]. Entanglement witnesses do not necessarily allow
an experimentalist to quantify the degree of entangle-
ment, but they do allow her to say that entanglement
is present and, hence, that the system is quantum me-
chanical rather than classical. All of these methods are
intended to provide direct evidence that the system is
manifestly non-classical, e.g. discrete energy levels, in-
terference, superposition states, and entanglement.

An alternative approach is to try to determine whether
the system dynamics are quantum rather classical. An
elegant approach to this task is to use the technique of
quantum hypothesis testing [14, 15]. In situations where
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direct experiments are not possible, or are beyond the
reach of current experiments, this method can also be
used to inform future work, explore regions of parame-
ter space, and to focus experimental efforts. This is the
motivation for the current paper.

In this letter, we use the quantum hypothesis test-
ing approach, often referred to as model selection in
classical Bayesian inference [16], to construct a general
method of model selection, which is an alternative to
state-reconstruction based statistical tests. We reformu-
late the problem as a Neyman-Pearson decision rule and
quantify the accuracy of the selected model using the con-
fusion matrix. As an example application, we devise a
novel experiment for optically levitated systems [17–20],
and we optimise the Hamiltonian parameters to enhance
the distinguishability of quantum and classical dynam-
ics. The proposed experiment does not require compli-
cated preparation and measurement protocols, but relies
only on the detected photo-current [21]. Quantum be-
havior has not yet been established with such massive
systems, and improving the understanding of where and
when such evidence might be available is an important
open question. We demonstrate that two experimental
parameters, the effective temperature and the efficiency
of the continuous measurement, are critical to the ability
to distinguish between quantum and classical stochastic
dynamics in this system.
Dynamical models.— A model is composed of three el-

ements: (i) the description of the system, i.e. the state,
(ii) the dynamical law, and (iii) the detection process. In
this letter, we consider non-relativistic, single-particle,
classical and quantum dynamics with a diffusive, Marko-
vian environment, subject to continuous monitoring of
the position of the particle. We denote the state by Sc,
the measured time-trace by Iexp, and the measured po-
sition by q̃ (either classical or quantum). Note, however,
that these assumptions are not essential, but only a mat-
ter of convenience of presentation, and could, at least in
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Symbol Classical Quantum

Sc Pc(q, p; t) ρ̂c(t)

K · {H, · }Pb − i
~ [Ĥ, · ]

D[q̃] · − ~2
8

∂2

∂p2
· 1

8
[q̂, [q̂, · ]]

H[q̃] · q − Et[q] (q̂ − Et[q̂]) · +H.c.
Et[ · ]

∫ ∫
dqdp · Pc(q, p; t) tr[ · ρ̂c(t)]

Table I. Quantum and classical dynamical models given by
Eqs. (1) and (2). Pc and ρ̂c denote the conditional probabil-
ity density and conditional statistical operator, respectively. q
and p are the classical phase space variables, i.e. position and
momentum, respectively, q (q̂) denotes the classical (quan-
tum) position observable, H (Ĥ) denotes the classical (quan-
tum) Hamiltonian observable, and t is the time variable. Et[ · ]
denotes the expectation value with respect to the conditional
state Sc(t) at time t.

principle, all be relaxed. In particular, the analysis for
general, non-relativistic, diffusive, Markovian models can
be carried out in full analogy with the analysis presented
in this letter (see Supplementary material S1).

Under these assumptions, the state Sc formally evolves
according to [22–24] (in Itô form):

dSc = KScdt+ γD
[
q̃

σ

]
Scdt+

√
ηγH

[
q̃

σ

]
ScdW, (1)

where K · , D[q̃] · , and H[q̃] · , denote the Hamiltonian,
diffusive and detection terms [25], respectively, W is a
zero mean Wiener process, and σ, γ denote a character-
istic length scale, frequency of the experiment, respec-
tively, and η is the efficiency of the measurement, which
is defined to be the ratio between the power due to the
recorded measurement signal relative to other sources of
noise. Inefficient measurements may arise from loss of sig-
nal or corruption of the signal by additional, unprobed
environmental degrees of freedom. The detected signal
Iexp(t) during an interval, t → t + dt, is related to the
Wiener process by:

Iexp(t+ dt)− Iexp(t) = dIexp(t) =
√
ηE[q]dt+

dW
√
γ

(2)

where E[ · ] denotes the expectation value with respect to
the state Sc.

For a given experimental signal, Iexp(t), the condi-
tional evolution of the state can be found by invert-
ing Eq. (2) to find a series of stochastic increments,
dW̃ (t|dIexp(t)), to insert back into Eq. (1). The resul-
tant conditional state, Sc, describes the knowledge about
the state of the system, as derived from the measurement
record. In classical state estimation, the stochastic incre-
ments are often called the innovation terms [26] because
they represent the difference between the actual mea-
surement taken and the measurement expected from the
conditioned state during each time increment.

The explicit expression for the terms in Eqs. (1) and (2)
are given in Table I. The quantum and the corresponding

classical models are related by the following formal pre-
scription: replace the quantum observables Ô with the
corresponding classical observables O, and commutators
with Poisson brackets, i.e. [ · , · ] → i~{ · , · }Pb. Note
however that, as far as the model selection is concerned,
the classical and quantum models could be very different
or even completely unrelated.
Decision rule.— We now consider a collection M of

dynamical models, which we denote by mk ∈ M (k =
1, .., N): these can be either quantum or classical (see
Eqs. (1), (2) and Table I). Before data collection, we
suppose that each model is equally likely, which mathe-
matically translates to setting the a priori probabilities
to be equal, i.e. the initial probability of model mj is
p0(mj) = 1

M . After data collection, the goal is to select
the model mj ∈M that gives the best description of the
collected data, i.e. that fits best the recorded time-trace
signal Iexp.

According to the Bayes decision rule, a modelmj is the
best considered model given the detected signal Iexp., if
∀k 6= j we have p(mj |Iexp) > p(mk|Iexp). However, in
some situations, the data Iexp is insufficient to select a
given model with certainty, e.g. two models might have
experimental predictions that are not distinguishable. It
is then useful to introduce an acceptance region A =
{I|1 − max[p(mk|I)] > τ}, where I denotes all possible
signals, τ is a threshold parameter, and max denotes the
maximisation over mk ∈ M . In the case Iexp ∈ A, we
apply Bayes decision rule for minimum error, otherwise
we conclude the data is inconclusive, i.e. Iexp is in the
so-called rejection region.

The Bayes decision rule and the acceptance region form
a two-stage selection: we can combine these two stages
by considering an alternative decision rule. Specifically,
we consider the Neyman-Pearson decision rule, which has
a built-in acceptance threshold parameter µ for the like-
lihood ratio [14, 15]. Specifically, one selects model mj ,
given the detected signal Iexp., if ∀k 6= j we have:

p(mj |Iexp)

p(mk|Iexp)
> µ. (3)

Note that the two decision rules coincide for µ = 1, τ = 1,
and under the assumption of equal a priori probabilities.
In the rest of this letter, we will use the latter, more
compact rule, given by Eq. (3).

To apply the decision rule, we are left to specify how
to obtain p(mk|Iexp). Without loss of generality, we as-
sume that the time-trace is given from t = 0 to t = t′,
and that the detector has a finite integration time ∆t,
such that n∆t = t′. We now use the property of pair-
wise independence of the detected signals in each interval
∆t to obtain an update equation for each of the model
probabilities [16]:

p(mk|Iexp,0:t′) ∝ p0(mk)
∏

t=∆t:t′

p(∆Iexp,t|mk, Iexp,0:t−∆t)

(4)
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where Iexp,0:t′ on the left hand-side denotes the total time
trace from time t = 0 to t = t′, p0(mk) is the initial
probability assigned to the model mk, and ∆Iexp,t on
the right hand-side is the signal in the interval [t, t−∆t].
The probability updates are generated using:

p(∆Iexp,t|mk, Iexp,0:t−∆t) =
1√

2π∆t
exp

(
− (∆W

(mk)
t )2

2∆t

)
(5)

where the increments (innovations) are given by:

∆W
(mk)
t =

√
γ (∆Iexp,t −

√
ηEt[q|mk]∆t) , (6)

and where Et[q|mk] is the expected value of q, given
the dynamical model mk and the associated conditional
state. The probabilities for each of the possible mod-
els are updated after each time step using (4) and then
normalised such that

∑
k p(mk|Iexp) = 1. As such, the

probabilities being calculated are the relative probabili-
ties between the different dynamical models, which does
not necessarily include the possibility of systematic er-
rors. These limitations are considered in detail by Tsang
in [15], where the different types of systematic errors are
listed and discussed. This limitation does not invalidate
the approach presented here. However, it does mean that
experimental studies need to be careful to calibrate their
systems fully and to verify that systematic errors are ei-
ther not present, or are included explicitly in one of the
dynamical models.

To summarize, given an experimental measurement
record consisting of discrete increments ∆Iexp,t, and a
set of dynamical models mk describing the possible evo-
lution of the underlying system, we proceed as follows.
At t = 0, set initial probabilities for all models, with
the default assumption being that all models are equally
likely. At each subsequent time step,

1. Calculate the increment ∆W
(mk)
t for each model

using (6) and ∆Iexp,t, and update the correspond-
ing conditional states using the appropriate form of
(1).

2. Calculate the probability update p(∆Iexp,t|mk) for
each model using (5).

3. Update all probabilities, using (4).

4. Normalize to find relative probabilities.

5. Repeat using next measurement increment,
∆Iexp,t+∆t.

Once the updates have been included from all measure-
ments in the record, the decision processing given by (3)
can be applied. One benefit of this procedure is that it is
clearly iterative, and can therefore be used as an online
process, with probabilities being updated as each mea-
surement is taken; or, if required, as a post-processing
step after experimental data collection.

Quality of the decision.— We have now introduced dy-
namical models and selection rules. In particular, we
have discussed how to select the best model mj ∈ M
given a measured signal Iexp. However, the model se-
lected might not be overall the best model to describe
the experiment, e.g. taking a longer time-trace Iexp, or
repeating the experiment several times, one might find
out that the best model to describe the system is actually
a different one. To estimate the probabilities of making
a correct or a false selection one can proceed using the
following procedure.

Suppose the system evolves according to the model
ms. In the absence of an experimental record, one can
generate a time trace I(ms)

sim numerically, solving Eqs. (1)
and (2), and using a Gaussian random number generator
for the Wiener increments dW . After the time-trace is
generated, one uses the simulated increments to calculate
the conditional state evolution for each of the models
and generating relative probabilities given the simulated
record, P (mk|I(ms)

sim ). The most probable model is then
selected using the Neyman-Pearson rule given in Eq. (3),
given the simulated time-trace I(ms)

sim . One repeats this
procedureN (s) times to estimate the probabilities of false
and correct identification:

P (mk|ms) ≈
N

(s)
k

N (s)
, (7)

where N (s)
k denotes the number of times the model mk

was selected, when the time-trace I(ms)
sim was generated

using model ms. In the limit N (s) → ∞, we obtain the
probability P (mk|ms) of selecting model mk, when the
time trace I(ms)

sim has been generated using model ms.
The probabilities P (mk|ms) form the elements of the

so-called confusion matrix (Mc)sk [27]. For example, in
the case where we are considering only two models, e.g.
a classical one and a quantum one, denoted by C and Q
respectively, we can arrange the probabilities of correct
and false identification in the following 2× 2 matrix:

Mc =

(
p(C|C) p(C|Q)

p(Q|C) p(Q|Q)

)
(8)

where p(C|Q) is the probability of a Type II error (false
negative, assuming that the classical hypothesis C is the
default or null hypothesis) and p(Q|C) is the probability
of a Type I error (false positive). More generally, one
can generate a Receiver-Operator Characteristic (ROC)
curve [27] by varying the threshold value µ.
Application to optomechanics.— Levitated optome-

chanical systems are a topical area of research. They
have been used for ultra-sensitive force measurements
[28], fundamental tests of gravity [29], as well as testing
the limits of quantum mechanics [30–32]. Here we pro-
pose a novel type of experiment to detect non-classical
features in such systems using dynamical model selec-
tion.
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For the purposes of this paper, we assume that the
motion of a levitated nanoparticle is decoupled along the
three motional axes and discuss only one-dimensional
motion [21, 33, 34]. Specifically, we suppose that the
potential is nonlinear and it forms a Duffing oscillator
[35–37]. The Hamiltonian is given by,

Ĥ =
1

2
p̂2 − 1

2
ω2q̂2 +

1

4
βq̂4 + g cos(t)q̂ (9)

where we have taken ~ = 1, the mass is scaled so that
m = 1, p̂ is the momentum operator, ω is the angular
frequency of a linear oscillator, β is the nonlinear pa-
rameter, and g is the magnitude of an external periodic
drive. This system has been widely studied in relation
to chaotic dynamics in open quantum systems and the
quantum-classical transition [35–41]. The full quantum
(Q), as well as the corresponding classical (C) model, are
of the form given in Eqs. (1) and (2), with additional dis-
sipator terms to describe the interactions with gas parti-
cles, acting as a thermal environment (see Supplementary
S2 for more details).

For the case considered here, one would like to find the
conditions where one can best discriminate between the
two dynamical models, and thus plan the experimental
implementation accordingly. A number of different con-
ditions were examined, for single well (linear and non-
linear) and double well potentials. The optimum condi-
tion was found to be a double-well potential with ω = 1,
β = 0.5 and g = 0 (see Supplementary S3 for more de-
tails).

In general, the probabilities for correctly identifying
a quantum system, P (Q|Q), are slightly higher than
for the classical system, P (C|C). At low temperatures
kBT < ∆E01 the distinguishability is excellent, ap-
proaching 100% even for measurement efficiencies η '
0.2, where ∆E01 is the energy separation between the
ground state and the first excited state. This contrasts
with a linear trap, where the probability of correctly
distinguishing dynamical models was found to be lim-
ited to around 80%, even for very low temperatures and
ideal measurements η = 1.0. Here, with two wells, both
dynamical models show good distinguishability between
quantum and classical behavior for temperatures T ' 0.5
(kBT ' ∆E01) and measurement efficiencies η > 0.2,
with some ability to distinguish between the two models
for temperatures where the thermal energy is well above
the first energy level separation and around the second
transition, kBT ' 1.5~ω ∼ 4∆E01, as long as η > 0.5
(see Fig. 1).

Typical trapping frequencies in experiments are
around 100kHz and masses of the nanoparticles are a few
×10−19kg [33, 34]. In this case, ~ω corresponds to a tem-
perature of 0.77µK, and T = 1.5 ' 1.16µK, with the two
wells separated by 0.2nm, smaller than the radius of the
sphere. However, double-well optical traps can be gener-
ated using fabricated structures within a few nanometers
spacing between the two wells, below the diffraction-limit
[42, 43]. Similarly, a few nanometers of spacing in ion

Figure 1. Numerically calculated probabilities for the identi-
fication of the correct dynamical evolution of optomechanical
example with trapped nanoparticle in a double well potential:
Q is calculated using a quantum SME, and C is calculated
using the equivalent classical SDE. Probabilities p(C|C) and
p(Q|Q) are shown, for different temperatures T as a function
of the measurement efficiency η. Inserts show approximate re-
gions where the models are distinguishable (green (light gray)
shaded regions), as functions of temperature and measure-
ment efficiency.

trapping using optical lattices is demonstrated in [44].
Alternatively, a double-well can be generated by focusing
two laser beams of different wavelengths [45]. A dielectric
particle will thus evolve in an effective potential of these
two partially overlapping potentials. As highlighted in
[42, 46] trapped particles can have resolutions well below
∼ 1pm [33, 34]. Therefore, such double-well traps are
realisable within the current experiments. Experiments
with levitated nanoparticles have reported temperatures
around 450µK [47], well above the regime required, but
experimental techniques are improving rapidly and tem-
peratures equivalent to n̄ ∼ 10 − 20 are anticipated in
the near future. Measurement efficiencies are more diffi-
cult to estimate from previous work since the values are
not critical to the results presented and are not normally
provided. However, for other systems, such as supercon-
ducting circuits [48–51], it is known that measurement
efficiencies of at least η ∼ 0.4 are achievable [49].
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Conclusions.— This letter has discussed a general
method to distinguish between dynamical models for
quantum and classical systems. It provides an al-
ternative to standard statistical tests based on state-
reconstruction. We have re-phrased the problem of model
selection in a form suitable to apply the well-known
Neyman-Pearson decision rule, and quantified the relia-
bility of the selection using the confusion matrix. Partic-
ularly noteworthy is the simplicity and generality of the
proposed method: dynamical model selection is based on
a generic time-trace data and it could be used to select
between a wide variety of dynamical models.

To illustrate the method of dynamical model selection,
we have considered its application to levitated optome-
chanical systems, where non-classical features are yet to
be experimentally demonstrated. We have proposed and
optimized a novel experiment, where the nanoparticle is
optically trapped in a double-well potential. Using dy-
namical model selection we have provided limits for two

key experimental parameters (temperature and measure-
ment efficiency) for quantum behaviour to be detected re-
liably. The successful experimental implementation, were
it to confirm non-classical features, would improve on the
most massive particle shown to exhibit quantum interfer-
ence by several orders of magnitude [52], and would thus
be of great importance to fundamental physics.
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S1: GENERAL DIFFUSIVE MODELS

In this supplementary we consider non-relativistic, Markovian, diffusive models [23, 24]. We start by discussing gen-
eral classical models. Specifically, the conditional probability density Pc evolves according to the Kushner-Stratonovich
equation [24]:

dPc = −
r=1∑
k

∂

∂qk
(akPc) dt

+
1

2

r=1∑
k

r∑
k′=1

∂

∂qk∂qk′
(Dkk′Pc) dt

+

r′∑
k

r′∑
k′=1

[c− E[c]]k
(
BB>

)
kk′

[BdV + (c− E[c])dt]k′ (10)

where ak ∈ R, Bkk′ ∈ R, ck ∈ R, Dkk′ ∈ R, and V is a vector of mutually independent R-valued Wiener processes.
The first line corresponds to the Hamiltonian evolution, the second line to the diffusion, i.e. in case the measurement
perturbs the system, and the third line to the update in the knowledge about the system. In particular, the measured
signal is given by (a r′-dimensional vector):

dIexp = cdt+BdV. (11)

We next describe general quantum models. Specifically, the conditional statistical operator ρ̂c evolves according to
the Belavkin equation [22–24] :

dρ̂c = −i
[
Ĥ, ρc

]
dt+D[ĉ]ρ̂cdt+H[dU†ĉ]ρ̂c, (12)
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where ĉ is a r′-dimensional vector of operators. U is a r′-dimensional vector of correlated C-valued Wiener processes
satisfying:

dUdU† = ηdt, (13)

dUdU> = Ξdt, (14)

where η is diagonal with ηkk ∈ [0, 1], and Ξ is symmetric with C-valued elements. Moreover, we have the constraint
that [

η + Re(Ξ) Im(Ξ)

Im(Ξ) η + Re(Ξ)

]
(15)

is postive semi-definite. Note that the first, second, and third term on the right hand-side of Eq. (12) correspond to
the first, second, and third line of the right hand-side of Eq. (10), respectively. The measurement signal is given by
(a r′-dimensional vector with C-valued elements):

dIexp = Tr
[
(ĉ>η + ĉ†Ξ)ρ̂c

]
dt+ dU>. (16)

S2: OPTOMECHANICAL SYSTEM MODELS

For our purposes, the important factors are: (i) a levitated nanoparticle is physically large (with a radius several
hundred to a few thousand times that of an atom); (ii) a nanoparticle has a high mass (six to eight orders of magnitude
larger than an atom); (iii) the trap can be arranged to separate degrees of freedom in terms of frequency, thereby
simplifying the system to one translational degree of freedom; and (iv) the particle is weakly coupled to a thermal
environment and to a laser field that can be used to provide a continuous measurement of position. We will take
parameters based on optomechanical spheres described in [33, 34], made from silica with radii ' 25−100nm and masses
m ' 10−19−10−18kg. These are good candidates for study because they previously have been used in experiments to
generate thermal squeezed states [33], measurements have been used to reconstruct (classical) Wigner functions [34],
and they can realize the multiple-well potentials [45], which we find maximizes the discrimination between classical
and quantum models.

A continuous quantum measurement process is usually modeled with a Stochastic Master Equation (SME) [22–24],
which can be written as

dρc = −i
[
Ĥ, ρc

]
dt

+

m′∑
r=1

{
L̂rρcL̂

†
r −

1

2

(
L̂†rL̂rρc + ρcL̂

†
rL̂r

)}
dt

+
m′∑
r=1

√
ηr

(
L̂rρc + ρcL̂

†
r − Tr(L̂rρc + ρcL̂

†
r)
)
dWr, (17)

where ρc is the density matrix for the state of the system conditioned on the measurement record – the state (possibly
mixed), which represents the current knowledge of the quantum state, Ĥ is the Hamiltonian of the system, dt is an
infinitesimal time increment, and the operators L̂r represent the effect of the environment and measurement. The
measurement record for each of the operators L̂r during a time step t→ t+ dt is given by, y(t+ dt)− y(t) = dyr(t) =√
ηrTr(L̂rρc + ρcL̂

†
r)dt + dWr, where the recorded time trace in this interval is dIexp(t) = dy(t)/

√
2k. ηr is the

measurement efficiency; the ratio of the signal power due the measurement relative to the power of other extraneous
sources of noise, where ηr = 1 is an ideal measurement and ηr = 0 is an unprobed environmental degree of freedom.
Moreover, we will assume that dWr are independent real Wiener processes, i.e. dWrdWr′ = δrr′dt. Physically, this
SME represents a situation where the measurement environment decoheres sufficiently rapidly that no correlations
build up between the state of the quantum system of interest and the environmental degrees of freedom (Markov
approximation).

For the case considered here, the SME is given by (17) with three environmental operators (m′ = 3): one measure-
ment of the position (q) of the nanosphere within the trap, L̂1 =

√
2kq̂, and two operators representing an unprobed

thermal environment L̂2 =
√

(n̄+ 1)Γâ† and L̂3 =
√
n̄Γâ [53]; where â† and â are the usual harmonic oscillator rais-

ing and lowering operators, Γ is a decay rate (Γ � ω), n̄ = (exp(~ω/kBT )− 1)−1 is the average thermal occupation
number of a linear oscillator at temperature T , and k is the measurement strength for the continuous measurement
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interaction. The measurement efficiencies are η1 = η, and η2,3 = 0 (unprobed). The measurement record for L̂1 is
dy(t) =

√
8ηkTr(ρc(t)q̂)dt+ dW .

For the equivalent classical system, we take a Stochastic Differential Equation (SDE) for the position q and the
momentum p of a classical particle,

dq = pdt

dp = −µq3dt+ ω2qdt− Γpdt+ g cos(t)

+
√

2kdY +
√

2ΓkBTdU (18)

where the measurement record is dyc(t) =
√

8ηkqdt+ dW and we have again set ~ = 1. Like dW , dY and dU are also
real Weiner increments, dY 2 = dU2 = dt, but they are uncorrelated so that dWdU = dWdY = dY dU = 0, and there
is no backaction from the measurement on the state of the system in a classical measurement.

S3: OPTOMECHANICAL SYSTEM SIMULATION

The distinguishibility of the two models was found to be best in the double well configuration. Specifically, when
the two wells were well separated in position and the barrier between the two wells was high enough for the classical
particle to remain in one well for a reasonable period of time, before the environmental noise kicked it into the other
well. In addition, the barrier also had to be low enough to prevent the quantum state localizing in one or other of the
wells. In practice, these conditions correspond to a symmetric double well potential where the quantum ground state
lies below the barrier height but the first excited state is above the barrier. The classical system is always localized,
in the sense that it is a point particle, but the pdf represented by the particles needs to be largely localized to one
of the wells by the measurements. By contrast, a quantum state can only be localized to one of the wells if two
of the low lying energy levels are below the barrier. If the barrier is sufficiently high, the lowest two energy states
are formed from the symmetric and anti-symmetric superposition of localized well states, and a localized well state
can be generated by combining these two energy levels [54]. If the first excited state lies above the barrier, then a
superposition of this with the ground state will not be localized in one well. For the Duffing Hamiltonian (9), these
conditions are met if we take ω = 1, β = 0.5 and g = 0, where we have set Γ = 0.05, k = 0.025, N = 500.

The quantum model uses Rouchon’s integration method [55, 56] with non-commutative noise sources and a moving
basis [35–37] with 60-100 linear oscillator states. The models are integrated over 100 cycles of the linear oscillator
with 500-2000 time steps per oscillator cycle, and the probabilities are calculated bu averaging over 100 runs of each
model. The barrier height in this example is ∆Eb = 0.5~ω, the two wells are separated in position by ∆q = 3

√
~/mω,

the lowest two energy levels are separated by ∆E01 = 0.396~ω, and the next excited states are separated by ∆E12 =
0.941~ω and ∆E23 = 1.061~ω.

The classical model requires the evolution of the probability density function (pdf) to be calculated, which is
computationally expensive. We use an alternative approach here to solve the approximate problem using a sequential
Monte Carlo method [26, 57, 58] known as a particle filter. The particle filter uses the fact that the evolution of the
pdf can be approximated by the evolution of a finite number of candidate solutions or ‘particles’, each of which has a
weight associated with it, where the weight evolves in such a way that a quantity averaged over all weighted particles
approximates the expectation value for the quantity over the pdf. In this case, we take N particles, initialized with
equal weight w(i)

0 = 1/N . Each particle has a position q(i) and a momentum p(i), initially selected from the same
thermal distribution as that given by the thermal state for the quantum model. The particles then evolve according
to the SDE (18) with independent noise sources. The weights are updated using

w̃
(i)
t =

exp
(
− (∆ỹt−

√
8ηkq(i)∆t)2

2∆t

)
√

2π∆t
w

(i)
t−∆t (19)

where the w̃(i)’s are unnormalized weights after updating, and the probability for the classical model is approximated
by p(∆ỹt|C,∆ỹ0:t′−∆t) ∝

∑N
i=1 w̃

(i)
t . As the system evolves, the values of some of the weights fall to near zero. The

particles and the candidate solutions that they represent are then resampled using the current weight distribution as
described in [16]. This evolution with periodic resampling allows the particle filter to be efficient whilst still retaining
a diverse selection of candidate solutions. This makes the particle filter an ideal method for the estimation of a
nonlinear dynamical process and it is the reason for considering it in a model selection context. In addition, the
particle filter and other sequential Monte Carlo methods can be augmented to include the simultaneous estimation of
system parameters [59] and they can be applied to quantum systems described by SMEs with uncertain parameters
[60].
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It should be noted that the ability to distinguish the models is dependent on the total time over which the mea-
surement record is collected and the models integrated. Extending the integration time will improve the results, but
the trap potential and the measurement interaction would need to be stable over the integration time, providing a
trade-off between distinguishability and difficulties in collecting the measurement data.
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